
Learning with a Reject Option

Dissertation submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science

by

Rajarshi Bhattacharjee

[Roll No: CS1508]

under the guidance of

Prof. Nikhil R. Pal

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata-700108, India

July 2017

M.Tech(CS) DISSERTATION THESIS COMPLETION CERTIFICATE

Student: Rajarshi Bhattacharjee (CS1508)

Topic: Learning with a Reject Option

Supervisor: Prof. Nikhil R. Pal

This is to certify that the thesis titled “Learning with a Reject Option”

submitted by Rajarshi Bhattacharjee in partial fulfillment for the award of the

degree of Master of Technology is a bonafide record of work carried out by him under

my supervision. The thesis has fulfilled all the requirements as per the regulations of

this Institute and, in my opinion, has reached the standard needed for submission.

The results contained in this thesis have not been submitted to any other university

for the award of any degree or diploma.

Date: Prof. Nikhil R. Pal

1

Acknowledgements

I would like to thank my supervisor Prof. Nikhil R. Pal for introducing me to

this research problem and for his continued guidance and support throughout the

year.

2

Abstract

A major assumption traditional machine learning algorithms make is that the classes

encountered during testing phase is always a subset of the classes encountered during

training phase. However, in real world applications like biometric recognition, this

assumption is violated most of the time. There might be some patterns in the test

data that are located far from the training data used to train the classifier. In this

scenario, instead of classifying the pattern into any of the known classes, the best

option will be to reject it. Thus, when that is appropriate, our algorithm needs to

have a mechanism to reject patterns instead of classifying them into any of the known

classes.

In this thesis, we propose two algorithms with a reject option. The first algorithm

is an unsupervised one which uses a Self Organizing Map (SOM). SOMs are known

to preserve topological properties of the input data like neighbourhood distances

and density. We set a rejection threshold based on distances of points mapped to

a SOM node. The second algorithm is a two stage rejection algorithm based on

Extreme Value Theory. In the first stage, we model the data using a Gaussian

Mixture Model for every class and set a rejection threshold based on extreme value

distribution of the Mahalanobis distance of the points from the mixture components.

In the second stage, we train Support Vector Machines (SVMs) for all the classes

in a one-vs-all fashion. We set a rejection threshold based on the extreme value

distribution of the SVM scores. To test our algorithms, we simulate an open set

scenario, where our model is trained using only a subset of classes present in the

3

dataset. Thus, while testing, there are data from known classes which our algorithm

should classify and data from unknown classes which it should reject. We also analyze

our algorithms by discussing their pros and cons and also provide some ideas to

improve their performance further.

4

Contents

1 Introduction 7

2 Preliminary Knowledge 9

2.1 Extreme Value Theory . 9

3 Related Work 12

3.1 Related Work . 12

3.2 Open Set Problem . 14

4 Classifier with Reject Option using Self Organizing Maps 20

4.1 Kohonen’s Self-Organizing Map . 20

4.1.1 SOM Architecture . 20

4.1.2 SOM Training Algorithm . 21

4.2 Designing the SOM Based Classifier 23

4.3 Results and Visualizations with SOM 26

4.3.1 Synthetic Dataset 1 . 26

4.3.2 Synthetic Dataset 2 . 27

4.3.3 Synthetic Dataset 3 . 28

4.3.4 Iris dataset . 29

5 Classifier with Reject Option using Extreme Value Theory 36

5.1 Gaussian Mixture Model . 36

5

5.1.1 Expectation Maximization . 37

5.2 Modelling Extreme Values of the Gaussian Mixture Model 38

5.3 Designing the EVT Based Two Stage Classifier 39

6 Experimental Results 44

6.1 MNIST Dataset . 44

6.2 Choosing the SOM Rejection Criteria 45

6.3 Results and Remarks . 48

7 Conclusion and Future Work 51

6

Chapter 1

Introduction

Machine learning algorithms generally assume that the classes encountered during

testing phase have been already encountered during training phase. In other words,

we assume the classes in the test data are a subset of the classes in the training data.

However, this assumption is violated most of the time. We may encounter some

patterns in the testing phase which cannot be accurately described by any of the

classes we have encountered during the testing phase. In this case, the best thing

to do will be to not classify the points into any of the previously known classes.

Moreover, a test point may come from somewhere far from the training data that

were used to design the system. In this case too, the classifier should not make any

decision. Thus our algorithm needs a mechanism to reject these points instead of

classifying them into any of the known classes.

A simple example to demonstrate the usefulness of having a reject option is a

recognition problem. Here, given the input image, we are supposed to classify it into

one the classes. In [22], the authors assert that classes in a recognition problem could

belong to three basic categories:

• known classes : classes labeled with positive labels (that is, labels are distinct

and match the corresponding class) encountered during training.

7

• known unknown classes : labeled negative examples that do not belong to any

of the known meaningful categories.

• unknown unknown classes : classes which haven’t been encountered at all.

The authors [22] define an open set scenario for recognition problems where along

with data from known classes and known unknown classes in the training set, we

may encounter data from unknown unknown classes during testing. The data from

known unknown classes may be treated as an explicit “other” class while designing

the classifier. Learning with a reject option enables us to reject data belonging to

unknown unknown classes and thus, effectively it solves the open set problem.

Having a reject option is very helpful in a number of situations in real life scenar-

ios. One example is the problem of biometric recognition. In high security installa-

tions, we may never want a misindentification to occur. The reject option will also

drastically improve the classification accuracy in common recognition applications

like Optical Character Recognition (OCR) and photo and video tagging without

constraints on the input space.

In this thesis we propose some new algorithms to tackle the open set problem

by learning with a reject option. Our objective is to classify the data correctly if it

belongs to one of the ”known” classes while rejecting it otherwise. The rest of this

dissertation is organised as follows. In Chapter 2, we describe Extreme Value Theory.

In Chapter 3, we review some previous works done on this topic. We introduce our

Self Organizing Map based reject algorithm in Chapter 4. In Chapter 5, we explain

another algorithm with a reject option based on Extreme Value Theory. Finally, in

Chapter 6 we present our experimental results with real data and end with some

concluding remarks in Chapter 7.

8

Chapter 2

Preliminary Knowledge

In this chapter, we describe some fundamentals of Extreme Value Theory (EVT)

which will be useful in subsequent chapters including the survey of literature.

2.1 Extreme Value Theory

Extreme value theory is a branch of statistics that deals with modeling extreme

deviations from the median value of probability distributions. It does this by trying

to analyze the tails of probability distributions because ’extreme values’ generally

belong to the tails. A common example of the use of EVT can be found in civil

engineering where one may need to build structures which are resistant to a 100-

year-flood. By definition, a 100-year-flood occurs once in 100 years (has a 1% chance

to occur in any given year) and so relevant data to model these ’extreme’ events may

not be available. So, it is needed to appropriately extrapolate these events from the

normal flood data. That is, we want to model the tail of the distribution using data

from around the median. Another example can be found in finance where EVT is

used to model rare events like stock market crashes or for measuring financial risks

[11].

Extreme value theory is practically applied using two approaches:

9

• Block Maxima Approach: In this approach, the maxima or minima of a

block of data is sampled repeatedly to get a series of maxima or minima. Then,

the distribution of these extreme values is modeled using one of the ’Extreme

Value Distributions’ [9].

• Peaks over Threshold: In this approach, the exceedances of values above a

fixed threshold is modeled using the Generalized Pareto distribution [15].

