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Abstract

Cloud computing enables clients to outsource large volume of their data to cloud
servers. Distributed secure cloud storage schemes ensure that multiple servers store
these data in a reliable and untampered fashion. The core problem is to build sys-
tems that are efficient and provably secure. In a proof-of-retrievability system, a
client is assured by a server that it is storing all of client’s data, by running peri-
odic audits. It should be possible for client to extract it’s data from the server that
passes verification checks. We implement multi-server auditing scheme for static data
by encoding data blocks using error-correcting (erasure) codes and then attaching
authentication information tags to parity blocks of the codewords. We extend our se-
cure cloud storage scheme for append-only data that handles the challenges efficiently.
Compared to existing implementations, our scheme is such that the client need not
download any data to update the parity blocks or corresponding tags residing on the
servers. This results in low communication costs. It enables the servers to perform
the updates themselves and helps the client to detect malicious behavior of the server.

Keywords: Distributed storage systems, erasure codes, message authentication codes,
proof-of-retrievability
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Chapter 1

Introduction

1.1 Introduction

Cloud storage outsourcing has become one of the most popular applications of cloud
computing, offering various advantages like flexible accessibility. e.g., Amazon S3,
Microsoft Azure, Google Drive etc. Client who doesn’t possess capability to store
data (large) physically needs a verifiable, secure cloud storage system. When the
server is untrusted, an important challenge is to offer provable outsourced storage
guarantees. Particularly, a client desires to obtain the following guarantees:

• Authenticity. The client desires to verify that data it fetched after storing on
server is correct, where correctness is identical to authenticity and freshness;

• Retrievability. The client needs a guarantee that the server is truly storing all of
the its’s data, and there is no data loss.

Cloud service providers offer storage outsourcing facility to their cloud users
(clients) who can upload large amount of data to the cloud servers and can access their
data later whenever needed. However, as the client stores only some metadata for
the data file it uploads, the file may get corrupted at the cloud servers, thus making
it impossible to retrieve at some point of time. Secure cloud storage schemes address
this problem where the client (or a third party auditor) checks the availability of the
uploaded file.

Ateniese et al. [1] introduced the concept of provable data possession (PDP) and
Juels and Kaliski [15] introduced the concept of proofs of retrievability (PoR). Secure
cloud storage schemes typically use the concept of PDP or PoR. These schemes employ
an auditing mechanism where the client executes a challenge-response protocol to
check the integrity of her data. In general, PDP schemes are more efficient than PoR
schemes. However, PoR schemes preserve the integrity of all of the client’s data.
Following their works, researchers have come up with many schemes achieving PDP
or PoR guarantees [2, 11, 26, 23, 10, 6, 25].

9



10 1. Introduction

The secure cloud storage schemes mentioned above consider the single-server
model where the client uploads it’s data to a single cloud server. However, storing
the whole data in one server is more prone to adversarial corruptions and hardware
outages. A fault in this single point can make the data unrecoverable. To increase
data reliability and consistency, the client’s data are dispersed among multiple servers
in practice. In this model, it is harder for an adversary to corrupt all the servers at
a time to make the data unavailable. Moreover, the system is more stable in case of
hardware crashes for some of the servers [12]. Curtmola et al. [8] introduce MR-PDP
(multiple-replica PDP) where the client uses data replication to make multiple copies
of her data and distributes them to multiple servers. Zhu et al. [28] propose CPDP
(cooperative PDP) scheme based on homomorphic verifiable response and hash index
hierarchy where the client’s data are distributed among various cloud service providers
(CSPs). Data privacy in this scheme is achieved using the techniques of multiprover
zero-knowledge proof system.

Dimakis et al. [9] introduce network coding in the context of distributed stor-
age systems where linear combinations of data segments are distributed to multiple
servers. This technique is more efficient than using the conventional error-correcting
codes for distributing the segments in terms of bandwidth required to repair a failed
server. For such a distributed storage system, there are schemes for remote integrity
checking [7, 17, 19] that are designed to achieve fast repair of a failed server. One
drawback of network coding is that the code is not systematic (that is, a codeword
does not include the input message as it is); thus read operations are not efficient in
these schemes. Therefore, these schemes are mostly suitable for archival data (with
fast repair) where the client accesses her data less frequently.

Error-correcting codes (mostly for erasures) have been used extensively to design
distributed storage systems, and they provide optimal storage overhead to achieve
the same reliability compared to other techniques. Moreover, read operations are
quite efficient for systematic variants of these codes. Several secure cloud storage
schemes employ error-correcting codes to enhance tolerance against faults in storage
systems [18, 27, 14].

Schwarz and Miller [21] exploit algebraic signatures along with error-correcting
codes to construct a distributed secure storage where data blocks in random loca-
tions are challenged to check the integrity of the client’s data. Algebraic signatures
can be aggregated into a single signature that reduces the communication overhead
significantly.

1.2 Our Contribution

Our contributions are summarized as follows.

• We implement a distributed secure cloud storage scheme for static data that
borrows the basic storage structure from HAIL [5]. The scheme offers PoR guar-
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antees. Unlike HAIL, an adversary in the scheme cannot modify a particular
dispersal codeword without being detected by the client.

• We implement the extended scheme for append-only (dynamic) data [22].

• In the scheme for append-only (dynamic) data, individual servers can update
their parity blocks (for an append) without any intervention of the client.

• For an append, the client in the scheme need not download any parity (or data)
block to recompute the authentication tags corresponding to the (updated)
parity blocks. She can only send the relevant changes in these tags to the
corresponding servers.

• We use systematic Cauchy Reed-Solomon codes in the scheme for static data
and implement a technique to extend such codes to accommodate new symbols
appended to the existing message symbols. The corresponding updates on the
parity symbols do not touch existing message symbols.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 and 3, we briefly discuss
about the preliminaries and background related to our work. Chapter 4, describes
the detailed construction of the scheme we used for implementation. In Chapter 5, we
describe about implementation details. In Chapter 6, we provide the security analysis
and performance analysis our scheme. In the concluding Chapter 7, we summarize
the work done and future directions related to our work.





Chapter 2

Preliminaries

2.1 Notation

We take λ to be the security parameter. An algorithm A(1λ) is a probabilistic
polynomial-time algorithm when its running time is polynomial in λ and its output
y is a random variable which depends on the internal coin tosses of A. An element a

chosen uniformly at random from a set S is denoted as a
R←− S. A function f : N→ R

is called negligible in λ if for all positive integers c and for all sufficiently large λ, we
have f(λ) < 1

λc
.

