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 For multivariate data, Tukey's half-space depth is one of the most popular depth functions available in
 the literature. It is conceptually simple and satisfies several desirable properties of depth functions. The
 Tukey median, the multivariate median associated with the half-space depth, is also a well-known measure
 of center for multivariate data with several interesting properties. In this article, we derive and investigate
 some interesting properties of half-space depth and its associated multivariate median. These properties,
 some of which are counterintuitive, have important statistical consequences in multivariate analysis. We
 also investigate a natural extension of Tukey's half-space depth and the related median for probability
 distributions on any Banach space (which may be finite- or infinite-dimensional) and prove some results
 that demonstrate anomalous behavior of half-space depth in infinite-dimensional spaces.
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 1. Introduction

 Over the last three decades, data depth has emerged as a powerful concept leading to the gen-
 eralization of many univariate statistical methods to the multivariate setup. A depth function
 measures the centrality of a point x with respect to a data set or a probability distribution and
 thus helps to define an ordering and a version of ranks for multivariate data. There are sev-
 eral notions of data depth available in the literature (see, e.g., [13-16,21,22]). Tukey's half-
 space depth (see [20]) is one of the most popular depth functions used by many researchers.
 The construction of central regions based on trimming (see, e.g., [17]), robust estimation of
 multivariate location (see, e.g., [6]), tests of multivariate statistical hypotheses (see, e.g., [2])
 and supervised classification (see, e.g., [7]) are some examples of its widespread applica-
 tion.

 Like other popular depth functions, half-space depth has some nice theoretical properties. In
 fact, it satisfies all four of the desirable properties of depth functions first mentioned in [12] and
 subsequently investigated in [22], namely, affine invariance, maximality at the center, monotonic-
 ity with respect to the deepest point and vanishing at infinity. Moreover, if the underlying
 population distribution F has a spherically symmetric density /, that is, /(x) = VKIMte) for
 some '//:R+ - > M+, the half-space depth turns out to be a decreasing function of ||x||2 =
 (1*1 12 + • • • + 'xd'2)1^2- Consequently, when ifs is monotonically decreasing (i.e., / is uni-
 modal), the half-space depth becomes an increasing function of / and vice versa. Therefore,
 in such cases, the half-space depth contours coincide with the contours of the density function.
 Because of this property of the half-space depth, classification rules based on the ordering of the
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 half-space depth functions coincide with the optimal Bayes classifier for discriminating among

 spherically symmetric unimodal populations differing in their centers of symmetry (see, e.g.,

 [8]). Similarly, the use of the half-space depth functions to order and trim multivariate data sets

 (see, e.g., [6,17]) leading to the determination of central and outlying observations has a nat-
 ural justification when the density contours coincide with the half-space depth contours. Also,
 due to this relation between half-space depth and spherical symmetry, half-space depth has been

 used to construct diagnostic tools for checking spherical symmetry of a data cloud (see, e.g.,
 [13], pages 809-811). Another well-known feature of half-space depth is its characterization
 property. Koshevoy [10] proved that if the half-space depth functions of two atomic measures

 with finite support are identical, then the measures are also identical. Cuesta-Albertosa and
 Nieto-Reyes [4] proved this characterization property of Tukey depth for discrete distributions.

 Under some regularity conditions, Koshevoy [11] proved this characterization property for ab-

 solutely continuous probability distributions with compact support in finite-dimensional spaces.
 Hassairi and Regaieg [9] generalized it to absolutely continuous distributions with connected
 supports.

 However, the half-space depth function has several limitations. The half-space median de-
 rived from half-space depth has a lower breakdown point and relative efficiency compared to the

 median based on projection depth (see [23]). Dang and Serfling [5] pointed out that the outlier
 identifier based on the half-space depth has a "severe" and "unacceptable" trade-off between
 "masking breakdown point" and "false positive rate". Moreover, if the half-space depth contours
 fail to match the density contours, then the classifiers based on half-space depth may lead to
 misclassification rates higher than the Bayes risk. The diagnostic tool developed in [13], pages
 809-8 1 1 for detecting deviations from spherical symmetry using half-space depth also relies
 heavily on the fact that under I2 -symmetry, the depth contours are concentric spheres with half-

 space median at the center. So, in the absence of this property of the half-space depth contours,
 such a diagnostic tool may not lead to useful results. Now, a natural question that arises from
 this discussion is whether this property of half-space depth contours holds for other symmetric

 distributions, for example, in the case of /^-symmetric distributions, when /(x) = xlr('''''p) for
 some p 7^ 2 and is monotonically decreasing. Here, for any p > 0 and x = (x' , . . . , Xd) eRd,

 we define HxH^ = ('x' 'p

 this question.

