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 STRATEGIC CANDIDACY AND VOTING PROCEDURES

 BY

 BHASKAR DUTTA, MATTHEW 0. JACKSON, AND MICHEL LE BRETON1

 We study the incentives of candidates to strategically affect the outcome of a voting

 procedure. We show that the outcomes of evety nondictatorial voting procedure that

 satisfies unanimity will be affected by the incentives of noncontending candidates (i.e.,

 who cannot win the election) to influence the outcome by entering or exiting the election.

 KEYWORDS: Strategic candidacy, voting procedures, candidates, voting rules.

 1. INTRODUCTION

 THE DECISION OF A CANDIDATE to enter an election can affect its outcome even

 in situations where the candidate is not the winner of the election. For instance,

 consider a scenario in which three national parties A, B, and C can contest an
 election in which the winner is decided by plurality rule. Although party A may

 have the highest number of first-preference votes, it may still fail to win the
 election if, for instance, B drops out of the race in order to let C win.2 If the

 voting process is viewed as a mapping from preferences to outcomes, then
 strategic behavior in the first stage can be just as important as strategic voting in
 the second stage. As we shall show, this phenomenon is important to all voting

 procedures, and thus spans applications ranging from political elections to

 committee decisions.

 To be precise, we consider a framework in which there is a finite set of voters

 and potential candidates. We allow for the possibility that some or all of the
 candidates may also be voters, and consider situations where each individual
 (including candidates) has preferences over the set of all candidates. We
 examine a two-stage procedure where in a first stage candidates decide on

 1 This is a substantially revised version of an earlier paper of the same title. Part of the original
 paper has been split off as Dutta, Jackson, and Le Breton (2000). We thank Jeff Banks, Michael

 Chwe, John Duggan, Steve Eppley, Hiulya Eraslan, Tim Feddersen, John Ledyard, Eric Maskin,

 Andy McLennan, Phil Reny, Ariel Rubinstein, John Weymark, a co-editor, and four anonymous

 referees for very helpful comments and suggestions on earlier drafts. Financial support under NSF

 Grant SES-9986190 is also gratefully acknowledged.

 2An example of such strategic exit decisions arose in the recent election in Israel. On the last day
 before the election, Bishara (the Arab party candidate), Mordecai (the center party candidate), and

 Begin (the ultra-nationalist party candidate) each exited. Most critical was Mordecai's exit which

 gave Barak enough votes to win in the first round of the election, as most of the voters who

 supported Mordecai had Barak as a second choice. Without Mordecai's exit, it is likely that none of

 the candidates would have won in the first round and that there would have been a run-off between

 Barak and Netanyahu two weeks later. While the only affect of this was to avoid having a run-off, it

 was still an openly strategic action by Mordecai as he made it clear that he preferred Barak to win

 given that he would not. As a more direct example, without Perot's entry into the 1992 U.S.

 Presidential election Bush might have defeated Clinton. For an empirical look at such "what-if"

 questions in the 1987 British election, see Alvarez, Nagler, and Bowler (2000).
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 whether or not they will enter the election, and then in a second stage a voting

 procedure is implemented to select from the candidates who enter.

 Before outlining our analysis, let us describe in more detail the way in which

 we model voting procedures. We model a voting procedure as specifying the

 winning candidate as a function of the set of entering candidates and voters'

 preferences over the entering candidates. The only restriction that we place on

 such a voting procedure is that it satisfy unanimity. Unanimity requires that if all

 voters find the same candidate most preferred out of the entering candidates,

 then that candidate is selected.

 We focus on the following issue. Which voting procedures are not influenced

 by candidates' incentives to exit an election? More precisely, for which voting

 procedures is it always a Nash equilibrium for all candidates to enter the

 election? We call this condition "candidate stability." We show that if the sets of

 voters and candidates are distinct, then the only voting procedures satisfying
 candidate stability are dictatorial procedures. When the set of candidates and

 voters overlap, then there exist nondictatorial voting procedures that satisfy

 candidate stability and unanimity. However, we show that none of these voting

 procedures satisfy an appealing "almost"-unanimity condition together with a

 very weak monotonicity condition that is satisfied by most standard voting

 procedures (e.g., tree implementable procedures, Condorcet consistent proce-
 dures, scoring rules, etc.). This implies that most standard voting procedures fail
 to satisfy candidate stability regardless of the overlap between candidates and
 voters.

 We should mention that these results are not simple extensions of an

 Arrow-type impossibility theorem, even though we invoke Arrow's theorem at

 one point in the proof of the first theorem. The bulk of the proof develops the

 joint implications of candidate stability and unanimity. We discuss this in more

 detail in what follows.

 Why should we care whether a voting procedure is candidate stable? Regard-
 less of how one feels about candidate stability as a normative property, the

 results here must be taken seriously if we are at all interested in evaluating and

 comparing voting procedures. Much of what we know about voting rules is based

 on comparisons of the properties of different voting procedures when the set of

 candidates is taken as given.3 The results here show that the outcome of all

 nondictatorial and unanimous voting procedures will be influenced by the entry

 decisions of candidates. This implies that it is not valid to treat the set of

 candidates as fixed for any nondictatorial voting procedure. As most of what we
 know about voting rules treats the set of candidates as fixed, our results suggest

 that these need to be revisited accounting for strategic candidacy. For instance,

 example 5 below shows that the Pareto property of voting by successive elimina-
 tion is upset when one allows for strategic candidacy. So, the results here show

 3 There are some exceptions, such as Tideman (1987) who shows that entry by "clone" candidates
 can upset various scoring rules.
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 that in order to make meaningful comparisons across voting rules, strategic
 entry and exit effects must be understood.

 The Related Literature

 Before proceeding to the body of our analysis, let us briefly discuss the
 relationship of this work to the most closely related literature.

 The most closely related papers to this one are papers by Dutta and Pattanaik
 (1978), Osborne and Slivinski (1996), and Besley and Coate (1997).4 Dutta and
 Pattanaik (1978) analyze a setting where in a first stage (before voting) individu-
 als sponsor or propose alternatives out of a set. Next, in a second stage, voting
 takes place over the set of proposed alternatives. Their main result is to show

 that there are circumstances under which sponsors indulge in strategic behavior
 by not proposing their most preferred alternatives. More recently, Besley and
 Coate (1997) and Osborne and Slivinski (1996) analyzed strategic candidacy in
 the context of representative democracy. In their models citizen-candidates can

 contest an election in which the winner is decided by plurality rule. The main
 focus of these papers is to determine the number of candidates who will enter

 the election as well as the pattern of entry. They exhibit situations where

 candidates who have no chance of winning may enter the fray simply in order to
 influence the outcome of the election, thus noting strategic candidacy.

 Although each of the three above-mentioned papers analyzes issues related to
 strategic candidacy, the focus of our paper is quite different. We are interested
 in understanding whether strategic candidacy is an issue that is pervasive to all

 voting procedures. We conclude that it is.

 Also related is a companion paper, Dutta, Jackson, and Le Breton (2000),
 where we analyze the effects of strategic candidacy on a particular voting
 procedure, voting by successive elimination. As argued above, given the result
 that all nondictatorial and unanimous voting procedures will be influenced by
 candidate entry decisions, it is important to re-examine previous characteriza-
 tions of voting procedures to see how the analysis changes when we account for

 strategic candidacy. In the companion paper we conclude that strategic candi-
 dacy enlarges the set of outcomes of a voting procedure, and for voting by
 successive elimination this expansion is characterizable. It turns out that strate-
 gic candidacy allows for the election of Pareto dominated candidates at some
 profiles.

 There is also a rich theoretical literature on the strategic effects of agenda
 manipulation, which is not as closely related to our work, but still should be
 mentioned.5 The agenda manipulation literature takes seriously the strategic

 4 See also Majumdar (1956) and Mueller (1978). The effects of candidacy have been considered in
 many other settings too, such as models of elections where the positioning of candidates can affect

 entry decisions of other candidates (e.g., Palfrey (1984)).
 5A nice discussion of some of the main contributions to the agenda manipulation literature

 appears in Ordeshook (1986).
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 ordering of alternatives, or more generally the effects of varying the game form

 used for voting. However, the agenda manipulation literature considers the set

 of alternatives as fixed, and instead focuses on effects of changes in the voting

 procedure.

