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 Abstract

 Consider an urn model whose replacement matrix is triangular, has all nonnegative entries,
 and the row sums are all equal to 1. We obtain strong laws for the counts of balls
 corresponding to each color. The scalings for these laws depend on the diagonal elements
 of a rearranged replacement matrix. We use these strong laws to study further behavior
 of certain three-color urn models.
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 1. Introduction

 Consider an urn with balls of (K + 1) colors. Initially, the counts of balls of each color are
 nonrandom, strictly positive real numbers and the total count of balls in the urn equals 1. Let
 the row vector Co denote the initial count of balls of each color. The composition of the urn
 evolves by adding balls of different colors at times n = 1, 2, 3,... as follows.

 Suppose that R = ((r/7)) isa(AT + l)x(AT + l) nonrandom balanced (that is, each row
 sum is the same and, hence, without loss of generality, equal to 1) replacement matrix with
 nonnegative entries. Let Cn denote the row vector of the counts of balls of each color after the
 nth trial, n = 1, 2,_At the nth trial, a ball is drawn at random from the urn with the current

 composition C?_i, so that the ith color appears with probability Cn-\j/n, i = 1, ..., (K +1).
 If the /th color appears then, for j = 1,..., (K + 1), nj balls of the jth color are added to the
 urn before the next draw, together with the drawn ball. It is of interest to study the stochastic
 behavior of Cn as n ? oo.

 In the case when R is irreducible, let ttr be the unique stationary distribution satisfying
 krR = jtr. Then (see, for example, Gouet (1997)) Cn/(n + 1) ? tir almost surely. Note
 that jir is also a left eigenvector of R corresponding to the eigenvalue 1. However, when R
 is not irreducible or balanced, the number of balls of different colors may increase at different

 rates and strong or weak limits for Cn are not known in full generality.
 Janson (2006) considered two-color triangular urn models, where the replacement matrix

 was not necessarily balanced, and identified the weak limits of Cn in all possible cases. He
 mentioned urns with more colors and triangular replacement matrices as possible objects of
 further study (cf. Janson (2006, Problem 1.16)). Flajolet et al. (2006) considered a three-color
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 urn having balanced triangular replacement matrix R with further conditions on the entries and
 obtained weak limit theorems.

 Motivated by these results, we consider balanced, triangular urns with an arbitrary (but finite)

 number of colors. This assumption of balancedness on R allows us convenient application of
 martingale techniques. In contrast, Janson (2006) used the theory of branching processes
 and Flajolet et al. (2006) used generating functions. However, the application of martingale
 techniques to the study of urn models is not new; see, for example, Gouet (1997) and Bai and
 Hu(1999).

 With appropriate scalings, we establish almost-sure convergence of each color count to a
 nonzero limit. Under an additional assumption, see (2.2), the limits are expressed in terms of
 the limits of certain martingales and left eigenvectors of appropriate submatrices of R. These
 strong laws for urn models with an arbitrary but finite number of colors and balanced triangular

 replacement matrices are the main contributions of this paper.
 The outline of the rest of the paper is as follows. In Section 2 we first describe a rearrangement

 of colors which converts any triangular balanced replacement matrix to an appropriate standard
 form. Our results are better described with reference to this standard form. Of course,

 the convergence holds without assuming the standard form, but then the rates are indirectly
 identified only through an algorithmic approach; see Remark 3.3. We also state the additional
 assumption (2.2) required to identify the limits in somewhat explicit forms. In this section we
 also establish the notation used to describe the limits and state some necessary auxiliary results.

 In Section 3 we state and prove the main theorem. For a color whose corresponding
 diagonal entry is larger than all the preceding entries, we consider the right eigenvector of
 R corresponding to this eigenvalue and normalize the corresponding linear combination to
 obtain a martingale. This martingale turns out to be L2 -bounded and, hence, converges almost
 surely. The convergence of the individual color count then follows, since earlier colors have
 lower rates. For colors whose corresponding diagonal entry is not larger than the previous
 entries, we first show that the appropriately scaled color count is L1 -bounded. Then we form
 the appropriate martingale and obtain the convergence.

 In Section 4 we analyze the three-color urn model with triangular replacement matrix as a
 corollary and obtain the asymptotic behavior of linear combinations of color counts. This gives
 an indication of further results that can be proved using the strong laws of this paper.