In this dissertation, we apply Extreme Value Theory in a similar fashion as done

by the authors of [23] and [22]. The following theorem is known as the Extreme Value

Theorem (also known as the Fisher-Tippet theorem) [13] which states the following:

Theorem 1 Let (s1, s2, s3, ...) be a sequence of independent and identically distributed

samples. Let Mn = max {s1,, sn}. If a sequence of pairs of real numbers (an, bn)

exists such that each an > 0 and

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= F (x) (2.1)

where F is a nondegenerate distribution function,then F belongs to one of three ex-

treme value distributions:

1. Gumbel distribution

2. Fretchet distribution

3. Weibull distribution

Thus, from the above theorem, it is clear that if a limiting distribution of the max-

ima of independent and identically distributed samples exist, it is bound to follow

one of the three extreme value distributions. These distributions, as mentioned, are

the Gumbel or type I, Fretchet or type II and Weibull or type III extreme value

distribution. The three types of distributions can be unified into a single distribu-

tion called the Generalized Extreme Value (GEV) distribution [23], the probability

10

density function of which is given by:

GEV (t) =

1
λ
e−v

−1/k
v−(

1
k
+1), k 6= 0,

1
λ
e−(x+e

−x), k = 0,

(2.2)

where x = t−τ
λ

, v = (1 + k t−τ
λ

), where k, λ and τ are shape, scale and location

parameters respectively. The three cases k = 0, k > 0, and k < 0 correspond to the

Gumbel, Fretchet and Reversed Weibull distributions respectively. The Reversed

Weibull distribution is nothing but the weibull distribution reflected along the Y-

axis and is defined on (−∞, 0] as opposed to the weibull which is defined on [0,∞).

The Weibull and Reversed Weibull distributions are used in cases the data are lower

or upper bounded respectively. Gumbel and Fretchet distibutions can be used when

the data are unbounded. We will be using the Gumbel and Weibull distributions

later on.

11

Chapter 3

Related Work

In this chapter we provide a review of some of the works done previously on this

topic.

3.1 Related Work

Probabilistically modeling the data to set a rejection threshold on the probability is

a widely used method to set a reject option. One of the earliest and most well known

works’ where a reject option was first proposed, was by Chow [5]. Chow proved

that if we have the prior probability and class conditional densities of every class,

then the optimum rejection rule is always a threshold on the maximum posterior

probability. However, it is assumed that there is only one reject class and hence, the

results of this paper might be difficult to extend to the open set problem. Further

reject options based on probabilities were introduced by Dubuisson and Mason [7]

and Muzzolini et al. [17].

Support Vector Machines (SVM) with kernels, when trained with two classes try

to find the optimal hyperplane separating the classes in the feature space defined by

the kernel. One-class support vector machine is used when data from only one class

are available and for a test point the goal is to find if it belongs to that class or not.

12

One-class SVM was introduced by Scholkopf et al. [25]. It basically tries to find a

hyperplane to separate the data from the origin in the feature space by maximizing

the distance from this hyperplane to the origin. However, one must specify an upper

bound on the fraction of outliers in the dataset beforehand. There is another type of

one-class SVM called Support Vector Data Description (SVDD), introduced by Tax

and Duin [26]. The SVDD tries to find a minimum volume hypersphere in the feature

space enclosing the data. The resulting hypersphere is characterized by its centre

and radius which is found as a solution to an optimization problem. However, the

decision boundary found by it is often found to contain too much open space along

with the data inside. Thus, one-class SVMs often do not perform well in practice.

Apart from one-class SVMs, binary SVMs have also been suitably modified to

incorporate a reject option. Scheirer et al [24] introduced the “1 vs Set Machine”

which uses two hyperplanes- a near plane and a far plane instead of one to effectively

model the class decision boundary. However, this works with linear kernels and has

so far, to our knowledge, not been generalized for non linear kernels. Bartlett and

Wegkamp [1] introduced a modified loss function for support vector machines instead

of the hinge loss. This new loss function basically tries to make classifying outliers

more costly than normal data.

Neural networks (MLPs) with reject option have also been developed. Chakraborty

and Pal [3] developed a scheme to generate points outside the boundary of a class.

Using this, for each class, they trained a multi-layer perceptron with the class data

and points outside that class’s boundary. Finally, they combined them together so

that the combined network has better classification ability. It is also able to dis-

tinguish points which lie outside class boundaries better than a normal multi-layer

perceptron. This scheme also equipped an MLP with incremental learning ability.

However, generating points for high dimensional data using this method is costly.

Unsupervised and semi-supervised approaches to solve the open set problem are

especially useful when there is no class label information. One of the algorithms

13

we propose in this thesis is based on the Self Organizing Map (SOM). The SOM

is an unsupervised algorithm to find representative prototypes of the data while

also preserving the topology of the data (the map preserves distance relationships

between neighbouring points in the dataset). Though it is mostly used for clustering

or visualization of the data, it has also been used previously for novelty detection.

Labib and Vemuri [14] use a SOM to classify ethernet network data in real time

and also detect network intrusions. They train a SOM on normal network data and

graphically visualize the data in two dimensions. By visually inspecting the clusters

formed around the SOM nodes, they try to detect network intrusions which are

projected far away from the normal clusters. Similar work was done by Ramadas et

al. [19] where they trained a SOM to detect network anomalies by inspecting the

distance of data points from the best matching unit in the SOM.

Next, we look at prior work using Extreme Value Theory (EVT) in novelty de-

tection. Roberts [20] used EVT to model the extreme values of a Gaussian Mixture

Model. Some improvements to the method were proposed more recently by Clifton

et al. [6]. We will be looking at these methods in detail later when we describe our

second algorithm. More recently, EVT has been used on the output of deep neural

networks to reject points [2]. In [2] instead of using a softmax layer, an ”open max”

layer is used to turn the outputs from the penultimate layer of the neural network

into probabilities using EVT.

3.2 Open Set Problem

In this section, we provide a detailed review of one of the recent works on the Open

Set problem by Scheirer et al. [22] since we will be comparing our algorithms with

the algorithms proposed in this paper. In this paper, an algorithm with two stage

rejection procedure called WSVM (Weibull calibrated Support Vector Machine) is

proposed.

14

Let our dataset be {(x 1, y1), (x 2, y2),(xn, yn)} where x i ∈ Rd are d-dimensional

features and yi are the class labels ∀i ∈ {1, 2, ..., n}. The number of unique class labels

in the data set is c and they are represented by {l1, l2,lc}. Thus yi = lj indicates

that the ith data point belongs to class j where j ∈ {1, 2,c}.

Next, consider all data points (x i, yi) where yi = lj i.e. all points belonging to the

jth class. The authors train a one-class SVM with RBF kernel with this data. They

then calculate the SVM decision scores for all the points. The hyperplane divides

the whole space into a positive space containing the training data from the jth class

and a negative space containing the origin. This is because the points classified as

belonging to the class j get positive scores while others get negative scores. The

absolute value of a score indicates distance from the hyperplane. The corresponding

hyperplane serves as a class decision boundary for the first class. The points closest

to the hyperplane are most likely to be misclassified. Hence, the smallest qoj positive

SVM scores are used to fit an extreme value distribution on them where tail size

qoj = 1.5×(No of support vectors for positive class). Since the scores are bounded

below, they fit a Weibull distribution using the scores. Let the smallest positive score

be soj . The location parameter is then fixed as

νo,j = soj (3.1)

Then the shape and scale parameters λo,j and κo,j are estimated using the maximum

likelihood estimation.

