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Abstract

The weak distance
−→
d w(u, v) between any two vertices u and v −→G is the shortest directed path connecting

u and v. The weak diameter of an oriented graph −→G diamw(−→G)= max{d(u, v)|u, v ∈ V (−→G)}. We
denote fw(n) as the minimum arcs that an n vertex oriented graph required to be in a weak diameter
two. And oclique is an oriented graph with weak diameter at most 2.

In this thesis, we have settled an unknown question about fw(n) being piecewise increasing which
was previously known to be asymptotically increasing, improved the previous best upper bound of
fw(n). In the domain of the planar ocliques we have characterised the minimal planar ocliques showing
the possible effects of removing arcs from it, and have shown some possible applications of these effects.
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Chapter 1

Introduction

The set of vertices and edges of a graph G is denoted by V (G) and E(G), respectively. Order of a graph
means the number of vertices in that graph while size of a graph means the number of edges (or arcs)
in it. The distance d(u, v) between any two pair of vertices u, v is the length (number of edges) of a
shortest path connecting u and v. The diameter of a graph G is diam(G)= max{d(u, v)|u, v ∈ V (G)}.

An oriented graph −→G is a directed graph having no directed cycle of length one or two with the
set of vertices V (−→G) and set of arcs A(−→G). By replacing each edge uv of simple graph G with an arc
−→uv we obtain an oriented graph −→G ; −→G is the orientation of G, and G is the underlying graph of −→G .
The length of a directed path/cycle in a directed graph is the number of distinct arcs in it. The weak
distance

−→
d w(u, v) between any two vertices u and v −→G is the shortest directed path connecting u and

v. Note that the connecting directed path between u and v can be either from u to v or from v to
u. The weak diameter of an oriented graph −→G diamw(−→G)= max{d(u, v)|u, v ∈ V (−→G)}. Two arcs −→uw
and −→wv in an oriented graph together are called a directed 2-path or a 2-dipath where u and v are the
terminal vertices and w is the internal vertex.

The journey of our problem began holding hands with Erdős, Rényi and Sõs [3]. They started by
defining the function

fd(n) = min{|E(G)| such that diam(G) ≤ d and |V (G)| = n}.

They gave some asymptotic bounds for general diameter d and bettered that bound for some con-
strained graphs, leaving us with the analogous questions for oriented graphs. These questions were
again asked by Dawes and Meijer [2] and also by Známi [15]. It turns out that its not very easy to
answer those questions even for diameter 2. For answering those analogous questions Erdős, Rényi and
Sõs [3] defined

fw(n) = min{|E(G)| such that diamw(−→G) ≤ d and |V (G)| = n}.

There are few results relating to this fw(n) lets look at them in a chronological order. The first result
regarding this is due to Katona and Szemerédi [7].

Theorem 1.1 (Katona and Szemerédi 1967 [7]).

n

2 log2

(
n

2

)
≤ fw(n) ≤ n dlog2ne

Later independent studies were made by Kostochka, Luczak, Simonyi and Sopena [10] and Furedi,
Horak, Pareek and Zhu [4] on fw(n) both proved that they are asymptotically increasing and gave
their own bounds.

Theorem 1.2 (Furedi, Horak, Pareek and Zhu 1997 [4]).

(1− o(1))nlog2n ≤ fw(n) ≤ nlog2n−
3
2n

A little weaker bounds were given by Kostochka, Luczak, Simonyi and Sopena [10].
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Theorem 1.3 (Kostochka, Luczak, Simonyi and Sopena 1999 [10]).

n (log2(n)− 4log2log2(n)− 5) ≤ fw(n) ≤ dlog2ne (n− dlog2ne)

An asymptotic bound for fw(n) was given by Furedi, Horak, Pareek and Zhu [4] again by Kostochka,
Luczak, Simonyi and Sopena [10], thus it was asymptotically increasing.

Theorem 1.4 (Furedi, Horak, Pareek and Zhu 1997 [4] and Kostochka, Luczak, Simonyi and Sopena
1999 [10]).

lim
n→∞

fw(n)
nlog2n

→ 1

If a graph G has an orientation −→G that makes it have weak diameter at most d then we call such
an orientation as d-weak orientation. The following result shows that the computational feasibility is
not there when it comes to finding out an weak orientation of a graph of a given diameter.

Theorem 1.5 (Kirgizov, Duvignan and Bensmail 2016 [8]). Determining whether a graph G has d-weak
orientation is NP-complete, for d ≥ 2.

One of the natural questions we address in this thesis is the following:

Question 1.1. Can we improve the existing upper and lower bounds of fw(n)?

We manage to improve the upper bound. Moreover, we consider another question asked by Eric
Sopena in a personal communication.

Question 1.2. Is fw(n) increasing?

We show that the function is, indeed, increasing.

∗ ∗ ∗

In this thesis, we are also interested in studying the structure of oriented graphs−→G with diamw(−→G) ≤
2 along with the function fw(n). This problem is also well motivated as it turns out that the graphs
with weak diameter at most 2 plays a key role in the theory of oriented graph coloring as well and are
interesting objects of study in that domain.

Courcelle [1] introduced the concept of oriented coloring while studying monadic second order
logic. An oriented k-coloring of an oriented graph −→G is a mapping φ from the vertex V (−→G) to the set
{1, 2, ...k} such that

(i) φ(u) 6= φ(v) whenever v and u are adjacent.

(ii) for two arcs −→uv and −→wx of −→G , φ(u) = φ(x) implies φ(v) 6= φ(w).

The oriented chromatic number χo(
−→
G) of an oriented graph −→G is the minimum number k for which

the graph has an oriented k-coloring.
That the above definition is indeed an extension of the theory of undirected graph coloring was

noted by Hell and Nešetřil [6] using graph homomorphism. We will omit the part involving graph
homomorphism as it is not inside the scope of this thesis. A similar extension of the concept of cliques
for undirected graphs was done by Klostermeyer and MacGillivray [].

An oriented absolute clique or oclique is an oriented graph −→G for which χo(
−→
G) = |V (−→G)|. The

oriented absolute clique number ωao(
−→
G) of an oriented graph −→G is the maximum order of an oclique

contained in −→G as a subgraph. The following characterization of ocliques due to Klostermeyer and
MacGillivray [9] connects our initial problem of interest to the theory of oriented coloring.

Proposition 1.1 (Klostermeyer and MacGillivary 2004 [9]). An oriented graph −→G is an oclique if and
only if diamw(−→G) = 2.
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Figure 1.1: The minimal planar oclique on 15 vertices. [13]

Thus note that an oclique and a weak 2 diameter graph is the same thing. Hence the above result
connects our object of interest to the theory of oriented graph coloring.

Thus we return to the same question as asked by Erdős, Rényi and Sõs [3]. So in the proofs of
the fw(n) we use the properties of oriented coloring. Theorem 1.2 was the best known bound till
date, we have improved that in chapter 1. Also we have added further information about the fw(n)’s
property by proving that it is piecewise increasing, which was asked by Eric Sopena in a personal
communication. fw(n) was previously known to be asymptotically increasing.

Now lets peep into the domain of planar graphs. We know that planar graphs has a maximum clique
size of 4. That is in case of K5 and higher higher cliques we do not have any planar representation of
it. This has been proved in the famous and celebrated Kurtawoski theorem [14]. So does there exist
any upper bound for planar ocliques as well? The answer is yes.