 Finally, the underlying issue that we are considering here is of importance to

 the general literature on mechanism design and implementation. This literature

 usually takes the set of feasible alternatives to be exogenous and focuses on the

 difficulties raised by the presence of incentives of players regarding information
 that they might privately hold. There are notable exceptions. Papers by Postle-

 waite (1979), Hurwicz, Maskin, and Postlewaite (1995), and Hong (1996, 1998)

 have considered strategic withholding of endowments in exchange settings,6 and
 thus are similarly motivated to understand the strategic effects of control of the

 feasible set of alternatives. As we examine a very different setting, our work is

 complementary to these papers with regard to the broader goal of developing an
 understanding of collective decision making when the set of alternatives is

 endogenous.
 The remainder of the paper is structured as follows. In Section 2, we outline

 the setting and provide definitions. In Section 3, we discuss the implications of

 candidate stability when there is no overlap between candidates and voters. In

 Section 4, we follow up on this question when there is overlap between voters
 and candidates. In Section 5, we provide a preliminary examination of some
 important issues for further analysis.

 2. DEFINITIONS

 Candidates and Voters

 Let X= {1,... , n} be a finite set of individuals.
 F cX is the set of potential candidates. Generic candidates are denoted

 a, b, c, d, e. We consider the case where #F ? 3, as the case with just two
 potential candidates is easily handled with a majority vote and the possibilities
 for strategic candidacy are trivial.

 2"FcAX is the set of voters. Let m = #F. Generic voters are denoted i,]j k.
 Without loss of generality, assume that X- = u W~. This allows for the case

 where F n %'& 0 (e.g., F = 2 or F c 2) and the case where F n 2Y= 0. We
 will discuss how the overlap between candidates and voters matters, as it applies.
 Unless otherwise stated, no assumption is made about the overlap.

 Preferences

 Individuals have strict preferences over the set of candidates represented by a

 complete, transitive, and asymmetric binary relation. The preference relation of

 i is denoted by Pi. Let 9 denote the set of all profiles of such preference
 relations and P denotes a generic profile in -9.

 6 Hong (1998) addresses private information of an agent about the feasible set of alternatives.
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 Say that aRib if either aPib or a = b.
 Given any A c W, let PiIA denote the binary relation on A induced by Pi, and

 PIA the profile of induced relations.
 Given any nonempty B c W, let top(B, Pi) denote the candidate a E B such

 that aPib for all b E B, b = a.
 In many situations it is natural to assume that a candidate finds him or herself

 most preferred.7 The restricted domain of preferences

 9` = {PE Ia E = top(,Pa) =a},
 captures this assumption.

 Without such a domain restriction a basic problem can arise. For instance, in
 the extreme case where candidates find themselves least preferred8 any elected
 candidate prefers to exit. So to give candidate stability its best shot at being
 satisfied, we work with the restricted domain. We shall see that even on the
 restricted domain candidate stability is an impossible condition to satisfy.

 Voting Procedures

 A voting procedure is a function V: 2 \ {0} x 9` such that for all
 A E 2`\{0} and P E=9:

 (i) V(A IP) E=AI
 (ii) V(A,P)=V(A,P') for all P' EE9' such that Pi=Pi' for all ijEE, and
 (iii) V(A, P) = V(A, P') for all P' E 9` such that PI A = P'I A .
 Item (i) says that a voting procedure chooses from the set of available

 candidates A. As stated, a voting procedure is a function and thus is single-val-
 ued. So any ties are already broken by the procedure and in some deterministic
 manner.9

 Item (ii) says that a voting procedure is determined only by voters' prefer-
 ences. In our setting the profile P includes a specification of candidates'
 preferences, and the candidates in some cases may not be voters. Restriction (ii)
 is essentially without loss of generality, as we could simply define 2'F to be the
 set of individuals whose preferences matter for V.

 Item (iii) says that the voting procedure depends only on preferences over the
 set of feasible (i.e., entering) candidates. This condition is similar to Arrow's
 independence of irrelevant alternatives condition, except defined over voting
 procedures instead of social welfare orderings.10 We emphasize that this inde-

 7For instance, this will be true in the framework of Besley and Coate (1997), where each
 candidate is identified with her most preferred alternative in some policy space.

 8 This might arise if the election is for a position that nobody wants to fill, e.g., chairman of a
 department.

 This leaves open the case of random tie-breaking. For example, imagine a plurality rule with ties

 broken by the flip of a fair (multi-faced) coin. We conjecture that with appropriate restrictions on
 von Neumann-Morgenstern preferences over lotteries on candidates, the results presented here

 extend essentially intact.

 10 This condition is sometimes called "independence of infeasible alternatives" in the choice
 setting.
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 pendence condition is very weak in the context of voting procedures, as there
 are many voting procedures that are nondictatorial and satisfy unanimity, as

 discussed in more detail below.

 If the set of entering candidates is fixed, then the voting procedure becomes a

 social choice function. It is because a voting procedure is more general than

 either choice rules or social choice functions that we use the new name voting

 procedure.11

 Unanimity

 V satisfies unanimity if V(B, P) = b for any B c W, P E _9, and b E B such
 that top(B, Pi) = b for each i E /.12

 If for each A, V(A, ) is a social choice function that is implementable via
 some standard solution concept such as Nash equilibrium, subgame perfect

 equilibrium, undominated Nash equilibrium, or the iterative elimination of
 weakly dominated strategies, via a game form (not necessarily finite or of perfect
 information) with range A, then V is a voting procedure that satisfies unanimity.
 Thus, if for each A the voting rule that society uses can be modeled (imple-
 mented) by a game form, then that will result in a unanimous voting procedure.
 We emphasize, however, that we can be completely agnostic on the derivation of
 the voting procedure V and still satisfy these properties. For instance, solving a
 knock-out voting tree (e.g., see Moulin (1988)) with sincere voting will also lead
 to a voting procedure V that satisfies unanimity, as will plurality rule under

 sincere voting with a deterministic tie-breaking rule.

 Candidate Stability

 The candidate stability condition used in the main result in the paper is the

 following.

 A voting procedure V is candidate stable if V(W, P)RaV(\ \{a}, P) for all
 a E and P E=

 In thinking about a game where candidates are deciding whether or not to
 enter, candidate stability requires that it be a Nash equilibrium for all candi-
 dates to enter.13 Candidate stability is a weak way of capturing the idea that no

 11 The term "social choice function" has been used in the nonbinary choice literature to describe
 the same functions that we are calling "voting procedures." We chose not to use the name social
 choice function, as that term is now commonly used to indicate a function for which the set of

 candidates is fixed, and we want to explicitly focus on the importance of candidate entry.
 12 Given the self-preference of candidates, unanimity on ' is always satisfied when there are at

 least two candidates who are voters. In the Appendix we discuss a strengthening of unanimity for the
 case where ' n 7 0.

 13 In the proof of Theorem 1 in the Appendix, we use as a tool a variation on the notion of
 candidate stability that addresses issues associated with nonstrategic entry/exit decisions. Such a

 condition can also be of interest.
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 candidate can strategically affect the outcome of a voting procedure by with-
 drawing from a contest. It is weak in that it does not require anything like it to

 be a dominant strategy for candidates to enter.

 Two features of this concept are worth emphasizing. First, the condition only

 applies to candidates who are not being elected. Given candidates' self-prefer-

 ence, they could only conceivably benefit from exiting if they were not being
 elected to begin with. Thus, candidate stability only applies to situations where
 the candidate entering or exiting only affects the outcome by swinging the vote
 in terms of which other candidate is elected. Second, candidate stability only

 requires that this be true when all candidates enter. That is, the condition only

 compares V(F, P) and V(W\ {a}, P), but makes no statement about the rela-
 tionship between V(A, P) and V(A \{a}, P) for other A c W. We detail the
 relationship between candidate stability and the set of entry equilibrium out-

 comes in the concluding remarks.

 3. THE IMPLICATIONS OF CANDIDATE STABILITY

 There are many nondictatorial voting procedures that satisfy unanimity (and
 even Pareto optimality). This follows from our earlier claim. However, as we
 show below, only dictatorial voting procedures satisfy candidate stability. Before
 stating the theorem, let us examine some examples to get a feeling for how

 voting procedures fail to satisfy candidate stability.
 First, we examine the example of plurality rule under sincere voting for which

 there are many examples of strategic candidacy, as mentioned in the introduc-
 tion."4

 EXAMPLE 1: Let F = {a, b, c}, m = 7. For any A c W, V(A, P) is determined
 by plurality rule (under sincere voting) with ties broken in any deterministic
 manner.

 Consider the profile of voters' preferences where

 aPibPic for i=1,2,3;

 bPiaPic for i=4,5;

 cPibPia for i = 6,7.

 In this case, a wins if all candidates enter, while b wins if candidate c exits. If
 candidate c has 6's preferences (or is 6), then candidate stability is violated.
 Note that under Borda voting we end up with exactly the same outcomes, so this
 is not simply an artifact or plurality rule.15

 14 See Osborne and Slivinski (1996) and Besley and Coate (1997) for detailed analyses of
 candidacy decisions under plurality rule.

