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Abstract

This thesis presents a reconstruction technique for computing a (0, 1) matrix
uniquely from the projection information along rays shot from suitable projection
angles. For reconstruction, we impose no restriction on any geometrical
properties of the matrix. We determine a suitable set of projection directions for
unambiguous reconstruction of a matrix from its projections.

The worst case time complexity of reconstruction is O(m.n.(m+n)) where m is the
number of rows and n is the number of columns.

This work also presents a technique to identify the components (maximal 4
connected subsets) of a discrete set if the set to be reconstructed is canonical,
from the projections along different angles. The projection angles may be as

tan'2, tan'1/2,tan™3 , tan'1/3

The worst case time complexity for Identification of components is O(m’.n?).
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Chapter 1

1. Introduction

The main task of Discrete Tomography (DT) is to reconstruct discrete sets from a few
projections. The number of projections should be minimized so as to keeps exposure to
‘X’ ray in the body tissue within acceptable limits.

The main problem of reconstruction is when this projection information fail to recreate
the original matrix uniquely, i.e., there may be many different discrete sets with the
same set of projections. One approach to remove ambiguity to restrict the
reconstruction to a class of discrete sets which satisfy some geometrical properties. The

ambiguity can also be reduced by having some prior knowledge about the matrix to be
reconstructed.

The reconstruction of horizontally and vertically convex (shortly, hv-convex) discrete
sets using only two projections is known to be NP-hard [6] . However, if the set is
connected, then polynomial time reconstruction is possible [ 7,8,9,10 ]

Several algorithms have been proposed for solving the reconstruction problem in the
class HV, of hv-convex polyminoes in polynomial time using the horizontal and vertical
projections, among them the fastest one has a worst case time complexity of
O(mn.min(mz,nz)) where m and n are the number of rows and columns of the matrix
respectively [11,12,13 ] .One of the main difficulties in this task is that in certain cases
the projections do not uniquely determine the binary matrix [5]. If the sizes of the
components are small then the probability of error is large for forming discrete sets.

In this work it is shown that the large components of any discrete set can be
reconstructed without ambiguity by choosing suitable projection angles. It is also shown
that all the ray measurements of a view are not necessary. So the actual ray exposure
on the volume/area is small.

As if A is the tissue area represented by the matrix then the average number of time
expose of area by ’X’ ray for 7*8 and 5*4 matrix are 2.545*A and 1.428*A respectively
for reconstruction of matrix . The exposed area can further be reduced by decreasing
the thickness of the ray.

Matrices of large size can also be reconstructed without ambiguity with reduced

exposed area by reducing the width of the ray and by properly choosing exposure
directions.

The worst case time complexity of reconstruction is O(m.n.(m+n)), where m is the
number of rows and n is the number of columns.



It may be noted that the time complexity for reconstructing canonical hv-convex
discrete sets becomes O(m>n®min{m? n?}) if an earlier algorithm[3] is used.

We show that If the discrete set to be reconstructed is canonical, then the components
can be identified by taking projections along a few angles ‘e’ = tan2, tan?1/2 , tan''3
& tan'1/3. It also shown that the worst case time complexity is O(m*n?).

The organization of the thesis is the following.

Chapter2 and Chapter3 discuss preliminaries of computerized tomography and matrix
representation.

Chapter 4 address the problem of ambiguity in reconstructing discrete sets from
projections.

Chapter 5 demonstrates the reconstruction strategy that guarantees uniqueness from
various angular projections.

Chapter 6 presents identification of components of hv-convex canonical discrete sets
with projection of different angles.



CHAPTER 2

2. Preliminaries

2.1 First generation CT Basic Principle:

It is imagined that the subject to be scanned as being divided into axial slices. The X-ray beam
to be used was collimated down to a narrow {pencil-width) beam of X-rays. The size of the
beam is generally 3mm within the plane of the slice and 13mm width perpendicular to the
slice(along the axis of the subject ) In fact, it is the beam width that typically specifies the slice
thickness to be imaged. The X-ray tubeis rigidly linked to an X-ray detector located on the
other side of the subject. Together the tube and the detector scan across the subject, sweeping
the narrow X-ray beam through the slice.

Translation: This linear transverse scanning motion of the tube and the detector across the
subject is referred to as a translation.

Ray: The X-ray beam path through the subject corresponding to each measurement is called a
ray.

View: The set of measurements made during the translation and their associated rays is a view.
Now a days scanners have 750 rays per view. After completion of the translation, the tube-
detector assembly is rotated around the subject and translation is repeated to collect another
view. Today’s scanners may typically collect 1000 or more views over 360 degree.

Fig : 1
Rayv
Ray




C T Image Reconstruction:

It is imagine that the slice is divided into a matrix of 3-dimensional rectangular boxes (voxel)
of material(tissue).

Reconstruction Matrix

If translation cover 250 mm and if the scan area is divided into a matrix of 250 rows and 250
columns with each voxel of 2mm * 1mm. This matrix is referred to as reconstruction matrix.

