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 Consider the multicolored urn model where, after every draw, balls of the different colors are added to the

 urn in a proportion determined by a given stochastic replacement matrix. We consider some special replace
 ment matrices which are not irreducible. For three- and four-color ums, we derive the asymptotic behavior
 of linear combinations of the number of balls. In particular, we show that certain linear combinations of the
 balls of different colors have limiting distributions which are variance mixtures of normal distributions. We

 also obtain almost sure limits in certain cases in contrast to the corresponding irreducible cases, where only
 weak limits are known.

 Keywords: martingale; reducible stochastic replacement matrix; urn model; variance mixture of normal

 1. Introduction

 Consider an urn model with balls of colors. The row vector Co will denote the number of balls

 of each color we start with. (By abuse of terminology, we shall allow the number of balls to be
 any non-negative real number.) The vector Co will be taken to be a probability vector, that is,

 each coordinate is non-negative and the coordinates add up to 1. Suppose R = ((r?7)) is a
 non-random stochastic (i.e., each row sum is one) replacement matrix. The results of this paper
 extend to non-random replacement matrices with constant (not necessarily one) row sums by an
 obvious rescaling. Let Cn be the row vector giving the number of balls of each color after the nth
 trial. At the nth trial, a ball is drawn at random, and so a ball of /th color appears with probability

 Q,n-i/n> If a ball of ith color appears, then the number of balls of jth color is increased by ri;.
 If R equals the identity matrix, then it is well known (see, e.g., [3]) that Cn/(n + 1) converges
 almost surely to a Dirichlet random vector with parameters given by the starting vector Co.

 Let 1 or 0 stand respectively for the column vector of relevant dimension with all coordinates
 1 or 0. For any vector , 2 will be the vector whose coordinates are the square of those of .

 In Section 2, we consider two color models (K = 2). If the replacement matrix R is not the
 identity matrix, then it has two right eigenvectors, 1 and corresponding to the principal eigen
 value 1 and the non-principal eigenvalue , respectively, with | | < 1. If R is irreducible, the
 asymptotic properties of C?l and Cn% are well known in the literature, see Proposition 2.1.
 When the replacement matrix R is reducible but not the identity matrix, then, after possibly

 interchanging the names of the colors, R is an upper triangular matrix

 (1)

 1350-7265 ? 2009ISI/BS
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 for 0 < s < 1. Here the non-principal eigenvalue is s with the corresponding eigenvector =
 (1,0)'. The asymptotic behavior of the linear combinations is given in Proposition 2.2. In this
 case, Cn%/ns = Wn/ns converges almost surely for all values of s in contrast to the irreducible
 case. See also Theorems 1.3(v), 1.7, 1.8 and 8.8 of [7], where the distribution of the limiting
 random variable was identified using methods from the branching process.

 In the multicolor case, when R is irreducible, the weak/strong laws corresponding to different
 linear combinations are completely known, see [1,6]. Gouet [4] considered (reducible) replace

 ment matrices that are block diagonal, with all but the last block irreducible. The last block was
 taken to be block upper triangular, which cannot be converted into a block diagonal one, and each
 diagonal subblock of the last block was assumed to be a multiple of some irreducible stochas
 tic matrix. He showed (cf. Theorem 3.1 of [4]) that the proportions of colors converge almost
 surely to a constant vector where the non-zero coordinates correspond to all but the last diagonal
 block and the last diagonal subblock of the last diagonal block. We call the corresponding colors
 dominant. To avoid trivial situations, we shall always assume positive contribution to at least one
 non-dominant color in the initial vector Co.

 We shall consider three- and four-color urn models with block upper triangular replacement
 matrices that are not block diagonal. The diagonal blocks will be taken to be irreducible and we
 shall extend the result obtained in [4] by obtaining the limiting results for linear combinations
 corresponding to a complete set of linearly independent vectors.

 Specifically, in Section 3, we consider three colors - white, black and green - and the 3 3
 replacement matrix

 where 0 < s < 1, and ? is a 2 2 irreducible aperiodic stochastic matrix with stationary distri
 bution kq. Here green alone is the dominant color and we assume that Wo + Bo> 0. We show

 in Theorem 3.1(iv) that (Wn, Bn)/ns ?? kqV , where P(V > 0) = 1 and V is non-degenerate.
 If is the eigenvector corresponding to the non-principal eigenvalue of ?, weak/strong laws
 for (Wn, ) are also provided in Theorem 3.1. If < 1/2, then the weak limit is a variance
 mixture of normal, in contrast to the irreducible model, where the weak limit is normal.