 For any continuous univariate distribution, it is straightforward to see that the median is the
 point with half-space depth 0.5. In Section 3, we investigate to what extent this property of
 half-space median holds for multivariate continuous distributions and derive a characterization

 of the multivariate distribution for which the half-space depth of Tukey median will achieve its

 maximum value, namely 0.5. We propose a statistical test for angular symmetry of continuous
 multivariate distributions based on this characterization and briefly study the performance of
 the proposed test. In this section, we also consider natural extensions of half-space depth and
 half-space median for probability distributions in arbitrary Banach spaces using the concept of
 linear functionals on such spaces. Some anomalous behaviors of half-space depth for probability
 distributions on infinite-dimensional spaces and their implications are discussed in Section 4.
 Proofs of theorems and lemmas (along with their statements) are deferred to the Appendix.
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 2. Half-space depth contours for I p -symmetric density functions

 In this section, we study the behavior of the half-space depth contours for a wide class of symmet-

 ric distributions. As was mentioned in the Introduction, the half-space depth contours coincide
 with the density contours if the p.d.f. / is such that /(x) = VKIMh) for some monotonically
 decreasing xj/ : R+ -> R+, and this is an important feature of half-space depth with many useful

 statistical applications. Here, we will investigate the situation when || • H2 is replaced by || • ||p,
 where p is positive and p / 2.

 2.1 . Depth contours for p = 00

 For p = 00, the p.d.f. /(x) = /(jci, *2, ...,*</) = ^f(max{'x''9 'x2', . . . , 'xd'}) for some
 monotonically decreasing function V- Clearly, the density contours here are concentric d-
 dimensional hypercubes with the origin at the center. We now check whether or not all points on
 the surface of a hypercube with origin at the center have the same depth. First, consider the point

 A = (1, 0, . . . , 0) on the surface of the unit hypercube {x : ||x||oo = 1} (see Figure 1 for a diagram
 in the case d = 2). It can be shown that the hyperplane x' - ' determines the half-space depth
 of this point, and this depth is P(X' > 1), where X = (X', X2, . . . , Xd) has the p.d.f. /(x) (see
 Lemma 1 in the Appendix).
 Note that the line x' = 1 also passes through the point B = (1, 1, 0, . . . , 0) (see the right-

 hand diagram in Figure 1 when d = 2). So, A and B will have the same depth if and only
 if there exists no other hyperplane that passes though B in such a way that the probability of
 one of its half-spaces is smaller than P(X' > 1). However, the hyperplane x' +X2 = 2 passes
 through the point B, and we can show that P(X' + X2 > 2) < P(X' > 1) (see Lemma 2 in the
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 Figure 1. l0 o contour and the line defining the half-space depth of (1, 0) and (1,1).
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 Appendix). This implies that if the p.d.f. / is of the form /(x) = ^(||x||oo) with a monotonically
 decreasing then the half-space depth contours cannot coincide with the corresponding density
 contours.

 2.2. Depth contours for 1 < p < oo

 Next, consider the case where 1 < p < oo. Clearly, A = (2 l/pc, 0, 0, . . . , 0) and B = (c, c,
 0, . . . , 0) are two points on the same lp contour (see Figure 2 for the case d = 2). First, we
 check whether or not the half-space depths of these two points are equal. In view of Lemma 1,
 the depth of A is given by P(X' > 2 l/pc) when c > 0. We can also prove that the hyperplane
 x' + X2 = 2c determines the half-space depth of B and that this depth is P(X' + X2 > 2c) (see
 Lemma 3 in the Appendix).

 It follows from the discussion in the preceding paragraph that the two points A and B will
 have the same depth only if P (X' >2*/ pc ) = P (X 1 + X2 > 2c) . Note that here we can choose c
 arbitrarily. Therefore, the depth and the density contours can coincide only if P(Xi > 21/pc) =
 P (X' + X2 > 2c) for all values of c, that is, only if X ' and 2a (X 1 + X2) are identically distributed
 for a = (1 - p)/p. Now, if we assume the existence of the second order moments of the X/'s,
 then the equality of the variances of X' and 2a(X' + X2) and the fact that X' and X2 are
 uncorrected (in view of the lp -symmetry of the density /) imply that a = -1/2 or p = 2.
 Even if we do not assume any moment condition, the above result holds (see Lemma 4 in the
 Appendix). Also, it is interesting to note that for p < 2, we can always choose a c such that the
 depth of B is more than that of A. On the other hand, for p > 2, it is always possible to choose
 a c such that A has larger depth than B.