CT image reconstruction is to determine how much attenuation of the narrow X-ray beam
occurs in each voxel of the reconstruction matrix.

These calculated attenuation values are then represented as gray level in a 2-dimensional
image of the slice.

TR D Detector

Fig-2
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Representation of attenuation as pixel value
Ng=X-ray intensity entering the row of voxels
N;= Detector measured intensity
W, = Path length of the ray
H; = Attenuation coefficient

N; = Intensity exiting the first voxel (attenuation =, )

Nle-(wzuz) - Noe—(wlpl)
Ny = Ny ™2z Nye ikl o w2i2)
N; = Noe-(wlul) e'(WZpZ)
Or -In{N;/No ) = Wy pa+ W gy +Wi e, + W, Hn

Each term wiy; represents the attenuation occurring within voxel

which is designated as u;.

N'i:: Ui+ Uit up +Us+ Uy

2. Representation of the projection value [1].

W, for this cell = area of ABCD/r?

f,denote the constant value in the jth cell which depends on the attenuation value .

N is the total number of cells =( f,)?
Let p; be the projection of ith ray .
SWf = P i=1,2,3 ..M
(=1 toj=N )

Where M is the total number of rays (in all the projections)



Knowing f; {denote the constant value in the jth cell) and considering a threshold value the
binary image can be constructed. If the value of the constant is greater than the threshold value
then ‘1 ‘is assigned to the pixel. If the value is less than threshold value then ‘0’ is assighed to
the pixel.
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Chapter 3

3. Some Definitions

he 4-connected sets are called polyominoes 4-connected : A discrete set F is 4-cannected if for

any two distinct positions P,Q. € F. There exists a sequence of distinct position
(i0o)=P-vevee.. (ioj) =Q such that (iyj) EFand | i) ~ipa [ +]ji - | = 1

for each 1=20,1 cvecrer e, (k-1)

There exists a sequence of distinct position (ig,jo)=P......... (injx) =Q such that (i,ji) € F
and | i -ip1 |+ i -jer | £2 foreach 120 .o, (k-1)

Polyominoes T

Components: If a discrete set is not 4-connected then it can be partitioned

(in a uniquely determined way ) into maximum 4-connected subsets which are called
components of the discrete set.

Canonical (anti-canonical)

The discrete set is canonical ( anti-canonical ) if it consists of just one component or the
smallest containing rectangles of the companents are connected to each other with their
bottom —right and upper left (bottom-left and upper —right ) corners.

hv-convex A discrete set is called hv-convex if all the rows and columns of the set are 4-
connected.

11
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Chapter 4
4. Discussion about Unambiguous and Ambiguous cases

4.1 : Unambiguous Cases: This is the case where reconstruction of the matrix is unique.

This is possible if there is no (1, 0) and (0, 1) pair forming a sub-matrix explained below in the
discrete set.

Explanation : Let there be an m*n matrix, where ‘I’ & ‘j’ are any integer from 1to m and ‘k’
and ‘I’ are any integer from 1 to n, where Riand R; are ith and jth row respectively and

Cyxand C, combinations as given below .

Cy G
R; 0 1 where (i |=j) and(k |=1)
R, 1 O
and
Cy G
Ri 1 0 where (i |=]) and(k |=] )
R, 0 1

13



Example: Unambiguous cases

0 E 0
. 0 |0 0
0 o |o 0
0 (o lo - 0 {0 |0 |0 -
& \\La“ N
0o |o [of{0o [o fu o |o |o [o o
o {o |o|o o & o o {0 fo
Fig- 6(a) Fig — 6(b)

4.2 : Ambiguity of reconstruction of discrete sets.

Generally ambiguity of reconstruction of matrix occurred due to presence of (1,0 )
and (0,1) combination as shown in 4.1 .

Examples of ambiguous cases are given below .

Reconstruction of such type of matrices is not unique as with the same horizontal and vertical
projections , t may give many matrices .

14



4.3 Onthe Ambiguity of Reconstructing hv-convex Binary Matrices with
Decomposable Configurations by Pr. Peter Balazs .[5]

Preliminaries : A discrete set with the smallest containing discrete rectangle {SCDR) of size
m*n can be represented by a binary matrix F=(fj)m+n .
Size of discrete set: It is m™*n.
Where m= number of rows, n = number of column .
Number of elements : 1t is the number of ‘1’ present in the matrix .
Different projections are:
Horizontal projection = H(F)
H(F) = H=(hy,hy,-----hpy ) .
hi =3 fj (i=1,2,ne m)
forjisfrom1ton
Vertical projection V(F)
VIF) =V = (v1, e Vi
vjj =3 f (ji=1,2,ce. n)
foriisfrom1tom.
Diagonal projection D(F);

D =( dy,dy—-- dmin1 )

i+(n-j)=K

dx = z fij ( K= 1,2, ....... m +n- 1)

i+(nj)=K

15



Projection: With negative result

Theorem: 1 Three Projections: For some vectors H,V, D there can be exponentially many hy
convex decomposable binary matrices with the same horizontal, vertical, and diaponal

projections H,V, D respectively.

