
Indian Statistical Institute

M. Tech. (Computer Science) Dissertation

Solving Object Detection and Localization

in an Image

A dissertation submitted in partial fulfillment of the

requirements for the award of Master of Technology in

Computer Science

Author: Supervisor:

Rajeev Baditha Prof. Dipti Prasad Mukherjee

Roll No: CS-1523 Electronics and Communication Sciences Unit

M.Tech(CS) DISSERTATION THESIS COMPLETION

CERTIFICATE

Student: Rajeev Baditha (CS1523)

Topic: Solving Object Detection and Localization in an Image

Supervisor: Prof. Dipti Prasad Mukherjee

This is to certify that the thesis titled “Solving Object Detection and

Localization in an Image” submitted by Rajeev Baditha in partial ful-

fillment for the award of the degree of Master of Technology in Computer

Science is a bonafide record of work carried out by him under my super-

vision. The thesis has fulfilled all the requirements as per the regulations

of this Institute and, in my opinion, has reached the standard needed for

submission. The results contained in this thesis have not been submitted to

any other university for the award of any degree or diploma.

Date: Prof. Dipti Prasad Mukherjee

1

Dedication

To my parents and my well wishers, without your help and

encouragement it would not have been possible.

2

Acknowledgements

I would like to thank my dissertation supervisor Prof. Dipti Prasad

Mukherjee for agreeing to guide me and for helping me to undertake work in

the topic.

3

Abstract

Object recognition in natural images using the database images taken under

ideal lighting conditions has been a challenging problem in the field of com-

puter vision. In this report, we solve the problem of identifying the products

in the rack image of a grocery store. In the past few years this has been the

interest of many computer vision researchers. We have the database images

of different products available in a grocery store using which the products

in a rack image need to be found. The problem can be divided into two

major sub problems of matching and localization. We first use the matching

from SIFT and try to improve the matching using a patch based matching

algorithm. After matching, we are left with localization part and a product

could be present at more than one location in the rack. We locate multi-

ple instances of a product by clustering matched points using density based

clustering methods. Although this method is vulnerable to outliers, we try

to reject few of them by ignoring the less dense clusters. Finally we run this

algorithm on our data set. We report good accuracy on our data set.

4

Contents

1 Introduction 8

1.1 Problem Statement . 9

1.2 Challenges . 10

1.2.1 Skewed Images . 10

1.2.2 Extreme Variation in Illumination 11

1.2.3 Differences in Quality of Target and Query Images . . 11

1.2.4 Changes in the Target Images 11

1.3 Related Work . 13

1.4 Overview of the Algorithm . 15

2 Methodology 18

2.1 Affine Descriptor . 19

2.1.1 SIFT . 19

2.2 Matching Using SIFT . 20

2.2.1 Precompuation . 20

2.2.2 Finding the Correspondences 21

2.3 Clustering Multiple Instances 22

2.4 Affine Fitting . 24

2.5 Filtering . 25

5

3 Patch Match 26

3.1 Histogram of Oriented Gradients 27

3.2 Patch Match . 27

3.2.1 Initialization . 27

3.2.2 Propagation . 28

3.2.3 Random Search . 30

3.3 Algorithm . 30

4 Experiments and Results 31

4.1 Data Set . 31

4.2 Results . 33

5 Conclusions and Future Work 35

6

List of Figures

1.1 Typical rack image . 9

1.2 Skewed rack image . 10

1.3 Illustration of the quality of rack and target images 12

1.4 Illustration of change in the target images 12

3.1 Initialization . 28

3.2 Propagating a good match . 29

3.3 Propagation . 29

4.1 Sample product images . 32

4.2 Example rack Image . 32

4.3 Rack image with reconstructed output 33

7

Chapter 1

Introduction

Object detection and localization play an important role in many computer

vision applications. By object detection and localization we desire to find

the location of a template image in the given input image. This problem

gets harder when the template image is taken under ideal lighting conditions

and the input image is a natural image. In this report we try to solve the

problem of identifying the product images on a grocery shelf image. Recently

this problem has been of great interest of many computer vision researches.

Major retail businesses are interested in applications that will help them

enhance the shopping experience, more easily perform stock inventory, and

monitor shelf status more frequently. Other applications of this include as-

sisting the visually impaired through grocery stores.

