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1. INTRODUCTION

Some years ago, the author developed some tests for examining
hypotheses such as ‘“‘the coefficients of some specified characters
in the linear discriminant function are zero” (Rao, 1946; 1948;
1949) and ““the coefficients of two given characters are in a speci-
fied ratio”” (Rao, 1952). These tests were meant to be generali-
zations of an earlier test by Fisher (1940) for a proposed (assigned)
discriminant function (i.e.,, when the proportions of all the coeffi-
cients are specified). During the last few years, the author has
received a number of queries regarding the theory and appli- -
cation of these tests. The present paper is an attempt to answer
these queries and to propose tests for other hypotheses of interest
in the use of discriminant functions.

It must be mentioned that the individual coefficients in the
linear discriminant function are not definite population para-
meters, as only the ratios of the coefficients are unique. For
this reason estimates of the individual coefficients and their
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standard errors are not meaningful. We can only draw inferences
on the ratios of the coefficients.

All the tests considered in the paper are special cases of a test
for examining the sufficiency of a given subset out of a larger set
of variables, for purposes of discrimination between two popu-
lations. The hypothesis of sufficiency is explicitly defined as
follows. Let (X,,..., Xp) be a p dimensional random variable.
Then the subset (X, ..., X,) is said to be sufficient for discrimi-
nation between two populations if the conditional distributions
of (X, ..., Xp) given (X;, ..., X,) are the same for both the popu-
lations. We may also describe the hypothesis of sufficiency of
(Xy ooy Xg) as the absence of additional information contained
in (X, ..., Xp) when the variables (X, ..., X;) are already
available. We consider this general problem in Section 2.

The problem of inference on the coefficients of a genetic selec-
tion index as developed by Smith (1936) needs an entirely dif-
ferent approach. A test is described for examining the adequacy
of a straight selection funciion or any proposed selection function.
Other questions such as the adequacy of a subset of the pheno-
typic observations for assessing some well defined genetic worth
of an individual need further study.

2. NOTATIONS AND PRELIMINARY RESULTS

Let X' = (X,,...,X;) be a p dimensional random variable
and consider the partition X’ = (X; : X;) where X, consists of
the first ¢ components of X and X,, the rest of the components of
X. Assuming the first two moments of X to exist, we can write
the corresponding partitions of E(X), the expectation of X, and
D(X), the dispersion matrix of X, as

(1) BX') = p' = (B(X]) : BX;)),

@ DX)=2 = ( Zy zn) )
Sy Zy
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Let H, and H, be two simple hypotheses specifying the means
and dispersion matrices as

(3) E(X'|Hy) = py = (1} i), D(X) =EZ,
(4) EX'|Hp) = pr = (g } f35), D(X) = Z.

If 8 = u;—p, = (8, : 8;), then the linear discriminant function
between H; and H, based on X is defined as 8 Z-1X, while that
based on X, alone is &, T;X,. We shall represent the linear
discriminant function § Z-1X by A’X = A, X,+...+21,X, and
consider some hypotheses on A.

Note that the Mahalanobis distance between H; and H, based
on X is A2 = §'Z-18 while that based on X, is A} = §;Z;18§,.

With the above notations, the following statements are equi-
valent,.

(a) 8§,—2,Z:i 8,=0, i.e, therandom variable X,—Z,Z;'X;
obtained by subtracting from X, its regression on X, has the
same expected value for both the populations.

(b) The coefficients A, ,;,..., Ap of the components X, ..., Xp,
in the linear discriminant function based on X are all zero.

(¢) AZ= AZ i.e., there is no additional distance contributed
by the variables Xg,4, ..., Xp.

(d) Every linear function of X uncorrelated with X; has the
same expected value for both the populations.

(6) If X~ 72, (i.e., distributed as p-variate normal), then
the conditional distribution of X given X is the same for both the
populations, which is the same as saying that X, is sufficient for
discrimination between the populations.

