
SmartDNSPKI: A blockchain based DNS and
PKI

Shashee Kumari

SmartDNSPKI: A blockchain based DNS
and PKI

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Shashee Kumari
[Roll No: CS-1525]

under the guidance of

Dr. Sushmita Ruj
Assistant Professor

Cryptology and Security Research Unit

Indian Statistical Institute
Kolkata-700108, India

July 2017

To my family and friends

1

CERTIFICATE

This is to certify that the dissertation entitled “SmartDNSPKI: A blockchain
based DNS and PKI” submitted by Shashee Kumari to Indian Statistical
Institute, Kolkata, in partial fulfillment for the award of the degree of Master
of Technology in Computer Science is a bonafide record of work carried
out by her under my supervision and guidance. The dissertation has fulfilled
all the requirements as per the regulations of this institute and, in my opinion,
has reached the standard needed for submission.

Sushmita Ruj
Assistant Professor,
Cryptology and Security Research Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

2

Acknowledgements

I would first like to thank my advisor, Sushmita Ruj, Cryptology and Security
Research Unit, Indian Statistical Institute, Kolkata, for guiding, supporting,
and motivating me over the year. You have set an example of excellence as a
researcher and a mentor to your students.

I would also like to thank Prabal Banerjee, Junior Research Fellow, Indian
Statistical Institute, Kolkata, and Ram Govind Singh, Junior Research Fellow,
Indian Statistical Institute, Kolkata, for helping me with the Ethereum platform.

My deepest thanks to all the teachers of Indian Statistical Institute, for their
valuable suggestions and discussions which added an important dimension to
my research work.

Finally, I am thankful to my family, friends, and all those who helped me com-
plete this project, directly or indirectly.

Shashee Kumari
Indian Statistical Institute

Kolkata - 700108 , India.

3

Abstract

PKI is an infrastructure used to create, store, manage, revoke, and distribute
Digital certificates which bind a public key to an entity. PKI is implemented
broadly using two approaches: first approach is a centralised system with Cer-
tificate Authorities (CAs) playing the crucial role of certifying an entity and
publishing the certificate of the certified entity. This introduces a central point
of failure in the system in the form of trusted CAs. Moreover, Certificate Au-
thorities are not publicly auditable making it more difficult to detect a fraud
CA. The second approach is “Web-of-Trust (WoT) ”, which is a decentralised
system of certifying the entities and has no trusted third party. The participat-
ing entities can certify themselves and get attestations from other participants
who vouch for their certificates and are trusted by other users. However, a
participant needs a trusted introducer to enter the system. To overcome these
problems, few blockchain-based PKIs have been proposed to make the process of
certificate issuance, updation and revocation publicly auditable and unalterable.

Google suggested use of append-only ledgers to make the activity of cer-
tificate issuance publicly auditable. Use of a publicly auditable, append-only
ledger, which is otherwise very useful, comes with a number of privacy-related
challenges. One of those challenges is registering a certificate for a private sub-
domain. Certificate transparency has extended support to register redacted
domain names in CT logs. However, domain name redaction has many weak-
nesses. Use of wildcard certificates for securing subdomains is also ambiguous
and insecure. Other blockchain-based PKIs also do not have any method to
support private subdomains in a secure way. We have proposed SmartDNSPKI:
a blockchain-based DNS and PKI, which provides all the functionalities of a
DNS and a PKI preserving the privacy of private subdomains. Our scheme
does not reveal any information about the private subdomains, apart from the
fact that a private subdomain has been registered for the domain. To support
the linkability between the certificate owner and the domain owner, the two
smart contracts interact with each other. We have implemented our solution on
Ethereum platform.

4

Contents

1 Introduction 8
1.1 PKI . 8

1.1.1 Types of certifications . 8
1.2 DNS . 10
1.3 Blockchain . 10
1.4 Our contribution . 11
1.5 Thesis Outline . 11

2 Related work 12
2.1 Namecoin . 12
2.2 Certcoin . 12
2.3 Blockstack . 12
2.4 CONIKS and EthIKS . 13
2.5 Certificate Transparency . 13
2.6 Certificate Transparency with Privacy 13
2.7 IKP . 14
2.8 SCPKI . 14

3 Design 15
3.1 Commitment Scheme . 15

3.1.1 Pedersen commitment scheme 15
3.2 Participants . 16

3.2.1 Blockchain . 16
3.2.2 Domain Owner . 16
3.2.3 Certificate Owner . 16
3.2.4 Users . 16

3.3 Design . 16
3.3.1 DNS . 17
3.3.2 Structure of a DNS record in SmartDNS contract 17
3.3.3 PKI . 17
3.3.4 Structure of a certificate in SmartPKI contract 17
3.3.5 Structure of a certificate on the domain server 19
3.3.6 Keys assosiated with a domain 19

3.4 Smart Contracts for SmartDNSPKI 19

5

3.4.1 Modules for SmartDNS contract 23
3.4.2 Modules for SmartPKI contract 30

3.5 Certificate validation during Client-Server interaction 36
3.6 Security of the scheme . 36

3.6.1 Unsigned key updates . 37
3.6.2 Signed key updates . 37

4 Implementation 39
4.1 Ethereum . 39
4.2 Smart contracts . 40
4.3 Implementation . 40
4.4 Performance . 40

5 Future work and Conclusion 43

6

List of Tables

3.1 Structure of a Domain Record in the contract storage 18
3.2 Structure of a Domain Certificate in the contract storage 20
3.3 Structure of a Domain Certificate with Public Subdomains stored

on the domain server . 21
3.4 Structure of a Domain Certificate with Private Subdomains stored

on the domain server . 22

4.1 Gas costs of all the transactions in SmartDNS contract 41
4.2 Gas costs of all the transactions in SmartPKI contract 42

7

Chapter 1

Introduction

1.1 PKI

A public key infrastructure (PKI) [6] is a comprehensive system for the
creation, storage, and distribution of digital certificates which are used to verify
that a particular public key belongs to a certain entity. The certified entity
could be a person, a group, an agency, an organization, a business, etc. The
PKI creates digital certificates which map public keys to entities, securely stores
these certificates in a central repository and revokes them if needed. It estab-
lishes and maintains a trustworthy networking environment by providing key
and certificate management services that enable encryption and digital signa-
ture capabilities across applications. A PKI consists of:

- A Certificate Authority (CA): It is a trusted third party which
stores, issues and signs the digital certificates.

- A Registration Authority (RA): It verifies the identity of entities
requesting their digital certificates to be stored at the CA

- A central directory: It is a secure location in which CAs store and
index keys

- A certificate management system: It manages things like the ac-
cess to stored certificates or the delivery of the certificates to be issued.

- A certificate policy: It specifies all the actors in the PKI, their roles
and duties.

1.1.1 Types of certifications

Broadly speaking, PKI has two main implementations: Certificate Authorities
(CAs), Web of Trust (WoT).

1.1.1.1 CERTIFICATE AUTHORITY

A Certificate Authority(CA) [1] is an entity which acts as a trusted third party
for issuing Digital Certificates which establish ownership of a public key by the

8

named Subject of the Digital Certificate. The CA validates the identity of a
Certificate holder and signs the Certificate to confirm that it hasn’t been forged
or altered in any way. The certificate contains the name of the certificate holder,
a serial number, expiration dates, a copy of the certificate holder’s public key
(used for encrypting messages and digital signatures) and other relevant infor-
mation. To provide evidence that a certificate is genuine and valid, it is digitally
signed by a root certificate belonging to a trusted certificate authority. Operat-
ing systems and browsers maintain lists of trusted CA root certificates so they
can easily verify certificates that the CAs have issued and signed.