Section 1.1 has a detailed explanation of the problem statement. Section

1.2 presents the challenges of solving the problem. The work happened in

this area is presented in Section 1.3. Overview of the methodology is given

in the Section 1.4

8

Figure 1.1: Typical rack image

1.1 Problem Statement

In this report we are trying to solve the problem of locating the products

in the rack image of a typical grocery store. We have the database of all

the product images available in the store. Using this database we need to

recognize the products in the given rack image. A single product could be

present at more than one location. We have one instance of every product

available in the grocery store. The products in the rack image will be at

different scales, lighting conditions compared to the database product images.

We don’t assume any information about the rack image meaning that

any product could be present in the given rack image. Details like number of

shelves in the given rack, type of products that could be present in the rack,

size of the rack, number of instances of product in the rack are all unknown.

Although having such information makes the problem simpler we try to solve

the problem without that information. A typical rack image can be seen in

the Figure 1.1 from web market database [25].

9

Figure 1.2: Skewed rack image

1.2 Challenges

The challenges in solving this problem can be divided into several headings,

as discussed below. In this section, the challenges are highlighted.

1.2.1 Skewed Images

Owing to the fact that the entire image of the shelf is captured in a single

shot, it is not possible to have the cameraman(or the robot, as the case may

be), to stand at sufficient distance from the shelf. Hence the distance of each

point on the shelf varies significantly, resulting in a skewed image of the shelf.

Figure 1.2 shows a skewed rack image.

10

1.2.2 Extreme Variation in Illumination

Due to the lack of source of any natural light, shopping mall is an area

which is invariably lit artificially. The color of the incident light varies over

a wide range between different stores and also between different locations

in the same store. This difference in color results in significant changes in

the appearance of the images, even at a perceptual level. This brings up a

huge challenge in the identification of the algorithms because the information

present in the color becomes fairly difficult to extract.

1.2.3 Differences in Quality of Target and Query Im-

ages

The images provided in the Product database are of high resolution, while the

images cropped from the shelves are of lower resolution. Obtaining similar

quality images of both the products and the rack images are not feasible

because while capturing the store image, the camera covers the entire rack

in a single shot, with the dimensions of the image being around 2000X1000,

while the same camera can be used to capture high resolution images of the

products, when photographing them one at a time. Figure 1.3 shows product

image and a cropped rack image illustrating this.

1.2.4 Changes in the Target Images

Once a new product is launched, as the case is during a promotional offer, the

appearance of the product image changes. This brings about new challenges

in the matching of the images. The color might have been changed a bit,

while the brand logo might have been shifted from the top of the product to

the bottom. These changes are illustrated in Figure 1.4.

11

(a) Product image (b) Product cropped from rack image

Figure 1.3: Illustration of the quality of rack and target images

(a) Product image without offer (b) Product image with offer

Figure 1.4: Illustration of change in the target images

12

1.3 Related Work

Objection detection and localization are building blocks of many computer

vision applications. Naturally lot of work has been done in solving both

the problems. By object detection and localization our target is to find

the location of the given template in an input image. The template and

the input images generally differ in scales. This can be naively solved by

calculating normalized cross correlation of template and input image. Further

the template image is localized at the peaks. Because the scales are different

we can extend this to a multi-scale cross-correlation. This method works in

very constrained environments and is not applicable in our case.

The naive method can be improved by comparing some features associ-

ated with pixels rather than comparing just raw pixel values. The work of

Hae Jong Seo et al. [21] does exactly that. Rather than considering just the

raw pixels values, the authors here compute locally adaptive regression ker-

nels by considering a neighbourhood around a pixel. Matrix cosine similarity

is used to compare two patches here. This method is claimed to be invariant

to noise, rotation. Although this method identifies the products better, it

fails when lighting is different in both the images.

A robust method to solve this problem is by using SIFT [16]. David

Lowe’s SIFT is undoubtedly the most used algorithm in computer vision.

David Lowe in his paper explains how SIFT can be used for object detection.

The fact that SIFT is invariant to scale, rotation and partially invariant to

lighting, 3D viewpoint makes it most suitable for our application. But the

product identification fails considerably when the target image is present at

more than one location. This can solved in a couple of ways. We will mention

those later in the report. Matching results using SIFT are appreciable which

is why we have used it in our algorithm.

