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Problem 1 (6 + 6 = 12). If P(X =0V =y.Z=2z)= f(x,2)g(y, z) then show that .\ and
Y are conditionally independent given Z. State and prove the converse.

Problem 2 (12). Let X and Y™ be independent random variables, each having the geometric
distribution with paramecter p. Find Z(YIX +Y =n), n > 2.

Problem 3 (10). Let X and Y he two random variables such that X > Y with probability
one and E(X) = E(Y). Prove that X =Y with probability one.

Problem 4 (10). Let X.Y and Z be three random variables such that P(X > Y) = () >
Z) =12/3. Prove that P(X > Z) > 1/3.

Problem & (12). Let n be an odd integer and Xy, ..., X, PR ber(p), 0 < p < 1/2. Ll

Y =X+ -+ X, mod 2. Fiud out the distribution of Y.

Problem 6 (6+ 10 = 16). Define the total variation A(X,Y) between X and Y. Suppose X,
is independent with X, and Y] is independent with Ys. Show that

A((X1. Xy). (V1. Y2)) < A(X |, 1) + A(Xa, Ya).
Problem 7 (10). Let X ~ Bin(n.1/2). Prove that P(X > 3n/4) < 4/n.

Problem 8 (16). Suppose m balls are thrown randomly to n boxes. For m = nlogn. show
that with probability 1 — o(1) cvery bin contains O(logn) balls.

Problem 9 (12). A novel is viewed as a finite sequence of English letters a,b, ..., z (ignoring
all other symbols or replacing capital letters by corresponding smaller letters). Suppose a
monkey is typing the letters at vandom indefinitely. What is the probability that the monkev
at some point of time types (continuously) the novel Hamlet?
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(1) Given any finite measure p on R™ define its Fourier transform by

i) = [ emevauy)

Prove that i € C(R™) N L*(R™). Justify whether i € Co(R™) for all finite
measures /. [6]

(2) Give an example of a function f € L*(R) \ L}(R) such that f € L*(R). 6]
(3) If f € L*(R") and g € L2(R™) then prove that

/ FW)a)em=vdy = (f * g)(x).
for almost every r € R™. [6]
(4) Consider the distribution T given by

T(¢) = ¢'(0), &€ C (R).
Find a ¥ € L] (R) such that 7 = T (6]

loc

(5) a) If f € L (R™) is such that for all ¢ € C>(R™),
| f@s@ =0

then prove that f(z) = 0 for almost every z € R™.
b) Using a) or otherwise prove that if felPR),1<p<2and f ¢ LY(R")
then

flz) = . fly)e*™=vay,

for almost every z € R™. [4+4=8]

(6) If a translation invariant linear operator from LP(R™) to LI(R™) is continuous
with 1 < ¢ < p < 0o then prove that T = 0. 8]

1
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(7) Suppose f: R — C is a nonzero, measurable function such that

/ | f(x)|elda < oo.
R
Prove that span{7,f | y € R} is dense in L*(R). (8]

(8) For complex valued measurable functions f on R? consider the strong maximal

operator .
1
M f(x,y) = SUP(x,y)eRl—R—‘ /Rf(’uw)dud'u,

where R varies over rectangles with sides parallel to axes and |R| is the area of
R. Assuming measurability of M, prove that it is not weak type (1,1) 8]

(9) Fix R > 0,n € N, « € (0,n) and consider the function g(x) = |z 7" *xB0,R)(T),
for z # 0. Prove that there does not exist any positive real number C such that

| If*gll= < Clifl
for all f € L}(R™). 8]
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(1) Prove that f(z) = 22y, (), z € R, is the Fourier transform of an L? function
but not of an L' function. 6]

(2) Can the Hardy-Littlewood maximal operator M satisfy an inequality of the form
M fllg < Cllfllp, for all f € S(R™) and some p # 7 Justify your answer. 6]
(3) If f € L*(R) and g € L*(R) then prove that f x g € Cy(R). 8]

(4) If f € LY(R™) N L*(R") then using the Fourier inversion prove that

f@Ydr = [ f(y)dy.
R® R

8]

(5) If p is a finite Borel measure on R™ then prove that the operator T}, given by

Tuf(z) = . f(x = y)du(y)

is a continuous, translation invariant, linear operator from L!(R") to L'(R™).
Can this operator be extended as a bounded lincar operator from LP(R™) to
LP(R™), 1 < p < 00? Justify your answer. 8]

(6) Given any f € LP(R"), 1 < p < oo, prove that the map y > 7T, f is continuous
from R™ to LP(R™). Justify whether the same is true for p = co. 8]

(7) For a nonnegative ¢ € LY(R") with |||, = 1 and ¢ positive define b (z) =
e (f) Prove that f x ¢. — f in LP(R™), as ¢ — 0, for all f € LP(R")

1 < p < co. Discuss the case p = o0. 8]
[P.T.0.]