The compounding vector A of X in the linear discrimination
function $Z1X is
211 212 >

(5) (M Ag) = (81 8y). <;-_21 -
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where A; = (A4, ..., Ap) is the vector of coefficients of the com-

ponents of X,. From (5) A, = §;8124-8,2% and by the statement
(b), A, = 0. By virtue of the algebraic equivalence
(6) BER4EE — 0 =3 5,5, Z6, = 0,
this proves the equivalence of statements (a) and (b).
It is easy to prove the identity
A =625
=8, B8, +(8,— 25 Z11'8,) (Bpo— iy i Z1a) U8y — Ty 21’8y
(M)
If A} = A% = §;Z]'8,, the second term in (7), which is a positive

definite quadratic form is zero. Hence (8,—Z, 25'8;) =10
and vice-versa, i.e., (a) & (c).

Let L X,+L.X, be a linear function of X. Then the state-
ment (d) implies L;Z;;,+ L;Z,, =0, i.e., L;=—Z['Z;,L,. Consider
L;8,+L;8, = Ly(—E,, 55718, +8,)= 0 for all L, &= 8,—Z5,Z;%;
=0, ie., (d) & (a).

To prove (¢) & (a) we need only consider the conditional
distribution of X, given X,, which is (p—¢) variate normal with

8)  B(X,|X, H)—E(X,|X,, H,)=38-Z,Z5 8§

(9) D(X,;|X,, H) = D(X, | X;, Hy) = Zpy—EpnE5'E1e-

Sufficiency of X; is equivalent to 8,—%,,Z;'6, = 0, which proves
the desired result. .

3. 'TEST FOR SUFFICIENCY OF A SUBSET

Weshall develop a test for the hypothesis that ‘X, is sufficient”
or “X, has no additional information in the presence of X,” on

the basis of samples of sizes n, and n, from the two populations.
Let

(10) d=(d,: d;)
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represent the difference in sample means of X, and X, and

Sll S12
(11) S =
Su Sa

the pooled sum of products (S. P. matrix) within samples on
(ny+n,—2) degrees of freedom (d.f.).

Let us observe that under the assumption of normality
(12) EX;|X,, H)=u+TX,,
E(X,|X,, Hy) =a,+TX,,

where T' represents the maitrix of regression coefficients. If the
dispersion matrix of X is the same under H, and H,, then
DX, |X,, H)) = D(X,|X,, H;). Hence the hypothesis under
test is a, = a,.

The formulation (12) may be recognized as the multivariate
extension of the Gauss-Markoff set up, with (p—k) variables (the
components of X;). So, no new problem arises in the considera-
tion of test criteria. One obtains, to begin with, the dispersion
matrices due to deviation from hypothesis and due to error. We
also notice that the set up (12) involves two sets of parameters,
with the null hypothesis concerning only one of the sets. In
such case the computations are simple, involving what is known
as covariance adjustment (see the discussion on page 119 in Rao
(1952) in the unvariate case and on pages 468-69 in Rao (1965)
in the multivariate case).

The S.P. matrix within populations jointly for X;, X, is

(13) w (Su S“:) s
T \Su S/

on (n,+n,—2) d.f. and that between populations is

” o m (b dd,
ntng \dgd, dyd;
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on 1 d.f.,, giving the total S.P. matrix

T—W+B = Tu T::)
(15) ~w+B=(p )

We now compute the residual S.P. matrices for X, making
covariance adjustment for X;, obtaining

(16) Szz_Sm_SIIIS]_2 Wit!h d-f. = n1+n.—2“-q
for within, and
(17) Tzz_ T21 Ti‘llle With d.f. = nl“‘l'n’— l—q

for the total.

Now applying the Wilks A crifterion which is the likelihood ratio
test applied on the conditional distributions of X, given X; wo
have

(18) ISZZ S21S1£.S12{ lSl
IT22 TBlTll TlSl |S11I ITII'
_ 18| IS4l
] [Tl

It is well known that in the special case when the matrix B, has
1 d.f., the statistic

(%) Zb“li;72:—sfo._m‘(zx”l)

has an F distribution on (p—gq) and (n,+n,—p—1) d.f.
Defining
(20) D= (n,tn,—2)d’Sd, D2 = (n4n—2)d;Sildy

which are estimates of A2 and A2 and ¢ = n;”:/("x+'!:)("1+”!/2)
we can write the F statistic (19) as

(21) mtng—p—1  o(D3—Dj)
p—q T 14D}
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the form in which the test was originally expressed (Rao, 1949;
1952).