 In Section 4, we consider another type of reducible replacement matrix with two dominant
 colors:

 where is a 2 2 irreducible stochastic matrix, is a row probability vector and 0 < s < 1. If
 the eigenvalues of are and 1, then s, and 1 are eigenvalues of R. Clearly (1,0,0)' is the
 eigenvector corresponding to s and the behavior of the corresponding linear combination, Wn,
 follows directly from Proposition 2.2.

 Now consider the eigenvalue . If R is diagonalizable, then the weak/strong law of the linear
 combination given by the eigenvector corresponding to is summarized in Theorem 4.1. If R is
 not diagonalizable, then one of the eigenvalues is repeated, namely k = s, and the repeated eigen
 value has eigenspace of dimension 1, spanned by (1,0, 0)'. Consider the Jordan decomposition

 (2)

 (3)
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 of R, RT = 7V, where is non-singular and

 /, 1 OX
 ;= o o . (4)

 \0 0 1/

 The first and the third columns of can be chosen as (1,0,0)' and 1 respectively. For the linear
 combination corresponding to the middle column, we get weak/strong law. The convergence is in
 the almost sure sense, whenever > 1/2, unlike the irreducible and the diagonalizable reducible
 cases. For = 1 /2, in the irreducible and the diagonalizable reducible cases, we have weak con

 vergence only. Also, the scaling for the irreducible case is yjn log3 and for the diagonalizable
 reducible case is y/nlogn, unlike the non-diagonalizable reducible case, where the scaling is

 yjn\og2n.
 Other interesting reducible three-color urn models have been considered in the literature. For

 example, [2] and [9] consider three-color urn models with triangular replacement matrices. Our
 emphasis is on replacement matrices with block triangular structure, given by (2) and (3). Note
 that Q in (2) is assumed to be a stochastic matrix. However, our techniques do not have a di
 rect extension to the case where Q does not have a constant row sum. In another related work,
 Pouyanne [8] allows eigenvalues of the replacement matrix to be complex and obtains interesting
 results for appropriate linear combinations. For example, in his Theorems 3.5 and 3.6, rates are
 given for the linear combinations corresponding to the eigenvalue with the second largest real
 part, where it is bigger than 1/2. In our setup, all the eigenvalues are real and we obtain the rates
 for all possible linear combinations.

 The results for three-color urn models are extended to four-color (white, black, green and
 yellow) urns with the reducible replacement matrix given by

 *-(? ?)?
 where each component is a 2 2 matrix and furthermore and Q are irreducible stochastic
 matrices, 0 < s < 1. The results are summarized in Propositions 4.2-4.5. An interesting phe
 nomenon is observed in Proposition 4.5, where the replacement matrix is not diagonalizable and
 the repeated eigenvalue is zero. Unlike the behavior of the corresponding linear combination
 in other cases, where it remains a constant, we get a weak limit of variance mixture of normal
 distribution in this case.

 Before proceeding with the details, note that the proofs are based on studying the behavior of
 appropriate martingales with the filtration Tn being the natural filtration of the sequence {Cn}.

 2. Two-color urn models

 Define
 n-l

 ? \
 (6) / -f- I /

 j=0
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 Recall that Euler's formula for gamma function gives

 Tln ( ) ~ / ( + 1), not a negative integer. (7)

 This will be used at several places later.
 We first mention the asymptotic behavior in two-color irreducible urn models. The following

 results are well known. See, for example, [1,6].

 Proposition 2.1. In a two-color urn model with irreducible replacement matrix R,

 Cn a.s. -> , (8) + 1

 where r is the stationary distribution of R. Further, we have:

 (i) IfX<l/2,thenCn$/Jh~^N{0, ^/^2)?
 (ii) If = 1/2, then Cn$/Jnlogn =? N(0, 2 2).
 (iii) If > 1/2, then / ( ) is an L2-bounded martingale and converges almost surely,
 as well as in L2,to a non-degenerate random variable.

 Remark 2.1. Since Wn + Bn = + 1, we have from (8),

 ( , )/( + )^ . (9)
 Remark 2.2. From (8), we see that Cn%/(n + 1) -V kr%. However krI; =krR% = and
 since 1, we have krI; = 0. This explains the appropriate scaling up of Cn$/(n + 1) to obtain
 the weak laws for the proportions above.

 Remark 2.3. When > 1/2, using (7), Cn?/nk converges almost surely, as well as in L2, to
 a non-degenerate random variable. Thus, the scalings in Proposition 2.1(i) and (iii) are differ
 ent. Also, in (iii), the distribution of the limit random variable depends on the starting value
 (Wo, #o) unlike in (i) and (ii). Furthermore, as in Remark 2.1, we can conclude that, when
 > 1/2, (Wn, ) /( + ) converges almost surely, as well as in L2, to a non-degenerate
 random variable.