1
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(8) Suppose M is a closed translation invariant, linear subspace of LA(R) and

M={p|deM}
If P: L2(R) — M is the orthogonal projection then prove that for all f € L*(R)
and g € L*(R), [(z)Pg(x) = g(x) P f(z) for almost every x € R. (8]

(9) Suppose f: R — C\ {0} is a mecasurable function such that |f(z)] < e~ for all
r € R. If g € LY(R) is such that f x g = 0 then prove that g(z) = 0 for almost
every = € R. 8]

(10) (a) If ¢ € C(R) is supported in [—r,7] and if
) — ’—itzd .
(0. 1) 1) = [ e

then prove that f is an entire function and for every N € N there exists a

positive real number Cy such that for all z€ C
(0. 2) /()] < Cn(1+ |2])~Nertn,

where Imz denotes the imaginary part of z. (8]
(b) Given any entire function f satisfying ( 0. 2 ) prove that there exists a

unique ¢ € C(R) supported in [—r,7] such that ( 0. 1) holds. 8]

(11) (a) If f € L*(R) then prove that the series
F(z) = Zf(x+2n7r),x €eR
ne

defines an integrable function on T.
(b) Express the Fourier coefficients of F' in terms of f .
(c) If for all large ||, |f(z)| < (1 4 z2), then prove that

> fenm) =3 f(n).

neZ nez
[6+4+6]
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Answer all questions.
State clearly any result that you use in your answer.

(1) Show that if f: C — C is an analytic function then f (viewed as a smooth map
from R? to R?) is orientation preserving at all z € C where f/(2) # 0. 5

(2) (2) Let M be a smooth manifold and Z a compact oriented n-dimensional
submanifold of M without boundary. Define a map ¢z : Hj z(M) — R by
¢z([w]) = [, w, where [w] denotes the de-Rham cohomology class of an n-form
w on M. Prove that ¢z is well-defined and is a linear map. 5

(b) Suppose that Z; and Z; are two n-dimensional submanifolds of M which are
cobordant. Then show that ¢z, = ¢z,. 5

(3) (a) Consider the 1-manifold C defined by the equation 222 +3y? = 1 (oriented as
the boundary of the enclosed region). Determine the value of the integral fC w,

where y .
— 2
w=-— 7 dz + R dy on R\ (0,0).
Prove that w is closed but not exact. 5+5

(b) Let C; denote the circle (z — 2)2 + y* = 1 oriented as the boundary of
the enclosed disc. What is the value of the integral [ o w? Justify your answer. 5

(4) Let M be the manifold of all n x n real orthogonal matrices.
(a) What is the tangent space of M at the identity matrix I as a subset of the
space of all real n X n matrices? 2

(b) Let X € Ty M. Define a vector field X : M — TM by
X(g) = dlg(X) forallg € M,

where £, : M — M is the left multiplication by g on M.
Find the integral curve 7y of X satisfying v(0) = I. Hence obtain the flow of
X. 4+4

P.T.O



(5) Suppose that A is an orientable manifold. Prove that the product orientation

-

on M x M is independent of the choice of the orientation on M. D
(6) (a) Suppose we orient the 2-sphere S? as the boundary of the unit ball D3 in R3,
where D® has the standard orientation. Define a smooth non-vanishing 2-form

Q) on S? such that (v, v') > 0 for every positively oriented basis v, v of T, 82 5

(b) Consider the antipodal map a : S? — $2 which takes a point = to —z. Prove
that a is orientation reversing. 5

(c) Can a: S* — S? be homotopic to the identity map? justify your answer. 5

(7) Determine the de Rham cohomology groups of an annulus. 10
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Note the following :
(i) All the manifolds considered here are smooth (C*) manifolds and vector
fields are smooth vector fields.