Then, they train a binary SVM in one vs all manner for the jth class. That is,

if the ith point has yi = lj, it is labeled as +1 and rest of the points as -1 and then

a binary SVM is trained. Here also the points closest to the decision boundary are

most likely to be misclassified. So, they considered the smallest q+j positive SVM

scores for the positive class and the largest q−j negative SVM scores. For the positive

scores, they fit a Weibull distribution as they are bounded from below. For the

negative scores which are bounded from above, a Weibull distribution is fit after

negating the scores. They call data with positive scores as match data and data with

15

negative scores as non-match data respectively. For the match data, they again fix

the Weibull location parameter νη,j as the smallest positive match score. Then λη,j

and κη,j, the Weibull scale and shape parameters are estimated from the smallest q+j

positive scores using maximum likelihood estimation. Similarly, they estimate the

Weibull parameters νψ,j, λψ,j and κψ,j for non match data using the largest q−j scores.

These Weibull parameter estimates are found for all the classes (i.e. ∀j ∈ {1, 2, ..c})

using the training data. The algorithm is described in Algorithm 1.

Finally, given a new sample x , the decision is made as described in Algorithm 2.

For the ith class, let the one-class SVM score function be f oi (x) and let the binary

SVM score be fi(x). Then, the probability of not belonging to the ith class is given

by the cumulative distribution function (CDF) of the Weibull distribution from the

positive one class SVM scores. Thus, the probability of belonging to the ith class is

just 1-(Weibull CDF of x). This is given by:

Po,i(x) = e
−
(
|foi (x)−νo,j |

λo,j

)κo,j
(3.2)

If Po,i(x) > δT where δT is some predetermined threshold, then we calculate

another probability using the binary SVM score. If Po,i(x) < δT the probability

score of x belonging to class i is 0. The probability of not belonging to the ith

class is again given by the cumulative distribution function (CDF) of the Weibull

distribution from the match data. So, like the one class SVM, the probability of

belonging to the ith class is given by:

Pη,i(x) = e
−
(
|fi(x)−νη,j |

λη,j

)κη,j
(3.3)

Next, from the non-match data, one can calculate the probability of not belonging

to the non-match data. This is given by the CDF of the non-match Weibull which

is:

Pψ,i(x) = 1− e
−
(
|−fi(x)−νψ,j |

λψ,j

)κψ,j
(3.4)

Note that we must negate the SVM score to −fi(x) as we had calculated the Weibull

parameters by negating the non-match scores. The final WSVM score of x belonging

16

to class i is calculated as :

Ti(x) = Pη,i(x)× Pψ,i(x) (3.5)

This score can be interpreted as the “the probability that the input is from the

positive class (i.e ith class) AND NOT from any of the known negative classes” [22].

Finally, the label y is assigned to x as:

y = argmax
li i∈{1,2,..,c}

Ti(x)× ti

subject to Ti(x)× ti ≥ δR

(3.6)

where the δR is a second threshold and ti is an indicator variable for the ith class

which is 1 if Po,i(x) ≥ δT and 0 otherwise. If the condition Ti(x) × ti ≥ δR is not

satisfied for any class, x is rejected. Thus, by setting the two parameters δT and δR,

we get a classifier which can also reject inputs.

The value δR is set according to the Openness of the problem which measures the

proportion of unknown classes in the test data. The higher the number of unknown

classes in the test data, the higher the openness of the problem and hence, the higher

should be the value of the threshold. This is because intuitively, higher number of

unknown classes means the probability of the input being from an unknown class

is higher. So, one should reject with lower confidence and hence choose a higher

threshold. In [22], openness is defined as

Openness = 1−

√
2 x |training classes|

|testing classes|+ |target classes|
(3.7)

Here, |training classes| and |testing classes| are the number of classes used in

training and testing the model respectively and |target classes| is the total number

of classes to be identified by the model. We set the value of δR as 0.5 × Openness.

We note here that for any real application, the number of unknown classes (and thus,

the value of |target classes|) is not known before hand. Hence, it might be difficult

to calculate openness for real world data.

17

Algorithm 1: WSVM Model Fitting

Data: {(x 1, y1), (x 2, y2),(xn, yn)} where x i ∈ Rd and yi ∈ {l1, l2,lc}

Input:

Pre-trained one-class SVM for each class, with SVM score functions f oi () and

support vectors αoi for the ith class ∀i ∈ {1, 2, ..., c} ;

Pre-trained 1-vs-All binary SVM for each class, with SVM score functions fi()

and support vectors α+
i , α−i for match and non-match data respectively for

the ith class ∀i ∈ {1, 2, ..., c} ;

Tail size multiplier θ = 1.5 ;

1 for i=1 to c do

2 Let the set of binary svm scores be Si = {fi(x j)} and the set of one-class

svm scores be Soi = {f oi (x j)} (∀j ∈ {1, 2,, n} with yj = li) ;

3 Let q+i = θ × |α+
i |, q−i = θ × |α−i | and qoi = θ × |αoi | ;

4 Let doi be the smallest qoi positive values from Soi ;

5 Let d+i be the smallest q+i positive (match) scores from Si and d−i be the

largest q−i negative (non-match) scores from Si ;

6 [νo,i,λo,i,κo,i]=Estimates of Weibull parameters from doi ;

7 [νη,i,λη,i,κη,i]=Estimates of Weibull parameters from d+i ;

8 [νψ,i,λψ,i,κψ,i]=Estimates of Weibull parameters from −d−i (negate scores to

make them positive) ;

9 end

Output: Wi=[νo,i,λo,i,κo,i,νη,i,λη,i,κη,i,νψ,i,λψ,i,κψ,i] ∀i ∈ {1, 2,, c}

18

Algorithm 2: WSVM Label Estimation

Input:

Input data point x ;

Pre-trained one-class SVM for each class i ∈ {1, 2,, c} ;

Pre-trained 1-vs-All binary SVM for each class i ∈ {1, 2,, c} ;

Parameter estimates Wi for each class i ∈ {1, 2,, c};

1 Set δT and δR = 0.5 × Openness ;

2 for i=1 to c do

3 Calculate Po,i(x) using Equation 3.2. ;

4 Calculate Pη,i(x) using Equation 3.3. ;

5 Calculate Pψ,i(x) using Equation 3.4. ;

6 Set ti=0 ;

7 if Po,i(x) ≥ δT then

8 Set ti=1 ;

9 end

10 Calculate Ti(x) using Equation 3.5 ;

11 end

12 Find label y using 3.6 or y = 0 if Ti(x)× ti < δR ∀i ∈ {1, 2,, c}

Output: Label y of x if accepted else reject x

19

Chapter 4

Classifier with Reject Option using

Self Organizing Maps

4.1 Kohonen’s Self-Organizing Map

Kohonen’s Self-Organizng Map (SOM) is a type of artificial neural network which was

introduced by Teuvo Kohonen in the early 1980’s. SOM’s learn by a technique called

Competitive Learning. Neurons/nodes compete among themselves to be activated or

fired. Finally, the neuron with the highest output, which is the most activated

neuron (also called the ”winning neuron”) fires. This is supposed to be biologically

motivated from the neuron structure and activation in the brain. We look at the

architecture and learning algorithm of SOM in detail next.