13

The problem of recognizing the products on the rack image of a grocery

store attained a lot of attention in the last decade. As mentioned in the

introduction solving this problem has two applications. One is planogram

compliance and the other is assisting the visually challenged while shopping.

Few researchers concentrated on building a mobile application for assisting

the blind whereas others concentrated on planogram compliance. The work

of [5], [12], [23] focuses on assisting the visually impaired in . Rabia Jafri et

al. in [13] provides a survey on different methods focusing the same problem.

Making a mobile application is the target of most of the works so it is neces-

sary that the algorithm runs fast to work real time. Planogram compliance

is another important problem which saves a lot time and money for the store

owners. The major work done in this area is by [15]. In these works authors

assume that planogram is already given.

Earliest work on this problem dates back to the work by Merler et al.

[18] where they have introduced a data set by name GroZi-120. In this paper

they propose 3 methods using colour histogram, SIFT, Boosted Harr like

features and solve the problem. The main contribution of this paper is the

GroZi-120 data set as it is the first publicly available data set available for

other researchers to work with.

Other work on this problem is by Aucliar et al. [1] where they extended

SIFT for multi instance object detection. The concentrated mainly on mak-

ing the detection faster so that it can can be used in real time.

Few other works can be found be found at [10] and [17]. George et al. in

[11] introduces a new data set called Grocery Products data set. Varol et al.

in [22] proposes a machine learning approach to solve this problem. Multi

instance objection approaches can be found in [2] and [24]. Chong et al. in

[6] uses deep learning to solve the problem.

14

1.4 Overview of the Algorithm

Start

Input Image

Extract SIFT descriptors from the image

Correspondence Matching with database

Good

Matching?

Clustering the centers for multiple instances

Patch Match

Affine transformation fitting using RANSAC

Output Image

Stop

yes

no

15

In this section we present the overview of the proposed methodology. Flow

chart summarizing our algorithm is given in Figure 1.4. Our algorithm has

two main parts one is matching and the other localization. Brief explanation

about these two is given below.

In matching step we intend to find the correspondence between product

image and the input rack image. We used SIFT to match the key point

descriptors between product images and rack image. In Section 1.2 we have

given the challenges for solving the problem. Most of them can be solved

using SIFT. SIFT is invariant to scale, rotation and partially invariant to 3D

viewpoint and lighting. These features of SIFT answers the challenges posed

by skewness and varied lighting conditions.

Even though SIFT is robust it doesn’t necessarily produce good matches

every time. Therefore the correspondence matching needs to be improved in

case of mismatches. We improve it using a patch based matching algorithm.

The main idea of this algorithm is to use the found good match and propagate

it to its neighbours. This ensures spatial consistency. Another major step in

this algorithm is to randomly check for good match in the neighbourhood of

existing match. To check if two patches match or not, their HOG descriptors

[7] are compared. Lesser the euclidean distance between the descriptors bet-

ter the match. Overall we observed improved matching with this approach.

The detailed description of this algorithm is given in Chapter 3.

In the localization part we first interpolated the product centre using

every correspondence. The product centers are sent to a clustering algorithm

to detect the multiple instances of a product. Finally RANSAC [9] is used to

solve for the affine transformation matrix between product and rack images.

We generate a reconstructed rack of the input by transforming the product

images using the found affine transformation.

16

Chapter 2, 3 combined has the methodology of the approach. Chapter 2

has the baseline approach whereas chapter 3 has the patch based matching al-

gorithm. Results on our data set are presented in the Chapter 4. Conclusion

and Future work is in Chapter 5.

17

Chapter 2

Methodology

In the introduction we have given the flow chart of the algorithm. In this

chapter we present the detailed methodology of our baseline algorithm. The

baseline approach is heavily dependant on SIFT and is only as good as SIFT.

We tackle its limitations using a patch based matching algorithm. Increased

detection rates are achieved using the patch based matching algorithm. The

details of it can be found in the next chapter.