 15 This example also demonstrates that failures of candidate stability can arise at preference
 profiles where the majority relationship is transitive. Here, b is a Condorcet winner and c is a

 Condorcet loser.
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 Failures to satisfy candidate stability occur not only with sincere voting, but
 also under strategic voting procedures. Let us consider an example of one of the

 most extensively studied strategic voting procedures. Voting by successive

 elimination16 defines a unanimous and nondictatorial voting procedure (actually

 under either strategic or sincere voting), but fails to satisfy candidate stability.

 EXAMPLE 2: Let F = {a, b, c}, IY= {1, 2, 3}, and consider A c W.

 If #A = 1, then V(A,P)EA.

 If #A = 2, then V(A, P) is determined by majority rule.

 If #A = 3, then V(A, P) is determined by first holding a majority vote over a

 versus b, then matching the winner in a majority vote against c.

 When V(A, P) is defined using sophisticated voting, V is clearly a voting
 procedure, satisfies unanimity, and is nondictatorial. However, V is not candi-
 date stable. This is seen, for instance, when voters have the following prefer-
 ences: aP1bP1c, bP2cP2a, and cP3aP3b. At this preference profile, b will be the
 outcome with sophisticated voting (1 and 2 vote for b in the first stage, since 1
 knows that a would lose in the second stage). However, if c were to exit, then
 the outcome would be a since a majority prefers a to b. This is a violation of

 candidate stability, since if c had the preferences of voter 3, then c would prefer
 to exit. This example easily extends to more voters.

 The following theorem shows that such violations of candidate stability exist
 for every nondictatorial and unanimous voting procedure.

 A voting procedure V is dictatorial if there exists a voter i E 27 such that

 V(K, P) = top(F, Pi) and V(F\{a}, P) = top(F\{a}, Pi) for all P E9" and
 a E g.17

 THEOREM 1: If F n 2= 0, and a voting procedure V is candidate stable and
 unanimous, then V is dictatorial.18

 The proof of Theorem 1 appears in the Appendix.
 Theorem 1 says that if candidates cannot vote, then any voting procedure that

 satisfies unanimity and candidate stability must be dictatorial. The implication is

 16 For formal definitions of voting by successive elimination and sophisticated voting, see Banks
 (1985) or Shepsle and Weingast (1984). Dutta, Jackson, and Le Breton (2000) characterize the

 strategic affects of candidate entry/exit decisions on the outcome of voting by successive elimina-

 tion.

 17 The definition of dictatorial is unusual in applying only to certain sets of candidates. This is due

 to Theorem 1 on a voting procedure being dictatorial only holding on the sets ' and W\{a}, as
 those are the only sets that we consider under candidate stability. It is easy to show that if candidate

 stability is applied on all sets, or under the much stronger condition that it is a dominant strategy for

 each candidate to enter, then V is dictatorial on all sets. However, those stronger assumptions are

 not in line with our question of whether strategic candidacy changes the outcomes of a voting

 procedure away from those with a fixed candidate set.

 18 The converse holds if unanimity is only required to hold when at least #W - 1 candidates

 enter.
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 that every nondictatorial and unanimous method by which a society elects a

 candidate will be open to strategic manipulation on the part of the candidates.
 To see some of the logic behind the proof of Theorem 1, note that if such a

 voting procedure were rationalizable by some social welfare ordering (i.e.,
 represented choices consistent with some social welfare ordering), then one
 could apply Arrow's (1951) impossibility theorem to deduce the result. However,
 there are voting procedures that are unanimous and candidate stable, but are

 not rationalizable. Thus, the logic of Arrow's theorem cannot be directly
 applied. The way in which we prove Theorem 1 is to show that candidate

 stability and unanimity imply that the voting procedure is rationalizable on very

 restricted domains. In particular, the voting procedure is rationalizable on a

 domain of preferences where all voters find the same three alternatives most

 preferred, and agree with some fixed preference profile on other alternatives.19
 We thus conclude that for each three alternatives that appear at the top of
 voters' preferences the voting procedure is dictatorial on such a restricted
 domain. We then tie such domains together through repeated application of
 candidate stability to show that the same voter must dictate on each such

 restricted domain where all voters have the same three candidates at the top of
 their preferences. Finally, we use candidate stability and unanimity again to
 argue that the same voter must dictate on the rest of the domain.

 4. OVERLAP BETWEEN CANDIDATES AND VOTERS

 Theorem 1 only covers the case where candidates are not voters. This covers

 some settings of interest, but there are many settings where candidates are
 voters and so it is important to understand that case. When there is overlap in
 candidates and voters, there are nondictatorial voting procedures that are
 candidate stable and unanimous. However, this class of voting procedures is

 quite restricted as we shall show. We begin with an example of a nondictatorial
 voting procedure that is candidate stable and unanimous when candidates can
 vote.

 EXAMPLE 3: Let F = {a, b, c} and IY= {a, b, c, 1}. Consider a voting procedure
 described as follows. If only two candidates enter, then Voter 1 chooses the
 winner. If all the candidates enter, then Voter 1 determines an ordering of the

 19 There are other methods of proof. On the same special restricted domain, we could show that
 the voting procedure satisfies strong positive association (a.k.a. monotonicity) and then invoke the

 Muller and Satterthwaite (1977) theorem. John Weymark has shown us another approach: Using
 Hansson's Theorem (1968) it follows that a candidate stable and unanimous voting procedure
 satisfies Pareto optimality when at most one candidate stays out. Then using Pareto optimality on

 this domain, one can invoke a theorem of Grether and Plott (1982) from the nonbinary choice
 literature to prove Theorem 1. Although the Grether and Plott theorem is not concerned with

 candidate stability, it uses a revealed preference axiom that is mathematically similar. See Weymark

 (2001). Phil Reny has pointed out that our conditions suffice to produce a direct proof that mimics

 the proof of Arrow's theorem (and the Gibbard-Satterthwaite theorem) in Reny (1999).
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 three candidates {a, b, c}. Then, the candidates are voted on by successive

 elimination (as in Example 1), but according to the ordering of the candidates

 suggested by voter 1. In particular, only the candidates a, b, and c get to vote in

 the successive elimination procedure. Thus, voter 1 only sets the ordering of the

 agenda. It is easily checked that if, for instance, candidate a is second most

 preferred by candidates b and c, then a is a Condorcet winner (considering only

 candidate preferences) and so regardless of voter l's ordering of the agenda

 candidate a will be selected. Thus, a can be selected even when it is l's worst

 alternative. Moreover, each candidate's least preferred alternative can be the

 outcome for some preference profile. It can be checked by direct calculation

 that this procedure is candidate stable and strongly unanimous (as defined in the

 Appendix).

 Although Example 3 shows that when there is an overlap between voters and

 candidates it is possible to satisfy candidate stability, it remains an extremely

 demanding requirement. In the example, the outcome is voter l's most pre-

 ferred candidate except when the other three voters all have the same most

 preferred candidate (subject to their self-preference). More generally, the voting

 procedures that are candidate stable must exhibit a similar strong imbalance of

 power among voters. The rest of this section is devoted to making this imbalance

 of power precise.

 Procedures with characteristics similar to the one in Example 3 exist for any

 number of candidates. For example, consider a procedure where:

 (i) if some candidates do not enter, then there is a voter (say i) who is not a
 candidate who dictates, and

 (ii) if all candidates enter, then i selects an ordering over candidates, say

 a, b, c, .. ., k, and a vote is then taken between a and b. If one voter (other than

 a) prefers a to b, then a is elected. Otherwise a vote is taken between b and c.
 If one voter (other than b) prefers b to c, then b is elected.

 This procedure is candidate stable.20 In this sort of voting procedure, al-

 though it is not dictatorial, i effectively dictates as long as there is at least one

 other voter who does not find i's most preferred candidate least preferred. So,

 such a procedure makes some choices against the unanimous wishes of m - 2

 voters.

 As we now show, all candidate stable voting procedures that are tree imple-

 mentable must violate such an m - 2 unanimity condition. In fact, candidate

 stability and m - 2 unanimity are in conflict for a class of voting procedures that

 is much larger than tree implementable rules. We now provide formal defini-
 tions to state these results.

 20 This procedure is defined under sincere voting. Under sophisticated voting more complicated
 examples with similar features can be constructed.
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 Tree Implementability

 For each set of candidates A c F consider any finite extensive game form of

 perfect information rA with range A. A function V: 2'\ {0} X9' -> F is tree
 implementable if V(A, P) is the subgame perfect equilibrium21 outcome of JA
 given the preference profile P, for every A c 2W\ {0} and P E _9. (See the
 Appendix for more detailed definitions.)

 Note that sophisticated voting on binary trees results in tree implementable
 voting procedures (see Dutta and Sen (1993)).

 Restricted Top Sets

 B c F is a restricted top set at Pi relative to A c F for i E 2', if bPia for each
 b E B and a cA \(B U {i}).