2.2 Error Correcting Codes

An (n, k, d)∑ error-correcting code consists of an encoding algorithm Enc :
∑k →

∑n

(encodes a message consisting of k symbols into a longer codeword consisting of n
symbols) and a decoding algorithm Dec :

∑n →
∑k (decodes a codeword to a

message), where
∑

is a finite alphabet and d is the minimum distance (Hamming
distance between any two codewords is at least d) of the code. The quantity k

n
is

called the rate of the code. An (n, k, d)∑ error-correcting code can tolerate up to
bd−1

2
c errors and d - 1 erasures. If d = n − k + 1, we call the code a maximum

distance separable (MDS) code. We often specify the parameters of an MDS code by
denoting it as an (n, k) MDS code, where

∑
is implicit and the minimum distance

d = n−k+1. Reed-Solomon codes [] and their extensions are examples of non-trivial
linear MDS codes.

2.3 Cauchy Reed-Solomon Code

For an (n, k) Cauchy Reed-Solomon code [3], the distribution matrix is an n×k matrix
M CRS over Zp , where the submatrix consisting of the first k rows is a k×k identity
matrix and the submatrix consisting of the last s = n − k rows is an s × k Cauchy

13



14 2. Preliminaries

matrix. The codeword is obtained by multiplying MCRS with the message vector
~m = [m1,m2, ...,mk]

T , where mi ∈ Zp for all i ∈ [1, k]. It is a maximum distance
separable (MDS) code with minimum distance d = n − k + 1. It can tolerate upto
bn−k

2
c errors and n− k erasures. An s× k Cauchy matrix (k + s 6 p) is constructed

in the following way. Let X = {x1, x2, ..., xs} and Y = {y1, y2, ..., yk} be two ordered
sets such that the following conditions are satisfied:

1. xi, yj ∈ Zp for all i ∈ [1, s] and j ∈ [1, k],

2. X ∩ Y = ∅ which implies that xi − yj 6= 0 for all i ∈ [1, s] and j ∈ [1, k],

3. ∀i ∈ [1, s]∀l ∈ [1, s]\{i} xi 6= xl ,

4. ∀j ∈ [1, k]∀l ∈ [1, k]\{j} yj 6= yl .

The s × k Cauchy matrix defined by X and Y consists of the entries aij = 1
xi−yj ,

where i ∈ [1, s] and j ∈ [1, k]. Any k × k submatrix of MCRS is invertible.

2.4 Galois Field

Galois Field (named after Évariste Galois), also known as Finite Field is a field that
contains a finite number of elements.

The elements of Galois Field GF (pn) is defined as

GF (pn) =(0, 1, 2, ..., p− 1)∪
(p, p+ 1, p+ 2, ..., p+ p− 1)∪
(p2, p2 + 1, p2 + 2, ..., p2 + p− 1) ∪ ...∪
(pn−1, pn−1 + 1, pn−1 + 2, ..., pn−1 + p− 1)

(2.1)

where p ∈ P and n ∈ Z+. The order of the field is given by pn while p is called
the characteristic of the field. On the other hand, gf, stands for Galois Field. The
degree of polynomial of each element is at most n− 1.



Chapter 3

Related Work

3.1 Proofs of Retrievability

A client uploads a file to the cloud server. However, the client needs a guarantee
that all it’s data are stored in the server untampered. Proofs-of-retrievability (PoR)
schemes make the client be assured that it’s data are stored intact in the server. Juels
and Kaliski introduce proofs of retrievability for static data [15]. Static data mostly
include archival data which the client does not modify after it uploads the file to
the server. However, some of the PoR schemes deal with dynamic data where the
client modifies it’s data. We provide a brief idea about the building blocks of PoR
schemes. In the setup phase, the client preprocesses her file F0. The preprocessing
step involves encoding the file F0 with an erasure code to form another file F . Then,
an authenticator is attached to each of the blocks of F (for checking the integrity
of the blocks later). Finally, the client uploads F along with the authenticators to
the server. We consider the file F as a collection of n blocks or segments where each
block is an element of Zp. The client can read data from the file it has outsourced.
it performs audits to check the integrity of it’s data. An audit comprises of two
algorithms for proof-generation and proof-verification. During an audit, the client
generates a random challenge and sends it to the server which acts as a prover. Upon
receiving the challenge, the server responds to the client with a proof. The client then
verifies the integrity of the data by checking the validity of the proof. If the proof
is valid, the verification algorithm outputs 1; otherwise, it outputs 0. For dynamic
POR schemes, the client can issue write operations along with read operations. POR
schemes satisfy two properties: correctness and soundness.

• Correctness. The correctness property demands that the proof generated by an
honest server always makes the verification algorithm output 1.

• Soundness. The soundness property of POR schemes is formalized by the exis-
tence of an extractor algorithm that extracts F after interacting with a malicious

15



16 3. Related Work

server which passes an audit (that is, the verification algorithm outputs 1) with
any probability non-negligible in the security parameter λ.

There are two types of PoR schemes: privately verifiable and publicly verifiable
schemes. In private verification schemes, only the client can perform audits as the
verification of a proof requires some secret information. On the other hand, in publicly
verifiable schemes, anyone can verify the proof supplied by the server. In privacy
preserving auditing, the verifier (any verifier other than the client) cannot gain any
knowledge about the data outsourced to the server.

3.2 PoR schemes by Shacham and Waters

Shacham and Waters propose two short and efficient homomorphic authenticators
in their PoR schemes for static data [24]. The first one, based on pseudorandom
functions, provides a PoR scheme which is privately verifiable (that is, only the client
can verify a proof) and secure in the standard model1 ; the second one, based on
BLS signatures, gives a PoR scheme which is publicly verifiable (that is, anyone can
verify a proof) and secure in the random oracle model2. As mentioned by Shacham
and Waters, Reed-Solomon codes are necessary against adversarial erasures where the
server can delete blocks selectively. One drawback of these codes is the complexity of
encoding and decoding is O(n2), where n is the number of blocks of the file uploaded to
the server. We can employ codes with linear decoding time instead of Reed-Solomon
codes. However, these codes are secure against random erasures only. Shacham and
Waters discuss a solution to this problem strictly for the privately verifiable scheme.

3.3 Proofs of Retrievability for Dynamic Data

In the previous section, we have described some PoR schemes for static data which the
clients do not modify once they are uploaded in the cloud server. A natural question
comes if any PoR schemes are available for dynamic data where the clients modify
their outsourced data “efficiently”. In this section, we discuss about the difficulties
of modification of the uploaded data.