1 0 O 0 10
M = 0 1 1 M’ = 1 10
0 10 0 6 1

Remarks: We get the same result replacing the diagonal projections with the anti-diagonal

projections.

Four Projections: The reconstruction of a discrete sets from four projection is NP —hard

Further the number of hv-convex discrete sets having the same four projections can be

extremely large .

0O 0 1 O 0 1 0 0O
M= 1 00 O M’ = 0 0 0 1
0 0 O 1 1 00 O

c 1 0 O 0 01 O

16



4.4: Table 1:

The number of hv-convex polyominoes in the test data sets that are not uniquely determined

by two, three, and four projections. (Each data set consisted of 5000 discrete sets with same
size)

Sizenxn HV HV,D HV,A HVDA

4x4 1393 40 52 18
5x5 1442 33 36 16
7x7 967 13 8 2

10x10 586 4 6 1
2020 312 2 1 1

40%x40 210 1 0 0

60x60 162 1 0 0

80x80 148 0 0 0

100x 100 171 0 0 0



Chapter5

5 : Procedure for reconstruction of discrete set with projections of different angles.

5.1 Table: 1 Matrix with size different projection angles

Sl No Maximum size of the Different projection angles required
matrices that can be
reconstructed
1 4*5s  or 5%4 O =tan™1, ©=tan'2, O =tan™1/2
|2 8*7 or 7*8 © =tan2,0 =tan'1/2 © =tan"'3, @ =tan"'1/3
4 19%¥20 or 20%19 © =tan!1,8 =tan’2,0 =tan?1/26=tan '3, ©
=tan1/3 ,6=tan'2/3 ,©=tan’3/2 ,© =tan'4 ,
© =tan'1/4

5.2 Procedure for small size matrix:
Projection is started from the corner of the matrix as shown in the figure-7(a)
As shown in the figure -7(a) the angle of the 1st ray is tan™1.

With the projection value of the ray we can get the pixel value of the the pixel numbered 1,
as this is the only unknown pixel value of that ray .

Similarly we can get the value of pixel numbered 1’ on the other corner of the matrix .Next in
the figure-9{b), it is shown for two ray projection for an angle © =tan'2, © =tan'1/2. One ray
covers pixel 1 and 2. As pixel value of 1is known the pixel value of 2 can be found. Another ray
covers pixel 1 and 3. As pixel value of 1 is known the pixel value of 3 can be found from the
projection value Similarly in the other corner the pixel number 2’ and 3’ can be found. In
this way if we proceed we can get all the pixel values of the matrix. There is limit of the
maximum size of the matrix for the projection having angles as shown in the Table-1.

5.3 Procedure for higher size matrix: in this case the thickness of rays should be decreased by
considering the limit of ‘X’ ray exposures. Then with the same procedure as above one should

18



proceed. But when we will be unable to proceed then we have to decide suitable projection
angle so that the ray covers single unknown pixel with other known pixels.

We may consider the projection angles as © = tan™'3/4, 6 = tan4/3, © = tan™4/5,
© = tan'5/4,0 = tan1/4, © = tan™4 so on.
5.4 Rays size

For projection © = tan™'2, for convenience, the rays should be such that they cover 1/2 of the
pixels of upper side.

For projection 8 =tan'1/2, each ray covers 1/2of the pixels of the left side.

For projection 8 = tan™3 for convenience, the rays should be such that it cover 1/3 of the pixel
of upper side.

For projection 8 = tan'11/3, each ray covers 1/3 of the pixels on the left side. these are shown
in the figure 8.

For projection 6 = tan™3/2 for convenience, the rays should be such that it cover 2/3 of the
pixel of upper side.

For projection 8 = tan™2/3, each ray covers 2/3 of the pixels on the left side. these are shown
in the figure 8.

If we take higher sized ray then unnecessary overlapping of rays will take place.
We can also take rays of smaller size as per image construction.

5.5 Calculation of ray exposed area: As per the ray size the number of rays required to
cover the entire area is given below for the projection angle ‘©’. Let the size of the matrix is
m*n.

(1) ©e=tan'2, Number of rays N=2*n+m .

(2) ©=tan1/2, Number of rays N=2*m +n .

(3) ©=tan'3, Number of rays N=3*n+m .

(4) ©=tan"1/3, Number of rays N=n +3*m .

(5) © =tan"3/2, Number of rays N=ceil{{3/ 2)*n) +m.

(6) ©=tan"2/3, Number of rays N=n +ceil({3/2)*m)

Let N, = minimum of N among the above projections used for measurement.