As mentioned before the algorithm can be divided into two main parts

matching, localization. Section 2.1 has a brief overview about SIFT. Section

2.2 describes the use of SIFT features to perform affine matching. It is

followed by a robust method for multi instance object localization. Section

2.3 has a detailed explanation of clustering the multiple instances. Section

2.4 describes about the final affine fitting algorithm. The final filtering step is

detailed in Section 2.5. This chapter is concluded by listing the pros and cons

of the approach followed by the necessity to go for a patch based matching

algorithm

We reiterate the problem statement and continue with the methodology

of the proposed approach. Our target is to identify the products present in

18

the rack image of a grocery shelf. Number of shelves in the rack image could

vary from one to five. We have a database of all the product images taken

under ideal lighting conditions. Our input is a rack image and our job is to

find what products constitute the rack.

2.1 Affine Descriptor

In this section we mention about the main building block of our algorithm,

SIFT[16]. The robustness of SIFT makes it an ideal tool for solving our

problem. We used SIFT for matching key points between product images

and rack image. This section introduces the SIFT algorithm and Section 3.2

explains how we can use SIFT in our algorithm. This is just a brief overview

of this descriptor and the complete details can be found in [16].

2.1.1 SIFT

Scale Invariant Feature Transform by David Lowe is the most popular image

descriptor in the field of Computer Vision. It has been shown in a survey [19]

that SIFT is the best available descriptor compared to other local descriptors.

In the challenges section we have mentioned that the products in the rack

image are at a different scale, rotation, and lighting compared to the product

images. SIFT as the name suggests is invariant to scale and rotation. It is

partially invariant to 3D viewpoint and lighting. This makes SIFT ideal

descriptor for our application. The next paragraph has a brief overview of

SIFT.

SIFT works by first calculating interest points in an image and it calcu-

lates a descriptor for every point. The interest points are called key points.

These are the points which can be found repeatedly in different scales of the

19

image. Key points are calculated by finding the extrema in the scale space.

The point location and the scale at which it is found are noted down. Around

every key point, an orientation is calculated which is the largest gradient ori-

entation in the key point’s neighborhood. For every key point a 128 length

vector is calculated by considering a patch around it. Histogram of gradients

in that patch is calculates and it forms the 128 length vector.

Therefore after SIFT; every key point detected is associated with a scale,

orientation, and descriptor. The figure below has an example of SIFT output.

2.2 Matching Using SIFT

First step in our algorithm is to precompute the SIFT descriptors for all the

product images. Number of products images could be high so precomputing

the SIFT descriptors for all of them would speed up the algorithm. We

calculate the SIFT descriptors for every product image and store it in a

database. Although it increases the memory overhead, it is necessary to

make the algorithm run quickly.

2.2.1 Precompuation

Let there be a total of N product images. From the product images every

product is selected at once and sent to the SIFT algorithm. We create a

database where dbi represents the database of SIFT descriptors for ith image.

For every image we get key points in the range of 200-500. For every key point

scale, rotation and a descriptor is calculated. Therefore all the descriptors

are of the form 〈 location, scale, rotation, 128-length vector 〉 .

20

2.2.2 Finding the Correspondences

After the pre computation step, the SIFT algorithm is run on input rack

image. It generates the descriptors in the same way it has generated for

product images. We store the SIFT output for rack image in IN. The number

of key points in rack image can be as high as few thousands.

We intend to find the correspondence between rack image and product

images. As we don’t have any prior information about the type of products

present in the input rack image we need to search for all the product images.

So we assume that all the products have potential matches in the rack image.

Corresponding matching is implemented in a linear fashion as follows.

Every feature in IN is compared to all the features in DB. We consider

only the ε-neighbourhood of every feature. We do the same thing with all

the features in the rack image. Here the correspondences could be from

any of the product image. So we take the matches one by one. First we

consider the matching with first product image, then with the second and

so on till the last product. For a single product, this is same as calculating

the pairwise distances between the rack image descriptors and product image

descriptors. If the number of key points in the product image is m and the

number of key points in the rack image is n, the pairwise distance matrix will

be of size m*n. We take the Euclidean distance between the two descriptors

while filling the matrix. This can be optimized by considering the square of

Euclidean distance to reduce the computation.