 Remark 2.4. If = 0, both rows of R equal r . Since r?; = 0 and clearly Cn ? Co + r , we
 have Cn% = Co? for all n.

 Next, we consider the almost sure limit behavior of the two-color urn model with an upper

 triangular reducible replacement matrix given by (1).

 Proposition 2.2. In a two-color urn model with an upper triangular replacement matrix given
 by (1), we have:

 (i) Cnl/(n + l) = l.
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 (ii) C?/(rc + l)->(0,l).
 (iii) Cn%/T\n(s) = Wn/Un(s) is an L2-bounded martingale, where Tln(s) is given by (6).

 Further, Wn/ns converges to a non-degenerate, positive random variable almost surely,
 as well as in L2.

 Proof. Statement (i) is trivial. Statement (ii) is same as that of (8) in Proposition 2.1 and a proof
 can be obtained from Proposition 4.3 of [4].

 For (iii), observe that the number of white balls evolves as

 Wn+l = Wn+SXn+\i

 where is the indicator of a white ball in nth trial. Define the martingale sequence Vn =
 Wn/Tln(s), > 1. We shall show that {Vn} is an L2-bounded martingale and hence converges
 almost surely, as well as in L2. Also, the variance of Vn increases to that of the limit and hence
 the limit is non-degenerate. The proposition then follows from (7), the distribution of V and the

 fact that it is almost surely positive, all of which have been established using branching process
 techniques in Theorem 1.3(v) of [7].

 Clearly, we have

 Vn+l -Vn = nn+i(j)
 and further, using Vn+\ = Vn + (Vn+\ ? Vn) and the martingale property, there exists (non
 random), such that for all > ,

 <v?? +  Vn

 Wn_
 L? + i (h + 1)2

 (n+l)?n(s)
 9 i + y,

 <v? + r(s + i)  = v?
 (n + iy+l

 1 +
 (n + iy+l

 +
 (n +

 The last inequality holds > and follows from the fact that Vn < (1 + V?2)/2 and (7).
 Taking further expectation and adding 1 to both sides, we have, for n> N,

 E[V?+l] + l<

 Iterating, we get ?orn>N,

 1 + r(j + l)
 (n + l)i+1

 (E[V2] + 1).

 E[V2+l] + l<(E[V2] + l) Y\
 j=N

 1 + r(j + 1)
 U + Ds+1 J
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 and since s > 0, we further have for all > ,

 E[V2] < (E[V2] + 1)exp(r(s + l)?y"(5+1) j < co,
 which shows is L2-bounded as required.

 3. One dominant color, = 3

 Now we are ready to consider the three-color urn model with only one dominant color, say green.
 We shall denote the row subvector corresponding to the non-dominant colors (Wn, Bn) as Sn. We

 collect the results in the following theorem.

 Theorem 3.1. Consider a three-color urn model with a reducible replacement matrix R given
 by (2). Suppose the non-principal eigenvalue of Q is and the corresponding eigenvector is .
 Then the following hold:

 (i) C?l/(#i + l) = l.
 (ii) Cn/(n + 1)"?(0,0,1).

 (iii) Sn\/(n + ly converges almost surely, as well as in L2, to a non-degenerate positive
 random variable U.

 (iv) Snl{n + \)s^nQU.

 ( ) If < 1/2, then Sn$/ns/2 =? N(0, j0T)UltQ^
 (vi) If = 1/2, then /^/ * logn N(0, ^2 2 / :0 2).
 (vii) If > 1 /2, then / (sX) is an L2-bounded martingale and almost surely, as well as

 in L2, Sn^/nsk ?> V, where V is a non-degenerate random variable.

 The random variable U in (iv), (v) and (vi) is the same limiting random variable obtained in (iii).
 The distributions ofU and V depend on the initial value So.

 Remark 3.1. Note that the eigenvalues of R are 1, s and s with corresponding eigenvectors 1,
 (1,1,0)' and (?', O)', respectively, yielding the linear combinations Cn\, Sn\ and .

 Proof of Theorem 3.1. Statement (i) is immediate. Statement (ii) follows from Theorem 3.1 and

 Proposition 4.3 of [4].
 Note that Sn 1 = Wn + Bn. From the structure of R, the pair (Wn + Bn, Gn) yields a two-color

 model with reducible replacement matrix

 ( V)?
 Statement (iii) then follows from Proposition 2.2. The distribution of U has been identified in
 Theorem 1.3(v) of [7].
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 Consider the successive times r? when either a white or a black ball is observed. Due to the

 assumed special structure of the matrix R, it is only at these times that more white or black

 balls are added and the total number added is the constant s. Thus S^/S^l are the proportions
 from the evolution of a two-color urn model governed by the irreducible replacement matrix Q.

