
Indian Statistical Institute, Kolkata

Semi-Supervised Clustering of stable

instances

by

Deepayan Sanyal(CS1607)

A report submitted in partial fulfillment for the

degree of Master of Technology in Computer Science

Guided by

Prof. Swagatam Das

Electronics and Communication Sciences Unit

July 2018

https://www.isical.ac.in/
https://www.isical.ac.in/~swagatam/
https://www.isical.ac.in/~csru/

Declaration of Authorship

I, Deepayan Sanyal, declare that this thesis titled, ‘Semi-Supervised Clustering of stable

instances’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at the Indian Statistical Institute.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

CERTIFICATE OF COMPLETION

This is to certify that the dissertation entitled “Semi-Supervised Clustering of

stable instances” submitted by Deepayan Sanyal to Indian Statistical Institute,

Kolkata, in partial fulfillment for the award of the degree of Master of Technology

in Computer Science is a bonafide record of work carried out by him under my su-

pervision and guidance. The dissertation has fulfilled all the requirements as per the

regulations of this institute and, in my opinion, has reached the standard needed for

submission.

Swagatam Das

Associate Professor,

Electronics and Communication Sciences Unit,

Indian Statistical Institute,

Kolkata-700108, INDIA.

—————————————————————-

“Millions saw the apple fall but Newton was the one who asked why.”

-Bernard Baruch

Abstract

Clustering is one of the fundamental problems in data mining. Various objective func-

tions, like k-means, k-median, k-mediod have been applied to solve clustering problems.

While all these objectives are NP-Hard in the worst case, practitioners have found re-

markable success in applying heuristics like Lloyd’s algorithm for this problem. The

following question then becomes important: what properties of real-world instances will

enable us to design efficient algorithms and prove guarantees for finding the optimal clus-

tering? We consider the case of multiplicative perturbation stability. Stable instances

have an optimal solution that does not change when the distances are perturbed. This

captures the notion that optimal solution is tolerant to measurement errors and un-

certainty in the points. Semi-supervision allows us to have an oracle O which answers

pairwise queries. We design efficient algorithms which solve problems of multiplicative

perturbation stability using a noisy oracle model.

Acknowledgements

I would like to show the highest gratitude to my advisor, Dr. Swagatam Das, Associate

Professor, Electronics and Communication Sciences Unit, Indian Statistical Institute,

Kolkata, for his guidance and continuous support and encouragement. He has taught

me how to do good research, and motivated me with great insights and innovative ideas.

I would also extend my deepest respect towards Prof. CA Murthy for reviewing my

mid-term presentation and providing valuable inputs for the future work.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valu-

able suggestions and discussions which added an important dimension to my research

work.

Finally, I am very much thankful to my parents and family for their everlasting supports.

Last but not the least, I would like to thank all of my friends for their help and support.

I thank all those, whom I have missed out from the above list.

v

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

1 Introduction 1

2 Preliminaries 6

2.1 α-Multiplicative Perturbation Stability . 6

2.2 Semi-supervised Clustering . 7

2.3 Overview of our methods . 8

3 Related Work and Our Contribution 9

3.1 Related Work . 9

3.2 Our Contribution . 11

4 Our Algorithms 12

4.1 Structural Properties . 12

4.2 Algorithm for Ideal Oracle . 13

4.3 Algorithm for Noisy Oracle . 15

5 Conclusion 22

Bibliography 23

vi

Dedicated to my parents and family. . .

vii

Chapter 1

Introduction

Clustering is at once a very basic and useful task in data mining. The main aim of clus-

tering is to partition the dataset into meaningful partitions. An operational definition

of clustering can be defined as: Given n objects, find k groups based on a measure of

similarity such that objects in the same group are more similar than objects in different

groups. Problems of clustering data arise in a variety of areas like document clustering,

protein clustering, image segmentation, cosegmentation among a few. However, despite

its vitality in various tasks, there is severe dearth of theoretical foundations of clustering.

Without doubt, it is difficult to develop a universal theoretical basis for clustering at

a level of generality so as to make it relevant across multiple applications and uses[1].

However, in recent times, a lot of new work has been published, which aim to provide

a rigorous mathematical basis for clustering and to further the theory behind this vital

and provably difficult task.

The k-means is possibly the most widely used clustering technique. Given a dataset

and k, the number of clusters, k-means seeks to minimize the average squared distance

for points in the same cluster. It achieves this through a greedy approach. First, a num-

ber of random points corresponding to the centers of the k clusters is generated and each

point in the dataset is assigned to the nearest center. Next, from the assignment of the

data points to different clusters, the cluster centers are recomputed through averaging

the points in a particular cluster. This process is repeated iteratively until there is no

change in cluster assignment of the datapoints. This solution, proposed by Lloyd[2] is

still very widely used and has often been regarded as the most popularly used clustering

technique in data mining. However, the greedy approach taken by k-means can only

converge to a local minima. So, to get better results, it is customary to run k-means

several times with different initialization of centers and then choose the one with the

1

Introduction 2

minimum objective value. Various modifications to k-means have been proposed, in-

cluding k-means++[3] by Arthur et al. which improves upon k-means by choosing the

centers in a more intelligent manner. Other than that, Pelleg et al.[4] used a kd-tree

to speed up the computation of the closest cluster center for each datapoint. Bradley

et al.[5] presented a fast, scalable and single-pass version of k-means, which does not

require the entire data to be fit into the memory at the same time. It is quite customary

to use k-means with Euclidean distances to compute the distances between points and

cluster centers. As a result, k-means usually finds spherical or ball-shaped clusters in

the data. Kernel k-means[6] was proposed to detect arbitrarily shaped clusters, with

an appropriate choice of the kernel similarity function. Another modification to the

k-means worth mentioning is the fuzzy c-means[7]. While k-means assigns each point

to one cluster, the fuzzy c-means allows the points to belong to different clusters at the

same time with a certain membership value.

However, in most clustering algorithms, the number of clusters, k is taken as an in-

put from the user. Determining the number of clusters automatically presents a hard

algorithmic problem which does not have a ‘one size fits all’ solution. ISODATA[8] seeks

to find the number of clusters by iteratively merging and splitting clusters. The algo-

rithm uses a user-defined threshold and splits clusters when the intra-cluster standard

deviation is greater than the threshold and merges clusters when the distance between

their centers is less than the threshold. Pelleg et al[9] proposed X-means, which auto-

matically estimates the number of clusters, while it also improves scalability and avoids

local minima problems of the k-means. They determined the number of clusters by us-

ing the Bayesian Information Criteria(BIC). Subsequently, Hamerly et al.[10] proposed

G-means based on the Anderson-Darling statistic[11]. This method works on the hy-

pothesis that a subset of the data follows a Gaussian distribution. They argued that

the BIC does not penalize strongly enough for model complexity and hence does not

work well as a scoring function. Bischoff et al. use a minimum description length(MDL)

framework. Their algorithm starts with a very high estimate of the number of centers,

k and reduces k when removing a center reduces the description length. In between

the steps, they use k-means to optimize the data fit to the model. Other methods of

calculating the number of clusters includes the elbow[12] method which increases the

number of clusters as long as they explain a significant portion of the data variance.

