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 QUANTUM ISOMETRY GROUPS
 OF 0-DIMENSIONAL MANIFOLDS

 JYOTISHMAN BHOWMICK, DEBASHISH GOSWAMI, AND ADAM SKALSKI

 Abstract. Quantum isometry groups of spectral triples associated with ap-
 proximately finite-dimensional C* -algebras are shown to arise as inductive
 limits of quantum symmetry groups of corresponding truncated Bratteli dia-
 grams. This is used to determine explicitly the quantum isometry group of the
 natural spectral triple on the algebra of continuous functions on the middle-
 third Cantor set. It is also shown that the quantum symmetry groups of finite
 graphs or metric spaces coincide with the quantum isometry groups of the
 corresponding classical objects equipped with natural Laplacians.

 Introduction

 Following the pioneering ideas of Wang described in [Wan] (and motivated by
 Connes), a number of mathematicians including Bichon, Banica and others ([Bic],
 [Ban]) have defined and studied the universal objects in certain categories of quan-
 tum groups, all of which are quantum generalizations of groups acting on (typically
 finite) sets or algebras preserving some given underlying structure such as a metric
 or a functional. In this way, they have come up with several universal (compact)
 quantum groups corresponding to the classical group of permutations (more gen-
 erally, isometries w.r.t. a given metric) of a finite set, the group of symmetries of
 a finite graph or the automorphism group of a finite-dimensional matrix algebra.
 Motivated by their work, the first two authors of the present article have begun
 a systematic effort to define and study similar universal quantum groups beyond
 the finite-dimensional or 'discrete' setup, more precisely, in the framework of (pos-
 sibly noncommutative) differential geometry as proposed by Connes ([C02]). They
 have been able to formulate a quantum group analogue of the group of Riemannian
 isometries ([Gos], [BGi]) as well as the group of orientation-preserving isometries
 ([BG2]) of a (possibly noncommutative, given by spectral triple) Riemannian spin
 manifold. Many well-known and important compact quantum groups (e.g. SOq(3))
 have been identified with such universal quantum groups for some suitably chosen
 spectral triples.
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 Recently in [CIi] and [CI2], Christensen and Ivan constructed natural spectral
 triples on approximately finite-dimensional (AF) C*-algebras. The starting point
 for this article is the desire to understand and compute quantum isometry groups
 of resulting noncommutative manifolds. AF algebras provide a natural 'connect-
 ing bridge' between the finite- and infinite-dimensional noncommutative spaces and
 thus can be thought of as 0-dimensional manifolds. This is reinforced by the fact
 that Christensen and Ivan showed that on each AF algebra one can construct
 spectral triples with arbitrarily good summability properties. We show that the
 'quantum group of orientation-preserving isometries' of a Christensen-Ivan type
 triple arises as an inductive limit of quantum isometry groups of certain finite-
 dimensional triples (Theorem 1.2). In the case when the AF algebra in question is
 commutative, the resulting quantum isometry groups of relevant finite-dimensional
 objects fit into the framework described at the beginning of the Introduction, as
 we show that they coincide with quantum symmetry groups of finite graphs ob-
 tained by suitable truncations of the Bratteli diagrams. This observation implies
 that the construction we consider can be thought of as giving a definition of a
 quantum symmetry group of an arbitrary Bratteli diagram. It also enables us to
 compute explicitly the quantum isometry group of a spectral triple associated with
 the middle-third Cantor set introduced first by Connes and later studied by Chris-
 tensen and Ivan. As a by-product of our considerations of this example we see that
 contrary to the classical case a quantum isometry of the product set preserving the
 first factor in the suitable sense need not be a product isometry.

 Having determined the universal objects for actions on O-dimensional noncom-
 mutative manifolds, it is natural to look back and see how one can accommodate
 the already existing theory of quantum permutation and quantum automorphism
 groups of 'finite' structures in the more general setup of quantum isometry groups.
 This is the second of the main objectives of the present article. We have been able
 to identify the quantum group of automorphisms of a finite metric space or a finite
 graph in the sense of Banica and Bichon with the quantum group of orientation
 (and suitable 'volume-form') preserving isometries of a natural spectral triple, thus
 successfully unifying the approaches of [Ban] and [Bic] with that of [Gos] and [BGi].
 We finish the paper by suggesting a possible approach to defining quantum isomet-
 ric actions on general (compact) metric spaces and compute two explicit examples
 of universal quantum groups of 'isometries' in such a context.

 The detailed plan of the article is as follows: we begin by introducing basic nota-
 tion and recalling fundamental concepts related to quantum groups of (orientation-
 preserving) isometries, as defined in [Gos] and [BG2]. Section 1 contains a descrip-
 tion of the limit construction for an inductive system of compact quantum groups
 and its application for quantum isometry groups. In Section 2 we recall the con-
 struction of spectral triples on AF algebras due to Christensen and Ivan, show
 basic properties of the compact quantum groups appearing in the related inductive
 system and relate them for commutative AF algebras with the quantum symmetry
 groups of truncated Bratteli diagrams. This is used to compute in Section 3 the
 quantum isometry group for Connes's spectral triple related to the Cantor set. In
 Section 4 it is shown that the quantum symmetry group of a finite metric space X
 ([Ban]) coincides with the quantum isometry group resulting from equipping the
 algebra of functions on X with a natural Laplacian; the result has a natural variant
 for the quantum symmetry group of a finite graph. Finally Section 5 contains a
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 suggestion of a tentative definition of quantum isometry of a general metric space
 X and computation of such an object for X = [0, 1] and X = S1.

 Notation and preliminaries

 The symbol 0 will always denote the minimal/spatial tensor product of C*-
 algebras; the purely algebraic tensor product will be denoted by 0. We will occa-
 sionally use the language of Hubert C*-modules and multiplier algebras (see [Lan]).
 Often when X is a finite set we will write C(X) to denote the algebra of all complex
 functions on X, with the point of view that when X becomes an infinite topological
 space the correct generalisation is the algebra of continuous functions on X.

 A compact quantum group (c.q.g.) is a pair (S,A), where S is a unital sepa-
 rable C*-algebra and A:S- >>S0Sisa unital C*-homomorphism satisfying the
 coassociativity:

 (ai) (A 0 id) o A = (id (8) A) o A and the quantum cancellation properties:
 (aii) the linear spans of A(S)(S (8) 1) and A(S)(1 0 S) are norm-dense in S 0 S.
 Occasionally we will simply call S a compact quantum group, understanding by

 this the existence of a suitable coproduct A on S. By a morphism in the category
 of compact quantum groups we understand a unital *-homomorphism intertwining
 the respective coproduct s .

 A c.q.g. (S, A) is said to (co) -act on a unital C*-algebra A if there is a unital C*-
 homomorphism (called an action) a : A - » A0S satisfying the following conditions:

 (bi) (a 0 id) o a - (id 0A) o a,
 (bii) the linear span of a(A)(l 0 S) is norm-dense in A 0 S.