 2. Notation and preliminary results

 Suppose that R is a balanced triangular replacement matrix with row sums equal to 1.
 Denote the diagonal elements of R as r*, 1 < k < K + 1. Let 1 = i\ < i2 < <
 ij < /(y+1)(= K + 1) denote the indices of the running maxima of the diagonals, namely,
 r\ = rh <n2 < < rtj < ri(J+l) = rK+\ and, for ij < k < we have rk < rtj for
 7 = 1,2,...,/.

 Remark 2.1. Since the row sums are equal to 1 and the elements of R are nonnegative, all the
 diagonal elements will be less than or equal to 1. Thus, (K + 1) will always be an index of the
 running maximum of the diagonals.

 The running maxima of R also leads to the following concepts.

 Definition 2.1. Suppose that R is a balanced triangular replacement matrix. For y = 1,2,...,

 7, the colors indexed by ij, ij + 1,..., i(j+\) - 1 constitute the y th block of colors, ij is called
 its leading index, and the corresponding color is called the leading color of the y'th block. The
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 color indexed by (K + 1) will be the leading color and the sole constituent of the (J + l)th
 block.

 The triangular replacement matrix R with the indices of the running maxima of the diagonals
 can be visualized as

 n . .

 ni "" nj-k "' Vo+ir1 Vo+o
 R =

 rk 1,/0 + i)-l r^'0 + D

 n(j + \)-[ r'(j+])-[<i(j+\)

 V % +
 Here r\ = rfl < r,-2 < < riy < nij+l) = < < ri{j+\) ?iye tne running maxima of the
 diagonal entries. It will be helpful to study the concepts of rearrangement and blocks, while
 keeping this visualization in mind.

 To study urn models with triangular replacement matrices, we need to arrange the colors
 systematically, which we describe next. This particular rearrangement keeps the replacement
 matrix triangular. The new replacement matrix is obtained by pre- and post-multiplication of
 R by permutation matrices. Thus, it remains balanced with row sum 1 and has the same set
 of eigenvalues. The elements of the new eigenvectors are also suitable rearrangements of the
 original elements.

 Definition 2.2. The colors are said to be arranged in the increasing order if R satisfies the
 following: with 1 = i\ < i2 < < ij < i(j+\)(= K + 1) as the indices of the running
 maxima of the diagonals, for ij < k < j ? 1, 2, ..., 7, we have

 k-\

 J2 rmk > 0. (2.1)
 m?ij

 It is easy to see that (2.1) is equivalent to the fact that, for any nonleading color with index k

 in the jth block, namely, for ij < k < j = 1, 2,..., 7, the part of the kth column in
 the yth block has at least one nonzero entry. Also, note that condition (2.1) holds only for
 nonleading colors.

 The next proposition shows that any urn model with triangular replacement matrix can be
 transformed into another urn model with a triangular replacement matrix such that the colors
 are in increasing order.

 Proposition 2.1. Suppose that R is a balanced triangular replacement matrix with row sums
 equal to 1. Then there exists a rearrangement of colors into the increasing order, such that the
 replacement matrix remains triangular.
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 Proof. From Remark 2.1, the (K + 1 )th color forms the last block as required. We will now
 construct the other blocks inductively going backward. Within a block, the construction will
 move forward.

 Suppose that we have constructed some blocks. If the leading index of the last constructed
 block, say i, is 1, we are done.

 If i > 1, we construct the next (previous) block as follows. Let k < i be such that
 rk = max{rm : m < i}. The color with index k is declared to be the leading color of the present
 block under construction and the index of this color may change, as discussed later, through
 rearrangement.

 By our choice of leading colors, the diagonal entries of the indices of the leading colors will
 be in nondecreasing order, as required.

 Next we decide which of the intermediate colors with index m, k < m < i, will be in the

 present block. This will be done through a process of rearrangement described inductively
 going forward.

 Suppose that / colors, including the leading color, satisfying (2.1), have already been obtained
 through rearrangement for the present block and the index of the leading color has changed to
 k'(> k) after this rearrangement. Then the index of the last considered color was k' + 1 ? 1. If
 k' + 1 = i, we have considered all intermediate colors and the construction of the block is over.

 If k! + / < /, consider the color with index k' + /. By our choice of the leading color of the

 present block, we must have r^ > av+/. If we have Ylm=i^1 rm,{k'+i) > 0, we take the color
 with index k! + / as the (/ + l)th color of the present block.