 4(-^-

 'x + y = 2^^ x = c x + y = 2^v x = c /

 3 3 ^ /
 2 ■ 2 - (c+a!w^

 ' / // (c+a+k, c-a i
 y = c : . y = c
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 I 0

 . v ; J z (c+aN^-A^^^ _i v
 ' / Z (c+a, c-a-k)

 -3- ' ■ -3- / '
 -A

 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
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 Figure 2. lp contour and the lines defining the half-space depth of (c, c) for p = 5.
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 Figure 3. lp contour for the case p = 1/2.

 2.3. Depth contours for p < 1

 Finally, we investigate the case p < 1. Note that in this case, the regions bounded by lp
 contours are no longer convex sets (see Figure 3 for the case d = 2). Consider three points
 A = (1, 0, . . . , 0), B = (0, 1, 0, . . . , 0) and C = (a, ft, 0, . . . , 0) on the same lp contour, where
 a, > 0 and 'a'p + 'fi'p = 1. Consider any hyperplane passing through C. It will split into
 two half-spaces, one of which will contain the origin. Since p < 1, at least one of the two points
 A and B will lie in the half-space that does not contain the origin. Without loss of generality, we
 can assume that the hyperplane that determines the half-space depth of C puts B and the origin
 in two different half-spaces (see the bold line in Figure 3 for the case d = 2). We can now make
 a parallel shift of that hyperplane away from the origin until it hits the point B (see the dotted line
 in Figure 3 for the case d = 2). Clearly, the half-space created by this new hyperplane that has
 smaller probability measure will have smaller probability than that of each of the two half-spaces
 created by the older hyperplane. Therefore, the half-space depth of B has to be smaller than that
 of C and hence the depth contours cannot coincide with the density contours.

 Summarizing our discussion in this section, we now have the following theorem.

 Theorem 1. Consider a probability distribution on Rd with the p.d.f. f such that f(x) =
 ^r(||x|| p) for some monotonically decreasing function yjr. The half-space depth contours asso-
 ciated with f will then coincide with the density contours if and only if p = 2.

 Figure 4 presents the empirical half-space depth contours (indicated using connected lines)
 computed using 500 observations from bivariate lp -symmetric distributions with different val-
 ues of p (i.e., p = 1/2, 1,2,5). In each case, we consider the density to be of the form
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 Figure 4. Density contours and their corresponding half-space depth contours.

 /(x) = exp(- {|jci 'p + |x2|p}) and the corresponding density contours are also plotted
 (indicated using dotted lines) in Figure 4. From this figure, it is quite evident that the half-space
 depth contours and the density contours are markedly different when p ^2. So, unlike what was

 done by [13], pages 809-811, we cannot develop a diagnostic tool for checking /^-symmetry
 using half-space depth when p ^ 2.

 It is also of interest to note that along with p = 2, for p = 1 and 5, the half-space depth
 contours are nearly circular. Since the diagnostic tool for spherical symmetry proposed in [13],
 pages 809-811, relies heavily on the sphericity of the depth contours, it may fail to detect the
 deviation from spherical symmetry in the cases p = 1 and 5. But for p = 1/2, since the depth
 contours are far from being circular, we can expect to detect this deviation using their diagnostic
 tool. This is what we observed when we performed the following experiment. Following [13],
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 Figure 5. Diagnostic tool for checking spherical symmetry.

 pages 809-81 1, for different values of q (0 < q < 1), we found the smallest sphere Sq containing
 the gth central hull and computed the fraction of the data r(q) lying in Sq. This fraction r{q) is

 plotted against q for four different lp -symmetric distributions with p= 1/2, 1, 2 and 5, and these
 plots are presented in Figure 5. Note that if the underlying distribution is spherically symmetric
 (i.e., /2-symmetric), the resulting curve should lie near the diagonal line joining the points (0, 0)
 and (1,1). The area between the curve and the diagonal line gives an indication of the deviation
 from spherical symmetry. As expected, for p = 1 , 2 and 5, these curves were close to the diagonal

 line, but in the case p = 1/2, the curve had a significant deviation from the diagonal line (see
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 Figure 5). So, the diagnostic tool could detect the deviation from spherical symmetry only in the

 case of / 1/2 -symmetry.

 We have seen that the half-space depth contours do not match the density contours for any

 lp -symmetric distribution with p ^ 2, and this leads to several limitations on statistical tools
 based on half-space depth, as was already discussed in the Introduction and the present section.
 However, it will be appropriate to note here that in such cases, the depth function may provide
 some useful information which may not be contained in the density function. While density
 is only a local measure, which measures the local probability mass, depth is a global measure,
 which gives useful information about global features like the central and outlying points of a data
 cloud or probability distribution. For instance, in the case of multivariate uniform distributions,
 the density function, being constant, fails to give any idea about the central and the peripheral
 points of the distribution; however, the half-space depth function provides a meaningful measure
 of central tendency, for example, by identifying the point with the maximum depth (see [18]).