To maintain the retrievability of the whole file, erasure coding has been employed
on the file. The blocks of the file are encoded in such a way that the file can be
retrieved from a fraction of blocks of the encoded file. The content of each block
is now distributed in other O(n) blocks. Therefore, to actually delete a block the
server has to delete all the related blocks. This restricts the server from deleting or
modifying a block maliciously and still passing the verification with non-negligible
probability in λ. However, this advantage comes with some drawbacks. If the client
wants to update a single block, she has to update all the related blocks as well. This
makes the update process inefficient as n can be very large.
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Cash et al. [6] discuss about two failed attempts to provide a solution of the
problem mentioned above. In the first case, a possible solution might be to encode
the file locally. Now, each codeword consists of a small number of blocks. Therefore,
an update of a single block requires an update of a few blocks within that particular
codeword. However, a malicious server can gain the knowledge of this small set of
blocks (within a codeword) whenever the client updates a single block. Thus, the
server can delete this small set of blocks without being noticed during an audit. In
the second attempt, after encoding the file locally, all of the n blocks are permuted
in a pseudorandom fashion. Apparently, the server cannot get any information about
the blocks in a codeword. However, during an update the server can identify the
related blocks in a codeword. Therefore, the server can again delete these blocks and
pass the verification during an audit. Due to the issues discussed above, only a few
PoR schemes for dynamic data are available in the literature.

3.4 HAIL

Schwarz and Miller [21] exploit algebraic signatures along with error-correcting codes.
Following a similar idea, Bowers et al. [5] propose a distributed secure cloud stor-
age scheme called HAIL (high-availability and integrity layer for cloud storage) that
achieves POR guarantees. Encoding of the data blocks of a file is done in two steps:
across multiple servers (dispersal code) and within each server (server code). HAIL
enjoys several benefits such as: high reliability, low per-server computation and band-
width (comparable to single-server PoR schemes) and strong adversarial model. More-
over, message authentication codes (MACs) are embedded in the parity blocks (for
the dispersal code) without storing them separately; this reduces the storage overhead
on the servers. However, HAIL deals with static data (that cannot be modified once
uploaded to the servers). Extending HAIL for dynamic data is left as a future work
in [5].

Although generic dynamic data (supporting arbitrary insertions, deletions and
modifications) are useful, append-only data find numerous applications as well. Var-
ious cloud service providers like Amazon Web Services use Hadoop Distributed File
System [13] to store huge volume of append-only data. Append-only data are also
useful for maintaining log structures (e.g., in certificate transparency schemes [16]).
Extending HAIL for append-only data suffers from two issues stated below.

– HAIL uses an adversarial server code [5] that is resistant to a large fraction of
adversarial corruptions against a computationally bounded adversary, but is compu-
tationally heavy (due to the use of pseudorandom permutations and encryptions).
Moreover, for each append, the parity blocks need to be decrypted (using a secret
key of the client), recalculated (depending on the new data block appended) and
permuted again (using another secret key of the client). This requires the client to
download all the parity blocks for a particular server, do computations on them and
upload them again.
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– In HAIL, MACs (computed using secret keys of the client) are embedded in
the parity blocks (for the dispersal code). Therefore, if a classical error-correcting
code were used instead of the adversarial code, then also the client would have had
to download all the parity blocks of every dispersal codeword for each append.



Chapter 4

Multi-Server Auditing Scheme for
Append-only Data

Outline In this chapter, first we briefly describe storage scheme for static data [22]
we have used for implementation. Our aim is to implement scheme for append-only
(dynamic) data support scheme. The challenges regarding this idea for extension
and how these challenges being addressed are described in scheme for append-only
data. Also, We briefly describe Extending Cauchy Reed-Solomon codes which ought
to remedial for solving some challenges.

4.1 Distributed Secure Cloud Storage for Static

Data

Let n (total number of servers) and k (number of primary servers) be the system
parameters that are passed as inputs to the procedures of our scheme for static data
described below. The audit phase involves the procedures Challenge, Prove and
Verify. We note that the client constructs two distribution matrices MCRS and M ′

CRS

to encode blocks of the data file F row-wise and column-wise, respectively. We denote
the state of F after the corruption phase of the t-th epoch by Ft.

• Setup(1λ): The client chooses a random prime p of length O(λ) bits. Let
f : Kprf × {0, 1}∗ → Zp be a pseudorandom function (PRF), where Kprf is the

key space of the PRF. The client selects an element α
R←− Zp and a PRF key

kprf
R←− Kprf . Her secret key sk is the pair (α, kprf ). Let F be the space of

file-identifiers.

• Outsource(F, sk): The client chooses a random file-identifier fid
R←− F for

the data file F . She divides the file F as {mij}i∈[1,k̃],j∈[1,k], where each data

block mij ∈ Zp for all i ∈ [1, k̃], j ∈ [1, k].

19



20 4. Multi-Server Auditing Scheme for Append-only Data

For each primary server Sj (j ∈ [1, k]), the client encodes the data blocks
m1j,m2j, . . . ,mk̃j using an (r, k̃) systematic CRS code to form s̃ = r− k̃ parity

blocks m(k̃+1)j, m(k̃+2)j, . . . ,mrj (with the help of an r × k̃ matrix M ′
CRS where

r 6 p). After processing the blocks of the primary servers, the client computes
the parity blocks for the secondary servers as follows. For each row i ∈ [1, r], the
client uses an (n, k) systematic CRS code to encode the blocks mi1,mi2, . . . ,mik

into s = n−k parity blocks mi(k+1),mi(k+2), . . . ,min using an n×k matrix MCRS.

The client computes authentication tags (in a similar way as described by
Shacham and Waters [23]) for the parity blocks as follows. For each such block
mij (i ∈ [1, r], j ∈ [k + 1, n]), she generates a tag

σij = fkprf (i, j) + αmij mod p. (4.1)

Finally, the client sends {mij}i∈[1,r] to the j-th server Sj for each j ∈ [1, n].
In addition, she uploads authentication tags {σij}i∈[1,r] to the j-th secondary
server Sj for each j ∈ [k + 1, n].

• Challenge(fid, l, r, t): During the audit phase in the t-th epoch, the client
selects I, a random l-element subset of [1, r] and generates a challenge set Q =

{(i, νi)}i∈I , where each νi
R←− Zp. Then, the client sends the challenge set Q to

all the servers.

• Prove(Q,Ft, fid, t): Upon receiving the challenge set Q = {(i, νi)}i∈I , the
j-th cloud server Sj computes and sends µj =

∑
i∈I νimij ∈ Zp to the client, for

all j ∈ [1, n]. Additionally, the j-th secondary server sends σj =
∑

i∈I νiσij ∈ Zp
to the client, for all j ∈ [k + 1, n]. The responses from the servers constitute
the proof Π.