 A unitary (co-) representation of a compact quantum group (S, A) on a Hubert
 space H is a linear map U from H to the C* -Hubert S-module H 0 S such that the
 element Ü G X(/C(H)0S) given by the formula ¿7(£0ò) = £/(£)(l0&) (f G H, 6 G S))
 is a unitary satisfying

 (id®A)tr = Lr(12)tr(13).
 In the last formula we used the standard 'leg' notation: for an operator X € #(Hi 0
 H2), ^(12) and -X"(i3) denote respectively the operators X 0 /h2 G ß(Hi 0 H2 0 H2)
 and 0-23X120-23 G ß(Hi 0 H2 0 H2) (cr23 being the unitary on Hi 0 H2 0 H2 which
 flips the two copies of H2).

 Given a unitary representation U of (S, A) we denote by au the *-homomorphism
 au(X) = U(X 0 1)U* for X e ß(H). If r is a not necessarily bounded, but densely
 (in the weak operator topology) defined linear functional on ß(H), we say that au
 preserves r if au maps a suitable weakly dense *-subalgebra (say V) in the domain
 of r into D©S and (r 0id)(a[/(a)) = r(a)ls for all a G T>. When r is bounded and
 normal, this is equivalent to the condition (r 0id)(a[/(a)) = r(a)ls being satisfied
 by all a G B(H).

 We say that a (possibly unbounded) operator T on H commutes with U if T 0 1
 (with the natural domain) commutes with U. Sometimes such an operator will be
 called U-equivariant

 We briefly recall the definitions of quantum isometry groups, referring to [Gos]
 and [BG2] for the details. Let (^4°°, H, D) be a spectral triple (of compact type, see
 [Coi]; note however that as we will often consider here finite-dimensional objects
 we do not require D to be unbounded). Consider the category Q; whose objects are
 pairs (S, [/), where S is a compact quantum group and U is a unitary representation
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 of S in H such that the action au maps A°° into the ampliation of its weak closure,
 and moreover U commutes with D. The set of morphisms Mor((S, [/), (S', U1)) is
 the set of c.q.g. morphisms $ : S - » S' satisfying the condition (id® $)([/) = Uf.
 If, additionally, we are given a (possibly unbounded) positive operator R such that
 R commutes with £>, we also consider the subcategory QfR of Q' consisting of the
 S-actions for which au preserves the functional tr as in [BG2]. It is proved in [BG2]

 that Q'R has a universal object, denoted by Q'SOR(A°°, H, D) or simply QISOÄ(-D).

 We shall denote by QISO^(-D) the Woronowicz subalgebra of Q'SOR{D) such that
 au faithfully maps A°° into (A00)" <S> QISO¿(L>), and this subalgebra is called the
 quantum group of (R-twisted) volume and orientation-preserving isometries of the
 underlying spectral triple. It is also proved in [BG2, Theorem 2.14] that under some
 further conditions a universal object in the bigger category Q' exists. It is denoted

 by QISO (D). The corresponding Woronowicz subalgebra for which au'A°° is
 faithful is denoted by QISO+(D) and called the quantum group of orientation-
 preserving isometries.

 1. Inductive limit construction for quantum isometry groups

 In this section we describe the limiting construction for an inductive system of
 compact quantum groups and give an application for quantum isometry groups
 which is fundamental for the results of the next section.

 The following lemma is probably known, but we include the proof for the sake
 of completeness.

 Lemma 1.1. Suppose that (Sn)neN is a sequence of compact quantum groups and
 for each n, m G N, n < m there is a c.q.g. morphism 7rn5m : Sn -> Sm with the
 compatibility property

 Km,k ° ^n,m = 7Tn>fc, U < 171 < k.

 Then the inductive limit of C* -algebras (Sn)n^ has a canonical structure of a
 compact quantum group. It will be denoted by Sqo or limn(EN Sn. It has the following
 universality property:
 for any c.q.g. (S, A) such that there are c.q.g. morphisms 7rn : Sn - »• S satisfying
 for all m,n G N, m > n the equality 7rm o 7rn,m = 7rn, there exists a unique c.q.g.
 morphism tt^ : Soo - » S such that irn = tt^ o 7rn5OO for all n G N, where we have
 denoted by 7rn5OO the canonical unital C* -homomorphism from Sn into S^.

 Proof. Let us denote the coproduct on Sn by An. We consider the unital C*-
 homomorphism pn : Sn - >► S^ ® Sqc given by pn = (7rn?oo ® 7rn5OO) o An and observe
 that these maps do satisfy the compatibility property:

 Pm O ^n,m = Pn Vn < Til.

 Thus, by the general properties of the C*-algebraic inductive limit, we have a unique
 unital C*-homomorphism Aoc : S^ -> S^ <g> S«^ satisfying Aoo o 7rn?oc = pn for all
 n. We claim that (Soo, A^) is a c.q.g.

 We first check that A«^ is coassociative. It is enough to verify the coassociativity
 on the dense set Un^ooiSn)- Indeed, for 5 = 7rn>oo(a) (a G Sn), by using A^ o
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 7Tn>oo = (jin^oo 0 TTn, oo) ° An, we have the following:

 (A«, (g)id)Aoo(7Tn,oo(a)) = (Aoo 0id)(7rnjOO O 7rn?oo)(An(a))

 = (7Tn,oc (8) TTn^oo 0 7Tn7OO)(An (g) id)(An(a))

 = (7Tn,oo(8)7rn,oo(g)7rn,oo)(id(g)An)(Ari(a))

 = (7Tn,oo (8) (7Tn|OO 0 7rn?oo) O An)(An(a))

 = (*"n,oo 0 Aoo ° 7Tn5OO)(An(a))

 = (id(8)Aoo)((7Tn,oo 0 7Tn>oo)(An(a)))

 = (id(g)A00)(A00(7Tn,00(a))),

 which proves the coassociativity.
 Finally, we need to verify the quantum cancellation properties. Note that to

 show that AOO(SOO)(1 0 Soo) is dense in S^ 0 S^ it is enough to show that the
 above assertion is true with S^ replaced by a dense subalgebra 'Jn 7rn5OO(Sn).

 Using the density of An(Sn)(l 0 Sn) in Sn (8) Sn and the contractivity of the map
 7Tn5OO we note that (7rn?oo(8)7rn5OO)(An(5n)(l(8)Sn)) is dense in (7rníOO07rníOO)(Sn0Sn).
 This implies that (7rnîOO 0 7rn5OO)(An(Sn))(l 0 7Tn5OC(Sn)) is dense in 7TniOO(Sn) (8)
 7Tn,oo(Sn) and hence Aoo(7rn>oo(Sn))(l07rn)OO(Sn)) is dense in 7rn)OO(Sn)07rnjOO(Sn).
 The proof of the claim now follows by noting that 7rn5OO(Sn) = 7rm,oofl"n,m(Sn) Ç
 7Tm,oo(Sm) for any m > n, along with the above observations. The right quantum
 cancellation property can be shown in the same way.

 The proof of the universality property is routine and hence omitted. D

 Note that the proof remains valid for any other indexing set for the net, not
 necessarily N.

 The next theorem connects the inductive construction above with some specific
 quantum isometry groups.

