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 Abstract We provide axiomatic characterizations of two natural families of rules
 for aggregating equivalence relations: the family of join aggregators and the family
 of meet aggregators. The central conditions in these characterizations are two sepa
 rability axioms. Disjunctive separability, neutrality, and unanimity characterize the
 family of join aggregators. On the other hand, conjunctive separability and unanim
 ity characterize the family of meet aggregators. We show another characterization of
 the family of meet aggregators using conjunctive separability and two Pareto axioms,
 Pareto+ and Pareto-. If we drop Pareto-, then conjunctive separability and Pareto+
 characterize the family of meet aggregators along with a trivial aggregator.
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 1 Introduction

 The theory of aggregating individual preferences into a social preference relation
 was initiated by the seminal work of Arrow (1951)1. Arrow's impossibility theo
 rem inspired many scholars to apply his approach to other environments as well. For
 instance, in many situations, a planner is required to classify a finite set of candidates
 into "equivalence classes", where two candidates belong to the same class if and only
 if they are assumed to be equivalent. Such a classification of candidates into disjoint
 equivalence classes is called an equivalence relation (partition), and it is often based on
 the various attributes the candidates may have. The objective is then to aggregate these

 equivalence relations under different attributes and form a holistic equivalence relation
 - a problem studied in detail in various papers such as Mirkin (1975), Wilson (1978),
 Fishburn and Rubinstein (1986), Leclerc (1984), Rubinstein and Fishburn (1986),
 Barthelemy et al. (1986), Neumann and Norton (1986), and Barthelemy (1988). The
 critical difference of this problem and the Arrovian framework of individual prefer
 ence aggregation is that an equivalence relation does not rank the equivalence classes
 it contains.

 We give an example to illustrate the applicability of this model.

 • Partitioning Households of a City. A city planner collects data from the
 households of a city about their employment, religion, family, etc. After aggregat
 ing this data, he wants to partition the households into equivalence classes. Here,
 the candidates are households and the attributes are employment, religion, and
 family. The collected data enable the city planner to form an equivalence relation
 on the households under every attribute. He now needs to generate an aggregate
 equivalence relation from these equivalence relations. Such an aggregate equiva
 lence relation may help the city planner to form development policies and improve
 targeting of such policies.

 It is natural that out of the entire set of possible attributes, the planner only considers

 a subset of the attributes relevant for constructing the aggregate partition of candidates.

 The planner may then think of two natural, but somewhat dual, ways to aggregate the

 equivalence relations under each attribute into one equivalence relation. It can con
 sider two candidates to be equivalent if and only if they are equivalent in each of the
 relevant attribute. On the other hand, it can take the other extreme view by considering

 an aggregator which somehow respects the partitioning under every relevant attribute.

 In this case, it may consider two candidates to be equivalent if they are equivalent
 under any of the relevant attributes. Other applications of this type of aggregation
 include a school wanting to classify its set of students based on various attributes to
 better target its activities, a group of experimental researchers trying to classify a data

 set (population in a village, living beings in a forest, etc.) based on various attributes to
 design their experiment, a political party classifying various constituencies on various
 attributes to better plan its campaign, etc.

 1 Some recent pedagogic proofs of Arrow's impossibility theorem appear in Perote-Pena and Piggins (2002)
 and Geanakoplos (2005).
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 In this paper, we focus on such aggregation of equivalence relations, consider these
 two natural families of aggregation rules, and axiomatically characterize them. To
 start with, let us consider an example with three candidates say a, b, and c and two
 attributes, say 1 and 2. Objects a and b are equivalent but candidate c is different
 in terms of attribute 1. Objects a and c are equivalent but b is different in terms of
 attribute 2. We will now describe the two families of aggregators using this example.
 For both families, we first identify a non-empty subset of attributes, called the decisive

 attributes. For each possible choice of decisive attributes, we then define two aggre
 gators. Thus, each family of such aggregators has 2" — 1 members, where n is the
 number of attributes.

 The first aggregator puts two candidates in the same equivalence class if and only
 if each decisive attribute puts them in the same equivalence class. Thus, it reflects
 the consensus view of the decisive attributes and is a member of the family of meet
 aggregators. In the example above, if we take both the attributes as decisive, then the

 equivalence relation given by this meet aggregator puts each candidate in a separate
 equivalence class.

 Each aggregator in the second family of rules we discuss has an entirely different
 approach in aggregation. It takes the union (or join) of the equivalence classes of every
 decisive attribute. In some sense, it tries to "satisfy" each decisive attribute and belongs
 to the family of join aggregators. In the example above, if we take both attributes as
 decisive, the join aggregator puts a and b together due to attribute 1. Also, it puts a and

 c together due to attribute 2, and hence, all the three candidates form an equivalence
 class.

 1.1 Our contribution

 We provide characterizations for the family of meet aggregators and for the family
 of join aggregators. The central theme of our characterizations is separability. Sepa
 rability can be thought as the counterpart of additivity and consistency axioms in this

 model. Additivity and consistency have been recognized as standard axioms in coop
 erative game theory and used in various models (for example, Shapley (1953) uses
 additivity and Hart and Mas-Colell (1989) use consistency to axiomatize the Shapley
 value). We motivate our versions of separability axioms in Sect. 3.1.

 We use two (dual) versions of separability axioms. Conjunctive separability requires
 that if we combine two profiles of equivalence relations using the meet operation, then

 the aggregator must output the same equivalence relation on this combined data as the

 equivalence relation obtained by taking the meet of the equivalence relations produced
 by the aggregator for each profile of equivalence relations. Analogously, disjunctive
 separability requires that if the combination of equivalence relations according to both
 approaches is done using the join operation, then it must produce the same equivalence

 relation. These two axioms reflect two consistent ways of decentralizing the process
 of aggregation.

 Besides these two separability axioms, we use some standard axioms from the
 aggregation theory literature. We start with three different Pareto-type axioms. The first

 one, Pareto+, says that if two candidates are in the same equivalence class according
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 to every attribute, then the aggregator must put them in the same equivalence class.
 Analogously, we define the Pareto- axiom which requires that if two candidates are in
 different equivalence classes according to every attribute, then the aggregator must put
 them in different equivalence classes. Pareto+ is satisfied by both types of aggrega
 tors, while Pareto" is satisfied by the meet aggregators but not by the join aggregators.

 Finally, we consider also a third Pareto-type axiom, unanimity, which is satisfied by
 the aggregators in both families. Unanimity requires that if the equivalence relation
 according to every attribute is the same, the aggregator must output this very equiva
 lence relation. The combination of Pareto+ and Pareto- implies unanimity.