Incorporation of CAs in PKI introduces a central point of failure in the sys-
tem. If the CA can be subverted, then the security of the entire system is lost,
potentially subverting all the entities that trust the compromised CA. There
have been numerous incidents when a CA, knowingly or unknowingly, has is-
sued a fake certificate for an entity which was used by the hackers for carrying
out Man-in-the-middle attacks against the entity. In 2001, certificate author-
ity VeriSign issued two certificates to a person claiming to represent Microsoft.
The certificates had the name “Microsoft Corporation”, so they could be used
to spoof someone into believing that updates to Microsoft software came from
Microsoft when they actually did not. Microsoft and VeriSign took steps to
limit the impact of the problem [8]. In 2011, fraudulent certificates were ob-
tained from Comodo [25] and DigiNotar [14, 3] allegedly by Iranian hackers.
In 2012, it became known that Trustwave issued a subordinate root certificate
that was used for transparent traffic management (man-in-the-middle) which
effectively permitted an enterprise to sniff SSL internal network traffic using
the subordinate certificate [7].

Google’s Certificate Transparency [20] is an elegant way of keeping a check
on this kind of misbehavior by CAs and provides a strong defense against mis-
issuance. However, there are certain privacy issues which remain unaddressed
by the current design of Certificate Transparency. One of them is incompatibil-
ity with private subdomains. There are many enterprises which do not want to
reveal the name of their private subdomains but they want to use a public CA
to issue certificates for those internal subdomains. Currently two solutions for
this privacy requirement are available, namely Wildcard Certificates [23] and
Domain Label Redaction [2] both of which are not encouraged by Certificate
Transparency because of the shortcomings with these two techniques as dis-
cussed in [23, 2]. Both these techniques have security flaws and are ambiguous.

Keeping in view the weaknesses in the current centralized PKI, many re-
searchers have suggested the use of blockchains to decentralize the same. How-
ever, none of these address the privacy concern of organizations with private
subdomains.

9

1.1.1.2 WEB OF TRUST

An alternative approach to the problem of public authentication of public key
information is the Web-of-Trust scheme [16, 9], which uses self-signed certifi-
cates and third party attestations of those certificates. This concept was first
put forth by PGP creator Phil Zimmermann in 1992 in the manual for PGP ver-
sion 2.0. It is a decentralised scheme in which an user signs her certificate and
gets it attested by other users, who by that act, endorse the association of that
public key with the person or entity listed in the certificate. Every user chooses
her own trusted introducer and gradually accumulates and distributes with her
key a collection of certifying signatures from other people, with the expectation
that anyone receiving it will trust at least one or two of the signatures.

This system is decentralised, and hence, free from a central point of failure.
However, it introduces a barrier for new or remote users as it is difficult for
them to find enough endorsers and meet them in-person for getting their new
certificates attested by them. Also, there is no key recovery scheme in this
model and loss of private key is dealt with the use of “designated revokers ”who
have the task of revoking the lost or the compromised key on the behalf of the
certificate owner.

1.2 DNS

Domain Name System (DNS) [24] is a distributed and hierarchical naming sys-
tem for resources such as computers, servers and other devices on Internet or
private network which helps translating domain names to IP addresses so that
the devices can communicate with each other. Currently this is implemented in
the form of a huge distributed database across the world. After a domain is suc-
cessfully registered, it needs to acquire a digital certificate certifying its public
key which can be used for secure communication over the Internet. Currently,
DNS and PKI function independent of each other and separate entities are
responsible for setting the protocols for each system. There are few blockchain-
based DNS also, most prominent of them being Namecoin.

1.3 Blockchain

A blockchain is a distributed database that is used to maintain a continuously
growing list of records, called blocks. Each block contains a timestamp and
a link to a previous block. A blockchain is typically managed by a peer-to-
peer network collectively adhering to a protocol for validating new blocks. By
design, blockchains are inherently resistant to modification of the data. Once
recorded, the data in any given block cannot be altered retroactively without
the alteration of all subsequent blocks and the collusion of the network. Func-
tionally, a blockchain can serve as an open, distributed ledger that can record
transactions between two parties efficiently and in a verifiable and permanent

10

way. The ledger itself can also be programmed to trigger transactions automat-
ically. Blockchain became popular with the advent of Bitcoin in 2008. However,
Bitcoin does not support a Turing complete coding language.

1.4 Our contribution

We propose SmartDNSPKI : a blockchain-based DNS and PKI which can be
implemented on any blockchain supporting smart contracts. It supports the
registration and update of domains as well as their public and private subdo-
mains. It also allows a domain owner to register, update, and revoke the certifi-
cates for her domain and subdomains which are registered on the blockchain.
To deal with the privacy issue of private subdomains being publicly visible on
the blockchain, we suggest a method to hide the private subdomain name us-
ing a commitment scheme which ensures only the users visiting the subdomain
know the name of the private subdomain. Other users viewing the blockchain
can know nothing about the subdomain except for the fact that a private sub-
domain is registered for a domain. Public subdomains are registered without
the modification of the subdomain name. A digital certificate for a domain and
all its subdomains is registered only after validating the domain owner and the
registered subdomain. Use of registered cryptographic keys to sign all the re-
quests for registration, update, and revocation of data stored on the blockchain
ensures the credibility of the entity sending such requests.

1.5 Thesis Outline

Rest of the sections of this thesis are structured as follows: Related work is
briefly discussed in Chapter 2. Content of Chapter 3 is divided into five parts:
the cryptographic construction used in our scheme, participants in the whole
setup, our design in detail, certificate validation during client server interaction,
and security of the proposed scheme. Chapter 4 contains a brief introduction
to Ethereum, the blockchain-based platform on which we have implemented our
scheme followed by the implementation and performance details of the smart
contracts that have been implemented and tested on Ethereum testnet. Thesis
ends with Chapter 5 in which we conclude our work and discuss the future
directions to our work.

11

Chapter 2

Related work

In this chapter, we have discussed the existing blockchain-based and other DNS
and PKI which are closely related to our work.

2.1 Namecoin

Namecoin [19, 5] is a cryptocurrency designed to act as a decentralized DNS for
.bit addresses. It is the first fork of Bitcoin, the distributed digital cryptocur-
rency, with minor changes and extra functionality and uses the same proof of
work algorithm as Bitcoin. The most important change is that Namecoin is able
to store data other than just transactions in the blockchain. Each Namecoin
record consists of a key and a value which can be up to 520 bytes in size. Each
key is actually a path, with the namespace preceding the name of the record.

2.2 Certcoin

Certcoin [18] is a public and decentralized authentication scheme which imple-
ments the idea of maintaining a public ledger of domains and their associated
public keys to ensure identity retention. It is a branch of Namecoin and is built
on top of it using it as a public “bulletin board”where all the transactions are
mined together with the transactions of Namecoin taking advantage of merged
mining. Certcoin supports all the functionalities of a PKI like registration,
update and revocation of a certificate.

2.3 Blockstack

Blockstack [11] is the first implementation of a decentralized DNS system on
top of the Bitcoin blockchain combining DNS functionality with public key
infrastructure and is primarily meant to be used by new blockchain applications.
It has a portable architecture meaning that It is designed to be able to read and

12

write data to any blockchain and the logic for operating the domain name system
is decoupled from the logic of the underlying blockchain. Blockchain implements
Control plane and Data plane separately, i.e., it decouples security of name
registration and name ownership from data availability of values associated with
names. The Control plane is responsible for registering human-readable names
and creating (name, hash) bindings. It also defines the protocol for establishing
ownership of names, which are owned by cryptographic key-pairs. The control
plane consists of a cryptocurrency blockchain and a logically separate layer on
top, called a “Virtual blockchain”. The data plane is responsible for data storage
and availability. It consists of (a) routes for discovering data, and (b) external
storage systems for storing data (such as Amazon S3, IPFS, or Syndicate).