Theorem 1.6 (Nandy, Sen and Sopena 2015 [13]). A planar oclique has order at most 15. Furthermore,
any planar oclique of order 15 contains the planar oclique −→P depicted in figure 1.1 as a spanning
subgraph.

Thus by Theorem 1.6 we know that the highest order of a planar oclique is 15. Not only that,
there is only one minimal oclique of order 15. By minimal we mean that no proper subgraph H of the
underlying graph G of the oclique −→G , has an orientation −→H that makes it an oclique of the same order
as −→G . This immediately raises some questions. For example, what about the planar ocliques of lower
order? How many minimal planar ocliques are there of order n for n ≤ 14? In particular, Nandy, Sen
and Sopena [13] asked the following question:

Question 1.3. Characterize the set L of the graphs such that a planar graph can be oriented as an
oclique if and only if it contains one of the graphs from L as a sub graph?

We partially answer this question.

∗ ∗ ∗

In Chapter 2 of this thesis we have proved fw(n) is strictly increasing. We also worked out an
upper bound of fw(n) and finally have shown why this beats the previously best known upper bound.

Later in Chapter 3 we have shown some properties and of the minimal planar ocliques for lower
order graphs and have tried to give a general theorem of the planar graphs as a whole. While Chapter
4 lists out all the source codes that we have used in this process.

Finally we conclude our thesis in Chapter 5.
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Chapter 2

Size of an oclique of order n

2.1 The increasing property

We here to show that the number of edges required for increasing order of oclique is also strictly in-
creasing. We will give a method of obtaining a lesser order oclique from the higher order oclique. This
will produce an oclique of lower order with lesser number of arcs.
Let us denote fw(n) to be the minimum number of edges required by a graph −→G with n vertices to be
an oclique of order n.
So we take fw(n) = m, now we will show later that fw(n−1) ≤ m−1. Before that let us make a small
observation.

Observation 2.1. Merging two vertices with same oriented color, will not create any new cycle of two
or less in the resultant graph.

Definition 2.1. Let −→G(V,A) be a directed graph and let v ∈ V (G). Let N+(v) and N−(v) be the out-
neighbours and in neighbours of v respectively. Interchanging the in-neighbours with the out-neighbours
of v is called push(−→G, v). The new di-graph that is created is named as −−−→Gnew.

Lemma 2.1. Let −→G(V,A) be an oclique of order n + 1. Applying the operation push(−→G, v) for any
vertex v ∈ V (G), the oriented colouring decreases by at most 1. That is χo(

−−−→
Gnew) ≥ n.

Proof. Consider any two pairs (x, y) with x, y 6= v. Now they were either adjacent or connected via a
2-path. If they were adjacent then they remained adjacent after push(−→G, v). Else if they had v in there
2-path as an internal vertex then even after push they still disagree upon v so they still are connected.
Then also (x, y) remain connected as those edges are not affected. So colouring of those n vertices
remain same. Thus requiring atleast n colors to color −−−→Gnew.

Theorem 2.1. fw(n) is a strictly increasing.

Proof. We begin with a oclique of order n+1 where fw(n+1) = m. Now we pick any vertex v1 ∈ V (−→G)
and apply push(−→G, v1). So by lemma 2.1 the new graph say −→G1 has colouring χo(

−→
G1) ≥ n. Now if

χo(
−→
G1) = n then we are done as we can merge two vertices say (v1, x)of the same color. Thereby

reducing the number of edges by number of their common neighbours. Notice that, we must have
atleast one common neighbours as they were in an oclique to begin with and also they cannot be
adjacent as they have the same color. After merging we have an oclique of order n. So fw(n) ≤ m− 1.
If χo(

−→
G1) = n+1, then we pick another vertex v2 6= v1, and apply push(←−G1, v2) creating −→G2. Even then

also if χo(
−→
G2 = n + 1. Then we pick v3 6= v2 6= v1 and so on until we find −→Gk such that χo(

−→
Gk) = n,

then we perform the merge. If no such −→Gk exits then we adopt the following procedure.
We fix a vertex v ∈ V (−→G) and take v1 ∈ N+(v) and then apply push(−→G, v1) creating −→G1. Then we
take another vertex v2 ∈ N+(v) in the graph −→G1 again apply push(−→G1, v2) creating −→G2. This way we
continue until we make N+(v) = φ, say we achive this in the graph −→Gr. This makes v a sink vertex.
So v does not lie in the two dipath of any other vertices. Hence removing v from −→Gr will create an
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oclique −→H of order n. And as deg(v) > 0 so fw(n) ≤ m− 1.
So we showed for any n, fw(n+ 1) > fw(n). Hence fw(n) is strictly increasing.

Let us denote Fw(n, r) as the minimum number of edges required for a relative oriented clique −→R
which has r good vertices and n− r helper vertices. n is the total number of vertices. Thus n ≥ r. We
will prove some properties of relative oriented clique also. Notice that, Fw(n, n) = fw(n).

Corollary 2.1. Fw(n, r) ≥ fw(r)

Proof. We color with oriented colors the whole of the relative oriented clique including the helper
vertices also. If any helper vertices can be colored as the same color as that of any other helper or
good vertex then we may merge them to a single vertex. And keep on repeating this step until there
is no helper vertices thus proving our claim, as we do not increase the edges.
If such a situation is not there, that is there exits no helper vertex that can be colored as the same
color as any other helper or good vertex. Then we basically have an oclique of order r+number of
helper vertices left, and this requires more edges than fw(r) by theorem 2.1.

Proposition 2.1. Fw(n, r) is strictly increasing with respect to r.

Proof. Consider the relative oriented clique overrigharrowR. And consider the edge between an helper
vertex h and a good vertex g. Now if we delete that edge then the oriented color decreases by atmost
one. This is because only the connection of g with other good vertices is hampered, and that’s the
only thing that affects the oriented coloring that is the connection between good vertices. And here
only one good vertex is affected. So coloring decreases by one. Thus Fw(n, r) > Fw(n, r − 1).

2.2 Finding out the pattern

As mentioned earlier that the problem of determining the function fw(n), was first posed by Erdős,Rényi
and Sõs [3]. It was again asked by Dawes and Meijer [2] and also by Znám [15].
For unoriented graphs the answer to this question is trivial. Such a graph has n− 1 edges and star is
the only extremal graph.
The best known upper bound for fw(n) was given by Furedi, Horak, Pareek and Zhu [4]. And is given
as :

fw(n) ≤ nlog2n−
3
2n

for n ≥ 9.
This bound beats the previously known bound given by Katona and Szemeredi [7] as :

fw(n) ≤ ndlog2ne

. In this section we provide a way of generating ocliques, following a certain method. Now the number
of arcs that these ocliques require surely forms an upper bound to the fw(n). We derive certain
properties that the graphs, derived from our said procedure, posses. And finally we show that the
upperbound this method gives is tighter than the previously known upper bound.

Definition 2.2. We say that an oriented graph −→G is cut-structured if −→G is an oclique with one
dominator vertex v. Such that v is an cut vertex.