4.1.1 SOM Architecture

SOM has two layers consisting of an input layer and an output layer. The number

of nodes of the input layer is the same as the dimension d of the input data. Each

node in the input layer is connected to all the nodes in the output layer. These

connections have weights associated with them which we need to learn from the

20

input data. Thus, each output node is associated with a d-dimensional weight vector

w . The output nodes are arranged in a p-dimensional regular map or grid. Common

choices are one-dimensional or two-dimensional (rectangular) map. We will be using

a one-dimensional (1-D) map as it is more flexible in placement of prototypes and it

has given better results experimentally for our problem. In a 1-D SOM, every node

has two neighbours (left and right) except the first and last node which have one

neighbour each. Let ri,j denote the lateral distance between ith node and jth node

of the output layer. In case of 1-D SOM, it is just the absolute value of the difference

between node positions:

ri,j = |i− j| (4.1)

Suppose there are m SOM nodes in the output layer. Let input vectors be x ∈ Rd.

The weights are represented by {wi,j} where i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..d}.

So, wi,j implies the weight is of the connection from jth input node to ith output

node. There are a total of m× d weights. Weight vector for the ith output node is

w i = (wi,1, wi,2,wi,d)
T .

4.1.2 SOM Training Algorithm

Let the input data be X = {x 1,x 1, ...xn} ⊂ Rd. We initialize the weights {wi,j}

with random values between 0 and 1. Next, suppose at the iteration t, the input x

is given to the SOM. We first find the node with the minimum euclidean distance

(maximum similarity) to x . We call this the “winning” node. That is, the winning

node on presenting input x is

w k = argmin
i
||x −w i||, i ∈ {1, 2, ...n} (4.2)

where || || represents the Euclidean distance. Now, we need to update the weight

of the winning node as well as its neighbors. We update the ith weight as follows:

w i(t+ 1) = w i(t) + η(t)hi,k(t)(x −w i(t)) (4.3)

21

where w i(t) represents weight vector associated with the ith node at iteration t, η(t)

is the learning rate at iteration t and hi,k(t) is the value of a topological neighborhood

function at iteration t with respect to the winning node w k. The choice of η(t) and

hi,k(t) is explained next. In SOM, learning happens in two phases [12]:

• Self-organizing or ordering phase: This is the initial phase during which the

topological ordering of nodes take place. During this phase, η(t) begins with a

fairly large value and gradually decreases. However, it shouldn’t decrease too

much (usually not below 0.01). So, during this phase

η(t) = ηo exp

(
− t

τ2

)
(4.4)

where ηo is the initial learning coefficient and τ2 is the number of steps to be

used in the ordering phase. In our experiments,we have used η(0) = ηo = 0.1

and τ2 = 1000. Also, during this phase, we begin with a very large neighbor-

hood and decrease it smoothly to 1, that is, till the winning node is the only

node being updated. As usually done, we set it as:

hi,k(t) = exp

(
−

r2i,k
2σ2(t)

)
(4.5)

where σ(t) is the width of the neighborhood function given by

σ(t) = σo exp

(
− t

τ1

)
(4.6)

σo is equal to the “diameter” of the lattice given by (m− 1) for the 1D SOM,

ri,k = |i− k| and τ1 = 1000
log σo

.

• Convergence phase: This phase is needed to fine tune the map and to provide

an accurate representation of the input space. The number of iterations in this

phase is almost 500 times the number of nodes in the output layer. In this

phase, we fix η(t) at 0.01 for all iterations and

hi,k(t) = 1 if i = k

= 0 otherwise
(4.7)

Thus, only the winning node is updated in this phase.

22

The SOM learning algorithm is described in Algorithm 3.

4.2 Designing the SOM Based Classifier

SOM’s are known to preserve the topological properties of the input space like neigh-

bourhood distances and density of the input data. This makes SOMs very effective

to implement a local neighborhood distance based reject classifier. Now, we describe

the algorithm to implement a distance based reject option using SOM. We first train

a SOM with the training data using the algorithm described in Algorithm 3. Then,

we give the SOM inputs from the training set one by one. For every node, we store

the maximum distance from that node to all the points for which it is the winner,

i.e., the maximum distance from the node to all the points in the training set which

have that node as its winning node (D). We also store the mean and the standard

deviation of these distances for every node. For the ith node the maximum distance

to it is denoted by Di and the mean and the standard deviation of distances by µi

and σi respectively. This algorithm is explained in Algorithm 4. Now, when a new

input arrives, we first find the winning node (say the ith node) and its euclidean

distance from the winning node (say di). Now we can decide whether to reject the

input using two different criteria. For the first method, we reject this input if this

distance (di) is greater than Di. This is described in Algorithm 5. The maximum

distance from the node may be too sensitive a criteria in some cases (for example,

when there are outliers). Thus in the second method, we reject the input, if di is

greater than µi + σi. This is described in Algorithm 6. We call these algorithms

SOM Reject1 and SOM Reject2 respectively. We shall comment on these two

versions in later sections, while discussing the experimental results.

23

Algorithm 3: SOM Training

Input:

X = {x 1,x 2, ...xn} ⊂ Rd ;

MaxStep1 ; // steps in Ordering phase

1 MaxStep2 ; // steps in Convergence phase

2 m ; // No of SOM nodes

3 t = 1 ;

4 Initialize {wi,j} with random numbers between 0 and 1 ∀i ∈ {1, 2, ...,m} and

∀j ∈ {1, 2, ...d}

// Ordering phase

5 while t ≤MaxStep1 do

6 i = modulo(t, n) ; // find remainder on dividing t by n

7 x = x i ; // select ith input

8 Find winning node k using 4.2 ;

9 Update w i as w i(t+ 1) = w i(t) + η(t)hi,k(t)(x −w i(t))where η(t) is

updated using Equation 4.4 and hi,k(t) using Equation 4.5

∀i ∈ {1, 2, ...,m} ;

10 t=t+1 ;

11 end

// Convergence phase

12 t = 1 ;

13 while t ≤MaxStep2 do

14 i = modulo(t, n) ; // find remainder on dividing t by n

15 x = x i ; // select ith input

16 Find k using 4.2 ;

17 w k(t+ 1) = w k)(t) + 0.01(x −w k(t)) ;

18 t=t+1 ;

19 end

Output: w i ∀i ∈ {1, 2, ...m}

24

Algorithm 4: Find Max Distances from SOM Nodes

Input:

X = {x 1,x 2, ...xn} ⊂ Rd ;

Trained 1D SOM weights w i ∀i ∈ {1, 2, ...,m} using data X and Algorithm 3

1 Initialize Di = 0 ∀i ∈ {1, 2,,m} ;

2 for i=1 to n do

3 x = x i ;

4 Find winning node k using 4.2;

5 Let dist = ||x −w k|| ;

6 if dist > Dk then

7 Dk = dist

8 end

9 end

10 Calculate mean µi and standard deviation σi of distances from for each node.

Output: Di,µi and σi ∀i ∈ {1, 2, ...,m}

Algorithm 5: SOM Reject1

Input:

Input data point x ;

Trained 1D SOM weights w i using training data X and Algorithm 3 and Di

from Algorithm 4 ∀i ∈ {1, 2, ...,m}

1 Find winning node k using Equation 4.2;

2 Let dist = ||x −w k|| ;

3 if dist > Dk then

4 Reject x ;

5 end

25

Algorithm 6: SOM Reject2

Input:

Input data point x ;

Trained 1D SOM weights w i using training data X and Algorithm 3 and Di

from Algorithm 4 ∀i ∈ {1, 2, ...,m}

1 Find winning node k using Equation 4.2;

2 Let dist = ||x −w k|| ;

3 if dist > µk + σk then

4 Reject x ;

5 end

4.3 Results and Visualizations with SOM

We now look at the results of testing the SOM algorithm with some simple datasets

and their corresponding visualizations.