 Hence by the two-color urn result (9), it converges almost surely to uq. Note that at all other
 n, Tk < < Tfc+i, the vector Sn = Srk and hence the ratio is unchanged. Moreover, from the

 statement (iii), we have Sn\/ns ^? V. Now combining all of the above, the proof of the statement
 (iv) is complete.

 For (vii), let be the row vector, which takes values = (1,0), (0,1) or (0,0) accordingly
 as the white, black or green balls are observed in nth trial and consider the martingale Tn =
 Sn^/Un(sk). Then the martingale difference is

 Tn+\ ? Tn =
 sk

 nn+i(sx)
 Sni;

 n + l

 and hence

 iL
 + 1

 = E[T?]  1 -  (* )2  +
 (fl +i)2(i+ s?/(fl + i))2J ?+ (* ); (n + l)1-*

 Sut2
 (n + iy

 The first term is bounded by E[T2]. From statement (iii), Snl/(n + l)s is L2-bounded and hence

 Z^-bounded. So Sn?;2/(n + l)5 is also Z^-bounded. Thus, using (7), the second term is bounded
 by a constant multiple of -( +*(2 ?- ))? which is summable as > 1/2. Thus {Tn} is an L2
 bounded martingale and hence converges almost surely as well as in L2.

 For (v) and (vi), we start with the case < 1/2. Call Xn = Sn^/n^2. We have the evolution
 equation for given by

 (10)

 We now use the decomposition of Xn+i into a conditional expectation and a martingale dif
 ference

 Xn+1 = E(Xn+i \Fn) + {X?+i - ?(X?+i\Tn)}.

 Using (10) and the fact that (1 + l/n)~s/2 = (1 -s/2n) + 0(1/n2) we then get

 ks *L
 ns/2 ' E{ + \ ) = ^{\ + \/ )-? 2 +  { + \ 2 + 1

 = ?(1- +?(a))+ "(1+
 -s/2  1

 + 1

 (H)
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 On the other hand, the martingale difference is really

 Mn+l ;= Xn+l - E(Xn+i \Tn) = ' ( + - -A- ) , (12) ( + \yi? \ + 1 '
 so that

 (13) Xn+l =Xn(l- S(i/2n X)^j + X?0(n-2) + Mn+l.
 Iterating the equation above, we get

 ?+1^, (,-^) + , , >> (.-^) 1=1 V 7 j=l i=/+l V 7

 +??J+, n(,-^y 7=1 ?=;+lV 7
 Since < 1/2, we have Un(-s(l/2 - )) - n-si\?-V/ {\ _ 5(i/2 - )) 0, and hence the
 first term above converges to 0 for every sample point. The continued product in the second term
 is bounded by 1. Since the coordinates of / (n + 1 ) are bounded by 1, we have that | Xn | / 1 ~s/1
 is bounded for every sample point. Thus the sum of the elements of the second term above is
 bounded by a multiple of j~(l+s/2\ which is finite; and individually each element tends to
 zero since each infinite product diverges to zero. Hence the second term of (14) tends to zero for
 every sample point.
 Now we turn to the third term of (14),

 ?+,= ?,+1 (.-^). ( ? 7 = 1 ?=7 + 1 V 7

 We verify the conditional Lyapunov condition and compute the conditional variance as co.
 The conditional Lyapunov condition demands that for some k > 2,

 7 = 1 ?=7 + 1 V 7

 Since each coordinate of +1 and Sn/(n + 1) is bounded by 1, the martingale difference defined
 in (12) is bounded by a constant multiple of (n + l)~s^2. Thus the above sum is bounded by a
 constant multiple of

 7=1 '=7 + 1

 which tends to zero by the bounded convergence theorem, provided we choose k > 2/s.
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 Now we compute the conditional variance. An exact computation and the statement (iv) yields,
 with probability 1,

 2 / C fr \ 2

 n + l \n + l

 Then, writing y\ni=j+\^ ~ *(1/?~ )) = n?(-s(l/2 - ))/ ,?(-5(1/2 - )) and using (7), the
 sum of the conditional variances satisfies, on a set of probability 1,

 2^?( .+1|^?) ( -:-1 - ^(1_2 ) V-l-,(l-2ir 7=1 ?=7+1 7 7=1 J

 which converges almost surely to {ks)2Un q?2 ? s(\ ? 2 ). Thus, by martingale central limit
 theorem (see Corollary 3.1 of [5]), the limiting distribution of Zw+i, and hence Xn+\ is the
 required variance mixture of normal.