From the definition it can be observed that the positive neighbours (N+(v)) as well as the negative
neighbours (N−(v)) of the one dominator vertex v are ocliques on there own. As N+(v) and N−(v)
have no connection. We denote the minimum edge requirement for a cut vertexed graph of order n, to
be an oclique as gw(n). Thus one thing immediately follows.

fw(n+ 1) ≤ n+ gw(k) + gw(n− k) where 0 ≤ k ≤ n and k minimizes the RHS. (2.1)

Equation 2.1 gives us an hint as what to our procedure will be. But we state it formally.
Notice that we have initialized gw(5) = 5 which is not a cut-structured graph but it reduces the error
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Result: returns gw(n)
initialize :gw(1) = 0, gw(2) = 1, gw(3) = 2, gw(4) = 4, gw(5) = 5 ;
i = 6 ;
while i ≤ n do

k = dn2 e ;
gw(i) = min∀j,k≤j≤i−2(gw(j) + gw(i− 1− j));

end
return gw(n) ;

in the upper bound of fw(n). As gw(5) is actually 6 but a lower sized oclique is available so gw(5) is
initialized that way.

Now for n ≥ 11 we have observed some interesting patterns. Although the pattern starts from
n ≥ 6 but we prefer to start from 11 as it helps our analysis. Which are stated below.

Feature 2.1. The difference between the gw(n) and gw(n+ 1) varies alternately between x and x+ 1,
where n ≥ 11 and x ∈ N. For a length of 12.2i for some value i. Then it varies alternately by x + 1
and x+ 2, for the next 12.2i+1.

Definition 2.3. The point when the alternate change in difference (of gw(n)) increases in value, we
call that change point. In other words the alternating change of gw(n) − gw(n − 1) as x and x + 1,
changes to x + 1 and x + 2 and the value of n at which it such a change occurs is called the change
point.

Feature 2.2. At change points the value of gw(n+ 1)− gw(n)− (gw(n)− gw(n− 1)) is 2. Where n is
the change point.

One easy observation that can be made is that the alternating difference ends at lower value and
starts from the higher value. This is evident from the feature 2.1 and 2.2.

We have observed these features 2.1 and 2.1 for some finite i then we claim that it holds for all i
and hence for all n ≥ 11.

Theorem 2.2. If feature 2.1 and 2.2 holds for some finite i then it also holds for any other value of i.

Proof. As we have feature 2.1 true for some finite i thus for some n, so we use the strong law of
induction. We assume that {2n, 2n+ 1, 2n+ 2}in such an interval of 12.2r so that induction holds till
r − 1. Notice that 2n < 11 + 12× 20 + 12× 21...+ 12× 2r.

2n < 11 + 12(2r+1 − 1)

n <
11
2 + 6(2r+1 − 1)

n < 11 + 12(2r − 1)

Thus n lies with in the range of our induction.
For some 2n + 1 we need some k such that gw(k) + gw(2n − k) is minimized and k ≥ 2n − k. So lets
begin with k = n and keep on increasing k until the sum is minimized. Now there are 4 cases here
that are as follows.
Case 1: k is equidistant from the right and the left change points.
Case 2: k is closer to the right change point, but not on change point.
Case 3: 2n+ 1− k is closer to the left change point but on the change point.
Case 4: k is at the change point.

Case 1: As mentioned above that we start from k = n. Now we increase the value of k to n + 1
so the value of 2n − k becomes n − 1. By feature 2.1 and induction we have gw(n + 1) − gw(n) = x
and gw(n)− gw(n− 1) = x+ 1 or vice-versa.
If the first case has occurred that is gw(n + 1) − gw(n) = x and gw(n) − gw(n − 1) = x + 1 then we
have decrement of edges by choosing 2n − k = n − 1 over 2n − k = n, but we also have increment
of edges by choosing k = n + 1 over k = n so ultimately we decrease the edge requirement by one
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edge (x+ 1− x = 1). But if we again increase the value of k from n+ 1 to n+ 2 then by feature 2.1
gw(n+ 2)− gw(n+ 1) = x+ 1 and gw(n− 1)− gw(n− 2) = x. So we increase the edge requirement by
1. In the next increment of k we again decrease it by one only from the case gw(n−1) + gw(n+ 1). We
thus move on and keep increasing the value of k until the change point is reached. In that case as k was
initially equally close to both of the change points so during crossing the change point there is increase
in the value of gw(n−k)+gw(k). As gw(k+1)−gw(k) = x+2 so is gw(n−k)−gw(n−k−1) = x−1 (by
feature 2.2) then further changes will only lead to the increment as x+ 2 or x+ 1 while the decrement
will only be x− 1 or x. Leading to net rise in the sum gw(2n− k) + gw(k). And this keeps on rising.
Thus we have for k = n+ 1 attained minimum gw(n− k) + gw(k), for the case gw(n+ 1)− gw(n) = x
and gw(n)− gw(n− 1) = x+ 1.
Now consider 2n + 2 then we start k′ = n + 1 and thus 2n + 1 − k′ = n. And also note gw(n + 2) −
gw(n + 1) = x + 1 and gw(n + 1) − gw(n) = x so increasing the value of k′ does not affect the value
of gw(2n + 1 − k′) + gw(k′). As k′ is greater than n so k′ is closer to the right change point than
2n+ 1− k′ is from the left change point. So increasing the value of k′ when k′ is at the change point
means that the sum gw(2n+1−k′)+gw(k′) increases by the value of atleast 1 and further changes will
only increase the sum gw(2n+ 1− k′) + gw(k′) in accordance with feature 2.1. So k′ = n+ 1 minimizes
the sum gw(2n+ 1− k′) + gw(k′). Now :

gw(2n+ 2)− gw(2n+ 1) = 2n+ 1 + gw(n+ 1) + gw(n)− 2n− gw(n+ 1)− gw(n− 1)
gw(2n+ 2)− gw(2n+ 1) = 1 + gw(n)− gw(n− 1)
gw(2n+ 2)− gw(2n+ 1) = 2 + x

It can be shown that in the case of gw(n + 1) − gw(n) = x, gw(2n + 2) = 2gw(n + 1) + 1. So
gw(2n + 2) − gw(2n + 1) = x + 1. Thus we have an alternating sequences. Similarly we can show for
the case where gw(n+ 1)− gw(n) = x+ 1, that the alternating sequences prevail. Thus we prove our
claim in this case 1.
Note : There cannot exist any such k equidistant from both left change point and right change point.
As the number of elements between two change points are even. Although this proof gives the idea
about the following cases to come.

Case 2: From the proof of the Case 1 its clear that when no change point is not there in between
k and 2n − k then increasing the value of k increases or decreases the value of gw(2n − k) + gw(k)
by 1 alternately. Similarly when k crosses reaches the change point. The value of gw(k) − gw(k − 1)
becomes x + 2 while gw(2n − k) − gw(2n − k − 1) becomes x + 1 or x. Thus increasing the value of
gw(2n − k) + gw(k) by atleast 1. And the value of gw(2n − k) + gw(k) keeps on increasing when k is
increased when there is one or more change point in between them as seen in the proof of case 1. It
can be shown similar to case 1 gw(2n+ 1) = 2gw(n) + 2n for gw(n+ 1)− gw(n) = x+ 1. Then :

gw(2n+ 2) = gw(n+ 1) + gw(n) + 2n+ 1 thus
gw(2n+ 2)− gw(2n+ 1) = x+ 2 and

gw(2n) = gw(n) + gw(n− 1) + 2n− 1 making
gw(2n+ 1)− gw(2n) = x+ 1

Similar calculations can be shown for gw(n+ 1)− gw(n) = x.

