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 ABSTRACT. Let P be a principal O(n) bundle over a C?? manifold M of di-
 mension m. If n > 5m + 4 + 4(4+1), then we prove that every differential
 4-form representing the first Pontrjagin class of P is the Pontrjagin form of
 some connection on P.

 1. INTRODUCTION

 Let P be a principal O(n) bundle over a C? manifold M of dimension m, and
 let pi E H4i(M) denote the i-dimensional Pontrjagin class of P. We address the
 question whether a 4i-form representing the class pi is a Pontrjagin form of some
 connection on P. In [1] we considered the top-dimensional Pontrjagin class pd of a
 principal O(n) bundle P over a 4d-dimensional open manifold M for n > 2d, and
 we gave a homotopy classification of connections a on P that satisfy pd(c) = w,
 where w is a volume form on M. In this paper, we take up the case of the first
 Pontrjagin form and prove the following result.

 Theorem 1.1. If n > 5m + 4 + 4(m+1), then every differential 4-form represent-
 ing the first Pontrjagin class Pi is the Pontrjagin form of some connection on P.
 Moreover, when M is a closed manifold, the same is true for n > 5m + 4( ).

 Here (m) denotes the integer k!(m-k)!
 We observe that when n > m, then P reduces to the direct sum P1 ? P2 of

 two principal bundles, where P1 is an O(m) bundle and P2 is the trivial O(n - m)
 bundle on M. Since the Pontrjagin form is additive, the above observation reduces
 the problem to finding a connection on a trivial principal bundle with a given exact
 form as its Pontrjagin form.

 Now, if an exact 4-form on M can be expressed as the sum of q primary mono-
 mials of the form df1 A df2 A df3 A df4, where the fi's are smooth functions on M,
 then we can explicitly construct a connection on the trivial principal 0(2q)-bundle
 over M by taking a 2 x 2 block

 a 0 fidf2 - f3df4
 -f df2 + f3df4 0 )

 along the principal diagonal for each such monomial. It can be seen easily that the
 Pontrjagin form of such a connection is the given exact form on M. Indeed, we can
 prove the following result (compare ([2], 3.4.1 (B'))).
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 Theorem 1.2. Every exact 4-form dw on M can be expressed as the sum of q
 primary monomials for q > 2(m + 1) + 2(m l). Furthermore, if M is a closed
 manifold, then the same is true for q > 2m + 2(4).

 In view of the above discussion it is easy to see that Theorem 1.1 follows from
 Theorem 1.2.

 We employ the sheaf-theoretic and analytic techniques of the theory of the h-
 principle [2] to prove the above result. We observe that an exact 4-form dw can
 be expressed as the sum of q primary monomials if and only if there is a map
 f: M -> R4q such that

 q

 dw = f*a
 i=l

 where a is the canonical volume form on I4 and fi : M - I4, i = 1, 2,..., q, are
 components of f. The maps characterized by the above equation are solutions to
 a certain first-order partial differential equation. The associated partial differential
 operator being infinitesimally invertible on an open subset, we apply Gromov's
 formulation of the Implicit Function Theorem in the infinite-dimensional setup to
 make way for the sheaf techniques.

 In Section 2, following Gromov [2], we briefly describe the notion of infinitesimal
 inversion of partial differential operators and state some results relating to the solu-
 tion sheaf of infinitesimally invertible operators. We shall assume that the reader is
 familiar with the language of the h-principle, in particular with the terms: partial
 differential relations, holonomic section, the h-principle, (micro)flexible sheaf and
 sharply moving diffeotopy. For a brief review of terminology and sheaf techniques in
 the h-principle we refer to the Appendix of [1]. In section 3 we consider immersions
 in a manifold N with a fixed k-form a and prove the h-principle for "a-regular" im-
 mersions that induce a given k-form on the source manifold. This has been shown
 by observing that the relevant differential operator is infinitesimally invertible on
 the space of "a-regular" immersions. In section 4 we prove that if (N, a) is the
 q-fold product of the k-dimensional Euclidean space with canonical volume form,
 then a-regular immersions are generic for q sufficiently large. Using genericity of
 a-regular maps, we then prove the second part of Theorem 1.2. Finally, by applying
 the h-principle of a-regular maps (Section 3), we prove the full form of Theorem 1.2
 and the main result of this paper.