19



Let the tissue area represented by the matrix be A
Average cover area of a ray for each case = A, = A/ number of rays.
As previously explained that to find a pixel value of matrix a ray value is required.
So the number of rays required for m*n matrix is = m*n.
Thus it is not required to take all the ray measurement of a view.
In the worst case, the average maximum exposed area = m*n*(A/N,)

In case of large matrix the thickness of rays can be reduced to get less exposed area.
Example : (i) For matrix 7*8

The worst case average exposed area = A(average) .
A(average) = 7*8* A/(2*7+8) =2.545*A.
(il) For matrix 5*4
The worst case average exposed area = A(average) .
A(average) = 5*4* A/(2*5+4) =1.428*A.
Note: The area can be further be reduced by decreasing the thickness of the rays.

5.6: Calculation of time complexity (worst case)
With each ray value one pixel value can be found.

Number of pixel = m* n
So number of rays required for detection of pixel value is m*n.

For each pixel maximum number of iteration required = (m +n )

So the time complexity is = m*n*(m + n)

20



Different projections with their rays

/a/

7/

Fig: 8
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(d)

5.7 Sequence of finding pixel number with projections
A {i) Maximum size of matrices that can be uniquely determined by three

N
N
\\
A \1'\
. ~
~
7 |8 |5 |3 |1
& |9 {106 |2
2 |6 |10']|9 |4
1 |3 |y |8 |7
(7 s [3 |1 |
7 |10 ]6 |2
4 9 {9 |4
2 |e [10]7
R E
Fig-9

.
N

~

projections 6 =tan''1,0 =tan'2 , 0 =tan'1/2 is 4*5 , 5*4,

Order in which the"
pixel values are determined

1

2

10

Angle of projection Location of pixel that

can be calculated

O =tan' 1, 1

O =tan’2 2, 2

O =tan /2 3, ¥
O =tan”2 4, 4
O =tan/2 5,5
O =tan'" 6, 6
O =tan"2 7, 7
O =tan"/2 8, 8"
O =tan? 2 9,9
O =tan-11/2 10, 10’

{ii) Maximum size of matrices that can be uniquely determined by four
projections 8 =tan-12, © =tan-11/2,0 =tan! 3, 8 =tan"'1/3 is 8*7,78 .

w (1 10

17 |23 T2

13 (22 |7

v |19 [26 28 |24 |15 |6 °

6 |15 |24' |28 |26 |19 |9

4 |1 Jar |2y |27 [22 |13

¥ |8 jiz J1e 200 |23 |17

v 13 |y |7 T |14 |18
Fig, 10

Angle of projection Location of pixel that

can be calculated

6 =tan"'2 1, v
0 =tan™'2 2, 2
6 =tan-1/2 3, 3
6 =tan'2 4, &
0 =tan1/2 5 5
e =tan! 3 6, 6
0 =tan"1/3 7, T
0 =tan-'2 8, 8°
0 =tan-' 3 9, 9
o =tan'"1/ 3 10, 10°

22



Angle of projection Location of pixe! that Angle of projection Location of pixel that

can be calculated can be calculated
6 =tan-2 1, 11 O =tan-12 21, 21
© =tan-'1/2 12, 12 © =tan"' 3 22, 22
6 =tan-'3 13, 13 6 =tan-1/3 23, 2%
O =tan"'1/3 14, 14 6 =tan2 24, 24
O =tan2 15, 15 © =tan""1/2 25, 25’
© =tan"' 1/2 16, 16’ O =tan' 2 26, 26’
0 =tan'3 17, 17 6 =tan™/2 27, 27
O =tan'1/3 18, 18" 6 =tan-12 28, 28
O =tan"' 3 19, 19’
6 =tan"1/3 20, 20

(iii) Maximum size of matrices that can be uniquely determined by five projections
O =tan1,06 =tan-12 , © =tan-11/2 8 =tan!3 , © =tan-'1/3 is 9*8, 8*9.

Angle of projection Location of pixel that
can be calculated

9 =tan'2 1,1
22 [23 [18 J12 [10 |7 [5 |3 |1
0 =tan-12 2, 2
18 128 (29 f2s 21 lie |12 |8 |2
0 =tan1/2 3, ¥
13" |24 |32 {34 31 27 17 11 4
9 20" |30' [35° |36 [33 |26 |15 |6 0 =tan"12 4, 4
6 |15 |26° |33 |36 [35 |30 |20 |o 0 =tan-"1/2 5 5
4’ 11" |17 127 31 34 32 24 13 s
0 =tan' 3 6, 6
2 8 12 16 21 25’ 29 28 18 ‘
6 =tan-11/3 7, 7
vy |y [7 |10 |14 [19 (23 [22
8 =tan’2 8 8°
9 =tan' 3 9, 9

Fig ; 11 8 =tan'1/ 3 10, 10’



Angle of projection
o =tan"'2

0 =tan/2
0 =tan”'3

o =tan"1/3
© =tan'2

o =tan' 1/2
O =tan™

0 =tan3
O =tan 1/3
0 =tan12

0 =tan1/2

© =tan"' 3
6 =tan1/3

Location of pixel that
can be calculated
11, 11

12 , 12
13,13
14 |, 14
15 , 1%
16 .16’
17 , 17
18 , 18°
19 , 19
20 , 20
21, 21
22,22
23 ,2%