At some point, the drop in variance given by adding a cluster drops and the number

of clusters is chosen at this point. However, such points can often not be determined

unambiguously. There is also the silhouette[12] method, where the silhouette of a data

instance is a measure of how closely it is matched to data within its cluster and how

loosely it is matched to data of a neighbouring cluster. The neighbouring cluster is the

cluster which is closest to the data point. A silhouette close to +1 denotes the data is in

Introduction 3

the correct cluster and a value close to -1 denotes that the data is in the wrong cluster.

Genetic algorithm based optimization techniques are useful to determine the maximum

silhouette value.

Clustering in itself is a difficult task. However, in many cases, domain knowledge is

available to the experimenter which could make the clustering task more feasible. To

integrate this background information, Wagstaff et al.[13] focused on two types of con-

straints, namely Must-Link constraints and Cannot-Link constraints. Must-Link con-

straints specify that two data instances belong in the same cluster while Cannot-Link

constraints specify that two data instances belong to different clusters. They only con-

sider hard constraints, i.e. the constraints cannot be violated. Wagstaff et al.[13]

combined this with k-means to create the COP-KMEANS algorithm which, like the

k-means algorithm, assigns datapoints to the nearest cluster center. The difference is

that COP-KMEANS ensures that no constraint is violated during cluster assignment.

They reported significant improvement in clustering accuracy with introduction of only

small number of constraints. However, the major limitation of this algorithm is that the

greedy approach taken by this algorithm can often fail to find a cluster assignment which

satisfies all constraints. To counter this problem Basu et al.[14] proposed PCKMeans

which is a soft constraint version of COP-KMEANS. PCKMeans modifies the objective

function of k-means and adds penalties whenever constraints are violated. A very high

penalty would make it work like COP-KMEANS while a low penalty would make it sim-

ilar to the normal k-means. An active version of PCKMeans is also available where the

algorithm searches through the data to get k pairwise disjoint non-null neighbourhoods.

It is assumed that the neighbourhoods would present a skeleton of the underlying cluster

structure. After the initial cluster structure is ready, new queries are used to consolidate

the skeleton and then initial cluster centers are estimated using means of the k non-null

partitions. Basu et al.[14] showed that the active PCKMeans outperforms the generic

PCKMeans for many datasets. The model that PCKMeans assumes is that there exists

an oracle which answers pairwise queries and hence the algorithm can modify the queries

it makes based on the the results of the queries it has made before. This introduces an

active paradigm of semi-supervised clustering, which has a significant advantage over

methods where arbitrary constraints are available to the algorithm. This concept of an

oracle which answers pairwise queries made by the algorithm will be used by us. The

oracle model which will be used by us is the noisy oracle model which answers pair-

wise queries correctly with probability p > 1
2 . It is important to understand that when

the queries are erronous with probabilty p, repeating the same query multiple times

does not change the answer. This model follows efforts made recently to use human

in the loop. In this setting, humans are asked simple pairwise queries adaptively, ‘do

Introduction 4

u and v represent the same entity?’, and these queries are used to improve the algo-

rithm performance. Proliferation of crowdsourcing platforms like Amazon Mechanical

Turk and CrowdFlower allows for easy implementation of such models. However, data

collected from non-expert workers on crowdsourcing networks are essentially noisy and

query results can be influenced by previous experience or subject assumptions regarding

the domain. A simple scheme to remedy this is to take a majority vote after present-

ing the same query multiple times to multiple subjects. But even in that case, some

error in query output still remains. Let p, 12 < p < 1 be the probability with which the

aggregated answer is correct. This forms the basis of the noisy oracle model we will

be using in our algorithm. Clustering with the noisy oracle is basically reducing the

number of queries made to the crowdsourcing platform to reduce cost and time while

also simultaneously recovering the underlying cluster structure from the queries made.

The major challenge in the theory of clustering is to bridge the large disconnect between

our theoretical and practical understanding of clustering. Most common clustering ob-

jectives like the k-means or k-median are NP-hard in the worst case even for k = 2. How-

ever, variants of these algorithms like the k-means++ work as good heuristics to solve

many clustering problems. This has led to the following hypothesis: Clustering is difficult

only when it does not matter, known commonly as the CDNM hypothesis[15, 16]. The

natural question that arises is the following: Why are real-world instanes of clustering

easy? Can we identify properties of real-world instances that make them tractable?[17]

One way to model real-world instances of clustering problems is through instance stabil-

ity, which is an implicit structural assumption about the instance. Practical instances

of clustering usually have a clear optimal solution and this solution remains the same

even after slight perturbation of the data instances, i.e. the instances are stable. Balcan

et al.[18] argues that clustering objectives are often proxies for recovering an unknown

ground truth clustering. Additionally, the distance measures we use are almost always

heuristics used to find an optimal clustering close to the ground truth. Such distance

measures do not necessarily constitute the correct ‘semantic distance’ in the data in-

stance. Thus, finding the correct clustering using distances and objective functions only

make sense when the data instances are resilient to perturbations introduced by these

proxies and heuristics. The notion of stability introduced first and formalized was the

multiplicative perturbation stability[19]. This notion assumed that the optimal solution

is resilient to multiplicative perturbations of the distances. For α ≥ 1, a metric clus-

tering instance (X, d) on point set X ⊂ Rd and metric d : X × X → R+ is said to be

α-multiplication perturbation resilient iff the unique optimal clustering X1, X2, . . . , Xk

of X remains the optimal solution for any instance (X, d′) where any subset of the dis-

tances are increased by upto a factor of α factor, i.e. d(x, y) ≤ d′(x, y) ≤ αd(x, y) for any

x, y ∈ X. However, multiplicative perturbation stability has strong structural conditions

Introduction 5

which are unlikely to be followed by real-world datasets. Also, presence of outliers in

the dataset would further affect datasets adhering to this notion of stability. To counter

this, another notion of stability is the additive perturbation stability. This requires that

for a given δ, the optimal k-means clustering remains optimal even if the points are per-

turbed by an Euclidean distance of at most δ. δ that is taken for additive perturbation

stability is not scale invariant. Ackerman et al.[20] took δ = εdiam(X), where diam(X)

is the diameter of the whole dataset. However, diameter is a very non-robust quantity

and presence of a few outliers can affect it considerably. As an alternative, Dutta et

al.[17] came up with a notion of δ = εmaxi,j |µi − µj |, where µi, µj are any two cluster

centers and provided polynomial time algorithms to recover the optimal clusterings.