 Theorem 1.2. Suppose that A is a C* -algebra acting on a Hubert space H and
 that D is a (densely defined) self adjoint operator on H with compact resolvent, such
 that D has a one- dimensional eigenspace spanned by a vector £ which is cyclic and
 separating for A. Let (An)n^ be an increasing net of unital * -subalgebras of A
 and put A = UnGN^rc- Suppose that A is dense in A and that for each a e A
 the commutator [D, a] is densely defined and bounded. Additionally put Hn = Ani,
 let Pn denote the orthogonal projection on Hn and assume that each Pn commutes
 with D. Then each (An, HniD''^n) is a spectral triple satisfying the conditions of
 Theorem 2.14 °f [BG2] and there exist natural compatible c.q.g. morphisms 7rm>n :

 QÏS0+(An, Hm,£>|Hm) -> QÎSO+(^ln, Hn,D|Hn) (n,m G N,m < n) and

 Q¡SO+(AH,D)-limQÍSO+(^n,Hn,D|HJ.
 nGN

 Similar conclusions hold if we replace everywhere above QISO by QISO+.

 Proof. We prove the assertion corresponding to QISO only, since the proof for

 QISO+ follows by very similar arguments. Let us denote QISO (v4n, Hn,Dn) by
 Sn and the corresponding unitary representation (in Hn) by Un. Let us denote the
 category of compact quantum groups acting by orientation-preserving isometries
 on (An, Hn, £>|hin) and (A, H, D) respectively by Cn and C.
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 Since Un is a unitary which commutes with Dn = D'un and hence preserves the
 eigenspaces of Dn, it restricts to a unitary representation of Sn on each Hm for
 m < n. In other words, (Sn,[/n|i-im) G Obj(Cm), and by the universality of Sm
 there exists a compact quantum group morphism, say, 7rm5n : Sm - »• Sn such that
 (id(g)7Tm,n)l7m|Hm = £/n|Hm.

 Let p < m < n. Then we have (id®7rmjn7rPjm)f/p|Hp = Un'wp. It follows by the
 uniqueness of the map 7rP)n that 7rP)n = 7rm5n7rp?m; i.e. (Sn)n€^ forms an inductive
 system of compact quantum groups satisfying the assumptions of Lemma 1.1. De-
 note by Sqo the inductive limit c.q.g. obtained in that lemma, with 7rn?oo : Sn - > S
 denoting the corresponding c.q.g. morphisms. The family of formulas U'''n :=
 (id^Tiv^oo) o Un combine to define a unitary representation U of Sqo on H. It is
 also easy to see from the construction that U commutes with D. This means that
 (Soo,U) G Obj(C); hence there exists a unique surjective c.q.g. morphism from

 S := QISO (A, H, D) to Sqo identifying Soo as a quantum subgroup of S.
 The proof will now be complete if we can show that there is a surjective c.q.g.

 morphism in the reverse direction, identifying S as a quantum subgroup of S^. This
 can be deduced from Lemma 1.1 by using the universality property of the inductive

 limit. Indeed, for each n G N the unitary representation, say Vni of QISO (A, H, D)
 restricts to Hn and commutes with D on that subspace, thus inducing a c.q.g.

 morphism pn from Sn = QISO (^n,Hn,Dn) into S. The family of morphisms
 (Pn)neN satisfies the compatibility conditions required in Lemma 1.1. It remains
 to show that the induced c.q.g. morphism p^ from S^ into S is surjective. By the

 faithfulness of the representation V of QISO (A, H, D), we know that the span of
 matrix elements corresponding to all Vn forms a norm-dense subset of S. As the
 range of pn contains the matrix elements corresponding to Vn = V|Hnî the proof of
 surjectivity of poo is finished. D

 The assumptions of the theorem might seem very restrictive. In the next sec-
 tion however we will describe a natural family of spectral triples on AF algebras,
 constructed in [CIi], for which we have exactly the situation as above.

 2. Quantum isometry groups for spectral triples on AF algebras

 We first recall the construction of natural spectral triples on AF algebras due
 to E. Christensen and C. Ivan ([CIi]). Let A be a unital AF C*-algebra, the norm
 closure of an increasing sequence (An)nG^ of finite-dimensional C*-algebras. We
 always put Ao = CIa, A = U^Li An and assume that the unit in each An is the
 unit of A.

 Suppose that A is acting on a Hubert space H and that £ G H is a separating
 and cyclic unit vector for A. Let Pn denote the orthogonal projection onto the
 subspace Hn := An£ of H and write QQ = Po = PC£, Qn = Pn - Pn-' for n G N.
 There exists a (strictly increasing) sequence of real numbers (an)^=1 such that the
 selfadjoint operator D = J2neNatnQn yields a spectral triple (A,H,D) such that
 the topology on the state space of A induced by the Rieffel metric ([Rie]) coincides
 with the weak* -topology. Due to the existence of a cyclic and separating vector the
 orientation-preserving quantum isometry group exists by Theorem 2.14 of [BG2].
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 In [CIi] it was additionally observed that if A is infinite-dimensional and p > 0,
 then one can choose (an)^=1 in such a way that the resulting Fredholm module is
 p-summable ([Coi]). This reflects the fact that AF algebras should be thought of
 as 0-dimensional noncommutative spaces.

 Note that for each n G N by restricting we obtain a (finite-dimensional) spectral
 triple (An, HnjJD|Hn). As we are precisely in the framework of Theorem 1.2, to
 compute QISO+(.4, H,D) we need to understand the quantum isometry groups
 QISO+(.4n, Hn, D'Hn) and embeddings relating them. To simplify the notation we
 will write Sn :=QISO+(An,Hn,L>|HJ.

 We begin with some general observations.

 Lemma 2.1. Let QU^niUJ^ denote the universal quantum group acting on An and
 preserving the (faithful) state on An given by the vector £ (see [Wan] j. There exists

 a c.q.g. morphism from QU^^^ to Sn.

 Proof The proof is based on considering the spectral triple given by (An, Hn, Dfn),
 where D'n = Pn - Po. It is then easy to see that QISO+(An, Hn,Drn) is isomor-
 phic to the universal compact quantum group acting on An and preserving u)$.
 On the other hand, universality assures the existence of the c.q.g. morphism from
 QISO+(An,Hn,D;)toSn. D

 Lemma 2.2. Assume that each An is commutative, An = Ckn , n G N. There exists
 a c.q.g. morphism from Q'ikn t° Skn, where QU^n denotes the universal quantum
 group acting on kn points ('Wan').

 Proof The proof is identical to the one above. We only need to observe additionally
 that for any measure /jl on the set {1, . . . , kn} which has full support there is a
 natural c.q.g. morphism from QU/^ to QUCfcn/x. In the case when ¡i is uniformly
 distributed, we simply have QUCfcnM = QU/en, as follows from the first part of
 Lemma 2.4 below. D

 Let an : An - >► An ® Sn denote the universal action (on the n-th level). Then we
 have the following important property, being the direct consequence of Theorem
 1.2. We have

 (2.1) an+i(An) C An(g)Sn+i

 (where we identified An with a subalgebra of An+i) and Sn is generated exactly by
 these coefficients of Sn+i which appear in the image of An under an+i. This in
 conjunction with the previous lemma suggests the strategy for computing relevant
 quantum isometry groups inductively. Suppose that we have determined the gener-
 ators of Sn. Then Sn+i is generated by generators of Sn and those of the QUAn,a;i ?
 with the only additional relations provided by the equation (2.1).

