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Higher-Dimensional Analogues of the
Map Coloring Problem

Bhaskar Bagchi and Basudeb Datta

Abstract. After a brief discussion of the history of the problem, we propose a generalization
of the map coloring problem to higher dimensions.

The map coloring problem was originally posed by Francis Guthrie in 1852. It asks for
the minimum number of colors required to color all possible maps (real or imagined) if
we wish to ensure that neighboring countries receive different colors. Clearly, we may
imagine any number of countries sharing a common point in their boundary. So, in
this problem, two countries are to be considered as neighbors only if their boundaries
share an entire linear continuum. Four colors are required, since there are maps with
four mutually adjacent countries (as in the usual planar drawing of a tetrahedron).
Francis Guthrie guessed that four colors always suffice for his problem. This came to
be known as the four color conjecture (see [3, 16]).

Beginning with Augustus de Morgan [2, 6] (to whom Francis’ brother Frederick
Guthrie first communicated the problem), innumerable mathematicians—both profes-
sionals and amateurs—tried their hands at the problem. Many possible approaches,
reformulations, and partial results, as well as several wrong proofs resulted [7]. One
preliminary observation that could be made was that six colors always suffice. To see
this, proceed as follows. The map to be colored may well be taken as drawn on the
surface of a ball (as in a globe) rather than on a sheet of paper. A little thought shows
that, without loss of generality, the countries may be taken to be the faces of a convex
polyhedron inscribed in the ball. We can then invoke Euler’s formula v − e + f = 2,
where v, e, f are the number of vertices, edges, and faces of the polyhedron. Using
this formula, it is not hard to see that, in any map, there must be a country with five or
fewer neighbors. Now, with six colors in hand, we may proceed to color all maps in-
ductively, as follows. Assume that we already know how to color all maps with fewer
countries using six colors. Pick out a country with five or fewer neighbors in the given
map, and momentarily forget it. By our assumption, the rest of the map can be colored
using the six colors. Since the forgotten country has at most five neighbors, at most
five of the colors have been used to color these neighbors. So, there is a leftover color
that can now be used to color the forgotten country, thus completing the six-coloring
of the given map. For an alternative proof of this “six colors theorem”, which avoids
Euler’s formula, read on.

The first significant progress on the four color conjecture was made by A. B.
Kempe, when he published [11] an incorrect proof of the conjecture in 1879. But
Kempe’s work contained a very fruitful idea, which led to the eventual resolution of
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the problem. In 1890, P. J. Heawood [9] pointed out the flaw in Kempe’s argument, but
he also showed that Kempe’s logic may be modified to prove that five colors always
suffice. The argument begins as in the proof of the six colors theorem sketched above.
But, if the forgotten country has five neighbors who have received all five colors in
the coloring of the rest of the map, then Kempe’s argument gives a method to recolor
them, so that one of the colors is freed for use on the forgotten country.

Finally, in 1976, K. Appel and W. Haken collaborated with a number of computers
(taking more than a thousand hours of computer time) to prove the four color con-
jecture (see [3, 4, 5]). Their work made no use of the huge superstructure of theories
created during the twentieth century. Instead, they went back to a vastly elaborated ver-
sion (due to Heesch [10]) of Kempe’s original idea. Perhaps there is a moral lurking
here. Much has been made of the fact that Appel and Haken’s proof is not a “human”
one, and nobody can possibly verify it manually. But we think that the real problem lies
elsewhere. If there was a prior theoretical proof that one only needed to check a million
cases (say) to settle the questions one way or the other, then we think, most mathemati-
cians would have happily left these million verifications to a machine. Unfortunately,
the situation with the Appel–Haken proof is not like that. Until the computer stopped
and came out with its verdict in favour of the four color conjecture, there was no guar-
antee that the program would ever halt. It was rather like the celebrated halting problem
of Turing acted out in real life. The proof consists of finding a finite “unavoidable set
of reducible configurations”. A set of configurations is unavoidable if there is a proof
showing that any hypothetical counterexample to the four color conjecture must con-
tain one of them. A configuration is reducible if, whenever a counterexample contains
it, there is a well-defined procedure to create a smaller counterexample by eliminating
it. The program halted precisely because it found such a set. Of course, we may ig-
nore the mechanical genesis of this list, and get its authenticity verified (necessarily by
another machine, since the list is so large). Such a verification constitutes an airtight
proof which ought to keep everybody happy. But the question remains: why does such
a set exist? Is it mere happenstance, or is there a good theoretical reason for its exis-
tence? So, the search for a “human” proof is still active. (Compare the popular article
[3] written by Appel and Haken; or else, for an abridged discussion of their proof, the
reader may consult [16].)