Optimum properties of the test (21) have been recently in-
vostigated by Giri (1964).

4. INFERENCE ON DISCRIMINANT FUNCTION
COEFFICIENTS

Tho test criterion (21) was developed for testing the hypothesis
that the coefficients of specified variables in the linear discriminant
function are zero. We can apply the same test by a suitable
transformation of the variables in drawing inferences of various
types on the coefficients of a linear discriminant function.

4.1. Test for a proposed discriminant function (Fisher,
1940)

Let A'X be the assigned discriminant funection. Then the
null hypotheses under test can be written as

(22) A'Xoc8E-1X— §ocZA, (A given).

We make the transformation (assuming A, 7= O without loss of
generality)

(23) Y,=aX, V,=X, ..., Yp =X,

Then the null hypothesis says that in the discriminant based on
Y,. ..., Yp, the coefficients of Y, ..., Y are zero. Hence the test
(21) applies with ¢ = 1. We need the values of D} and D based
on the Y values. Since D? ig invariant under a linear transfor-
mation

(24) DYY,, ..., Yp) = D¥X,, ..., Xp) = (ny+my—2)d'S-1d
(25) D3(Y,) = (my+ny—2)(A'd)?/A’SA

so that D} and D} are expressed in terms of the statistics ¢ and
S defined in (10) and (11) in terms of the original variables (X;,

Kt
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wes Xp). Substituting the values (24), (25) for D} and D} we
obtain the statistic

ny+ny—p—1 cDi—cD}

(26) p—1 1< D?

which is an F statistic on (p—1) and (n,+n,—p—1) d.f.

If we are using a probability level of significance, the test
(26) can be written as

NP _ c(m+n,—p—1)Di—(p—1)F,

(27) NS 7 e(p—1)F A c(nyFn—p—1)

where F, is the upper & probability value of F on (p—1) and
(ny+ny—p—1) df. The inequality (27) provides a cone with
vertex at the origin, within which the direction vector A of the
coefficients of the true discriminant function will lie with pro-
bability 1—a.

4.2. Test for a given ratio of the coefficients of
two variables

Let the ratio of the coefficients of X, and X, be p, i.e. Aj/A
= p. For a given p, the discriminant function can be written

(28) X1+ Xp)+ 25X+ +2pXp

where 2,, ..., Ap are unknown. Equating (28) to §Z-1X the null
hypothesis can be written as

(29) Soc X (P)
b

where p’ = (p, 1) and the vector b is unknown.

Let us make the transformation

(30) ¥, =pX\4X, Vo= Xg..,Vpy=Xp ¥p=2X,
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Then the null hypothesis (29) says that in the discriminant func-
tion based on Y, ..., ¥, the coefficient of Y, is zero. Hence
the test (21) applies with ¢ =p—1. We need the values of
DXY,, ..., Yp)=DXX,, ..., Xp)and D} (Y}, ..., ¥p_). Tocom-
pute D2_,, consider the partition of the original variable X’ =
(X; : X;) where X; = (X, X,) and X; = (X, ..., Xp) with the
corresponding partition

(31) d' = (d; : dp)

of the sample mean differences and the partition

(32) S (Sll S12)
N S2l 822

of the within pooled dispersion matrix. Then
(33) (ny+ny-—2) D2 (Y, ..., Yp_y)

[p'(d,—S12S52 d,) 12
0'(S—S 12823 Sa1)p

= d3Szd,+

and the variance ratio test on 1 and (n,-}n,—p—1) d.f for an
assigned p is

ny+ng—p—1 oDI—D3 )
1 1+c¢DZ_,

(34)

where (n,4+n,—2)~! D3 = d’S-'d and D}, is as given in (33).
To obtain a confidence interval for p, we consider the equation

n+nyg—p—1 cDi—cDi,
I T+cD_,

(35) ~ 7,

which is quadratic in p. The confidence bounds for p are obtained
by determining the roots of the equation (35).
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4.3. Test for assigned ratios of the coefficients of several
variables

Let p,, ..., p; be the assigned ratios of the coefficients of the
first k variables X, ..., X, where some of the p; may be zero.
In such a case the discriminant function is of the form

(36) Ao Xt 26X ) +F Ay Xprt -+ 20X

where Ay, ..., Ap are unknown. Equating (36) to 8§ Z-.X, the null
hypothesis can be written as

P
(37) socz:(...>
b

where @' = (py,...,p;) and b is unknown.