 Otherwise, = Oform = k',k'+l,..., k'+l ? 1. In this case we reshuffle the colors
 to bring the (kf+l)th color ahead ofthe k'th one, and then rm (^+/), m = k!, kf+\,..., k'+l ? l,

 will be the only entries that will move below the diagonal of the kfth column in the reshuffled
 replacement matrix. Hence, the reshuffled replacement matrix will remain triangular. After
 reshuffle, this color will have index k' and the index of the colors already in the present block
 will increase by 1, with the present leading index increasing to k' + 1. The number of colors
 in the present block will remain at /. This gives the forward induction step for constructing a
 block. Since a color is shuffled if it fails to satisfy (2.1), all the remaining colors will satisfy this
 condition. Thus, we complete the backward induction step for the rearrangement of blocks.

 In view of the above proposition, we will always assume, unless otherwise mentioned, that
 the colors are indeed in increasing order.

 Note that if r,-. = rij+l and rmju+l) = 0 for all m = ij, ij , + 1,..., ? 1, then we
 can reshuffle the colors to bring the /(y+i)th color ahead of the /; th one, yet maintaining the
 triangular structure of the replacement matrix and the increasing order of the colors. Hence,
 the rearrangement of colors into the increasing order will not be unique. To make the above
 rearrangement of colors into the increasing order a unique one, we further assume that

 ^2 rmju+l) > 0 whenever r, . = rI(.+1). (2.2)
 m?ij

 Assumption (2.2) is equivalent to requiring that there is at least one nonzero entry in the i(;+i)tfi
 column in the part corresponding to the y th block. Its significance is discussed in Remark 3.1,
 below.
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 We define the following submatrices and vectors corresponding to different blocks of colors.

 Definition 2.3. Let be the submatrix formed by the rows and columns corresponding to
 the indices of the jth block. We will also write kj ? rtj = r{;). The part of the vector Cn
 corresponding to the jth block will be denoted by C?\ Finally, p^ will denote the part of the
 /y+ith column corresponding to the yth block.

 By the definition of a block, r-x. = kj is the strictly largest eigenvalue of and has
 multiplicity 1. Let be the unique left eigenvector of R^ corresponding to the eigenvalue
 kj normalized so that its first element is 1. Then satisfies

 Observe that if ij <m,k < /(;+d thenC?m = C^(OT_f +1) andrm* = r^_. (k - ij + 1).
 Here Cnk, and denote the kth coordinate of Cn, and Cn\ respectively.

 Next we define an index to count the number of times the diagonal entry corresponding to a
 leading color has occurred before. This is important in obtaining the rates of convergence for
 the color counts in Theorem 3.1.

 Definition 2.4. For the 7th block with leading color index ij, let

 Vj = #{m: rm = kj, m < ij}.

 Observe that, if rm = kj for some m < ij then m is a leading index as well. So, if it is the
 first time a diagonal has value kj, we have Vj = 0. Also, note that kj-\ = kj if and only if
 Vj > 0, and in this case, v/_i = Vj ? 1 holds.

 The following useful result is obtained as a consequence of the above definitions.

 Lemma 2.1. If the colors are in increasing order and the replacement matrix R is triangular,
 then all the coordinates of the vector are positive.

 Proof We prove this by induction on the coordinates of the vector.

 Observe that if 77. = 0 then the jth block has only one color, namely, the /7 th color. By
 the choice of normalization, = 1. If 77 . = 0 then, by the above observation, the proof is
 complete. So, without loss of generality, we can take r{. > 0.

 Now assume that the first k(< /(y+n ? ij) coordinates of are positive. By the property

 of the eigenvector of Rij), we have ^j^i 7ri7)r(m+/,-1 ),<*+/= nj*k+v This Sives

 1 *
 nk+\ ~ r _ri-2s *m r(m+ij-\),(k+ij). rij n+ij m=x

 The denominator on the right-hand side is positive, since T[. is the strictly largest eigenvalue.

 By the induction hypothesis, n$P > 0 for m = 1, ..., k. Also, by (2.1), r(m+^._i)> 0
 for some m = 1,..., k. This proves the induction step and the lemma.

 We also denote Tln(s) = n^oO + s/(* + *)) Reca^ that Euler's formula for the gamma
 function gives

 ns
 Y\n(s) ~ ?-? if s is not a negative integer. (2.3) T(s + 1)
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 3. Main results

 Now we state and prove our main result on the strong convergence of individual color counts.