2.4 CONIKS and EthIKS

CONIKS [22] is an end-user key verification service which enables a central-
ized service provider to maintain an auditable yet privacy-preserving direc-
tory of users’public keys. It obviates the need for global third-party moni-
tors and enables users to efficiently monitor their own key bindings for con-
sistency. CONIKS users and providers can collectively audit providers for
non-equivocation using gossip protocol. EthIKS [13] is the implementation of
CONIKS on Ethereum platform with minor modifications, leveraging the similar
data structure used in Ethereum as well as the consensus protocol of Ethereum
that could obviate the need of separate gossip protocol to prevent equivocation
and ensure consistency.

2.5 Certificate Transparency

Certificate Transparency [20] is a system proposed by Google, comprising of
Certificate Logs, Monitors and Auditors for making the issuance and existence
of Digital certificates transparent. Certificate Logs are cryptographically as-
sured, publicly auditable, append-only database of certificates which append
new certificates to an ever-growing Merkle hash tree. Monitors are publicly run
servers that periodically contact all of the log servers and watch for suspicious
certificates. For example, monitors can tell if an illegitimate or unauthorized
certificate has been issued for a domain, and they can watch for certificates that
have unusual certificate extensions or strange permissions, such as certificates
that have CA capabilities. Auditors are lightweight software components that
verify If a log is behaving properly and whether a particular certificate appears
in a log.

2.6 Certificate Transparency with Privacy

Certificate Transparency poses some privacy challenges to the users. Certificate
Transparency auditing can compromise users’ browsing privacy. Also Certificate

13

logs do not support logging of certificates for private subdomains without reveal-
ing the private subdomain’s name. Certificate Transparency with Privacy [17] is
an extension to the existing approach of Certificate Transparency with support
for auditing the logs without compromising users’browsing privacy. It also sup-
ports logging of certificates for private subdomains without revealing the name
of the subdomain.

2.7 IKP

IKP [21] is a blockchain-based PKI enhancement that offers automatic responses
to CA misbehavior and incentives for those who help detect misbehavior. IKP’s
decentralized nature and smart contract system allows open participation, of-
fers incentives for vigilance over CAs, and enables financial recourse against
misbehavior. In this system, domain owners and the CAs adhere to some Do-
main registration policies and Reaction policies and the misbehaving CAs are
punished as per the terms of the reaction policies.

2.8 SCPKI

Smart Contract based PKI and Identity System [10] is an alternative PKI system
based on a decentralised and transparent design using a web-of-trust model and
a smart contract on the Ethereum blockchain, to make it easily possible for
rogue certificates to be detected when they are published. The web-of-trust
model is designed such that an entity or authority in the system can verify (or
vouch for) fine-grained attributes of another entity’s identity (such as company
name or domain name), as an alternative to the centralized certificate authority
identity verification model.

14

Chapter 3

Design

We first present the cryptographic construction used in our design and then
discuss the design of our scheme in detail.

3.1 Commitment Scheme

In this scheme, we need a commitment scheme with good hiding property to
preserve the privacy of the subdomains. Intuitively a commitment scheme is
a two-party protocol between a sender P and a receiver V in which after the
sender P commits to a value b at hand, (1) the sender P cannot change the
committed value (this is known as the binding property); and (2) the receiver V
learns nothing about the value b unless the sender P reveals the value himself
(this is known as the hiding property). A commitment scheme consists of three
phases:

(a) CK ← Setup(1k) generates the public commitment key.
(b) (c,d)← CommitCK(m) generates a commitment(c)/decommitment(d)

pair for any message m ∈M .
(c) OpenCK(c, d) → m' ∪ {⊥} where ⊥ is returned if c is not a valid

commitment to any message.

3.1.1 Pedersen commitment scheme

Pederesen commitment scheme is based on a specific number theoretic assump-
tion - the discrete log assumption.
a) Setup : Sender chooses the following values:

(1) large primes p and q such that q divides p-1.
(2) g, a generator of the order-q subgroup of Z∗p .
(3) a, a random secret from Zq, and h = ga mod p.

The values p, q, g and h are public, while a is secret.
b) Commit : For any message m ∈ Zp, sender chooses a random r ∈ Zq, com-
putes commitment c = gmhr and sends it to the receiver.

15

c) Decommit : Sender reveals m and r to the reciever. Receiver verifies that c
= gmhr.

3.2 Participants

In this section, we describe the active participants in this scheme which are as
explained below:

3.2.1 Blockchain

It is the append-only ledger on which all the transactions and data regarding
domains and their subdomains, certificates of the domains and their subdomains
are stored. The validity of the blockchain is maintained by a consensus algorithm
followed by the miners who validate and execute the transactions and append
blocks of transactions to the blockchain. We have chosen Ethereum blockchain
for our purpose.

3.2.2 Domain Owner

A domain name [4] represents an Internet Protocol (IP) resource, such as a
personal computer used to access the Internet, a server computer hosting a web
site, or the web site itself or any other service communicated via the Internet.
A domain owner is a person, company or entity who owns or holds a domain
name. In our scheme, such an entity is represented by an address, derived from
a key pair (pk, sk), which registers a domain name on the blockchain.

3.2.3 Certificate Owner

A certificate owner is an entity which registers a certificate for a domain and
its subdomains. In our scheme, this entity is same as the domain owner, as a
certificate owner is validated against a domain owner before the certificate is
registered.

3.2.4 Users

Entities which use the service of Domain Name System and the Public Key
Infrastructure on Internet. These users request the DNS to resolve the domain
name and then request PKI for a digital certificate of the domain for validating
the entity with which she is interacting. In our scheme, these users fetch these
information from the data stored on the blockchain.

3.3 Design

SmartDNSPKI is a decentralised, smart-contract based scheme for DNS and
PKI. It facilitates domain/subdomain registration and update as well as regis-

16

tration, update, revocation of digital certificates for each domain and subdomain
in a privacy preserving fashion, providing cryptographic linking between domain
owner and the domain certificate owner.

3.3.1 DNS

Each domain owner registers all the details of her domain such as its name, IP
address or nameserver, and validity information along with an update address
which is used to send transactions for registering subdomains and updating
domain and subdomains (both public as well as private) later. This address is
also used for sending transactions for updating, and revoking digital certificates
for the domain as well as its subdomain. Registration of a domain is divided
into two parts. In first part, the domain owner sends the hash of the domain
to protect it from getting stolen by other active users on the network before
registration. In second part, user sends the actual domain name whose hash is
matched with the hash sent in the first step. Upon success, the address which
has sent these transactions becomes the owner of the domain. Owner of the
domain can be changed by transferring the domain to another address.

3.3.2 Structure of a DNS record in SmartDNS contract

A DNS record for a domain is stored in a structure Domain which stores the
IP address or the nameserver addr, validity information valid from and valid to,
owner address owner addr, update address update addr and two arrays pubsd
and privsd for storing the information about registered public and private sub-
domains respectively. Details of a subdomain are stored in another structure
Subdomain which stores the subdomain name(commitment, in case of private
subdomains) and its IP address or nameserver addr. Structure of a DNS record
is shown in table 3.1.

3.3.3 PKI

Domain owner registers certificates for all its domains and subdomains to the
blockchain. A certificate for a domain stores information such as the public
key of the domain, its validity information, and its revocation status. It also
stores certificates for both public as well as private subdomains of the domain.
Certificate of a subdomain stores registration status and revocation status of
the subdomain. The certificate of a domain and its subdomains can be revoked
separately by sending revocation transaction from the update address of the
domain.