• Verify(Q,Π, fid, sk, t): Using Q = {(i, νi)}i∈I and the proof Π sent by the
servers, the client constructs a vector −→µ = [µ1, µ2, . . . , µk, µk+1, . . . , µn] ∈ Znp .
For each j ∈ [k + 1, n], the client checks whether

σj
?
=
∑
i∈I

νifkprf (i, j) + αµj mod p. (4.2)

If any of the verifications fails, the client outputs 0. Otherwise, the client
checks whether −→µ forms a valid codeword (this is done by checking whether
multiplying −→µ with the Cauchy submatrix of MCRS outputs µk+1, . . . , µn as the
parity blocks). If it is a valid codeword, the client outputs 1; she outputs 0,
otherwise.

• Redistribute(fid, sk, t, Ft, εq): In the audit phase during the t-th epoch, if
the client detects that the fraction of corruption exceeds εq for some server, the
client reads all the shares (possibly corrupted) of the file from all the servers,
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tries to recover F (by decoding the file shares of Ft) and distributes the newly
computed shares to the servers. These shares of the file distributed across the
servers constitute the new state of the file Ft+1. If the decoding procedure fails
(that is, the client cannot recover F ), the file is considered to be unavailable.

Decoding during Redistribution We use two CRS codes — row-wise coding for
errors and column-wise coding for erasures. The decoding procedure works in two
steps. In the first step, the client executes the decoding procedure row-wise to correct
the possible errors in each row. Therefore, the row-wise decoding can correct up to⌊
s
2

⌋
errors. This requirement restricts the the number of servers the adversary can

corrupt in each epoch to be bounded by b 6
⌊
n−k
2

⌋
. If the decoding fails for a particular

row (for more than
⌊
s
2

⌋
errors), then each data block of that row is marked as an

erasure. In the second step, the client decodes the column-wise codeword for each
primary server (erasures are obtained from the first step). The decoding procedure
can recover the original data blocks for a primary server if there are up to s̃ = r − k̃
erasures in the corresponding codeword.

4.2 Extending Cauchy Reed-Solomon Codes for Ap-

pending Message Symbols

Let an n× k matrix MCRS defined by X = {x1, x2, . . . , xs} and Y = {y1, y2, . . . , yk}
be the distribution matrix for an (n, k) Cauchy Reed-Solomon (CRS) code over Zp,
where the first k rows form a k × k identity matrix Ik and the last s = n − k rows
form an s× k Cauchy matrix (n 6 p).

Let mk+1 be another symbol to be appended to −→m. In this work, we keep the value
of s fixed. So the number of codeword-symbols n increases by 1 for each append, i.e.,
we set knew = k + 1 and nnew = n + 1 with the restriction nnew 6 p. We choose an
element yknew ∈ Zp such that yknew 6∈ X and yknew 6∈ Y . Then, we add yknew to Y as
the last element and construct an s× knew Cauchy matrix with entries aij = 1

xi−yj for

i ∈ [1, s] and j ∈ [1, knew]. To achieve this incrementally, we simply append to the
previous s × k Cauchy matrix a column with entries aiknew = 1

xi−yknew
for i ∈ [1, s].

The matrix thus formed is indeed a Cauchy matrix as it satisfies all the conditions
mentioned in Section 2.3. Finally, this matrix is appended to the identity matrix Ik+1

to obtain the updated MCRS.

4.3 Distributed Secure Cloud Storage for Append-

only Data

We start with an idea for possible extension of the scheme for static data in order
to support append operations and describe some of its challenges. Then, we describe
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the distributed secure cloud storage scheme for append-only data that addresses these
challenges efficiently.

4.3.1 Idea for Extension

We assume that the client appends a row of data blocks at a time, that is, each
primary (secondary) server gets a block (a block-tag pair) during an append. The
client encodes the new k blocks into n blocks using MCRS, generates tags for the last
s blocks and distributes them among the servers. Then, column-wise parity blocks
are updated using M ′

CRS for each server. The client uses two pairs of ordered sets
(Xrow, Yrow) and (Xcol, Ycol) each satisfying the conditions mentioned in Section 2.3.
We note that Xrow and Yrow are fixed unless we change the number of primary servers
or the number of secondary servers. However, for column-wise CRS coding using
M ′

CRS, the set Ycol needs to be changed as discussed in Section 4.2.

Challenges We discuss about some challenges regarding the idea as follows.

1. For row-wise (or column-wise) CRS coding, the client needs to store the matri-
ces MCRS (or M ′

CRS) to encode data blocks. Alternatively, the client can store
only the respective Cauchy matrices at her end to reduce the storage over-
head. This overhead can be further alleviated if the client stores only the pairs
(Xrow, Yrow), (Xcol, Ycol) and computes the required entries of the matrices from
them on-the-fly. However, storing these pairs also requires O(p log p) space that
is exponential in λ as p = 2O(λ).

2. Let σij = fkprf (i, j) + αmij mod p and σ(i+1)j = fkprf (i+ 1, j) + αm(i+1)j mod p
be the tags on the i-th and (i+1)-th parity blocks of the j-th secondary server Sj
after the t-th append, respectively (i ∈ [k̃ + 1, r − 1], j ∈ [k + 1, n]). Now, after
the (t+ 1)-th append, the row-wise index of the previous i-th block is i+ 1; and
let σ′(i+1)j = fkprf (i + 1, j) + αm′(i+1)j mod p be its updated tag. Therefore, a

(possibly) malicious secondary server Sj can compute fkprf (i+1, j) and α using
m(i+1)j, m

′
(i+1)j, σ(i+1)j and σ′(i+1)j; and thus it can later generate a valid tag on

a block indexed by (i+ 1, j).

3. In column-wise CRS coding, for each server, the client needs to download all
the parity blocks (and corresponding tags for each secondary server), update
them using the updated M ′

CRS and upload them to the corresponding server.
This requires a huge client-server communication bandwidth.

Addressing the Challenges We describe some remedial measures in order to
address the challenges discussed above.
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1. We note that the elements in Xrow and Yrow belong to Zp, where |Xrow| = s
and |Yrow| = k. We include the first s elements of Zp in Xrow and the last
k elements of Zp in Yrow; that is, Xrow = {0, 1, . . . , s − 1} and Yrow = {p −
k, p − k + 1, . . . , p − 1}. We can easily verify that Xrow and Yrow thus formed
indeed satisfy the conditions mentioned in Section 2.3 as long as n = k+ s 6 p.
So the knowledge of i ∈ [1, s] and j ∈ [1, k] is sufficient to get the entries of
Xrow, Yrow and to compute the entries aij of MCRS on-the-fly. Therefore, the
client need not store these sets. The sets Xcol and Ycol can be formed using the
same technique, except that |Ycol| varies with the value of k̃.

