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Abstract
There has been a quest to understand the structure and function-

ality of the brain, in general, and the human visual system, in par-
ticular, since centuries. One reason that the quest prevails among
engineers too, is because of the belief that if we can understand the
human brain and visual system, it could help us design and de-
velop models for similar tasks with similar high performance and
accuracy. This, on the other hand, may perhaps also aid to arrive
at a unified computational model for vision and may open new av-
enues in artificial vision. The persual of the quest has thus resulted
in a good amount of research in the field of bio-inspired models,
especially inspired from mammalian vision system. In this work, a
study of several computational models for different levels of vision
has been performed and its application in varying domains have
been explored.

The models, studied here, revolve around the central theme of
David Marr’s organisation of hierarchy of vision as an information
processing system and the bio-inspired models for each level of it. A
major part of the work revolves around mid-level visual represen-
tation of an image and study of biologically inspired models like
difference of Gaussian, which is also a computational model for
the response of retinal ganglion cells, and those of Lateral Genic-
ulate Nucleus (LGN). The basic DoG along with its variants like
Extended Difference of Gaussian (EDoG), Oriented Difference of
Gaussian (ODoG) and Dynamic EDoG have also been explored as
possible unified approaches to low-level and mid-level vision.

For instance, the EDoG is already known for modeling of the re-
sponse of the non-Classical Receptive Field (nCRF) of retinal gan-
glion cells with an extra Gaussian in comparison to DoG that leads
to better edge map(Ghosh, Sarkar, and Bhaumik, 2005b). This dis-
sertation work consist of three approaches to explore bio-inspired
models for the three levels of Marr’s hierarchy for vision. The first
part of the work is dedicated to using the EDoG for understand-
ing how geometry around an object effects its perceived size. In
this part, structural and geometric information present in an im-
age is used to find out how size depends on shape using the EDoG
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model. To do this a geometric illusion, namely The Muller Lyer Il-
lusion (MLI) has been used for study. More precisely, EDoG has
been used to understand how the lengths of the lines in the illusion
are perceived. Further, the role played by geometry of and around
an object in perceiving its length is observed. To do this, the re-
lation between a critical parameter of the illusion (angle between
the wings) and the induced illusion is also investigated. The results
obtained from computational model have been compared with the
experimental results for verification. This shows that the EDoG can
be a plausible model of mid-level vision, beyond edge representa-
tion.

The second part of this work is devoted to study a modified
adaptive version of EDoG model (Wei, Wang, and Lai, 2012). By
using the EDoG model with reverse control mechanism of vision,
the brightness intensity information contained in an image has been
used to give a good mid-level representation. It is shown that the
application of the modified version namely dynamic nCRF (the orig-
inal static version, as already mentioned in the previous paragraph,
was envisaged to provide more meaningful edge information as
compared to DoG), provides visually meaningful segmentation of
images. Further, a modified version of this algorithm is proposed
which produces a more unified mid-level representation of image
by computing the image segments as well as the edge map at the
same time. So both the static and the dynmaic versions of EDoG are
potential candidates for mid-level representation in that they can
make groupings, estimate outlines (that can be significant for mo-
tion) as well as size from shape.

As the final investigation into the higher level vision in Marr’s
hierarchy, more complex models are considered in the last part of
the work. In this regard, we have considered convolution neural
network (CNN) and deep learning which are one of the most exten-
sively researched topics at the moment. The deep CNN has a bio-
logical motivation in the context of brain-like computing, and has
been found to perform exceptionally well in pattern recognition in
many complex vision problems. It needs to be noted that the Re-
ceptive field modeling through spatial filters like DoG (low-level)
or EDoG (mid-level), described in the earlier chapters, are also con-
volutional networks in a primitive form. Hence the investigation
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of deep CNN in the context of high-level vision, is logical and rel-
evant. To relate the same to Marr’s approach, an extensive study
of the relevance of input parameters of a deep CNN, like number
of convolutional layers, convolution kernel size, number of filters
in one layer etc. with the classification accuracy and training time
of the system is performed considering one example of a five-class
problem using a well-known color fundus dataset for classifying
diabetic retinopathy. The results are further analyzed in light of the
biological structures of the human vision system.
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Chapter 1

Introduction

1.1 Motivation

In everyday life we come across a number of varying visual experi-
ences ranging from looking at a traffic scene on a sunny day to star-
ing at stars in a clear sky, but still we are able to move and make a
clear picture of the world seamlessly everywhere. In our day to day
life, we also come across a lot of inconsistent visual inputs. Still we
make up some information out of these. Some of these apparently
inconsistent figures fall in the category of illusions. This apparently
effortless and smooth experience is a product of millions of years of
evolution which has given us a complex enough model to have a
look at the world. This complex system is better known to us as vi-
sual system. Mammalian visual system as ours is capable of doing
a number of complex jobs from edge detection to object recognition
and more.