 The next standard axiom we use is neutrality. It requires that if we construct a
 new profile of equivalence relations from a given profile of equivalence relations by
 permuting the set of candidates, then the outcome of the aggregator at the new profile

 must be the same permutation applied to the outcome of the old profile. Hence, the
 names of the candidates should not matter to the aggregator.

 Finally, we use an axiom called non-triviality. An aggregator is called trivial if it out

 puts the equivalence relation where all the candidates are put in the same equivalence
 class for every profile of equivalence relations. An aggregator satisfies non-triviality
 if it is not a trivial aggregator.

 We show that an aggregator satisfies unanimity, neutrality, and disjunctive sep
 arability if and only if it is one of the join aggregators. We obtain an almost dual
 characterization of the family of meet aggregators. An aggregator satisfies unanimity
 and conjunctive separability if and only if it is one of the meet aggregators. Neutrality
 is implied by conjunctive separability and unanimity (or Pareto+). We show that one
 can replace unanimity by Pareto"1" and Pareto- in the characterization of the meet
 aggregators.

 Pareto- is not satisfied by the join aggregators when m > 3, where m is the num
 ber of candidates. A natural task is then to explore the possibility of dropping the
 Pareto- axiom in the characterization of the family of meet aggregators. We show
 that we do not get a significantly larger set of aggregators if we drop this axiom. In
 particular, an aggregator satisfies Pareto"1" and conjunctive separability if and only if
 it is one of the meet aggregators or the trivial aggregator. Hence, using non-triviality
 in place of Pareto- along with Pareto"1" and conjunctive separability characterizes the
 family of meet aggregators. No such characterization is possible for the family of join
 aggregators.

 Using our characterizations, we can conclude that the families of join and meet
 aggregators essentially differ by two different notions of separability. These families

 contain (almost) dual aggregators and our characterizations reflect this duality.

 1.2 Relation to prior work

 The literature on aggregating equivalence relations started with the works of Mirkin
 (1975), Leclerc (1984), Barthelemy et al. (1986), Fishburn and Rubinstein (1986), and
 Neumann and Norton (1986). In their work, Rubinstein and Fishburn (1986) discuss
 a general model of preference aggregation which covers the aggregation of equiva
 lence relations, while Fishburn and Rubinstein (1986) consider explicitly the family
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 of meet aggregators. To our knowledge, there is no work that discusses the family of
 join aggregators.

 Fishburn and Rubinstein (1986) use Pareto+, Pareto", and binary independence to
 characterize the family of meet aggregators. Binary independence is an axiom in the
 spirit of Arrow's independence of irrelevant alternatives. It requires that the aggregated
 equivalence relation between any two candidates must depend only on the equivalence
 relations between these two candidates in every attribute. Our characterization of the
 family of meet aggregators replaces binary independence by conjunctive separability
 for m > 3. Is binary independence weaker than conjunctive separability? We give
 examples to illustrate that neither of them imply the other. However, we show that
 conjunctive separability and binary independence are equivalent axioms (for m > 3)
 in the presence of Pareto+.

 Our results for the family of meet aggregators are slightly tighter than the results in

 Fishburn and Rubinstein (1986). First, the binary independence axiom used in Fishburn
 and Rubinstein (1986) has no bite when m — 2. This is not the case for conjunctive
 separability, and as a result, we get a characterization that works for all m. Second,
 when m > 3, we show that Pare to" in the characterization of Fishburn and Rubinstein

 (1986) can be weakened to non-triviality.
 Independent of our work, Chambers and Miller (2011) derive a characterization

 of the meet aggregators using conjunctive separability, upper unanimity, and non
 imposition. This is similar to our Theorem 4—while upper unanimity is implied by
 Pareto+, non-imposition implies non-triviality.

 Another related strand of the aggregation literature considers environments in which

 every individual has a view about how a society he is a member of should be parti
 tioned into classes (see for example, Houy 2007; Dimitrov and Puppe 2010). A group
 identity function assigns then to each profile of views a societal decomposition into
 classes. Hence, this aggregation problem is formally equivalent to the aggregation
 of equivalence relations and it extends environments in which the number of social
 groups is assumed to be fixed and their names matter (see for example, (^engelci and
 Sanver 2010; Dimitrov et al. 2007; Houy 2007; Kasher and Rubinstein 1997; Miller
 2008; Samet and Schmeidler 2003, among others). It is worth noting that the specific
 features of the group identification problem allow one to introduce liberalism-type
 axioms which have no meaning in the more general framework we consider in the
 present paper; for instance, Houy (2007) uses such kind of axioms, along with binary
 independence, to characterize the grand meet aggregator.

 The study of the impact of appropriately defined meet and join separability axi
 oms on group identification rules was undertaken by Miller (2008) for a specific
 context, where the number of social groups is fixed. This author then shows that the
 two requirements basically define a class of one-vote rules, in which one opinion
 determines whether an individual is considered to be a member of a group.

 Another type of aggregation problems in which individuals submit a menu of op
 tions are considered by Ahn and Chambers (2010). These authors formulate a disjoint
 additivity axiom which can be seen as a weaker version of disjunctive separability
 for the corresponding context and show that disjoint additivity, anonymity, unanimity,
 and a monotonicity axiom characterize the grand join aggregator in their model. In the

 characterizations we provide in this paper, the two separability ideas are formulated as

 <£) Springer
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 to fit into the more general setting of aggregating equivalence relations and to clearly
 stress the duality between the aggregators in the considered families.

 The rest of the paper is organized as follows. Section 2 discusses the model, the
 notations, and the general framework, while Sect. 3 introduces the axioms we use in
 the paper. We give our characterization of the family of join aggregators in Sect. 4
 and present different characterizations of the family of meet aggregators in Sect. 5.
 Section 6 is devoted then to the duality in the characterizations of the two families.
 We conclude in Sect. 7 with discussions on the effect of (a) adding anonymity to our
 characterizations and (b) imposing both forms of separability on an aggregator.

 2 Framework

 Let M = {a, b,c,...} be a finite set of m > 2 candidates and N = {1, 2,..., n) be a
 finite set of n > 2 attributes. An equivalence relation on M is a reflexive, symmetric,
 and transitive binary relation. Formally, ~ is an equivalence relation on M if for all
 a,b e M, we have

 • (Reflexivity) a ~ a,
 • (Symmetry) a ~ b => b ~ a,
 • (Transitivity) a ~ b and b ~ c => a ~ c.