 2. INFINITESIMAL INVERSION OF DIFFERENTIAL OPERATORS

 Let X > M be a C?? fibration and G - M be a C? vector bundle over a

 manifold M. We denote by X& and 5G respectively the spaces of C" sections of X
 and G with the fine C' topology, for a = 1, 2,..., oo. Let D: r -) 9? be a C?
 differential operator of order r, so that if x is a C0+r section of X, then D(x) is a
 Co section of G for a = 1, 2,..., oo.

 Let Tvert(X) C TX denote the subspace of vertical vectors (i.e., tangent to the
 fibres of the fibration X - M) in the tangent bundle TX of X. For a section
 x : M - X, we denote the induced vector bundle x*Tvert(X) by Yx. When x
 is C", this bundle is CO-smooth for P < ca and we denote by YP the space of
 CP sections of this induced bundle. The space Yx can be realized as the infinite-
 dimensional tangent space of X' at x. We define the linearization Lx of the operator
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 D at x as follows:

 L xyr , 6 0

 Lx(y) = :D(xt)lt=0
 where {xt : t > O} is a 1-parameter family of sections of X with xo = x and
 dt It=o = y. Clearly, Lx is a linear differential operator of order r in y and L(x, y) =
 Lx(y) is a differential operator of order r in both x and y.

 Let A C X(d) be an open subset of the d-jet space of sections of X for some
 d > r. Following Gromov, we shall call such a subset an open differential relation
 of order d. A solution of A will also be referred to as an A-regular section of X.
 Let A denote the space of solutions of the relation A. Clearly, A is contained in
 Xd, and A"+d = A n Xc+d is an open subset of X,+d in the fine C0+d topology.

 Z is said to be infinitesimally invertible over the subset A c X if for every
 x C A there is a linear differential operator Mx : 8 -> Y,x of a certain order s
 (independent of x) such that the following properties are satisfied:

 (1) The global operator

 M : Ad x g8 - T(X?)

 is a differential operator that is given by a C?? map A G(s) - Tvert(X),
 where T(X?) denotes the tangent bundle of X?.

 (2) L(x, M(x, g)) = g for all x E Ad+r and g E gr+s. In other words, Mx is a
 right inverse of Lx.

 The integer d is called the defect of the infinitesimal inversion M ([2], 2.3.1).
 We now state an infinite-dimensional Implicit Function Theorem due to Gromov

 which generalizes Nash's theory in the context of differential operators.
 Let D be a C?? differential operator of order r. Suppose D admits an infinitesimal

 inversion of order s and of defect d. Let us fix a Riemannian metric on M. Let

 a > max(d, 2r + s).

 Theorem 2.1 ([2], 2.3.2). For every x C A?? there exists a fine C+8 neighbourhood
 Bx of the zero sectioninin the space Q;+S and an operator P-1 : B3x - AA such
 that

 (1) Oxl(0) = x.
 (2) (Inversion property) TD(D-1l(g)) = D(x) + g.
 (3) If g E Bx is C+8-smooth, for/3 > a, then )-1 (g) is Cd-smooth.
 (4) (Locality) The value of Dxl(g) at any point v E M does not depend on the

 behaviour of x and g outside the unit ball BV(1) in M with centre v relative
 to the fixed metric on M.

 In particular, the operator D : A'?? -> ?? is an open map in the respective fine
 C?? topologies.

 It is to be noted that the local inverse Ox 1 depends on the Riemannian metric
 on M. If we choose an appropriate Riemannian metric on M, then applying the
 locality property of the inverse in Theorem 2.1 we can prove

 Proposition 2.2 ([2], 2.3.2). If D is infinitesimally invertible, then the sheaf of
 A-regular solutions of the differential equation TD(x) = g is microflexible.