 Theorem 3.1. Suppose that R is a (K + 1) x (K + 1) balanced triangular matrix with row
 sums equal to 1 and (7 + 1) blocks, and that the colors are in increasing order, satisfying (2.2).
 Then, for j = 1, 2, ..., J + 1,

 ?:-> Vi almost surely and in L2, Nxj(\ogN)vJ J
 where Vj+\ ? 1. If r\ = 0 then V\ = Coi- If r\ > 0 then V\ is a nondegenerate random
 variable. For j = 2,3,J, if vj = 0 then Vj is also a nondegenerate random variable. If
 Vj > 0, we further have

 Vj = -7t(j-])p{j-l)Vj.{. (3.1)

 Remark 3.1. Owing to Lemma 2.1, the entries of n^~^ are all positive, and p^~1^ has at
 least one positive entry by (2.2), which means that 7T^~l)/o^_1) > 0 and, hence, recursively,
 all the VjS are nondegenerate.

 Remark 3.2. If rj = 1 for some j < K then the rest of the entries in the y th row are 0.
 Thus, (2.1) requires that rj+\ = 1 and that the (j + l)th color will be the leading color of a
 new block. However, if (2.2) is also assumed, even this is not possible. So, in the setup of
 Theorem 3.1, we must have rj < 1 for all j < K.

 Remark 3.3. The rearrangement of colors into the increasing order and condition (2.2) help us
 identify the limits in Theorem 3.1. However, it will be clear from the proof that even without
 this assumption, appropriate strong laws hold. In this approach we do not use the concept of
 blocks. It can be shown that

 -^-C/vi ?> W\ almost surely
 for some random variable W\. We can then inductively define the rates for all colors j > 1 as

 follows: assume that, for all 1 < j < k, there exist sj, 8j, and random variables Wj such that

 -5-Ca/,- ? Wi almost surely.
 NSJ (log N)8J 3 J

 If the part of the (k + l)th column above the diagonal has all zero entries then, for some random
 variable

 jj^Cw+i) -+ wk+l.
 On the other hand, suppose that r/.^+i) > 0 for some j = 1,2,... ,k. Consider all the

 colors indexed by j such that r^+i) > 0. Let the highest rate of convergence for such color
 counts be ns(\ogn)8. Then we can say that

 ? Cm (*+i) -> Wifc+i almost surely
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 for some random variable Wk+\, where

 ns(logn)8 if rk+i < s,
 an = - ns(\ogn)M if rk+\ = s,

 nn+l if rfc+i > s.

 It is not clear whether we can easily write down how the Wks are related. However, under
 condition (2.2), if we rearrange the colors into the increasing order, the subvectors corresponding

 to each block obtained from the rearranged Wks are of course the same as the VjS and will
 satisfy (3.1).

 Proof of Theorem 3.1. The proof is through induction on the index of color /. Let Xn be the
 row vector of order (K + 1) whose rath entry is 1 if the rath color is drawn at the nth draw and

 whose other entries are all 0. Let !Fn denote the a-field generated by {xk : 1 < k < n}.
 We first quickly verify the result for / = 1. If r\ = 0 then the entire first column is 0, so the

 first color count cannot change whichever color is drawn. Thus, Cn\ stays constant at Cq\ and

 the result is trivially true. Next consider r\ > 0. In this case, we pool all the remaining colors,
 giving us the replacement matrix

 G v)
 Then the result for / = 1 follows from Proposition 2.2(iii) of Bose et al. (2009).

 Now assume that the result holds for the first (/ ? 1) colors for some / > 2. Suppose that
 the next color is the kth color of the jth block. Then we have / = ij -\- k ? 1.

 The following two observations follow from the induction hypothesis.

 (i) If / is a leading color, that is, k = 1 and / = ij, we have

 NkJ-H\ogN)vJ-i |o ifm </(, _!),
 almost surely, as well as in L2.

 (ii) If / is not a leading color, that is, k > 1 and / > ij, we have

 _?*m_ ^ \*mll-ijVj if (33
 NkJ (log N)VJ [0 ifra < ij,

 almost surely, as well as in L2. In particular, we have, for ra < I,

 prr i \0(N^(\0gNy^) if * = 1, L|C/VmJ = { , (3.4)
 0(NkJ(\og N)VJ) if k > 1.