 Equivalently, one can think of an equivalence relation to be a partitioning of the set

 of candidates into equivalence classes, where candidates a and b belong to the same
 equivalence class in equivalence relation ~ if and only if a ~ b.

 We will denote the equivalence relation of attribute i e N as . Thus, (~i,...,
 ~„) will denote a profile of equivalence relations. Sometimes, we will refer to a profile
 (~i,..., ~„) as (~;)/v.

 One can think of an equivalence relation as being an undirected graph which is
 transitive. Such a graph will have a node for every candidate, i.e., the set of nodes is
 M. There is an edge between the different candidates a and b if and only if a ~ b. We
 denote the (undirected) edge between any two different candidates a and b as (a, b)2.
 Hence, there are three types of equivalence classes: a single node which is not part of
 any edge (equivalence class with a single candidate), a pair of nodes which are joined
 by an edge but not part of any cycle (equivalence class with two candidates), and a set
 of nodes forming a cycle (equivalence classes with more than two candidates).

 Let E be the set of all equivalence relations on M. An aggregator is a map
 ping F : E" -> E. So, the aggregator outputs a holistic equivalence relation for
 every profile of equivalence relations. To simplify notations, sometimes we will write

 F(~i,..., ~„) as ~ and F(~-\,..., ~^,) as etc.
 The following specific types of equivalence relations will be useful in what follows.

 We will say that an equivalence relation ~ is

 • empty, if every equivalence class in ~ contains a single candidate (i.e., the graph
 corresponding to ~ has no edges),

 2 It is appropriate to denote an undirected edge between a and b by [a, b). For convenience, we abuse
 notation here to denote it as (a, b).
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 • single-edged, if one equivalence class in ~ contains two candidates, while every
 other equivalence class in ~ contains a single candidate (i.e., the graph correspond
 ing to ~ has exactly one edge),

 • complete, if ~ contains a single equivalence class consisting of all candidates (i.e.,
 the graph corresponding to ~ is complete).

 We define two operations on equivalence relations. The meet of two equivalence
 relations ~ and is denoted as ~ a and is the largest (with respect to inclusion)
 equivalence relation contained in both ~ and Consequently, any two candidates
 a and b are equivalent in ~ a if and only if a ~ b and a b. The equivalence
 relation ~ A can also be seen as ~ fl The family of meet aggregators is defined
 as follows. For every non-empty S C N,

 ^a(~1,---,~n) = AieS ~i V (~! ~„) € E". (1)

 We call the grand meet aggregator.
 The join of two equivalence relations ~ and is denoted as ~ v and is the

 smallest (with respect to inclusion) equivalence relation containing both ~ and
 Consequently, any two candidates a and b are equivalent in ~ V if and only if
 a ~ b or a b or there is c such that (a ~ c and c b) or (b ~ c and c a). The
 equivalence relation ~ v can also be seen as the transitive closure of ~ U The
 family of join aggregators is defined as follows. For every non-empty S c N,

 ^(~i,...,~„) = v,eS~/ V(~! ~«) e E". (2)

 We call F,j the grand join aggregator.
 Note that the binary operations V and A are associative. Hence, for any 5 C N, the

 operations vl€s and A,-6s are well-defined. Clearly then, based on the choice of S, we
 will have different meet aggregators and different join aggregators.

 3 Axioms

 In this section, we define the axioms we use later. We start with some well-known

 axioms in the preference aggregation literature.

 Axiom 1 Let a be a permutation of M and for any binary relation ~ define ~CT as
 a ~a b if and only if a (a) ~ a(b) for all a, b e M. We say an aggregator F satis
 fies neutrality ifandonly if F((~")jv) = F({^i)s)(J for all profiles of equivalence
 relations (~i,..., ~„).

 Neutrality requires that the aggregator should not distinguish between candidates
 based on their names. Similarly, if we do not distinguish between attributes based on
 their names, then we have the following axiom.

 Axiom 2 An aggregator F satisfies anonymity if for any permutation p ofN and any

 profile of equivalence relations (~i,..., ~„) we have F((~,)Af) = F((~p(,))/v).

 •£) Springer
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 The next two axioms are the equivalent of Pareto axiom in the Arrovian framework.

 Axiom 3 An aggregator F satisfies Pareto+ if and only iffor all a, b e M and for
 all profiles of equivalence relations (~i,..., ~„) such that a b for all i e N, we
 have a ~ b, where ~e= F(~i, ...,

 Axiom 4 An aggregator F satisfies Pareto- if and only if for all a, b e M and for
 all profiles of equivalence relations (~i,..., ~„) such that a <*,• bfor all i e N, we
 have a f b, where F(~i,...,

 It is easy to see that Pareto+ is satisfied by the family of meet and join aggregators.

 On the other hand, Pareto- is satisfied by the family of meet aggregators but not by
 the family of join aggregators. To see this, consider an example with two attributes 1
 and 2 and three candidates a, b, and c. Consider the following profile of equivalence
 relations: a ~i b but a c and b c and a ~2 c but a *<2 b and c 2 b. Note
 that b oOj c for all i e {1, 2). Hence, by Pareto-, b and c should belong to different
 equivalence classes in the aggregated equivalence relation. Now, consider the grand
 join aggregator on this profile. It will put a, b, and c in one equivalence class.

 The following axiom is a weakening of the combination of Pareto"1" and Pareto-,
 and is satisfied by the families of join and meet aggregators.

 Axiom 5 An aggregator F satisfies unanimity if and only if for all profiles of equiva
 lence relations (~i,..., ~„) such that ~ 1 = • • • =~,„ we have F(~ 1,..., ~„) =~|.

 Clearly, the combination of Pareto+ and Pareto- imply unanimity.
 The following independence axiom was used in Fishburn and Rubinstein (1986).

 Axiom 6 An aggregator F satisfies binary independence if and only if for every
 a, b e M and for all pairs of profiles (~;)jv and (~-)/v such that a b if and only
 if a bfor all i e N, we have a ~ b if and only a b, where ~= F((~,)/v) and
 ~'= F((~|)/v).

 Finally, we say an aggregator F is trivial if for all profiles (~/)/v, /7((~/ )a>) is the
 complete equivalence relation.

 Axiom 7 An aggregator satisfies non-triviality if it is not a trivial aggregator.