Angle of projection
8 =tan'3

O =tan"1/3

0 =tan' 2

O =tan1/2

B =tan"'3
e =tan™1/3

O =tan-2

6 =tan! 1/2
o =tan’' 3
6 =tan' 2
O =tan-' 1/2
O =tan"'2

0 =tan-1/2

Location of pixel that

can be calculated

24, 24
25, 25'

26, 26’
27, 27

28, 28
29, 29

30, 30
39, 39’
32, 32
33, 33°
34, 34
35, 35

36, 36

24



(iv) Maximum size of matrices that can be uniquely determined by projections 6 =tan"'1,6 =tan"!
© =tan1/2 ,6 =tan"'3 , 6 =tan"1/3 ,0 =tan-'2/3 , 6 =tan"'3 /2, © =tan"' 4, © =tan-'1/4 is 19*20 , 20*19

1 3 5 7 10 |14 18 20 [25 |31 37 |41 |48 56 67 79 83 93 103’

2 8 12 |16 |22 |27 |33 [39 |46 |54 62 171 |81 91 102 109 115 118 92’

4 11 23 129 135 44 |52 |60 |69 |77 89 100 | 111 ‘117 120 124 131 114 82’

6//’/ 6 15 28 (42 50 |58 |65 |75 [37 |48 113 122 | 130 132 137 143|123 108 78’

9 21 34 149 |63 173 (85 |96 108|128 |135 {142 |145 148 154 136" |119 101 66

13 126 43 |57 172 |94 |106 | 126 | 139|147 |153 | 156 | 160 163’ 148 (133|116’ 90’ 55’

17 |32 51 |64 |84 (105|138 | 151 | 158|162 |166 |170 | 173" | 154’ 1447 (129" [110¢ 80’ 47

19 138 59 |74 |95 |125 |150 | 164 [168 [172 |175 |176' | 169’ 155’ 141 11210 (99’ 70’ 40

24 |45 68 |86 (107 |140 {157 (167 [177 178 |180'[174']165 152 134|112 |88’ 61’ 36’

30 |53 76 |97 127 |146 [161 [171 {179 181 |179'|171'|161’ 146’ 1277 |97 76 53’ 30

36 |61 88 112 | 134 |152 |165 | 174 | 180|178 |177 |167 |157 140’ 107" |86 68’ 45’ 24

40 70 99 121 {141 155 169 ;176 | 175172 | 168 | 164 | 150 125" 9% 74 59’ 38 19
Fig-12

47 80 110 ) 129 | 144 |159 | 173 | 170’ | 166 | 162’ | 158’ | 151" | 138’ 105’ 84’ 64’ 51’ 32’ 17

55 a0 116 1133 [148 | 163 |160' [ 156’ [ 153 | 147’ | 139" [ 126" | 106’ 94’ 72 s7 43’ 26’ 13’

66 |101 }119 {136 ;154 {149 | 145"} 142" )135)128a)108 |96’ |8Y 73 63’ 49 34 2 9

78 108 | 113 {143 | 137 |132'[130° | 122" (113 |48 |37 {75 |65 58’ 50 42 28 15 ‘6’
82 114 (131 |124’|120’ 117 [111'[100° |89 {77 |69 |60' |52 44’ 35 29 23 11 4
92 | 118 [115 |109'|102'|91 |81 |71 (62" [54 |46 [39" |33 27 27 16’ 12 8’ 2
103 |93 |83 |79 {67 |56 |48 |41 |37 (317 |25 |20 (18 14 10 7" 5 3 Iy
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(iv) Maximum size of matrices that can be uniquely determined by seven projections 6 =tan-1,
O =tan'2, 8 =tan"'1/2 ,8 =tan"'3, 0 =tan1/3, © =tan-13 /2, 6 =tan2/3, 6 =tan-14, 8 =tan""1/4 is
19%20, 20"19. Angle of projection Location of pixel that