(i) x(M) denotes the set of smooth vector fields on M.
(i) For p > 1, QP(M) denotes the space of smooth p-forms on M. QM) =
Gps0 (M) (with Q°(M) = C=(M )) denotes the algebra of smooth forms on
M.

(1) Let M be the upper half-plane in R% ie {(z,y) : y > 0}, equipped

with the Riemannian metric < .,. > defined by:

8 8

9 kel
oz’ Ox

78y

L

< 5,

—c B = 9 8 -
S=< 25 >= 5 < sy o= O

We can consider M as a subset of the complex plane by identifying (z,y) € M
with z = = + 1.
Let G denote the Lie group SL(2, R). Define a left action L, of G on M by

setting
az+b
L =
o(2) cz+d’
where
a b
g = ;
c d

a,b,c,d € R with ad — bc = 1.
Verify the following:



(a) Im(L,(2)) > 0 whenever Im(z) > 0; thus Ly indeed defines a map from M
to M.

(b) L, defines a smooth left action of the Lie group G on the manifold M.

(c) For every p € M, dL,l, is an isometry with respect to the Riemannian
structure of M.

[3+3+6=12]

(2) Let M be an n dimensional manifold and F be a k dimensional (k < n)

smooth distribution. For any p > 1, define the following subspace Z? of the
algebra Q(M) :

7P ={w e PM) : w(Xy,...,X,) = 0for all smooth vector fields Xy, ..., X, € F}.

For p = 0, set Z° = {f € Q%(M) : Xf = 0V smooth vector field X € F};
T = @p>0IP C QM).

Prove the following:

(a) T is an ideal of Q(M), that is, w A n € L4, Whenever w € ZP, n € QI(M).
(b) F is integrable if and only if d(ZP) C ZP*! V p.

Hint : use the intrinsic definition of the exterior derivative d.

[5-+10=15]

(3) Let M be a smooth manifold with a Riemannian structure < -,- > and
f be a smooth real-valued function such that the vecor field grad(f) satisfies
< grad(f), grad(f) >,= 1 for all p € M, where grad(f) is defined by

< grad(f), X >p= X(@)(f)

for any smooth (possibly locally defined) vector field X on M. Prove that the
integral curves of grad(f) are geodesics with respect to the given Riemannian

structure. [15]



(4) Let M be a manifold and V, V' be two affine connections on M. Define a
map A : x(M) x x(M) = x(M) (where x(M) denotes the vector space of all
smooth vector fields on M) by

AX,Y) = Vx(Y) = Vi (V).

Prove that:

(i) A(-,-) is C*°(M)-linear in both the arguments.

(ii) The following are equivalent:

(a) A(X,Y) = —A(Y, X) for all X,Y € x(M);

(b) V and V' have the the same set of geodesics, that is, a smooth curve
v(t)(a < t < b) is a geodesic for V if and only if it is & geodesic for V'.
[4+9=13]
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Throughout the paper, k will denote a field and R a commutative ring with unity.

GROUP A
Answer ANY FOUR

1. Let A be a finitely generated k-algebra. Let G be a finite group of automorphisms of
Aand R= A% = {z € A | o(z) = z Vo € G}, the subring of invariants. Prove that

(i) A is integral over R.

(ii) R is a finitely generated k-algebra. [5+9=14]
2. (i) Let M be an R-module and f : A{ — M an R-linear map. Show that if M is

Artinian and f is injective, then f is an isomorphism.

(il) Let A = Q[X1, Xz, -+, Xy) and g, f1, f2, -, fn € A. Suppose that g(p) = 0

whenever fi(p) = fa(p) = -+ = fu(p) = 0 for any point p € C". Prove that there
exist g1,..., 9, € A such that ¢™ = fig1 + fago + -+ + frngn for some integer m > 0.
[6+8=14]

3. (i) Let R be a subring of an integral domain B such that B is a finitely generated R-
algebra. Prove that there exist s(# 0) € Rand y1,...,y, € B, which are algebraically
independent over R such that B; is integral over Ry[y1, ..., Yal-

(ii) Show that the ring R = C[X,Y]/(Y? — X2 — X3) is a Noetherian domain whose
normalisation is of the form C[t], where ¢ ¢ R and display an explicit monic polyno-
mial f(X) € R[X] of which ¢ is a root. [7+7=14]

4. Let R=k[X,Y,Z]/(XY — Z?%). Let z,y, z denote the images in R of X,Y, Z respec-
tively. Let P = (z,2)R and m = (z,y, 2).
(1) Show that P is a prime ideal of R.
(i) Prove that P? = (x) N m? is an irredundant primary decomposition of P2.
[4+10=14]
5. Let R be a ring. Suppose that Rp is an integral domain for every prime ideal P of
R. Prove that R is isomorphic to a finite product of integral domains. [14]
6. Give an example of the following with brief justification.