 3.1 Separability Axioms

 Next, we define our two main axioms on separability. Suppose, the planner does not
 know the equivalence relation under every attribute. Then, he sends an expert to the
 "world" to collect this information. In our earlier example, the city planner sends an
 expert to collect data on households. The expert may take time (a finite number of
 periods) to collect all the information (we assume that the world is consistent, and
 does not evolve during the time of collecting these information). Suppose the planner
 insists on getting a profile of equivalence relations every period. But the expert may not

 have complete information of the actual profile of equivalence relations in a period (of
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 course, at the end of all periods, the expert does get this actual profile of equivalence
 relations). The planner may instruct the expert to send the incomplete information as
 a profile of equivalence relations in every period in the following two natural ways.

 1. In any period, the expert reports candidate a and b to be equivalent under attribute
 i if and only if

 (a) he observes in this period a and b to be equivalent under attribute i (i.e., he
 collects complete information about it in this period), or

 (b) he observes in this period a and c to be equivalent under attribute i and b and
 c to be equivalent under attribute i for some c £ [a, b).

 In all other cases, he reports a b. So, the interpretation of "a oo, b" is two
 fold: (i) the expert in this period observed that a and b are not equivalent under
 i, or (ii) he did not collect enough information to conclude a b. Using these
 instructions, the expert generates a profile of equivalence relations in each period.
 It is clear that the final profile of equivalence relations is just the join of the profile

 of equivalence relations in each period. Suppose the planner intends to use an
 aggregator every period to form a periodic aggregate equivalence relation. Our
 first separability axiom requires some consistency between the periodic aggre
 gate equivalence relations and the final aggregate equivalence relation. It says
 that the final aggregate equivalence relation is the join of the periodic aggregate
 equivalence relations.

 Axiom 8 An aggregator F satisfies disjunctive separability if and only if for

 all pairs of profiles (~,)1y and (~-)w, we have F((~; v ~|)/y) = F((~,)/v) v
 F((~;.)jv).

 2. There is another way in which the planner may ask the expert to send an incom
 plete profile of equivalence relations in every period. He can ask the expert to
 report a and b are not equivalent under attribute i if and only if he observes in this
 period that a and b are not equivalent under attribute i. In all other cases, a and
 b are reported to be equivalent under i. Under these instructions, if no data have
 been collected for a and b under attribute i, then they are reported to be equivalent.
 It is clear that the final profile of equivalence relations is the meet of the periodic
 profile of equivalence relations. Again, the planner may use an aggregator to come
 up with a periodic aggregate equivalence relation. Our second separability axiom
 requires that the final aggregate equivalence relation is the meet of the periodic
 aggregate equivalence relations.

 Axiom 9 An aggregator F satisfies conjunctive separability if and only if for
 all pairs of profiles (~;)jv and (~-)/v, we have F((~,- A ~-)at) = F((~,) n) a
 F((~'i)N).

 Such separability axioms are primarily motivated by decentralized computation.
 The periodic profile of equivalence relations can be processed by the expert in a given
 period using the aggregator of the planner, and the planner can then process the peri

 odic aggregate equivalence relations into a single aggregate equivalence relation. The
 planner is saved the hassle of taking the meet or join of the profiles of equivalence
 relations over all periods and then applying the aggregator himself. Instead, he can
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 decentralize the process by aggregating in each period and then taking the join or meet
 (depending on the instructions to the expert) of these periodic aggregate equivalence
 relations.

 4 Join aggregators

 In this section, we give a characterization of the family of join aggregators. Our char
 acterization uses the neutrality, unanimity, and disjunctive separability axioms. To
 give an idea why the characterization works, consider an aggregator that satisfies
 neutrality, unanimity, and disjunctive separability. Now, consider an example with
 three attributes (N = {1,2, 3}) and four candidates (M — {a, b, c, d}). Call a profile
 of equivalence relations a single-edged profile if there is exactly one attribute with
 a single-edged equivalence relation and all other attributes have empty equivalence
 relations. The first step in the proof is to show that the aggregator is a join aggregator
 for any single-edged profile. To do so, consider the single-edged profiles in Fig. 1.
 Each triplet of relations in a rounded rectangle represents a profile. Each column cor
 responds to an attribute. The join of these single-edged profiles is a profile (last row),
 where unanimity axiom can be applied. Hence, the aggregator (applied to the last row)
 must output the equivalence relation shown in Fig. 1. By disjunctive separability, there
 is some non-empty set of single-edged profiles ((~,) jy, (~ ■ )n or (~")/v X such that the

 corresponding aggregated equivalence relations (resp. ~, or ~") have edge (a, b).
 Moreover, no other edges must be present in or Suppose the aggregator
 outputs a non-empty equivalence relation whenever the single-edged profile has edge
 (,a,b) in attributes 1 or 2. Denote these attributes as Sah. By neutrality, Sah — Scd = S
 for all (a, b) and (c, d). Thus, the set S collects all decisive attributes and we call it
 a decisive set. In Fig. 1, we have S — {1, 2} as the decisive set. The proof is then
 concluded by observing that any profile of equivalence relations can be decomposed

 Fig. 1 Single-edged profiles
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 Fig. 2 Decomposing a profile into single-edged profiles

 into single-edged profiles whose join is the original profile of equivalence relations.
 Fig. 2 illustrates this using a profile of equivalence relations (~, )^ which is the join
 of 5 (total number of edges in this profile of equivalence relations) single-edged pro

 files of equivalence relations denoted by (~-)jv> (~?)n> and
 Using the first step of the proof, we know ,..., ~5. The join of these five relations
 is the cycle of a, b, c. By disjunctive separability, F((~,)/v) =~ must be equal to
 this cycle, that is, the aggregator must take the join of the equivalence relations in the
 decisive set.

 We now state the theorem and prove it formally.

 Theorem 1 An aggregator satisfies neutrality, unanimity, and disjunctive separability
 if and only if it is belongs to the family of join aggregators.

 Proof It is not difficult to see that each join aggregator satisfies neutrality, unanimity,

 and disjunctive separability. Suppose F is an aggregator which satisfies these three
 axioms.

 Let (~*'"6)jv be a single-edged profile of equivalence relations where edge (a, b)
 is present in attribute k only, and no other edges are present in any attribute. By

 construction, the profile (ykzN )N is a profile of equivalence relations as in

 the statement of the unanimity axiom. Hence, F(iykaN ~f'afc)N) is a single-edged
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 equivalence relation with edge (a, b). By disjunctive separability, the edge (a, b) is

 present in .F((~*'afc)/v) for at least one k, and no other edge is present in F((^'ah)N).
 Define the set Sab as follows.

 Sah — {k e N : edge (a, b) belongs to F((~*'afe)/v)}.

 We can also define Scd for all c,d e M using profiles (~*'cd)Ar. By neutrality, Sah =
 S'd = S for all a, b,c,d e M. Call S the set of decisive attributes (the decisive set).
 Hence, for every single-edged profile, the aggregator is the join over the decisive set.