 3. Half-space median and its depth

 As we have already pointed out in the Introduction, for continuous univariate distributions, the
 median is the point with half-space depth 0.5. In a sense, this is a very desirable and natural
 property for a measure of the center of a distribution, and we would also like this property to
 hold in a multivariate setup. If this property holds for a multivariate distribution, any hyperplane
 passing through the median will lead to two half-spaces having equal probability measures. Un-
 fortunately, as we will gradually see in this section, this may not always be true for multivariate
 distributions, even if the distribution is absolutely continuous with respect to the Lebesgue mea-
 sure on a Euclidean space.
 Note that for any /^-symmetric density function /(x) = ^r(||x||p) with 0 < p < oo, the origin

 turns out to be the half-space median with the half-space depth 0.5. In fact, this is true whenever
 X and -X have the same distribution (i.e., the distribution is centrally symmetric), or even under
 a slightly weaker condition that any real-valued linear projection has median zero. We should
 also note that in all these cases, the half-space median coincides with the coordinatewise median,
 and the depth of the half-space median, namely the origin, is 0.5. However, this only holds for
 a special class of multivariate distributions. For instance, for a bivariate uniform distribution on
 a right-angled isosceles triangle, we can easily show that the half-space depth of any point is
 smaller than 0.5. We can consider another interesting example of a continuous bivariate distri-
 bution, where the p.d.f. / has support on {(jci, *2) : x' + X2 > 0, X'X2 < 0}. In this case, if /
 is symmetric about the x' = *2 line, we can easily verify that the half-space median will have
 depth smaller than 0.5, and the coordinatewise median will have zero half-space depth. We have
 already indicated some sufficient conditions for the depth of the half-space median to be 0.5, and
 in view of the two preceding examples, we would like to know some necessary and sufficient
 conditions for this. We now state a theorem, the proof of which is given in the Appendix.

 Theorem 2. Suppose that X is a d -dimensional random vector with a probability distribution
 which has its half-space median at fi e W* . Then , the half-space depth of il will be 0.5 if and
 only if (X - 11) / ''X - fi''2 and (fi - X) / ''X - /1W2 are identically distributed.
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 This theorem implies that the half-space median will have depth 0.5 if and only if the underly-
 ing distribution is angularly symmetric. Liu et al. [13], pages 81 1-814, stated the sufficient part
 of this result and used it to develop a diagnostic tool for verification of angular symmetry of a
 distribution. This necessary and sufficient condition can also be used to develop a statistical test
 for the angular symmetry of a distribution. As discussed in [19], Ajne's test (see [1]), which is
 a distribution-free test for bivariate data, can be used for testing angular symmetry of a bivariate
 distribution about a specified point (say, /i0). However, the test that we propose here is applica-
 ble to multivariate data in any dimension and does not require any specification of the center of
 symmetry, which is estimated from the data. Given a random sample xi, X2, . . . , x„ of size n,
 let mn be the half-space median and An denote the half-space depth of mn in that sample. For
 testing the null hypothesis of angular symmetry, an ideal procedure would be to reject the null
 hypothesis if A„ < cn, where cn is an appropriate percentile (that depends on the specified level
 of the test) of the distribution of An under the null hypothesis. However, it is not possible to de-
 termine an exact value of cn in practice because the distribution of An depends on the underlying
 angularly symmetric distribution of the data, which is usually not specified in practice.
 In practice, we propose that for a random sample xi , X2 , . . . , x„ , we first compute y, = x; - mn

 for i = 1,2, ...,n, generate i.i.d. observations zi,z2,- -,zn such that P(zi = 1) = P(zi =
 - 1) = 1/2 and then compute x* = z/y/ + mn for i = 1, 2, . . . , n. This procedure is motivated
 by the well-known idea of bootstrapping. These x*'s can be viewed like a "bootstrap sample"
 generated from the original sample under the null hypothesis of symmetry, and we can calculate
 the depth A* of the half-space median m* based on that "bootstrap sample". We can repeat this
 "bootstrap procedure" M times depending on our computing resources and denote by A* the
 half-space depth of the half-space median in the mth "bootstrap sample" (m = 1,2,..., M). The
 critical value cn mentioned earlier can then be estimated from the "bootstrap empirical distri-
 bution" of A*. In other words, for a specified level 0 < a < 1, the null hypothesis of angular

 symmetry is to be rejected if Yim=' - An}/M < a.
 To evaluate the performance of our proposed test, we carried out a thorough simulation study