Biologically, the mammalian visual system consists of a number
of parts. Spatially it can be seen as two broad components, viz
retinal and cortical. Amongst both of these pre-cortical retinal cell
structure modeling has been well studied topic from computational
modeling perspective. It is easier to study biologically as shown by
(Curcio et al., 1990). The pre-cortical system is of great importance
because of two facts: Firstly, this part serves as a preprocessing step
in human visual system, understanding of which will help us in
improvement of a number of computer vision problems, Secondly
a better modeling of pre-cortical regions will imply a better under-
standing of the human visual system. The various existing models,
developed for the retinal cell modeling are also to be studied. This
opens up the possibility of finding usefulness of the models in dif-
ferent vision related problems. Cortical area for vision in contrast
are very complex to look at. For this reason, only the abstract nature
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could be understood rather than observing at the network level.
The human race has been in a quest to find the organization and

functionality of the visual system from computational modeling as-
pect. The construction of a unified model for vision would prove
to be a seminal advancement. (Marr, 1982) gave one of the most
renowned model for vision. According to him the vision system is
an information processing system with different level of hierarchy
for different representation of image. Each level/representation can
achieve different type of work. He proposed the concept of 3 level
image representation where the crude image is represented in dif-
ferent forms to achieve different jobs. He named the layers as Pri-
mal sketch, 2.5D sketch and 3D sketch. A primal sketch of an im-
age is based on feature extraction from fundamental components
of the scene. It includes edges, regions, etc. This representation is
regarded as the low-level representation. Whereas a 2.5D sketch of
the scene includes more informations like segments, texture infor-
mation, etc. It is broadly regarded as the mid-level image represen-
tation. The final one is the 3 D model. In a 3D map of an image, the
image is visualized in a continuous, 3-dimensional map. It can be
used to do the higher level tasks like of object detection, face recog-
nition, depth perception and so on.

In this work we aspire to gain a better understanding of the com-
putational models corresponding to each level of the hierarchy to
understand the vision system better. We explore what are the bio
inspired models for each layer of representation in Marr’s hierar-
chy for vision and their applicability in different tasks. A review of
existing models for the first two level of representation is presented
in the next section along with some topics which are required to
understand the models.

1.2 Existing Models and concepts

1.2.1 Retinal biology

The retinal cells present in our visual system is arranged in form of
a five layer neural network consisting of different types of cells hav-
ing different functionality as shown in Figure 1.1. This cell’s nature
and the network has been studies for long as shown in (Davson and
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Perkins, 2018). The bottom most layer comprises of a series of rods
and cones which are photo receptors, working as a transducer to
convert the light energy to chemical and electrical potentials.

FIGURE 1.1: Neural net at retina.

The captured information then moves to horizontal cells from
where it moves up to bipolar cells. Bipolar cells forward the pro-
cessed information to amacrine cells then to ganglion cell. Retinal
ganglion cell in mammals has been studied well in particular. A
number of models have been developed for the mentioned portion
of retinal neural net. Some of those are discussed in this section.
The dissertation work mainly includes some modification and ap-
plication of the discussed models.

1.2.2 Concept of Receptive field

(Kuffler, 1953) was one of the first ones to have captured the firing
rate of a single retinal ganglion cell in mammals against an input
stimulus of light.

Later on multiple attempts were made in same direction to find
the neuron firing rate of the retinal ganglion cell in order to model
the response. It is to be noted that ganglion cells have a certain base
firing rate which is considered as the baseline. Any change in the
baseline firing rate is recorded, Figure 1.2a represents the same. It
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(A) Firing rate of a single ganglion cell
as found by (Kuffler, 1953).

(B) Receptive field from photo recep-
tors to ganglion cells.

FIGURE 1.2: Receptive field and firing rate.

has been observed that the activation of a particular neuron in the
higher layer depends upon the activity of a certain region of the in-
put layer only. This region of interest is called receptive field of this
neuron for a particular neuron. Following this analogy, lightning a
certain region of the retina indicates a change in firing rate of a gan-
glion cell. According to (Hubel and Wiesel, 1962) "receptive fields of
cells at one level of the visual system are formed from input by cells at a
lower level of the visual system." In this way, small, simple receptive
fields could be combined to form large, complex receptive fields.
Hence for a particular ganglion cell, a cone shaped volume is cre-
ated such that only values of elements in that cone matters to this
ganglion cell and any element outside this has no effect in change of
activity of this neuron. This is represented in Figure 1.2b. It shows
the mapping containing ganglion cells,bipolar cells along with rods
and cones.

1.2.3 Difference of Gaussians (DoG)

The response of a neuron is not same throughout its receptive field,
for the same intensity input. Instead has maximum effect in a cir-
cular region near center and is less significant in a region outside
this circle. This circular region, for which the neuronal activity is
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maximum is known as center and the outside region is known as
the surround. This model containing them together is known as
Classical Receptive Field(CRF) or center-surround receptive field.