 B c F is a restricted top set at P c 9` relative to A c W, if B is a restricted
 top set at A for every i c W.

 A restricted top set for i is a set B of candidates whom voter i finds preferred
 to each candidate not in B, excepting the self-preference of i if i is a candidate.

 m-2 Unanimity

 Let us first state the m - 2 unanimity condition informally. The condition

 requires that if all but at most 2 voters find candidate a most preferred, the
 remaining 2 voters find a at least third most preferred, and all voters' prefer-

 ences agree over all remaining candidates (all subject to self-preference restric-
 tions), then a must be elected. This is an appealing condition when there are at
 least 5 voters, as it then says that when there is an extreme amount of
 agreement in voters' preferences favoring a given candidate, then that candidate
 should be chosen.

 More formally, m - 2 unanimity is defined as follows.

 A profile P e r' is uniform if aPib implies aP.b for all {a, b} c , i 0 {a, b},
 and i 4a,b}.

 Let ,j(P) denote the set of all P e 0r such that B is a restricted top set of
 P relative to F for every i e %' and PKI\B = PKI\B, where P is uniform.

 So, 09r(P) is the set of preference profiles such that all voters have B as a
 restricted top set and have identical preferences over the remaining candidates,

 subject to self-preference.
 A voting procedure V is m - 2 unanimous if V(W, P) = a whenever {a} is a

 restricted top set of P e. b, C}(P) relative to ' except for at most 2 voters,
 where P is a uniform profile and {a, b, c} c F.

 21 Given the strict preference domain, for such game forms subgame perfect equilibrium,
 backwards induction, and the iterative elimination of weakly dominated strategies coincide.
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 THEOREM 2: No voting procedure is tree implementable, candidate stable, and

 m - 2 unanimous.22

 Another way to state the above theorem, is to say if V is tree implementable

 and m - 2 unanimous, then it must fail to be candidate stable.

 We prove Theorem 2 by proving the following stronger theorem that uses a
 necessary condition for tree implementability. This weaker condition is satisfied

 by some voting procedures, such as Borda rule, that are not tree implementable.

 Top Pair Monotonicity

 A voting procedure is top pair monotonic if for any uniform P E 9', A c F

 with #A ? #F-1, {a,b} cA, andP { P):
 (i) V(A, P) E (a, b}, and

 (ii) if P' e{ bl(P) is such that aP1b =~aaPt'b, then V(A, P) = a =~aV(A, P')
 =a.

 Top pair monotonicity requires that if there exists a restricted top set of two

 candidates, and preferences are uniform outside of this restricted top set, then a
 voting procedure must choose from that restricted top set. It also requires that if

 we start at a preference profile as described above and only change preferences

 so that we improve the standing of the elected candidate (and make no other
 changes in the orderings), then the same candidate is elected.

 Top pair monotonicity is a necessary condition for tree implementability, as

 we show in the Appendix. It is also satisfied by some prominent voting proce-

 dures that are not tree implementable such as Borda rule and plurality rule.

 THEOREM 3: No voting procedure is top pair monotonic, candidate stable, and
 m - 2 unanimous.

 As most prominent nondictatorial voting procedures are top pair monotonic
 and m - 2 unanimous,23 the implication of Theorem 3 is that there is a large
 class of reasonable voting procedures that fail to satisfy candidate stability,
 regardless of the overlap between candidates and voters.

 22 Somewhat surprisingly, if the definition of m - 2 unanimity is weakened to apply only with

 P E 91'a, b}(P) rather than when P E P{,a b, c(P), then Theorems 2 and 3 no longer hold. However, the
 counterexamples are quite specific and the theorems hold when m - 2 is replaced by requiring that

 m - 3 unanimity hold for P E P{a, b}( )
 23 The reason that we say most procedures, rather than all, is that some scoring rules fail to satisfy

 m - 2 unanimity for certain cases of overlap between candidates and voters. As a simple example, if

 all candidates are voters and there are two additional voters who are not candidates, then sincere
 plurality voting fails m - 2 unanimity. In that case, candidates vote for themselves and the
 remaining two voters decide the election (with ties broken in some fixed manner). Even if some
 candidate is the restricted favorite of all candidates and second most preferred by the remaining two

 voters, another candidate who is the favorite of the two remaining voters can be elected. With a

 small number of voters (8 2 m, but not for more) one can find examples where Borda scoring also
 fails to satisfy m - 2 unanimity. However, in these cases one can directly check that candidate

 stability is violated.
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 5. CONCLUDING REMARKS

 Theorems 1, 2, and 3 suggest that strategic candidacy will be important in

 determining the outcomes of reasonable voting procedures. Our analysis here is

 thus a step in a larger analysis. We conclude this paper with a comment on the

 results contained here and observations that look forward to a more detailed

 analysis of strategic candidacy.

 Entry Equilibria and Candidate Stability

 We have emphasized that a main implication of the results here is that
 considering strategic candidacy will change the characteristics of all (nondic-
 tatorial) voting procedures, because all such procedures are not candidate
 stable.

 There is one potential loophole in this argument that we now close. One
 could imagine that a voting procedure could fail to be candidate stable, and yet

 have all the Nash equilibria in the associated candidate entry game still result in

 the same candidate being elected as if all candidates entered.

 Say that A c F is an entry equilibrium relative to V and P e 9` if

 V(A, P)RaV(A \ {a}, P) for all a eA and V(A, P)R,V(A U {a}, P) for all a e
 e\A.

 An entry equilibrium is a Nash equilibrium of the game where candidates
 decide simultaneously whether to enter the election.

 V is entry equilibrium stable if for all P E _9' (i) there exists an entry
 equilibrium A such that V(Q, P) = V(A, P) and (ii) V(Q, P) = V(A, P) for
 every entry equilibrium A.

 Entry equilibrium stability says that the predictions of the outcomes of a

 voting procedure are the same if one simply assumes that all candidates enter as

 if one carefully analyzes the set of candidates who choose to enter.

 As we now show for the case of e n r2= 0, every nondictatorial and unani-
 mous voting procedure must violate entry equilibrium stability.

 LEMMA 1: If e n 2= 0, then if a voting procedure V is entry equilibrium stable,
 it is candidate stable.

 The proof of Lemma 1 is a slight variation on the proof of Lemma 2 in the
 Appendix, and is therefore omitted.

 Lemma 1 and our Theorem 1 imply that if W rn 2= 0, and V is entry
 equilibrium stable and unanimous, then V is dictatorial.24 So, if candidate
 stability is violated, then entry equilibrium stability will be violated and any

 24 In fact, one can prove that entry equilibrium stability implies that V(F, P) = V(A, P) for all

 P c- ', A c F such that V(W, P) E A. This involves an induction proof that builds off of ideas in
 our proof of Lemma 2 in the Appendix. From this one can use entry equilibrium stability to prove
 that choice and Pareto axioms are satisfied. Appealing to Arrow's theorem, one can deduce that the
 same voter must be a dictator over all sets of candidates, instead of just on sets of the form F and

 F,\ {a.
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 nondictatorial (and unanimous) voting procedure will fail to be entry equilib-
 rium stable. This validates our interpretation that a failure of candidate stability

 means that the strategic entry equilibrium outcomes will differ from the predic-
 tions made without accounting for strategic candidacy.

 We remark that both (i) and (ii) are critical to the definition of entry
 equilibrium stability and the validity of Lemma 1.

 EXAMPLE 4: Let %/= 1,2,31, F = (a, b, ci where the two sets are disjoint.
 VW, P) is the Condorcet winner at P over F if one exists, and VW, P) = a
 otherwise. For any A 0 F, V(A, P) is the Condorcet winner at P over A.

 If some candidate is a Condorcet winner, then it is clear that F will be an

 entry equilibrium. If we are at a profile where there is no Condorcet winner and
 instead there is a cycle, then (a, b} will be an entry equilibrium. So (i) of entry
 equilibrium is satisfied. However, (ii) is not satisfied, as when there is a cycle in
 the majority relation, (a, c} is also an entry equilibrium when cPba.

 In any nondictatorial and unanimous example where (i) is satisfied but (ii) is
 violated, such as Example 4 above, there are some entry equilibria that result in

 elected candidates different from that predicted by V(Q, P). So, if a voting
 procedure violates either (i) or (ii), then an analysis of the properties of the
 voting procedure that treats F as fixed will not give a complete understanding of
 the properties of the voting procedure. This echoes the arguments made in the
 introduction about the implications of violations of candidate stability. Knowing

 that a voting procedure satisfies (i) but not (ii) is not reassuring: the voting
 procedure will be a correspondence that will include outcomes that are not

 consistent with an analysis that takes W as fixed, and so an analysis of its
 properties that ignore the other possible equilibrium outcomes will be incom-

 plete and misleading.
 For the case of overlap between candidates and voters, entry equilibrium

 stability does not imply candidate stability.25 So, it is an open question what the
 characterizations of entry equilibrium stable voting procedures look like with an
 overlap of candidates and voters.26 In other words, we do not know whether
 Theorems 2 and 3 have analogs for entry equilibrium stability.