 This will be used below to determine the concrete form of relations determining
 Sn for the commutative AF algebras.

 Lemma 2.3. Let A be a commutative AF algebra. Suppose that An is isomorphic
 to Cm and the embedding of An into An+i is given by a sequence (h)^. Let ml =
 Y^IL' k- Suppose that the 'copy7 o/QUm in Sn is given by the family of projections
 dij ( i,j e {1, . . .m} ) and that the 'copy1 o/QUm/ in Sn+i is given by the family
 of projections a^r.)^jìS.) (i,j e {l,...,m}, r¿ G {!,...,/»}, Sj G {1,. . .,lj}). Then
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 the formula (2.1) is equivalent to the following system of equalities:
 h

 i2'2) aiJ = Z a(w),O>.)

 for each i J G {1, . . . ,ra},Sj G {1,...,^}.

 Proof. We have (for the universal action a : An - > An 0 Sn)
 m

 a(^) = Z^? ®aM>
 J = l

 where by e¡ we denote the image of the basis vector e¿ G An in An+i. As ëj =

 Lr^le(j,Sj)'
 ii h m h

 a&) = Z a(e^) = ZI ZI Z eu>*>) ® a(w),(i,aj-)-
 r¿ = l n = lj=l Sj=l

 On the other hand we have

 m ¿j

 a(^) = Z Z eo>¿) ® a¿^'
 j=l«J=l

 and the comparison of the formulas above yields exactly (2.2). D

 One can deduce from the above lemma the exact structure of generators and
 relations between them for each Sn associated with a commutative AF algebra.
 To be precise, if An = Ckn for some kn G N, then the quantum isometry group
 Sn is generated as a unit al C* -algebra by the family of self adjoint projections
 'J¡i=i{aatifíi '• OLi,ßi = 1, • • • , hi) such that for each fixed i = 1, . . . , n the fam-
 ily {cL^i.ßi) '• aii ßi - 1? * * * i^i} satisfies the relations of QU^n and the additional
 relations between a^a.^^ and a(ai+1,/3i+1) for i G {1, . . . , n - 1} are given by the for-
 mulas (2.2), after suitable reinterpretation of indices according to the multiplicities
 in the embedding of Cki into C*^1 .

 In [Bic], J. Bichon introduced the notion of a quantum symmetry group of a finite
 directed graph. As each AF algebra can be described via its Bratteli diagram, it is
 natural to ask whether the construction in this paper can be compared to the one
 in [Bic]. We begin by stating some elementary facts in the following lemma.

 Lemma 2.4. Let a be an action of a c.q.g. S on C(X) where X is a finite set. Then
 a automatically preserves the functional r corresponding to the counting measure:

 (T®id)(o(/)) = r(/).ls.

 Thus a induces a unitary a G B(12(X)) 0 S given by a(f 0 q) = a(f)(l 0 g). If we
 define a^ : C(X) 0 C(X) -» C{X) 0 C(X) 0 S by a^ = (id2 0ms)cr23(o; 0 a),
 where ras denotes the multiplication map from S 0 S to S, and id2 denotes the
 identity map on C(X) 0 C(X), then a^ leaves the diagonal algebra C(Dxxx)
 invariant (here Dxxx - {(^^O : x G X}).

 Proof Let X = {l,...,n} for some n G N and denote by 5¿ the characteristic
 function of the point i. Let a(5¿) = J2j àj ® Qiji where {qij : i,j = 1 . . .n} are
 the images of the canonical generators of the quantum permutation group as in
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 [Wan] . Then r-preservation of a follows from the properties of the generators of the
 quantum permutation group, which in particular imply that ^ . qij = 1 = ^Ji qij.

 Using the fact that q^ and qik are orthogonal for ¿, j, k G {1, . . . , n}, j ^ /c, we
 obtain

 a(2) (Si 0 Si) = ^2 ÖJ ®Sk® QijQik = ^2öj® Sj 0 qij ,
 j,k j

 from which the invariance of the diagonal under a^ is immediate.
 The other statements follow easily. D

 Observe that since a^ is a unitary, it leaves the r-orthogonal complement of
 C(Dxxx) in 12(X x X), i.e., the space of functions on the set Y = {(x,y) : x, y e
 X,x ^ y}, invariant as well.
 Recall now the definition of the quantum automorphism group of a finite graph

 given in [Bic]. Let (V, E) be a graph with V denoting the set of vertices and E the set
 of edges. Let s : E - >• V (respectively t : E - >• V) be the source map (respectively
 the target map). The target and source maps induce *-homomorphisms s*,£* :
 C(V) -> C(E). Let m : C(E)®C(E) -» C(E) be the pointwise multiplication map
 on E and given a quantum group action a; on C(V) let a^ be defined as in Lemma
 2.4.

 Definition 2.5 ([Bic]). An action of a c.q.g. S on a finite graph G = (V, E) consists
 of an action a of S on the set of vertices, a : C(V) -» C(V) (8) S and an action ß of
 S on the set of edges, ß : C(E) -> C(E) <8> S, such that

 ((m(s* (8) U)) 0 ids) o a(2) = ß o (m(s* 0 t*)).

 It is also called a quantum symmetry of the graph (V, E).

 The quantum automorphism group of the finite graph is the universal object in
 the category of compact quantum groups with actions as above. We refer to [Bic]
 for the details.

 Let us now restrict our attention to a truncation of a Bratteli diagram (up to the
 n-th level, say) of a commutative AF algebra. The set of vertices F is a disjoint
 union of sets Vi, ..., Vn with V' being a singleton, and there exist surjective maps
 nj • Vj - > Vj-i (j > 2) determining the graph structure. Denote by tt the map
 from V to V defined by the formulas 7r|y' = ttj for j > 2, and tt = id on V'.
 Then tt* : C(V) - > C(V) is a C*-homomorphism, with tt*'c(v-) injective for each
 j < n - 1. The corresponding graph is obtained by joining 7r¿+i(u) G Vi with
 v ^ V¿+i for each i = 1, . . . , n, v G Vi.

 Denote by D(V) the diagonal subalgebra of C(V)®C(V), i.e. the span of {SV®SV :
 v e V}. Sincethemapm(s+(g)t+) is onto, C(E) ^ {c(V)®C(V))/KeT(m(s*®U)).
 Indeed, for the graph corresponding to the commutative AF algebra described
 above, C(E) is isomorphic to the subalgebra (id(g)7r*)(D(V)) of C(V) 0 C(V),
 and the condition on ß in the above definition of a quantum symmetry of the
 graph (V,E) amounts to saying that a^ leaves the algebra C :- (id07r*)(Z)(V))
 invariant, in which case ß is, up to the obvious identification, nothing but the
 restriction of a^2^ on C.