Chapter 2

Preliminaries

In this section, we introduce some definitions and notions relevant to this thesis.

A k-clustering of data set X is a k-partition of X, that is a set of k non-empty, dis-

joint subsets of X. A clustering of X is a k-clustering of X for some k ≥ 1. For x, y ∈ X
and clustering C of X, x ∼C y whenever x and y are in the same cluster with respect

to C, and x �C y, otherwise.

2.1 α-Multiplicative Perturbation Stability

Definition: Given a metric space(X, d), a clustering objective is center-based if the

optimal solution can be defined by k points c1, c2, . . . , ck in the metric space X called

centers such that every data point is assigned to its nearest center. Such a clustering

objective is separable if it furthermore satisfies the following two conditions:

• The objective function value of a given clustering is either a (weighted) sum or the

maximum of the indivuidual cluster values.

• Given a proposed single cluster, its score can be computed in polynomial time.

The set of such points c1, c2, . . . , ck is called a set of centers for the clustering C. The

clustering partition can be found by the Voronoi partition induced by such centers.

The problem is to find such centers. The basic notion of stable clustering is that the

ground-truth clustering induced by these points remains the same even after certain

perturbations given to the data points. We now go on to describe our notion of pertur-

bations.

6

Preliminaries 7

Definition: Given a metric (X,d) and α > 1, we say a function d′ : X ×X → R≥0 is

an α-perturbation of d, if for any x, y ∈ X, it holds that

d(x, y) ≤ d′(x, y) ≤ αd(x, y)

It is to be noted that d′ need not be a metric. Any non-negative function would suffice.

Definition: Suppose we have a clustering instance composed of n points residing in

a metric (X, d) and an objective function φ we wish to optimize. We call the clustering

instance α-perturbation resilient for φ if for any d′ which is an α-perturbation of d, the

(only) optimal clustering of (S, d′) under φ is identical, as a partition of points into

subsets, to the optimal clustering of (S, d) under φ.

We will work with only separable center-based objectives (s.c.b.o) φ. Many common

clustering objectives such as k-means, k-median and k-center are s.c.b.o.

The method we follow to arrive at our results is to first derive structural properties

necessary to maintain the α-perturbation resilience property. In the second step, we use

semi-supervised methods to find the optimal clustering in the α-perturbation resilient

scenario.

2.2 Semi-supervised Clustering

Conventional clustering methods, which seek to identify homogenous subgroups in data

are unsupervised in nature, that is, nothing is known about the output variable and no

interrelationships among the observations are known. Unsupervised clustering is a diffi-

cult task, which has led people to turn to obtaining some form of background knowledge

to make it more feasible.

The kind of background information that we will deal with is in the form of two sets of

instance level constraints:

• Must-Link Constraints which specify that two instances have to be in the same

cluster.

• Cannot-Link Constraints which specify that two instances have to be in differ-

ent clusters.

Preliminaries 8

The formal model that we will be using in this thesis for semi-supervised clustering is

the noisy oracle model. Suppose we are given n points to cluster. We will assume that

there exists an oracle, which when given two points u and v, tells us whether they be-

long in the same cluster or not. For the noisy oracle, we will assume that the answers

given by the oracle are correct with probabilty better than random, i.e. with probability

p = 1
2 + λ where λ > 0. It must be noted that if we repeat the queries to the oracle,

we will always get the same answer. Formally, clustering with the noisy oracle model is

defined as[29]:

Consider a set of points X ≡ [n] containing k latent clusters Xi, i = 1, ..., k such that for

i 6= j, Xi∩Xj = φ where k and Xi’s are unknown. There is an oracle O : X×X → {±1}
with two error parameters p, q: 0 < p < q < 1. The oracle takes as input two points

u, v ∈ X ×X and if u, v belong to the same cluster, Op,q(u, v) = +1 with probability

1− p and Op,q(u, v) = −1 with probability p. On the other hand, if u, v do not belong

to the same cluster, Op,q(u, v) = +1 with probability 1 − q and Op,q(u, v) = −1 with

probability q. Note that the oracle returns the same answer on repitition. Now, given

X, find Y ⊆ X×X such that |Y | is minimum, and from the oracle answers, it is possible

to find k and the Xi’s with high probability. Note that the queries Y made to oracle O
can be made adaptively based on the outputs of previous queries.

If p = 1 − q = 0, we will say that the oracle O is ideal. Thus, an ideal oracle is

one which always answers the queries correctly with probability 1. Clustering with both

noisy and noiseless queries form a part of current research trends.

2.3 Overview of our methods

For α-multiplicative perturbation resilient instances, we will derive several structural

properties which these notions of stability impose on the data instances. Then we will

exploit these structural properties using noisy and ideal oracle to output the optimal

clusters. One fact to note is that our method using semi-supervision allows us to find

the optimal clusters even without knowing the correct number of clusters. Choosing

the number of clusters for an instance is a difficult task in clustering and is often left as

choices made by domain experts or assumed to be an input along with the data instance.

This is, to our knowledge, the first attempt to use stability notions and semi-supervision

to provide guarantees for clustering instances. It must be noted that the presence of

noisy queries ensures that that we can never be absolutely sure about our output. We

can only say that our output is correct with very high probability.

Chapter 3

Related Work and Our

Contribution

3.1 Related Work

Kleinberg [21] defined a set of three properties, Richness, Scale-Invariance and Con-

sistency and showed there is no clustering function which satisfies all three properties

simultaneously. Following up, Ben-David et al.[22] defined a clustering-quality measure

as a function that maps the pair {dataset, clustering} to a certain set(say, the set of non-

negative real numbers) such that these values reflect how ‘good’ or ‘cogent’ the clustering

output is. They provided a set of axioms and proposed several clustering quality mea-

sures which satisfy those axioms. These works represent an attempt to prove or disprove

the existence of an unified framework for a problem as difficult as clustering.

Balcan et al.[18] argue that in most uses of clustering, we assume that there exists

some ‘correct’ clustering and we hope that optimising the objective functions will help

us get closer to the truth. They showed that if there exists any c-approximation that is

ε-close to the target, then it is possible to produce clusterings which are O(ε) close to the

target, even for values of c for which obtaining the c-approximation is NP-hard. Epster

et al.[23] showed a means to measure clustering tendency or clusterability of a dataset.

They defined a perfectly clusterable dataset as one in which all intracluster edges are

smaller than any intercluster edge. Ostrovsky et al.[24] introduced separability as a no-

tion of clusterability. They defined separability to measure the drop in the loss function

when moving from (k− 1) clusters to k clusters for the k-means objective(though it can

be defined for other objectives as well). They said that a dataset X is (k, ε)-separable

9

Related Work and Our Contribution 10

if the k-means objective is ε times smaller for k than for (k− 1). Zhang et al.[25] intro-

duced the ratio of between-cluster variance and within-cluster variance as a measure of

clustered-ness of the data. Ackerman et al.[1] defined clusterability as a measure of clus-

tered structure in a dataset. They intitiated a theoretical study of the various notions

of clusterability and introduced a new notion of clusterability. For these notions, they

showed that it is possible to obtain the optimal cluster for well clusterable data feasibly.