(i) A finitely generated ideal J of a non-Noetherian ring R such that R/J is a Noethe-
rian ring.

(ii) An R-module M such that Assg(M) is empty. [74+7=14]

1



GROUP B
Answer ANY FIVE

State whether the following statemnents are TRUE or FALSE with brief justification.
(i) Any finitely generated flat module over a Noetherian ring R is a projective module.
(ii) If R[X] is a normal ring for an indeterminate X over R, then R is a normal ring.

(iii) For any primary ideal @ of a ring A and a ring homomorphism 7 : R — A, 77'(Q)
is a primary ideal of R.

(iv) For an R module M and a multiplicatively closed subset S of R,
S_lAnHR(AJ) = Anns—lRS_lA/f.

(v) Any infinite integral domain with finitely many units has infinitely many maximal
ideals.

(vi) If Ly and L are algebraic extensions of a field & then L, ® Ly is an integral domain.

(vii) The ring A = {Z3|£(X,Y), g(X,Y) € RIX,Y];9(0,0) # 0;g(1,1) # 0} is Noethe-

rian.

(viii) If A is a finite integral extension of an integral domain R, then A is faithfully flat
over R. [5 x 4 = 20]
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1.

Let B = C[X,Y, Z]/(XY — Z?%) and z the image of X in B.

(i) Examinc whether z is prime in B.

(ii) Show that B = C[U?, UV, V?).

(iii) Examine whether B is a UFD. [44+9+4]

. Show that a unique factorisation domain is a normal ring. [10]

- Let R and A be integral domains such that R C A and A is integral over R.

(i) Prove that an element a € R is a unit in R if and only if it is a unit in A.
(ii) Deduce that R is a field if and only if A is a field. [10+5]

. Let V be an affine algebraic set in C™ such that C[V]* = C*. Prove that any / €
g L7l

C[V]\ C induces a surjective polynomial function on V. Give an example of an affine
algebraic set V' in C? and a non-constant polynomial function f:V — C which is
not surjective, [9+3]

Prove that if a finitely generated k-algebra A is a field then A is algebraic over k. [14]

Let B = k[X,Y]/(X? XY) and z,y denote the image of the X,Y in R. Show that
y™ is (z,y) primary in R for every n > 1. [10]

Prove that every ideal of a Noetherian ring R contains a product of prime ideals. [12]

Let I be a ring, M a module, and I an ideal. Suppose [ is maximal in the set of
annihilators of nonzero elements = of M. Prove that I € Assp(M). [10]
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¢ You may use any results proved in class. Any other results (including those in homework problem sets) require

proof.

1. Prove that H*(RP®;Zoy) = Zak[o, 8)/(2¢, 28, 0% — kB) for |a] = 1, |B] = 2. 10

2. Prove that the homotopy groups of CP™ x §?™*! and CP™ x §***! are isomorphic but the spaces are not
homotopy equivalent. 10

3. Let M, N be closed, oriented manifolds of dimension n. Suppose f : M — N such that f,([M]) # 0. Prove
that f*: H¥(N; Q) — H*(M;Q) is injective for all k. 10

4. Let P,k (for n > k) be the space RP®~!/RP*1,

- a) Prove that P,  is never weakly equivalent to Po_oxV S 2y Snlfork>2andn>k+2. 5

- b) Prove that P74 ~ S% v SRP?. 5

5. Let M be a closed n-manifold with non-trivial torsion in H, _s(M). Prove that w1 (M) is non-trivial. 10
6. Let M be a closed n-manifold. .

a) Prove that for every ¢ < n, there is a class v; € H'(M;Z/2) such that Sq*(a) = v; Ua for all a €

H™ (M Z)2). 4

b) Prove that v; = 0if i > 2. 2

c¢) Compute all the v; for M = RPS. 4

Some useful formulas

{Z[y /2y, v, |yl = 2, if nis even

H*(RP™Z/2) = Z/2]z]/(x™*?), |2| = 1, H*(RP™ Z
( /2) /21/( ) Il ( \Zy 21/ 2y, y™ ™, 2y, 2 2%) jzj = n,|y| = 2 if n is odd

H*(RP%;Z/2) = Z2/2[z], || =1, H*(RP*;Z) = Z[y]/(2y), ly| =2
H*(CP™Z) = Z[z)/(z™}), |z| = 2, H*(CP™®;Z) = Zz], |z| = 2.