2. The client uses a counter ctr. For the initial upload, the client sets the counter
ctr to 0 and computes tags σij = fkprf (i, j, ctr) + αmij mod p for all i ∈ [1, r]
and for all j ∈ [k + 1, n]. For each append, the client increments ctr by 1 and
updates the tags σij (only for i ∈ [k̃ + 1, r], j ∈ [k + 1, n]) accordingly. We note
that, for the first k̃ rows (systematic part), the tags corresponding to blocks in
the secondary servers never get updated (as the only operation allowed is append
in the k̃+1-th row). Therefore, at any point of time, the value of ctr is 0 for the
first k̃ rows and the value of ctr for the rest of the rows is the number of appends
that have taken place so far. So due to the properties of a pseudorandom
function, the j-th (j ∈ [k + 1, n]) server cannot exploit the knowledge of σij =
fkprf (i, j, ctr)+αmij mod p and σ′ij = fkprf (i, j, ctr′)+αm′ij mod p to compute

the value(s) of fkprf (i, j, ctr), fkprf (i, j, ctr′) or α, for any value of i ∈ [k̃+ 1, r]
and for any ctr′ > ctr.

3. For column-wise CRS coding, each server can maintain the updated M ′
CRS (or

compute its entries on-the-fly) and update its parity blocks using M ′
CRS. This

requires no client-server communication. A server Sj (j ∈ [1, n]) updates each
of its column-wise parity blocks as follows. Let k̃a be the number of data blocks
(systematic part) present in the column-wise codeword after the t-th append
and mk̃aj

be the newly appended data block for Sj. Let mij and m′ij be the

contents of the i-th parity block (i ∈ [k̃a + 1, r]) of Sj after and before the t-th
append, respectively. The server Sj multiplies mk̃aj

with the i-th entry of the

newly added k̃a-th column of the Cauchy submatrix of M ′
CRS. Then, it adds

this product to m′ij in order to get mij, the updated content of the parity block.

Here, we note that Sj need not touch any existing data blocks mij (i ∈ [1, k̃a−1])
to update its parity blocks.

On the other hand, for each secondary server, the tags on the last s̃ = n − k̃
blocks need to be updated with the latest value of i and ctr (both incremented
by 1) as discussed above. We describe the procedure for updation of the tag
of such a block for Sj (j ∈ [k + 1, n]) as follows. Let (mk̃aj

, σk̃aj) be the new

block-tag pair for Sj when the client encodes the k̃a-th row using row-wise
encoding. Let (mij, σij) and (m′ij, σ

′
ij) be the block-tag pairs for the i-th block
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(i ∈ [k̃a + 1, r]) of Sj after and before the t-th append, respectively. So, we have
σij = fkprf (i, j, t) + αmij mod p and σ′ij = fkprf (i, j, t − 1) + αm′ij mod p. We
define ∆σ = σij − σ′ij mod p and ∆m = mij −m′ij mod p.

As both the row-wise and the column-wise codes used are linear codes, it is easy
to see that the content of the i-th block of Sj (i ∈ [k̃a+1, r], j ∈ [k+1, n]) is the
same irrespective of whether we get it by column-wise-then-row-wise encoding
or the other way. This crucial observation leads us to the fact that ∆m can be
computed solely from mk̃aj

and M ′
CRS as ∆m = mk̃aj

M ′
CRS[i, k̃a] mod p. Thus,

we have

∆σ = fkprf (i, j, t)− fkprf (i, j, t− 1) + α∆m mod p. (4.3)

The client sends only these ∆σ’s for all relevant parity blocks to the secondary
servers, and the servers update the respective tags accordingly. Hence, the client
need not download the updated blocks, recompute the tags and then upload them
to the secondary servers.

4.3.2 Scheme for Append-only Data

We assume that the client stores MCRS (and M ′
CRS) in order to encode/decode the

blocks of F row-wise (and to compute changes in tags using Eqn. 4.3). We also assume
that each server stores M ′

CRS to encode its own blocks column-wise. However, we have
argued in Section 4.3.1 that the entries of MCRS and M ′

CRS can be computed on-the-
fly with only O(1) amount of storage. We also note that MCRS is static whereas
M ′

CRS is extended for each append. The procedures Setup, Challenge, Prove and
Redistribute in our scheme for append-only data are the same as those described
for static data in Section 4.1. We describe the rest of the procedures as follows.

• Outsource(F, sk): The procedure is the same as the procedure Outsource
described in Section 4.1 except the following. Instead of using Eqn. 4.1, the
client computes an authentication tag for each parity block mij i ∈ [1, r],j ∈
[k + 1, n] as

σij = fkprf (i, j, 0) + αmij mod p. (4.4)

• Append(fid, sk, k̃, r, ctr, t): The client increments each of k̃, r and ctr by
1 and updates M ′

CRS. She encodes k data blocks (the row to be appended to
F ) into n blocks using MCRS, generates authentication tags

σk̃j = fkprf (k̃, j, 0) + αmk̃j mod p (4.5)

for all j ∈ [k + 1, n], and sends the blocks and the tags to the corresponding
n servers. The servers append the respective blocks (and tags), increment each
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of k̃, r and ctr they maintain by 1 and update M ′
CRS at their end. Each of

the servers updates its column-wise parity blocks using M ′
CRS as described in

Section 4.3.1.

For each secondary server, the client also computes the changes in the existing
tags by taking t = ctr and k̃a = k̃ in Eqn. 4.3 and sends them to the secondary
servers. The secondary servers update the tags on the existing column-wise
parity blocks accordingly.

• Verify(Q,Π, fid, sk, ctr, k̃, t): The procedure is the same as the procedure
Verify described in Section 4.1 except the following. Instead of using Eqn. 4.2,
the client checks whether

σj
?
=
∑

i∈I,i6k̃

νifkprf (i, j, 0) +
∑

i∈I,i>k̃

νifkprf (i, j, ctr)+

αµj mod p. (4.6)

Number of Parity Blocks in a Column-wise Codeword In our scheme, we
have kept s̃ (the number of parity blocks in a column-wise codeword) fixed throughout
a series of append operations in order to avoid inserting rows in the Cauchy submatrix
of M ′

CRS (otherwise, each server has to touch all the existing data blocks to compute
the newly inserted parity blocks). On the other hand, if the value of s̃ becomes very
small compared to the increasing value of k̃, then the decoding probability of the
data blocks in the codeword decreases significantly. To address this trade-off, we take
a parameter εp for our system. If the fraction of parity blocks in a codeword drops
below εp, the client adds some parity blocks to each column-wise codeword to restore
the fraction well above the threshold (during the procedure Redistribute).





Chapter 5

Implementation

Let n (total number of servers) and k (number of primary servers) be the system
parameters. We assume that a client wants to distribute it’s data file F among n
servers. It chooses k primary servers to store the data blocks of F and s = n −
k secondary servers to store the parity blocks. For distribution of data to cloud
servers, we use modules of the library Jerasure-1.2 [20]. We will describe about
implementation details through following sections.