 Restricted Domains of Preferences

 Strategic candidacy is only an issue at certain preference profiles for any given
 voting procedure. For instance, if voters unanimously prefer a given candidate a,
 then the exit of some other candidate b will not affect the outcome of the

 voting. In fact there are much larger restricted domains of preferences where

 25 Entry equilibrium stability implies candidate stability when there are three candidates, but not
 with four or more.

 26 As a first observation on this, Example 5, letting candidate a fill the role of voter 1, shows that
 voting by successive elimination will not be entry equilibrium stable with overlap.
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 certain voting procedures are candidate stable. We note one such domain.

 Let WC C P denote the domain of preferences such that for every prefer-

 ence profile there exists a Condorcet winner. That is,

 c = { p e S? 1 3 a e F such that

 #{ie'ilaP1b} > #2/72 Vb esW, boa}.

 If there is an odd number of voters, then single-peaked preferences are a subset

 of JC.

 A voting procedure V is Condorcet consistent if it selects the Condorcet

 winner at each P E _9C.

 The following proposition follows directly from noting that if a is a Condorcet

 winner at P relative to ', then a is a Condorcet winner at P relative to W\{b}
 for any b 0 a.

 PROPOSITION 1: Any Condorcet consistent voting procedure is unanimous and

 candidate stable on g0JC.

 For instance, Proposition 1 implies that with an odd number of voters on a
 domain of single-peaked preferences, median voting will be candidate stable.

 Multi-Valued Voting Procedures

 In our analysis, we have only considered voting procedures that are single

 valued. There are contexts of interest, however, where it is natural to consider
 voting procedures that have multiple outcomes. For example, plurality rule can

 result in multiple equilibria (e.g., see Besley and Coate (1997)). To fully study
 strategic candidacy with set-valued voting procedures, one needs to be careful in
 dealing with the source of the multiplicity.27 What does it mean for a voting
 procedure to be set-valued? Are several candidates being elected? Are there

 multiple equilibria arising from strategic voting with each candidate in the set
 corresponding to at least one equilibrium? Are there ties in the voting with the
 outcome set representing the tied candidates? Each of these views of multiplic-
 ity can lead to a different way in which a candidate views the impact of entering

 or exiting an election.

 27 Hiulya Eraslan pointed out to us that Theorem 1 extends to multi-valued voting procedures with
 minor changes to the proof under the following multi-valued variation of candidate stability. For all

 a c F and P c S7': (1) If a 0 V(F, P), then V(F, P) = V(W\{a}, P), and (2) V(F, P) c V(W\{a}, P)
 u {a} for each a c W. (1) is a multi-valued analog of the strong candidate stability condition that we

 discuss in the Appendix, and arguments for it can be made in some circumstances. However, (2) is

 less clearly an implication of considering candidate entry or exit decisions. This is an important

 question for future exploration, as there are some standard voting procedures (such as the top cycle

 correspondence) that satisfy (1) but not (2). See Eraslan and McLemman (2001) and also

 Rodriguez-Alvarez (2001).
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 Inefficiency due to Strategic Candidacy

 The following example from Dutta, Jackson, and Le Breton (2000) shows that
 there are voting procedures for which strategic candidacy can result in ineffi-

 ciency. More specifically, the candidate elected under sophisticated voting by
 successive elimination once strategic candidacy is accounted for is Pareto

 dominated by the candidate elected if all candidates are forced to enter,

 considering the preferences of all voters and candidates (except, of course, the
 preference of the strategic equilibrium candidate himself!).28 As voting by
 successive elimination (under sophisticated voting with a fixed set of candidates)
 has been extolled for its efficiency properties, this is a disturbing aspect of

 strategic candidacy. This suggests that in future research we ask whether there

 exist (nondictatorial) voting procedures for which all entry equilibria are Pareto
 efficient.

 EXAMPLE 5:29 Let /={1,2,3}, w ={a,b,c,d,e} where the two sets are dis-
 joint. The voting procedure is again voting by successive elimination. A vote is
 first taken to eliminate e or d. The winner (according to majority rule) then
 "fights" against c, the winner here against b, and finally the survivor against a.

 The voting equilibrium is sophisticated voting, due to Farquharson (1969), which
 in this case coincides with the iterated elimination of weakly dominated strate-
 gies.

 Voters' preferences are:

 aP1 cP eP1bP1d,

 bP2dP2aP2cP2e,

 eP3 bP3 dP3cP3a.

 Let xM(P)y denote that at least two voters prefer x to y. Then,

 aM(P)c, aM(P)e,

 bM(P)a, bM(P)c, bM(P)d,

 cM(P)e,

 dM(P)a, dM(P)c,

 eM(P)b, eM(P)d.

 The Shepsle-Weingast (1984) algorithm can be used to derive the outcome for
 each set of entering candidates. When all candidates enter, the outcome is b.

 When only {c, d}, {c, d, e}, or {a, c, d, el enter, the outcome is d. If {d, e} or
 {b, c, d, e} enter, the outcome is e.

 28 This example is a strengthening of a previous example, and we thank Eric Maskin for
 suggesting that we look for an example where the strategic outcome was not only Pareto dominated,
 but was Pareto dominated by the outcome that would have occurred if all candidates entered.

 29 There are simpler examples with similar features. However, those examples are ad hoc while
 voting by successive elimination is extensively used and well-studied.
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 Let us consider what happens if we account for strategic candidacy. Consider
 the following preferences of candidates. Each candidate ranks herself first. All
 candidates other than d rank b higher than d. Also, candidates c and b prefer

 d to e. Given these preferences, it is an equilibrium (anticipating the subsequent
 voting) for exactly the set {c, d, e} to enter. This results in the outcome of d.
 However, all voters and candidates (other than d) prefer b to d. Thus, the
 outcome under this entry equilibrium is Pareto dominated (except for d's
 self-preference) by the outcome that would occur if all candidates entered. It is
 not an equilibrium for all candidates to enter if ePab.
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 APPENDIX

 We prove Theorem 1, by proving a stronger result that includes the case of any overlap between

 77 and W. This result requires a stronger candidate stability and unanimity condition to handle the

 overlap, but these conditions simplify to candidate stability and unanimity in the case of no overlap,
 as shown in Lemma 2, below. The stronger statement is useful in the proof.

 V satisfies strong unanimity if for all B c F and P E -9, if {b} is a restricted top set of B, then
 V(B,P) =b.

 This condition coincides with unanimity when F n 77= 0. More generally, it is a unanimity
 condition that ignores candidates' preferences for themselves.

 V is strongly candidate stable if for each a E F and P E c7' such that a o V(W, P), V(W, P) =
 V(W\ {a}, P).

 This is a strengthening of candidate stability to require that the outcome not change at all if a
 candidate exits. However, this condition is implied by candidate stability in the case where
 F n 2/-= 0, and thus under the premise of Theorem 1.

 LEMMA 2: If w n 77= 0 and a voting procedure V is candidate stable and unanimous, then V is
 strongly candidate stable and strongly unanimouts.

 PROOF OF LEMMA 2: The satisfaction of strong unanimity is obvious, so we show that strong

 candidate stability is satisfied. Suppose V is candidate stable. Consider a S F and P eS7 such
 that a s V(F, P). We need to show that V(, P) = V(\{a}, P). Suppose to the contrary that

 V(W, P) o V(F\ {a}, P). Since under candidate stability V(F, P)RaV(F\ {a}, P), it must
 be that VQW, P)PaV(F\{a}, P). Since V(F, P) 0 a, we can find Pa such that (na' Pa) E-= 9
 and VW \ {a}, P)PaV(F, P). Since V depends only on voters' preferences, it follows
 that V(F\{a}, Pa' Pa)PaV(, P-a Pa). This contradicts the fact that V is candidate stable,
 and so our supposition was incorrect. Q.E.D.
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 Theorem 1 then follows from the following theorem.

 THEOREM 4: On the domain _9', if a voting procedure is strongly candidate stable and satisfies strong
 unanimity, then it is dictatorial and the dictator is in %\W.

 Note that Theorem 4 explicitly states that the dictator must be in %\F. There is an obvious

 explanation for this requirement. If an individual i c fln F was the dictator, then i would always be
 the chosen outcome given that i prefers herself to all other candidates. But this would violate strong
 unanimity. Hence, one implication of the theorem is that if 2V= W, then there is no voting procedure
 that can satisfy the stated conditions.