Early in the game, mathematicians realized that the infinite variety of shapes and
sizes of countries is not relevant to the problem. What matters is the knowledge of
which pairs of countries are neighbors. In order to forget the inessential, they used
the notion of a graph. In simple terms, a graph is a picture consisting of finitely many
dots (called vertices) in which some pairs of dots are joined by (possibly curved) line
segments, called edges. Obviously, an edge joining the vertices x and y intersects an
edge joining the vertices x and z, at least in the common vertex x . A graph drawn in
the plane is called planar if the edges have no further intersections. Each country in
a map may be represented by a dot in its interior (perhaps its capital city). Clearly,
whenever two countries are neighbors, the corresponding dots may be joined by a
line segment (perhaps curved), which meets their common boundary at a point not
lying on any other country, otherwise staying in the interior of these two countries. A
planar graph results. If we can color the vertices of this graph in four colors so that
neighboring vertices (i.e., those joined by an edge) receive different colors, then we
may transfer the colors from the vertices to the corresponding countries, resulting in a
proper four-coloring of the map. Conversely, given any planar graph, we may suitably
blow up the vertices into countries, to create a corresponding map. Thus, we have the
mathematician’s favourite version of the map coloring problem: Show that the vertices
of any planar graph can be properly colored using four colors.
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So what should be a 3-dimensional version of this problem? We might try to define a
“spatial graph” as a graph that may be drawn in three-dimensional space without undue
intersections. Unfortunately, a moment’s thought shows that all graphs are “spatial”.
Indeed, we may take any (finite) number of points in space “in general position”, i.e.,
such that no four of them are on a common plane. (For instance, we may choose these
points arbitrarily on the “moment curve” t 7→ (t, t2, t3).) Then we may join each pair
of these points by a straight line segment. No two of these segments will then meet,
except at a common vertex. The same observation goes for all higher dimensions, since
the 3-dimensional space embeds in all Euclidean spaces of higher dimensions.

Is that the end of the road for our search for a higher-dimensional analogue of the
map coloring problem? Not quite! After all, the attempt to abstract away the irrelevant
geometric details of shape and size by going to planar graphs is not a very successful
one. Indeed, any (sufficiently complicated) planar graph is visually indistinguishable
from a map. Consider the following problem instead. Take a finite set of nonoverlap-
ping discs in the plane. That is, any two of them are either disjoint or (externally)
tangential. In other words, no two of them have any common interior point. We pose
the following question: What is the minimum number of colors needed if we are to
color these discs in such a way that touching discs are given different colors? Does
this not look like a much simpler problem which should have a fairly straightforward
answer? Notice that, given such a set of discs, we can again form a planar graph (ap-
parently of a very special kind) by joining the centers of each pair of touching discs
by straight line segments. So, if Appel and Haken are to be believed, then the answer
to this problem should be four. (We can easily have four mutually touching discs in
the plane, say by taking three equal mutually touching discs and then placing a fourth
small disc in the niché created by them.) An amazing theorem due to Paul Koebe, E. M.
Andreev, and William P. Thurston (see [1, 12, 15]) says that every planar graph can
be redrawn as the graph of a set of nonoverlapping discs. Thus, our innocent-looking
problem of coloring discs is equivalent to the map coloring problem! Now, it is obvi-
ous how we may reprove the “six colors theorem” (albeit using the powerful K-A-T
theorem). Given any finite set of nonoverlapping discs in the plane, choose the small-
est one. Say its radius is of unit length. Then, the discs touching it are equal or larger,
so that it is obvious that at most six discs touch the smallest one. Moreover, if six discs
do touch the smallest disc, then these neighboring discs must be unit discs as well. We
may assume that our set of discs is “connected” (in the sense that a point particle may
go from one disc to any other, all the time staying within the discs in the set). Now, is
it possible that all the discs have six or more discs touching them? If so, then the above
argument shows that all the discs must be of the same size, and each must have exactly
six neighbors touching it. But this is impossible since it is intuitively clear that, in this
case, a disc in the periphery (technically, a disc touching the boundary of the convex
hull of all the discs) would have at most four neighbors! Thus, we have shown that,
given any finite configuration of nonoverlapping discs in the plane, there is at least
one disc that touches at most five others. Now we may complete the proof of the “six
colors theorem” as before. As promised, we have avoided any use of Euler’s formula.