Case 3: Same as case 2 by reversing the roles of 2n+ 1− k and k.

Case 4: When k is an change point then by feature 2.2 we have gw(k) − gw(k − 1) = x while
gw(k + 1) − gw(k) = x + 2 and we know that gw(2n − k) − gw(2n − k − 1) = x + 1 or x. So
gw(2n − k) + gw(k) increases by 1 with the increment of k. And as noted above that when a change
point is there between k and 2n− k with the increase in value of k, gw(2n− k) also increases.
Hence we prove our claim.
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2.3 Formulating the upper bound

As we have proven the existence of pattern in gw(n). We will here encode this pattern in algebraic
sense and thus have an upper bound for fw(n). Now we have seen by feature 2.1 that for a length of
12×2i, difference between consecutive gw(n) varies alternately between x and x+1. Taking advantage
of this situation we will find an explicit formula for gw(n) that forms the upper bound of fw(n). We
have

n = 11 + 12× (20) + 12× (21)...+ 12× (2i) + δ

n− 11 = 12× (2i+1 − 1) + δ

n− 11
12 = 2i+1 − 1 + δ

12
2i+1 ≤ n− 11

12 + 1

i ≤ log2

(
n+ 1

12

)
− 1

i =
⌊
log2

(
n+ 1

12

)⌋
− 1

δ represents the further addition that is needed to LHS to make it equal to n. Surely 0 ≤ δ < 12×2i+1.
Now lets see the explicit formula for gw(n).

gw(n) = 20 + S + k (2.2)

For i > 0,

S =
r=i∑
r=0

(7 + 2r)× 6× 2r = 42(2i+1 − 1) + 12((i− 1)2i+1 + 2)

.
For i = 0

S = 42

.
And for i < 0 we have,

S = 0

.
If δ is even.

k = (7 + 2(i+ 1))× δ

2

If δ is odd.
k = (7 + 2(i+ 1))× δ − 1

2 + (4 + i+ 1)

.
δ can be calculated as

δ = n− 11− (12(2i+1 − 1))

2.4 Beating the previous upper bound

In this section we try to prove why this upper bound is better than the previously known upper bound.
As mentioned earlier that Furedi,Horak,Pareek and Zhu [4] gave the best known upper bound, using
this same cut structure ocliques in a bit different way. They have assumed that :

fw(n) ≤ h
(⌈

n− 1
2

⌉)
+ h

(⌊
n− 1

2

⌋)
+ n− 1

12



,n is the number of vertices.
Where h(n) follows the same cut structured oclique as gw(n), but it follows the above mentioned
equation in its computation. That is h(n) = h

(⌈
n−1

2

⌉)
+ h

(⌊
n−1

2

⌋)
+ n− 1.

But as seen in the previous section that we have not restricted ourselves as in h(n) but rather we found
out the structure that minimizes the number of edges. By finding out the j which minimizes the value
of gw(n− 1− j) + gw(j) thus minimizing gw(n), making gw(n) the function which gives the minimum
edge requirement for cut structured ocliques. Hence gw(n) ≤ h(n).
This fact trivially shows that why our upper bound beats the previous upper bound. But still we do
a more rigorous analysis and find out that our upper bound is strictly less than the previously known
upper bound.
From previous analysis we have 2i+1 = n+1

12 + δ
12 . Let log2(n+2) = p. Using the fact that log2

(
n+1
12

)
<

p − 3.5. But as i is always an integer so we have i as p − 4.5 − b. Where 0 < b < 2 is the value
subtracted from p− 3.5 to make it have an integer value. Note that here we do the analysis for i ≥ 0
that is for n > 23
Now we assume that δ = n

a for any real positive number a. Clearly a > 2. Now consider the following
thing:

log2

(
n− δ + 1

12

)
= p− 3.5− b

log2

(
n− n

a + 1
12

)
= p− 3.5− b

12× a

a− 1 ≤ 23.5 × 2b

a

a− 1 ≤ 2b

1
a
≤ 2b − 1

2b
n

a
≤ 2b − 1

2b × n

Thus we have..

δ ≤ 2b − 1
2b × n (2.3)

Now having the equalities in place lets begin the analysis. We know that gw(n) = 20 + S + k. Thus
for S we have

S = 42
(
n+ 1

12 − 1− δ

12

)
+ 12

(
(p− 5.5− b)

(
n+ 1

12 − δ

12

)
+ 2

)
= 3.5(n+ 1)− 3.5δ − 42 + (p− 5.5− b)(n+ 1− δ) + 24

∴ S = (2 + b)δ + p+ np− (2 + b)n− pδ − 20− b

Similarly we have for k as

k = (7 + 2(p− 3.5− b))× δ

2
∴ k = pδ − bδ

13



Hence,

gw(n) = 20 + S + k

gw(n) = 2δ + np+ p− (2 + b)n− b

gw(n) ≤ 2× 2b − 1
2b × n− (2 + b)n+ np+ p− b using 2.3

≤ n
(

2(2b − 1)
2b − 2− b

)
+ np+ p− b

≤ −n
( 2

2b + b

)
+ np+ p− b

The term
(

2
2b + b

)
attains minimum value for b = log2(2 ln2), which is 1.914. Thus we have :

fw(n) ≤ np− 1.914n+ p− b as fw(n) ≤ gw(n) (2.4)

And as mentioned earlier, the previously known best known upper bound as given by Furedi,Horak,Pareek
and Zhu [4] is

fw(n) ≤ nlog2(n)− 1.5n (2.5)

Subtracting the RHS of equation of 2.5 from the RHS equation of 2.4 (let that difference be D), we
have

D = np− nlog2(n)− 0.414n+ p− b

D = n

(
log2(n+ 2

n
)
)
− 0.414n+ log2(n+ 2)− b

Notice that log2(n+2
n ) < 0.115 for n ≥ 24. Thus we have

D < −0.299n+ log2(n+ 2)− b thus,
D < 0 for n ≥ 24

But D tells us more than just the fact that our bound is tighter than the previously known bound. It
addresses the problem of linear error in the previous upper bound as mentioned by Furedi,Horak,Pareek
and Zhu [4]. As we see in D the term −0.299n dominates every other term thus we see an almost
(because of the log term) linear improvement in the upper bound for our upper bound compared with
the previous upper bound. Thus our bound is better than the existing one.
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Chapter 3

Minimal Planar Ocliques

An advantage of dealing with planar graphs is that we have to deal with only two types of dominator
cases. Henning and Goddard [5] showed that any planar graph with diameter two is dominated by
atmost two vertices except for a graph on 9 vertices as illustrated in MacGillivary and Seyffarth [11].
That graph has domination number 3. But that graph is not an oclique. So we deal with graphs
having domination number atmost 2.

We have mainly three results, which are as follows :

1. Affect in the oriented coloring of the planar graphs upon the removal of edges.

2. Affect of edge removal on some planar ocliques minimality.

3. The minimum edge requirements for two dominator cases in the planar graph.

3.1 Minimum edge requirement

In this section we give minimum edge requirements of planar graphs of order 4 to 7 for two dominator
case.