 Now, consider any arbitrary profile of equivalence relations (~, )yv-We can decom

 pose it into a finite number of single-edged profiles (~/)w, where j e {1,..., /}

 and / is the number of edges in the profile Thus, (~,)at = (Vy=i/

 By disjunctive separability, F((~,)N) = F((vy=1 / ~J.)N) = Vj=] /F((~/)yv).
 Since the aggregator for the single-edged profiles is the join over the corresponding
 decisive set, it follows that the aggregator over any profile is also the join over that
 decisive set. The result then follows because the decisive set is non-empty. □

 To complete the characterization in Theorem 1, we show that the axioms neutrality,

 unanimity, and disjunctive separability are independent. The trivial aggregator sat
 isfies neutrality and disjunctive separability, but it fails unanimity. The grand meet
 aggregator satisfies neutrality and unanimity but fails disjunctive separability.

 To show that neutrality is not implied by unanimity and disjunctive separability, we
 construct the following aggregator.

 Example 1 Fix two candidates a,b e M. For a given profile, (—/)a^, define a binary
 relation I as follows. We have alb if and only if a ~i b. For any (c, d) ^ (a, b), we
 have eld if and only if c d for some i e N. Define F((~, )^) as the symmetric
 and transitive closure of I.

 The aggregator in Example 1 satisfies unanimity and disjunctive separability, but
 fails neutrality. The fact that it fails neutrality is clear (it distinguishes between pairs
 (a, b) and other pairs). Also, it is easy to see that it satisfies unanimity. To show that
 it satisfies disjunctive separability requires some effort. We do this in the Appendix.

 Also, note that if m = 2, then every aggregator satisfies neutrality. So, Example 1
 works only when m > 3.

 5 Meet aggregators

 In this section, we set out to give a characterization of the family of meet aggregators

 using conjunctive separability. Our aim is to give a characterization that is analogous
 to the characterization of the family of join aggregators in Theorem 1. Fishburn and
 Rubinstein (1986) provided the following characterization.

 Theorem 2 (Fishburn and Rubinstein (1986)) Suppose m > 3. An aggregator satis
 fies Pareto+, Pareto~, and binary independence if and only if it belongs to the family
 of meet aggregators.
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 Our first characterization of the meet aggregators replaces binary independence in
 Theorem 2 by conjunctive separability. Unlike Theorem 2, this characterization works
 also for m —2.

 Theorem 3 An aggregator satisfies Pareto+, Pareto~, and conjunctive separability
 if and only if it belongs to the family of meet aggregators.

 Proof It is easy to see that each meet aggregator satisfies Pareto4", Pareto+, and con
 junctive separability. Consider an aggregator F that satisfies these three axioms. We
 show that it must be a meet aggregator. We do the proof in two cases.

 Case 1 Suppose m > 3. We use the following lemma for this case.

 Lemma 1 If an aggregator F satisfies Pareto+ and conjunctive separability, then it
 satisfies binary independence.

 Proof Suppose F is an aggregator which satisfies Pareto+ and conjunctive separabil
 ity. We do the proof in two steps.

 Step 1 Fix a, b e M and consider any profile of equivalence relations (~/)w. We
 then consider the equivalence relation which is defined by deleting all edges
 except the edge (a, b) from for all i e N (so for all i e N, (a, b) is an edge in

 if and only if (a, b) is an edge in but for all (c, d) ^ (a, b), (c, d) is not an
 edge in ~J ). Now, consider the profile of equivalence relations (~")w> where for all
 i € N, is a single-edged equivalence relation with edge (a, b). Note the following:

 • a for all i e N and

 • by Pareto+, the edge (a, b) belongs to F((~")n).

 Using conjunctive separability, we can conclude that the edge (a, b) belongs to

 if and only if it belongs to F((~J)yv)- This completes our Step 1.

 Step 2 Fix a, b e M. Consider two profiles of equivalence relations (~,);v and (~")w
 which satisfy the premises of binary independence axiom for a and b. Now, consider
 the profile of equivalence relations (~-)w as in Step 1. By Step 1, we get that (a, b)
 belongs to F((~,)n) if and only if it belongs to /r((~-)w) if and only if it belongs to
 F((~")^). Hence, F satisfies binary independence. □

 Using Theorem 2 along with Lemma 1, the result now follows.

 Case 2 Suppose m = 2. Let M = {a, b}. Call a set of attributes S Q N decisive if

 • a ~ b for all profiles (~, )/v such that a b for all i e S
 • and a oo b for all profiles (~/)Af such that a <*, b for some i e 5,

 where ~= F((~,)w). By Pareto"1", a decisive set exists. By Pareto-, the decisive set
 is non-empty. We will be done if we can show that the decisive set is unique. Suppose
 5 and T are two different decisive sets. Consider a profile (~, )at in which edge (a, b)

 is present in if and only if i e S. Similarly, consider a profile (~J)w in which
 edge (a,b) is present in if and only if i e T. By definition, (~,)jv i=- (~/)n
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 and 5D7 ^ S or S D T ^ T. Since S and T are decisive sets, both F((~,) n)
 and /r((~-)Ar) are complete equivalence relations (i.e., contain edge (a, b)). Hence,

 F((~;)/v) A F((~J)jv) is a complete equivalence relation. By definition, the profile
 (~,)/v A (~J)w has edge (a, b) only in attributes in Sn T. By conjunctive separability
 F((~;)at A (~|)at) = F((~,)n) a /r((~J)/v)- But (5 n T) C S. Since S is decisive,
 this is a contradiction. □

 Is Theorem 3 a tighter characterization of the family of meet aggregators than the
 one in Theorem 2? We try to answer this question. We give two examples to show that

 conjunctive separability and binary independence do not imply each other.

 Example 2 Fix a,b e M. The aggregator F is defined as follows. For all c,d e M
 where (c, d) ^ (a, b) and for all profiles (~;)Ar, we have

 • c d,

 • and a ~ b if and only if a ~i b and a <*, b for all i / 1,

 where ~= F((~r-)jv).