— . . can be calculated
Angle of projection Location of pixel that O =tan-12

11, 11
can be calculated
0 =tan"2 1, T o =tan1/2 12, 12
o =tan"2 2, 2 0 =tan'3 13, 13
8 =tan1/2 3, ¥ 6 =tan-'1/3 14, 14’
0 =tan'2 4, 4 0 =tan-12 15, 158
6 =tan1/2 5 5 © =tan? 1/2 16, 16’
© =tan™ 3 6, 6 6 =tan' 3 17, 17
0 =tan™/3 7, T O =tan-11/3 18, 18°
0 =tan1/2 8, 8' O =tan' 4 19, 19
0 =tan' 3 9,9 6 =tan"1/4 20, 20’
0 =tan"1/3 10, 10 0 =tan'3 21, 21
Angle of projection Location of pixel that Angle of projection Location of pixel that
can be calculated can be calculated
O =tan"' 2 34, 34
0 =tan™ 1/3 22, 22
0 =tan-12 23, 2% © =tan1/2 35, 3%
e =tan'4 24, 24
O =tan1/4 25, 25 Q =tan'4 36, 36
@ =tan'"/4 37, 37
0 =tan' 3 26, 26
8 =tan'3 38, 38
O =tan'1/3 27, 27 e =tan/3 39, 39
O =tan"'2 28, 28 8 =tan'4 40, 40
6 =tan-'1/2 29, 29
o =tan' 1/4 41, 41
O =tan'4 30, 30
O =tan”! 3/2 42, 42
0 =tan"' 1/4 31, 31
[$] =‘|;an'1 2 43, 43
6 =tan' 3 32, 32 0 =tan1/2 44, 44
O =tan1/3 33, 33° 0 =tan3 45, 4%
6 =tan"1/3 46, 46

8 =tan"4 A7, 4T



Angle of projection

6 =tan' 1/4
0 =tan'3 /2
0 = tan'2/3
0 =tan"12
0 =tant1/2
0 =tan’3

6 =tan1/3
6 =tan4

6 =tan11/4
8 =tan 3/2
0 =tan'2/3

O=tan'?2

Angle of projection
6 = tan"'3/2

© =tan"'2/3

6 = tan'2

6 =tan'1/2
6=tan' 4

0 =tan'1/4
O =tan'3

9 =tan1/3
6 =tan'4

6 =tan"1/4
0 = tan"13/2
6 = tan"12/3
B = tan3/2

6 =tan'2/3

Location of pixel that

can be calculated

48, 48
49, 49
50, 50
51, 51
52, 52
53, 53

54, 54
55, 55

56, 56’
57,57
58, 58

59, 59

Location of pixel that

can be calculated

74, 74
75, 75

76, 76’
77,77
78, 78

79, 79°
80, 80

81, 81
82, 82

83, 83
84, 84
85, 85
86, 86’

87, 87

Angle of projection
6 =tan? 1/2
O =tan'3

6 =tan'1/3
e =tan'3/2

0 =tan"'3/2
0 =tan12/3

6 = tan4
6 =tan' 1/4
o =tan' 2

0 =tan11/2
0 =1tan"3

6 =tan/3
0 =tan"3/2

0 =tan2/3

Angle of projection

0=tan"'2

o =tan11/2
0 =tan'3

6 =tan"1/3
6 =tan4

6 =tan'1/4

6 =tan2/3

0 =tan3/2

6 =tan2/3

6 =tan" 3/2
6 =tan' 2/3
B =tan’'2

6 =tan"1/2
6 =tan'3

Location of pixel that
can be calculated
60, 60’
61, 61’

62, 62
63, 63

64, 64
65, 65

66, 66’
67, 67
68, 68

69, 69°
70, 70

71, 71
72, 72

73, 73

Location of pixel that
can be calculated

88, 88

89, 89°
90, 90U’

91, 9v’
92, 92

93, 93
94, 94
95, 95’
96, 96’
97, 97
98, 98’
99, 99°

100,100’
101,101
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Angle of projection

0 =tan"1/3
0 =tan'4
o =tan'1/4
6 =tan'3/2
6 =tan'2/3
0 =tan'3/2
0 =tan2/3
0 =tan'4

0 =tan'1/4
0 =tan"3/2
O =tan' 2/3
0 =tan'2

6 =tan11/2
O =tan4
0 = tan'1/4

0 = tan'3

0 =tan™/3

O =tan-'4

6 =tan'4

© =tan"1/4

0 =tan'3

O =tan'1/3

Angle of projection

O = tan"1/4
0 =tan"3
0 =tan""1/3
6 =tan'4
6 =tan1/4
0 =tan"13/2
6 =tan"2/3
0 =tan'3

6 =tan"/3
6 =tan'4
O =tan' 4
0 =tan'1/4
O =tan'3
0 =tan"/3
6 =tan'4

0 =tan'1/4
O =tan'3

6 =tan'1/3
6 =tan' 4
6 =tan12
B =tan"'3
6 =tan™/3

Location of pixel that
can be calculated

102, 102’
103, 103
104, 104°
105, 105’
106, 106’
107,107
108a, 1082’
108 , 108’
109, 109°
110, 110’
11, 1Y
112, 12
113, 113’
14, N4
115, 115’
116, 116’
17, 1r
108, 108’
119, 119’
120, 120°
121,127
122,122

Location of pixel that
can be calculated

145, 145’
146, 146’
147 147
148, 148’
149, 149’
150, 150’
151, 151’

152, 152

153, 153"

154, 154'
155, 155
156, 156’
157, 157

158, 158'
159, 159'
160, 160’
161, 161
162, 162
163, 163
164, 164’
165, 165'
166, 166’