Observation 3.1. Dominator vertices of the ocliques −→G(V,E) of order n has atleast n − 1 edges
adjacent to it.

Proof. For one dominator case ,the dominator vertex has to be adjacent to exactly n − 1 other ver-
tices.Thus requiring n− 1 edges.
For two dominator case we require atleast m− 2 edges to dominate other vertices in the graph except
for d1 and d2. For the case of the no common neighbour between the two dominator vertex the un-
derlying graph G has distance of d1 to d2 more than two so we have an edge between d1 and d2. Thus
making the sum total n− 1.
For the case of one or more common neighbour. We require atleast n− 1 edges.

Proposition 3.1. Planar oclique of order 4 with 2 dominator requires atleast 4 edges.

Proof. A connected graph of 4 vertices and 3 edges is either a path of length 3 or a claw. Both are
which are not ocliques.

Proposition 3.2. Planar oclique of order 5 with 2 dominator requires atleast 5 edges.

Proof. All connected graph of 5 vertices and four edges are trees only the 4 star has diameter 2 but
has no orientation that makes it an oclique.

Proposition 3.3. Planar oclique of order 6 with 2 dominator requires atleast 8 edges.

Proof. let {x, y, a, b, c, d} be the vertices and x, y be the two dominators. The dominators cannot have
three common neighbours as one vertex then becomes a pendant vertex and it can be in 2-dipath with
at most 3 vertices. If x, y has two common neighbours a, b, then c, d cannot form a triangle with one
dominator as both will miss the other dominator. Hence x, c, d, y has to be a 4-dipath. This forces
(x, c, d, y, a) and (x, c, d, y, b) to be directed 5 cycles forcing a to miss b. If x, y has d as the common
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neighbour, then arcs xb, xc, and ya are needed to preserve the 2-dominator property. Without loss of
generality ac is an arc that gives rise to the directed 5-cycle (x, d, y, a, c). As b is a 2-degree vertex
it can be in 2-dipath with at most 2 vertices in the directed 5-cycle thereby missing one of them. If
x, y has no common neighbour then they have to be adjacent to avoid missing each other. The degree
sum of x, y is exactly 6. The degree sum of a, b, c, d is exactly 8 as there are only 7 arcs. Therefore,
ignoring the arc xy all vertices must have degree 2 making the graph a 6-cycle with a chord which is
not an oclique.

For an underlying oclique G, its induced subgraph H is the subgraph we get after removing the
dominators from G.

Proposition 3.4. A 7 vertex planar oclique of domination number two requires atleast 10 vertices.

Proof. We will prove this by contradiction .Say oclique of size 7 can be done using 9 edges. Let the
two dominator be d1 and d2.
Case 1: With one or no common neighbours, between two dominators d1, d2.
Then H have 5 vertices with 3 edges. So we have atleast 3 vertices with one or less degree in H. It can
be seen that there are more than or equal to, three 2 degree vertices in G(which are isolated vertices
or 1 degree vertices in H). Notice that when we put back the dominators u is adjacent to atleast one
of them let that be d1, and the other one be v. Without loss of generality let x1 be the other 2 degree

(a) Case 1.1 (b) Case 1.2 (c) Case 1.3

Figure 3.1: Cases for 7

vertex. With respect to figure 3.1a, notice that x1 agrees with x2 on d1 and x3 agrees with x4 on v to
see u. Now x1 cannot be adjacent to v. If x1 was adjacent to v then we could remove x1 or u which
does not hamper connectivity of d1 and v thus we have a oclique of size 6 but with 9 − 2 = 7 edges
which is not possible as oclique of 6 requires atleast 8 edges by proposition 3.3.
If x1 be adjacent to x2. Then we can delete x1 and have an oclique of 6 vertices but with 7 edges, as
deleting x1 in this case will not affect connectivity. But this contradicts proposition 3.3.
Let x1 be adjecent to x3 so x3 has to dominate x2. Now for x1 to see x4 it uses either d1 or x3 this
uses up all 9 edges. If d1is adjacent to x4 then x3 misses x4.Else if x3 is adjacent to x4 then d1 misses
x4.
Now lets consider the next case as shown above figure 3.1b. With respect to figure 3.1b notice that x1
agrees with x2 and x3 on d1 to see u. Again lets consider x1 to be the two degree vertex, the above
arguments hold for x1 being adjacent to v and x2, x3.So x1 is adjacent to x4. So x4 is adjacent to
x2 and x3. Thus using up all 9 edges but x2 still misses x3, as they agree upon all their common
neighbours.
With regard to figure 3.1c x1 is adjacent to x2, with out loss of generality. For x1 to see x3, x4 via d1
or x2 it requires atleast 2 edges. So we end up using all 9 edges but x3 misses x4 as they agree upon
all their common neighbours.
Case 2: With more than one common neighbours between d1 and d2.
As the number of common neighbours increases the edges in H decreases. Thus it can be seen that
there are atleast three 2 degree vertices in G. And thus all above arguments hold.
Now if there were any oclique of smaller size then those planar ocliques can be extended to higher
sized ocliques (this can always be done as the planar graph is not triangulated as number of edges is
less 3n− 6). This completes the proof.
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3.2 A property of minimal planar ocliques

In this section we try to answer a property of the planar graphs. If a planar graph of domination
number two has no planar oclique of order n ≤ 14 requires atleast m arcs. And suppose k is the least
arc size of that order n planar oclique such that it does not have any minimal oclique of size k and
k ≥ m. Then do we have a minimal oclique of size k′ > k ? Well the answer to this is not known but
our intuition says its no. We have charted put some method to prove it for graphs of order 4,5,6 which
are shown in later section.

Swathy Prabhu Maharaj have prepared a set of minimal ocliques using the help of nauty library [12].
And have generated minimal planar ocliques of order from 4 to 14 with domination number 2. For
each order he have found out minimal planar ocliques upto the size k. Where k is the smallest arc
number greater than the minimum arcs required for which k + 1 has no minimal planar oclique. We
denote that set as F

Theorem 3.1. For a minimal planar ocliques −→G there exists two edges e1 and e2 in E(G) of the
underlying graph G whose removal creates G(V,E\{e1, e2}), which have no n − 1 order oclique in it.
Assuming conjecture 1 to be true

We will prove this theorem by finding contradiction. We will first assume that the Theorem 3.1 is
false and then find some characters in such a graph −→H . So by contrary of Theorem 3.1, no matter which
two edges we remove from H we have a orientation that makes −→H (V,E\{e1, e2}) as n− 1 colorable.

Conjecture 1. For any two pair of vertices u, v ∈ V (H), there exists three disjoint path of length 2
or less between u, v in H.

We believe that this conjecture 1 is true as suggested by our computer analysis on all minimal
planar graphs of diameter two. In our computer analysis we have taken all available minimal ocliques
of planar graphs in F . We need not need this theorem 3.1 for planar ocliques of order 4. But for higher
order oclique we have used this theorem. So here we assume that this 1 is true and begin proving the
theorem.

Let δ(G) be the smallest degree in a simple graph G.