The each value of matrix lies between 0 and 2. The value of ε has to

be chosen to consider only the good matches. A threshold of 0.3 has given

us good results for most of the products. Any distance less than 0.3 is

considered a match otherwise a mismatch. Although few mismatches were

found we resolve it in the further steps. Because a product could be present

21

at more than one location this type of threshold is implemented. Other way

of putting a threshold is by considering k-nearest neighbors for a fixed k. As

we don’t have information about the number of instances of product present

in the rack this method is not feasible. Although we can put a cap on the

maximum number of instances present, we will end up with lot of mismatches

when the actual number of instances present is much smaller than the chosen

k value.

The number of product images in the database could be high and the cal-

culation of euclidean distance between two features is also computationally

expensive. This makes calculating the ε-neighbourhood an expensive opera-

tion. A simple way of speeding up the process is to apply Principal Compo-

nent Analysis(PCA) [14] on the descriptor vectors and reduce its dimension.

This method though offers only a insignificant improvement over the previous

one. Another way is the usage of k-d trees. Approximate nearest neighbour

algorithm can be used with k-d trees for computing the ε-neighbourhood of

a feature. A similar performance boost can be achieved by using hashing.

Even though they are fast, it effects the matching because these algorithms

only output the approximate neighbours.

2.3 Clustering Multiple Instances

The matching results show good matches with few outliers. . We need to

come up with a solution to reject the mismatches. Multi instance object

recognition is a challenging task in computer vision. Generalized Hough

Transform is used to cluster the number of instances in [20]. This method

gives good results when matches are correct. But the main problem with

this approach is choosing the grid size in Hough Space. If the grid size is too

22

small a single cluster might be detected as two clusters and when the grid

size is large two or more clusters might be merged and found as one. Also

high dimensionally of Hough Space makes it harder to implement.

Above mentioned reason necessitated the need for a different way to tackle

the problem. First idea is to cluster the matched 2D points on rack image

using a density based clustering algorithm. Because of the insignificant dif-

ferences between the inter class and intra class distances this method failed

to recognize the clusters. Another idea is to cluster the 4D vector containing

the (x, y, scale ratio, theta) obtained from SIFT matches. Here scale is the

ratio of scales between two matched features and rotation is the difference

in orientation between the features. (x, y) is the location of key point on

the rack that got matched. This almost has the same output as the previous

approach.

To overcome the above mentioned challenges we makes small changes to

the above clustering algorithm. As observed before we need to make the

intra cluster distance small and inter cluster distance large. To achieve this

we estimate the center of the product for every matched point in the rack

image. This will make clustering easy. How we estimate the centers is as

follows. [26] tackles the problem in the same way.

As mentioned before all the products images are cropped to exact bound-

aries. Therefore the center location of the product image is known to us.

Using this information we try to interpolate the center of the product in the

rack image. Let’s say a point A from product image matches with a point B

on rack image. Let C be the center of product image. For both the points

we know the scale and rotation from SIFT.

CA is the vector joining center of product and point A. To interpolate the

center on the rack image we need to change the scale and rotate this vector

23

using the SIFT outputs.

After the estimation of the centers the resulting 2D points are clustered

using DBSCAN algorithm. Here we could have used kmeans algorithm for

clustering if the information about the number of clusters is known. As we

have assumed no-prior information it takes out kmeans from our options.

DBSCAN [8] requires two input parameters namely epsilon and min points

for the radius of neighborhood and minimum number of points in the neigh-

borhood. 3 points are required to calculate the affine transformation from

product image to rack image so epsilon value is 3. But because of noise we

might wrongly predict clusters as epsilon is low. Therefore epsilon = 10 is

chosen for better results. A minimum radius of 5 is chosen as it is reasonable

to assume that center will be estimated with the error of at most 10 pixels

in both height and width.

2.4 Affine Fitting

Finally we are left with estimating the transformation matrix between prod-

uct image and rack image. If we assume that most of the points of the

product come from a planar surface we can fit an affine transformation be-

tween product image and rack image. Because the affine transformation has

6 degrees of freedom we need 3 matches to solve the affine transformation

matrix. Each cluster from the clustering output represents an instance of the

product and is associated with a transformation matrix. Every cluster may

have more than 3 points in which few may be mismatches. Therefore to find

the correct transformation we need a robust method. Thankfully RANSAC

does it.

Random sample consensus (RANSAC) is an iterative method to estimate

24

parameters of a mathematical model from a set of observed data that contains

outliers.