They further showed that it is often NP-hard to calculate the clusterablility values of

datasets.

Most clustering objectives like k-means, k-median, min-sum are NP-hard to optimise.

Bilu et al.[15] reasoned that the optimal clustering to a desired objective must be resilient

to multiplicative perturbations up to a factor α > 1 of the distances between points.

They show that for instances of max-cut clustering which are stable to α = O(
√
n) per-

turbations, the optimal clusters can be computed using efficient algorithms. Awasthi et

al.[19] considered the case of α-multiplicative perturbation resilient instances of center-

based clustering objectives and showed polynomial time algorithms for α ≥ 3. Balcan

and Liang[26] improved upon this result to provided algorithms for alpha ≥ 1 +
√

2.

Ben-David and Reyzin[20] show that the problems of finding the optimal clusters in

(2− ε)-multiplicative perturbation stable instances of k-median is NP-Hard. They also

proved NP-Hardness of (2− ε)-stable instances of min-sum clustering. Balcan, Haghta-

lab and White[17] provided algorithms for solving 2-multiplicative perturbation stable

version of both symmetric and assymetric k-center. They also prove that finding the

optimal cluster for the k-center problem is NP-Hard for α = 2− ε.

Ackerman et al.[20] first initiated the study of additive perturbation stability and they

used the diameter of the dataset diam(X) as the normalization element. Following this,

Dutta et al.[17] used the maximum distance between a pair of means as the normalizing

factor and provided polynomial time algorithms to find out the optimal clusters when

the dataset X and the number of clusters k are known.

Ashtiani et al.[27] assumed that the optimal clusters can be approximated by first map-

ping the dataset into a new space and then performing k-means clustering. The user

provided the clustering for a random small sample of the data and their algorithm found

out an approximation for the optimal clustering by learning the representation of the

datapoints. Ashtiani et al.[28] showed that under some margin assumptions, instances of

k-means which are generally NP-Hard to compute can be computed easily with a small

number of same-cluster queries. Recently, Mazumdar et al.[29] provided lower bounds

for the number of queries which must be made to a noisy oracle in order to obtain

Related Work and Our Contribution 11

the clustering correctly. The also provided polynomial-time algorithms which can com-

pute the correct clustering with high probability in both the adaptive and non-adaptive

scenario.

3.2 Our Contribution

In this thesis, we have studied the α-multiplicative perturbation stability and structural

properties that these instances must satisfy. We have then taken advantage of these

properties using semi-supervision to obtain the optimal clustering. The advantage of

our method is that we do not need to have the number of clusters k as an input. Our

algorithms do the following:

• For the ideal oracle, we present a polynomial time algorithm which obtains the

optimal clusters for α ≥ 2 with O(n) queries.

• For the noisy oracle, we present a polynomial time algorithm which obtains the

optimal clusters for α ≥ 3 with O(n log2 n) queries and with probability at least

1−O(n
nlogn)

There are scopes of improving the bound for α for the noisy oracle scenario, but for this

dissertation, we will stick to α ≥ 3.

Chapter 4

Our Algorithms

4.1 Structural Properties

In this section we will provide proofs for some properties which are relevant to our al-

gorithms.

Definition 4.1.1: Let p ∈ X be any arbitrary point, let ci be the center that p is

assigned to in the ground-truth clustering and let cj 6= ci be any other center in the

ground-truth clustering. We say X satisfies α-center proximity property if for any p ∈ X,

it holds that

d(p, cj) > αd(p, ci)

This property implies that in the ground-truth clustering of instances with α-center

proximity property, every point p is at least α times closer to the center of the cluster it

is assigned to than any other cluster center.

Fact 4.1.2:[19] If a clustering instance satisfies the α-perturbation resilient property,

then it also saisfies the α-center proximity property.

Proof: The entire proof appears in the original paper. We will discuss the basic rational

here. We take any cluster Ci with center ci and blow up all distances in it by a factor of

α. Now consider any other cluster Cj with center cj . Since even after the perturbation,

any point p ∈ Ci is still assigned to the same cluster, the following inequality results:

d(p, cj) > αd(p, ci)

12

Our Algorithms 13

We now go on to prove the property which is of importance to our algorithm.

Theorem 4.1.3:[19] Let X be a given α-perturbation resilient clustering instance. For

every point p ∈ Ci with center ci and any other point p′ belonging to some other cluster

Cj(j 6= i) with center cj , it follows that d(p, p′) > (α− 1)d(p, ci).

Proof: By the triangle inequality, d(p, p′) ≥ d(p, cj)− d(p′, cj). Without loss of general-

ity, assume that d(p, ci) > d(p′, cj). Since the data instance is stable to α-multiplicative

perturbations, d(p, cj) > αd(p, ci). Combined with the triangle inequality, this gives

d(p, p′) > αd(p, ci)− d(p′, cj). Taking our assumption into account, d(p, p′) > αd(p, ci)−
d(p, ci) = (α− 1)d(p, ci). This proves the theorem.

Corollary 4.1.4: For α > 2, d(p, p′) > d(p, ci).

This corollary is trivial for α > 2 in the above theorem.

4.2 Algorithm for Ideal Oracle

We assume that the data instance has the weak center proximity property. Our algorithm

takes the input of set of points X and outputs a clustering of all the points.

Algorithm 1 Clustering with a perfect oracle

input: the set of input points X

output: the clusters obtained X1, X2, . . . , Xk after determining the correct number

of clusters k

procedure BuildTree(X)

4: Create a complete graph(X ′, E), with X as the vertices and the distance between

points in X as the edge weights.

Build the Minimum Spanning Tree T on X ′ using Prim’s algorithm

end procedure

procedure BuildClustersIdeal(T)

8: for every edge e = (u, v) ∈ T do Query the ideal oracle whether u and v belong

to the same cluster

if u and v belong to different clusters then

remove edge e = (u, v) from T

end if

12: end for

end procedure

return T = {T1, T2, . . . , Tk} . T1, T2, . . . , Tk form the optimal clusters.

Our Algorithms 14

Definition 4.2.1(Weak center proximity): A data instance X with optimal clusters

X1, X2, . . . , Xk and cluster centers µ1, µ2, . . . , µk is said to have the weak center prox-

imity property if for all i, 1 ≤ i ≤ 1, x ∈ Xi, y ∈ Xj and j 6= i, d(x, µi) < d(x, y).

Based on Corollary 4.1.4, the following fact follows trivially.

Fact 4.2.2: For α ≥ 2, data instances with α-multiplicative perturbation stabilty pos-

sess the weak center proximity property.