H*(Lan41 (k) Z) = Zly, 2}/ (ky, 4", 2y, 2%) |2l = 20+ 1, |y| = 2,

Z/klz,y)/(y" 1, 2?) x| = 1,|y| = 2,if k is odd

H*(Lon41(k); Z/k) = {Z/k[ }/(yn+l’w2 _ gy) x| =1,|y| = 2, ifkiseven



Zik[x, v/ (2®) o] = 1, |yl = 2,if k is odd

H* (Lo (K}, Z) = Z{y) /(hy) Iy = 2. H' (Lo (k): Z/K) = {Z/k[:r.zﬂ/(l‘? = 4y) lal = LIyl = 2. il K is cven

Some useful results
Universal coefficient theorem for homology : For any abelian group A, we have the following short exact
sequence which splits (but not naturally)

0 Hy(X)® A = He(X; A) = Tor(Hy_1(X), A) - 0

Universal coefficient theorem for cohomology : For any abelian group A, we have the following short
exact sequence which splits (but not naturally)

0 = Ext(Hy_(X), A) — H¥(X; A) = Hom(H(X), A) — 0
Long exact sequence for cohomology : For Y € X an inclusion, there is a long exact sequence

HMX,Y) = HYX) = HYY) S H (X Y) = -

Kiinneth-formula : Suppose H*(X) is torsion-free. Then for any Y, H*(X x Y)= H(X)® H (V) with
the isomorphism given by external cup product.
Borsuk=Ulam theorem : There is no map g : S — S"~! such that g(—z) = —g(x).

Cellular approximation : A map between CW complexes is homotopic to a cellular map.
Long exact sequence for homotopy groups : For an inclusion A ¢ B ¢ X, there is a long cxact sequence

(B, A) = (X, A) = (X, B) = w1 (B, A) — -

A fibre bundle is a Serre fibration.
Fibrations induce long exact sequences : If F — E — X is a Serre fibration, onc obtains a long exact sequence

"-WkF-%ﬂkE—)ﬂkX—)ﬂ'k_lF—-)”'

Blakers Massey Theorem : Suppose X = AUB (of subcomplexes) with C = ANB. If (A, C) is m-connected
and (B, C) is n-connected, then (4,C) — (X, B) is an (m + n)-equivalence.

Freudenthal suspension theorem : Suppose X is (n — 1)-connected. Then, the map (X)) = me (2X)
is isomorphism for & < 2n — 2 and surjective for k = 2n — 1.

Hurewicz Theorem : Suppose X is (n— 1)-connected for n > 2. Then p : 1, (X) — H,(z) is an isomorphism.
Cofibration sequence : A > X 2 XUCA 2 ZSA 3 LX -5 ---.

Fibration sequence : ---QF - QX 5 F 5 E - X.

Steenrod squares: Sg¢' are natural, additive operations Sq' : H¥(X : Z/2) — H¥*(X;Z/2). These satisfy
1) S¢° =id, S¢'(z) = 0if i > |z, Sq¢!*!(z) = 2.

2) Sq¢* commutes with suspension.

3) S¢*(zy) = 32,,,-, S¢'(@)S¢ (v).

4) Adem relations : If a < 2b, S¢®Sqb = Z[%] (P 1) Sqetb=cgqe.

c=0\ a—2c
Thom isomorphism : If € is a n-dimensional oriented vector bundle over M, ﬁ*+"(Th(§)) = H*(M). The
isomorphism is given by cup product with the Thom class.
Poincaré duality : If M is a closed, oriented n-manifold, Hi(M) = H"*(M) with the isomorphism given
by cap product with the orientation class [M].
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1. Let i : 8% — CP®/CP? be the inclusion of the 5-skeleton. Prove that there is no retraction for 4. 10
2. Let n: 8% — 52 be the Hopf 1aap, that is, the attaching map for CP2. Consider the map 7 expressed as the composite
783 5 S3vsE Y g2y 82

where the map S® — 53V S$3 is the map obtained by pinching the equatorial S? to a point. Let P be the mapping
cone of 7.
a) Let r; : 2V 52 — S? be the map which quotients out the second factor. Prove that r, o 7 is homotopic to n. Using

this produce a map P — CP? which induces the identity map on H*. 6
b) By constructing maps similar to the one in a), compute the ring structurc on H*{P). 8
c)Is P~ 5% x 827 6