 with six examples using the software package R. In each case, we generated samples of size 50
 and 100, implemented our test using M = 1000 "bootstrap samples" and, in order to estimate the
 probability of rejection of Ho by the test, repeatedly applied it on 1000 Monte Carlo replications
 in dimensions d = 2, 3 and 4. The first five examples were motivated by five bivariate examples
 in [13], page 814, which include three examples with angularly symmetric distributions, namely
 Dl, D2 and D3, and two examples, namely D4 and D5, where the underlying distributions were
 not angularly symmetric ([13], page 814, for a detailed description of these examples). Here, we
 consider the natural multivariate version of these five examples. In the last example, D6, which is
 also not angularly symmetric, when d = 2, we generated observations from a bivariate uniform
 distribution on the right-angled isosceles triangle formed by the points (0, 0), (1,0) and (0, 1).
 For an extension of D6 in dimensions d > 2, we have considered the simplex formed by the
 origin, the coordinate axes and the hyperplane jci H

 Table 1 reports the proportion of cases, out of 1000 Monte Carlo replications, where the null
 hypothesis was rejected for two nominal values of a, namely, 0.05 and 0.01. This table clearly
 shows good level as well as power properties of the proposed test procedure.

 Note that the condition that (X - /i)/ ||X - fi ||2 and (ii - X)/''il - X||2 are identically dis-
 tributed is sufficient for the half-space median to have half-space depth 0.5, even when X lies
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 Table 1. Probability of rejection of Hq by the proposed test

 d | Data sets - ► D1 D2 D3 D4 D5 D6
 Nominal - ► 1% 5% 1% 5% T% 5% 1% 5% 1% 5% '% 5%~
 level (a)

 2 « = 50 0.012 0.052 0.012 0.054 0.010 0.044 0.170 0.318 0.406 0.663 0.247 0.418

 n = 100 0.014 0.054 0.014 0.053 0.010 0.058 0.486 0.728 0.870 0.960 0.641 0.846

 3 n = 50 0.011 0.044 0.003 0.035 0.015 0.057 0.294 0.554 0.751 0.869 0.403 0.662

 « = 100 0.009 0.051 0.006 0.040 0.012 0.046 0.822 0.949 0.996 1.000 0.929 0.982

 4 n = 50 0.009 0.054 0.013 0.061 0.014 0.067 0.355 0.719 0.812 0.955 0.440 0.824

 n = 100 0.008 0.043 0.009 0.046 0.012 0.050 0.946 0.987 1.000 1.000 0.984 0.997

 in an arbitrary Banach space B , where || • || denotes the norm in B. If F is a probability dis-
 tribution over B , and x is a fixed element in B, then the half-space depth of x can be defined
 as HD(x, F) = inf heB* P{h(X - x) > 0}, where h:B R is a linear functional that belongs
 to the dual space B*, P stands for the probability measure on B corresponding to F, and X is
 a random element in B having the distribution F. The point [L g B is called a half- space median

 if HD(/t, F) = supxe# HD(x, F). Instead of Banach spaces, if we work with a Hilbert space H,
 due to the Riesz representation theorem and the reflexive nature of a Hilbert space, the half-space
 depth of an observation xeH can be defined as HD(x, F) = inf^n P{(h, (X - x)) > 0}, where
 (•, •) stands for the inner product defined on H.

 From the above discussion, it is clear that if we have a symmetric distribution in a Hilbert or
 Banach space, then the point of symmetry will achieve the maximum depth value 0.5, and it will
 be the half-space median. So, in a sense, the half-space median is well defined and behaves in
 a nice way, even in infinite-dimensional spaces for symmetric probability distributions. However,
 in infinite-dimensional spaces, even when we deal with nice symmetric distributions, the half-
 space depth function can exhibit some anomalous behavior, which we will see in the next section.

 4. Anomalous behavior of half-space depth in
 infinite-dimensional spaces

 We know that if we have a data cloud of n observations in a d-dimensional space, then the
 empirical depth of an observation lying outside the convex hull formed by the data cloud is
 zero. For d > n, since the Lebesgue measure of this convex hull is zero, we have zero depth
 for all points in a set of probability measure one whenever we have n i.i.d. observations from
 an absolutely continuous distribution in R^. In fact, for any probability measure on an infinite-
 dimensional Banach space such that any finite-dimensional hyperplane in that space has zero
 probability, the empirical half-space depth based on finitely many i.i.d. observations from that
 probability distribution will be zero almost everywhere. So, the empirical version of half-space
 depth does not carry any statistically useful information in such cases. Naturally, we would be
 curious to know what happens to the population depth function in such situations. The following
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 theorem demonstrates that it is possible to have a nice symmetric probability distribution on the h

 space for which the population depth function takes positive values only on a set of probability
 measure zero. Recall that the I2 space of real sequences consists of infinite sequences (x' , *2, . . .)

 such that xf <00.