 We now consider some partial differential relations which have the same C??
 solutions, namely the solutions to the equation z(x) = g. Let iz C X('+r)
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 consist of (a + r)-jets of infinitesimal solutions of D = g of order a and let 1Z?
 be denoted as 7Z. Recall that x is an infinitesimal solution of V = g of order a if
 D(x) - g has zero a-jet. Define

 ~ = R.> n (pa+r)-'(A),

 where p+r : X(a+r) X(d) is the canonical projection map for a > d - r. The
 relations R, have the same C? solutions for all a > d-r, namely the C?? solutions
 of the equation T)(x) = g in A (such a solution, from now on, will be referred to as
 an A-regular solution of the equation).

 Let (I denote the sheaf of A-regular solutions of the equation D(x) = g with
 the C? compact open toplogy and let T,, be the sheaf of sections of R, with CO
 compact open topology. It is a consequence of Theorem 2.1 that

 Proposition 2.3 ([2], 2.3.2). If a > max(d + s, 2r + 2s), then an infinitesimal
 solution of ZR, can be deformed to a local solution. Furthermore, the map J :
 <1 - T 9', defined by J(4) = j,+', is a local weak homotopy equivalence. In other
 words, 7R satisfies the local h-principle.

 3. THE h-PRINCIPLE OF ISOMETRIC a-REGULAR MAPS

 We start with the following definition.

 Definition 3.1 ([2], 3.4.1). Let (N, r) be a smooth manifold with a closed k-form
 a. A smooth map f : M > N is said to be a-regular if for each x E M, the map

 I,:Tf(,)N Ak-1(TxM),
 9 I f *(.a)

 is surjective for all x E M.

 A a-regular map is necessarily an immersion.
 Let w be a given k-form on M for k > 2. We call a map f: (M,w) (N, a)

 isometric if f*a = w. In this section we shall prove the h-principle for a-regular
 isometric maps (M, w) - (N, a) in the following situation:

 (1) both a and w are exact;
 (2) M = Mo x R;
 (3) w is induced from a k-form on M0 by the projection map p: Mo xlR - Mo.

 Let V : C??(M, N) > Qk(M) denote the first-order differential operator on
 the space of C? maps f : M - N with values in the space of k-forms Qk(M)
 defined by 2D(f) = f*ra. Since a is a closed form, the sheaf of solutions of D = w
 is not microflexible ([2], 3.4.1). Now, suppose that a = dal and w = dw& for some
 (k - 1)-forms a1 and wl on N and M respectively. If f is a smooth immersion
 such that f*a = w, then locally on any contractible set the above equation reduces
 to f*al + do = wl for some (k - 2)-form b on M. Conversely, if (f, q) is a pair
 satisfying f*al + db = wl, then f*a = w. Let

 D7: C??(M, N) x Qk-2(M) k-(M)
 denote the differential operator defined by S(f, 0) = f* a +d0, where f : M - N
 is a smooth map and 0 is a differential (k - 2)-form on M. Note that the pairs
 (f, ?) can be realized as sections of the fibre bundle (M x N) D Ak-2(M) over M
 which will be denoted by E for future reference.

 M. DATTA 3816
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 The linearization L(f,o) of the operator D at (f, q) can be obtained as fol-
 lows: Consider a smooth 1-parameter family of sections {(ft, 4t)} in E such that
 (fo,q o)= (f, q). Then

 L(f,f) ( d ) = dt(ft, qt)It=o,

 where 0 = d t=o and t t=o = b. Hence,

 L(f,) (9, q) = f*d(9.al) + f* (a.da) + dq,

 where 9 is a vector field on N along f and q is a (k - 2)-form on M. The equation
 L(f,k) = w1 can be solved for (0, q) if the following system has a solution:

 f* (d.dal) =1,
 f*(a.al) + = 0.

 Now the above system of equations is solvable for (0, q) if f is a a-regular map.
 Thus the operator T) is infinitesimally invertible on all those (f, q) for which f is
 a-regular ([2]). Since a-regularity is an open condition and depends only on the
 first jet of a map, the space of pairs (f, 0) for which f is a-regular corresponds to
 the solution space of an open differential relation A C E(1), where E(1) is the 1-jet
 bundle of sections of the fibre bundle E mentioned above. Hence the operator D)
 has the zeroth-order inversion (i.e., s = 0, where s is defined as in Section 2) with
 defect d = 1.