 We separate the proof into three cases: k = 1, Vj = 0; k = 1, Vj > 0; and k > 1.
 Case 1: k = 1 and Vj = 0. Let ? be a right eigenvector of R for the eigenvalue kj = r, .,

 such that ? 1 and & = 0 for k > ij. Observe that, since R is triangular, an eigenvector with
 the above conditions can be obtained by solving a triangular system of equations. Moreover,

 since Vj = 0 gives r^ < r^ for all k < ij, we would further have > 0 for k < ij.
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 Consider the martingale Un = CVf /TlN(kj). Then the martingale difference is

 Xj ( CN \

 Denote by ?2 the column vector whose coordinates are squares of those of ?. Hence, we have

 e[(un+1 - uNf i rN] = ?}L^(Salt - (^L)2) (UN+l(Xj))2\N+l \N+l) J
 < 1 Cn?
 ~ (T\N+l(Xj))2 N+l
 < Halloo
 ~ (N+ \)UN+l(Xj) N

 for all large enough N, where ||? ||oo is the largest coordinate of ? (recall that all the coordinates
 of ? are nonnegative), and the last inequality follows by using the fact that 2Un < 1 +
 and (2.3).

 As in the proof of Proposition 2.2(iii) of Bose et al. (2009), this gives an iteration for
 1 + E[c/^], and we can prove that Un is L2-bounded and, hence, converges almost surely, as

 well as in L2. Thus, by (2.3), C\/?/A^' also converges almost surely, as well as in L2, to Vj,
 say.

 Note that U\ = Cif/(l + kj) = (C0? + AyXi?)/0 + ^/)- Since a11 the coordinates of C0
 are positive, xi takes all coordinate vectors as values with positive probability. Thus, Xi? is
 constant if and only if all the coordinates of ? are of the same value. This will be the case if and
 only if the corresponding eigenvalue is 1, which, by Remark 3.2, holds if and only if / = K + 1
 and j = J + 1. So in this case, C\/? = N + 1 and we have Un = C\/?/(N + 1) = 1 = Vy+i.

 If j < J, U\ is nondegenerate and, hence, has positive variance. Since Un is a martingale,
 the variance of Un is nondecreasing and the limit variable has nonzero variance. So the limit

 variable Vj is nondegenerate for j < J.
 Finally, using the limit of Cn?/Nxj , since & = 0 for k > ij and ?/. = 1, we have

 lim ?r-C[i] = Vj ? Cm lim ?r-CNm almost surely and in L2,
 m = \

 provided that the limits on the right-hand side exist. Since Vj = 0, we have Ay_i < Ay, and
 by (3.2), the limits on the right-hand side are all 0. Thus,

 ?r-Cv] ?> Vj almost surely and in L2,

 and Vj is nondegenerate for j < J, Vj+\ = 1. Since = 1, we have proved the induction
 step for case 1.

 For the other two cases, the proof is carried out in two steps. We first show the

 L1 -boundededness of Zn := C^k/(Nkj (log N)vj) and then we show the required almost-sure
 convergence and the L2-convergence by constructing an appropriate martingale.
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 Step 1: L1 bound. Observe that Cyv+i,/ = Cni + XN+i,mrmh which gives

 / r \ 1 /_1
 m=l

 leading to
 / r x i /_1

 E[C^+U] =E[CM]f 1 + y^i) + ^vTT EE[C^]r^' m=l

 Iterating, we have

 l-\ n i n (r)
 e[CN+U] = CoinN(n) + YrmiY ?? e[Cnm]-fj^. ^ *-"n + \ Tln(n)

 To conclude, using Cn/ = C^ and Cm = Cjy^,

 Case 2: k ? 1 and Vj > 0. We also have = vj ? i and r; = A.; = Then
 using (2.3), (3.4), and (3.6), we have

 E[C^ = c(y) yi y>' (log(n + 2))^-' E[Cnffl] nr'
 n^(^) ?k ^rm't'o n + l ^(log(n + 2))^-1 n?(r/)

 = 0((log/Vp).

 Thus, again using (2.3), [Z^} becomes L1-bounded.
 Case 3: k > 1. Here we have r\ < Xj. Then using (2.3), (3.4), and (3.6), we have

 E[^=c(i) y^r y^(log(;i + 2))^ e[Cnm] nr>
 nN(n) 0k ^rml ^ (n + ik>-^ H^(iog(n + 2))y> n?(r/)

 = 0(Nkj-ri(\ogN)vJ).