(A) Change in firing rate at different regions. (B) DoG model figure.

FIGURE 1.3: DoG region-wise firing rate.

Further, the nature of a ganglion cell and its response also varies
according to (Davson and Perkins, 2018). In particular the nature
of change in rate of firing of ganglion cell is not same for all gan-
glion cells. In a certain type of ganglion cells a stimulus in cen-
ter region increases the rate of firing, which keeps dropping as one
moves away from the center. It keeps dropping until a stimulus in
the surround region decreases from the baseline firing rate. This
indicates firing rate to be inversely proportional to distance from
center of the center region. This phenomenon of going below base-
line is called inhibition of surround. This inhibition is shown in
Figure1.3a. In the figure the positive marked region means positive
change in firing rate where a negative region marks suppression
or inhibition. In analogy, a bipolar cell receives direct inputs from
many retinal receptor cells (RCs) which forms the CRF, center of the
bipolar cell. The bipolar cell receives indirect input from more RCs
through horizontal cells. This further form the CRF surround of the
bipolar cell. (Hartline, Wagner, and Ratliff, 1956) showed a model-
ing approach in which the center region’s activity can be estimated
as a Gaussian function of positive peak direction and the surround
region’s inhibition activity is estimated as a negative Gaussian func-
tion . (Hartline, Wagner, and Ratliff, 1956) hence modeled the activ-
ity of such type of ganglion cells as a combination of two Gaussian
of different variance and same mean. This model for ganglion cell
is known as Difference of Gaussian(DoG) model. These particular
type of cells are known as On-center Off-surround ganglion cells,
named because of their nature of firing. From physiological studied



6 Chapter 1. Introduction

it has been found out that this is followed up in hierarchy. Alterna-
tively another type of ganglion cells are there where the pattern of
firing rate is exactly opposite to that of On-center Off-surround cells
which are known as Off-center On-surround ganglion cells as the
name suggests the central part is modeled as a negative Gaussian
and surround is modeled as a positive Gaussian.

FIGURE 1.4: On-center response

FIGURE 1.5: Off-Center On-Surround response

The nature of both the cells is shown in Figure 1.4 and 1.5. It can
be seen that a stimulus in both the region cancels effect of center and
surround and hence very less change in firing rate is observed. The
mathematical formulation of DoG function can be given as follows.

DoG(σ1, σ2) =
1

σ1
√

2π
e−(x)2

/
2σ2

1 − 1
σ2
√

2π
e−(x)2

/
2σ2

2

where σ1 and σ2 are standard deviation of center and surround
Gaussian and σ1 < σ2. The resultant Gaussian is shown in Figure
1.3b.

This model of CRF has spatial summation properties. This en-
ables this model to detect boundaries of images. DoG has been well
estimated to LoG which is a edge detector in (Marr and Hildreth,
1980). Hence, it could be recognized as a model for the first level of
the primal sketch as suggested by (Marr, 1982). This is one of the
most fundamental model fir the primal sketch since it can perform
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the edge detection as well as can help in other primal sketch activity
too like indicating regions.

(A) Change in firing rate at
different regions in nCRF. (B) EDoG model response.

FIGURE 1.6: ECRF region and graph.

1.2.4 Extended Difference of Gaussians (EDoG)

DoG was long considered the ultimate model for ganglion cell be-
cause of its excellent ability to match the curve for neuron firing rate
change as well as to be able to explain a number of phenomenons
like illusions, brightness perception, etc. Yet it failed to explain
many subtle effects. At the same time, an apparently small but rele-
vant questions remained about existence of a faint firing rate change
when both the center and surround is presented with stimuli. The
answer to the question was found later by (McIlwain, 1966) and
others. They found that there exists an area outside the center and
surround of the classical model where presentation of stimuli when
alone does not creates much of neuronal activity but when pre-
sented together with the center region produces a higher response
then without it. This suggests the existence of a region outside the
classical region which contributes to the neuronal activity of the as-
sociated ganglion cell. This region outside the surround is called
the extended surround. This model is known as non-Classical Re-
ceptive Field (nCRF). The model is also called Extended Classical
Receptive Field(ECRF)since it contains an extended Gaussian into
the classical model. It is also known as Extended Difference of
Gaussian(EDoG), since it contains an extra Gaussian from the DoG
model. Hence the terms nCRF, ECRF and EDoG has been used in
literature and in this dissertation also. nCRF has been modeled as
a combination of three zero-mean Gaussian at three different scales
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by (Ghosh, Sarkar, and Bhaumik, 2005b). This is equivalent to a bi-
harmonic or bi-Laplacian of a Gaussian filter. (Ghosh, Sarkar, and
Bhaumik, 2005a) and (Ghosh, Sarkar, and Bhaumik, 2006) used a
linear three-Gaussian function to model nCRFs. They further seek
to explain certain brightness contrast illusions. It is also to be noted
that the contrast, orientation, and direction of motion of the stim-
ulus stimulating the surround affects the suppressive effect. The
regions are shown in Figure 1.6a. It is to be noted that the earlier
models for DoG have considered an antagonistic behavior of the re-
gions. But now there are three components so each of the Gaussian
has be given a weight for its contribution to firing rate change.