 Let (I be the sheaf of a-regular solutions of the equation D(f) = w and let 4 be
 the sheaf of pairs (f, b) satisfying the equation D = w1 where f is a-regular. There
 is a canonical map 4 ) I) that takes a pair (f, q) onto f. Furthermore, ()(x) has
 the same homotopy type as the space )(x).

 Let 1Z' c E(a+1) consist of (a + l)-jets of infinitesimal solutions of D = wi of
 order a and let tZa = Za^n(pl+l)-l(A), where p+1 : E(a+) - E(1) is the canon-
 ical projection. The following proposition is a direct consequence of Proposition 2.2
 and Proposition 2.3.

 Proposition 3.2. (i) The solution sheaf q4 of ) = wl is microflexible.
 (ii) The 3-jet map j3 : 4(x) - I(x) is a weak homotopy equivalence for every

 x E M, where 'I is the sheaf of sections of 7Z2. In particular, if (f, q) is an
 infinitesimal solution of order 2 of V) = w1 where f is also a-regular, then (f, C)
 can be homotoped to a local solution of the equation.

 Theorem 3.3. Let a be an exact k-form on N as above and let M = Mo x R. If
 the form u = dw1 on M is induced from an exact k-form on Mo by the projection
 map p : Mo x R -> Mo, then every section of 7Z2 is homotopic to a holonomic
 section (in the space of continuous sections of R2 with CO compact open topology).

 Proof. Let I denote the sheaf of sections of the jet bundle E(3) with images in Z2.
 We shall prove that

 J3 :'Mo - iMo
 is a weak homotopy equivalence.

 First observe that the fibre-preserving diffeomorphisms of M0 x IR act on the
 sheaf 4). To see this take a smooth immersion f : Mo x R - N and a (k - 2)-form
 X such that f*ai + do = wl, where w1 = p*wo for some (k - 1)-form on Mo. Let
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 6: Mo x R -) Mo x R be a fibre-preserving diffeomorphism so that p o 6 = p.
 Define the action of 6 by

 6.(f,0) ?-( (f o6,6*q).
 Then,

 (f o 6)*a1 + d(6*)) = 6*(f*oa + d)) = 6*wi = 6*p*wo = p*o = 1.

 Also, if f is a-regular, then so is f o a.
 On the other hand, the fibre-preserving diffeotopies sharply move Mo in Mo x R

 ([2], [1]). Since the sheaf I is microflexible (Proposition 3.2), we conclude that the
 restriction of 4) to Mo is flexible ([2], 2.3.2,[1]).

 A standard argument proves that the sheaf T is flexible ([2], 1.4.2 (A')) and
 Proposition 3.2 (ii) says that

 j : (x) > @(x)

 is a weak homotopy equivalence for every x E M. Then by the Sheaf Homomor-
 phism Theorem ([2], 2.2.1 (B))

 J :' l|MO -> IMo
 is a weak homotopy equivalence.

 Finally, the theorem follows from the observation that Mo x IR can be deformed
 into an arbitrary small neighbourhood of Mo by means of fibre-preserving diffeo-
 morphisms of M. O

 Let R1 consist of 2-jets of a-regular infinitesimal solutions of order 1 of the
 equation D> = w and let r(Zi) denote the space of continuous sections of R1 with
 Co compact open topology. Then we have the following.

 Corollary 3.4. An arbitrary section of Z/T C J2(M, N) is homotopic to a holo-
 nomic section in r(l1). Hence, the a-regular isometric C?? immersions f : (Mo x
 JR, dwl = dwo ? 0) - (N, dal) satisfy the h-principle. Furthermore, if M is an
 open manifold, then a-regular isotropic immersions satisfy the h-principle.