 Since the analysis for the statement (vi) is similar, we omit the details and provide only a
 brief sketch of the arguments. We start with Xn = Sn?/^Jns logft. The following is the relevant
 martingale decomposition now. To express the decomposition, the following straightforward ap
 proximations are used:

 e/o s 9 log log
 (1 + l/n)~s/2 = 1 - ? + 0(n~2) and 5 5

 In log(ft + l) logft + 1/ft + 0(n~2)

 together give

 (n + l) \og(n + 1) = (* ~ 2n~ + ?(" *)(* ~ 2n\ogn + ?(ft2logft))
 S 1 9

 = 1-+ 0(ft-2).
 2n 2ft log ft

 Using = 1/2 carefully, the conditional expectation becomes

 E( + ) = - (2ftlogft)"1] + X?0(ft-2)

 and, for the martingale difference, we get,

 Mn+l := Xn+l - ?( + |^) = / ==(X?+1 - - )*. 2^(ft + 1)J log(n + 1) V + 1 /

 These together give us the recursion on X? as

 Xn+x = Xn[l - (2ft logft)"1] + X?0(ft~2) + Afn+1,

 a decomposition similar to (13). The rest of the proof follows as before with appropriate
 changes.
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 Remark 3.2. Theorem 3.1 gives the scaling for all the linear combinations except when = 0,

 in which case (v) applies and we obtain /ns/l -> 0. However, as discussed in Remark 2.4, Q
 has both rows the same as q, which satisfies kq% = 0. Since Sn changes only when a white or
 black ball appears, we have Sn = So + (wn + ) q and hence Sn% = 5 for all n.

 4. Two dominant colors, = 3,4

 We now consider the three-color case with two dominant colors. The replacement matrix R,
 given by (3), is

 where is a probability vector and is a 2 2 irreducible stochastic matrix. Thus 1 is always an
 eigenvalue of with the corresponding eigenvector 1. We shall denote the other eigenvalue of
 as with corresponding eigenvector . Then s and 1 are two eigenvalues of R with corresponding
 eigenvectors (1,0,0)' and 1, respectively. Observe that Cn(l, 0,0)' = Wn. The results for this
 linear combination follow from two-color urn model results, and we summarize them below. We

 shall denote the stationary distribution of by .

 Proposition 4.1. Consider a three-color urn model with two dominant colors and the replace
 ment matrix given by (3). Then:

 (i) Cnl/(/i + l) = l.
 (ii) Cn/ ^ , ).
 (iii) Wn/ns -> V almost surely, as well as in L2.

 In (iii), if we start with the initial vector Co = (Wo, Bo, Go), then V has the same distribution as
 the limit random variable in Theorem 3.1 (vii) with the initial vector (Wo, Bo + Go).

 Proof. Statement (i) is trivial. The proof of (ii) is given in Theorem 3.1 or Proposition 4.3 of [4].
 For the remaining part, consider the two-color urn model (Wn, Bn + Gn) obtained by collapsing
 the last two colors. This will have the replacement matrix as in (1) and the results will follow
 from Proposition 2.2.

 However, the one remaining linear combination is more subtle. The choice of the linear com
 bination depends on whether R is similar to a diagonal matrix or, equivalently, has a complete
 set of eigenvectors. Suppose -s. Then R is diagonalizable and v2 = (c, is an eigenvector
 of R corresponding to , with c = (\ ? s)p?/( ? s). If = s, then R is diagonalizable if and
 only if = 0. In that case, (0, /)/ is another eigenvector of R corresponding to s independent
 of (1,0,0)'. Also note that, in that case, is orthogonal to and since is a probability vector
 we have = p. In the diagonalizable case with = s, we denote this remaining vector (0,
 by i>2 and consider the corresponding linear combination. The following theorem summarizes
 the results.
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 Theorem 4.1. Consider a three-color urn model with replacement matrix R given by (5), where
 R is diagonalizable. Then the following weak/strong laws hold'.

 (i) If < 1/2, then Cnv2/Vn~ N(0, ^ 2).
 (ii) If = 1/2, then Cnv2/^n log (0, 2 P?2).
 (iii) 7f > 1/2, then CnV2/Tln(X) is an L2-bounded martingale and CnV2/nk converges al

 most surely to a non-degenerate random variable.

 Proof. The proofs of (i) and (ii) are similar to those of (v) and (vi) of Theorem 3.1, so we omit
 them.