3.3.4 Structure of a certificate in SmartPKI contract

A certificate for a domain is stored in a structure Certificate which stores the
public key pkdomain name of the domain, its validity information, valid from and

17

Domain Record

Domain Name
Field Use
addr IP address or nameserver address of the domain
valid from Specify the start period of the validity of the

Domain
valid to Specify the end period of the validity of the Domain
owner address Specify the address of the domain owner on the

blockchain
update address Specify the address which can be used to update the

domain record and certificates
count pubsd Specify the number of public subdomains of the

domain registered on the blockchain
count privsd Specify the number of private subdomains of the

domain registered on the blockchain

Public Subdomains Private Subdomains

SD Name(1) SD Commitment(1)
Field Use Field Use
name Store the name

of the public
subdomain

comm Store the com-
mitment to the
private subdo-
main name

addr Store the ad-
dress of the sub-
domain

addr Store the name-
server address

. .

. .

. .
SD Name(n) SD Commitment(n)

Field Use Field Use
name Store the name

of the public
subdomain

comm Store the com-
mitment to the
private subdo-
main name

addr Store the ad-
dress of the sub-
domain

addr Store the name-
server address

Table 3.1: Structure of a Domain Record in the contract storage

18

valid to, its revocation status revoked, and two mappings public sd and pri-
vate sd for storing the certificates of the public and private subdomains re-
spectively. Certificates of the subdomains again is a structure Certificate SD
the registered status registered and revocation status revoked. Validity of the
subdomain’s certificate is same as that of the domain. Structure of a Domain
certificate is shown in table 3.2.

3.3.5 Structure of a certificate on the domain server

Certificate on the domain server is similar in structure to the certificate stored in
the contract. However, certificates for public subdomains and certificates for pri-
vate subdomains are stored separately for the security purpose, as putting them
together could reveal the private information to the public subdomain users.
Structures of these certificates are shown in table 3.3 and table 3.4. Certificates
of private subdomains have two additional fields: 1) Commitment to the sub-
domain name privsd comm 2) Decommitment randomness decom rand needed
to open the commitment. Domain owner can choose to keep all the private
subdomain certificates together or separate as per her security requirements.
Both the certificates are signed by the domain owner’s signing key sk owner
mentioned in section 3.3.6.

3.3.6 Keys assosiated with a domain

Each domain owner has two pair of keys (pkowner, skowner) and (pkupdate,
skupdate) associated with the domain. (pkowner, skowner) is used for signing
and validating the transactions for registering and transferring the domain. It
is also used for signing the transactions for registering the digital certificate for
the domain. All other transactions such as registering subdomains, updating
domain/subdomain information, registering certificates for subdomains, and re-
vocation of certificates for domains/subdomains are signed by skupdate. The
domain owner can change the update key whenever required. There is one
more pair of key (pkenc, skenc) which is used for secured communication over
SSL/TLS on Internet. pkenc is stored in the domain’s digital certificate in the
contract SmartPKI.

3.4 Smart Contracts for SmartDNSPKI

Smart Contracts for SmartDNSPKI are divided into two parts: One imple-
mented for managing DNS and the other which is implemented for managing
digital certificates. Both the smart contracts have multiple functions which can
be invoked through transactions. All the transactions sent to the blockchain are
signed by the transaction sender unless otherwise stated. Essentially, the data
sent in a transaction also contains the signature of the transaction sender which
is used by the miners to validate the transaction. Execution of a contract code
occurs only after the transaction sender is validated.

19

Domain Certificate

Domain Name
Field Use
pk Key of the domain used for encrypted communication

over SSL/TLS
valid from Specify the start period of the validity of the certificate
valid to Specify the end period of the validity of the certificate
revoked Specify the revocation status of the certificate

Public SD Certificates Private SD Certificates

Subdomain Name (1) Subdomain Commitment (1)
Field Use Field Use
registered Confirm that

the public sub-
domain has
been registered

registered Confirm that
the private
subdomain has
been registered

revoked Specify the re-
vocation status
of the subdo-
main certificate

revoked Specify the re-
vocation status
of the subdo-
main certificate

. .

. .

. .
Subdomain Name (n) Subdomain Commitment (n)

Field Use Field Use
registered Confirm that

the public sub-
domain has
been registered

registered Confirm that
the private
subdomain has
been registered

revoked Specify the re-
vocation status
of the subdo-
main certificate

revoked Specify the re-
vocation status
of the subdo-
main certificate

Table 3.2: Structure of a Domain Certificate in the contract storage

20

Domain Certificate

Domain Name
Field Use
pk Key of the domain used for encrypted communication

over SSL/TLS
valid from Specify the start period of the validity of the certificate
valid to Specify the end period of the validity of the certificate
revoked Specify the revocation status of the certificate

Public Subdomain Certificates

Public Subdomain Name (1)
Field Use
revoked Specify the revocation status of the subdomain certificate

.

.

.
Public Subdomain Name (n)

Field Use
revoked Specify the revocation status of the subdomain certificate

Domain owner’s signature

Table 3.3: Structure of a Domain Certificate with Public Subdomains stored on
the domain server

21

Domain Certificate

Domain Name
Field Use
pk Key of the domain used for encrypted communication

over SSL/TLS
valid from Specify the start period of the validity of the certificate
valid to Specify the end period of the validity of the certificate
revoked Specify the revocation status of the certificate

Private Subdomain Certificates

Private Subdomain Name (1)
Field Use
revoked Specify the revocation status of the private subdomain certificate
privsd comm Specify the name of the subdomain
decom rand Specify the decommitment randomness needed to open the commitment

.

.

.
Private Subdomain Name (n)

Field Use
revoked Specify the revocation status of the subdomain certificate
privsd comm Specify the name of the subdomain
decom rand Specify the decommitment randomness needed to open the commitment

Domain owner’s signature

Table 3.4: Structure of a Domain Certificate with Private Subdomains stored
on the domain server

22

3.4.1 Modules for SmartDNS contract

These are the modules for registering and updating domains/subdomains to
the contract storage, transferring a domain to another address, and fetching
information about the domain and subdomains from the contract storage. All
these modules are implemented in the contract SmartDNS.

3.4.1.1 Domain Registration

All domain owners need to register their domain and subdomains to the con-
tract SmartDNS . To register a domain domain name, domain owner sends a
transaction domainreg with hash of the domain name hash(domain name) and
domain registration fee πd as function arguments. The client uses keccak256
algorithm for hashing the domain name and registration fee πd has been set to
“0.0001 ETH”. This transaction invokes the function reg domain in the contract
which checks if the sender has sufficient balance to pay for the registration and
the domain hash is not already stored in the mapping domain owner of the con-
tract which stores domain hash as the key and the transaction sender address
as the value.

Domain Registration

procedure DomainRegistration
if domain owner[hash(domain name)] = NULL && msg.value ≥
πd then

domain owner[hash(domain name)]← msg.sender
block.coinbase.transfer ← πd
/*hash(domain name) is stored in the contract storage*/
return success

else
return failure

end if
end procedure

3.4.1.2 Domain Registration Confirmation

After waiting for 10-12 confirmations of the block containing the domainreg
transaction, the domain owner sends a registration confirmation transaction
regconf with the actual domain name domain name and the data correspond-
ing to the domain name e.g. its IP address or nameserver addr, its validity
information valid from and valid to, and the update address update addr as
function arguments. This transaction invokes the function reg conf of the con-
tract which computes the hash of the domain name sent in this transaction and
checks if the address stored in the domain owner mapping corresponding to this

23

hash is same as the transaction sender. After all the checks in the function are
validated, domain name, its IP address or nameserveraddr, its validity informa-
tion valid from and valid to, current transaction sender as the owner addr, and
the update addr are stored in another mapping domain info with transaction
sender address as the key.