 In other words, an equivalent description of the objects in the category of the
 quantum symmetry of such a finite commutative (i.e. with all matrix algebras in
 the vertices being one-dimensional) Bratteli diagram is obtained via observing that
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 they correspond precisely to these c.q.g. actions a on C(V) for which C is left
 invariant by a^2' This leads to the following result:

 Theorem 2.6. Let A be a commutative AF algebra. Then the quantum isometry
 group Sn described in the beginning of this section coincides with the quantum sym-
 metry group of the graph given by the restriction of the Bratteli diagram of A to the
 n-th level

 Proof Suppose first that we are given a quantum isometry of the canonical spectral
 triple on the respective 'finite' part of the AF algebra in question, so that we have
 a c.q.g. action (S,a) on C(V) such that each ctj = ot'c(v-) leaves C(Vj) invariant
 (j = 1, . . . , n) and that a commutes with the embeddings tcj, that is,

 a^+iTTj+i* = (ttí+i* <g>id)a¿.

 We deduce that

 ûQ+^id 0 TTj+i*) = (id2 0 ms)(j23(«j+i 0 ai+i7Tj+i*)

 = (id2 0 ms)<T23(a¿+i ® (^j+i* ® id)ai) = O^+i* ® id)aj •

 Using the above expression and the fact that a^ leaves D(V) invariant (by the
 second part of Lemma 2.4), we see that a^ leaves C invariant.

 Conversely, we need to show that a quantum action of a c.q.g. on the Bratteli
 diagram induces a quantum symmetry of the corresponding part of a spectral triple
 on the AF algebra. Let (S,a) be then an action on C(V) such that a^ leaves
 C invariant. It follows from the discussion before the lemma that we have the

 corresponding action ß on C(E). Therefore we can start with an action a on the
 Bratteli diagram such that o¿®c(vn) preserves (id07rn*)(D(V^_i)). We first show
 by induction that a leaves each C(Vj) invariant. Consider j = n first. Observe
 that C(Vn) is nothing but Ker(#), where $ : C(V) -» C(E) is the map / i->
 (m o (5* 0 t*))(f 0 1). It is clear from the definition of a quantum symmetry of
 a graph that a will leave this subalgebra invariant. This implies that a (being a
 unitary w.r.t. the counting measure on C(V)) will leave C(V' U ... U Vn-') invariant
 as well, and thus restricts to a quantum symmetry of the reduced graph obtained by
 deleting Vn and the corresponding edges. Then the inductive arguments complete
 the proof that each C(Vj) is left invariant.

 The proof will now be complete if we can show that

 (2.3) am+i7T^+1 = (tt^+1 0 id)am

 for each m = 1, . . . , n - 1. Let Vm = {vf, . . . , v^ }, and let qmilj be elements of S
 such that

 3

 We set Aj = {m : 7r(m) = j}. Then we have

 a(2)(id 0 C+i)(V 0 Sv?) = <*(2)(V ® J2 öv?+*)
 keAi

 = ^2 zJ àv™ 0 ¿vJl+1 ^ qmjjQm+likp'
 3,P keAi
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 Further then for all p £ A¿ ,

 / v Qm,ijQm-'-l,kp - U.
 keAi

 Multiplying by çm+1 kfp, where k G A¿, we obtain that

 (2.4) Vp<£Aj,keAi Qm,ij(lm+l,kp = O.
 As stated after Lemma 2.4, a^ leaves the ortho-complement of the diagonal algebra
 in 12(V x V) invariant. This means that if k £ A¿, then o¿(2'ov™ 0 Svm+i) belongs
 to C(DC) 0 S. On the other hand,

 a^2)(Ôvrn 0 (Svm + l) = ]P <S„m 0 <^™+l 0 Çm,ZJ <Wl,/cp ,

 so

 (2-5) Vk^AiipeAj <lrn,ij(lm+l,kp = 0.
 Further

 am+l7Tm+l(<^r) = XX™+1 ® XI ^rn^l.kj-
 3 keAi

 We also have

 «,+1 0 id)am(5vm) = J^ 5vm+i 0 ^ çm,ir = ^ ávm+i (8) q^inU)-
 3 r: jG Ar j

 Finally

 ¿^ 9m+l,fcp = ¿^ (2^9m,ti)9m+l,fep = 2^ (/ v gm,ijgm+l,fcp)
 fceAi fceAi i /eGA¿ j

 - 2^ 9m,¿7r(p)9m+l,fcp = 2^ 9m,Í7r(p)^m+l,fep ~ ¿^ (lrn,Í7v(p)Qm-'-l,kp
 k(EAi k k£Ai

 Qm,in(p) 5

 where in the third equality we used (2.4) and in the final equality we used (2.5) as
 well as the relation ^2k gm+i,fcp = 1. This shows that (2.3) holds and the proof is
 finished. D

 The above result justifies the statement that the quantum isometry groups of
 Christensen-Ivan triples on AF algebras provide natural notions of quantum sym-
 metry groups of the corresponding Bratteli diagrams. The theorem could be proved
 directly by comparing the commutation relations of [Bic] with those listed in Lemma
 2.3, but the method we gave has the advantage of being more functorial and trans-
 parent.

 3. The example for the middle-third Cantor set

 In the special case when A is the (commutative) AF algebra of continuous func-
 tions on the middle-third Cantor set we can use the observations of the last section

 to provide an explicit description of the quantum isometry groups Sn , and therefore

 also of QISO (w4, H, D). Note that several variants of the spectral triple we consider
 here were studied in [CIi] and in [CI2], where its construction is attributed to the
 unpublished work of Connes.
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 Theorem 3.1. Let A be the AF algebra arising as a limit of the unital embeddings

 C2^C2®C2-+C2®C2®C2^ ••-.

 Suppose that the state ujç is the canonical trace on A. Then Si - CÇZ2) and for
 neN,

 sn+i = (sn*sn)e(sn*sn).

 Proof Begin by noticing that for each n G N we have An = C2™ and therefore
 we can use a natural multi-index notation for the indexing sets discussed in the
 paragraph after Lemma 2.3. Precisely speaking, denote for each n G N by Jn the
 set {¿i¿2 - "in : ij e {1, 2} for j = 1, . . . , n}. Multi-indices in J := 'JneN Jn will be
 denoted by capital letters /, J, . . ., and let the basis of the algebra An be indexed
 by elements of Jn. Then the natural embeddings between An and An+i can be
 conveniently described by the formula

 ei - > e/i + e/2, I G Jn,

 where we use the standard concatenation of multi-indices. The equations (2.2) now
 take the following form:

 (3.1) a^j = a/i,ji + a/2,ji = a/i5j2 + a/2,j2, I,J € J.
 Note that so far the fact that at every step we 'divided the set' into 2 parts did not
 play any significant role; we could adopt the multi-index notation replacing 2 by
 3, 4,

 and {ai^jf : /', Jf e Jn+i} form 'magic unitaries' whose entries are orthogonal
 projections ([Wan]). Fix / G Jn and consider the respective equalities