Angle of projection

6 =tan'4
6 =tant1/4
6 =tan'3 2
0 =tan'2/3
6 =tan'2
Q = tan'1/2
6 =tan'3
0 = tan"1/3
9 =tan'4
© = tan1/4
O =tan"'4
O =tan'3
© =tan"'1/3
6 = tan'4
O =tan' 3/2
0 = tan"2/3
O = tan"2
©=tan"'3
e =tan1/3
6 =tan'4
O =tan" 4

Angle of projection

0 =tan'3/2
Q =tan"2/3
0 =tan'3
6 =tan'1/3
6 =tan'2
6 =tan1/2
6 =tan'3
o =tan'3
6 =tan' 1/3
0 =tan'4
O =tan' 2
O =tan"/2
6 =tan'2
6 =tan'2
O =tan'2

Location of pixel that
can be calculated

123, 123
124, 124
125, 125’
126, 126
127,127
128, 128’
129, 129
130, 130
131, 137
132, 132
133,133
134, 134
135, 135
136, 136’
138, 138
139, 139’
140, 140
141, 141’
142, 142
143, 143’
144,148

Location of pixel that
can be calculated

167, 167

168, 168
169, 169’
170, 170

171, 174"

172,172

173,173
174, 174
175, 175'
176, 176'
177,177
178, 178
179, 179’
180, 180
181,

28



Chapter 6

Identification of components of h-v convex canonical discrete set
with projections having angles e = tan™2,tan1/2, tan'3, tan1/3
and reconstruction of the discrete set .

Our aim is to reconstruct the discrete sets with the existing above projections. So if the
expected discrete set is hv-convex canonical, it is required to identify each components so that
pixel value of individually component can be found out easily.

There are different canonical discrete set as per the pixel value of components at the
touching points.

A

Fig — 13 (a)

6.1 Different cases of touching points between components

(1) At location A, the two connected pixel values of the components are all 1.The
neighboring conjugate rays value of touching points are 1.

(2) At location C, the connected two pixel values are 0 and 1, the neighboring rays values of

the touching point are also ‘0" and ‘1" .
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(3) At location B, the all two pixels of connected point of components values are all 0.
The neighboring conjugate rays values of touching point are also 0.

(4) If two pixels of connected point of components values are either 1,00r 0,0 and

also it’s neighboring pixel values are also 0, three or more conjugate rays value are 0.This is
shown in the figure 13(b).

For getting touching points those should dealt differently.

1 0 0 0 0

0 DO (O 0 1

Fig—13(b)

6.2 Size of rays, pixels and equations of lines and solution of cases .
First consider the size of each pixel value is 1*1.

For projection 8 = tan™2 for convenience the size of rays should be such that it cover 1/2 of the
pixel of upper side.

For projection © = tan *1/2 each ray cover the 1/20f the pixel of left side.

For projection ©6 = tan'13 for convenience the of rays should be such that it cover 1/30f the pixel
of upper side.

For projection 8 =tan'*1/3 each ray cover the 1/3 of the pixel of left side .lt is also shown on
the figure 14.

As shown in the figure-14, O is the (0,0) coordinate. The ¥ coordinate and ‘Y’ coordinate are
also shown.

30



We may consider here the left side of first ray as the first line. Similarly the left side of the
second ray as the second line. The equations of different lines are given below.

(i). For projection © = tan™2
Y=2*X- (n1-1) ;where nlistheline number.
(i) For projection © = tan™ %
Y =X/2-{n2-1)/2 .Where n2 is the line number.
(iii) For projection © = tan™3
Y = 3*X~(n3-1) ; where n3 is the line number.
(iv ) For projection © = tan™1/3

Y =X/3-{nd -1)/3 ; where n3 is the line number

Projection of different angles with their rays ( Fig-14
, /... . Fig-14 O== tan'3

== tan"'2./> ,

(a)

o= tan*jj/?"

(c¢)
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solution
For case (1) :

If it is found that in different projection angles if two conjugate rays values are found
to be 1, Like rays (n-1) and n then line n should be consider .

Then we will have to find out the inter crossing points of above lines having coordinate
values are integer numbers for

(i)  for projection angle © =tan"2and © =tan™1/2 and another for
(i) for projection angle 8 =tan™3 and © = tan'1/3.

Then if find that the points of (i) is equal to the points of (ii ,}then these are the point of
touching of the component. Then arrange those points in increasing order. If points are(X1, Y1),
(X2,Y2) and (X3,Y3).Then this will appear as (x1<x2<x3) and (yl<y2<y3).

Then we get the component as (1 to X1) * (1 to Y1), (X1+1 to X2)*(Y1+1 to Y2 )..

For case (2) :

This is the similar case of case (1), except we will have to consider the values of conjugate
rays having values either (0,1) or (1,0).