5.1 Jerasure-1.2 Library

To distribute file into servers, we use error-correcting codes (erasure codes). We use
Jerasure-1.2, a library in C/C++ that supports erasure coding applications. Jerasure
supports a horizontal mode of erasure codes. We assume that we have k servers that
hold data. To that, we will add s servers whose contents will be calculated from
the original k servers. If the erasure code is a Maximum Distance Separable (MDS)
code, then the entire system will be able to tolerate the loss of any s servers. In our
distributed systems, Jerasure is very effective tool for fault tolerance.

As shown in Figure 5.1, the encoding process takes the original k data servers, and
from them calculates s coding servers. The decoding process takes the collection of

Figure 5.1: Encoding and Decoding process

27
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(k+s = n) total servers with erasures, and from the surviving servers recalculates the
contents of the original k data servers. Most codes have a third parameter w, which
is the word size. The description of a code views each device as having w bits worth
of data. The data servers are denoted D0 through Dk−1 and the coding servers are
denoted C0 through Cs−1 . Each server Di or Cj holds w bits, denoted di,0, ..., di,w−1
and cj,0, ..., cj,w−1 . In reality, servers hold megabytes of data.

When w ∈ 8, 16, 32, we can consider each collection of w bits to be a byte, short
word or word respectively. Consider the case when w = 8. Let us say each server to
hold B bytes (example). The first byte of each coding server will be encoded with the
first byte of each data server. The second byte of each coding server will be encoded
with the second byte of each data server. And so on upto B many times.

We have given brief information of routines we used in implementation here.

5.1.1 Galois Field Arithmetic

As we using w ∈ 8, 16, 32, we would be working in GF (28), GF (216) or GF (232). The
Galois Field Arithmetic for these fields are integrated with Jerasure library already.
The files galois.h and galois.c contain procedures for Galois Field arithmetic in
GF (2w) for 1 ≤ w ≤ 32. Following are some procedures we used from galois.h and
galois.c.

Arithmetic Routines

• galois single multiply(int a, int b, int w) and galois single divide(int
a, int b, int w). These perform multiplication and division on single elements
a and b of GF (2w).

• galois w08 region multiply(char *region, int multby, int nbytes, char
*r2, int add). This multiplies an entire region of bytes by the constant multby
in GF (28).If r2 is NULL then region is overwritten. Otherwise, if add is zero,
the products are placed in r2. If add is non-zero, then the products are XOR’d
with the bytes in r2.

• galois w16 region multiply() and galois w32 region multiply() are iden-
tical to galois w08 region multiply(), except they are inGF (216) andGF (232)
respectively.

There are some other procedures, but we have not used them. Galois field arith-
metic is used in all other parts of library e.g. encoding, decoding procedures.

5.1.2 Basic Routines

The files jerasure.h and jerasure.c implement procedures that are common to many
aspects of coding. We use some of the procedures from these routines.
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Parameters Some of the important parameters used in library are described below.

• int k: The number of data servers.

• int m: The number of coding servers.

• int w: The word size of the code.

• int size: The total number of bytes per server to encode/decode. This must
be a multiple of sizeof(long).

• int *matrix: This is an array with k ×m elements that represents the coding
matrix i.e. the last m rows of the distribution matrix. Its elements must be
between 0 and 2w − 1.

• char **data ptrs: This is an array of k pointers to size bytes worth of data.
Each of these must be long word aligned.

• char **coding ptrs: This is an array of m pointers to size bytes worth of
coding data. Each of these must be long word aligned.

• int *erasures: This is an array of id’s of erased devices. Id’s are numbers
between 0 and k +m− 1.

Encoding Routines Encoding routines used by us are described below.

• void jerasure matrix encode(k, m, w, matrix, data ptrs, coding ptrs,
size). This encodes with a matrix in GF (2w). w must be ∈ 8, 16, 32.

Decoding Routines Encoding routines used by us are described below.

• jerasure matrix decode(k, m, w matrix, erasures, data ptrs, coding ptrs,
size): This decodes using a matrix in GF (2w), w ∈ 8, 16, 32. This works by
creating a decoding matrix and performing the matrix/vector product, then
re-encoding any erased coding devices.

Matrix Routines Some basic matrix routines are used by us.

• int jerasure invert matrix(int *mat, int *inv, int rows, int w): This
inverts a (rows× rows) matrix in GF (2w). It puts the result in inv.
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5.1.3 Cauchy Reed-Solomon Coding Routines

The files cauchy.h and cauchy.c implement procedures for Cauchy Reed-Solomon
coding.

• int *cauchy original coding matrix(k, m, w): This allocates and returns
the originally defined Cauchy matrix.

• int *cauchy xy coding matrix(k, m, w, int *X, int *Y): This allows the
user to specify sets X and Y to define the matrix. Set X has m elements of
GF (2w) and set Y has k elements. Neither set may have duplicate elements
and X ∩ Y = ∅.

5.2 Schema of Implementation

We have described routines we used from library in earlier section. Now, we will
describe how we implemented our proposed scheme using these routines. Our scheme
for append-only contains procedures Setup, Outsource, Challenge, Prove, Ver-
ify, Append. We have described these procedures thoroughly already in chapter
4.

5.2.1 Preprocessing

Preprocessing the data contains procedures Setup, and Outsource.
The setup procedure contain preliminary secret key selection, pseudorandom func-

tion (PRF) key selection. The Outsource procedure contain encoding of the file and
tag creation.

Key Generation For generation of random keys required in setup phase, we have
used Pseudorandom number generator (PRNG). A PRNG can be started from an
arbitrary initial state using a seed state. The client chooses a random prime p. The

client selects an element α
R←− Zp and a PRF key kprf

R←− Kprf . Her secret key sk is
the pair (α, kprf ).

Encoding Jerasure-1.2 provides different encoding and decoding routines. For en-
coding the data, Jerasure creates Generating Distribution Matrices using differ-
ent methods e.g. Vandermonde Distribution Matrices, Cauchy Reed-Solomon Coding.
Jerasure gives very fast results for arithmetic of elements inGF (28), GF (216), GF (232).
We generally take elements from GF (28).

The client chooses the data file F to store on n servers. She chooses k primary
servers S1, S2, . . . , Sk to store the data blocks of F and s = n − k secondary (or
redundant) servers S(k+1), S(k+2), . . . , Sn to store the parity (or redundant) blocks.
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Figure 5.2: Distributed storage structure.

She divides the file F as {mij}i∈[1,k̃],j∈[1,k], where each data block mij ∈ Zp for

all i ∈ [1, k̃], j ∈ [1, k]. Figure 5.2 gives an overview of the storage structure for F
distributed among the primary and the secondary servers.

The processed file is split into blocks, and each block is split into sectors. Each
element of sector is in either of above specified fields. We have used block as consists
of 8 sectors.