Let p, 7 0 without loss of generality. Then consider the
transformation

(38) Yy =p X34 +-0Xp,
Y2 = Xk+1, eesy Yp-k+1 = Xp;
Yp-—k+2 = Xl’ veey Yp = ‘Xk—l'

The hypothesis (37) says that in the discriminant function
based on Y, ..., Yy, the coefficients of the last (k—1) variables
are all zero. Hence the test (21) is applicable with the value of
g9 = p—k+1. Asinthe earlier case, we shall express the values
of DZ and D} in terms of the original variables. Consider the
partition (Xi, X;) of X’ where X, consists of the components
X,, ..., X and X, of the rest. Corresponding to such a parti-
tion of the random variable, we have the following partition of
the sample mean difference and the within S.P. matrix.

(39) d=@i:dy), S= (Su Sm) )
Then Sa Sy
(40)

(m+ny—2)-1 D2 = @'S-d
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[p'(d—S,:S32d:)

41 —2)-1 D2 = d, S;id. 7 =
(41) (ny+n,—2) b 2 Spady+ p'(S11—S12524 Sa1)p

substituting the expressions (40), (41) in (21), we find that the test
criterion is an explicit function of p. Hence we can test for any
assigned value of p or determine the confidence zone of p.

4.4. Test whether A belongs to a given linear manifold

Let A be a (p X k) matrix providing a basis of the given mani-
fold. Then the hypothesis AeM(A)=—38 = ZA0 where 0 is a
kx 1 vector. The values of 8, Z and 8 are unknown but the hy-
pothesis only specifies a relationship among them through the
known matrix A. Consider the transformation

(42) Y,=AX, Y,=BX

where B is chosen such that B'E4 = 0, i.e., the linear functions
in B’X are uncorrelated with those in A’X. If § =ZA40,
then

(43) E(BX|H,)—E[BX|H,)=B%=BZA0=0.

Thus, according to statement (e) in Section 2, ¥, = A'X is suffi-
cient for discrimination between the hypotheses H; and H, or
the coefficients of the components of ¥, in the discriminant func-
tion expressed in terms of Y, ¥, are all zero. Hence the test
(21) applies with ¢ = k. The matrix B in (42) is arbitrary subject
to the condition B'Z A = 0, but we do not need to know B in
order to evaluate the test criterion (21). We observe that

(44) DYY,, Y,) = DYX) = (n;+ny,—2)d'S7'd
(45)  DYY,) = DYA'X) = (n,+n,—2)d’ A(A'SA)'4d

which depend only on A, d and S, where d and S are as defined
in (10) and (11).
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5. DISCRIMINANT FUNCTION FOR
GENETIC SELECTION

Consider an observable variable X which has the decomposition
(46) X = y+te

in terms of two unobservable variables y and e which are un-
correlated. The variable y denotes the conceptual genotypic
measurements and e denotes the environmental effects so that
X may be considered as representing phenotypic measurements.
Under the set up (46), Smith (1936) considered the problem of
predicting a linear function @’y representing the genetic worth
of an individual on the basis of phenotypic measurements X.
Let DIX)=2Z, Diy)=T and D(e)=E. Since y and € are
uncorrelated,

(47) S =T+E

Cov(X,y) =T, Cov(X,a'y)=Ta
giving the regression of @’y on X as A'X where
(48) ZA=Ta or A=ZTa

If £ and T are known, then the best predictor of @"y or the best
selection index for @'y is the regression function of a’y on X.