 1=2Z a/'J = ¿2< (a/1>J1 +a/2,Ji)
 JeJn JeJn

 and

 1 = XI a/1'J/ = S (a/1>J1 +an,J2)-
 J'ejn+i Jejn

 They imply that

 2^ aI2,Jl = 2_^ 0,11,32-
 JeJn JeJn

 By formulas (3.1), each of the respective factors in the sum above is an orthogonal
 subprojection of the projection a^j, and the projections a/)t/, a/,x are mutually
 orthogonal when J ^ K. Therefore we actually must have

 &J2,J1 - ß/l,J2

 for each J E Jn. Using once again (3.1) we see that actually

 (3.2) CLll,Jl = CLI2,J2 = &I,J - a>Il,J2 = &I,J - ai2,Jl, I,J G 3n>

 This means that the choice of a/i5ji determines already the remaining three pro-
 jections. Observe also that if we fix the family {a/,j : I,J £ Jn} which forms a
 magic unitary whose entries are selfadjoint projections, choose for each /, J G Jn a
 subprojection a/i5ji of ajj and define the projections a/2,ji,a/i,j2,a/2,j2 by for-
 mulas (3.2), then the resulting family {aj^j' : I' ,Jf G Jn+i} automatically yields
 a magic unitary whose entries are orthogonal projections.

 Let us now see what the above discussion tells us about the structure of Sn in
 this particular case. Start with Ai. As Ao = C, the invariance condition on the
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 embedding means simply that the action is unit al and we see that Si is simply the
 universal quantum group acting on 2 points, C(Z2). Denote an = p. Then the
 unitary matrix corresponding to {a^j : /, J G J'' looks as follows:

 ( P p± '
 [p± p ) ■

 In the second step, according to formulas (3.2), the 4 by 4 magic unitary looks as
 follows:

 P-Qi 92 P± -Q2 '
 P-Qi 9l ^"92 92
 qs p^ - qs 94 p-qA '

 P± ~ 93 93 P- 94 94 /
 where q',q% are orthogonal subprojections of p and 92, 94 are orthogonal sub-
 projections of p-1. The quantum group S2 is then generated by the projections
 P^ 9i> 92, 93, 94 subjected to constraints described in the previous sentence (note that
 the subordination for projections can be formulated in terms of the usual algebraic
 relations: q < q' if and only if qq' = 0). The C*-algebraic structure of S2 can be
 seen as follows: the projection p provides a decomposition of S2 into a direct sum,
 and then in each of the factors we choose independently two orthogonal projections
 (respectively q' and q3 or q2 and </4). As there are no relations between q' and
 qs, the universal C*-algebra they generate is simply C(Z2) *C(Z2), the universal
 algebra generated by two orthogonal projections (see [Cha]). Thus

 s2 = (C(z2) • c(z2)) e (C(z2) • c(z2)) .

 The Hopf*- algebraic structure can be read immediately from the condition that
 the matrix (3.3) gives a corepresentation of S2. The inductive reasoning should
 now be clear. It can be visualised by the sequence of pictures, representing con-
 secutive subdivisions of a square. The fractal structure of the limiting algebra is
 apparent. Note also that the classical symmetry group of the tree- type graph we
 consider can be graphically interpreted as a one-dimensional version of the above
 two-dimensional picture (so that the classical symmetry group S^las is simply equal

 ton£iZ2)- □
 We can also give a description of the limnG^ Sn in terms of the generators and

 relations:

 Corollary 3.2. The quantum isometry group of a natural spectral triple on the
 algebra of continuous functions on the middle-third Cantor set constructed in [CIi]
 ¿5 the universal C* -algebra generated by the family of self adjoint projections

 {p}U [j {pmiv..mn :m1,...,mn G {1,2,3,4}}
 nGN

 subjected to the following relations:

 Pi,P2 <p, P3,P4 <PX,

 Pm',...,mri,liPmi,...,mri,2 S Pmi,...,mn 5 Pmi,...,mn,3)Pmi,...,mn,4 -Pm',...,mn

 (n eN, nu, ... ,mn € {1,2,3,4:})-

 Proof. A straightforward consequence of Theorem 1.2 and Lemma 3.1. D
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 It is clear from the proof of Theorem 3.1 and also from the discussion before
 Lemma 2.3 that the quantum group actions we consider are actions on the tensor
 product of algebras preserving in some sense one of the factors. In the classical
 world such actions have to have a product form, as the following lemma confirms:

 Lemma 3.3. Suppose that (X , dx) , (Y, dy) are compact metric spaces and T :
 X xY -> X xY is an isometry satisfying the following condition: a^CpT)® ly) C
 C(X) ® ly, where olt • C{X x7)-) C(X x Y) is given simply by the composition
 with T. Then T has to be a product isometry.

 Proof Denote the family of isometries of X x Y satisfying the conditions of the
 lemma by ISOxCX" x Y). We claim that ISOx(-^ x 7) is a group. Recall that
 ISO(Z), the family of all isometries of a compact metric space (Z, dz), is a com-
 pact group when considered with the topology of uniform convergence (equiva-
 lently, pointwise convergence; equivalently, metric topology given by d(Ti,T2) =
 S^i ^idz{Ti(zi),T2(zi)), where {zi : i G N} is a countable dense subset of Z). It
 is easy to show that ISOxpf x Y) is a unital closed subsemigroup of ISO(X x Y).
 Thus it is a compact semigroup satisfying the cancellation properties and it has to
 be closed under taking inverses.

 Suppose now that T G ISOxpf x Y). Then if / G C(X) we have for all x G

 (/ ® ly )(T(z, y)) = aT(f ® ly )(x, y) = aT{f ® ly )(*, y') = (/ ® ly )(T(x, y')).

 This is equivalent to the fact that T is given by the formula

 T(xiy) = (h(x),g(x,y)), xeX,yeY,

 for some transformations h : X - > X, g : X x Y - > Y. The fact that T is an
 isometry implies in particular that for all x, x' G X, y G F,

 (3.4) dx(x,x')=dx(h(x),h(x')) + dY(g(x,y),g(x'y)).

 In particular, h : X - > X is a contractive transformation. As by the first part of the
 proof T"1 G ISOx (1x7), there exist transformations hf : X ^ X, gf : X xY ^Y
 such that

 T-'x,y) = {ti{x),g'{x,y)), xeX,yeY.