4.3.1 Synthetic Dataset 1

We have designed a synthetic dataset to show the effectiveness of our algorithm. The

dataset consists of 804 two dimensional points. Out of these, 800 are arranged in 6

clusters while 4 are outliers. The points for testing are generated at equally spaced

intervals of 0.05 along the X-axis and Y-axis in the range [−1, 8]× [−1, 8]. We train

two SOMs with 80 and 50 nodes respectively on this data and reject points using

Algorithm 5 (Maximum distance criteria). The results along with the training and

test sets and SOM nodes are shown in Figures 4.2 and 4.3. The green points are the

training points. The red points are SOM nodes. The blue points are the accepted

points while the black points are rejected points.

We see the SOM with 80 nodes performs very well in capturing the structure of

the data and in deciding which points to reject. We specifically notice that the four

26

outliers do not have too much effect on the rejection ability of the SOM. A single

node is assigned to the outlier at the top right and to the two outliers in the middle.

Thus, the Di (maximum distanced from nodes) of these nodes is almost zero. Hence,

these nodes end up rejecting almost all the points around the outliers. In contrast

to this, the SOM with 50 nodes does not assign a unique node to the two outliers

in the middle. Thus, the nodes to which they have been assigned end up having

a large maximum distance. This results in them accepting points that should have

been rejected (denoted by the large blue region in the middle). Thus, it is crucial we

have sufficient SOM nodes to get a good representation of the data. Alternatively,

instead of maximum, we can use some other criterion that is not much influenced by

the maximum distance or position of outliers. We shall explore this later. Another

interesting observation is that some SOM nodes in both cases do not have any points

assigned to them (for example, the node between the two big clusters at the top).

However, they do not affect the rejection ability of the SOM as their Di’s are equal

to zero and they reject any point assigned to them. Moreover, any node with zero

or less than k points (where k is some threshold) assigned to it could (should) be

deleted.

4.3.2 Synthetic Dataset 2

Synthetic dataset 2 consists of 1000 two dimensional points; 500 of these are gener-

ated randomly from a Gaussian distribution centered at (3, 3)T with unit variance

along X and Y axes. The remaining 500 points are generated uniformly at random

within a circle centered at (10, 3)T with radius 3. Test points are generated like in the

case of Synthetic Dataset 1 within a box [−2, 14]× [−2, 7] at intervals of 0.05 along

X and Y axes. A SOM with 80 nodes is trained. We use the maximum distance

rejection criteria (Algorithm 5) here.The result is shown in Figure 4.5. The color

scheme is the same as before. Here also the SOM represents the points very nicely

and usually rejects what should be rejected. We say usually because for a prototype

27

Figure 4.1: Synthetic dataset 1

towards the bottom-left corner, the rejection criterion is more relaxed. We also note

that in both clusters, there are some holes where data points are rejected. Although

this is reasonable given the dataset, one may argue against it because here we know

about the class information.

4.3.3 Synthetic Dataset 3

Synthetic dataset 3 consists of 600 points. 300 of these are randomly generated

within a circle centered at [3, 3] with radius 3. The rest 300 are generated in an

annular region between circles of radius 4 and 5 centered at [3, 3]. Test points have

generated within a box [−4, 10]× [−4, 10] at intervals of 0.05 along X and Y axis. A

SOM with 60 nodes is trained and the rejection criteria is maximum distancef rom

the SOM nodes. The result is shown in Figure 4.7. The color scheme is same as

before. Here also the SOM represents the points very nicely and rejects points well.

28

Figure 4.2: SOM Reject1 with Synthetic dataset 1 with 80 SOM nodes

4.3.4 Iris dataset

The Iris dataset [10] contains 150 points, each with 4 features. The points are from 3

different classes, each containing 50 points. It is used for testing a variety of classifiers.

Here, for testing, we leave one class out in turn and train the SOM using remaining

two classes. Then, the left out class becomes the test set and we see how many

points of the test set the SOM rejects successfully. We use the maximum distance

rejection criteria. The number of SOM nodes is fixed at 20. For visualization, we

take the all the data points as well as the SOM weights and do Sammon’s projection

[21] to reduce the number of dimensions to 2. The resulting visualizations are shown

in Figures 4.8, 4.9 and 4.10 where respectively class 1, class 2 and class 3 are left

out. The SOM nodes are shown in red. The training points are shown in black. The

points successfully rejected are shown in blue and the points mistakenly accepted are

shown in green. We see that when class 1 is left out, SOM successfully rejects all the

points. However, when class 2 is left out, the SOM fails to reject 2 points. Similarly,

29

Figure 4.3: SOM Reject1 with Synthetic dataset 1 with 50 SOM nodes

when class 3 is left out, the SOM fails to reject 6 points. The possible reason for this

is the overlap between class 2 and class 3.

To investigate further, we repeat the experiments by training a SOM with 10

nodes separately for each class. The results of leaving out class 1, class 2 and class

3 are shown in Figures 4.11, 4.12, and 4.13 respectively. We find that when class1 is

left out, the SOM successfully rejects all the points from class 1 but when class 2 is

left out, the SOM mistakenly accepts 3 points. When class 3 is left out, it accepts 6

points that should have been rejected. So, the SOM performance does not improve

when training the SOM separately with single classes.

30

Figure 4.4: Synthetic dataset 2

Figure 4.5: SOM Reject1 with Synthetic dataset 2

31

Figure 4.6: Synthetic dataset 3

Figure 4.7: SOM Reject1 with Synthetic dataset 3

32

Figure 4.8: SOM Reject1 with Iris. 1st class left out during training

Figure 4.9: SOM Reject1 with Iris. 2nd class left out during training

33

Figure 4.10: SOM Reject1 with Iris. 3rd class left out during training

Figure 4.11: SOM Reject1 single class SOM with Iris. 1st class left out.

34

Figure 4.12: SOM Reject1 single class SOM with Iris. 2nd class left out.

Figure 4.13: SOM Reject1 single class SOM with Iris. 3rd class left out.

35

Chapter 5

Classifier with Reject Option using

Extreme Value Theory

In this chapter we look at incorporating a reject option in our learning model using

Extreme Value Theory (EVT).

5.1 Gaussian Mixture Model

Gaussian Mixture Models (GMMs) are widely used for clustering and classification.

It consists of a set of K components, each of which is modeled by a Gaussian dis-

tribution parameterized by its mean vector and covariance matrix [20]. Each of the

components have a prior probability associated with it. We write the prior prob-

ability of the kth component as π(k) ∀k ∈ {1, 2, ..., K}. The probability density

function(pdf) of the kth component is written as p(x |k) and it is just the probability

density function of a Gaussian distribution N (µk,C k) parameterized by mean µk

and covariance matrix C k. The prior probabilities of all the components must sum

to 1. Thus,
K∑
k=1

π(k) = 1.