RANSAC works by selecting 3 matches at random and solves the system

of linear equations to find the affine transformation matrix. It then calculates

the number of inliers and outliers with the found affine matrix. It repeats

the process iteratively and returns the affine matrix with highest number of

inliers. Here inliers refers to the matches that agree the affine matrix and

outliers the opposite.

RANSAC fails when the number of inliers are less than 50 percent. Be-

cause RANSAC is randomized algorithm it may different outputs in every

iteration. To overcome this problem we run RANSAC thrice and choose the

best one every time.

2.5 Filtering

For every potential occurrence we get a triplet 〈id, T, n〉 where id is the

product number, T is the found transformation matrix, n is the number of

points in the cluster. We sort the triplet based on the number of points in

descending order. Each occurrence is taken in the descending order and is

pasted on an image with the same dimensions as the input rack image. As

only one product can be present at a location we reject any occurrence if it

is intersecting with an existing one.

Here we also reject all the transformed images which lie outside the output

image. If the image is just few pixels outside the output image it is still

accepted. The threshold used here is 10 pixels. This occurs mostly at the

image boundaries because the calculated affine transformation may not be

exactly correct.

25

Chapter 3

Patch Match

As mentioned before we try to improve the baseline approach using a patch

based matching algorithm. We make use of Patch Match algorithm described

in [3]. It is a randomized algorithm for finding the matches between two

images. This paper aims at finding the approximate nearest neighbours for

every patch. This is fast algorithm and can match for different scales and

rotations. In this chapter we give a brief idea about the algorithm. Readers

can go through [4] for the full details about the algorithm.

The main idea of this algorithm is to use the found good match and

propagate it to its neighbours. This is called propagation. Random Search

is another major step in this algorithm. In this step we randomly check for

good match in the neighbourhood of existing match. To check if two patches

match or not, their HOG descriptors [7] are compared. Lesser the euclidean

distance between the descriptors better the match.

Section 3.1 has the brief description about HOG. Section 3.2 explains the

main in the patch based matching algorithm. Section 3.3 describes its usage

in our algorithm.

26

3.1 Histogram of Oriented Gradients

HOG is one of the popular image descriptors in computer vision. The original

work of HOG can be found at [7]. Although HOG is a image descriptor here

we use it as a point descriptor. For every pixel, a 17*17 neighborhood patch

is taken with the current pixel as the center ans a 36 length HOG descriptor

is calculated for every pixel. When comparing two patches we just compare

their HOG descriptors.

3.2 Patch Match

In this section we explain a simple version of patch match algorithm. In this

algorithm we try to find the approximate neighbours of the product image

patches in the given rack image. For a product image, patch match algorithm

returns the Nearest Neighbor Field (NNF) which has the same size as the

product image where each location has the co-ordinates of the patch it has

matched to in the rack image. Patch match algorithm has 3 main steps:

Initialization, Propagation and Random Search.

3.2.1 Initialization

NNF matrix is initialized randomly. Let r, c be the number of rows and

columns in the rack image. For every pixel, we randomly choose two integers

x, y such that x ≤ r and y ≤c and make NNF (current pixel) = (x, y).

We calculate the respective matching score and store the same in the score

matrix as depicted in the figure 3.1.

27

Figure 3.1: Initialization

Patch match is an iterative algorithm. Initialization step is done once but

propagation and Random Search are done iteratively. In every iteration, we

move from left to right and top to bottom (raster scan) covering all the pixels.

Let there be a total of n pixels in the database image. In every iteration,

P1,R1,P2,R2 . . . Pn,Rn this order is followed. Here P represents Propagation

and R for Random Search.

3.2.2 Propagation

For every pixel, right and top pixels are its neighborhood. In the pixel

neighborhood let’s say the right one has the best score (Let it be R), then

the current pixel is now mapped to left of NNF(R).

Figures 3.2 and 3.3 shows the two successive steps in the propagation

algorithm. In the figure 3.2 Violet line represents a good match and red line

a mismatch. Figure 3.3 shows how the propagation happened.

28

Figure 3.2: Propagating a good match

Figure 3.3: Propagation

29

3.2.3 Random Search

We try to improve the NNF by doing a random search. Let p be the current

pixel. We will take k radius values from an exponential distribution. For

every radius around the pixel we will randomly select one point (thereby

patch). We will update the NNF if any of the k patches result in a better

matching score.