Domain Registration Confirmation

procedure DomainRegistrationConfirmation
domain name hashed← hash(domain name)
if domain owner[domain name hashed)] = msg.sender then

domain info[domain name].addr ← addr
domain info[domain name].valid from← valid from
domain info[domain name].valid to← valid to
domain info[domain name].owner addr ← msg.sender
domain info[domain name].update addr ← update addr
/*addr, valid from, valid to, owner addr, and update addr are
stored in the contract storage*/
return success

else
return failure

end if
end procedure

3.4.1.3 Update Address Change

Domain owner can change the update address update addr by sending the trans-
action updateaddrs with domain name domain name, and the new update ad-
dress update addr new as function arguments. This transaction invokes the
function update addrs of the contract which updates the update address of the
domain after checking that the transaction sender is the owner of the domain.

Change Update Address

procedure ChangeUpdateAddress
if domain info[domain name].owner addr = msg.sender then

domain info[domain name].update addr ← update addr new
/*update addr is updated in the contract storage*/
return success

else
return failure

end if
end procedure

24

3.4.1.4 Domain Transfer

The domain owner can transfer the domain to another address by sending the
transaction domtransfer with domain name domain name and the new address
owner new as function arguments signed by both skowner and skupdate. This
transaction invokes the function transfer domain of the contract which trans-
fers the ownership of the domain to the new address owner new after checking
that the transaction sender is the current owner of the address.

Domain Transfer

procedure DomainTransfer
if domain info[domain name].owner addr = msg.sender then

domain info[domain name].owner addr = owner new
/*Domain’s owner addr is updated in the contract storage*/
return success

else
return failure

end if
end procedure

3.4.1.5 Domain Information Update

Domain information can be updated by sending the transaction domupdate with
domain name domain name, new IP address or new nameserver addr new, up-
dated validity information valid from new and valid to new as function argu-
ments. This transaction invokes function update domain of the contract which
checks if the transaction is signed by the update key skupdate of the domain.
Upon success, domain information is updated in mapping domain info in the
contract storage.

25

Domain Information Update

procedure DomainInformationUpdate
if domain info[domain name].update addr = msg.sender then

domain info[domain name].addr ← addr
domain info[domain name].valid from← valid from
domain info[domain name].valid to← valid to
/*addr, valid from and valid to are updated in the contract
storage*/
return success

else
return failure

end if
end procedure

3.4.1.6 Domain Information Retrieval

Domain information can be retrieved by calling the function get info domain of
the contract with domain name as its argument. This call returns all the details
of the domain like addr and its validity information, valid from and valid to.

Domain Information Retrieval

procedure DomainInformationRetrieval
return (domain info[domain name].addr,

domain info[domain name].valid from, domain info
[domain name].valid to)

end procedure

3.4.1.7 Public Subdomain Registration

A public subdomain can be registered for a domain by sending the transaction
pubsdreg with domain name domain name, subdomain name pubsd name, and
its IP address or nameserver addr as the function arguments. This transaction
invokes the function reg pubsd of the contract which checks that the transaction
is signed by the update key skupdate of the domain. After all the checks are
validated, public subdomain, along with all its details, is stored in the contract
storage.

26

Public Subdomain Registration

procedure PublicSubdomainRegistration
if domain info[domain name].update addr = msg.sender then

domain info[domain name].pubsd[count pubsd].name←
pubsd name
domain info[domain name].pubsd[count pubsd].addr ← addr
count pubsd← count pubsd+ 1
/*pubsd name and addr are added to the pubsd array in the
Domain structure of the domain stored in the contract storage.*/
return success

else
return failure

end if
end procedure

3.4.1.8 Public Subdomain Update

A public subdomain can be updated by sending the transaction pubsdupdate
with domain name domain name, subdomain name pubsd name, and its new IP
address or nameserver addr new as the function arguments. This transaction
invokes the function update pubsd of the contract which checks that the trans-
action is signed by the update key skupdate of the domain. After all the checks
are validated, addr new is stored in the contract storage.

Public Subdomain Update

procedure PublicSubdomainUpdate
if domain info[domain name].update addr = msg.sender then

domain info[domain name].pubsd[indexpubsd name].addr ←
addr new
/*addr new is stored in the contract storage*/
return success

else
return failure

end if
end procedure

27

3.4.1.9 Public Subdomain Information Retrieval

Public subdomain information can be retrieved by calling the function get info pubsd
of the contract with domain name and pubsd name as its argument. This call
returns all the details of the subdomain like its IP address or nameserver addr
and its validity information, valid from and valid to which are same as that of
the domain.

Public Subdomain Information Retrieval

procedure PublicSubdomainInformationRetrieval
return (domain info[domain name].pubsd[indexpubsd name].addr,

domain info[domain name].valid from, domain info
[domain name].valid to)

end procedure

3.4.1.10 Private Subdomain Registration

A private subdomain can be registered for a domain by sending the transac-
tion privsdreg with domain name domain name, subdomain name commitment
privsd comm, and a private nameserver pns.domain name as the function argu-
ments. This transaction invokes the function reg privsd of the contract which
checks that the transaction is signed by the update key skupdate of the domain.
After all the checks are validated, private subdomain commitment privsd comm
along with its details is stored in the contract storage.

Private Subdomain Registration

procedure PrivateSubdomainRegistration
if domain info[domain name].update addr = msg.sender then

domain info[domain name].privsd[count privsd].name←
privsd comm
domain info[domain name].privsd[count privsd].addr ←
ns.privsd comm
count privsd← count privsd+ 1
/*privsd comm and ns.domain name are added to the privsd
array in the Domain structure of the domain stored in the
contract storage*/
return success

else
return failure

end if
end procedure

28

3.4.1.11 Private Subdomain Update

A private subdomain can be updated by sending the transaction privsdup-
date with domain name domain name, commitment to the subdomain name
privsd comm, and its new nameserver ns.domain name new as the function ar-
guments. This transaction invokes the function update privsd of the contract
which checks that the transaction is signed by the update key skupdate of the
domain. After all the checks are validated, ns.domain name new is stored in
the contract storage.

Private Subdomain Update

procedure PrivateSubdomainUpdate
if domain info[domain name].update addr = msg.sender then

domain info[domain name].privsd[indexprivsd comm].addr ←
ns.domain name new
/*ns.domain name new is stored in the contract storage*/
return success

else
return failure

end if
end procedure

3.4.1.12 Private Subdomain Information Retrieval

Private subdomain information can be retrieved by calling the function get info privsd
of the contract with domain name and privsd comm as its argument. This call
returns all the details of the subdomain like its nameserver ns.domain name
and its validity information, valid from and valid to which are same as that of
the domain.

Private Subdomain Information Retrieval

procedure PublicSubdomainInformationRetrieval
return (domain info[domain name].pubsd[indexpubsd name].addr,

domain info[domain name].valid from, domain info
[domain name].valid to)

end procedure

29

3.4.2 Modules for SmartPKI contract

These are the modules for registering, updating, revoking, and fetching the cer-
tificates for a domain as well as for its subdomains. All these modules are
implemented in the contract SmartPKI. This contract interacts with the con-
tract SmartDNS for verifying the domain owner and to fetch the validity
information of the domain.

3.4.2.1 Certificate Registration

After the domain name has been successfully registered in the contract SmartDNS,
domain owner can register a certificate for the domain by sending the transac-
tion certreg signed by the key skowner with the domain name domain name,
domain’s public key pkdomain name, certificate’s validity information valid from,
and certificate registration fee πc which is set to value “0.0001 ETH”, as the
function arguments. This transaction invokes the function reg cert of the con-
tract which checks that no certificate has been registered for the domain earlier
or the registered certificate has been revoked. After the checks are validated,
certificate for the domain is stored in the contract storage.