 It is easy to see that h! is the inverse transformation of /i, and as by the same
 argument as above we see that h! is a contractive transformation, hence h has to be
 an isometry. This together with formula (3.4) implies that g : X xY ->Y does not
 depend on the first coordinate, so that T must be a product isometry. In particular
 ISOxpf xY) = ISOx x ISOy. □

 Theorem 3.1 shows that the result above has no counterpart for quantum group
 actions, even on classical spaces. We could have thought of elements of S2 as
 quantum isometries acting on the Cartesian product of 2 two-point sets, 'preserving'
 the first coordinate in the sense analogous to the one in the lemma above. If
 this forced elements of S2 to be product isometries, we would necessarily have
 S2 = Si (g) Si; in particular, S2 would have to be commutative.
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 4. Quantum symmetry groups of finite metric spaces
 and finite graphs as quantum isometry groups

 of certain natural spectral triples

 Theorem 2.6 shows that the quantum symmetry group of a particular type of a
 finite graph (as defined in [Bic]) coincides with the quantum isometry group of a
 certain spectral triple. Motivated by this we show in this section that given a finite
 metric space X the quantum symmetry group of X defined in [Ban] coincides with
 the quantum isometry group of the algebra of functions on X equipped with the
 natural Laplacian. We also discuss the connections with the natural Dirac operator
 on a particular representation of C(X)i for which the Rieffel-type metric ([Rie])
 on the state space of C(X) restricts to the original metric on X. It can be seen,
 as pointed out earlier in [Ban], that this framework can be related to the one of
 quantum symmetry groups of finite graphs.
 Let (X, d) be a finite metric space of n points. For simplicity we will write

 X - {1, ...,n} and for ¿, j e X define dij = d(i,j). As in Section 2 we will denote
 by 6i the indicator function of the point iGl and by Dxxx the diagonal in X x X.
 The metric structure on X allows the construction of a natural spectral triple

 on C(X) (see [Rie], [CI2]). Let Y = X x X - DXxx, define the Hubert space
 H = ©(*o,*i),zo#zi H(*o,*i)> where H(*o,*i) = c2> and let the Dirac operator be
 given by

 D= 0 cT1(xo,*i)( ^ j).
 (xo,x1),xo^x1

 When we view H as C2 <g> 12(Y), then

 where M¿-i denotes multiplication by the function d~l on Y.
 Let s,t : Y - >> X be given by the formulas s(xo,£i) = Xo,t(xo,xi) = x'. Then

 for each / G C(X) there is **(/) - (/®l)xy>**(/) = il®f)XY, where 'y denotes
 the characteristic function of Y . For / G C(X), j = 1,2, let

 *iü)(/) = (; S)®«m *a0)(/) = (S 2!,- )**•(/).
 define ir{2j'f) = Tr[j)(f)+Tr%'f) and consider the spectral triple (C(X), H, tt^' D).

 Denote by C^ d the category of compact quantum groups acting by volume (cor-
 responding to R = I) and orientation-preserving isometries on the above spectral
 triple. By Theorem 2.10 in [BG2], the universal object in this category exists; we

 denote it by QÍSO7 (D).
 It is also easy to describe the 'Laplacian' in the sense of [Gos] for the spectral

 triples.

 Lemma 4.1. The Laplacian C on C(X) associated with the spectral triple con-
 structed above via the prescription in [Gos] for (C(X), Y',it(1'D) is given by

 (4.1) £(^) = _l_^c(¿)i)(5.7 iinX,
 jex

 where for i,j E X we have c(i,j) = d~2(i,j) if i ^ j and c(i,i) = 0.
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 Proof. Let r0 be the functional on C(X) defined by ro(/) = Yh=i /(*)• Denote by
 Ho the Hubert space obtained by completing ir(C(X)) with respect to the norm
 coming from the functional Tr(7r(/)). It is easy to see that Tr(ir(f)) = (2n- l)ro(/).

 From the definition of the inner product it follows that for all f,g£ C(X),

 {c{f),g) = Y,9mn-imW)-
 iex

 On the other hand, (£(/),#) = - (d*DdDf,g) = - (dof^dog) (where dD(-) =
 [-D, •] as in [Gos]), which by a routine calculation can be shown to be equal to

 4£i#j 9{i)ilfj/{i) ■ Thus for each i € X,

 Comparison of the above with formula (4.1) ends the proof. D

 It is now easy to verify that C is admissible in the sense of [Gos], so that the
 corresponding quantum isometry group QISO/:(X) exists. Recall that QISO£(X)
 is the universal object in the category Cxd> w^n the objects being pairs (S,a),
 where S is a compact quantum group and a is the action of S on C(X) satisfying
 (C ® id) o a = a o £. We want to compare QISO£(X) with the universal quantum
 symmetry group of X constructed by Banica in [Ban] . To this end we first need to
 observe the alternative characterisation of the actions of compact quantum groups
 on finite metric spaces considered in [Ban].

 Lemma 4.2. Given an action a of a compact quantum group S on a finite metric
 space (X,d) (i.e., an action of 5 on C(X)), the following are equivalent:

 (i) (S, a) is a quantum isometry in the sense of Banica f[Ban],);
 (ii) a<2>(d)=d®l;
 (iii) a^2'c) = c (g) 1, where c G C(X x X) is as in Lemma 4.1;
 (iv) (S,a) is an object in C^d-

 Proof, (i) <=> (ii): Write d - J2ijex^j^ ® öj, where d^ are defined as in the
 beginning of this section. Let us write the action a as

 (4.2) <*0*i) = X] <*¿®tt¿,
 j ex

 where qij e S. Then it follows by using the relations of the quantum permutation
 group that the relation a^2'd) = d® 1 is equivalent to the following equation being
 satisfied for all k,l G X:

 (4.3) dkil = ^2 dijqkiQij-
 ijex

 Thus, to prove the lemma, it is enough to show equivalence of (4.3) with Banica's
 definition of quantum isometry.

 Begin by noting that Banica's definition implies that for all k, I G X,

 ¿2 diiQki = ¿2 dkiQu-
 iex iex
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 Prom this, it follows that for all k,m G X,

 5^ diiqkiQml = ^ dkiquqmi = 5Z dkmQmi = 4ml,
 /,¿GX Z,¿6X /GX

 which is exactly (4.3).
 For the converse direction rewrite (4.3) as

 2_j dkiCu = 2_^( Z_^ djmqkjqim)qu = 2_^ djmqkjqimqu
 iex iex j,mex i,j,mex

 = 22 Qkjàmjdjmqimqu (where 5m¿ denotes the Kronecker delta)

 = X] Qkjdjiqu'= J^djiqkj.
 ijex jex

 Thus Banica's condition is derived.

 The proof of (iii) <=ï (iv) is very similar to the above proof of equivalence of (i) and
 (ii), hence is omitted.

 Finally, the equivalence of (ii) and (iii) follows from the relation between c and
 d, i.e.

 c = xvd~2, d = (1 - xy + c)~i - 1 + xy,

 together with the fact that ol^2'xy) - Xy 0 1- □

 Denote the category of compact quantum groups acting on the above spectral
 triple on a finite metric space (X, d) with action a satisfying a^2'd) = d 0 1 by

 Cxad • We want to snow tnat tne universal object in C^f , say QISOBan (which
 is shown to exist in [Ban]), is isomorphic to the quantum group QISO^(D). The
 proof of this fact is contained in the following two lemmas. Recall that we always
 assume that (X, d) is a finite metric space.

 Lemma 4.3. Let (S, a) be a quantum isometry of (X, d) in the sense of Banica,
 i.e. an object in C^f. Then there is a unitary representation U of S on H such

 that (S, U) e Obj(C^d), with av = a on C{X).

 Proof. Define U = /c2 0 a^ on #(H) 0 S. Then U gives a unitary representation
 since c*(2) is one.