36

For such a mixture, the joint-density is:

p(x) =
K∑
k=1

π(k)p(x |k) (5.1)

5.1.1 Expectation Maximization

The parameters of a GMM are usually obtained using an algorithm called Expecta-

tion Maximization (EM). The parameters of a K component GMM are (πk,µk,C k)

∀k ∈ {1, 2, ..., K}. Let our dataset be {x 1,x 2, ...,xn} ⊂ Rd. Using Bayes theorem,

the probability that a point x i belongs to component k is given by:

p(k|x i) =
p(x i|k)π(k)

p(x i)
(E) (5.2)

Here, p(x i) is given by equation (5.1). If we now write the log likelihood of the GMM

for the training data and differentiate it with respect to the parameters, we get a set

of coupled equations for the parameters [18]. The equations giving the parameters

for the kth component are given by:

π(k) =
1

n

n∑
i=1

p(k|x i) (5.3)

µk =

∑n
i=1 p(k|x i)x i∑n
i=1 p(k|x i)

(M) (5.4)

C k =

∑n
i=1 p(k|x i)(x i − µk)(x i − µk)T∑n

i=1 p(k|x i)
(5.5)

We randomly select K distinct data points to use as the initial means (µk). The

initial covariance matrices for all the components are diagonal where the (j, j)th ele-

ment of each matrix is the variance of the jth feature of the data. Next, we compute

p(x i|k) and π(k). Now in the Expectation step, we calculate the probability of each

point belonging to each cluster (p(k|x i) ∀i ∈ {1, 2, ..., n} and ∀k ∈ {1, 2, ..., K}) using

equation (5.2). In the Maximization step, we calculate the parameters of the GMM

using equations (5.3), (5.4) and (5.5). In this way, we alternately keep performing

the Expectation step and the Maximization step until the value of the log likelihood

of the data converges.

37

5.2 Modelling Extreme Values of the Gaussian Mix-

ture Model

A one-sided standard Normal distribution (denoted by |N (0, 1)|) has probability

density function given by:

p(x) =

√
2

π
exp

(
−x2

2

)
(5.6)

Then, the following theorem holds for the extreme values of a one-sided Normal

distribution. [8] :

Theorem 2 Let {s1, s2,, sn} be independent random variables with a one-sided

standard Normal distribution |N (0, 1)| . Let Mn = max{s1, s2, ..., sn}. Then, as

n→∞ the distribution of Mn converges to the Gumbel distribution.

Using the above result, we can find the distribution of extreme values of multivariate

Gaussian random variables. A d-dimensional Gaussian random variable with mean

µ and covariance matrix C has pdf given by:

p(x) =
1√

(2π)k|C |
exp

(
−h(x)2

2

)
(5.7)

where h(x) is the Mahalanobis distance given by

h(x) =

√
(x − µ)TC−1(x − µ) (5.8)

The Mahalonobis distance, evaluated with respect to a Gaussian component [20],

has a density function given by :

p(h(x)) =
2√
2π

exp

(
−h(x)2

2

)
(5.9)

This is nothing but the pdf of the one-sided standard normal distribution given by

equation (5.6). Thus, using Theorem 2, we can say that the maximum values of

the Mahalanobis distance of a Gaussian random variable converges to a Gumbel

38

distribution. Using this result, we can convert the problem of finding the Extreme

Value Distribution (EVD) of a multivariate Gaussian random variable to a univariate

case. Instead of analyzing the extreme values of the Gaussian random variable, we

just analyze the extreme values of its Mahalanobis distance which is one dimensional.

In a multivariate GMM, there are multiple Gaussian distributions, each with its

own Extreme Value Distributions. However, each of their Mahalonobis distances

follow Gumbel distribution. Now, for a new input x , we can use the technique given

in [20] to find its EVD probability. We first calculate its Mahalanobis distance from

all the components. Then, we assume that the closest component distribution dom-

inates its EVD probability. This assumption has been previously made by Roberts

[20]. The contribution of the other components is assumed to be negligible. In this

way, we can find EVD probabilities for a GMM.

5.3 Designing the EVT Based Two Stage Classi-

fier

We now describe our classifier with a reject option. First, for each class in the training

set, we train a GMM using the EM algorithm. Thus, we have one GMM per class.

Then, for every component in each GMM, we first find the Mahalonobis distances

from all the input data belonging to that class (for which the GMM is trained) to the

mean of that component. Then, we take the largest 20% of these distances. Using

these distances, we estimate the Gumbel location and scale parameters (γ and β)

using the maximum likelihood estimation. Similar protocol has been used by other

investigators also [20].

We had seen in the previous section that the extreme values of the Mahalanobis

distances follow a Gumbel distribution. Thus, for every component of the GMM,

we have a corresponding Gumbel distribution of it’s extreme values (of Mahalanobis

distances). As we had stated in the previous section, we assume that the EVD char-

39

acteristics of a point is dominated by the component of the GMM with minimum

Mahalanobis distance to it. Thus, to find if a point is an extreme value with re-

spect to the GMM, we calculate if it is an extreme value with respect to its closest

component of the GMM. The probability of being an extreme value with respect to

the closest component is given by the cumulative distribution function (CDF) of its

corresponding Gumbel distribution. If this probability is above some pre-determined

threshold, it means that the point is an extreme value with respect to the component

and hence, it is an extreme value with respect to the GMM. Thus, we reject that

point.

Sometimes, the GMM model may not be able to reject all inputs successfully when

there are overlapping components [6]. Thus, just like in [22], we train a one-vs-all

binary Support Vector Machine (SVM) for every class and fit Weibull distributions

to the match and non-match data. We had explained this procedure in detail in

Section 3.2. Thus, we have one GMM and one binary one-vs-all SVM for every class.

We also have the corresponding EVDs, one from the GMM and one from the SVM

classifier for each class. The algorithm is explained in Algorithm 7. We assume there

are c classes in our training set with labels {l1, l2,lc}.

Now, for a new input point, for every GMM, we find the component with the

minimum Mahalanobis distance from the point. Then, using the Gumbel parameters

for that component, we calculate the Gumbel cumulative distribution function for

the Mahalanobis distance of the component from the input point. The CDF of a

Gumbel distribution with location γ and scale β is given by:

P (x) = e−e
−(x−γ)/β

(5.10)

The Gumbel CDF gives us the probability of the point being an extreme value with

respect to that component. The higher this value, the higher the probability of

being an extreme value with respect to that component. Thus, if this probability

is greater than some sufficiently high pre-determined threshold, we straight away

reject the input. For our algorithm, we set this threshold at 0.99. Then, we go to

40

the corresponding binary Weibull SVM model and calculate the binary SVM score.

Based on this, we decide whether to classify or reject this input as explained in

Section 3.2 and in Algorithm 2. The whole algorithm is described in Algorithm 8.

We call this algorithm EVT Reject.