 Thus, again using (2.3), {Z^} becomes L1-bounded.
 Ste/? 2: convergence. Now we construct the relevant martingale. Using (3.5), it is easy to

 check that

 Mn = JlL- -Y Y ?^-^ (3.7)
 forms a martingale. The corresponding martingale difference is given by

 Mn+1 ~Mn = n^) ?(x? - Itt)'"'' m= 1 7
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 which leads to, using (3.4) and the L1 -boundedness of Z#,

 (nN+i(n)y i n + 1 V w + i / J

 <-, E[^=ic^^/1 (3 8) " (YlN+i(n))2 I 7V + 1 J
 = o/0og^\

 VA^1+2r/"^/"

 When k = \, Vj > 0, and A7 = a*/ = 0, we can further improve on the order of the
 squared moment of the martingale difference given in (3.9). Observe that / being a leading
 color and r\ = 0 imply that rm = 0 for all m < /, which makes each of the colors indexed
 by m < / a leading color of a block of size 1. This implies that j = I. Since the diagonal
 elements corresponding to all these colors are 0, we have vm = m ? 1 for m < I. Since
 Vj = j - 1 = / - 1 > 0, we have / > 2. Thus, (3.4) simplifies to E[Cnm] = 0((log?)m_1) for
 m < I. Also, r\ being 0, the /th term in the sum of (3.8) does not contribute. Hence, we have

 E[(MN+X - Myy)2] = Ol -J. (3.10)

 Case 2: k = 1 and Vj > 0. Here we have / = ij and r\ = kj. First assume that r\ = kj > 0.
 Then the right-hand side of (3.9) is summable. Hence, is an L2-bounded martingale, which
 converges almost surely, as well as in L2. Since Vj > 0, we have

 1 2 -?Mm ?> 0 almost surely and in L . dog nyj n y

 Next assume that r/ = kj = 0. Then, using (3.10), we find that Mm/(log N)v^2 is
 L1 -bounded. Hence, we have MN/(log N)vj -? 0 in L2. We will now show that

 Ym :=-?r-Afw converges almost surely.
 (log AOv;

 Since the L2-limit is known to be 0, we will then have Ym ?> 0 almost surely, as well as in L2.

 With Am = l/(log N)vj , we have Ym = Mm Am, which gives

 YN+\ -YN = M/v+1(Ayv+i - AN) + AaKMam-i - MN). (3.11)

 Thus, it is enough to show that the partial sums of each of the terms on the right-hand side
 of (3.11) converges almost surely.
 Now, Am is a deterministic sequence and

 r/iog(Af + i)Vy i vj

 We further know that Mm/(log N)v^2 is L2-bounded and, hence, L1-bounded. Thus, recalling

 thatvy > 0, E[\Mm+\(Am+\ ? Am)W is summable and, hence, the first term on the right-hand
 side of (3.11) is almost surely absolutely summable.
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 Since Myv+i ? Mm is a martingale difference, so is the second term on the right-hand side
 of (3.11). By (3.10) we have

 which is summable, as v; > 0. Hence, the second term on the right-hand side of (3.11) is the
 difference sequence of a martingale which converges almost surely, as well as in L . Thus, we
 find that Ym converges almost surely, as well as in L2, to 0 even when r\ = Xj = 0. Hence,
 under the assumption of case 2, k = 1 and vj > 0,

 1 2
 -Mm ? 0 almost surely and in L .

 (log Ab
 using (3.7), we then have

 lim , CNJj

 nyv(^) ^ ^ (log^"1 nxj Cnm = lim ?;- > > rm i.-r ,
 N^oo NxJ(\ogN)vJ ^ ^ J n + I + Xj Yln(Xj) nxJ (lognyi-1 ? m= 1 ?=() J J ?

 where the limit is in the almost-sure as well as the L2 sense. Since vy > 0, we have Xj =Xj-\
 and Vj ? 1 = v/-i- Thus, from (2.3) and (3.2), we have

 NxJ(\ogN)vJ NxJ(logN)vJ
 t ij-Hj-D

 ? y nm pm Vj-\

 = ? nij-X)pu~X) Vj-i almost surely and in L2. (3.12)

 We obtain the formula for Vj in terms of Vj-\ from (3.12). Since, by normalization, = 1,
 we have proved the induction step for case 2.