 Define as the row vector that takes values (1,0,0), (0,1,0) and (0,0,1) accordingly as
 white, black or green balls appear in nth trial. Also define Zn = CnV2/Un(k). It is simple to
 check that {Zn} is a martingale. Note that,

 k ( Cn \ Zn+i -Zn =-? ?+1-? \v2, + ( ) n + lj
 which gives us

 n + l \n + l)

 Also, Cn/(n + 1) is bounded by 1 for each coordinate. Hence, the conditional expectation above

 is bounded by a constant multiple of ~2 . So we get ?[Z2+1] = "=1{?[( ;+ - /)2}
 is bounded by a constant multiple of J2^?i~2k, which is finite, as > 1/2. Thus, {Zn} is
 L2-bounded. The rest of the statement (iii) follows from (7).

 If R is not diagonalizable, then a complete set of eigenvectors is not available and one of the
 eigenvalues must be repeated, which gives s = and . So we consider the Jordan decom
 position RT = TJ, where / is given by (4). We can choose the first and third columns of as
 11 = (1,0,0)' and ?3 = 1. Also the subvector of the lower two coordinates of t2 is an eigenvector
 of corresponding to s. We shall denote it by as well. The behavior of Cnt2 is substantially
 different from the irreducible case given in Theorem 3.15 of [61 or the diagonalizable case in
 Theorem 4.1 above.

 Theorem 4.2. Consider a three-color urn model with replacement matrix R given by (5), where
 R is not diagonalizable. Then, we have:

 (i) If s < 1/2, then Cnt2/^i^N(0, ^ 2).
 (ii) If s > 1/2, then Cnt2/ns Xogn converges to V almost surely, as well as in L2, where V is

 the almost sure limit random variable obtained in Proposition 4.1 (iii).

 Proof. We first consider the case when 5 < 1/2. Call Xn = Cnt2l\fn. Define the row vector
 as in the proof of Theorem 4.1. We shall split Xn+\ into conditional expectation and martingale

 ?[(Z?+1-Z?)2|^] =  2 ( )
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 difference parts as in the proof of Theorem 3.1(v). From the Jordan decomposition of R and the
 form (4) of /, the evolution equation for Cn is given by

 Cn+it2 = Cnt2 + SXn+\t2 + Xn+l*l.

 Hence the conditional expectation becomes

 1
 E(Xn+?\rn) = -^?=il +  +

 ^/n~+?\ n + lj (rc + 1)3/2

 Xn(l-^^]+XnO(n-2) + -

 )Cnt\

 1

 n + \ ) " v" ' " (rc + 1)3/2

 since Cnt\ = Wn. Using the notation st = t\ + st2, the martingale difference term becomes

 Cn
 Mn+i := Xn+i - E(Xn+\\Fn) =

 Putting this together, we get a recursion on Xn as

 Vn + 1

 = Xn(^-^
 and iterating we get,

 + ?0( "2) +

 Xn+1  + 1

 (n + l)3/2
 + A# + ,

 ^+1 = ! ( -^)+ ^( 2) U(i-^
 + ^ 0-^)+ ^ (.-^> j = l KJ ^ > /=/+! V 7 y=:l ?=/ + 1 V 7

 which is similar to the decomposition (14), except for the additional third term. Further analysis
 is similar to that done for Theorem 3.1(v), except for the contribution of the third term, which

 we now show to be negligible with probability 1. By Proposition 4.1(iii), writing f~[" -+1 (1 ?

 1/^) = (-(1/2 - 5))/ 7 (-(1/2 - s)) and using (7), the third term is of the order of

 1 A 1 Vlogn
 nl/2-s 2^ y 3/2-5 j-{\/2-s) ~ nl/2-s ~* 7 = 1

 almost surely, since s < 1/2.
 Using Proposition 4.1(ii), the structure of the vectors t\ and t2 and the fact = 0, the

 conditional variance term is

 E(M2n+l\Fn) =  + 1
 Cnt2 ? Cnt
 71 + 1 \n + \)

 S 2, n + 1



 Multicolor urn models  291

 which gives the required variance for the limiting normal distribution.
 Now we consider the other situation, where s > 1/2. Using the form (4) of J in the Jordan

 decomposition of R, we again have Rt2 ? t\ + st2 = st. Thus

 C+1?2 = Cnt2 + Xn+\Rt2 = Cnt2 + SXn+it,

 which implies

 E[Cn+it2\Fn] = Cnt2 1 +  + Cn
 n + l/ + 1

 This gives us the martingale

 Xn  cnt2
 n-l

 -T??:  (16)
 n?(j) ^; + inj+i(5)