41

Algorithm 7: EVT Model Fitting

Data: {(x 1, y1), (x 2, y2),(xn, yn)} where x i ∈ Rd and yi ∈ {l1, l2,lc}

Input:

Pre-trained GMM using EM for each class ;

Pre-trained 1-vs-All binary SVM for each class, with SVM score functions fi()

and support vectors α+
i , α−i for match and non-match data respectively for

the ith class ∀i ∈ {1, 2, ..., c} ;

Tail size multiplier θ = 1.5 ;

K=No of components of each GMM ;

1 for i=1 to c do

2 Let the set of binary svm scores be Si = {fi(x j)} (∀j ∈ {1, 2,, n} with

yj = li) ;

3 Let q+i = θ × |α+
i |, q−i = θ × |α−i | ;

4 Let d+i be the smallest q+i positive(match) scores from Si and d−i be the

largest q−i negative(non-match) scores from Si ;

5 for k=1 to K do

6 di,k=top 20% largest Mahalanobis distances from the mean of kth

component(µi,k) to data from ith class ;

7 [γi,k,βi,k]=Estimates of Gumbel parameters from di,k ;

8 end

9 [νη,i,λη,i,κη,i]=Estimates of Weibull parameters from d+i ;

10 [νψ,i,λψ,i,κψ,i]=Estimates of Weibull parameters from −d−i (negate scores to

make them positive) ;

11 end

Output: Wi=[γi,1,βi,1,γi,2,βi,3,........,γi,K ,βi,K ,νη,i,λη,i,κη,i,νψ,i,λψ,i,κψ,i]

∀i ∈ {1, 2,, c}

42

Algorithm 8: EVT Reject

Input:

Input data point x ;

Pre-trained GMM for each class i ∈ {1, 2,, c} ;

Pre-trained 1-vs-All binary SVM for each class i ∈ {1, 2,, c} ;

Parameter estimates Wi for each class i ∈ {1, 2,, c};

1 Set δT = 0.99 and δR = 0.5 × Openness ;

2 for i=1 to c do

3 Let k=GMM component with minimum Mahalanobis distance from mean

µi,k to x ;

4 Calculate GMM CDF P g
i,k(x) using Gumbel parameters [γi,k,βi,k] and

equation 5.10 ;

5 Calculate Pη,i(x) using equation 3.3. ;

6 Calculate Pψ,i(x) using equation 3.4. ;

7 Set ti=0 ;

8 if P g
i,k(x) < δT then

9 Set ti=1

10 end

11 Calculate Ti(x) using equation 3.5 ;

12 end

13 Find label y using 3.6 or y = 0 if Ti(x)× ti < δR ∀i ∈ {1, 2,, c}

Output: Label y of x if accepted else reject x

43

Chapter 6

Experimental Results

We now look at the results of SOM Reject (Algorithm 5) and EVT Reject (Algorithm

8) Algorithms with the MNIST dataset and compare them the WSVM algorithm of

[22] which we had described in Section 3.2.

6.1 MNIST Dataset

The MNIST dataset [16] is a large dataset consisting of images of handwritten digits

which is often used for testing classifier algorithms. It was created from the original

NIST database of images. The images are of all the digits 0-9. Thus, there are a total

of 10 classes of images in the dataset. The images have been size-normalized and

centered. Each of the images in the dataset is of size 28× 28. Thus, each data point

has 784 features. The training set consists of 60,000 images and test set consists of

10,000 images.

We test our algorithms using the protocol described in [22]. We take all the

70,000 images together. We then choose randomly any six labels which become our

known classes. Thus, there are four unknown classes. From each of the known

classes, we choose 80% of the points which become our training set. We put the rest

of the points from the known classes into the test set. In [22], an openness index

44

is defined to estimate how “open” the problem is. We had stated this in equation

(3.7). Here, we vary openness by increasing the number of the unknown classes in

the test set from 0 to 4. For openness level 1, we randomly choose one of the four

unknown classes. In general for openness level k, 0 ≤ k ≤ 4, we randomly choose a

set of k unknown classes and check the performance of our system. For each level of

Openness, we calculate the accuracy, f-measure, precision and recall. We repeat the

entire procedure (that is, selection of six known classes and varying openness level

from 0 to 4) ten times. Finally, for each level of openness, we take the average of

accuracy, f-measure, precision and recall over the ten folds and report the same.

We train the SVMs for EVT Reject and WSVM using the LIBSVM library [4].

The SVM parameters are set at the same values as in [22] where C=2 and γ=0.03125.

The number of components of the GMM for EVT Reject could have been chosen

using some criteria like Akaike Infromation Criteria(AIC). However, since this is not

the main focus of our work, we choose the number of components experimentally. For

this, we compare the fmeasure values of EVT Reject for different levels of openness

over five folds with 2, 4, 6, 8 and 10 GMM components (results shown in Table

6.1). Though there is not too much difference between the results, we find that the

fmeasure values for the GMM with 4 components are the highest for high levels of

openness. Thus, we choose a GMM with 4 components for EVT Reject.

6.2 Choosing the SOM Rejection Criteria

To choose the rejection criteria for the SOM, we look at the distribution of distances

of the points mapped to an individual node of the SOM. We train a SOM with

300 nodes with the MNIST dataset and find the node with the most number of

points mapped to it. Then, we find the Euclidean distances of these points from

the SOM node. We then normalize the distances (between 0 and 1) and plot the

histogram. A typical example is shown in Figure 6.1. We notice that normalized

45

Table 6.1: MNIST dataset fmeasure vs openness for EVT Reject with different

GMM components (denoted by K)

Unknown classes Openness K = 2 K = 4 K = 6 K = 8 K = 10

0 0 98.28 98.41 98.35 98.33 98.38

1 0.0392 91.26 91.71 92.36 91.19 91.40

2 0.0742 87.68 88.08 87.66 87.78 87.71

3 0.1056 86.86 87.15 86.74 86.85 86.88

4 0.1340 85.66 86.08 85.78 85.57 85.66

distances of most of the points from the SOM prototype are centered around 0.5

and are a little more biased towards the maximum distance (1). This is surprising

because one would expect most points to be near the SOM prototype (normalized

distance ≈ 0). Such profiles are observed for a number of nodes. We also find

that there exists sufficient space on the X − axis where there are very few or no

points. This suggests that thresholding by maximum distance could be too sensitive

as many points from different classes could fall inside the decision boundary of the

node. Thus, we use Algorithm 6 (SOMReject2) where the rejection threshold is set

at µ + σ (where µ and σ are the mean and standard deviation of the distances of

points mapped to the node) for individual nodes. We compare the fmeasures of

the two rejection criteria for different levels of openness in Table 6.2. We find that

SOM Reject2 indeed performs much better than SOM Reject1 for higher levels of

openness. However, when openness is 0, SOM Reject2 performs poorly compared to

SOM Reject1 as some legitimate points are rejected by it as expected (higher false

negative rate).

We had also trained SOMs with 50 nodes individually for each of the six classes in

the training set instead of training a single SOM with 300 nodes on the whole training

set. We had then applied our rejection rule on the test data. However, surprisingly

we found that the single SOM outperforms the SOMs trained individually. We

46

Figure 6.1: Distribution of distances from SOM node. (Total points=266)

found that the individual SOMs have consistently higher false negative rates than

the single SOM trained for training set which results in a lower recall and thus, a

lower fmeasure. This means that the individual SOMs somehow end up with more

conservative boundaries than a single SOM.