3. Let n be odd. Prove that for any map RP*t! — RP™ the composite RP™ — RP™*! — RP™ is null-homotopic. 10
4. a) Prove that H%(K(Z,2);Z/2) = Z/2. Use the generator to obtain a map K(Z,2) — K(Z/2,2). Prove that the

homotopy fibre of the map is homotopy equivalent to K(Z, 2). 4
b) In the above fibration (K (Z, 2) g, K(Z,2) — K(Z/2,2)), prove that we get an induced map ¢ : Cone(f) — K(Z/2,2).
Prove that g. is surjective on homotopy groups. 4
c) Prove that ¢ is a 4-equivalence. Use this to deduce that H4(K(Z/2,2) = Z/2. 5
.d) Compute H"+*2(K(Z/2,n);Z/2) for all n. 5

e) Compute the maps
Sq' : HMY(K(Z/2,n)) —» H" 3(K(Z/2,n))

and

S¢? : HY(K(Z/2,n)) — H™ (K (Z/2,n))
for all n. 5
f) Deduce the Adem relation Sq!Sq! = 0 from the computations in (b). 2

5. Let M be an oriented manifold of dimension n with fundamental class [M]. Let f : S — M be a continuous map such
that f.(tn) = ¢[M] where ¢, is a fundamental class of S™.

a) Show that f, : Hi(S™;Z/p) — H(M;Z/p) is an isomorphism if p does not divide q. 8
b) Show that multiplication by ¢ is 0 in H;(M;Z) for 0 < i < n. 7
6. Let M be a simply connected 7-manifold. Prove that the torsion subgroup of Ha(M) is isomorphic to the torsion
subgroup of Hy(M). 10
7. Let M be a n-manifold with non-trivial torsion in Hp-1(M). Prove that m; (M) is non-trivial. 10

Some useful formulas

Z{y}/(zy:ynﬁ)’ ly| = 2, if nis even

H*(RP™Z/2) = Z/2[z]/(z"*"), |a| =1, H*(RP™Z) =
( 2]/, el RESL) =\ 2y 2}/ 2,y 23, 22) |2] = m, Jy] = 2 if m s 0dd



I (RP=,7/2) = Z)2}x], |x| =1, I"(RP™:Z) = Zlyl/(2y), lul =2
H*(CP™Z) = Z[2)/ (™), lz| =2, H*(CP™;Z) = Z[a], |2} = 2.

H* (Loni1(k); Z) = Zly, 2}/ (ky,y™ ™, 2y, 2%) |2l = 2n + 1, Jy| = 2,

Z/k(z,y)/(y"* 1, 2?) |z| = 1, ]yl = 2,if k is odd

H*(Loni1(k); Z/k) =
(Lana (k) 2/K) {Z/k[a:,y]/,"“,aﬂ—gy) lz| =1, |y} = 2, if kis cven

Z/klz,y)/(2?) |z} = 1, |y| = 2,if k is odd

H*(Leo(k); Z) = Zly)/ (ky) lyl =2, H*(Loo(k); Z/k) = {Z/k[x,y}/(zz _ %y) lzl = 1, |yl = 2, ifkis even

Some useful results
Universal coefficient theorem for homology : For any abelian group A, we have the following short exact sequence
which splits (but not naturally)

0= He(X)® A — Hy(X; A) = Tor(Hg_1(X), A) = 0

Universal coefficient theorem for cohomology : For any abelian group A, we have the following short exact
sequence which splits (but not naturally)

0 = Ezt(Hy_1(X),A) = H*(X; A) » Hom(Hg(X),A) = 0
Long exact sequence for cohomology : For Y C X an inclusion, there is a long exact sequence

CHMX,Y) > HMX) - H(Y) S H™ (X, Y) > -

Kiinneth-formula : Suppose H*(X) is torsion-free. Then for any Y, H*(X xY) = H*(X)® H*(Y') with the isomor-
phism given by external cup product.
Borsuk=Ulam theorem : There is no map g : S™ — S~ ! such that g(—z) = —g(z).