 Proof. Let (f, 4) be a second-order infinitesimal solution at x of the equation D =
 01. Then j2(*l-df ) = 2l at x. There is a bundle map Ak- : (Ak-l(M))(2)
 Ak(M)(l) associated to the exterior differential operator d such that Ak_l(j2) =
 j . Then applying Ak_- on the preceding equation we get jf*(x) = j1 (x). Thus
 f is an infinitesimal solution of order 1 of the equation D = w. Hence we have the
 canonical map p: Z2 -> Zl that maps (j3(x),j3(x)) onto j(x). We shall prove
 that this map is surjective and that fibres of p are affine subspaces. This would
 imply that p has a section, and then the first part of the corollary would follow
 from the above theorem.

 To prove that p is surjective, consider the following sequence of vector bundles:

 k ...2 (( M (3) Ak-2 (Ak (M))(2) k- (kM)) ...

 where the bundle maps Ak are induced by the exterior differential operator d as
 Ak o ji = ji'1. By the formal Poincare Lemma this sequence is exact.

 Let f be a first-order infinitesimal solution of D = w at x E M, which is also

 a-regular, so that jf(x) E 711. Then jf*.(x) = j (x) and consequently jf*O(x) -
 3wj (x) is in ker Ak-1. Hence there exists a 3-jet j3 (x) such that

 if*a (x) - l (x) = Ak-2(j()) =3 jd(x).
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 Therefore, (jf(x),j(x)) E 7Z2 and p is surjective.
 Now let j(x) cE R1. Then p-l(j(x)) consists of all pairs (j3(x),j(x)) E E

 such that j2(x) = j(x) and j2(x) = j (x) - j2(x), equivalently, j3(x) E
 k-2(j22,- (x) - j2 (x)). This shows that the fibres of p are affine subspaces and
 that p : I2 - R1 is an affine bundle. This proves the first part of the corollary.

 To prove the second part, one has to note, in addition, that the zero form is
 invariant under any diffeomorphism of M, and M can be deformed into an arbitrary
 small neighbourhood of its (m- 1)-skeleton by an isotopy. D

 4. EXISTENCE OF a-REGULAR IMMERSIONS INDUCING w

 Let r0 be a closed k-form on a manifold No, and let N be the q-fold Cartesian
 product of No with the k-form a = Eq1 rao, where 7ri : N - No is the
 projection onto the i-th factor. We first determine when the a-regular maps exist
 generically and then prove the existence of isometric maps, applying the results
 obtained in the previous sections.

 Definition 4.1. An immersion f = (fl,f2,..., fq) : M N is said to be ro-
 large if flr o,..., fq*ao span the k-th exterior bundle Ak(M); this means, for every
 k-form w on M, there exist continuous functions 3i : M - R, i = 1,..., q, such
 that

 q

 w = E /3i fc*o i-E i=1

 Let

 A = {(1,... ,q) E J1(M, N) : too,..., fro span Ak(TM),x E M}.

 If f = (fi,..., fq) is a solution of A, then fl'ro(x),..., fq*ao(x) span Ak(TxM) for
 each x E M. Moreover, it follows from the lemma below that the ro-large maps
 are precisely the solutions of the relation A.

 Lemma 4.2. Let wl,... , q be k-forms on M such that for each x E M, wl(x),...,
 wq(x) span Ak(TXM). Then w1,... , wq span the space of k-forms Qk(M) over the
 ring of continuous functions on M.

 Since A is an open relation, the ro--large immersions form an open set in the fine
 C?? topology. Next we observe that

 Proposition 4.3. If f = (fi,..., fq) M - N is a ao-large immersion, then f
 is a-regular.

 Proof. Let f = (fi,..., fq) be a ro-large immersion of M into the q-fold product
 of No. If 01, 02,... aq are vector fields on M, then we have the relation

 q q

 ,ifi*ao= ,fi*(Oi.o) =f f*(( 1,...,Oq).a),
 i=1 i=l

 where ai = (fi)*ai is a vector field on N along fi. The proposition now follows
 from the following simple observation.
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 Lemma 4.4. If w1,..., q are linear k-forms on RIm spanning Ak(Rm), then the
 linear map

 IRm X . X I[m Ak(RIm-1),
 91i,...,a3q - i--E 10i.wi

 is surjective.