 Theorem 3. Consider an infinite sequence of independent random variables X = (Xi, X2,
 X3, . . .), where E(Xi ) = 0 and E(Xf) = of for all i > 1 such that af < 00 • Note that
 this implies that X lies in the I2 space of real sequences with probability one. Also , assume that

 the Xi 's have finite fourth moments and that E(Xf)/i2af < 00. For instance , all these
 conditions will hold if the Xi 's are independent Gaussian random variables. Then, for any given
 x = (*1, X2, . . .) in that I2 space , the half-space depth ofx with respect to the distribution ofX
 will be zero unless x lies in a subset having probability zero.

 The proof of this theorem is given in the Appendix. This theorem clearly shows that not only
 the empirical version, but also the population version of the half-space depth will exhibit anom-
 alous behavior for some very common distributions in infinite dimensions. Since any separable
 Hilbert space is isometrically isomorphic to the I2 space in view of the existence of a countable
 orthonormal basis in such a space, similar examples can also be constructed on separable Hilbert
 spaces. Clearly, the half-space depth function will not be a very useful statistical concept in such
 spaces. To conclude, let us recall the property of half-space depth characterizing the underly-
 ing distribution established by earlier authors that was discussed in the Introduction. From the
 above discussion, it is clear that in a separable Hilbert space, there exist several probability mea-
 sures, which may even have independent Gaussian marginals, with half-space depth functions
 identically equal to zero except on a subset having zero probability measure. Nevertheless, such
 symmetric probability measures will have a well-defined half-space median that achieves the
 depth value 0.5.

 Appendix

 Lemma 1. Let HD(x, F) be the half- space depth ofx with respect to the distribution F, and F
 have density f of the form f(x) = ^(HxHp) with a monotonically decreasing function xfr and 0 <
 p < 00. Then, for any x = (x, 0, . . . , 0) on the coordinate axis , we have HD(x, F) = P{X' > x)
 when x > 0, and HD(x, F) = P(X' <x) when x < 0.

 Proof. We will prove it for xo = (1, 0, . . . , 0). Proof for other points follows in the same way.
 Consider any hyperplane a(x - xo)' = 0 other than *1 = 1 that passes through xo (see the left-
 hand diagram in Figure 1 for the case d = 2). Here, a = (a' , c*2> • • • , <*d) is a vector in Rd. Define
 the regions A' = {x : x' < 1 and a(x - xo)' > 0} and A2 = {x : jci > 1 and a(x - xo)r < 0} (see
 the left-hand diagram in Figure 1 for the case d = 2). To prove the lemma, we have to show that
 P(X 6 Ai) > P(X e A2). Define A3 = {x = (x',x2, (*i, -*2, -*3. .... -*d) € A2}.
 Because of the symmetry of /, it is easy to check that P(X e A2) = P(X e A3). Therefore, it
 is enough to prove that P(X € A') > P(X e A3). Note that for every point z = (x' , *2, • • • , *d)
 in Ai, we have a point z' = (x[,x2,x3, ...,*</) in A3 such that x[ = 2x' - 1. Hence, |jci| <
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 |jCj| and ||z||p < ''z'''p with strict inequality being true for all z not lying on the hyperplane
 x' = 1. This implies that /( z) > /( z7). Since the strict inequality holds over a set of positive
 measure, integrating /( z) (resp. /(z7)) with respect to z (resp. z7), we actually get P(X e A') >
 P(XeA3). □

 Lemma 2. Consider a p.d.f. f on M.d satisfying /(x) = ^(llxlloo) and a random vector X with
 p.d.f. f. Then, for any x > 0, we have P(X' + X2 > 2x) < P(X ' > x).

 Proof. Again, we will prove this only for x = 1. Let us define A' = {x = (xi , X2, . . . , Xd) : x' <
 1 and x' -j- X2 > 2} and A2 = {x = (x' , JC2, . . . , x d) : x' > 1 and jci + X2 < 2} (these two regions
 are shown in the right-hand diagram in Figure 1 for the case d = 2). We also define the region
 A3 = {x = (jci , JC2, . . • , Xd) : to, x' , JC3, . . . , jc</) e Ai). Because of the symmetry of /(x) under

 permutations of the coordinates of x, it is straightforward to see that P(X e A') = P(X e A3).
 Hence, it is enough to show that P(X e A3) < P(Xe A2). Now, for any z = (z' , zi, • • • , £</) €
 A2, we have a corresponding point z7 = (2 - Z2, 2 - zi , Z3, . . . , id) in A3. Also, note that for any
 z = (z' , Z2, • • • , Zd) in A2, z' and Z2 have the respective forms z' = 1 + b and Z2 - 1 - b - a
 for some a,b > 0 (see the right-hand diagram in Figure 1 for the case d = 2). Consequently,