Certificate Registration

procedure CertificateRegistration
if SmartDNS.domain info[domain name].owner addr = msg.sender

&& msg.value ≥ πc then
if certificate[domain name] = “′′ ||
certificate[domain name].revoked = true then

certificate[domain name].pk ← pkdomain name

certificate[domain name].valid from← valid from
certificate[domain name].valid to←
SmartDNS[domain info].valid to
certificate[domain name].revoked← false
block.coinbase.transfer ← πc
/* Certificate(pkdomain name, valid from, valid to,
revocation status) is stored in the contract storage*/
return success

else
return failure

end if
else

return failure
end if

end procedure

30

3.4.2.2 Certificate Update

Certificate for a domain can be updated by sending the transaction certupdate
with the domain name domain name, the updated public key pkdomain name new,
and the updated validity information valid from new as the function arguments.
Certificate’s valid to field is same as that of the domain’s valid to field in the
SmartDNS contract. This transaction invokes the function update cert of the
contract which updates the certificate information in the contract storage after
verifying that the transaction is signed by the key skupdate of the domain do-
main name.

Certificate Update

procedure CertificateUpdate
if SmartDNS.domain info[domain name].update addr = msg.sender
then

if certificate[domain name].valid from > 0 &&
certificate[domain name].revoked = false then

certificate[domain name].pk ← pkdomain name new
certificate[domain name].valid from← valid from new
certificate[domain name].valid to←
SmartDNS[domain info].valid to
certificate[domain name].revoked← false
/* Certificate(pkdomain name new, valid from new, valid to,
revocation status) is stored in the contract storage*/
return success

else
return failure

end if
else

return failure
end if

end procedure

3.4.2.3 Certificate Revocation

Certificate for a domain can be revoked by sending the certrevoke transaction
with the domain name domain name as the function argument. This trans-
action calls the revoke cert function of the contract which sets the revocation
status revoked of the domain certificate true after verifying that the transaction
is signed by the key skupdate of the domain domain name.

31

Certificate Revocation

procedure CertificateRevocation
if SmartDNS.domain info[domain name].update addr = msg.sender

then
certificate[domain name].revoked← true
/* Certificate’s revocation status revoke is set true*/
return success

else
return failure

end if
end procedure

3.4.2.4 Domain Certificate Retrieval

Domain certificate can be retrieved by calling the function get cert of the con-
tract with domain name as its argument. This call returns all the details stored
in the domain’s certificate i.e its public key pkdomain name, its validity informa-
tion, valid from and valid to, and its revocation status revoked.

Domain Certificate Retrieval

procedure DomainCertificateRetrieval
return (certificate[domain name].pk, certificate[domain name].

valid from, certificate[domain name].valid to, certificate
[domain name].revoked)

end procedure

3.4.2.5 Public Subdomain Certificate Registration

Certificate for a public subdomain can be registered by sending the transaction
pubsdcertreg with domain name domain name and the public subdomain name
pubsd name as the arguments for the function. This transaction invokes the
function reg cert pubsd of the contract which stores the certificate of the public
subdomain after checking that the transaction is signed by the key skupdate of
the domain domain name.

32

Public Subdomain Certificate Registration

procedure PublicSubdomainCertificateRegistration
if SmartDNS.domain info[domain name].update addr = msg.sender
then

certificate[domain name].public sd[pubsd name].registered←
true
certificate[domain name].public sd[pubsd name].revoked←
false
/* Certificate SD(true, false) is stored in the contract storage*/
return success

else
return failure

end if
end procedure

3.4.2.6 Public Subdomain Certificate Revocation

Certificate for a public subdomain can be revoked by sending the pubsdcertre-
voke transaction with the domain name domain name and its public subdo-
main name pubsd name as the function arguments. This transaction calls the
revoke cert pubsd function of the contract which sets the revocation status re-
voked of the subdomain certificate true after verifying that the transaction is
signed by the key skupdate of the domain domain name.

Public Subdomain Certificate Revocation

procedure PublicSubdomainCertificateRevocation
if SmartDNS.domain info[domain name].update addr = msg.sender
then

certificate[domain name].public sd[pubsd name].revoked← true
/* Public Subdomain Certificate’s revocation status revoke is set
true*/
return success

else
return failure

end if
end procedure

33

3.4.2.7 Public Subdomain Certificate Retrieval

Public Subdomain certificate can be retrieved by calling the function get cert pubsd
of the contract with domain name and the subdomain name pubsd name as its
arguments. This call returns all the details stored in the subdomain’s certificate
i.e its public key pkdomain name, its validity information, valid from and valid to,
and its revocation status revoked.

Public Subdomain Certificate Retrieval

procedure PublicSubdomainCertificateRetrieval
return (certificate[domain name].pk, certificate[domain name].
valid from, certificate[domain name].valid to, certificate
[domain name].revoked || certificate[domain name].public sd
[pubsd name].revoked)

end procedure

3.4.2.8 Private Subdomain Certificate Registration

Certificate for a private subdomain can be registered by sending the transac-
tion privsdcertreg with domain name domain name and the private subdomain
name commitment privsd comm as the arguments for the function. The private
subdomain name priv sd and the decommitment randomness r is stored in the
certificate in the domain server which is presented to the client when requested
for. The transaction privsdcertreg invokes the function reg cert privsd of the
contract which stores the certificate of the private subdomain after checking
that the transaction is signed by the key skupdate of the domain domain name.

Private Subdomain Certificate Registration

procedure PrivateSubdomainCertificateRegistration
if SmartDNS.domain info[domain name].update addr = msg.sender

then
certificate[domain name].private sd[privsd comm].registered
← true
certificate[domain name].private sd[privsd comm].revoked←
false
/* Certificate SD(true, false) is stored in the contract storage*/
return success

else
return failure

end if
end procedure

34

3.4.2.9 Private Subdomain Certificate Revocation

Certificate for a private subdomain can be revoked by sending the privsdcertre-
voke transaction with the domain name domain name and its private subdomain
name commitment pubsd name as the function arguments. This transaction
calls the revoke cert pubsd function of the contract which sets the revocation
status revoked of the subdomain certificate true after verifying that the trans-
action is signed by the key skupdate of the domain domain name.

Private Subdomain Certificate Revocation

procedure PrivateSubdomainCertificateRevocation
if SmartDNS.domain info[domain name].update addr = msg.sender
then

certificate[domain name].private sd[pubsd name].revoked← true
/* Private Subdomain Certificate’s revocation status revoke is set
true*/
return success

else
return failure

end if
end procedure

3.4.2.10 Private Subdomain Certificate Retrieval

Private Subdomain certificate can be retrieved by calling the function get cert privsd
of the contract with domain name and the commitment to the private subdo-
main name privsd comm as its arguments. This call returns all the details stored
in the subdomain’s certificate i.e its public key pkdomain name, its validity infor-
mation, valid from and valid to, and its revocation status revoked.

Private Subdomain Certificate Retrieval

procedure PublicSubdomainCertificateRetrieval
return (certificate[domain name].pk, certificate[domain name].
valid from, certificate[domain name].valid to, certificate
[domain name].revoked || certificate[domain name].
private sd[privsd comm].revoked)

end procedure

35

3.5 Certificate validation during Client-Server
interaction

Case 1: When a client requests for the domain’s/public subdomain’s certificate,
the server presents the certificate in table 3.3. Client first fetches the address of
the domain owner owner addr from SmartDNS contract and validates the do-
main owner’s signature present on the certificate. It then fetches the certificate
from the SmartPKI contract and compares it with the certificate presented by
the server. If they match and the certificate is not expired or revoked, it extracts
the public key from the certificate and uses it for secure communication with
the server.

Case 2: When a client requests for a private subdomain’s certificate, the server
presents the certificate in table 3.4. Client first validates the signature present
on the certificate as explained in case 1. It then extracts the commitment to
the private subdomain privsd comm and the decommitment randomness de-
com rand from the certificate and validates the commitment. Next, it gets the
certificate corresponding to the commitment from the domain’s certificate in
the contract SmartPKI and compares it with the certificate presented by the
server. If they match and the certificate is not expired or revoked, it proceeds
as in Case 1.