 Case 3: k > 1. Here r\ < Xj holds and, hence, Xj > 0. If r\ > Xj/2, using (3.9), Mm is an
 L2-bounded martingale and, hence, converges almost surely, as well as in L2. Thus,

 Mn 9
 ?:-> 0 almost surely and in L .

 Nxi-ri(\ogN)vi

 The analysis is a bit more elaborate when r\ < Xj/2. If r/ = Xj/2 then, using (3.9),
 MN/(\ogN){vj+l)/2 is L2-bounded. On the other hand, if r\ < Xj/2, again using (3.9),
 MN/(NkJ/2-ri (log N)VJ/2) is L2-bounded. Hence, for n < Xj/2,

 ?:-> 0 m L .
 NkJ~ri (log N)VJ

 We will now show that Ym := Mm/{Nkj~n (log N)vj'} converges almost surely (to 0) even
 when n < Xj/2. With AN = l/{NkJ'n (log N)vj}, we have Ym = Mn&n, which gives

 YN+\ -YN = Mn+\(&m+\ - A#) + AN(MN+\ - MN).
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 As before, it is enough to show that the partial sums of each of the terms on the right-hand side
 converge almost surely, which can be proved in a similar manner using

 Aa/+i - A\/ = Aaa+i 1 H- - ) - 1 ~ ?. ,, -.
 + + L\ NJ V log N J J Nl+kJ~r> dog N)VJ

 We leave the details to the reader.

 Using (3.7), we have

 hm ?:
 N^oo N j (log N)vj

 nN(n) U ^ (\ognyj n? cnm = hm ?- > > rmi-,
 a/->oo NkJ (log N)VJ ~ ~ (n + 1 + ri)nri~kj Tln(n) nkJ (logn)vJ

 where the limit is in the almost-sure as well as the L2 sense. Thus, from (3.3), using the fact

 that is the left eigenvector of for the eigenvalue kj, we have

 CNk _ CM
 NkJ (log N)VJ Nkj(logN)vJ

 1 k~x

 ~* Xj-n ^Km r^V} J m=\

 = 7r^ Vj almost surely and in L .

 This completes the proof of the induction step and the proof of the theorem.

 4. Three-color urns

 We now specialize to three-color urns. The replacement matrix is then

 (Hi rn H3\
 0 r22 r23 . (4.1)
 0 0 1/

 We assume that the entries are nonnegative, that each row sum is equal to 1, and that (2.2) holds.
 The latter is equivalent to assuming that r\\ < 1, r2i < 1, and r\2 > 0, whenever r\\ = r22

 This three-color urn model has already been considered in Flajolet et al. (2006), who further
 assumed that ri i > 0, r\2 > 0, andr22 > 0. Under these assumptions, they established the weak
 convergence of appropriately scaled Cn and obtained the limit distributions (cf. Propositions 25
 and 26 of Flajolet et ai (2006)).

 In contrast, we have established the almost-sure convergence of scaled Cn. We restate our
 result in a form that is applicable to the three-color urn.

 Corollary 4.1. Suppose that we have a three-color urn model with triangular replacement
 matrix R given by (4.1) with nonnegative entries and each row sum equal to 1. Assume that
 Hi < 1, /"22 < 1> cind r\2 > 0, whenever r\\ = r22. Then there exist nondegenerate random
 variables V\, V2, and V3 such that the following assertions hold.

 (i) Cn3/n -* 1.
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 (ii) Ifr\\ = 0 then Cn\ stays unchanged at Co\. Ifr\\ > 0 then Cn\/nru -? V\.

 (iii) Ifru > r\\ then Cn2/nr22 ? V2.

 (iv) 7jf>22 = Hi cind r\2 > 0, then Cn2/(nr22 logn) ? rnV\.

 (v) 7/>r22 < rn and rn > 0, then Cn2/nrn -> r^Vi/^n - r22). #0 < r22 < Hi and
 r\2 = 0, then Cn2/nr22 -> V3.

 (vi) lfr\2 = r22 = 0 //z^w Cn2 stays unchanged at C02.

 The convergence of all the above random variables is almost sure as well as in L2.

 Three-color urn models with reducible and block triangular balanced replacement matrices
 were considered in Bose et al. (2009). They established the almost-sure convergence of
 appropriately scaled individual color counts as well as weak/strong limits of linear combinations
 Cn$ for suitable vectors ? obtained from the Jordan decomposition of R.