 The aggregator F in Example 2 satisfies binary independence. To see this, fix x, y e M

 and consider two profiles (~, )/v and (~J)yv as in the premises of the binary indepen
 dence axiom. If (jc, y) ^ (a, b), then the edge (x, y) is absent in both F((~,)yv)
 and F((~J.)n). If (jc, y) = (a, b), then clearly, the edge (*, y) = (a, b) is present in
 F((~,)jv) if and only if it is present in /r((~-)A/)

 However, the aggregator F in Example 2 fails conjunctive separability. An example
 is shown in Fig. 3. We have only shown candidates a and b in Fig. 3. The rest of the
 candidates can be put in any arbitrary equivalence class in each attribute. Figure 3
 shows the output of the aggregator in three profiles, where the third profile is the
 meet of the first two profiles. It is easy to see that the aggregator violates conjunctive
 separability.

 The following example illustrates that conjunctive separability does not imply
 binary independence when m > 3.

 Example 3 Suppose/n > 3. Define the aggregator F as follows. For any profile (~/) /v,

 • if (~/)jv is a profile of complete equivalence relations, then /?((~,),v) isacomplete
 equivalence relation,

 • else, it is the empty equivalence relation.

 (~i A ~'t)N

 F((~i)jv)

 ° f(K)n)

 # f ((—i)JV) A F((~J)jv)

 Fig. 3 Binary independence does not imply conjunctive separability
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 Fig. 4 Conjunctive separability does not imply binary independence

 Clearly, the aggregator in Example 3 satisfies conjunctive separability. Figure 4 shows
 two profiles where this aggregator fails binary independence.

 Notice that the aggregators in Examples 2 and 3 do not satisfy Pareto+. This is
 no coincidence as the following proposition proves that conjunctive separability and
 Pareto+ are equivalent to binary independence and Pareto+ if m > 3.

 Proposition 1 Suppose m > 3 and let F be an aggregator which satisfies Pareto+.
 The aggregator F satisfies conjunctive separability if and only if it satisfies binary
 independence.

 Proof We need the following lemma. The lemma is due to Fishburn and Rubinstein
 (1986), but we give a proof in the Appendix for completeness.

 Lemma 2 (Fishburn and Rubinstein (1986)) Suppose m > 3, and let F be an aggre
 gator which satisfies binary independence and Pareto+. Consider a, b,c,d e M and
 two profiles (~, )/v and (~ •) n such that for every i e N, the edge (a, b) belongs to ~,

 if and only if the edge (c, d) belongs to ~j. Then, the edge (a, b) belongs to F((~j)N)
 if and only if the edge (c, d) belongs to F((~J)at).

 Due to Lemma 1, we only have to prove that Pareto+ and binary independence imply
 conjunctive separability. Assume for contradiction that conjunctive separability does
 not hold. Then, there are two profiles (~;)jv and (~-)/V and a, b e N such that either

 (a) the edge (a,b) belongs to F((~,)w) a F((~J)n) but it does not belong to
 F((~,- A ~J)at),

 (b) the edge (a,b) does not belong to F((~,)jv) A F((~-)n) but it belongs to
 F((~,- A ~J)jv).

 Suppose (a) holds. Denote F((~,)jv) as ~ and F((~J)at) as Since the edge (a, b)
 belongs to ~ A it belongs to both ~ and On the other hand, the edge (a, b)
 does not belong to F((~, A By Pareto+, there must exist some i e N such
 that the edge (a, b) does not belong to A Define the following sets:

 S = {i e N : edge (a, b) belongs to ~,}

 S' — {i € N : edge (a, b) belongs to ~-}

 S" = {i e N : edge (a, b) belongs to A ~-}

 (3)

 (4)

 (5)
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 By definition S" c S and S" c S'. We first show that S and S' are distinct. Assume
 for contradiction S = S'. Then, S" = S = 5', and by binary independence, the edge
 (a, b) must belong to F((~,- A ~-)/v), which is a contradiction. Similarly, by binary
 independence again, 5 and S' are strict supersets of S", i.e., 5" C 5 and S" C S'.

 Consider a profile (~,-)n and c e M \ {a, b\ such that

 [i e N \ edge (a, b) belongs to ~, } =5

 [i e N : edge (b, c) belongs to ~, } = S'

 {i e N : edge (a, c) belongs to ~, } = S".

 Note that (~,)/v is well defined. Denote F((~/)/v) as ~. By binary independence,
 edge (a, b) belongs to ~ since it belongs to ~. By Lemma 2, edge (b, c) belongs to
 ~ since the edge (a, b) belongs to By transitivity, edge (a, c) belongs to ~. By
 Lemma 2, the edge (a, b) must then belong to F((~, A ~J)jv). This is a contradiction.

 Assume now (b) holds. Since the edge (a, b) does not belong to (~ A it does
 not belong to ~ or Without loss of generality, suppose (a, b) does not belong to
 ~. Define 5 and S" as in Equs. 3 and 4, respectively. Since the edge (a, b) belongs to
 F((~, A ~-)at), by binary independence, 5" C S.

 Consider a profile (~/)jv and c e M \ {a,b) such that

 {/ e N : edge (a, b) belongs to } = S

 {i e N : edge (b, c) belongs to ~, } — {i e N : edge (a, c) belongs to ~,} = S".

 Note that (~/)^ is well defined. Denote F((~,)/v) as ~. By binary independence,
 the edge (a, b) does not belong to ~ since it does not belong to ~. But by Lemma 2,
 the edges (b, c) and (a, c) belongs to ~ since (a, b) belongs to F((~, A By
 transitivity, (a, b) belongs to ~. This is a contradiction. □

 Though conjunctive separability and binary independence are equivalent in the
 presence of Pareto+, conjunctive separability and binary independence are not equiv
 alent in the presence of Pareto". This is easily verified from Examples 2 and 3 (the
 aggregators in Examples 2 and 3 satisfy Pareto-).

 Proposition 1 is not true when m — 2. In this case, we can easily construct rules
 which satisfies Pareto+ but does not satisfy conjunctive separability (and binary inde
 pendence is satisfied vacuously). For example, the grand join aggregator satisfies
 Pareto+ but fails conjunctive separability.

 5.1 Weakening Pareto"

 The characterizations in Theorems 2 and 3 use Pareto~, a form of Pareto axiom that is

 not satisfied by the join aggregators. We wish to replace it with a weaker axiom which
 is satisfied by those aggregators. The following theorem shows that any aggregator
 which satisfies Pareto+ and conjunctive separability must be either a meet aggregator
 or the trivial aggregator.
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 Theorem 4 Consider the following statements.

 1. An aggregator satisfies conjunctive separability, Pareto+, and non-triviality.
 2. An aggregator satisfies binary independence, Pareto+, and non-triviality.
 3. An aggregator belongs to the family of meet aggregators.

 Ifm > 3, then (1), (2), and(3) are equivalent. Ifm = 2 then (I) and (3) are equivalent.