 The following definitions are useful in the proof of Theorem 4.

 V satisfies the choice axiom if for any P cg79 and A, B cW, if B cA and V(A, P) cB, then
 V(A, P) = V(B, P).

 This is a single-valued version of choice axioms in Chernoff (1954) and Arrow (1959) and is also
 equivalent to what Nash (1950) called Independence of Irrelevant Alternatives.

 Consider any three distinct candidates a, b, c E F and any preference profile P c ?A'. Let

 9{a b, c}(P) be the set of P c ?A' such that for each i c :
 (i) PiIF\{a, b, c} = Pi F\{a, b, c}, and
 (ii) (a, b, c} is a restricted top set for P.

 PROOF OF THEOREM 4: We establish the theorem from the following sequence of lemmas.

 LEMMA 3: Consider any three distinct candidates a, b, c e F and P cg,r. If V satisfies strong
 candidate Stability and strong unanimity, then V(F, P) c (a, b, c} for any P C 9D{a b, c(P)

 PROOF OF LEMMA 3: Pick any (a, b, c} c F and P c 9 ". Consider P' C- 9{a b, c(P) such that (a, b}
 is a restricted top set. Either V(W, P') 5 b or V(W, P') 5 a. Without loss of generality, suppose that
 V(, P') 0 b. By strong candidate stability V(F\ {b}, P') = V(F, P'). By strong unanimity V(F\
 {b}, P') = a. Combining these two equalities implies that V(W, P') = a. Since the choice of a and b

 was arbitrary, it follows that if {d, e} c (a, b, c} is a restricted top set of P' ce'fabcj(P), then
 V(W, P') c {d, e}.

 So, consider any P EJ {a b c}(P). Suppose to the contrary of the lemma that V(W, P) =f 0( a, b, c}.
 By strong candidate stability it follows that V(\ \{c}, P)=f. Consider P' C '9{ab c}(P) such that
 P'l\{cj = PIF\{cj, and (a, b} is a restricted top set for P' (so we have found P' from P by moving c
 to third position in each preference ranking and leaving the other relative rankings unchanged). It
 follows from (iii) in the definition of voting procedure that V(F\ {c}, P') = f. From our previous
 argument we also know that V(, P') c (a, b}. This contradicts strong candidate stability, since
 f ( {a, b}. Thus, our supposition was wrong. Q.E.D.

 Let 9 r c} denote the set of profiles of preferences of voters restricted to the set (a, b, c}, where
 preference profiles are required to be in LA'.

 LEMMA 4: Fix any (a, b, c} c W. Suppose V: 2{a b c}\{0} X tc} {a, b, c} is a voting procedure
 as a function of preference profiles in 9 c} and selecting from (a, b, c}. If V satisfies strong uinanimity
 and is such that V(-, P) is rationalizable by a linear order on the set (a, b, c} for each P E G{9r% c, then V
 is dictatorial on 9"'2 c} with dictator i 0-{a, b, c}.

 PROOF OF LEMMA 4: Consider P' E 9Ar /C such that aP,bP,c, bP'cPba, and cPcaPcb. It follows (a, b, c}
 from strong unanimity that if aPibPic for all i e (a, b, c}, then 1V({a, b}, P{a, b, c} P{a, b, c}) = a and
 V7({b, c}, P-{a, b, c} b, c)= b. So, by rationalizability, V2({a, b, c},P {P , b,)c} b, = a. Similarly,

 setting bPicPia for all i e (a, b, c}, leads to V({a, b, c}, P-{a, b, c} Pa{, b, c}) = b, and setting cPiaPib for
 all i e (a, b, c}, leads to V({a, b, c}, P_{a,b,c}' P{a,b,c}) = c.
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 Thus, viewing V7({a, b, c}, *, Pa, b, c}) as a function of P_ (a b cl it is nonimposed, rationalizable, and
 satisfies Arrow's independence axiom by (iii) in the definition of voting procedure. So, by Wilson's

 (1972) Theorem,30 there exists i e {a,b,c} such that either V(A,P-{a b c}' a, cl) = top(A, Pi) for
 each A c {a, b, c} and P_{a b c} or V(A, } abcP b c}) = bottom(A, Pi) for each A c {a, b, c}
 and P_{a,b,c} (where bottom(A, Pi) is the lowest ranked candidate in A under Pi). Since, as we
 argued above, it follows from strong unanimity that if aPibPic for all i e {a, b, c}, then
 V({a, b}, P_{a,b,c} P1{a,b,c}) = a, it must be that V(A, P_{a,b,c}' P1{a,b,c}) = top(A, Pi) for each A c
 {a, b, c} and P_a b,c}-

 Thus, i is a dictator at profiles P EC where P{ b, c} = P'a b, c} Next, we show that i is a
 dictator for every P E 9"97'b c}* We do this by showing that if i is a dictator on profiles P E I'll
 such that P{ b, c} = P',b,c) (for some arbitrary P"), and P"'a,b,c differs from P"a,b,cj for only one
 member of {a, b, c}, then i is a dictator on profiles P E .{', b, c} such that Pja, b, c} = P(a, b, c} Since we
 may pass from Pabc b as defined above, to any other restricted profile for {a,b,c} through a
 sequence of such one-at-a-time changes, this suffices to prove the result.

 By the symmetry of the problem there is no loss of generality in assuming that Pb' = Pb" and
 = Pc", while aP" bP` c and aPa.cPa"b. By (iii) in the definition of voting procedure, V({a, b}, P) =

 top({a, b}, P) and V({a, c}, P) = top({a, b}, Pi) for every P E 9"9-bc} such that P, plb (a, b,_} b,c} (a, b, c
 Rationalizability then implies that V({b, c}, P) = top({b, c}, Pi) for every P E 97a'b c} such that
 Pfa,bpc} =P"' and either bPiaPic or cPiaPib. Then, (iii) in the definition of voting procedure {t,b,c a, b,)
 implies that V({b, c}, P) = top({b, c}, Pi) for every P E 3{7, c) such that P{a b c} = P{'a bc}) as i's
 ranking of a is irrelevant. Since i dictates on all pairs of candidates, rationalizability implies that

 also {a, b, c}, P) = top({a, b, c}, Pi) for every P E 9A c} such that PO, b c} = Pa"' b cED.

 LEMMA 5: Consider any three distinct candidates {a, b, c} c F and P E -A`. If V satisfies strong

 candidate stability and strong unanimity, then V is dictatorial on 91a b, c(p)31

 PROOF OF LEMMA 5: Consider any three distinct candidates a, b, c GE and P E 97.
 First, note that strong unanimity implies that V(W\ {a, b}, P) = c, V(W\ {a, b}, P) = b, and V(W\

 {b, c}, P) = a, for any P E 9A{a b c}(P). Next, it follows from Lemma 3 that V(W, P) Ec{a, b, c} for all
 P E 9~{, b, c}(P) Strong candidate stability implies that V(W, P) = a =* V(W\ {b}, P) = V(W\ {c}, P)
 = a, and likewise that V(W, P) = b V(W\{a}, P) = V(W\{c}, P) = b, and V(, P) = c =V( \
 {a}, P) = V( '\{b}, P) = c. Thus, it follows that V(W\ {d}, P) c {a, b, c} for all d E {a, b, c} and

 P E_ 9E>a, b, c}(P).

 Define V: 2{ b c}\ {0} >{ a, b, c}, by

 V(B, PaI,b, c}) = V(B U (W\ {a, b, c}), P)

 for each B c {a, b, c} (B # 0), and P E 9a, b, c)(P), where P(a, b, c} denotes the profile of preferences
 for i c 27 restricted to {a, b, c}, induced by P. This is well defined, since V(W, P) c {a, b, c},

 V(W\{d}, P) c {a, b, c}, and V(W\ {d, e}, P) c {a, b, c} for all {d, e} c {a, b, c} and P EC b (P)
 Moreover, by the arguments above, the choice axiom is satisfied by V relative to {a, b, c} on 'nbc
 This implies, by a theorem of Sen (1971), that V(, P) is rationalizable by a linear order (see Moulin
 (1988, p. 308)) for any P. It then follows from Lemma 4 that V is dictatorial on 91 1n7/b c} with a
 dictator in 7/\{a, b, c}. Thus, from the definition of V it follows that there exists i EE 2 such that

 V(W, P)=top(, Pi) and V(W\\{d},P)=top(W\\{d},Pi) for all P 9A Ib c}(P) and d E{a,b,c}.
 Then from strong candidate stability it follows that V(W\{d}, P) = top(W\{d}, Pi) for all P E
 9 ,b,c}(f) and d e {a, b, c}. Q.E.D.