 In the rest of this article, M and (N, a) will be as follows:

 (1) M will denote a manifold of dimension m;
 (2) N will denote the q-fold Cartesian product of the Euclidean space Rk;
 (3) a will denote the k-form obtained by summing the q canonical volume forms

 ak := dyl A... Adyk on each Rk factor, where yl, Y2, . ., Yk are the canonical
 coordinates on Rk.

 Proposition 4.5. If q > m + (v), then flak,... fq, k span the k-th exterior
 bundle of M for generic (fl,..., fq) : M - N. Consequently, if q > 2m + 2(k),
 there exists a ak-large immersion f: M - (N, a) such that f*(r) = 0.

 Proof. Here N = Rk and a = (i= ak. Fix a basis el,e2,..., em for Rm. Let L
 be a linear map from Rm to Rqk. Then L can be expressed as L = (L1, L2,., Lq),
 where Li is the projection of L onto the i-th copy of Rk.

 If L is ak-large, then the forms Ltak, L*ok,... Lqak span the bundle Ak(IRm).
 Note that the k x k cofactors of Li correspond to the values of L rk on the k-
 tuples of basis vectors (eil,...,ei,), where {il,i2,... , ik} is an ordered subset of
 {1, 2,..., m}. If Li denotes the column vector formed by the k x k cofactors of the
 matrix Li, then by a a-large condition on L is meant that L = (L1,..., Lq) has the
 maximum rank. Let E' consist of all linear maps L = (L1,..., Lq) : RIm - Rqk
 such that rank L is strictly less than I = (m); in other words, any 1 x I cofactor of
 L is zero. Therefore, E' is semialgebraic and hence stratified ([2], 1.3.1). Moreover,
 the codimension of E' in L(Rm, Rqk) is q - () + 1.

 Let E be the subset of the 1-jet space J1 (M, N) consisting of all 1-jets j (x) such
 that {fack : i = 1,2,...,q} do not span A(M). Hence a map f : M N is
 ak-large if its 1-jet map misses the set S. Since a has global symmetry, the singular
 set E in the 1-jet space fibres over M and therefore it is stratified with codimension

 q - () + 1. Hence by the Thom Transversality Theorem, a generic map is ak-large
 if q- ( >) >m.

 Now, let f = (f,..., fq,) : M Iqk be a ak-large immersion; then define
 f = (fl,..., fq) as follows:

 fi = (fi2, fil, fi3, , fik),

 where fi = (fi, fi2, fi3,. , fik) : M -> Ik. Note that fak = -f,*k for every i.
 Hence (f, f) : M ) Rqk x Rqk is a ak-large immersion of M into R2qk that pulls
 back a Q a onto the zero form on M. D

 Theorem 4.6. Let M be a closed manifold. If q > 2m+2 ( ), then every exact form
 on M can be induced from a by a a-regular immersion f : M - N. Consequently,
 every exact k-form on a closed m-dimensional manifold is expressible as the sum
 of q primary monomials for q > 2m + 2 (m). A~ I n~P?In/l~O IYAMIMnRI, ~11 /1\ )IYI C)7k
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 Proof. Let r = Yl dy2 A ... A dyk so that ak = dr. It follows from Section 3 and
 Proposition 4.5 that the operator

 q

 Dl: (fl f2, ... , fq, b) - fZT + do
 i=l

 is infinitesimally invertible on ak-large immersions which exist generically for q >
 m + ('). Hence by Theorem 2.1, the image of ak-large immersions under D> is a
 nonempty open set in the fine C? topology for q > m + (m). Moreover, when
 q > 2m + 2(m), there exists a ak-large immersion f = (fi,..., fq) : M -> kq
 such that Ei=1 fi,ak = 0, which implies that Ei=1 fi* is a closed form. As a
 consequence, Image D contains a closed (k - 1)-form c.

 Let M now be closed and let w = do be exact. Then for sufficiently small A > 0,
 c+ Aa E Image D. In other words, there exists a ak-large immersion (1g, 92,.. , gq)
 and a (k - 2)-form b such that

 q

 c+Aa = g* T+d d,
 i=l

 and therefore

 1
 W = *( O)*k-

 Clearly, (->gi, k-92 . . . i kg9q) is a-regular and this completes the proof of
 the theorem. [

 The next result is an immediate consequence of the above theorem.