 The martingale difference is then given by Xw+i ? X? = ^(x?+i ? ^ )t/Tln+\(s), which yields

 E[(Xn+l-Xn)2\fn] =
 2+1

 G*2
 + 1  ft + 1

 (17)

 and using the fact that each coordinate of Cn/(n + 1) is bounded by 1 and Euler's formula
 for gamma function, the conditional second moment above is bounded by a constant multiple

 of ft-25. Taking expectation and adding, we get E[X2+l] is bounded by a constant multiple
 of J2q?~2s. This implies, {Xn} is L2-bounded if s > 1/2 and, {Xn/^/\ogn} is L2-bounded
 if s = 1/2. Thus, for s > 1/2, Z?/logft -> 0 almost surely, as well as in L2. For s = 1/2,
 X?/logft -> 0 in L2.

 We now show the convergence is almost sure also, when 5 = 1/2. For this, consider the random
 variables Zn = Xn / log and get

 Zn +i  Zn = Xn+\ ~ Xn Xn
 log(ft + l) logft[_ log(ft + l)

 1  log ft  (18)

 Since [1 ? i0g(f^i)]/Vl?g^ ~ \/n log3/2 and Xn/^logn is L2-bounded (andhence L1 -bound
 ed), we have E[J2l=2

 \Xk\

 k=2

 f 1 ? ^ ^ }] is bounded uniformly over and hence

 log&

 /l?gIV??p1" log(*+l)

 Xk
 VlogA; \/l?g^

 1 -
 log(fc+l)J

 converges absolutely almost surely. On the other hand, the first term of (18) is a martingale dif

 ference and, using (17) for s = 1/2, the conditional variance E[(Xn+\ ? Z?)2/log2(ft + 1)|^}
 is bounded by a constant multiple of [(ft + 1) log2(ft + l)]-1, which is summable. Hence, the

 martingale {J2l=\(Xk+i ~ Xk)/log(k-\-1)} is L2-bounded and thus converges almost surely.
 Combining the two observations above we get that Zn = Xn/ log converges almost surely.
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 Thus Xn/\ogn converges to 0 almost surely, and in L , for all s > 1 /2. Hence, from (16), we
 have

 Xn _ Cnh_1 yy 1 Cjt\ log \ognI\n{s) logn y + 1 /+ (*)

 converges to 0 almost surely, as well as in L2. But using (7) and Proposition 4.1(iii), we know
 that Cnt\/Un(s) ~ T(s + l)Wn/ns -> V(s + \)V almost surely, as well as in L2. Hence the
 second term in (19) converges to F(s + \)V almost surely, as well as in L2. Thus,

 ns \ogn T(s + 1) Y\n(s)\ogn

 converges to V almost surely, as well as in L2.

 Remark 4.1. As in the case of one dominant color, we have the correct scaling for all the linear
 combinations except when = 0 < s. (This situation arises only in the case of diagonalizable
 replacement matrix.) But v2 being an eigenvector of R corresponding to = 0, we have Rv2 = 0.
 Thus Cnv2 = Cov2 for all n.

 The three-color urn model with two dominant colors can be easily extended to certain four
 color models. We consider the reducible replacement matrix given in (5),

 ?-(Oe iy
 where and ? are 2 2 irreducible stochastic matrices, 0 < s < 1. The eigenvalues of Q are
 and 1, with | | < 1. The eigenvalues of are ? and 1, with \?\ < 1. Then sk, s, ? and 1 are all
 eigenvalues of R. If is an eigenvector of Q corresponding to , then v\ = (1/, 0')', v2 = ( \ 0')f
 and V4 = 1 are eigenvectors of R corresponding to s, s and 1 respectively.

 If R is diagonalizable, then there is another eigenvector corresponding to ?. If R is not
 diagonalizable, then one of its eigenvalues must repeat, namely ? must equal s or s and we
 denote the other by o?. In this case, we consider the Jordan decomposition RT = TJ, where is
 nonsingular. The fourth column ?4 of can be chosen as V4. The first two columns t\ and t2 of

 can be chosen as the eigenvectors of R corresponding to a and ?. However, the third column
 ?3 of will not be an eigenvector of R, yet the two-dimensional vector formed by the lower
 half of ?3 will be an eigenvector of corresponding to ?. We shall only study Cnt^ separately
 in the non-diagonalizable case.

 The following three Propositions are suitable extensions of the three-color results of this sec
 tion. The proofs are suitable modifications as well.