 30 Wilson's theorem states that if a social welfare ordering satisfies Arrow's independence axiom,
 then it is either a dictatorship, anti-dictatorship (choosing the worst candidate of the anti-dictating
 voter's preference), or is constant. Being nonimposed rules out the possibility of a constant social
 welfare ordering.

 31There exists a voter i c 27 such that V(W, P) = top(W, Pi), V(W\{d}, P) = top(F\ {d}, Pi), for
 all P E "{Pa,b,c)(P) and d Ec
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 Let

 97{a, b,c} = (P E g9 {a, b, c} is a restricted top set for P}.

 LEMMA 6: Consider any three distinct candidates a, b, c E W. If V satisfies strong candidate stability

 and strong unanimity, then V is dictatorial on {aI b, c}

 Lemma 6 is stronger than Lemma 5 in that it applies to a larger set of preferences ({na, b, c}
 instead of 911{a, b, c}(P))

 PROOF OF LEMMA 6: Consider {a, b, c}, P and d e {a, b, c}. Let P be such that PAF\{(d = PF\{dl}.
 By Lemma 5 there exists a dictator i E 2A\{a, b, c} on {a, b, c}(P) Similarly, there exists a dictator
 E c /\{a, b, c} on 9z'{a b C}(P)- To establish the Lemma, we need only show that i =j, since P and d

 are arbitrary (and this logic can be applied iteratively).

 Suppose to the contrary that i #j. Consider PE- C9 bc(P) with a= top(W\{i}, P) and b=

 top(W\ Q}, Pj), and take any P' E {a, b, c)(P) such that PI9\{d} = P'lW\{d}- It follows that V(W, P) = a
 and V(&F, P') = b, and so strong candidate stability implies that V(F\{d}, P) = a and V(F\{d}, P')
 = b. However, this contradicts the fact that V satisfies (iii) in the definition of voting procedure,

 since P19\{d} = P'9\{d}. Q.E.D.

 LEMMA 7: If V satisfies strong candidate stability and strong unanimity, then V is dictatotial on

 9{a, b, c} for evety {a, b, c} c F (with the same dictator i c 2\F on each of these domains).

 Lemma 7 is stronger than Lemma 6, since it implies that the same i is dictator on 97{a bc } for
 every {a, b, c} c W.

 PROOF OF LEMMA 7: This follows directly if #F = 3. So suppose that #F> 4. It is enough to

 consider any {a, b, d} distinct from {a, b, c}, and show that the same voter dictates on 91A{a bc } and

 9{, b, d} (which in turn implies that i e {c, d} for arbitrary c and d). By Lemma 6, there exists a
 dictator j c 7/\ {a, b, d} on 9a, b d} and a dictator i c 7/\ {a, b, c} on 97{a b, c} Suppose to the
 contrary that i #j. Consider PE- 9{ ba c} with {a,b,c,d} a restricted top set for P and with
 aPibPicPid, bPjaPjcPjd, and aPk bPk cPk d for any k Ec 7\ {i, j} (with each of these specifications
 subject to self-preference). Consider P' EC b, d} such that P19\d = P'19\d, and PIF\c = P'I I\c.
 Thus, we have only reversed the place of c and d in the rankings. It follows that V(F, P) = a and

 V(M, P') = b, and so strong candidate stability implies that V(W\ {d}, P) = a and V(W\ {d}, P') = b.
 However, this contradicts the fact that V satisfies (iii) in the definition of voting procedure, since

 P1 9\(d) = P l19\(d}. Q.E.D.

 We now complete the proof of Theorem 4. Find i from Lemma 7 (noting that i e W), and

 consider any P Ec- 9A. Without loss of generality suppose that {a, b, c} is top relative to Pi and that
 top(W, Pi) = a. We need to show that V(W, P) = top(W, Pi) = a, and V(W\ {d}, P) = top(\ \{d}, Pi),
 for any d E W.

 Consider P' i such that P' i{Ia,b,c} = PcI{a,b,c} P Lj \{a,b,c} = PjI c\{ab,c} and Pi P EP
 (so {a, b, c} is a restricted top set for P' i). It follows from Lemma 7 that V(F, Pi, P' i) = top(w, Pi)
 =a, and V(W\{d}, Pi,P' ) =top(W\{d}, Pi), for any d E W. Find a voter j and alternatives
 f= bottom({a, b, c}, Pj) and e= top(W\{a, b, c,j}, Pj) such that ePjf and fPj'e. (Clearly j i.) Con-
 sider PJ' which agrees with PJi on W\ {e} and W\ {f}, and agrees with Pi on {e, f}. (Thus, we have
 only switched e and f in the ranking of Pj.) Here V(W, Pi, P' i) = top(W, Pi) = a = V(W\{e}, Pi, PQi).
 Since Pj" agrees with Pj' on W\ {e} it follows from (iii) in the definition of voting procedure that
 a = V(W\ {e}, Pi, P' i j, Pj"). Thus, from strong candidate stability it follows that V(W, Pi, P' j, Pj')
 E {a, e}. Consider two cases:

 Case 1 f= a. Since PJ' agrees with PJi on W\{f}, (iii) in the definition of voting procedure
 implies that V(W\ {f }, Pi, P' i j, Pj") = V(W\ {f }, Pi, P' i) = b. Then, since V is candidate stable it
 must be that a = V(,Pi, P' i j, Pi"). In this case, strong candidate stability also implies that
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 a = V(W\{d},Pi,P i j, Pj"), for any d a, and since we know that f =a, it follows that V(F\
 {a}, Pi, P' i j, PJ") = b. The last two sentences imply that in this case i dictates at Pi, P' i, P,"

 Case 2-f# a. Since Pi' agrees with Pi' on W\{f}, (iii) in the definition of voting procedure
 implies that a=V(F\{f},Pj,PQ Ej,P"). So, from strong candidate stability it follows that
 V(M, Pi, P' i j, PJ") E {a, f }. Thus, since we also know that V(W, Pi, P' i j, PJ") E {a, e}, it follows that
 V(M, Pi, P i, j, PJ") = a. Strong candidate stability then implies that a = V(W\\{d}, Pi, P' i j, PJ"), for
 any d # a. To show that in this case i dictates at Pi, P' ij, PJ", it is only left to show that
 b = V(W\{a}, Pi, P"1j, PJ"). Notice that by the same reasoning that we have applied up to this point,
 we can conclude that b = V(W\{a}, Pi"', P' i j, Pi"), where Pi" differs from Pi only in switching
 the ranking of a and b. Thus, it follows from (iii) of the definition of voting procedure that b=

 V(W\ (a}, Pi, P_ij,j, Pj )-
 This argument can be repeated, with one such change at each stage for some j between an

 f E {a, b, c} and e e {a, b, c}, to complete the transition from P' i to P_ i. Q.E.D.

 As Theorem 2 is proven using Theorem 3, we provide a proof of Theorem 3 first.

 PROOF OF THEOREM 3: The proof used the following lemma.

 LEMMA 8: Consider any three distinct candidates {a, b, c} c F and unifoim P E g"A. If V is candidate

 stable and top pair monotonic, then either (i) there exists {x, y} c {a, b, c} such that V(W\ {x}, P) = y for

 all P E gE)a, b, c)(P) or (ii) there exist i e {a, b, c} such that V(A, P) = top(A, Pi) for all P C g{a b, c}(
 and allA c with #A = #F- 1 and W\A c{a,b,c}.

 PROOF OF LEMMA 8: Consider any three distinct candidates a, b, c Ec W and uniform P E -9`r. We

 define a binary relation R(P) on {a, b, c} for a given P Ec g,ra b, c(P) as follows: xR(P)y if
 x = V(W\{z}, P) where x, y, and z are generic elements of {a, b, c}. By (i) of top pair monotonicity,
 R(P) is complete.

 Let us show that R(P) is transitive. Assume to the contrary that there exists P C ge a b, c)(P) such
 that (without loss of generality)

 a = V(W\ {c}, P), b = V(W\ {a}, P), and

 c = V(W\ {b}, P).

 Let P' be defined by

 Pi = Pi for all e {a, b, c},

 aPa bPa c,

 bPb cPb a,

 cPc'aPc'b,

 and Pj' I F\ {a, b, c} = Pj I F\ {a, b, c} for j c {a, b, c}. Since V is top pair monotonic it follows that

 a = V(W\{c},P'), b= V(W\{a},P'), and

 c = V(W\ {b}, P'.

 By candidate stability it follows that V(W, P') c {a, b, c}. If V(W, P') = a, then since V(W\{b}, P') = c
 and cPba we contradict that V is candidate stable. Analogous arguments contradict that V(W, P') = b
 or c. Thus, our supposition was incorrect and R(P) is transitive.