Table 6.2: MNIST dataset fmeasure vs openness for SOM Reject1 and

SOM Reject2

Unknown classes Openness SOM Reject1 (300 nodes, SOM Reject2 (300 nodes,

threshold=maximum distance) threshold=µ+ σ)

0 0 98.78 89.91

1 0.0392 64.12 83.10

2 0.0742 56.29 78.11

3 0.1056 48.23 71.48

4 0.1340 43.06 65.48

47

6.3 Results and Remarks

Table 6.3: MNIST dataset accuracy vs openness for three methods

Unknown classes Openness WSVM [22] SOM Reject2 (300 nodes, EVT Reject

threshold=µ+ σ)

0 0 96.83 81.67 96.88

1 0.0392 91.91 80.98 91.76

2 0.0742 91.99 82.18 91.80

3 0.1056 92.38 80.92 92.70

4 0.1340 92.66 79.60 93.03

Table 6.4: MNIST dataset fmeasure vs openness for three methods

Unknown classes Openness WSVM [22] SOM Reject2 (300 nodes, EVT Reject

threshold=µ+ σ)

0 0 98.39 89.91 98.41

1 0.0392 92.43 83.10 92.29

2 0.0742 89.43 78.11 89.18

3 0.1056 87.10 71.48 87.53

4 0.1340 84.90 65.48 85.51

The variations of accuracy, fmeasure, precision and recall with openness are shown

in Tables 6.3, 6.4, 6.5 and 6.6 respectively. We notice some overall trends. We see

the EVT Reject algorithm outperforms WSVM by a small margin for high levels

of openness. The SOM Reject algorithm performs poorly when compared to the

other two algorithms with increasing openness. In Table 6.3, we notice a peculiar

behaviour. The accuracy of the three algorithms sometimes increases with increasing

openness. This is because as openness increases, so does the number of unknown

48

Table 6.5: MNIST dataset precision vs openness for three methods

Unknown classes Openness WSVM [22] SOM Reject2 (300 nodes, EVT Reject

threshold=µ+ σ)

0 0 100 100 100

1 0.0392 94.43 85.94 94.48

2 0.0742 89.29 75.87 89.08

3 0.1056 85.28 64.23 86.32

4 0.1340 81.58 55.39 82.97

Table 6.6: MNIST dataset recall vs openness for three methods

Unknown classes Openness WSVM [22] SOM Reject2 (300 nodes, EVT Reject

threshold=µ+ σ)

0 0 96.83 81.67 96.88

1 0.0392 90.61 81.67 90.31

2 0.0742 89.78 81.67 89.52

3 0.1056 89.22 81.67 88.97

4 0.1340 88.81 81.67 88.51

49

classes in test set and so does the number of points which our algorithm should

reject. If we have a sufficiently low rejection threshold, then our algorithm will be

more prone to rejecting points. This pushes up the accuracy. Hence, in openset

problems, accuracy is not a very reliable metric. Fmeasure is more indicative of the

true performance than accuracy.

We also notice in Tables 6.5 and 6.6 that for SOM Reject, while recall remains al-

most constant, the precision decreases pretty steeply. This indicates that the number

of false positives increases with openness. Thus, the classifier SOM Reject ends up

including a lot of open space from where points from unknown classes may originate.

50

Chapter 7

Conclusion and Future Work

In this thesis, we proposed two methods to design classifiers with a reject option.

The first method with a SOM is unsupervised and can be used initially to reject

points before using another classifier to classify the accepted points. While for low

dimensional datasets, it gives good performance, its performance is not so good with

the high dimensional MNIST dataset. As we saw, one reason for this could be the

SOM nodes end up enclosing large open spaces. As a result, there are too many

false positives which bring down the performance. The SOM algorithm might also

perform poorly when there is a lot of overlap between classes. Performance with

SOM on the MNIST dataset improved when we set a threshold based on mean

and variance of the distances rather than maximum distance. This suggests that

overall performance of the algorithm will improve if one sets thresholds on the nodes

individually by checking the distribution of distances of the points from the SOM

nodes.

The second method we proposed is based on using Extreme Value Theory(EVT)

with Gaussian Mixture Model and Support Vector Machine. This algorithm gives the

best performance with the MNIST dataset. EVT in general shows promising results

with the open set problem. It can also be used with other classifiers to improve their

performance.

51

Bibliography

[1] Peter Bartlett and Martin H. Wegkamp. Classification with a reject option using

a hinge loss. Journal of Machine Learning Research, 9(1):1823–1840, 2008.

[2] Abhijit Bendale and Terrance E. Boult. Towards open set deep networks. In

IEEE Computer Vision and Pattern Recognition(CVPR), 2016.

[3] Debrup Chakraborty and Nikhil R. Pal. A novel training scheme for multilayered

perceptrons to realize proper generalization and incremental learning. IEEE

Transactions on Neural Networks, 14(1):1–14, 2003.

[4] C.C. Chang and C.J. Lin. Libsvm: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

[5] C.K. Chow. On optimum recognition error and reject tradeoff. IEEE Transac-

tions on Information Theory, 16(1):41–46, 1970.

[6] David Andrew Clifton, Samuel Hugueny, and Lionel Tarassenko. Novelty de-

tection with multivariate extreme value statistics. Journal of Signal Processing

Systems, 65:371–389, 2004.

[7] B. Dubuisson and M. Masson. A statistical decision rule with incomplete knowl-

edge about classes. Pattern Recognition, 26(1):155–165, 1993.

[8] Paul Embrechts, Claudia Klppelberg, and Thomas Mikosch. Modelling Extremal

Events for Insurance and Finance. Springer, 1997.

52

[9] Ana Ferreira and Laurens De Haan. On the block maxima method in extreme

value theory: Pwm estimators. The Annals of Statistics, 43(1):276–298, 2015.

[10] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7(2):179–188, 1993.

[11] Manfred Gilli and Evis kllezi. An application of extreme value theory for mea-

suring financial risk. Computational Economics, 27(2):207–228, 2006.

[12] Simon Haykin. Neural Networks: A Comprehensive Foundation. Pearson, 2005.

[13] Samuel Kotz and Saralees Nadarajah. Extreme Value Distributions: Theory and

Applications. World Scientific Publishing Co., 2001.

[14] Khaled Labib and Rao Vemuri. Nsom: A real-time network-based intrusion

detection system using self-organizing maps. Networks and Security, 2002.

[15] M.R. Leadbetter. On a basis for ’peaks over threshold’ modeling. Statistics and

Probability Letters, 12(4):357–362, 1991.

[16] Yann LeCun, L. Bottou, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324,, 1998.

[17] Russell Muzzolini, Yee-Hong Yang, and Roger Pierson. Classifier design with

incomplete knowledge. Pattern Recognition, 31(4):345–369, 1998.

[18] Andrew Ng. Cs229 lecture notes. University Lecture Notes.

[19] M. Ramadas, S. Ostermann, and B. Tjaden. Detecting anomalous network

traffic with self-organizing maps. In Recent Advances in Intrusion Detection,

pages 36–54. Springer, 2003.

[20] S.J. Roberts. Novelty detection using extreme value statistics. In IEE Proceed-

ings - Vision, Image and Signal Processing, pages 124–129. IEEE, 1999.

53

[21] JW Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-

tions on Computers, 18(5):401–409, 1969.

[22] Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models

for open set recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(11):2317–2324, 2014.

[23] Walter J. Scheirer, Anderson Rocha, Ross J. Micheals, and Terrance E. Boult.

Meta-recognition: The theory and practice of recognition score analysis. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(8):1689–1695,

2011.

[24] Walter J. Scheirer, Anderson Rocha, Archana Sapkota, and Terrance E. Boult.

Towards open set recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 10(10):1757–1772, 2012.

[25] Bernhard Scholkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the support of a high dimensional distribu-

tion. Neural Computation, 13(7):1443–1471, 2001.

[26] David M.J. Tax and Robert P.W. Duin. Support vector data description. Ma-

chine Learning, 54:45–66, 2004.

54

