
 When expanding out the product, only the terms 1 1 1 1 and (-) (?)
 (ii)... (Je^j should be taken into consideration; the other terms disappear because

 Legendre symbols sum up to zero, i.e., Yltez/(q){L) ? 0. Therefore, the above expres
 sion simplifies to

 Now modulo p, the latter sum almost completely vanishes, since the tuples (tx, ..., tp)
 satisfying tx + + tp = 1 with not all t? equal to p_1 can be collected in groups of
 size p by cyclic permutation. Note that p is indeed a multiplicative unit in Z/(q). We
 thus obtain

 "-'+(^)(t)-'+^vv(?) ?"
 The last congruence follows from the well-known formula (-) = a~^~ mod q (which
 in the case a ? +1 becomes an exact equality) and the obvious observation that p~p
 is a square in Z/(q) if and only if p is a square in Z/(q).

 Comparing our two formulas for Np (mod p), the reciprocity law follows.
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 Infinite Divisibility of GCD Matrices

 Rajendra Bhatia and J. A. Dias da Silva

 In 1876 H. J. S. Smith [8] showed that the determinant of the n x n matrix A whose
 entries are given by a,7 = (/, 7), where (/, 7) stands for the greatest common divisor
 (GCD) of the positive integers / and 7, has an interesting formula:

 detA = (p(l)cp(2)'-'(p(n).

 Here cp represents the Euler totient function. Such matrices, and their generalisations,
 have since been studied by several authors. See, for example, the references [5, 7].
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 Let {x\, ... , xn) be any set of distinct positive integers. The GCD matrix G asso
 ciated with this set is the n x n matrix whose entries are g(j = (x?, Xj). One striking
 property of this matrix is that it is infinitely divisible, which, by definition, means that

 for every nonnegative real number r, the matrix [gj".] is positive semidefinite. A proof
 of this fact was given by K. Bourque and S. Ligh [4], and is reproduced in the article
 [1] where several other examples of infinitely divisible matrices are discussed. In this
 note we present a simple proof that derives this property of GCD matrices from the
 positive semidefiniteness of the closely related min matrices.

 Let X\, ... ,Xn be nonnegative real numbers. The min matrix M associated with
 them is the matrix with entries m?j = X? A Xj = min(?/, Xj). It is very easy to see that
 this matrix is positive semidefinite. One proof of this is indicated in Exercise 18, p. 401
 of [6]. Another simple proof, which also shows M is infinitely divisible, is presented
 in [1].

 If A = [aij] and B = [fe/;-] are any two n x n matrices, we denote by A o B their
 Hadamard product, or the entrywise product [a?j b?j]. If a?j > 0 for all i, j, and r is
 any nonnegative real number, we denote by Aor the Hadamard power [a[]. If A and B
 are positive semidefinite, then by a well-known theorem of Schur, the product A o B
 is positive semidefinite, and so are the powers Aom for m = 1, 2, ... .

 Now suppose x\, ... ,xn are (distinct) positive integers. Let p\,... , pk be prime
 numbers such that

 Then we have

 Xi = Pi P2 ... Pk , I <i <n.

 (x?,Xj) = px [p22 ...pk

 For 1 < i < k, let P? be the matrix whose /, j entry is equal to pt l? u. Then the
 GCD matrix G with entries g?j = (xt,Xj) can be expressed as a Hadamard product

 G = Pio P2o--o Pk.

 If we show that each of the matrices Pt is infinitely divisible, then by Schur's theorem
 G will also be infinitely divisible.

 Suppose A = [atj] is any matrix with nonnegative entries and q is any real number
 greater than 1. Let E be the matrix that has all its entries equal to 1. Then the matrix
 [qa?j ] can be represented by the series

 (logg)2 o (loga)3 o
 E + (logq)A + y-^Aa2 + ~^LA?3 + .

 If A is positive semidefinite, then each of these summands, and hence their sum, is
 positive semidefinite.

 This observation, together with the fact that min matrices are positive semidefinite,
 shows that for each r > 0 and each i satisfying 1 < i < k the matrix

 is positive semidefinite. In other words, P? is infinitely divisible as we claimed.
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 Closely related to the GCD matrix is the Hadamard reciprocal of the LCM matrix.
 Let ?ij be the least common multiple of the positive integers xt and Xj. Since

 J_ _ (Xj,Xj)
 ^ij X? Xj

 the matrix L whose /, j entry is l/Uj can be expressed as XGX, where X is the
 diagonal matrix whose diagonal entries are the positive numbers l/xt, 1 < i < n.
 Hence the infinite divisibility of G implies the same property for L.

 Infinitely divisible matrices arise in several different contexts, and are discussed in
 [1], [2], and [3].
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 Borsuk-Ulam Implies Brouwer:
 A Direct Construction Revisited

 Alexey Yu. Volovikov

 1. INTRODUCTION. In the Monthly article [3] Su showed by a direct construc
 tion that the Borsuk-Ulam theorem implies the Brouwer fixed point theorem. Su used
 a cubical ball in his proof. In [4] the author using a simple construction for a Euclidean
 ball showed that the multi-valued generalization of the Borsuk-Ulam theorem implies
 the multi-valued generalization of the Brouwer theorem, in particular the Kakutani
 theorem.

 The purpose of this note is to present a very simple and short proof by a direct
 construction that the Schauder fixed point theorem follows from the generalization
 of the Borsuk-Ulam theorem for Banach spaces due to B. Gel'man [1]. In the finite
 dimensional case it turns into the proof that the Borsuk-Ulam theorem implies the
 Brouwer theorem. In Section 4, a class of similar constructions is developed and in
 Section 5 we show that Su's construction (considered for an arbitrary ball) can be used
 in this argument as well.

 We refer the reader to the paper of Su [3] for historical and other comments.
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