We will now prove the correctness of Algorithms 1 and 2. For algorithm 1, we show

that for data instances with weak center proximity, the BUILDTREE procedure pro-

duces a tree with (k − 1) inter-cluster edges and (n − k) intra-cluster edges. We show

the proof with respect to the working of Prim’s algorithm.

Prim’s algorithm is a greedy technique to compute the minimum spanning tree(MST) in

a given graph. It starts with an empty spanning tree. The idea is to maintain two sets

of vertices, one of those already included in the MST and the others not included. At

all steps, Prim’s algorithm looks at all the edges which connect the two sets and chooses

the edge with the minimum weight among these edges.

Lemma 4.2.3: For data instance X with the weak center property and optimal clusters

X1, X2, . . . , Xk, let x ∈ Xi be the first point from Xi that is added to the MST. Let µi

be the center of Xi. Then, no edge of the form (u, v), u ∈ Xi and v ∈ Xj , j 6= i is added

to the MST before an edge of the form (u, µi), u ∈ Xi is added.

Proof. Suppose the opposite and we arrive at a contradiction. The fact that (u, v), u ∈
Xi, v ∈ Xj , j 6= i was added implies that u is already in the MST. However, d(u, v) >

d(u, µi), which is a contradiction.

Lemma 4.2.4: Let us consider a point x ∈ Ci which had not been added when µi was

added. Then, x is added to the MST through the addition of an edge either of the form

(y, x), y ∈ Xi or (µi, x).

Proof. Suppose x was added through the addition of an edge of the form (y, x), y ∈
Xj , j 6= i. However d(µi, x) < d(y, x) form the weak center proximity property. So,

Prim’s algorithm should add (µi, x) to the MST before (y, x). This is a contradiction.

Theorem 4.2.5: For data instances X with the weak center property, procedure

BUILDTREE of Algorithms 1 and 2 produces a Minimum Spanning tree in which

there are (k − 1) inter-cluster edges and (n− k) intracluster edges.

Our Algorithms 15

Proof. Let us consider the above two lemmas and their implications. We see that when-

ever any point in any cluster is added to the MST, except for the first point, all other

points are added through the addition of an intra-cluster edge. Thus, inter-cluster edges

are added only when the first point from any cluster is added to the MST. Since there

are k clusters, only (k − 1) inter-cluster edges were added. Thus, the MST consists of

(n− k) intra-cluster edges.

Theorem 4.2.6: For an instance X with weak center proximity property, procedure

BUILDCLUSTERSIDEAL of Algorithm 1 produces the correct optimal clustering

assuming we have an ideal oracle O(as defined in the Chapter 2) to answer pairwise

queries.

Proof. The previous theorem shows that the MST T formed at the end of the BUILDTREE

procedure has (k − 1) inter-cluster edges. Identifying and removing those edges from

T would do the dual task of identifying the number of clusters and finding the optimal

clusters as well. Since we have an ideal oracle O to use, we query the oracle for every

edge in the tree T and remove the edges for which O(u, v) = +1. Thus, T now consists

of k sub-trees which represent the individual optimal clusters.

4.3 Algorithm for Noisy Oracle

Definition 4.3.1(Min-stability): A data instanceX with optimal clustersX1, X2, . . . , Xk

and cluster centers µ1, µ2, . . . , µk is said to have the min-stability property if for all

i, 1 ≤ i ≤ 1, any subset X ′ (Xi and any other cluster Xj , dmin(X ′, Xi \ X ′) <

dmin(X ′, Xj).

We will now show that for α > 3, α-multiplicative perturbation resilient data instances

satisfy the min-stability property.

Lemma 4.3.2: Let X be any α-multiplicative perturbation resilient clustering in-

stance. Let X1, X2, . . . , Xk be the optimal clusterings with centers µ1, µ2, . . . , µk re-

spectively. Let X ′ (Xi and x ∈ X ′ for some i, 1 ≤ i ≤ k be any point in X ′ and

y ∈ Xj , 1 ≤ j ≤ k, j 6= i be any point in some other cluster Xj which obtain the

minimum distance dmin(X ′, Xj). Then, for α ≥ 3, there exists x′ ∈ Xi \ X ′ such that

d(x, x′) < d(x, y).

Proof. Let x′ ∈ Xi \X ′ be the point which minimizes the distance d(x, x′). There are

two cases: µi ∈ X ′ and µi /∈ X ′.

Our Algorithms 16

Case(a) µi /∈ X ′. This follows trivially because of the weak center proximity prop-

erty.

Case(b) µi ∈ X ′. Suppose for the sake of contradiction that dmin(X ′, Xi \ X ′) ≥
dmin(X ′, Xj). Then d(x′, µi) ≥ d(x, x′) > (α − 1)d(x, µi) = (3 − 1)d(x, µi) = 2d(x, µi).

So d(x, µi) <
1
2d(x′, µi). We also see that d(y, µi) > αd(y, µj) = 3d(y, µj). There-

fore, d(y, µj) < 1
3d(y, µi) ≤ 1

3 [d(y, x) + d(x, µi)] <
1
3 [d(x′, µi) + 1

2d(x′, µi)]. Then,

d(y, µj) <
1
2d(x′, µi). Now, d(x′, µj) ≤ d(x′, µi)+d(µi, x)+d(x, y)+d(y, µj) < 3d(x′, µi).

This violates the center proximity property of α- multiplicative perturbation resilient

instances. Thus, we see that d(x, y) > d(x, x′). Hence, for α ≥ 3, α-multiplicative

perturbation resilient instances follow the min-stability property.

Theorem 4.3.3: For an instanceX with min-stability property, procedure BUILDTREEMOD-

IFIED of Algorithm 2 produces an MST in which there are (k − 1) intercluster edges

and (n− k) intracluster edges. Also, in the array arrayOrder, every cluster Xi with size

|Xi| occupies |Xi| adjacent positions. We prove the above theorem with the help of the

following lemma.

Lemma 4.3.4: Let X = {X1, X2, .., Xk}, Xi ∩Xj = φ be any data instance for which

the min-stability property holds. Let x ∈ Xi be the first point from any cluster Xi which

is added to the MST. Then no point y ∈ Xj , j 6= i is added to the MST until Xi is

completely added to the MST.

Proof. Let x ∈ Xi be the first point which is added to the MST. By virtue of the min-

stability property, there exists a point x′ ∈ Xi which is added by Prim’s algorithm next.

Continuing is this way, the entire cluster Xi is added before any y ∈ Xj is added. When

Xi has been completely added, an intercluster edge (x′, y′), x′ ∈ Xi, y
′ ∈ Xj , j 6= i is

added and the MST enters the cluster Xj . Now, the MST can grow in two ways, either

through the addition of intercluster edges or through addition of intracluster edges.