 Armed with the strong laws obtained from Corollary 4.1, we can now extend the results of
 Bose et al. (2009) to the case of three-color urn models with triangular replacement matrices.
 Observe that ?1 = (1, 0, 0)T and $3 = (1, 1, 1)T are always right eigenvectors of R with
 respect to the eigenvalues r\ \ and 7*33, respectively. Clearly, Cn^/(n + 1) = 1 for all n. Also,
 since Cn^\ = Cn\, its limiting behavior is given in Corollary 4.1 (ii).

 Now observe that if rn ^= r22 then R has a right eigenvector ?2 with respect to the eigenvalue
 7*22, given by ?2 = (H2, ^22 ? ni> 0)T. If 7*22 > m then, from Corollary 4.1(H) and (iii), we
 have

 C $2
 ?-> (ri2 ? n 1) V2 almost surely and in L2, nr22

 since the contribution of Cn\ is of smaller order.

 If r22 < ni and r\2 = 0, then observe that Cn%2 = (X22 ? ni)C/i2- If we further have
 r22 > 0 then from Corollary 4.1 (v) we obtain

 C ?2
 ?-> (^22 ? H1) V3 almost surely and in L2. nr22

 But, if we have r\2 = r22 = 0 then Cn?2 remains constant at Co?2
 If 0 = r22 < ni and r\2 > 0, then observe that, ?2 being an eigenvector of R with respect

 to the eigenvalue r22 = 0, R%2 becomes a null vector. Also, if, for j = 1, 2, 3, the yth color
 appears in the nth draw, Cn^2 increases by an amount which is the jth coordinate of R%2,
 namely, 0. Thus, Cn%2 remains constant at Co^2

 The situation becomes interesting when 0 < r22 < m and r\2 > 0. Note that in this case
 we find, from Corollary 4.1(H) and (v), that Cn%2/nru -> 0 almost surely, as well as in L2. We
 summarize the asymptotic behavior of Cn^2 in this case in the following proposition.

 Proposition 4.1. Suppose that we have a three-color urn model with triangular replacement
 matrix R given by (4.1) with nonnegative entries and each row sum equal to 1. Assume
 that 0 < r22 < m and r\2 > 0. Let V\ be the almost-sure limit of Cn\/nru obtained in
 Corollary 4.1(H). Then the following assertions hold.

 (i) #>22 < ru/2then

 Cn%2 N/Q rX2rl2(rl2 + rn - r22) y \ Vrv7^ \ ' rn -2r22 /
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 (ii) Ifr22 = r\\/2 then

 , "f ^ N(0, rnrfarn + rn - r22)Vx).

 (iii) If rn > ni/2 then Cn%ilnri1 converges almost surely and in L2 to a nondegenerate
 random variable.

 Note that here V\ is a random variable and the above limits are to be interpreted as variance
 mixtures of normal distributions.

 Proof of Proposition 4.1. Observe that only the first two components of the eigenvector ?2
 corresponding to the eigenvalue rn are nonzero in this case. Hence, the evolution equation

 can be written in terms of the first two colors only as

 where s ? r\\, X = rn/r\\, and Sn, ?, and Xn are the restrictions of Cn, ?2* and to the
 first two colors only, with some abuse of notation. From Corollary 4.1(ii) and (v), we have
 Sn/ns -> jtV\ with probability 1, where it = (1, r\2/(r\\ ? rn))- Now the analysis of the
 proof of Theorem 3.1(v)-(vii) of Bose et al. (2009) can be repeated verbatim, with obvious
 changes for the almost-sure limits of Sn/ns for the calculation of the limiting variances, which
 is outlined below.

 The limiting variance in (i) above will be r\2V\Ji%2/(r\\ ? 2ryi), where ?2 is a column
 vector with coordinates which are the squares of those of ^. The limiting variance in (ii) above

 will be r22 V\7t%2. A simplification in either case gives the result.

 Finally, if rn > 0 and r\\ = rn, then, for this repeated eigenvalue, it can be checked that,
 for any a, ?2 = 1/H2, 0)T is a Jordan vector satisfying = ?1 + Hence, from
 Corollary 4-. 1 (ii) and (iv), we have

 ?^n^2- Vi almost surely and in L2,
 nn-i\ogn

 where Vi is the almost-sure limit of Cn\/nru obtained in Corollary 4.1(H).
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