 for t! - (z' , Z3, • . • , Zd), we have z' = 1 + b + a and zf2 = 1 - b. Clearly, max{|zi |, 'zi'] <
 max{|zj I, 'zr2W = 1 + 0 + b, which implies that HzHoo < Hz'Hoo and hence that /( z) > /( il) with
 strict inequality on a set of positive probability measure under /. This proves that P(X e A2) >
 P(X € A3). □

 Lemma 3. Let /(x) = ^r(||x||p)/or 1 < p < oo be the p.d.f ofX = (X', X2 , . . . , Xd). Consider
 xo = (c, c, 0, . . . , 0 ) for c > 0. Its half-space depth is then given by HD(xo, F) = P(X' + X2 >
 2c).

 Proof. Consider the hyperplane x' + X2 = 2c (see Figure 2 for the case d = 2). We have to show
 that this hyperplane determines the half-space depth of xo. For this, we will follow the same lines
 of argument as in Lemmas 1 and 2. Consider a new hyperplane a(x - xo)7 = 0 passing through
 xo (see Figure 2 for the case d = 2). Define the regions A' = {x = (x' , *2, . . . , Xd) : x' + X2 <
 2c and a(x - xo)7 > 0} and A2 = {x = (x' , *2, . . . , Xd) :x' + X2 >2 c and a(x - xo)7 < 0} (see
 Figure 2 for the case d = 2). To prove the lemma, we have to show that P(X€Ai)>/)(Xg A2).
 Define A3 = {x = (x' , JC2, . . . , x d) : ( X2 , x' , JC3, . . . , x d) G A2}. Because of the symmetry of /(x)

 under any permutation of the coordinates of x, we have P(X e A2) = P(X € A3). Therefore, it
 is enough to show that P(X e A3) < P(X e A').

 Note that any point z e A' is of the form z = (c + a, c - a - k, JC3, . . . , Xd ), where k > 0,
 and a can be positive or negative (see Figure 2 for the case d = 2). For any z € Ai, we get
 a corresponding point z7 e A3 such that z7 = (c + a + k, c - a, *3, . . . , Xd). We now need to show

 that || z ||p < || z7 ||p and for that, we will consider the two cases a > 0 and a < 0 separately.
 When a > 0 (see the left-hand diagram in Figure 2 for the case d = 2), we have 0 < 'c - a' <

 'c + a'. Now, for p > 1 and t, k > 0, it is easy to check that the function h(t) = (t 4- k)p - tp
 is non-decreasing in t. So, for 0 < t' < t2 , we have 0 < h(t') < h(t2). Taking t' = 'c - a' and
 t2 = | c + a|, we get (|c - a'+ k)p - 'c - a'p < (| c + a' + k)p - 'c -f a'p. Now, using the facts
 that 'c + a'+k - 'c + a +fc| and 'c - a - k' < 'c - a ' +k, we arrive at 'c - a - k'p - 'c - a'p <
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 | c + a + k'p - 'c + a'p. This implies that 'c - a - k'p + 'c + a'p < 'c + a + k'p + | c - a'p ,
 which in turn implies that ||z||p < ||z/||/7. Note that the strict inequality holds on a set of positive
 probability measure under /.
 For a < 0 (see the right-hand diagram in Figure 2 in the case d = 2), first note that a + k > 0

 and that the coordinates of z and il are of the respective forms z = (c - a, c - ft, X3, . . . , Xd ) and
 t! = (c + a, c + P, JC3, . . . , Xd), where a = -a > 0 and = a + k > 0. Now, 'c - a' < 'c + a'
 and 'c- fi'< 'c + P' imply that ||z||p < ||z'||p. □

 Lemma 4. Assume that we have a p.d.f. f that satisfies /(x) = x/r (||x||p) for some p > 0 and
 monotonically decreasing Let X = (Xi, X2, . . . , Xd) be a random vector with p.d.f. f If X 1
 and 2^~P^P(X' 4- X2) are identically distributed , then we must have p = 2.

 Proof. First, note that if /(x) = VK l|x||p), then the joint p.d.f. of X' and X2 is of the form
 fi (x' , X2) = is 1 (|*i 'p H- 'x2'p) for some 'jr' : R+ -> R+. We can show that the p.d.f.'s of X' and

 Y = 2a(Xi + X2), where a = (1 -p)/p, are given by /xi(*) = / and
 fy(x) = 2_Qf J 'lf'(('2~ax - JC2 1 p -h |*2lp)1//p)<ix2> respectively.