Observation 3.2. δ(H) ≥ 3

As we have made some observations about the minimal graph H. Now we are ready to prove
Theorem 3.1.

Proof. As we have seen from observation 3.2 that δ(H) ≥ 3 and for planar graphs we know that there
exists a vertex of degree less than or equal to 5. Therefore 3 ≤ δ(H) ≤ 5. So here we do a case wise
analysis of all the degree and show contradiction for each case. Notice that we also begin from n > 4
as δ(H) ≥ 3 this creates a K4 for n = 4, which is not a minimal oclique. We will fix the minimum
degree vertex as x and its neighbours are named as v1, v2, v3....
Case δ(H)=3:

(a) 5 oclique (b) 6 oclique (c) 7 oclique

Figure 3.2: Counter Examples

For n=5: Let y be another vertex not adjacent to x. So it connected to x via v1, v2 and v3. That is
shown in figure 3.2a. And it has an orientation that makes it 5 oriented colorable. And clearly there
are vertices whose degree is less than 3. And adding further edges will contradict the minimality .Thus
creating an contradiction as it does not satisfy observation 3.2.
For n > 5: For this case we have at least two vertices that are non-adjacent to x so they must see x
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via v1, v2 and v3. This creates a K3,3.

Case δ(H)=4:
For n=5: For this case the only possible configuration for H is K5, which is neither planar nor minimal
oclique. So for n=5 we have a contradiction.
For n=6: Let y be another vertex not adjacent to x. So it connected to x via v1, v2 and v3. But its
also adjacent to v4 as minimum degree is four and it cannot be adjacent to x. This is shown in figure
3.2b. And it has orientation that makes it 6 oriented colorable. Thus it contradicts observation 3.2,
and adding further edges will contradict the minimality of H.
For n=7: Just like the previous case we have a vertex y non adjacent to x. So its connected via v1, v2, v3.
This divides the plane into three faces .F1 the outer face, F2 the face contained by x, v1, y, v2, x and
F3 the face contained by x, v2, y, v3, x. As minimum degree is four therefore we have another vertex
v4 which is adjacent to x. Assume v4 lie in F2. Let another non-adjacent vertex be z. Now z must
lie in the same face as v4 is. This is because every face has only 2 vertices among v1, v2, v3, but z
requires atleast 3 vertices from the neighbour hood x by conjecture 1. Thus z lies in F2. So z becomes
adjacent to v1, v2 and v4 to see x in accordance with conjecture 1. But this divides the face into three
faces C1, C2 and C3. C1 is bounded by x, v1, z, v4, x, C2 is bounded by x, v2, z, v4, x and C3 is bounded
by y, v1, z, v2, y. This shows that y and v4 does not share any common face. Thus they cannot be
adjacent. But as minimum degree is four so this implies that y and z are adjacent as y cannot be
adjacent to x by our construction. The resultant graph is shown in the figure 3.2c. And it also has
an orientation that makes it 7 oriented coloring. Thus contradicting observation 3.2 and adding edges
will contradict the minimality of H . Hence a contradiction. Similar arguments hold for v4 being in
F1 or F3.
For n > 7: In this case we have another vertex named u which is non adjacent to x apart from z
and y. So by conjecture 1 we have seen that u need to be adjacent to atleast three vertices among
v1, v2, v3, and v4.So we connect u to any three vertices among them. Now consider the graph minor
Hm of H which we get by merging the vertices y and z to create y′. Now this y′ is adjacent to all of
the neighbours of x. Now no matter what three vertices among the neighbours of x, u is adjacent to
we have an K3,3 as minor of H, thus contradicting the planarity of H.

Case δ(H)=5:
For n=6: Only possibility is K6 which is neither planar nor minimal oclique.
For n=7: In this case x has only one non adjacent vertex y. Ans as the minimum degree is so y is
also adjacent to all of the neighbourhood of x. Now as the degree of v1 is two so it must be adjacent
to atleast three more vertices among v2, v3, v4 and v5. But this creates an K3,3.
For n=8: In this case apart from y we will have another vertex z which is not adjacent to x. So
just like y, the vertex z is adjacent to three of the neighbours of x. If y is adjacent to all neighbours
of x this creates an K3,3. So y is adjacent to only four neighbours (say v1, v2, v3, v4) of x and z to
maintain the minimum five degree condition. Now z must lie in the same face as the v5 to maintain the
conditions imposed by conjecture 1 and to maintain planarity. Assume that v5 lie in the face enclosed
by x, v1, y, v2, x.But this means that z got enclosed in a face where it can be adjacent to only four
vertices namely y, v1, v2 and v5 (it cannot be adjacent to x by our construction). But minimum degree
is five so its an contradiction.
For n=9: In this case apart from y we will have another two vertices z, u which are not adjacent to x.
One case is that u and z are not adjacent. So both u and z have atleast four common neighbours with
x. This creates an K3,3.
So the remaining case is that u and z are adjacent. Notice that u and z both are adjacent to y. Else
both y and u (or z the one which is not adjacent to y) have to be adjacent to atleast four neighbours
of x. Thus creating K3,3. Again we assume that y is adjacent to v1, v2, v3. This divides the plane
into three faces. As u and z are adjacent we have them in the same face. Without loss of generality
let them be in the face bounded by x, v1, y, v2, x. Observe that vertices u and z must be adjacent
to atleast one of the vertices among v1 or v2, to maintain its minimum five degree condition. If u is
adjacent to v1 (or v2) then z cannot be adjacent to v1 (or v2) as it encloses u in a face bounded by
y, z, v1, y which will limit the degree of u to only three. We assume with out loss of generality that u
is adjacent to v1, so z is adjacent to v2 Thus both v4 and v5 are present in the same face as u and z so
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that u and z have degree atleast five. So u is adjacent to v1, v4, v5, z, y this encloses v4 (say, can be v5
also depending on which comes after v1 in the arrangement around x, here we assume v4 comes next
to v1) in a face bounded by v1, x, v5, u, v1. So v4 cannot be adjacent to z this limits the degree of z to
four. Thus a contradiction.
For n > 9: Here also we first fix an non-adjacent vertex y. Apart from y we have atleast 3 vertices that
are not adjacent to x. Now if we merge y with any two of those non-adjacent vertices thus creating a
new vertex y′. This y′ is adjacent to all the five neighbours of x. Thus the third non-adjacent vertex
together with y′, x and x’s neighbour forms an K3,3. So we have an planarity contradiction.

Thus we prove theorem 3.1 by contradicting its negation scenario.

3.3 Maximality of minimality of planar ocliques

Here we demonstrate some application of theorem 3.1 of the previous section. As stated earlier that we
here show that if there exists no minimal planar oclique of some order n and size k whose domination
number more than 1, then there exists no minimal oclique of size k1 and order n, where k1 > k.
As a matter of fact we show it for n = 4, 5, 6. We will show this one by one and finally use this to
create the final result that we mentioned above.
But first we need to look into some facts about oclique.

Observation 3.3. Ocliques with domination number greater than one has no pendant vertex

Proposition 3.5. Removal of a single edge in an oclique −→G of size n with domination number greater
than one, does not disconnect the graph.