3.6 Security of the scheme

Security of a smart contract is dependent on the security of the underlying
blockchain on which it has been implemented. We have chosen Ethereum as our
blockchain for the ease of use. Therefore, security of our scheme is dependent
on the security of Ethereum. As long as a considerable number of Ethereum
miners do not go rogue, the scheme implemented on the blockchain is assumed
to be secure if there are no implementation glitches in the contracts. In our
proposal, individual domains registered in the contract SmartDNS, and their
corresponding certificates registered in the contract SmartPKI are secure as
long as the keys associated with the accounts responsible for their registration,
update, and revocation are secure.

We attached three pairs of keys (pkowner, skowner), (pkupdate, skupdate), and
(pkenc, skenc) with a domain owner with their respective functionalities dis-
cussed in section 3.3.6. We can implement offline signing of all the transactions
to protect the key pairs (pkowner, skowner), (pkupdate, skupdate) from online at-
tacks. However, the key (pkenc, skenc) is susceptible to online attacks. We
consider, and discuss all the possibilities of key losses and how a user can over-
come these situations below. We discuss the security in two parts: 1) Unsigned
key updates: these updates do not require signature of the key to be updated, 2)
Signed key updates: these updates do require signature of the key to be updated.

36

3.6.1 Unsigned key updates

These updates give the user ease of reclaiming the ownership of the lost keys
in case the keys are stolen. However, these updates are less secure compared to
the signed key updates.

Case 1: Only skenc is compromised
The key pair (pkenc, skenc) can be updated by sending the transaction certup-
date with the new public key pkenc new signed by the update key skupdate.
Case 2: Only skupdate is compromised
Domain owner can always change the update key pair (pkupdate, skupdate) by
sending updateaddrs transaction as described in section 3.4.1.3.
Case 3: Both skenc and skupdate are compromised
Domain owner can first change the update key pair (pkupdate, skupdate) as dis-
cussed in Case 2. Then she can change (pkenc, skenc) as discussed in Case 1.

All other cases of key loss which include compromise of skowner cannot be
handled by unsigned key updates.

3.6.2 Signed key updates

Signed key updates in our proposal are essentially multisig schemes which re-
quire signatures from multiple signing keys (at least 2, or all the 3 keys described
in section 3.3.6) for any kind of key update. These updates give more security
to the user at the cost of increased complexity. Moreover, compromised keys
cannot be reclaimed if the keys are stolen.

Case 1: Only skenc is compromised
The compromised key pair (pkenc, skenc) can be updated by sending the trans-
action certupdate with the new public key pkenc new signed by both skenc and
the update key skupdate.
Case 2: Only skupdate is compromised
Domain owner can change the update key pair (pkupdate, skupdate) by sending
updateaddrs transaction as described in section 3.4.1.3 additionally signed by
the skupdate.
Case 3: Both skenc and skupdate are compromised
Domain owner can first change the update key pair (pkupdate, skupdate) as dis-
cussed in Case 2. Then she can change (pkenc, skenc) as discussed in Case 1.
Case 4: Only skowner is compromised
Domain owner can transfer the domain to another address by sending the trans-
action domtransfer as discussed in section 3.4.1.4.
Case 5: Both skowner and skupdate are compromised
Domain owner can still regain the sole ownership of the domain by sending the
transaction domtransfer as discussed in section 3.4.1.4 with an additional sig-
nature by skenc.

37

Case where all the three keys are compromised cannot be handled by this
scheme, as of now.

38

Chapter 4

Implementation

In this chapter, we briefly talk about Ethereum, the blockchain-based platform
on which we have implemented our scheme, and the Smart contracts, followed
by the implementation and performance details of the scheme.

4.1 Ethereum

Ethereum [15, 26] was proposed by Vitalik Buterin, a cryptocurrency researcher
and a programmer involved with Bitcoin, in a white paper [15] in late 2013
with a goal of building decentralised applications. Ethereum is an open-source,
public, blockchain-based distributed computing platform featuring smart con-
tract (scripting) functionality, which facilitates online contractual agreements.
It provides a decentralised Turing-complete virtual machine, the Ethereum Vir-
tual Machine (EVM), which can execute scripts using an international network
of public nodes. Ethereum also provides a cryptocurrency token called “ether”,
which can be transferred between accounts and used to compensate partici-
pant nodes for computations performed. Gas, an internal transaction pricing
mechanism, is used to mitigate spam and allocate resources on the network.

In Ethereum, the state is made up of objects called “accounts”, with each
account having a 20-byte address and state transitions being direct transfers
of value and information between accounts. In general, there are two types of
accounts: externally owned accounts, controlled by private keys, and contract
accounts, controlled by their contract code. Externally owned account inter-
act with blockchains by sending signed data packages called “transactions”that
store messages to be sent to the blockchain. Contracts interact with each other
through “messages”. The state of the blockchain is stored in a tree data struc-
ture called “Merkle-Patricia”tree.

39

4.2 Smart contracts

A smart contract is a computerized transaction protocol that executes the terms
of a contract. The general objectives are to satisfy common contractual con-
ditions (such as payment terms, liens, confidentiality, and even enforcement),
minimize exceptions both malicious and accidental, and minimize the need for
trusted intermediaries. Related economic goals include lowering fraud loss, ar-
bitrations and enforcement costs, and other transaction costs. In Ethereum,
smart contracts are treated as autonomous scripts or stateful decentralised ap-
plications that are stored in the Ethereum blockchain for later execution by
the EVM. Instructions embedded in Ethereum contracts are paid for in ether
(or more technically “gas”) and can be implemented in a variety of Turing com-
plete scripting languages such as Solidity, Serpent, LLL, etc. which are complied
down to low-level, stack-based bytecode language referred to as “EVM code”for
execution.

Our main proposal is to use the framework of Ethereum for creating and
managing smart contract based, privacy-preserving, DNS and PKI, where do-
main owners can register their domain, corresponding public and private subdo-
mains along with a digital certificate for all her domains and subdomains from
one externally-owned account. Our scheme also provides all the functionalities
of a PKI like registration, update, retrieval, and revocation of digital certifi-
cates through smart contracts. All the information related to a domain and its
certificate is stored on the blockchain.

4.3 Implementation

All the algorithms have been implemented in two contracts: SmartDNS and
SmartPKI in 151 and 105 lines of solidity respectively.

A corresponding command-line Python client has been implemented for car-
rying out all the transactions for both the contracts. The client allows a user to
register and update all the domains as well as public and private subdomains.
The client uses keccak256 algorithm for hashing the domain name in the first
step of the domain registration step and Pedersen commitment scheme for com-
puting the commitment to the private subdomains. Domain registration fee and
certificate registration fee is transferred to the miner’s account which ensures
faster mining of these transactions by the miners. Contracts have been tested
on the testnet on Ethereum Wallet. Ethereum Wallet is a framework for storing
and transferring Ether as well as writing, deploying, and testing smart contracts
without the need of real ethers.