Min-stability ensures that no intercluster edge from Xj is added before Xj is completely

added to the MST. Let (x′′, y′′) be the minimum weight intercluster edge from Xi to

Xi′ , i
′ 6= j. Now, d(x′′, y′′) ≥ d(x′, y′) since (x′, y′) is added to the MST first. Again min-

stability ensures that until Xj has been completely added to the MST, there exists points

(z1, z2) with z1, z2 ∈ Xj and z1 in the MST such that d(z1, z2) < d(x′, y′) ≤ d(x′′, y′′).

Thus Xj is added to the MST before any othe intercluster edge is added. By induction,

we see that, Prim’s algorithm ensures the lemma.

Our Algorithms 17

Algorithm 2 Clustering with a noisy oracle

input: the set of input points X

output: the clusters obtained X1, X2, . . . , Xk after estimating the correct number

of clusters, k

procedure BuildTreeModified(X)

4: Create a complete graph(X ′, E), with X as the vertices and the distance between

points in X as the edge weights.

Build the Minimum Spanning Tree T on X ′ using Prim’s algorithm and build an

array arrayOrder of size n to store the order in which all points were added to T.

Also, maintain an array arrayParents which stores the parents of all points in T

end procedure

procedure BuildClustersNoisy(T)

8: for every edge e = (u, v) ∈ T do

Find the ` points appearing before u in arrayOrder, U = {u1, u2, . . . , u`}
if no such ` points exist before u then

continue

12: end if

Find the ` points appearing after v in arrayOrder, V = {v1, v2, . . . , v`}
if no such ` points exist after v then

continue

16: end if

count ← 0

for every pair (x, y) where x ∈ U and y ∈ V do

Query the noisy oracle O whether x and y belong to the same cluster

20: if answer is ‘no’ then

count ← count +1

end if

end for

24: if count
`2
≥ 1

2 then

Starting from v, start building an MST using Prim’s algorithm on X ′.

Similarly, starting from u, start building an MST on X ′.

Let V ′ = {v′1, v′2, . . . , v′`} be the first ` points added to the MST starting

28: from v in this way.

Let U ′ = {u′1, u′2, . . . , u′`} be the first ` points added to the MST starting

from u in this way.

if every v′ ∈ V ′ lies to the right of v AND every u′ ∈ U ′ lies to the left of

u then

32: remove edge e = (u, v) from T

end if

end if

end for

36: end procedure

return T = {T1, T2, .., Tk} . T1, T2, .., Tk form the optimal clusters.

Our Algorithms 18

The above theorem follows from the previous lemma. Since every cluster is completely

added to the MST one at a time, we observe that an intracluster edge is added every

time a cluster has been completely included. Thus the MST has (k − 1) intercluster

edges and (n − k) intracluster edges. Also since for any cluster Xi, all |Xi| points are

added sequentially, they must occupy |Xi| adjacent positions in array arrayOrder since

it maintains the order in which the points are added to the MST.

Like in Algorithm 1, we also need to identify and remove the intercluster edges from the

MST T to obtain the optimal clusters. However in this case, since the oracle O gives

noisy answers, we cannot remove the edges as easily as we could with the ideal noiseless

oracle.

Theorem 4.3.5: Let us consider a clustering instanceX with optimal clustersX1, X2, . . . , Xk

which follows the min-stability property. Let there exist an oracle O : X ×X → {±1}
with an error parameter q, 0 < q < 1

2 .O takes as input two vertices (u, v) ∈ X × X

and if u and v belong to the same cluster, answers ‘yes’ with probability p = 1 − q.
Similarly, if u and v belong to different clusters, O answers ‘no’ with probability p. If

the size of every clusters exceeds c log n, for some suitable constant c, then there exists

an algorithm with query complexity O(n log2 n) and runtime O(n2 log n) which obtains

the optimal clusters with probability 1 - O(n
nlogn).

We will now show that Algorithm 2 satisfies the requirements of the above theorem.

Lemma 4.3.6: Let at any point of time (u, v) ∈ T be the edge of interest to Algo-

rithm 2. If u and v belong to differnt clusters in the optimal clustering, then the `

points before u in arrayOrder and the ` points after v in arrayOrder belong to different

clusters, assuming that all clusters have at least 2` points.

Proof. Prim’s algorithm and min-stability ensure that all points in a cluster are added

to arrayOrder sequentially. Thus, if all clusters have at least ` points, then it must be

true that ` points before u and ` points after v in arrayOrder belong to different clusters

since u �C v.

Lemma(Hoeffding): If X1, X2, . . . , Xn are independent random variables and ai ≤ Xi ≤
bi for all i ∈ [n], then

Pr(
1

n

n∑
i=1

(Xi − EXi) ≥ t) ≤ exp(− 2n2t2∑n
i=1(bi − ai)2

)

Our Algorithms 19

Pr(
1

n

n∑
i=1

(Xi − EXi) ≤ −t) ≤ exp(− 2n2t2∑n
i=1(bi − ai)2

)

Lemma 4.3.7: Let c = 1
(1
2
−p)2 and ` = c logn

2 . When (u, v) is being processed, and

u and v belong to different clusters, Algorithm 2 can identify that u �C v with proba-

bility at least (1− 1
nlogn).

Proof. Let Y be a random variable denoting how many queries for the edges (x, y), x ∈
U, y ∈ V receive an answer ‘no’ from oracle O. Then Y ∼ Binomial(`2, p), where p is the

probability with which the oracle gives a wrong answer to a query. Hence, E [Y] = `2p.

The probability with which an intercluster edge is classified as an intracluster edge

is given by Pr[Y < `2

2] = Pr[Y − `2p < `2/2 − `2p] = Pr[Y − `2p < `2(12 − p)] =

Pr[Y − `2p < δ`2] where δ = 1
2 − p. By Hoeffding’s inequality for binomial random

variables, the probability of wrong classification is given by Pr[Y − `2p < δ`2] ≤ e−2δ2`2 .

Since δ = 1
2 − p, this probability = e−2(1/2−p)

2`2 . Plugging in ` = 1
2(1/2−p)2 log n, we get

Pr[wrong classification] ≤ e− log2 n = n− logn = 1
nlogn . Hence probability that intercluster

edge is classified correctly is ≥ 1− 1
nlogn .

Lemma 4.3.8: Let c = 1
(1
2
−p)2 and ` = c/2. When (u, v) is being processed, and u and

v belong to the same cluster, Algorithm 2 can identify that u ∼C v with probability

(1− 1
nlogn) if the sets U and V belong to the same cluster.

Proof. Let Y ′ be a random variable denoting how many queries for the edges (x, y), x ∈
U, y ∈ V receive an answer ‘no’ from oracle O. Then Y ∼ Binomial(`2, p), where

p is the probability with which the oracle gives a wrong answer to a query. Hence,

E [Y ′] = `2(1 − p). The probability with which an intracluster edge is classified as an

intercluster edge is given by Pr[Y ′ > `2

2]. The rest of the proof is similar to that of the

last lemma.