Proof. We prove this by contradiction. Say we have an edge (u, v) in G such that removal of which
decomposes it into 2 components C1 and C2. And let u ∈ C1 and v ∈ C2. So in this case N(v) in C2 is
not visible to N(u) in C1 thus one of these sets are empty. With out loss of generality say N(u) = φ ,
this makes u an pendant vertex. This is a contradiction as pendent vertices are not present in ocliques
with domination number greater than one.

Corollary 3.1. Removal of two edges from the an oclique decomposes it into atmost 2 components.

Proposition 3.6. Let −→G be an oclique with dominator number greater than one. And if removal of
two edges makes the oclique −→G disconnected . Then one of two component has atmost two vertices in
it.

Proof. By corollary 3.1 we have atmost two components say C1 and C2. With out loss of generality
say |C2| is the smaller of the two. Let the two edges to be deleted be (x, v) and (y, u) where u, v ∈ C2
and x, y ∈ C1 (u and v may be same). So either N(u)\{v} and N(v)\{u} are empty or N(x)\{y} and
N(y)\{x} are empty else they will not be visible to another vertices in different component. Now as
C2 was assumed to be the smaller of the two so N(v)\{u} and N(u)\{v} = φ. Thus it proves our
claim.

Let us denote D(G) to be the maximum degree in a graph G. We will refer all minimal ocliques
as −→G an the underlying graph as G. And in such graphs we fix the max degree vertex as v. And its
neighbours as v1, v2, ...

Lemma 3.1. There are no minimal planar oclique of size 5 or more and order 4.

Proof. Before we begin the proof we must notice that a four cycle and a triangle with a pendant
attached to it, has an orientation that makes it four oriented colorable. Suppose we have a minimal
graph −→G . Then such a graph must posses a max degree vertex v as degree 3. Therefore we have 2
edges that has end points in v1, v2 and v3. Thus we have an minimal oclique with as proper subgraph
in −→G . This contradicts the minimality of −→G .

Lemma 3.2. There are no minimal planar oclique of size 7 or more and order 5.
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Proof. If there were any minimal oclique of size 7 and order 5 then we must have a three or less oriented
colorable subgraph with 5 edges and 5 vertices by theorem 3.1. We will show that under every possible
subgraphs of 5 edges and 5 vertices that can be formed from an oclique we have an oriented four (or
more) coloring.
There are 2 cases one is that removal of edges break the graphs into two components (by corollary 3.1)
and the other one is that only one component is there. So lets first check the cases when we have 2
component. When one of the component has two vertices then the other one has three vertices. This
means that there can be atmost 4 edges in that graph. Three in one component and one in the other.
So one component must have one vertex and other must have 4 vertices with 5 edges in it. And lemma
3.1 proof shows that we always have an four coloring in such cases.
Now we deal with the case where we have only one component. If we have a four degree vertex say v
with neighbours v1, v2, v3 and v4. Now as there are five edges so one edge has endpoints in v1, v2, v3
and v4, thus making a four coloring. If we have a three degree vertex say v with neighbours v1, v2 and
v3. Then we have another vertex y left. Notice that there cannot be any edge between v1, v2 andv3 else
we would have an oriented four coloring. Hence y has the left over 2 edges incident to it, y can not be
adjacent to v as its degree is 3. So y is adjacent to two vertices among v1, v2 andv3, say v1, v2. Then
there is an four cycle namely y, v1, v, v2, thus having a four coloring. So only possibility is max degree
is 2. But as there are 5 edges it means that we have a five cycle. Which is itself five colorable.

Lemma 3.3. There are no minimal planar oclique with domination number two, of size 10 or more
and order 6.

Proof. By theorem 3.1, we must have an four or less oriented coloring. We will show that under every
possible subgraphs of 8 edges and 6 vertices that can be formed from an oclique we have an oriented
five (or more) coloring.
There are 2 cases one is that removal of edges break the graphs into two components (by corollary 3.1)
and the other one is that only one component is there. Lets see the case of two components. Now by
proposition 3.6 we have one component having atmost two vertices.
When a component have only two vertices that means other one has 4 vertices. This means it can
have atmost 6 + 1 = 7 edges but we have 8 edges. So we cannot have this case.
So one component must have one vertex. This leaves the other vertex with 5 vertices and 8 edges. As
there are 8 edges we must have a degree four vertex v. Let the neighbours of v be v1, v2, v3 and v4.
Thus we have 8− 4 = 4 edges for four vertices v1, v2, v3 and v4. This means that v1, v2, v3 and v4 has
four oriented coloring and as v is adjacent to all v1, v2, v3 and v4 this means that we have five oriented
coloring. So for two component cases we are done.
So the remaining case is that all the vertices must be in one component. As the number of edges are
8 so there must be a vertex with degree 3 or more.
Case 1:D(G) = 3
Let such a vertex with degree 3 be v. So in the induced graph where we remove v we have 5 vertices
with 5 edges. By lemma 3.2 we have that for all configuration of 5 vertex and 5 edges we have a four
oriented coloring or more. Now we put back v in a face which is either bounded by a triangle, or a
four cycle or a five cycle and connect it with 3 vertices so that we have five coloring.
Case 2:D(G) = 4
Let such a vertex with degree 4 be v. Neighbours of v are v1, v2, v3 and v4 and the remaining vertex be
u. Notice that K3,2 has oriented 5 coloring. So u cannot be adjacent to more than 2 vertices among
v1, v2, v3 and v4. Say its adjacent to v1 and v2. So we have 8 − 4 − 2 = 2 edges more left with end
points in v1, v2, v3 and v4. If these 2 edges makes a path (say v1, v2, v3) then we have 5 coloring with v
as one dominator, oclique of size 3 as positive neighbours and oclique of size one as negetive neighbour.
So two edges cannot form a path so one edge is (v1, v2) and other is (v4, v3). This again is a 5 oclique
with oclique of size 2 on the positive side and negetive side of v.
Similar arguments follow when u is adjacent to only one vertex among v1, v2, v3 and v4. Case 3:D(G) =
5
Then u becomes one dominator which we don’t allow by construction.
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Chapter 4

Source Codes

4.1 Code for finding Upper Bound

We have used the following code for finding out the g(n) in accordance with the algorithm mentioned
in section 2.2. The language is C.

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

i n t MAX;

void f i n d ( i n t ∗ar , i n t l a s t )
{

i n t inc , dec , min , sum , c1 , c2 ;
c2=inc=l a s t /2 ;
c1=dec=l a s t−i n c ;
min=ar [ dec−1]+ar [ inc −1] ;
sum=min ;
whi l e (1 )
{

i f (sum<min )
{

min=sum ;
c1=dec ;
c2=inc ;

}
i f ( dec>0 && inc <=l a s t && ar [ inc−1]<=min )
{

dec−−;
i n c++;
sum=ar [ dec−1]+ar [ inc −1] ;

}
e l s e
{

ar [ l a s t ]=min+l a s t ;
// p r i n t f (” Chosen : : %d \ t %d \ t Value : %d” , c1 , c2 , ar [ l a s t ] ) ;
r e turn ;

}
}

}

i n t ∗ i n i t i a l i z e ( )
{
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i n t ∗ ar ;
ar=( i n t ∗) mal loc (MAX∗ s i z e o f ( i n t ) ) ;
ar [ 0 ] = 0 ;
ar [ 1 ] = 1 ;
ar [ 2 ] = 2 ;
ar [ 3 ] = 4 ;
ar [ 4 ] = 5 ;
re turn ar ;