 Since both of these p.d.f.'s are continuous functions, and X' and Y are identically distributed,

 we can equate their values at x = 0. We then get / ^1(1^21)^2 = 2_Qf / i/si(2l/p'x2')dx2 =
 2~(oc+i/p) j t/tj ( | jt2 1 )d*2. Hence, we must have or = -1/p, which implies p - 2. □

 Proof of Theorem 2. Note that the "if" part is trivial in view of our discussion preceding the
 statement of the theorem. We shall now prove the "only if' part.

 First, we shall prove it for the bivariate case, that is, d = 2. Without loss of generality, we
 assume that fi = 0. Let Z be the angle between the positive side of the jci-axis and the random
 vector X (measured counterclockwise from the xi-axis). Now, consider a straight line which
 passes through the origin and makes an angle 0 with the jq-axis. Since fi = 0, the two half-
 spaces generated by that straight line will have the same probability measure. Now, rotate the line
 in a counterclockwise direction by an angle 8 to bring it to a new position. Clearly, the two half-
 spaces generated by the straight line in the new position will also have the same probability 0.5.
 This implies that P(0 < Z < 0 + 8) = P(iz + 0 < Z < n + 0 + 8). Since this equality holds
 for all 0 and 8 , it implies that Z and Z + it have the same probability distribution. The result
 now follows from the fact that (X - fi)/''X - 11W2 = (Cos Z, Sin Z) and (/1, - X)/||X - At|l2 =
 (Cos(Z + 7r), Sin(Z + n)).

 For d > 2, we need to consider d - 1 random angles Zi, Z2, . . . , Zd-'. Note that here
 the direction vector (X - fi)/''X - /i''2 can be expressed as (X - fi)/''X - ft ||2= (CosZi,
 Sin Z' Cos Z2, . . . , Sin Z' • • • Sin Zd- 2 Cos Zd- 1 , Sin Z' • • • Sin Zd-2 Sin Zd- 1). Now, consider
 a hyperplane H which makes angles 61,62, , 0d-' with the coordinate axes and then rotate
 it to H' such that the new angles are 6' + 8, 62, . . . , 0d-' • The result now follows from the same
 argument that is used in the bivariate case. □

 Lemma 5. For any two sequences a = (ai,...) and x = (jci , JC2, . • .) in the I2 space of
 real sequences , we have supae/2{(J^^1 a?<j?)~1/2(^^1 a/jc/)} < 00 if and only ifY^Z'xf/
 of < 00.
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 Proof. (The "if' part). For any a e /2vE~i aixi ^ (£~i a?a/2)1/2(E/^i xf/af)x/2 (i.e., the
 Cauchy-Schwarz inequality) implies that 1 ai*//(£/^i a?a/2)ly/2 - £/^i xi/a?' Now, the
 right-hand side of the inequality does not depend on a. So, ^/tf2 < 00 implies the finite-

 ness of supaG/2{E^i <W(£^i afcr?)1'2} < E~i
 (The "only if' part). Next, consider the case where 1 xf /af - 00 • Choose a sequence

 {a„} of real sequences, where an - (otn',&n2, • • •) has non-zero values only at first n coordi-
 nates (i.e., ani = 0 for all i > n) and = x i/of for i = 1, 2, . . . , n. Clearly, an e I2 for all
 n > 1, and for each n , it is easy to check that £"=1 a/ii^//(5Z?=i ^V/)^2 = (£?=i
 So, we get supn>l{Y^i=z'CtniXi/(^2ti='alicr2)1^2} = This clearly implies that we have
 supae/2{£~i W(E£i = ~- D
 Proof of Theorem 3. Consider any x in the I2 space with x^O. For any a in the I2
 space, the random variable Z = (a,X) has a probability distribution with E(Z) = 0 and
 V(Z) = 'a}af' Using Chebyshev's inequality, we get P({ct, (X - x)) > 0) = P(Z >
 (a, x» < YlhL' °^af KYll^x aixi)2- So, the depth of x is bounded above by inf afal/
 (YlhLi &iXi)2}' From Lemma 5, it follows that this upper bound is zero when x}l°} = 00 •
 Therefore, x will have positive depth only if xf/a f < 00 •
 Next, consider F/ = Xf/cr2 for / > 1. The F;'s are then independent random variables with

 a common mean 1 and E(Y2)/i2 < 00. So, using the strong law of large numbers (see

 Theorem 1 in [3], page 124), we have n~l £?_ 1 1 as n - ► 00. Consequently, ^ =
 £/2= 1 Xi/of = 00 with probability one. □
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