 Corollary 4.7. If M is arbitrary, then every compactly supported exact k-form on
 M can be induced by a a-regular immersion f: M - (N, a) for q > 2m + 2 ().

 Corollary 4.8. If P is a principal O(n) bundle over a closed manifold M, then
 every compactly supported 4-form on M representing the first Pontrjagin class of
 P is the Pontrjagin form of some connection on P, for n > 5m + 4(4).

 The proof of the above corollary will be similar to that of Corollary 4.10 and we
 omit it here.

 Theorem 4.9 ([2], 3.4.1 (B')). Let (N,a) be the q-fold product of (IRk,ak) for
 k > 2. If q > 2(m + 1) + 2(m+l), then an arbitrary exact k-form on M can be
 induced by a a-regular immersion f : M - N. Therefore, every exact k-form on
 an m-dimensional manifold is expressible as the sum of q primary monomials for
 q > 2(m + 1) + 2(m k+).

 Proof. Let x1,x2,... ,xm denote a local coordinate system on M. Then a k-form
 w on M can be represented locally as:

 W = WudxI,

 where I runs over all multi-indices (il, i2,..., ik) for 1 < ii < i2 < **. < ik < m,
 I = Wil,i2 ...ik are smooth functions defined locally on M, and dxi = dxi1 A dxi2 A
 ? . A dxik.
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 Recall that a = 1i=l 1k, where ak is the canonical volume form on I . If
 f = (fl,..., fq) : M - Rqk is a smooth map, then f*c = w defines for each
 multi-index I = (il, i2,. .., i) with 1 < il < i2 < . < ik <_ m an equation EI:

 Edet afj f af o; Oxil aXi2 ' aXik
 j=1

 =- E E )(- )sgna fc ofja 9fja2 9fjak
 ~j , xi, ...xi2 ' OXik

 where a represents an element of the symmetry group Sk on k letters {1, 2,..., k},
 and {fj } denote the components of fj.

 Differentiating EJ with respect to Xp, p E {1, 2,..., m}, we get an equation EI:

 E ( - 1)sgn a ,fjca Ofja2 0fjak - OWI
 j=1 7r,c OXpOXi(1) OXi (2) ..Xi(k) OXp

 where 7r is an element of the symmetry group Sk on k letters {1, 2,..., k}.

 The collection {fj(x), fj (x), 9 If (x)} defines the 2-jet of the function f
 M -- Iqk at x. If f satisfies the equation f**a = w, then its 2-jet map satisfies
 the above system of equations.

 Replacing the partial derivatives in the above equations by ordinary variables,
 namely substituting

 f^ j~ j~ c92 fja ja afj__ - j 02. -Ja=
 axi i ' axiaxp - ip

 we obtain a system of equations {E1,E }, where I runs over all multi-indices
 (il,i2,...,ik) with 1 < il < i2 < .. < ik < m. It can be verified that this
 system of equations is independent of coordinate transformation and defines the
 relation I1 in the 2-jet space.

 Note t e n that {} is a system of ) equations that are linear in the variables

 ipa, the total number of which is kqm(m + 1)/2. Let A denote the coefficient
 matrix of the vector {v } in the system {EI }. The system of equations {E} has
 a solution if the matrix A has the maximum rank everywhere. Since k > 2, the
 condition "rank A < maximum" defines a stratified subset E in the 1-jet space
 Jl(M,Rqk). If q is such that kq(m + 1)/2 > ( ) +1, then codim E > m and hence
 by the Thom Transversality Theorem, j} misses S for generic f. In other words,
 we get a map f for which the following system of equations has a solution for each
 x c M:

 ( 1)- VE(_)sfgna fji2 Ofjak j, i = OwI
 ... xi,( Vpiir(i axp j=l X,Q (2) 7(k) 1 P