Lemma 4.3.9: Let (u, v) ∈ T and u �c v. Compute V ′ where V ′ is the set of the

` points which are added first when we build an MST starting from v. Then V ′ lies

entirely to the right of v. Similarly, the ` points added first when building an MST

starting from u lie to the left of u.

Proof. u and v belong to different clusters and let v ∈ Xj . We have already shown that

the cluster corresponding to the first point added to the MST is added before any other

cluster is touched. Since each cluster has at least 2` points, the first ` points added

Our Algorithms 20

when starting from v, V ′ = {v′1, v′2, . . . , v′`} belong to Xj . Since Xj lies to the right of v,

V ′ must also lie to the right of v.

Lemma 4.3.10: Let (u, v) ∈ T and u ∼c v. Compute V ′ where V ′ is the set of the `

points which are added first when we build an MST starting from v. Compute U ′ where

U ′ is the set of the ` points which are added first when we build an MST starting from

u. If V 6⊂ Xi, then there exists either a point v′ ∈ V ′ which lies to the left of v or a

point u′ ∈ U ′ which lies to the right of u.

Proof. The first ` points added to the MST starting from v must belong to Xi since

v ∈ Xi. Now, because V 6⊂ Xi, there exists a point x ∈ V such that x ∈ Xj and there

are less than ` points to the right of v which belong to Xi. Now, if we build an MST

starting from v, then at least one of the first ` points must lie to the left of v.

Combining the above two lemmas, we see that for the case when u and v belong to the

same cluster, if V 6⊂ Xi, then there exists a point v′ ∈ V ′ where V ′ is the set of ` + 1

closest points to v such that v′ appears before v in arrayOrder. However, if u and v do

not belong to the same cluster, then the V ′ lies entirely to the right of v.

Lemma 4.3.11:If we cannot find ` points before u and ` points after v, then the edge

(u, v) is an intracluster edge.

Proof. Suppose, for the sake of contradiction that (u, v) is an intercluster edge. Then,

there exists a cluster Xj whose first point in the MST is v or a cluster Xj′ whose last

point in the MST is u. Now, since all points from a cluster are added sequentially to

the MST and every cluster has 2` points, there must exist ` points to the right of v and

` points to the left of u, which is a contradiction.

We now go on to prove the theorem. If u and v belong to different clusters, then lemma

shows that we can detect the edge with probability (1 − 1
nlogn). When u and v belong

to the same cluster and U and V belong to the same cluster, lemma proves that we

can correctly classify the edge with probability (1 − 1
nlogn). The problem arises when

U and V do not belong to the same cluster, i.e. V 6⊂ Xi. In that case, classifying the

edge based on whether most of the edges (u, v) where u ∈ U, v ∈ V evoke ‘no’ answer

from oracle O can be erronous. Two cases are possible: (a) Most of the edges evoke

‘yes’ answer from O. In that case, the algorithm classifies the edge as intracluster and

we have no problem. (b) However, if most edges (u, v) evoke ‘no’ from O, the algo-

rithm would classify it as an intercluster edge. To prevent this, we add an extra check.

Lemma 4.2.9 ensures that when (u′, v′) ∈ T belong to different clusters, V ′ lies to the

Our Algorithms 21

right of v. Lemma 4.2.10 ensures that this is always false when u and v belong to the

same cluster and V 6⊂ Xi. Hence, adding a check based on this would allow us to cor-

rectly classify this case. Let ` = c logn
2 . Then for each edge in T , we make O(log2 n)

queries. Since we query (n−1) edges at most, the total query complexity is O(n log2 n).

Also, creating the MST takes O(n2 log n) time. The rest of the algorithm is assymptoti-

cally bounded by this. Hence the overall time complexity of the algorithm is O(n2 log n).

Now we have to prove that we find the optimal clusters with high probability. Lem-

mas 4.2.6 and 4.2.7 prove that we can classify each edge in T correctly with probability

at least (1 − 1
nlogn). Thus probability of failure to classify correctly for each edge is

bounded by 1
nlogn . The probability that at least one query fails to give the correct an-

swer is bounded by the union bound to n
nlogn . Thus, our algorithm finds the correct

answer with probability (1− n
nlogn). This proves the theorem.

Chapter 5

Conclusion

In this dissertation, we have done the following:

• We studied one particular notion of stability, namely the α-multiplication pertur-

bation stability.

• For this notion of perturbation resilience, we used semi-supervision via a noisy

oracle and an ideal oracle to provide algorithms which obtain the optimal clusters.

• For the ideal oracle, we have presented polynomial time algorithms to find the

optimal clusters.

• For the noisy oracle, we have presented a polynomial time algorithm which finds

the optimal clusters with very high probability.

• It must be noted that our algorithms do not need the number of clusters k as

an input. The stability notions allow us to derive structural properties in data

instances, which we can exploit through semi-supervision to obtain the clusters.

There are numerous ways in which we would like to carry this line of research forward.

Studying other notions of stability and solving their instances with semi-supervision is

one such way. Different objective functions such as k-means, k-medians would help us to

understand the structure of data which are stable to perturbations with these objective

functions. They would enable us to impose more restrictions on the data and get better

results.

22

Bibliography

[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study.

Proceedings of the 12th International Conference on Artificial Intelligence and

Statistics, 5, April 2009. URL http://proceedings.mlr.press/v5/ackerman09a/

ackerman09a.pdf.

[2] S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):

129–137, September 2006. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056489. URL

http://dx.doi.org/10.1109/TIT.1982.1056489.

[3] David Arthur and Sergei Vassilvitskii. kmeans++: the advantages of careful seed-

ing. Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 1027–1035, January 2007. URL https://dl.acm.org/citation.

cfm?id=1283383.1283494.

[4] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with ge-

ometric reasoning. In Proceedings of the Fifth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD ’99, pages 277–281, New

York, NY, USA, 1999. ACM. ISBN 1-58113-143-7. doi: 10.1145/312129.312248.

URL http://doi.acm.org/10.1145/312129.312248.

[5] P. S. Bradley, Usama Fayyad, and Cory Reina. Scaling clustering algorithms to large

databases. In Proceedings of the Fourth International Conference on Knowledge

Discovery and Data Mining, KDD’98, pages 9–15. AAAI Press, 1998. URL http:

//dl.acm.org/citation.cfm?id=3000292.3000295.

[6] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear com-

ponent analysis as a kernel eigenvalue problem. Neural Comput., 10(5):1299–

1319, July 1998. ISSN 0899-7667. doi: 10.1162/089976698300017467. URL

http://dx.doi.org/10.1162/089976698300017467.