We stop the algorithm after fixed number of iterations. In every iteration,

propagation and random search are done for every pixel from left to right

and top to bottom. Generally the convergence is achieved in 5-10 iterations,

although it may sometimes get stuck at local optima. For odd iterations the

neighborhood is left and bottom pixels and for even iterations it is right and

top pixels.

3.3 Algorithm

In this section we explain how Patch Match can be used in our algorithm. We

re size the rack image to various scales and run patch match in all the scales

as HOG descriptor is not scale invariant . 10 scales are uniformly chosen

from 0.7 to 1.5. We will accept the scale for which the mean of score matrix

is the least. Once the scale is finalized we put a threshold (0.25*max value)

and reject the matches whose score is above the threshold. After finding the

matches we continue with the steps discussed from Section 2.3 to Section 2.5.

30

Chapter 4

Experiments and Results

In this chapter we present the results of the proposed algorithm. Section 4.1

describes about the data set where as Section 4.2 has the final results.

4.1 Data Set

Here we provide a glimpse of the data set we have used. We have two types

of images product images and rack images. There are a total of 25 product

images and 20 rack images. Although this is a small data set we chose this

because it covers most of the challenges we have mentioned before. The

product images are taken under ideal lighting conditions. Figure 4.1 has few

example product images.

The rack images on the other hand are natural images and were taken in

different lighting conditions. The number of shelves vary from 1-5 on typical

rack image although the algorithm works fine on any number of shelves. The

change in the 3D viewpoint of the rack image makes the detection hard but

our algorithm is invariant to 15 degrees change of angle. The rack image

with few variations can be seen in Figure 4.2.

31

Figure 4.1: Sample product images

Figure 4.2: Example rack Image

32

Figure 4.3: Rack image with reconstructed output

Figure 4.3 shows the reconstructed output after running the algorithm.

We can see that the input image skewed. But that doesn’t have effect on

recognition of the products. This output is only after the SIFT matching.

4.2 Results

In this section we show our present the accuracy of our algorithm. For the 20

selected rack images number of objects detected has been shown tabulated.

We compare our algorithm with the last year thesis work on this problem.

33

Image

Number

Total

Products

Previous

method
SIFT SIFT+Patch

Match

1 25 18 19 23

2 25 16 17 21

3 25 18 19 20

4 25 18 18 21

5 25 15 16 19

6 25 19 19 23

7 25 18 19 20

8 25 17 18 20

9 25 17 17 20

10 25 17 18 21

11 25 16 16 20

12 25 16 17 21

13 25 16 17 21

14 25 16 16 20

15 25 15 17 20

16 25 15 16 19

17 25 17 18 20

18 25 17 19 20

19 25 17 16 20

20 25 15 15 19

Mean

Accuracy
66.6 69.4 77.8

34

Chapter 5

Conclusions and Future Work

In this report we described an algorithm using SIFT to identify the products

in a rack image. We improve it using the patch based matching algorithm.

The objective at the start of this project is design an algorithm to identify

the products without taking any user input. We have done that successfully.

It is also necessary to make the algorithm run after

Although the described algorithm has good accuracy it doesn’t scale well.

We tested our algorithm with a small database of 25 product images and the

algorithm takes 10 minutes to generate the output on a machine with 4

processors and 3.4 Ghz processing speed. Even in a small store number of

products will be much higher than 25 so our algorithm will need hours to

generate the output. So answer this question k-d trees can be used to find

fast nearest neighbors. Aucliar et al. in [1] uses locally sensitive hashing to

even speed the nearest neighbors computation. These can be added to the

present work to generate the outputs quickly.

35

Bibliography

[1] Adrien Auclair, Laurent D. Cohen, and Nicole Vincent. How to Use

SIFT Vectors to Analyze an Image with Database Templates, pages 224–

236. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[2] Ruihan Bao, Kyota Higa, and Kota Iwamoto. Local Feature Based Mul-

tiple Object Instance Identification Using Scale and Rotation Invariant

Implicit Shape Model, pages 600–614. Springer International Publishing,

Cham, 2015.