 Moreover, recalling from Lemma 4.1 that for all / G C(X) one has Tr(ir(f)) =
 (2n - l)ro(/) and that a preserves To, we immediately observe that the action ajj
 preserves the volume form corresponding to R - I. Note that for any X G M2(C),

 U(X (g) M0 ® /s)^"1 = X <8> o(2)(M0 <g> J)^)'1 = X ® Ai^0),

 where 0 = s*(/), and for y = ^ 0 y2 G C(F) 0 S, My denotes Myi 0 y2.
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 using a^2'd~l) = d~x 0 1 and Banica's condition from Lemma 4.2. This shows
 that U commutes with D. Further it is easy to see that for any / G C(X),

 = ( 0 0 )®M«(2)(**/)

 = (<ir®id)a(f)Ç7r(C(X))®S.

 Note that in the above we have used the Sweedler notation ct(f) = /(i) 0 /(2)-
 This implies that (S, U) G Obj(Cxd)- It is obvious from the construction that
 OLU = OL. D

 Lemma 4.4. Let (S, U) G Obj(Cxd), wz¿/¿ S being the largest Woronowicz C*-
 subalgebra of S such that the action ctjj maps C(X) into C(X) 0 S. Then (S^ctu)
 is an object ofC^d-

 Proof. The fact that U commutes with D implies that U commutes with D2 =
 IC2 0 Mc on C2 (8) 12{Y). Since U = 1® a^2' it follows that a^2'c) = c 0 1; hence
 (by Lemma 4.2) (S, a) is a quantum isometry in the sense of Banica. D

 Lemma 4.2, Lemma 4.3 and Lemma 4.4 put together imply immediately the
 following:

 Theorem 4.5. We have the following isomorphisms of compact quantum groups:

 QISOBan(X) ^ Q'SOJ(D) ^ QISO£(X).

 Remark 4.6. We can accommodate graphs in the framework of the above theorem
 if we view a finite nondirected graph (V, E) as a metric space (V, dß), where

 dsiv, w) = 1 if (v, w) G E, dßiv, w) = oo if (v, w) £ E

 (v, w G V, v 7^ w). A similar observation was already made in [Ban]. Here Theorem
 4.5 shows that quantum symmetry groups of finite graphs of [Bic] can be viewed
 as quantum isometry groups associated to the natural Laplacians on such graphs.

 5. Remarks on quantum isometries of arbitrary metric spaces

 In view of Lemma 4.2 it is reasonable to define a 'quantum isometry' of a general
 metric space (X, d) to be a (faithful) action a on C(X) by a compact quantum group
 S such that a^2'd) = d 0 1 (here again the metric d is viewed as an element of
 C(X x X)). It is however a nontrivial (and open) problem to see whether there exist
 any universal objects in the category of such quantum isometries of (X, d) when X
 is not a finite set. We shall take up this issue elsewhere, but would like to conclude
 this article with some computations for two simple yet interesting examples, namely
 the unit interval [0, 1] and the circle S1 (both equipped with the usual Euclidean
 metric) .
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 X = [0, 1], The C*-algebra C(X) is the universal imitai C*-algebra generated by a
 selfadjoint operator T satisfying 0 < T < 1. The metric is given by (#1, #2 £ [0, 1])

 d2(xi,X2) = x'2 - 2x'X2 + X22.

 Thus, as an element of C([0, 1]) 0 C([0, 1]), the metric d is given by d2 = T2 0 1 -
 2T (8) T + 1 (8) T2. Given a quantum isometric action a of a c.q.g. S, let us write

 a{T) = Y.Tn®^
 n>0

 (the series is strongly convergent). Since T is selfadjoint and a is a *-homomorphism,
 each qn is also selfadjoint. Comparing coefficients of Tn®Tn (for n > 2) and T2 0 1
 in the equation c*(2)(gí2) = d2 0 1, we get (respectively)

 4n2 = 0, n > 2
 and

 <72<?o + 4042 + qiqi - 2q2Qo = 1.

 Since each <?n is selfadjoint, the first equation above implies immediately that

 qn = 0, n > 2.

 Using Ç2 - 0 in the second equation we deduce that qi2 = 1. Thus, q± is a reflection
 (selfadjoint unitary) and as such can be written as q' = P - P1-, where P is an
 orthogonal projection.

 Moreover, a(T) is a positive contraction as T is so, which implies that

 0 < 10 00 + T<g>q1 < 1.

 By applying to both sides of the above inequality the evaluation functional at a
 point t e [0, 1], we obtain

 (5.1) O<4o + %<1, t€[0,l].

 Putting ¿ = 0 we note that qo is a positive contraction. Further multiplying by P
 both sides of (5.1) we obtain

 0<PqoP + tP<P, te [0,1].

 Putting t = 1 yields PqoP = 0, which implies that go maps P to P-1 (here and
 below we identify P and P-1 with the corresponding subspaces of the Hubert space) .
 Similarly, multiplying both sides of (5.1) by PL we obtain

 0 < P±qoP± - tP^ < P-1, te [0, 1].

 Putting t = 0 and t - 1, we get (respectively)

 P^-qoP1- < P1^

 and

 It follows that P±qoPA- = P-1; hence g0 • Px -> ^ and ^o|p-l = /. Recalling that
 go is a contraction and using the above two observations we conclude that qo = P-1 .

 Thus, a(T) = l(g)P-L+T(g)(P- P-1), which clearly implies (by faithfulness of
 a) that S = C*(P) is commutative; i.e. there is no 'quantum isometry' of X.
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 X = S1. The C*-algebra C(S1) is the universal unital C*-algebra generated by a
 unitary, say Z. The metric is given this time by (zi, z2 G S1)

 d2(z1,z2) = 2- zizï - z2~zï,

 so in the tensor picture we get d2 = 2 0 1 - Z 0 Z* - Z* <g> Z.
 Let S be a c.q.g. with an isometric action a on S1. Let

 oo oo

 a(Z) = £zn®gn + £z*n®<¿,
 n=0 n=l

 where qn,q'n £ S. Comparing the coefficients of 1 0 1 and Zn 0 Z*n for n > 2 on
 both sides of the equation a^2'd2) = d2 0 1 we get this time

 QoQo + QoQo = 0, qnql + tf'n<?n = °> ^ > 2.

 This proves that q0 = 0 and gn = ^ = 0 for all n > 2. Thus, a(Z) = Z®gi+Z*®çJ;
 i.e., a is 'linear' as in subsection 2.2 in [BGi] and hence by Theorem 2.4 of that
 paper, S must be commutative as a C*-algebra and so a quantum subgroup of
 C(ISO(X)) = C(S1 XZ2). Then one can conclude that the investigated quantum
 isometry group QISO(S11d) is equal to C(S1 xZ2), which can be interpreted as
 a statement that there is no 'quantum isometry' of 51 viewed as a metric space.
 We remark that we arrived at a similar conclusion in [BGi] and [Gos] by viewing
 51 as a Riemannian manifold. So, the observation made in the present paper in
 some sense strengthens the results of [BGi] and [Gos] about the quantum actions
 onS1.
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