 Proof Consider the case when m > 3. The fact that (1) (2) follows from Propo
 sition 1. Clearly, (3) implies (1) and (2). We show that (1) implies (3). We need the
 following lemma.

 Lemma 3 Let F be an aggregator which satisfies binary independence and Pareto+.
 Then, F satisfies neutrality.

 Proof For m — 2, every aggregator satisfies neutrality, and hence, the claim holds.
 For m > 3, the proof is almost immediate from Lemma 2. To see this, consider a
 permutation tt of the set of candidates and a profile Let (~?)w be the per
 muted profile. Suppose F does not satisfy neutrality. Then, some edge (a, b) belongs
 to F((~,)/v) but the edge (n(a), tt(b)) does not belong to F((~7)w). Note that the
 profiles and (~f)Ar satisfy the premises of Lemma 2 with edge (n(a), rc(b))
 taking the role of (c, d). Hence, by Lemma 2, the edge (a, b) belongs to F((~,)jv) if
 and only if the edge (Ji(a), n{b)) belongs to F((~7)at). This is a contradiction. □

 By Proposition 1 and Lemma 3, if an aggregator satisfies conjunctive separability
 and Pareto+, then it satisfies neutrality. Now, consider an aggregator F which satisfies
 conjunctive separability, Pareto+, and non-triviality. We now do the proof in two steps.

 Step 1 In this step, we show that if (~,)/v is a profile of empty equivalence relations
 then F((~,)/v) is the empty equivalence relation. By neutrality, F((~,)at) is either
 the empty equivalence relation or the complete equivalence relation. Suppose it is the
 complete equivalence relation. Consider another profile (~■)s such that F((~-);v) is
 not the complete equivalence relation. Such a profile exists because of non-triviality.
 But for every i e N, A Hence, F((~; a ~-)a0 is a complete equivalence
 relation. By conjunctive separability, F((~-);v) is a complete equivalence relation.
 This is a contradiction.

 Step 2 In this step, we show that F satisfies Pareto~, and by Theorem 3, F is an
 aggregator in the family of meet aggregators. To show that F satisfies Pareto~, fix
 a,b e M, and consider a profile (~,)at such that the edge (a, b) is not present in

 for all i e N. Let (~| )w be a profile of empty equivalence relations. These two profiles
 satisfy the premises in the binary independence axiom. Since by Step 1, F((~J)aO is
 an empty equivalence relation, we get that the edge (a, b) is not present in F((~,)w)
 because of binary independence (F satisfies binary independence by Proposition 1).
 Hence, Pareto+ holds.

 Now, when m — 2, we can go back to Case 2 in the proof of Theorem 3. In the absence

 of Pareto-, we will either have a non-empty unique decisive set or an empty decisive
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 set. An empty decisive set implies a trivial aggregator. Hence, by non-triviality, we
 must have a unique non-empty decisive set. The rest of the proof follows as in Case 2
 in the proof of Theorem 3. Hence, (1) and (3) are equivalent for any m >2. □

 The equivalence of (2) and (3) in Theorem 4 is a tighter characterization of the fam
 ily of meet aggregators than the characterization of Fishburn and Rubinstein (1986)
 (Theorem 2). This is because non-triviality is weaker than Pareto". For the same
 reason, the equivalence of (1) and (3) in Theorem 4 is a tighter characterization than
 Theorem 3.

 6 Duality in the characterizations

 It is interesting to investigate whether similar or "dual" characterizations are possi
 ble for the families of meet and join aggregators. The two main axioms, conjunctive
 and disjunctive separability, used in the characterizations in Theorems 1, 3, and 4
 are dual to each other. However, we seem to require neutrality in Theorem 1, but not
 in Theorems 3 and 4 because it is implied by conjunctive separability and Pareto+
 (Lemma 3).3

 One wonders if unanimity can be relaxed in the characterization of the join aggre
 gators. For instance, does non-triviality, Pareto+, and disjunctive separability charac
 terize the family of join aggregators? The answer is no. The aggregator in Example 1
 satisfies all these axioms but it is not a join aggregator. Does neutrality, non-triviality,

 Pareto+, and disjunctive separability characterize this family? The answer is again no.
 The aggregator in the following example satisfies all these axioms but it is not a join
 aggregator.

 Example 4 The aggregator outputs the empty equivalence relation if the profile of
 equivalence relations include only empty equivalence relations, else it outputs the
 complete equivalence relation.

 Another approach is to modify the characterizations of the family of meet aggre
 gators to make it look analogous to Theorem 1. The following theorem attempts to do
 that.

 Theorem 5 An aggregator satisfies unanimity and conjunctive separability if and
 only if it belongs to the family of meet aggregators.

 Proof Clearly, any meet aggregator satisfies unanimity and conjunctive separability.
 Now, let F be an aggregator which satisfies unanimity and conjunctive separability.
 We show that F satisfies Pareto+.

 Consider a profile (~/)/v such that the edge (a, b) belongs to for all i e N.
 Consider another profile (~-)/v such that for all i e N, the only edge in equivalence

 relation is the edge (a, b). By unanimity, the edge (a, b) belongs to F((~|)n)
 Assume for contradiction that edge (a, b) does not belong to F((~,)w). By conjunc

 tive separability, the edge (a, b) does not belong to F((~,- a ~(')/v). Since for all

 3 This is similar to the Arrovian frameworks, where neutrality is implied by independence and Pareto
 axioms (Ubeda 2004).
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 i e N, A and the edge belongs to F((~|)w), the edge must also belong
 to F((~,- A This is a contradiction.

 Since F satisfies unanimity, it satisfies non-triviality. Hence, F satisfies conjunc
 tive separability, Pareto+, and non-triviality, and by Theorem 4, it must belong to the
 family of meet aggregators. □

 Clearly, unanimity is weaker than the combination of Pareto+ and Pareto-. Hence,
 Theorem 5 is a tighter characterization than Theorem 3. Moreover, Theorem 5 gives
 us an almost dual characterization of the meet aggregators to the characterization in
 Theorem 1 of the join aggregators.

 7 Conclusion

 We conclude by giving two remarks on our characterizations.
 ANONYMITY. It is not difficult to see that adding anonymity to the list of

 axioms in Theorems 3, 4, and 5 give us the grand meet aggregator. It can be
 shown that anonymity is independent of the axioms used in these theorems. On
 the other hand, anonymity, unanimity, and disjunctive separability characterize
 the grand join aggregator. This can be seen from the proof of Theorem 3. We
 use neutrality in the proof of Theorem 3 to conclude Sab = Scd. But we can
 use anonymity instead of neutrality to conclude Sab = Scd = N. It is not difficult
 to argue that anonymity, unanimity, and disjunctive separability are independent
 axioms.