In our setting, Encoding of the data blocks are done row-wise (inter-server) and
column-wise (intra-server).

For row-wise encoding, we are using Cauchy Reed-Solomon Encoding to dis-
tribute data over servers. For purpose, we use procedure cauchy original coding matrix
described in above section.

For column-wise encoding, we are using Extending Cauchy Reed-Solomon
code described in our proposed scheme to create Generating Distribution Matrix.
We are using cauchy xy coding matrix procedure described in above section.

These procedures will give us Generating Distribution Matrix. Client side will
use matrix to distribute the main file (data). So, using encoding, client file gets
distributed at k primary servers and s secondary servers, where total servers are
n = k + s.

Tag creation Tag creation will be done as described in our proposed scheme for
append-only data in previous chapter. The client computes authentication tags for
parity blocks as per construction mij (i ∈ [1, r], j ∈ [k + 1, n])

σij = fkprf (i, j, 0) + αmij mod p. (5.1)

Tag calculation uses Galois Field Arithmetic described in previous section. We use
galois single multiply for multiplication in chosen GF (2w). Tags are calculated for
respective sectors of each block and stored with respective block.
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After this preprocessing procedures, distributed files and corresponding tags are
outsourced to respective servers.

5.2.2 Auditing

Auditing part contains procedures Challenge, Prove, and Verify which we already
described in previous chapter.

Challenge This part implements Challenge procedure. In audit part, the client
selects I, a random l-element subset of [1, r] and client side generates randomly chal-

lenge set Q = {(i, νi)}i∈I , where each νi
R←− Zp using PRNG. These challenges (queries)

are sent to server side by client side.

Prove This part implements prove procedure. Server side receives challenge from
client side. Then, all n servers calculate aggregated codeword block. Lets say, the
j-th cloud server Sj computes and sends µj =

∑
i∈I νimij ∈ Zp to the client side, for

all j ∈ [1, n].
All secondary s servers calculate aggregated tag. The j-th secondary server sends

σj =
∑

i∈I νiσij ∈ Zp to the client, for all j ∈ [k + 1, n].
This all combined codeword and tag constitutes proof π by server side to client

side. The proof calculation uses Galois Field Arithmetic described in previous section.
We use galois single multiply for multiplication in chosen GF (2w).

Verify This part implements verify procedure. Client side receives proof π from
server side and already have challenge set Q.

It then checks whether received aggregated codeword by server side is valid or
not. We use procedure cauchy original coding matrix for verification of codeword.

Then, for each j ∈ [k + 1, n], the client checks whether

σj
?
=
∑
i∈I

νifkprf (i, j, 0) + αµj mod p. (5.2)

If this verification process fails, then the proof received is wrong and we output 0.
Tag verification uses Galois Field Arithmetic described in previous section. We use
galois single multiply for multiplication in chosen GF (2w).

5.2.3 Corruption and Reconstruction

Data corruption is among the most common data errors. Data corruption happens
when data is intentionally or unintentionally changed from its original, correct form.
Corruption can be systematic or random, and even a small change can fundamentally
render a file useless. In these cases, data server cannot access the specific sector or
specific block or specific whole server.
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We have k primary and s secondary servers totaling n = k + s servers. So, as we
are using MDS codes, we can reconstruct any s blocks out of k blocks in single row.
So, even if whole s servers are corrupted, we can reconstruct them back. If servers
find out some data blocks are inaccessible (corrupted) , then servers start the process
of reconstruction.

For reconstruction process, server use the row-wise reconstruction process. Lets
say c ≤ s blocks in one row got corrupted, then selecting any k blocks out of re-
maining k ≤ (n − c), we can reconstruct all blocks in corresponding row back. We
choose any k blocks out of remaining blocks and take corresponding rows of Gener-
ating Distribution Matrix MCRS (Cauchy Reed-solomon). After getting k×k matrix,
we take inverse of that matrix. As all rows of Generating Distribution Matrix are
independent, then any k×k matrix made out of n×k matrix has inverse. We multiply
chosen k blocks with the inverse of above described k× k matrix and we get back all
data blocks return.

Mathematically, letG (k×n) be the generator matrix and vector ~D = {d0, d1, ..., dk−1}
be the data stripe and vector ~C = {c0, c1, ..., cs−1} be the coding stripe.

GT ×DT = µT (5.3)

where, a vector ~µ = {d0, d1, ..., dk−1, c0, c1, ..., cs−1} is the final codeword stripe.
Suppose, at most s characters (symbols) of codeword stripe got corrupted. Let,

~ω be surviving vector. Let, B (k × k) be the GT with deleted rows of corresponding
corrupted characters. Then, it implies,

B ×DT = ωT (5.4)

B−1 ×B ×Dt = B−1 × ωT (5.5)

Dt = B−1 × ωT (5.6)

Finally, we get data stripe back.
Sometimes, it is possible that more than s i.e. c > s blocks in one row get

corrupted. In that case, reconstruction using row-wise parity is not possible. We
use column-wise parity in this case for corrupted block numbers. In this case, we
construct Generating Distribution Matrix M ′

CRS (Extending Cauchy Reed-solomon).
Similar process as row reconstruction is followed. We reconstruct the whole server
back. Following process consist reconstructing row earlier using row-wise parity.

This reconstruction process requires Matrix, Galois Field Arithmetic as well as De-
coding routines. We will use jerasure invert matrix() as well as jerasure matrix decode()
procedures for reconstruction. Also, We use galois single multiply for multiplication
in chosen GF (2w). We might require jerasure matrix encode() to re-encode data back
if some parity block is present in c corrupted blocks.

Example in Figure 5.3 shows corruption of encoded random data (in Hexadecimal
format) and decoding (reconstruction) of data.
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Figure 5.3: Example of Encoding and Decoding, k=6, m=4, w=8
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5.2.4 Append

This part implements append procedure.
Let us say, we had total r blocks earlier in every server. Out of r blocks, r1 blocks

are of data, and r2 blocks are of column-wise parity s.t. r = r1 + r2.
We append new row of data. Using MCRS, we calculate parity blocks for this

newly added blocks. So, each n servers, gets added one new block and contains now
r1 + 1 data rows. We construct respective tags for newly added parity blocks. These
tags are placed respective to new parity blocks in parity servers.

This append will also affect our column-wise parity of every sever and their re-
spective tags. Let us say, (mij, σij) and (m′ij, σ

′
ij) be the block-tag pairs for the i-th

block (i ∈ [r1 + 1, r]) of Sj, j ∈ [1, n] after and before the t-th append, respectively.
So, we have σij = fkprf (i, j, t) + αmij mod p and σ′ij = fkprf (i, j, t− 1) + αm′ij mod p.
We define ∆σ = σij − σ′ij mod p and ∆m = mij −m′ij mod p.