For case (3) :

This is the similar case of case (1), except we will have to consider the values of conjugate
rays having values either (0, 0) or (0, 0).
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Case (iv) Inthis case it is found that in different projection angles more conjugate rays

values are found to be 0 as shown in the figure. So there may many points due to these

rays those satisfy the conditions of touching points.

ooy

o ‘Xaxis

8= Tan""/2
Fig - 15 o

Let the line of rays in ascending order be L1,L2 ,L3 etc for projection © = Tan'1/3 .. Where
L1 is the first line encounter the condition. Let the points those satisfy those conditions are

(X1, Y1), (X2,Y2),.. .(Xi,Yi), ..(Xn,Yn).Here If the point of touching of components is (Xp ,
Yp), then the point should satisfy the condition. The is Xp<ceil(L1/3) and Xi< ceil(L1/3) and
(Xi<Xp ), where Xi and Xp are the x coordinate of any two of above points..

Note : Asin above figure it is not necessary to find the dimension of the components . To find
pixel value of the discrete set we can consider the area OABEDC and FGHI. The pixel values of
this area can be found out as per the procedure explained earlier.
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6.3 :Ambiguity
cases : 1
There are some ambiguity cases in detecting the touching point . As in the figure it is given

That ‘O’ is the gctual touching point . But both ‘O’ and ‘A’ are found to be touching points .
/7

Actual point 'Y’ axis is even point

A A

case-2 ;

Fig— 16 case-1 case -2
Detection of actual point

INENER

Case-1 case -2

Detection of actual point in case of ‘Y’ axis is odd point
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Detection of actual points In this case consider two rays as one ray. As 1&2 as one ray, and 3 &
4 as another ray and so on. The two points those are found, one have ‘Y’ coordinate even
another have 'Y’ coordinate is odd. The odd ‘Y’ coordinate point remain middle of the assumed

ray where as the even coordinate point touches the edge. Here we have consider the rays
having projection angle to be

©=tan'2 and® = tan '1/2

There are two cases one is odd ‘Y’ coordinate and another is even ‘Y’ coordinate. Let us
consider the constant of the pixel that depend upon the actual pixel value is ‘k’ considering all
pixels to be uniform and those represent ‘1’ in binary image.

Then following observation is found.
(i} If 'Y’ coordinate of actual point is odd,
The as per figure the ray cover the area of pixel having value ‘1’ is
UVO +OWX=A/2 .
So the ray value is = (A/2}*A *K =K/2

(i)If ‘Y’ coordinate of actual pointis even. Then the area of the pixel having value 1 covered by
the ray Ris (3/4}*A or A.

So the ray value = (3/4)*(A/A)*K = ( 3/4)*k or k. So detection of points can be done as given
below.

(a) When the ray’s value is found to be (K/2) then the point having ‘Y’ coordinate odd is the
actual point.

(b) When the ray’s value is found to be {3/4)*k or A then the point having ‘Y’ coordinate
even is the actual touching point.
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Cases :2 In the figure it is shown that though B and C are the actual touching point
but as per the algorithm A s also detected as the touching point. When we find that
between any two partition points (Xi, Yi) and (X}, Yj),

if ((Xi>Xj )&(Yi<Yj )) or {{Xi<Xj}&(Yi>Yj) then we conclude that ambiguity has
occurred.

Way of detection of actual point :

In this case the all projection lines of all the points those does not satisfy the
condition (Xi<Xj) and (Yi<Yj) are to be verified. If the line numbers of a point is
equal to any other minimum two touching point’s line numbers or neighbor line
numbers with the condition that If Li,Lj ,Lk are the lines of points (Xi,Yi),(X],Yj)

,(Xk,Yk) then(Xi<Xj<Xk ) and(Yi<Yj<Yk) and(Li<Lj<Lk) corresponding to their projection
angles. Then that point is a ambiguous point.

1
111 -
R 4B
111 ]
1011
1011
(1] [
v"'if,', -5
-+
1
1
1
Nk
e
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6.4 Time complexity (worst case)

According to [3] the time complexity for reconstructing canonical hv-convex discrete sets is
O(m3n3.min{m2,n2}) .
(i)Maximum number of lines in case of 6 =tan™2 & 6 =tan1/2 is max(2*m +n,2¥n + m)

(ii)Maximum number of lines in case of © =tan™3 & © =tan"1/3 is max(3*m +n,3*n + m)

Time complexity for finding crossing points of lines between projection (a) © = tan'2 & © =
tan™1/2 and (b) 6= tan?2 & © = tan'1/2 those are integer number is O(m . n).

Time complexity of finding the points those in case of (a) equal to those in case of (b) is
0O(m’n?) .Time complexity for rectification of ambiguity is O(m*n?).

So worst case time complexity is O(m*n?).

m = number of rows of the matrix and n = number of cotlumn of the matrix.

37



Chapter 7

Conclusion and Future Work

In this thesis we have shown that the components of any discrete set can be reconstructed

without ambiguity by choosing suitable projection angles. Thus would be useful in
computerized tomography.

It 15 also shown that the time complexity of reconstruction is less than those known earlier.

Further reduction of X-ray exposed area may also be possible if this method is applied to a
speaial class of discrete sets, which satisfy some geometrical properties.
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