Now it should be clear how we can generalize the map coloring problem to arbitrary
dimensions. For d ≥ 1, let χ(d) be the smallest number such that any (finite) set of
d-dimensional nonoverlapping closed balls (not necessarily of the same size) in d-
dimensional Euclidean space may be colored in χ(d) colors, so that any two touching
balls receive different colors. Thus, we have χ(1) = 2 (trivial) and χ(2) = 4 (Appel
and Haken). What is the value of χ(3)?

There is a small but important question that needs to be answered. How do we know
that χ(d) is finite? In other words, is it possible that in some dimension there are arbi-
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trarily complicated sets of nonoverlapping balls requiring unboundedly large number
of colors? No! To see this, recall that the kissing number τ(d) of d-dimensional Eu-
clidean space is defined as the maximum number of nonoverlapping equal balls that
may touch a given ball of the same size. It is intuitively clear that τ(d) is finite for each
d . Indeed, the τ(d)+ 1 unit balls in such a kissing configuration are contained in a ball
of radius 3 (concentric with the central ball). Comparing (d-dimensional) volumes, we
then see that τ(d)+ 1 ≤ 3d . Thus, τ(d) ≤ 3d

− 1 for all d . This is a very crude bound.
For improved bounds, see Conway and Sloane [8]. The exact value of τ(d) is known
only for d = 1, 2, 3, 4, 8, and 24. Indeed, we have τ(1) = 2, τ(2) = 6, τ(3) = 12,
τ(4) = 24, τ(8) = 240, and τ(24) = 196560 (see [8, 13, 14]). Isn’t that a surprise?

Now, given any finite set of nonoverlapping balls in d-dimensional space, the neigh-
bors of the smallest ball (say, a unit ball) may be shrunk into unit balls, still remain-
ing nonoverlapping and still touching the smallest ball. This shows that there is at
least one ball (namely the smallest) with at most τ(d) neighbors. Therefore, as before,
we may prove by induction on the number of balls that any finite set of nonoverlap-
ping balls in d-space may be properly colored using at most τ(d) + 1 colors. Thus,
χ(d) ≤ τ(d)+ 1. Also, in space of dimension d ≥ 2, we can construct a set of d + 2
mutually touching balls (take d + 1 equal balls with centers at the vertices of a regular
simplex, having the side length of the simplex as their diameters, and then place a small
ball in the middle touching all of them). Thus, χ(d) ≥ d + 2 for all d ≥ 2. So, we have

d + 2 ≤ χ(d) ≤ τ(d)+ 1 ≤ 3d, for all d ≥ 2.

In the magic dimensions d = 1, 2, 8, and 24, it is known that, up to congruence,
there are unique configurations attaining the kissing numbers. In these dimensions we
may argue (exactly as we have done in the case d = 2) that χ(d) ≤ τ(d), a slight
improvement.

In our familiar three-dimensional space, we have 5 ≤ χ(3) ≤ 13. What is the true
value? We won’t even hazard a guess. Happy hunting!

ACKNOWLEDGMENTS. The second author was partially supported by grant from UGC Centre for Ad-
vanced Study.

REFERENCES

1. E. M. Andreev, On convex polyhedra in Lobac̆evskiĭ spaces, Math. of the USSR–Sbornik 10 (1970) 413–
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Stirling’s Formula and Its Extension for the
Gamma Function

Dorin Ervin Dutkay, Constantin P. Niculescu,
and Florin Popovici

Abstract. We present new short proofs for both Stirling’s formula and Stirling’s formula for
the Gamma function. Our approach in the first case relies upon analysis of Wallis’ formula,
while the second result follows from the log-convexity property of the Gamma function.

The well-known formula of Stirling asserts that

n! ≈
√

2πnn+1/2e−n as n→∞, (1)

in the sense that the ratio of the two sides tends to 1. This provides an efficient estima-
tion to the factorial, used widely in probability theory and in statistical physics.

Articles treating Stirling’s formula account for hundreds of items in JSTOR. A few
of the most relevant references may be found in [2], [3], [5], and [7].

As was noticed by Stirling himself, the presence of π in the formula (1) is motivated
by the Wallis formula,

π

2
= lim

n→∞

2 · 2 · 4 · 4 · · · (2n) · (2n)

1 · 3 · 3 · 5 · 5 · · · (2n − 1) · (2n − 1) · (2n + 1)
,

that is,

lim
n→∞

1
√

2n + 1
·

(2n)!!

(2n − 1)!!
=

√
π

2
,

where n!! = n · (n − 2) · · · 4 · 2 if n is even, and n · (n − 2) · · · 3 · 1 if n is odd.
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