Cellular approximation : A map between CW complexes is homotopic to a cellular map.
Long exact sequence for homotopy groups : For an inclusion A C B C X, there is a long exact sequence

(B, A) = (X, A) = mn (X, B) = w1 (B, A) —

A fibre bundle is a Serre fibration.
Fibrations induce long exact sequences : If F — E — X is a Serre fibration, one obtains a long exact sequence

'-7TkF—>ﬂ'kE—)7TkX =S M F =

Blakers Massey Theorem : Suppose X = AU B (of subcomplexes) with C = AN B. If (A, C) is m-connected and
(B, C) is n-connected, then (4,C) — (X, B) is an (m + n)-equivalence.

Freudenthal suspension theorem : Suppose X is (n — 1)-connected. Then, the map mp(X) — w1 (EX) is
isomorphism for k < 2n — 2 and surjective for k = 2n — 1.

Hurewicz Theorem : Suppose X is (n — 1)-connected for n > 2. Then p: 7,(X) — Hy(x) is an isomorphism.
Cofibration sequence : A - X - XUCA 3 EA - ZX = ---.

Fibration sequence : ---QF - QX - F - E - X.

Steenrod squares: Sq' are natural, additive operations Sg* : H¥(X : Z/2) — H¥*%(X;Z/2). These satisfy

1) S¢° =id, Sqi(x) = 0if i > |z|, Sql*l(z) = 22

2) Sq* commutes with suspension.

3) S¢*(2y) = 21 s S () ST (y).

4) Adem relations : If a < 2b, Sq®Sq® = [ ] o (07501 SgatbeSge.

a—2c
Thom isomorphism : If £ is a n-dimensional oriented vector bundle over M, H*+*(Th(€£)) = H*(M). The isomor-
phism is given by cup product with the Thom class.
Poincaré duality : If M is a closed, oriented n-manifold, Hy(M) = H" *(M) with the isomorphism given by cap
product with the orientation class [M].



NUMBER THEORY
FINAL EXAMINATION
M.MATH II YR
DURATION 3 HOURS

This is a closed-book and closed-note exam. Maximum marks: 60

1. (a) Define primitive root.

(b) Prove that 3 is a primitive root modulo p if p is a prime of the form 2" + 1 for
some n > 1.

(c) Prove that the sum of primitive roots modulo a prime p is congruent to p(p—1)
modulo p. (246-+5 marks)

2. (a) State Liouville’s theorem about approximation of algebraic numbers.
(b) Let £ € R. Assume there exists a sequence (Tn,Yn) € Z X N, n =1,2,3,...

such that z,,/y, # £ for infinitely many 7, and & A ’#'v&r“.' Ty
|z, — €ya] = 0 as n b .

Prove that £ € R — Q.

(c) Let
~1 1 1 1
€= +ﬁ+é_!+§+“”

Using (b) show that e is irrational. (34446 marks)

3. A positive integer is called a triangular number if it is of the form n(n + 1)/2 for
some n € N. A positive integer is called a square number if it is of the form m2 for

some m € N,
(a) Show that

V2=1[1;2,2,2,...].
(b) Suppose N is both triangular and a square, i.e.
_ n(n +1) ~
2
for some n,m € N. Show that (2n +1,2m) is a solution of the equation

2 — 202 =1.

N

(c) Use continued fraction to find all such NV.

(44-2+7 marks)
1



2 NUMBER THEORY

4. Let x be a quadratic character modulo ¢ > 1. Let

S = an(n)

(a) If (a,q) = 1, prove that
ax(a)S = S mod q.
(b) Write ¢ = 27 with 7 odd. Show that there exists a € Z with (a,q) = 1 such

that a = 3 mod 27 and a = 2 mod r.
(c) Using (a) and (b) show that
125 = 0 mod g.
(44346 marks)
5. Let x = (z,,) and y = (yn) be two sequences of positive real numbers.
(a) Suppose x is uniformly distributed modulo 1. Suppose « is a positive real

number. Is ax = (az,) necessarily uniformly distributed? « 1
(b) Suppose x is uniformly distributed modulo 1 and the sequence ({yn}) is con-

vergent. Show that x +y 1s uniformly distributed modulo 1. N oo (,,\M,\Q/rmn

(c) Suppose ({xn}) converges as n — o0. Show that x is not uniformly distributed
modulo 1. (3+6+5 marks)

/

«
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