 Proposition 4.2. Consider a four-color urn model with the replacement matrix given by (5).
 Then:

 (i) C?l/(tt + l) = l.
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 (ii) Cn/n^ (0,0, P).
 (iii) (Wn,Bn)/ns^nQU.
 (iv) Cnv\/ns -> U almost surely, as well as in L2.

 (v) If < 1/2, then Cnv2/ns'2 N(0, ^^UnQf).
 (vi) If = 1/2, then Cnv2/Jns log ^ N(0, s2X2UnQ$2).
 (vii) If > 1/2, then Cnv2/nsX -? V almost surely, as well as in L2.

 If we start with the initial vector (Wo, Bo, Go, Yq), then U and V have the same distribution
 as the limit random variable in Theorem 3.1 (iii) and the positive random variable in Theo
 rem 3.1 (vii), respectively, starting with initial vector (Wo, Bo, Go + Yo).

 Next we consider the linear combination Cnv3 in the diagonalizable case.

 Proposition 4.3. In the four-color urn model with replacement matrix R given by (5), assume
 that all the eigenvalues ofR are distinct. Then the following weak/strong laws hold for Cnv3:

 (i) //? < 1/2, then Cnv3/^=^ ( ,^ P 2).
 (ii) If ? = 1/2, then Cnv3/Jn\ogn => N(0, ?2 2).
 (iii) If ? > 1/2, then Cnv3/Un(?) is an L2-bounded martingale and Cnv3/n^ converges

 almost surely to a non-degenerate random variable.

 Finally, we consider the case when the replacement matrix R is not diagonalizable. As in the
 three-color urn model with a non-diagonalizable replacement matrix, the evolution of the linear
 combination Cnt3 depends on the eigenvector of R corresponding to the eigenvalue ?. When
 ? < 1 ?2, the effect of the contribution of the linear combination of this eigenvector is negligible.
 However, for ? > 1 /2, this provides the main contribution and the almost sure limit random
 variable depends on whether ? equals s or s . To denote the limit random variable in a unified
 way, we define the random variable

 where U and V are the random variables defined in Proposition 4.2. Suppose ? > 1/2. If ? = s,
 then t2 = v\ and, by Proposition 4.2(iv), Cnt2/(n + \)? = Cnv\/(n + l)s -> U = W almost
 surely, as well as in L2. If ? = sk, then t2 = v2. Also s < 1 implies > 1/2. Hence by Propo
 sition 4.2(vii), Cnt2/(n + 1)^ = Cnv2/(n + l)sk -? V = W almost surely, as well as in L2. So,
 for non-diagonalizable R and ? > 1/2, we conclude Cnt2/(n + 1)^ -> W almost surely, as well
 as in L2.

 Proposition 4.4. Consider the four-color urn model with replacement matrix R given by (5),
 where R is not diagonalizable. Then, we have:

 (i) If ? < 1/2, then Cnt3/V? N(0, S^nPv2).
 (ii) If ? > 1/2, then Cnt3/n? log? converges to W almost surely, as well as in L2, where W

 is as defined in (20).
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 Remark 4.2. As in two- and three-color urn models, we have correct scalings for all linear com

 binations except when or ? becomes zero. If = 0, Proposition 4.2(v) gives Cnv2/ns/z -> 0.
 However, considering the three-color urn model (Wn, Bn, Gn + Yn), we get, from Remark 3.2,
 CnV2 = CoV2.

 In the case of the diagonalizable replacement matrix, if ? = 0, we have a similar situation
 for the linear combination Cnv^ in Proposition 4.3(i). However, as in Remark 4.1, V3 being an
 eigenvector of R corresponding to ? = 0, we have Rv^=0 and Cnv$ = C0U3.

 The situation becomes more interesting when ? = 0 and the replacement matrix is not diag
 onalizable. Thus, we necessarily have ? = s or ? = Xs, but ? being zero and s being positive,
 only the second alternative is possible and further ? = ? 0. In this case, Proposition 4.4(i)

 p
 gives Cntzl +Jn 0. The correct rate is given in the following proposition.

 Proposition 4.5. Consider the four-color urn model with the replacement matrix R given by (5),
 which is not diagonalizable. Further assume the repeated eigenvalue of R to be zero. Then

 Cnt3/n^2^N{^nQfU/s),

 where U is the limit random variable corresponding to (Wn + Bn)/ns obtained in Proposi
 tion 4.2(iv).

 Proof. Let be the row vector as in the proof of Theorem 3.1 (vii). Using RT = TJ and the
 fact ? = 0, we get Rt^ = f2 + ?h ? h- Hence using t2 = (?', 0')', the evolution equation for
 Cnti is given by

 The rest of the proof is similar to that of Theorem 4.2(i) and is omitted.
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