 Moreover, the space of solutions is an affine subspace in Rd of codimension m(k),
 where d = kqm(m + 1)/2. Therefore, if q > (m1+) + m + 1, then there exists
 a map f : M x R - (N, ) that is a ak-large immersion and for which the
 system of equations (1) has a solution, say vp = vi. Since f is ok-large, there
 exist continuous real-valued functions /3i on M such that w = i?= O/iL rk, where
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 Li denotes the derivative map dfi. Define for each i = 1,2,...,q, a bundle map
 Li :TM - TIk by

 L _ x ) = {dfi(x) if ,i(x) > 1,
 i (x) dfi(x) if <i (x) <1,

 where fi is obtained from fi by interchanging the first two component functions.
 Take T = (L1,..., Lq,/ L1,..., 3qLq), where i3 = J/i- 1jk. Note that Ti extends
 continuously over all of M if we define it to be identically zero on the set P137(1).
 Thus we get a a-regular bundle map T : TM - TIR2 such that T*a = w. We
 extend this (locally) to a section of R1 by taking vjp = vp3 for j < q and vip = 0
 for j > q. These local solutions finally define a global section of 1i if we patch them
 together by a partition of unity. (Note that the system of equations (1) is linear in
 vp .) We now conclude the existence of an isometric immersion by Theorem 3.3. D

 Theorems 4.9 and 4.6 prove Theorem 1.2.

 Corollary 4.10. Let P be a principal O(n) bundle over a manifold M of dimension
 m, and let n > 5m + 4 + 4(m+l). Then every 4-form on M representing the first
 Pontrjagin class of P is the Pontrjagin form of some connection on P.

 Proof. If n > dim M, then P can be reduced to P,1 P2, where P1 is a principal
 O(m) bundle and P2 is the trivial O(n - m) bundle over M. This may be seen
 easily if we view a principal O(n) bundle as a frame bundle associated to some vector

 bundle of rank n. Moreover, we have a canonical inclusion Q = P1 E P2 - P
 that takes the fibres of P1 E P2 canonically into the fibres of P. Now we prove that
 the Pontrjagin forms of the bundles P and Q are the same. It is a standard fact
 that a connection OQ on Q can be extended uniquely to a connection ap on P such
 that i*ap = aQ. We shall show that p(aQeQ) = pl(ap). We recall that the first
 Pontrjagin form Pl (aQ) is uniquely determined by the equation

 (2) 71r pI (aQ) = trace (DaQ A DoQ),

 where D stands for the covariant differentiation and IrQ denotes the projection map
 Q - M. Similarly, 7r pl (ap) = trace (Dap A Dap) ([3]). Taking pull-back by
 i we get i*7Tr,pp(ap) = trace(DaQ A DaQ). Since rrp o i = 7rQ, the left-hand
 side is equal to 7rQ pl(ap). Hence by equation (2) and the uniqueness property,
 Pi(ap) = Pl(aQ). Moreover, the Pontrjagin form is additive, so that if a1 and a2
 are connections on P1 and P2, respectively, then pl(ai E a2) = pi1(a,) + pi (2).
 In view of the above observation it is enough to show that every exact form on M
 is the Pontrjagin form of some connection on the trivial principal O(n) bundle for
 n > 4(m + 1) + 4(m+1).

 Let dw be an exact 4-form on M. We have proved in Theorem 4.9 that an exact
 4-form on a manifold of dimension m can be expressed as the sum of q primary
 monomials for q > 2(m + 1) + 2(m+l). Let dw = 2 df A df A df A df
 where fij are smooth functions on M and where q satisfies the above relation. Now
 consider an o(2q)-valued 1-form a on M such that corresponding to each monomial
 dfil A dfi2 A dfi3 A dfi4 there exists a 2 x 2 block

 _i =( 0 fi df2 -f3 dfi4
 ?i ( -fil dfi2 + fi3 dfi4 0
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 along the principal diagonal, all other elements being zero. Clearly a is a connection
 on the trivial principal 0(2q)-bundle over M and its first Pontrjagin form is

 q

 P1 () = ZPl(ai)
 i=l

 q

 = trace (Dai A Dai)
 i=l

 q

 - trace (dcai A dai) = dw.
 i=l

 This completes the proof. D

 Corollaries 4.8 and 4.10 prove Theorem 1.2.
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