Servers calculate ∆m of relevant parity blocks on server side and add it to previous
column-wise parity blocks in respective servers. Client sends ∆σ of related parity
blocks to secondary servers. Servers add ∆σ to respective tags. The append process
requires galois single multiply for multiplication in chosen GF (2w). We might require
jerasure matrix encode() to calculate parity blocks for newly added row.

5.2.5 File Retrieval

Client distributes its data to multiple cloud servers. But, afterwards client might
require data physically. So, client need to download the outsourced file back. At such
time, client might want to retrieve its file (data) back.

For static data, we store the hash of file before preprocessing. After downloading
the file from servers, we calculate the hash value of downloaded file. If hash of newly
downloaded file matches previous hash value, then file we retrieved is correct.

For append data, above method is not useful. In this case, we check if every row
is correct codeword or not. In other words, we audit every row of servers. If we get
correct audit proof, then we say file retrieved is correct.





Chapter 6

Security and Performance Analysis

6.1 Security Model

We assume that a client (cloud user) wants to distribute it’s data file F among n
servers. It chooses k primary servers S1, S2, . . . , Sk to store the data blocks of F and
s = n−k secondary (or redundant) servers S(k+1), S(k+2), . . . , Sn to store the parity (or
redundant) blocks. Data blocks are encoded row-wise (inter-server or dispersal code)
and column-wise (intra-server or server code) using Cauchy Reed-Solomon (CRS)
codes.

We follow a security model similar to that discussed in HAIL [4] but for append-
only data. After the client initially uploads F to the servers, the lifetime of the system
is split into some time intervals called epochs. For a parameter b, a PPT adversary
A is modeled as mobile (i.e., in each epoch it can corrupt up to b servers chosen
arbitrarily) and fully Byzantine (i.e., it can arbitrarily modify or delete any part of
the storage in any server it corrupts). An epoch consists of four phases: an append
phase (the client appends data blocks to the existing file residing on the servers),
a corruption phase (A chooses a fresh set of b servers to corrupt), an audit phase
(the client challenges the servers via spot checking) and a remediation phase (the
client checks if some corrupted servers provide incorrect responses above a certain
threshold fraction εq). A bound on b is discussed in Section 4.1. In the remediation
phase, if the fraction of corruptions exceeds εq for some server, the client reads all the
file shares from each server and tries to decode F . We define the distributed cloud
storage scheme to be secure if, for any A, the client correctly decodes F with high
probability.

6.2 Security of scheme for static data

We consider the same security model discussed in Section 6.1, except that the append
phase is not present in an epoch. Security of the scheme for static data is derived
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from [23] in the same way as in HAIL [4]. We note that an adversary can corrupt a
particular dispersal codeword in HAIL. For example, the adversary can replace the
codeword in the second row with that in the first row in a span of f =

⌈
n
b

⌉
epochs.

The probability that the second row is not challenged in any of these f epochs is
(1 − l

r
)f that is quite high. During this span only, the codeword in the second row

can be detected as invalid; it is a valid codeword, otherwise. Our scheme prevents this
attack by embedding row-indices in the tags using Eqn. 4.1 and by verifying them
using Eqn. 4.2.

6.3 Security of scheme for append-only data

Security of the scheme for append-only data is the same as that in the scheme for
static data described in Section 4.1, except that the parity blocks in each server are
updated for each append. We observe that the first k̃ rows are never updated in
the scheme; only the parity rows (i.e., column-wise parity blocks for each server) are
updated for an append. If the servers retain the i-th (i ∈ [k̃ + 1, r]) row of parity
blocks with older contents (and tags for an older ctr value), the client can easily
detect this anomaly while verifying the proof (using Eqn. 4.6) as the latest counter
value would not match with ctr.

6.4 Performance Analysis

Symbol Definition

n Number of total servers
k Number of Primary servers
s Number of Secondary servers
s̃ Number of column-wise parity rows

Table 6.1: Notations used for analysis.

We have implemented the scheme for static data as given in section 4.1. Also,
we extended this scheme to append-only (dynamic) data. Currently, We have im-
plemented the scheme with encoding of files in C language using Jerasure routines
and ran our experiments on an Intel Core 3 processor running at 2.40 GHz. We have
currently written our code on Ubuntu 16.04.2 LTS linux machine.

In our experiments, we have used fixed Cauchy Reed-Solomon code (n = 8, k =
6, s = 2) for horizontal parity over GF (28). For column-wise parity, we use Extended
Cauchy Reed-Solomon code with s̃ = 10. Currently, we are in primitive stages of
experiments which are giving successful results.

We ran some timing experiments for computation of tags (MAC) against increas-
ing file size. Results for these experiments are shown in the Figure 6.1.
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We ran some experiments for reconstruction of corrupted data. Figure 6.2 shows
the results for reconstruction of wholem corrupted (erasure) servers against increasing
file size.

As we increase the file size, we check the time require for auditing which consists
challenge, prove and verify phases. Figure 6.3 shows the time for audit verification
for a fixed number of queries against increasing file size.

We varied number of audit queries and check the time for audit verification. Figure
6.4 shows the number of queries against time for audit verification.

Observations
– We notice time for computation of MAC (tags) is gradually increasing as we start
to increase the size of file.
– Time for reconstruction of corrupted server is monotonically increasing while in-
crease in file size.
– Increment in file size causing the increment in time for audit verification.
– As we are increasing the number of queries, the time for computation of proof is
increasing which in resulting in time increase in audit verification.
– We deduce that file size and challenge size are very important factors for timing
evaluations. As sample size we have taken for variables is small scale, we can see
small fluctuations in graphs.
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Figure 6.1: Size of File vs. Time to compute MAC (tag)

Figure 6.2: Size of File vs. Time to reconstruct whole corrupted server
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Figure 6.3: Size of File vs. Time for audit verification

Figure 6.4: Size of Audit query vs. Time for audit verification





Chapter 7

Future Work and Conclusion

In this work, we have implemented a distributed secure cloud storage scheme for
static data. Then, we have extended this scheme to accommodate append-only data
such that the client can efficiently append data after the initial data outsourcing. The
scheme provides a partial solution (for append-only data) to the problem of designing
a distributed secure cloud storage achieving PoR guarantees for dynamic data. To
the best of our knowledge, there is no work found in the literature that addresses this
problem for generic dynamic data or append-only data.

We have implemented scheme for append-only data. We are investigating perfor-
mance analysis of our system thoroughly and thrive for improvements in our work.
As the work we have done is completely new, the experiments done are still on smaller
scale. We are trying to reflect the scheme on cloud platforms (large scale). We believe
that our scheme help cloud community to reaching remarkable approaches.
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