[3] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Gold-

man. PatchMatch: A randomized correspondence algorithm for struc-

tural image editing. ACM Transactions on Graphics (Proc. SIG-

GRAPH), 28(3), August 2009.

[4] Connelly Barnes, Eli Shechtman, Dan Goldman, and Adam Finkel-

stein. The generalized patchmatch correspondence algorithm. Computer

Vision–ECCV 2010, pages 29–43, 2010.

[5] J. P. Bigham, C. Jayant, A. Miller, B. White, and T. Yeh.

Vizwiz::locateit - enabling blind people to locate objects in their en-

vironment. In 2010 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition - Workshops, pages 65–72, June 2010.

36

[6] Timothy Chong, Idawati Bustan, and Mervyn Wee. Deep learning ap-

proach to planogram compliance in retail stores.

[7] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for

human detection. In Computer Vision and Pattern Recognition, 2005.

CVPR 2005. IEEE Computer Society Conference on, volume 1, pages

886–893. IEEE, 2005.

[8] Martin Ester, Hans peter Kriegel, Jörg Sander, and Xiaowei Xu.

A density-based algorithm for discovering clusters in large spatial

databases with noise. pages 226–231. AAAI Press, 1996.

[9] Martin A. Fischler and Robert C. Bolles. Random sample consensus:

A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[10] Annalisa Franco, Davide Maltoni, and Serena Papi. Grocery product

detection and recognition. Expert Systems with Applications, 81:163 –

176, 2017.

[11] Marian George and Christian Floerkemeier. Recognizing Products: A

Per-exemplar Multi-label Image Classification Approach, pages 440–455.

Springer International Publishing, Cham, 2014.

[12] Marian George, Dejan Mircic, Gabor Soros, Christian Floerkemeier, and

Friedemann Mattern. Fine-grained product class recognition for assisted

shopping. In Proceedings of the IEEE International Conference on Com-

puter Vision Workshops, pages 154–162, 2015.

[13] Rabia Jafri, Syed Abid Ali, Hamid R. Arabnia, and Shameem Fatima.

Computer vision-based object recognition for the visually impaired in

37

an indoors environment: A survey. Vis. Comput., 30(11):1197–1222,

November 2014.

[14] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[15] S. Liu, W. Li, S. Davis, C. Ritz, and H. Tian. Planogram compliance

checking based on detection of recurring patterns. IEEE MultiMedia,

23(2):54–63, Apr 2016.

[16] David G Lowe. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110, 2004.

[17] M. Marder, S. Harary, A. Ribak, Y. Tzur, S. Alpert, and A. Tzadok.

Using image analytics to monitor retail store shelves. IBM Journal of

Research and Development, 59(2/3):3:1–3:11, March 2015.

[18] M. Merler, C. Galleguillos, and S. Belongie. Recognizing groceries in

situ using in vitro training data. In 2007 IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–8, June 2007.

[19] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-

scriptors. In 2003 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2003. Proceedings., volume 2, pages

II–257–II–263 vol.2, June 2003.

[20] R. Okada. Discriminative generalized hough transform for object dectec-

tion. In 2009 IEEE 12th International Conference on Computer Vision,

pages 2000–2005, Sept 2009.

[21] H. J. Seo and P. Milanfar. Training-free, generic object detection us-

ing locally adaptive regression kernels. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(9):1688–1704, Sept 2010.

38

[22] Gül Varol and Rıdvan S. Kuzu. Toward retail product recognition on

grocery shelves, 2015.

[23] T. Winlock, E. Christiansen, and S. Belongie. Toward real-time grocery

detection for the visually impaired. In 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition - Workshops,

pages 49–56, June 2010.

[24] E. Yörük, K. T. Öner, and C. B. Akgül. An efficient hough transform

for multi-instance object recognition and pose estimation. In 2016 23rd

International Conference on Pattern Recognition (ICPR), pages 1352–

1357, Dec 2016.

[25] Yuhang Zhang, Lei Wang, Richard Hartley, and Hongdong Li. Where’s

the Weet-Bix?, pages 800–810. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.

[26] S. Zickler and M. M. Veloso. Detection and localization of multiple

objects. In 2006 6th IEEE-RAS International Conference on Humanoid

Robots, pages 20–25, Dec 2006.

39