}

i n t main ( )
{

i n t ∗ ar=i n i t i a l i z e ( ) ;
i n t i , j , d i f f =0,d1 , d2 ;
s can f (”%d”,&MAX) ;
f o r ( i =5; i<MAX; i++)
{

// p r i n t f (” For ver tex number %d\ t ” , i +1);
f i n d ( ar , i ) ;
// p r i n t f (”\n ” ) ;

}
p r i n t f (” D i f f e r e n c e :\n ” ) ;
f o r ( i =5; i<MAX−1; i++)
{

j=i +2;
d1=ar [ i +1]−ar [ i ] ;
d i f f=d1−d2 ;
i f ( i>5 && d i f f ==2)

p r i n t f (” the d i f f o f 2 at %d and %d\n” , i +1, j ) ;
d2=d1 ;

}
re turn 0 ;

}

4.2 Code for conformation

The following code written in C was created to test Theorem 3.1 on minimal planar ocliques. This
code removes 2 edges then computes the square of the adjacent matrix, after that it checks whether
more than a pair of vertices are at a distance greater than two by counting the number of off diagonal
zeros. If the number of such zeros are more than 3 then its an ”Successful” else ”Unsuccessful”.

#include <s t d i o . h>
#include <s t d l i b . h>

#ifndef DEBUG
#define DEBUG
#define d p r i n t f //
#endif

struct adj {
int a ;
int mark ;

} ;
typedef struct adj ∗ Adj ;
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Adj∗ a l l o c a t e ( int n){
int i , j ;
Adj ∗ s ;
s=(Adj ∗) mal loc (n∗ s izeof ( Adj ) ) ;
for ( i =0; i<n ; i++)
{

s [ i ]=(Adj ) mal loc (n∗ s izeof ( struct adj ) ) ;
for ( j =0; j<n ; j++)

s [ i ] [ j ] . mark=0;
}

return s ;
}

void f r e e i n g ( Adj∗ x , int n)
{

int i ;
for ( i =0; i<n ; i++)

f r e e ( x [ i ] ) ;
f r e e ( x ) ;

}

Adj∗ mult ip ly ing ( Adj ∗g , int n)
{// f i n d i n g a square

int i , j , k , sum ;
Adj∗ x=a l l o c a t e (n ) ;
for ( i =0; i<n ; i++)
{

for ( j =0; j<n ; j++)
{

sum=0;
for ( k=0;k<n ; k++)
{

sum+=g [ i ] [ k ] . a∗g [ k ] [ j ] . a ;
}

x [ i ] [ j ] . a=sum ;
x [ i ] [ j ] . mark=0;

}
}

for ( i =0; i<n ; i++)
{

for ( j =0; j<n ; j++)
{

x [ i ] [ j ] . a+=g [ i ] [ j ] . a ;
}

}
return x ;

}

int c h e c k c l i q u e ( Adj ∗x , int n)
{// check ing wether i t s a c l i q u e or not

int i , j , count =0;
for ( i =0; i<n ; i++)
{
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for ( j =0; j<n ; j++)
{

i f ( i != j && x [ i ] [ j ] . a==0)
count++;

}
}

i f ( count>=4)
return 0 ;

return 1 ;
}

void tak ing queue ( Adj ∗g , int n){
int i , j , count =0;
Adj∗ x ;
int ∗∗ ar ;
ar=( int ∗∗) mal loc (2∗ s izeof ( int ∗ ) ) ;
for ( i =0; i <2; i++)

ar [ i ]=( int ∗) mal loc (3∗n∗ s izeof ( int ) ) ;
for ( i =0; i<n ; i++)
{

for ( j =0; j<n ; j++)
{

i f ( g [ i ] [ j ] . mark==0 && g [ i ] [ j ] . a==1)
{

g [ i ] [ j ] . mark=1;
ar [ 0 ] [ count ]= i ;
ar [ 1 ] [ count ]= j ;
g [ j ] [ i ] . mark=1;
count++;

}
}

}

for ( i =0; i<count ; i++)
{

for ( j=i +1; j<count ; j++)
{

g [ ar [ 0 ] [ i ] ] [ ar [ 1 ] [ i ] ] . a=0;
g [ ar [ 1 ] [ i ] ] [ ar [ 0 ] [ i ] ] . a=0;
g [ ar [ 1 ] [ j ] ] [ ar [ 0 ] [ j ] ] . a=0;
g [ ar [ 0 ] [ j ] ] [ ar [ 1 ] [ j ] ] . a=0;
x=mul t ip ly ing ( g , n ) ;
g [ ar [ 0 ] [ i ] ] [ ar [ 1 ] [ i ] ] . a=1;
g [ ar [ 1 ] [ i ] ] [ ar [ 0 ] [ i ] ] . a=1;
g [ ar [ 1 ] [ j ] ] [ ar [ 0 ] [ j ] ] . a=1;
g [ ar [ 0 ] [ j ] ] [ ar [ 1 ] [ j ] ] . a=1;
i f ( c h e c k c l i q u e (x , n)==0)
{

p r i n t f ( ” S u c c e s s f u l \n” ) ;
f r e e ( ar [ 0 ] ) ;
f r e e ( ar [ 1 ] ) ;
f r e e ( ar ) ;
f r e e i n g (x , n ) ;
return ;

}
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f r e e i n g (x , n ) ;
}

}
p r i n t f ( ” Usucc e s s fu l \n” ) ;
f r e e ( ar [ 0 ] ) ;
f r e e ( ar [ 1 ] ) ;
f r e e ( ar ) ;

return ;
}

int main ( )
{

int n , times , i , j , k ;
Adj ∗g ;
s can f ( ”%d” ,&n ) ;
s can f ( ”%d” ,& times ) ;
t imes /=(n+1);
d p r i n t f ( ” t imes=%d\n” , t imes ) ;
for ( k=0;k<t imes ; k++)
{

s can f ( ”%d” ,&n ) ;
g=a l l o c a t e (n ) ;
for ( i =0; i<n ; i++)
{

for ( j =0; j<n ; j++)
{

s can f ( ”%d” ,&g [ i ] [ j ] . a ) ;
}

}
d p r i n t f ( ” going in f o r i=%d\n” , i ) ;
tak ing queue ( g , n ) ;
f r e e i n g ( g , n ) ;

}
return 0 ;

}
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Chapter 5

Conclusion

In Chapter 2 we have found a tighter upper bound for fw(n). We believe that this upper bound is the
actual explicit formula for fw(n). The minimum cut structured ocliques that we have defined in the
same chapter are the ocliques with minimum edge requirment. In other words if gw(n) is the minimum
arc requirement of a cut structured oclique, we believe that gw(n) = fw(n).

Conjecture 2. gw(n) = fw(n)

We reach to this intuition by our computer simulations which shows that ocliques of higher order
requires more arcs than the ocliques with domination number one. And we believe that cut structured
ocliques minimize that for one dominator vertices.

In case of planar graphs as we see that our theorem 3.1 is not yet fully proved. We may try by
proving conjecture 1 by showing that there exists an orientation in the contradicting graph −→H such
that the vertices which are not at a distance three are ocliques.
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