 Dictatorial Aggregators. Call an aggregator F dictatorial if there exists an
 attribute (dictator) j e N such that for every profile of equivalence relations (~, )at

 we have F((~,)/v) =~; . Note that an aggregator F is a dictatorial aggregator if and
 only if F = F.sy = for some S c N and |S| = 1. Thus, dictatorial aggregators
 are the only aggregators which belong to the families of meet and join aggregators.
 Using this fact and our results, we can give various characterizations of the dictatorial
 aggregators. First, an aggregator is a dictatorial aggregator if and only if it satisfies con
 junctive separability, disjunctive separability, Pareto+, and Pareto+. This follows from
 Theorems 1 and 3. Second, an aggregator is a dictatorial aggregator if and only if it
 satisfies conjunctive separability, disjunctive separability, Pareto+, and non-triviality.
 This follows from Theorems 1 and 4. Finally, an aggregator is a dictatorial aggre
 gator if and only if it satisfies conjunctive separability, disjunctive separability, and
 unanimity. This follows from Theorems 1 and 5.

 Appendix

 Aggregator in Example 1 Satisfies Disjunctive Separability

 Consider two profiles (~, )/v and We have to show that

 F((~; v = F((~,)*) v F((~;)n).
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 Suppose (a, b) is an edge in F((~,- v First, we show that (a, b) in also an
 edge in F((~,)w) v F((~-)w). We consider two cases.

 Case 1 Suppose (a, b) is an edge in ~i v This in turn induces two subcases.

 • Case la: The edge (a, b) is in ~i or in ~j. In such a case, the edge (a, b) will
 either be in F((~,)/v) or F((~J)/v)- Hence, it will be in F((~,)/v) V F((~-)/v)

 • Case lb: There is a chain of edges (a, a\), (a\,ai), ...,(ar,b) which belongs to
 ~i v ~j. Hence, these chain of edges are also present in F((~()#) v F((~J)/v).
 Consequently, the edge (a, b) is present in F((~,)w) v F((~J)/v).

 Case 2 Suppose (a, b) is not an edge in ~i V Since (a, b) is an edge in F((~;
 V ~-)w)> there must exist ao, a\,..., ar with a^ — a and bo = b and j\,..., jr € N

 such that for k e {1,..., r}, each edge (ah-1, a*) belongs to (~yt v ~'/t) or there is
 chain of edges (a*_ i, c\), (ci, ci),...,(c9, ak) each of which belongs to (~/t V )•
 By definition of the aggregator, each edge (a*-i, a*) is in F((~,)/v) v F((~(')/v). This
 in turn implies that (a, b) is in F((~,)/v) v F((~-)w)

 Suppose now (c,t/) ^ (a, fc) is an edge in F((~, v Using a similar
 reasoning as above, we can conclude that (c, d) is an edge in F((~,)Af) v F((~-)^)

 Now, we show that if (a, b) is an edge in /7((~/)/v) v F((~J)/v), then it is also an
 edge in F((~, V ~J)/v)- Again, there are multiple cases to consider.

 Case 1 The edge (a, b) is in /r((~, )^). So, either (a, b) is an edge in ~i or there is a
 chain of edges (a, a\), (a\,a2),... ,(ar,b) which belongs to (~/)/v. In the first case,

 the edge (a, b) also belongs to (~j V Hence, it belongs to F((~, v ->)•
 In the second case, the same chain of edges belongs to (~, V ~-)w- Hence, (a, b)
 belongs to F((~/ v ~')/v).

 Case 2 The edge (a, b) is in F((~J)/v)- Again, as in Case 1, we can argue that (a, /?)
 belongs to F((~; v

 Case 3 There is a chain of edges (a, a\), (a\, 02), ...,(ar, b) which belongs to
 F((~<)n) V F((~.)at). Each of these edges can be supposed to be different from
 edge (a, b). Consider any arbitrary edge (c, d) in this chain. Edge (c, d) is either
 in n or in (~-)/v or there is a chain of edges (c, ci), (ci, C2),..., (c?, rf) in
 (~, v ~J)/v. In each of these cases, edge (c, d) belongs to (~, vc ~-)w- Since
 (c, J) ^ (a, fc), we conclude that (c, </) belongs to F((~; vc This is true for
 any edge in the chain (a, a\), (ai, aj),..., (ar, b). Hence, the edge (a, b) belongs to
 F((~j vc ~;.)yv).

 Finally, suppose (c,d) 7^ (a,/?) is an edge in F((~,)at) V F((~J)^). Using a
 similar reasoning as above, we can conclude that (c, J) is an edge in F((~,

 Proof of Lemma 2

 Proof If (a, b) = (c, J), then the claim is trivial. Assume a, b, c are distinct. Consider
 two profiles (~/)/v and (~-)/v such that the edge (a, b) is in if and only if the edge
 (b, c) is in Consider another profile of equivalence relations (~")/v which satisfies
 the following for every i e N:
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 • the edge (a, b) belongs to if and only if it belongs to
 • the edge (b, c) belongs to if and only if it belongs to (if and only if the edge

 (a, b) belongs to ~,),
 • and the edge (a, c) belongs to

 Note that such a profile of equivalence relations (~'!) n exists. By Pareto+, the edge
 (a, c) belongs to F((~");v)- By transitivity, the edge (a, b) belongs to F((~.')n) if
 and only if the edge (b, c) belongs to F((~.')at). By binary independence, edge (a, b)
 belongs to F((~,)w) if and only if it belongs to F((~")n)- Similarly, by binary
 independence again, edge (b, c) belongs to F((~,)jv) if and only if it belongs to
 F((~")w)- Hence, edge (a, b) belongs to F((~,)w) if and only if edge (b, c) belongs
 to F((~>).

 Now, consider a pair of profiles (~,)/v and such that for every i e N, the
 edge (a, b) belongs to if and only if the edge (c, d) belongs to Now, construct
 (~")n such that it satisfies the following: for every i e N, the edge (a, b) belongs to

 if and only if the edge (b, c) belongs to if and only if the edge (c, d) belongs
 to if and only if the edge (a, b) belongs to if and only if the edge (c, d) belongs
 to Applying the result in the previous paragraph multiple times, we get that the
 edge (a, b) belongs to F((~,)aO if and only if the edge (b, c) belongs to F((~")/v)
 if and only if the edge (c, d) belongs to F((~-)aO. This proves the lemma. □
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