 Assume that (i) of Lemma 8 does not hold. Then by top pair monotonicity it follows that R() is

 strongly unanimous on g,a, b, c}(P) (xR(P)y whenever xPiy for all i # y and {x, y} c {a, b, c}).
 By (iii) of the definition of voting procedure, we deduce that R(P) also satisfies Arrow's

 independence of irrelevant alternatives. Thus, R(P) is transitive, strongly unanimous, and satisfies
 the independence of irrelevant alternatives. By arguments analogous to those in Lemma 4, we
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 conclude that R() is dictatorial with a dictator i e {a, b, c}. By the definition of R(P), this implies

 (ii) of Lemma 8. Q.E.D.

 We now complete the proof of Theorem 3. Let {a, b, c} c e and consider a uniform P e9'.

 From Lemma 8, either (i) there exists {x, y} c {a, b, c} such that V(W\\{x}, P) =y for all P E
 g b c}(P) or (ii) there exist i e {a, b, c} such that V(A, P) = top(A, Pi) for all P E and

 all A c F with #A = #F- 1 and W\A c {a, b, c}.

 Suppose first that (i) holds and say without loss of generality that V(\{c}, P) =a for all

 P E 9g)a,b, c}(P) Let P E -a{a, b, c}(P) be as follows:

 aPacPab,

 bPbaPbc,

 cPibPia forall iEE7i\{a,b}.

 Since aPbc and V(W\{c}, P) = a, we deduce from candidate stability that V(F, P) # c; however
 {c} is a restricted top set in F for the coalition S = 7 \ {b}, and so we violate m - 2 unanimity.

 So, suppose instead that (ii) holds and let P E P'a,b,c}(P) be as follows:

 aPabPac,

 aPibPbc,

 cPjbPja for all j E \ {a, i} subject to self-preference.

 Since bPac and V(W\{a}, P) = b we deduce from candidate stability that V(F, P) # c; however
 {c} is a restricted top set in F for the coalition S = 7/\{a, i}, which contradicts m - 2 unanimity.

 Q.E.D.

 Before proving Theorem 2 we provide the formal definitions underlying tree implementability.

 A tiee (or finite extensive game form of perfect information) F(B) = (A, <,CP, p)32 on B c
 satisfies the following:

 (i) A is a finite set of nodes.
 (ii) < is a partial order of A that has a unique least element AO, called the initial node, and a

 set of maximal elements AT called terminal nodes.

 (iii) There is at most one chain between A, A' E A, where a chain between A and A' is a sequence

 A < A1 ... < Ak < A'.
 (iv) ?P is a function from AT onto B specifying the candidate who is elected at every terminal

 node.

 (v) p is a function from A\ AT onto 7 specifying the voter who moves at every nonterminal
 node.

 A node A' is called a successor of A if A < A' and there is no A" such that A < A" < A'. The set of

 successors of A is denoted S(A, <).

 The backwards induction solution of F(B) at P, denoted by T(F(B), P) is derived as follows.
 (i) For each A E AT, define

 z(A, B, P) = CP(A).

 (ii) For each A E A\AT, let z(A, B, P) be the maximal element in the set {z(A', B, P) I A' E

 S(A, <)} according to the ordering PP(A)-
 The backwards induction solution to F(B) at (B, P) is -(F(B), P) = z(Ao, B, P).
 A voting procedure V(, ) is tree implemnentable if there exists a set of trees {F(B) I B c F} such

 that for all PE-Ar, for all Bc , V(B,P)= T(F(B),P).
 The following useful Lemma follows directly from a result on adjacency in Dutta and Sen (1993).

 32 When there is no opportunity for confusion, we omit the notation indicating the dependence of
 A, j, etc. on the set B.



 STRATEGIC CANDIDACY 1035

 LEMMA 9: Consider Vthat is tiee implementable and B cA c W. If V(A, P) E Bfor some P E 97 (P),

 then V(A, P) E B for all P E 97AP).

 PROOF OF THEOREM 2: We show that if V is tree implementable, candidate stable, and m - 2

 unanimous, then it is top pair monotonic. The theorem then follows from Theorem 3. Lemma 10

 establishes (i) of top pair monotonicity and Lemma 11 establishes (ii) of top pair monotonicity.

 LEMMA 10: Sulppose a voting procedutre V(, ) is tree inmplementable, (m - 2) unz1animouls and
 candidate stable. Consider any three distinct candidates {a, b, c} c F and ulnifoirn P E g". Then

 V(W\ {a}, P) E {b, c} for all P E S){a, b, c}(P)

 PROOF OF LEMMA 10: Label the candidates a1, a2, a3, where a = a1, b =a2, c = a3, and

 a4, a5, ... are in the order of rankings under the uniform preference P (so akPiak+ 1 for all i # ak+ 1
 and k > 3).

 CLAIM: Let V(W\{a}c) be tree implementable. If V(W\ {a}, P) e {b, c} for some P E g@{a b c}(P)
 then these exists k > 3 such that V(F \a, P) = ahk for all P E -" .a), ,( p).

 PROOF OF CLAIM: The proof is by induction on the length of the tree.

 First, consider V implemented by a tree of length one; that is, a tree with only one nonterminal

 node AO. Let i be the voter choosing at AO, i.e., p(A?). If i is a candidate and i is elected at some
 terminal node (i.e., i = @(A) for some A E AT), then by self preference the outcome will be i for all

 P E - 9A and so the claim is satisfied. If i is not elected at any terminal node, and either b or c is

 elected at some terminal node, then it follows that i will select an outcome in {b, c} for all

 P E g{a, b, c}(P), and so the claim is satisfied. If none of {i, b, c} are elected at any terminal node, then
 let k be the lowest label such that ak is available at some terminal node. It follows that i will choose

 ak for all P E 3.a)(P), and so the claim is satisfied.
 Next, let us consider the induction step. Suppose that the claim is true for all trees of length t - 1

 and consider a tree of length t. Let i = p(A?). Each choice that i can make leads to some tree of

 length no more than t - 1. We know that the claim applies for each such tree. Suppose that i e {b, c}
 and there is at least one tree in i's choice set such that ak = i is the outcome for all P E'. ak}(P)

 Then it follows the outcome of the overall tree will be ak = i for all P E .ak}(P), and so the
 claim is satisfied. Consider next the case where i e {b, c} and there is no tree in i's choice set such
 that ak = i is the outcome for all P E 7a.ak}(P) If there is a tree in i's choice set such that the

 outcome is in {b, c} for all P E g){a b,c}(P), then it follows that i's choice will result in an outcome in
 {b, c} for all P E g{a b c}(P). Consider next the case where i e {b, c} and neither of the above cases
 apply. Then for each tree in i's choice set there is some ak such that ak is the outcome for all

 P E ga{.1 lak}(K) Let k' be the lowest indexed such k. Then it follows that the outcome will be ak'
 for all P E7{'ai ak(P), and so the claim is satisfied. Finally, consider the case where i E {b, c}. If
 there is a tree in i's choice set such that the outcome is in {b, c} for all PE g"a,b, c}(P), then it
 follows that i's choice will result in an outcome in {b, c} for all P E g{a b c}(P). Otherwise, by the
 same argument given above there is some ak' such that ak' for all P E7' "a?ak'}(P) and so the
 claim is satisfied in this case as well. This completes the proof of the claim. Q.E.D.

 Now let us complete the proof of Lemma 10. Suppose the contrary of Lemma 10. Then by the

 claim, there exists k> 3 such that V(W\a, P) = ak for all P E= "4a,.ak (P). Consider a profile
 P E g{b, ak}(P) such that all voters have b ranked first, and ak ranked second and a ranked third
 (subject to self-preference), and agree with P elsewhere, except for a who has ak ranked above b
 instead. By ni - 2 unanimity it follows that V(W, P) = b. From our supposition we know that

 V(W\a, P) = ak. This contradicts candidate stability since akPab. Q.E.D.

 LEMMA 11: Let V be a tree implementable, A c F and P, P' E 6A{a, b}(P) be such that aPib => aPi'b
 for all i E7. If V(A,P)=a, then V(A,P')=a.
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 PROOF OF LEMMA 11: Let TA denote the tree implementing V(A, ). The proof is by induction on the

 length of the tree TA. Let FA1, FA2.1.., AK denote the subtrees following each of the possible K moves to
 the player, say i, attached to the root node.

 Assume that V(A, P) = a. Then there exists at least one k E {1, 2,..., K} such that VFk-(A, P) = a.
 Then from the induction hypothesis, we deduce that VFk(A, P') = a. If VFi(A, P) = b, then from
 Lemma 9, VFi(A, P) E {a, b}. Finally if VFi(A, P) e {a, b}, then from Lemma 9 we deduce that
 VFi(A, P') = VFi(A, P). This implies that the node player i can still choose a and the menu of choices
 has not expanded. Then it follows that V(A, P') = V(A, P) = a. Q.E.D.
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