As an alternative to the regression function a'T' Z-'X we
may consider the straight selection function a’X, which is simpler
to compute and which does not involve I'and . It is, therefore,
of interest to find the conditions under which a’T=-1X and a'X
are equivalent. Now, a'TEZ-1X oc ¢'X implies that there exists
& constant x such that

(49) IZTa = g a or T'a = pZa,
Or @ is an eigen vector of the determinantal equation

(50) IT—xZ| =0,
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The condition (49) is the same as,

a'Ea
(51) Ea = 72—:&—-2(1,

Let a,, the first component of @, be non-zero. Then we con-
sider the transformation from X to Y,

(52) Yi=aX, Yy=Xp .. Yp=Xp

with the corresponding decomposition ¥ = y*--€* and the dis-
persion matrices Z* and E*. In terms of Z* and E*, the condi-
tion (49) is equivalent to

2
53 S i .. p

i.e., the regression coefficient of ¢j on €] is the same as that of
Y; on ¥,, We shall consider a test of the hypothesis (53) in
Section 5.1 on the basis of independent estimators of Z* and E*
having Wishart distributions.

A more general hypothesis of interest is the assignment of the
ratios of the coefficients of a subset of the phenotypic measure-
ments X; in the selection index (regression function). In such
a case the relationship between Z and I' can be written as

(54) m:;m(f-)
b

where p is the vector of assigned ratios of the coefficients of the
(say) first ¢ variables and b is unknown. There does not seem to
be a simple test of the hypothesis (54). However, one can deter-
mine the likelihood ratio test based on independent estimators
of £ and E and thus provide an asymptotic test with the usual
chi-square approximation.
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5.1. A test for the hypothesis (53)

Let T and W be independent random matrices such that
(65) T ~ wp (Z, k)
(56) W ~ @, (E*, m)

where @ (A, b) represents Wishart distribution of a p X p random
matrix with the hypothetical matrix A and degrees of freedom
b. Given T,,, the conditional distributions

T T 1
57 R —(Zt
(67) (72 )~ 7 v By
T, T
(68) (Ty) = (P~ ~5 It )t (Tya), k—D)]

are independent. Similarly

E B 1
59 LS )~ —— (B},
( ) (-Eu ’ Ell ) np[vz» Ell (Eﬂ.l)]
EyE .
(60) (By) = (By— =~ ) ~ 6(B5), m—1]

are independent. The hypothesis (53) under test is the same as
the hypothesis

(1) S

i.e., the means of the two normal distributions (57) and (59) are
equal. Since estimates of the dispersion matrices are available,
it is possible to provide an appropriate test of the hypothesis
(61).

If (Z}.)), (Bj.,), the true residual* dispersion matrices, are
equal, then we have the standard test based on the likelihood
ratio

(62) A = Ty )+ (Wey ) (T +Wa)
[(Z'eg)+(Weg) |
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where

v m—+k—p 1—A
(63) p—1 A

has an F distribution on (p—1) and (m+k—p) d.f.

If the residual dispersion matrices (Z};.,) and (&};.,) are not

equal, then we have the following approximate test. The dif-
ferences

7. W T. W
64 dy=-12 18 4, =2 _ __1p
©) =g = T T

have the estimated dispersion matrix

65) (O = Gryp Tod+ Gy (W2

If (C) is the reciprocal of (Cy), then the statistic for testing the
significance of the differences d, ...,dp_, is

(66) I3 Ctidd;

which can be used approximately as a chi square on (p—1) d.f.

Note: The choice of a test of the hypothesis (53) or (61)
depends on whether the residual dispersion matrices (Z}.,) and
(£%.,) are equal or not. Since we have the estimates (Ty.,) and
(Wi.,) the hypothesis of equality (£j;.,) = (&};.;) can be sub-
jected to a suitable test.

In problems of genetic selection we have certain families (or
individual lines) out of which some have to be selected on the
basis of performance of individuals within family. We obtain
observations on a certain number of characteristics from each
of n individuals in a family. These observations (after trans-
formation to the Y; variables as in (51)) provide an analysis of
dispersion (S.P. matrices) as between and within families, which
correspond to the T and W matrices used in the test. For a
numerical application of the tests (63) and (66) and further
discusgion, the reader is referred to a paper by the author (Rao,
1953).

76
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