4.4 Performance

Gas costs of all the transactions have been analyzed using the implementation
on the testnet. Costs associated with all the transactions of contracts SmartDNS

40

SmartDNS
Transaction Data Gas Ether USD($)

(Bytes)
contract deploy-
ment

13614 3145988 0.056627784 15.969035088

domainreg 36 44807 0.000806526
+ 0.0001(do-
main reg-
istration
fee)

0.255640332

regconf 292 130122 0.002342196 0.660499272
domupdate 292 54810 0.00098658 0.27821556
domtransfer 132 31455 0.00056619 0.15966558
updateaddrs 132 31568 0.000568224 0.160239168
pubsdreg 292 90259 0.001624662 0.458154648
pubsdupdate 292 50918 0.000916524 0.258459768
privsdreg 292 75217 0.001353906 0.381801492
privsdupdate 292 51,693 0.000930474 0.262393668

Table 4.1: Gas costs of all the transactions in SmartDNS contract

and SmartPKI are compiled in table 4.1 and 4.2 respectively. Gas price is fixed
at 1 gas = 0.000000018 ether and ether to USD conversion rate is 1 ether =
282 USD. Implementation cost is one-time cost incurred during deployment of
the contracts. The costs presented in the tables may go higher during real-time
implementation of the scheme and will vary with the amount of data sent in
the transactions. However, these costs are still much less compared to current
domain registration and renewal fees in DNS and certificate registration fees
charged by Certificate Authorities.

41

SmartPKI
Transaction Data Gas Ether USD($)

(Bytes)
contract deploy-
ment

11355 2686552 0.048357936 13.636937952

certreg 356 207615 0.00373707
+
0.0001(cer-
tificate
registration
fee)

1.08205374

certupdate 356 87895 0.00158211 0.44615502
certrevoke 100 32806 0.000860508 0.242663256
pubsdcertreg 196 50350 0.0009063 0.2555776
pubsdcertrevoke 196 36200 0.0006516 0.1837512
privsdcertreg 196 50480 0.00090864 0.25623648
privsdcertrevoke 196 36198 0.000651564 0.183741048

Table 4.2: Gas costs of all the transactions in SmartPKI contract

42

Chapter 5

Future work and Conclusion

We have proposed and implemented a prototype for a decentralized, blockchain-
based, privacy-preserving scheme for Domain Name System and Public Key
Infrastructure, which supports functionalities such as domain registration, up-
date and transfer, and certificate registration, update, and revocation. Our
scheme supports the registration of private subdomains and their certificates in
a privacy-preserving fashion. In addition to that, it provides linkability between
the DNS and the PKI mandating the domain owner and the certificate owner
of the domain to be the same.

Our future goal is to integrate this scheme with distributed databases such
as IPFS [12] in order to lower the amount of data getting stored directly in
the blockchain. We also plan to implement this scheme in entirety and gather
real-time performance analysis, and measure its scalability, which is a measure
challenge for the blockchain-based applications.

43

Bibliography

[1] Certificate authority. https://en.wikipedia.org/wiki/Certificate_

authority.

[2] Certificate transparency: Domain label redaction. https://tools.ietf.

org/id/draft-strad-trans-redaction-01.html.

[3] Diginotar. https://en.wikipedia.org/wiki/DigiNotar.

[4] Domain name. https://en.wikipedia.org/wiki/Domain_name.

[5] Namecoin. https://namecoin.org/.

[6] Pki. https://en.wikipedia.org/wiki/Public_key_infrastructure.

[7] Trustwave issued a man-in-the-middle certifi-
cate. http://www.h-online.com/security/news/item/

Trustwave-issued-a-man-in-the-middle-certificate-1429982.

html.

[8] Unauthentic ”microsoft corporation” certificates. https://www.cert.org/
historical/advisories/CA-2001-04.cfm.

[9] Web of trust. https://en.wikipedia.org/wiki/Web_of_trust.

[10] Mustafa Al-Bassam. Scpki: A smart contract-based pki and identity sys-
tem. In Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies
and Contracts, pages 35–40. ACM, 2017.

[11] Muneeb Ali, Jude C Nelson, Ryan Shea, and Michael J Freedman. Block-
stack: A global naming and storage system secured by blockchains. In
USENIX Annual Technical Conference, pages 181–194, 2016.

[12] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[13] Joseph Bonneau. Ethiks: Using ethereum to audit a coniks key trans-
parency log. In Financial Cryptography Workshops, pages 95–105, 2016.

[14] Tom Brewster. Diginotar goes bankrupt after hack, 2011. http://www.

itpro.co.uk/636244/diginotar-goes-bankrupt-after-hack.

44

https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Certificate_authority
https://tools.ietf.org/id/draft-strad-trans-redaction-01.html
https://tools.ietf.org/id/draft-strad-trans-redaction-01.html
https://en.wikipedia.org/wiki/DigiNotar
https://en.wikipedia.org/wiki/Domain_name
https://namecoin.org/
https://en.wikipedia.org/wiki/Public_key_infrastructure
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
https://www.cert.org/historical/advisories/CA-2001-04.cfm
https://www.cert.org/historical/advisories/CA-2001-04.cfm
https://en.wikipedia.org/wiki/Web_of_trust
http://www.itpro.co.uk/636244/diginotar-goes-bankrupt-after-hack
http://www.itpro.co.uk/636244/diginotar-goes-bankrupt-after-hack

[15] Vitalik Buterin et al. Ethereum white paper, 2013.

[16] Germano Caronni. Walking the web of trust. In IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises - WETICE 2000, pages 153–158, 2000.

[17] Saba Eskandarian, Eran Messeri, Joe Bonneau, and Dan Boneh. Certificate
transparency with privacy. arXiv preprint arXiv:1703.02209, 2017.

[18] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. Cert-
Coin: A NameCoin based decentralized authentication system. Techni-
cal report, Massachusetts Institute of Technology, MA, USA. 6.857 Class
Project, 2014. https://courses.csail.mit.edu/6.857/2014/files/

19-fromknecht-velicann-yakoubov-certcoin.pdf.

[19] Harry A Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau, and
Arvind Narayanan. An empirical study of namecoin and lessons for decen-
tralized namespace design. In WEIS, 2015.

[20] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency,
June 2013.

[21] Stephanos Matsumoto and Raphael M Reischuk. Ikp: Turning a pki around
with decentralized automated incentives. In Security and Privacy (SP),
2017 IEEE Symposium on, pages 410–426. IEEE, 2017.

[22] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten,
and Michael J Freedman. Coniks: Bringing key transparency to end users.
In USENIX Security Symposium, pages 383–398, 2015.

[23] RL’Bob’ Morgan, Kurt D Zeilenga, Jeff Hodges, and Peter Saint-Andre.
Best practices for checking of server identities in the context of transport
layer security (tls). 2011.

[24] Jon Postel. Domain name system structure and delegation. 1994.

[25] Brian Prince. Comodo attack sparks ssl certificate security dis-
cussions, 2011. http://www.crn.com/news/security/229400284/

comodo-attack-sparks-ssl-certificate-security-discussions.

htm.

[26] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151, 2014.

45

https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
https://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
http://www.crn.com/news/security/229400284/comodo-attack-sparks-ssl-certificate-security-discussions.htm
http://www.crn.com/news/security/229400284/comodo-attack-sparks-ssl-certificate-security-discussions.htm
http://www.crn.com/news/security/229400284/comodo-attack-sparks-ssl-certificate-security-discussions.htm

	Introduction
	PKI
	Types of certifications

	DNS
	Blockchain
	Our contribution
	Thesis Outline

	Related work
	Namecoin
	Certcoin
	Blockstack
	CONIKS and EthIKS
	Certificate Transparency
	Certificate Transparency with Privacy
	IKP
	SCPKI

	Design
	Commitment Scheme
	Pedersen commitment scheme

	Participants
	Blockchain
	Domain Owner
	Certificate Owner
	Users

	Design
	DNS
	Structure of a DNS record in SmartDNS contract
	PKI
	Structure of a certificate in SmartPKI contract
	Structure of a certificate on the domain server
	Keys assosiated with a domain

	Smart Contracts for SmartDNSPKI
	Modules for SmartDNS contract
	Modules for SmartPKI contract

	Certificate validation during Client-Server interaction
	Security of the scheme
	Unsigned key updates
	Signed key updates

	Implementation
	Ethereum
	Smart contracts
	Implementation
	Performance

	Future work and Conclusion