[7] James C. Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means

clustering algorithm. Computers and Geosciences, 10(2):191 – 203, 1984. ISSN

23

http://proceedings.mlr.press/v5/ackerman09a/ackerman09a.pdf
http://proceedings.mlr.press/v5/ackerman09a/ackerman09a.pdf
http://dx.doi.org/10.1109/TIT.1982.1056489
https://dl.acm.org/citation.cfm?id=1283383.1283494
https://dl.acm.org/citation.cfm?id=1283383.1283494
http://doi.acm.org/10.1145/312129.312248
http://dl.acm.org/citation.cfm?id=3000292.3000295
http://dl.acm.org/citation.cfm?id=3000292.3000295
http://dx.doi.org/10.1162/089976698300017467

Bibliography 24

0098-3004. doi: https://doi.org/10.1016/0098-3004(84)90020-7. URL http://www.

sciencedirect.com/science/article/pii/0098300484900207.

[8] Nargess Memarsadeghi, David M. Mount, Nathan S. Netanyahu, and Jacqueline Le

Moigne. A fast implementation of the isodata clustering algorithm. International

Journal of Computational Geometry and Applications, 17, February 2007. URL

https://doi.org/10.1142/S0218195907002252.

[9] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient

estimation of the number of clusters. In Proceedings of the Seventeenth International

Conference on Machine Learning, ICML ’00, pages 727–734, San Francisco, CA,

USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2. URL http:

//dl.acm.org/citation.cfm?id=645529.657808.

[10] Greg Hamerly and Charles Elkan. Learning the k in k-means. In S. Thrun, L. K.

Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Sys-

tems 16, pages 281–288. MIT Press, 2004. URL http://papers.nips.cc/paper/

2526-learning-the-k-in-k-means.pdf.

[11] M. A. Stephens. EDF statistics for goodness of fit and some comparisons. Journal

of American Statistical Association, 69(347):730–737, 1974.

[12] URL https://en.wikipedia.org/wiki/Determining_the_number_of_

clusters_in_a_data_set.

[13] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means

clustering with background knowledge. In Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, ICML ’01, pages 577–584, San Francisco,

CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-1. URL

http://dl.acm.org/citation.cfm?id=645530.655669.

[14] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision

for pairwise constrained clustering. pages 333–344, April 2004. URL http://www.

cs.utexas.edu/users/ml/papers/semi-sdm-04.pdf.

[15] Yonatan Bilu and Nathan Linial. Are stable instances easy? Comb. Probab.

Comput., 21(5):643–660, September 2012. ISSN 0963-5483. doi: 10.1017/

S0963548312000193. URL http://dx.doi.org/10.1017/S0963548312000193.

[16] Shai Ben-David. Computational feasibility of clustering under clusterability as-

sumptions. CoRR, abs/1501.00437, 2015.

[17] Aravindan Vijayaraghavan, Abhratanu Dutta, and Alex Wang. Cluster-

ing stable instances of euclidean k-means. In I. Guyon, U. V. Luxburg,

http://www.sciencedirect.com/science/article/pii/0098300484900207
http://www.sciencedirect.com/science/article/pii/0098300484900207
https://doi.org/10.1142/S0218195907002252
http://dl.acm.org/citation.cfm?id=645529.657808
http://dl.acm.org/citation.cfm?id=645529.657808
http://papers.nips.cc/paper/2526-learning-the-k-in-k-means.pdf
http://papers.nips.cc/paper/2526-learning-the-k-in-k-means.pdf
https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
http://dl.acm.org/citation.cfm?id=645530.655669
http://www.cs.utexas.edu/users/ml/papers/semi-sdm-04.pdf
http://www.cs.utexas.edu/users/ml/papers/semi-sdm-04.pdf
http://dx.doi.org/10.1017/S0963548312000193

Bibliography 25

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-

itors, Advances in Neural Information Processing Systems 30, pages 6500–

6509. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/

7228-clustering-stable-instances-of-euclidean-k-means.pdf.

[18] Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering

without the approximation. In Proceedings of the Twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’09, pages 1068–1077, Philadelphia, PA,

USA, 2009. Society for Industrial and Applied Mathematics. URL http://dl.acm.

org/citation.cfm?id=1496770.1496886.

[19] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under per-

turbation stability. CoRR, abs/1009.3594, 2010.

[20] Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look.

CoRR, abs/1107.2379, 2011.

[21] Jon Kleinberg. An impossibility theorem for clustering. pages 446–453. MIT Press,

2002.

[22] Shai Ben-David and Margareta Ackerman. Measures of clustering quality: A

working set of axioms for clustering. In D. Koller, D. Schuurmans, Y. Bengio, and

L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages

121–128. Curran Associates, Inc., 2009. URL http://papers.nips.cc/paper/

3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.

pdf.

[23] Scott Epter, Mukkai Krishnamoorthy, and Mohammed Zaki. Clusterability detec-

tion and initial seed selection in large data sets. Technical report, The International

Conference on Knowledge Discovery in Databases, 1999.

[24] Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The

effectiveness of lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–

28:22, January 2013. ISSN 0004-5411. doi: 10.1145/2395116.2395117. URL http:

//doi.acm.org/10.1145/2395116.2395117.

[25] B. Zhang. Dependence of clustering algorithm performance on clustered-ness of

data. 2001.

[26] Maria-Florina Balcan and Yingyu Liang. Clustering under perturbation resilience.

CoRR, abs/1112.0826, 2011.

[27] Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: A

statistical framework. In UAI, pages 82–91. AUAI Press, 2015.

http://papers.nips.cc/paper/7228-clustering-stable-instances-of-euclidean-k-means.pdf
http://papers.nips.cc/paper/7228-clustering-stable-instances-of-euclidean-k-means.pdf
http://dl.acm.org/citation.cfm?id=1496770.1496886
http://dl.acm.org/citation.cfm?id=1496770.1496886
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.pdf
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.pdf
http://papers.nips.cc/paper/3491-measures-of-clustering-quality-a-working-set-of-axioms-for-clustering.pdf
http://doi.acm.org/10.1145/2395116.2395117
http://doi.acm.org/10.1145/2395116.2395117

Bibliography 26

[28] Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-

cluster queries. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages

3216–3224. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6449-clustering-with-same-cluster-queries.pdf.

[29] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In NIPS, pages

5790–5801, 2017.

http://papers.nips.cc/paper/6449-clustering-with-same-cluster-queries.pdf
http://papers.nips.cc/paper/6449-clustering-with-same-cluster-queries.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	1 Introduction
	2 Preliminaries
	2.1 -Multiplicative Perturbation Stability
	2.2 Semi-supervised Clustering
	2.3 Overview of our methods

	3 Related Work and Our Contribution
	3.1 Related Work
	3.2 Our Contribution

	4 Our Algorithms
	4.1 Structural Properties
	4.2 Algorithm for Ideal Oracle
	4.3 Algorithm for Noisy Oracle

	5 Conclusion
	Bibliography