This mathematical formulation is often also known as the Ex-
tended Difference of Gaussian(EDoG) which contains an extra Gaus-
sian term as follows.

EDoG(σ1, σ2, σ3) = a1 ∗
1

σ1
√

2π
e−(x)2

/
2σ2

1 − a2 ∗
1

σ2
√

2π
e−(x)2

/
2σ2

2

+a3 ∗ 1
σ3
√

2π
e−(x)2

/
2σ2

3

where σ1, σ2andσ3 are standard deviation of the three Gaussians
and a1, a2anda3 are the empirical constants determining the relative
contribution of the different regions towards the activity of the neu-
ron. The overall accumulated response is shown in Figure 1.6b.

FIGURE 1.7: An oriented DoG at angle of orientation 00

This model of Extended DoG along with its variants have been
shown to perform better segmentation and other higher levels task
with the help of an additional Gaussian. Hence, it could be consid-
ered as the model for the 2.5D sketch. The processed imaged shows
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the idea of textures too. Its ability to provide a better mid-level rep-
resentation is explored more in Chapter 2 and Chapter 3.

1.2.5 Oriented Difference of Gaussian(ODoG)

Not only the pre-cortical but early locations in the visual cortex like
V1 has also been an entity of equal or perhaps more interest. In
a landmark paper (Hubel and Wiesel, 1959) showed the presence
of another type of cells which unlike the retinal ganglion cells re-
spond to only stimuli in an oriented manner rather than responding
to symmetric stimuli. In other words these only respond to lines of
different orientation and that too with some particular spatial fre-
quency. So a certain type of cell only responds to a line oriented at a
certain angle. Each set of cells are tuned to a spatial orientation and
frequency.

FIGURE 1.8: (Blakeslee and McCourt, 1999) model for Simple cells
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(Hubel and Wiesel, 1959) named it as simple cells. A number of
ways have been taken to model these cells like by (Daugman, 1985),
who modeled the response as a Gabor filter. This modeling gives
a nice estimate but lacks the biological corresponding. This Gabor
model is not analogous to the anatomical structure of the visual sys-
tem. It doesn’t take the LGN into account and uses the 2D image as
it is projected on the retina. This indicated the presence of an ori-
ented Gaussian which is shown in at an orientation of 00 in Figure
1.7 Later on this oriented behavior of simple cells were modeled
in (Blakeslee and McCourt, 1999). (Blakeslee and McCourt, 1999)
represents this behavior of the simple cells as a combination of a
number of DoG filters which are oriented different directions and
also of different scales. They use a total of 42 filters which includes
all combinations of seven scales and six orientations. The orienta-
tions are from 00to1800 in a distance of 300 each. This modeling is
much more biologically plausible as there are clear evidence of oc-
currence of DoG in pre-cortical regions and a later orientation effect
can be achieved biologically too. They further apply a response nor-
malization process and accumulate the results to produce a single
response map. The representation is shown in Figure 1.8. The pro-
cess resembles that of applying a filter bank of an image to get an
image pyramid.

1.3 Thesis Layout

This thesis consists of five chapters. The first introductory chapter,
which is the present one, includes a literature review of a number
of bio inspired models for different layers of Marr’s hierarchy. The
second chapter explores the aspects of using geometric and shape
information to understand how an image is perceived using the
ECRF model. It presents a proposed method using ECRF to explain
the Muller Lyer illusion and attempt to find the relevance of the
attributes of the illusion with the induced illusion to understand
cognition of space through image. This work has been accepted for
poster presentation in an international conference Spatial Cognition
2018. The third chapter contains work on the modified version of
the ECRF model for the purpose of better mid-level representation
by using the brightness information in the crude image. This work
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is presently under consideration for preparing a manuscript for fu-
ture submission. The fourth chapter explores about the models for
third level of vision in Marr’s hierarchy. It presents more computa-
tional aspect of modeling by understanding impact of input param-
eters of deep convolutional neural network on classification perfor-
mance. This has already been submitted for peer review in an IEEE
conference (I2CT 2018). The final chapter depicts the conclusions
and planned future work from each of the chapters.
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Chapter 2

Explaining illusions by estimating
size from shape

2.1 Abstract

A number of models have been proposed and studied for the hu-
man visual system in order to perform usual tasks like object recog-
nition, face recognition, etc. A class of them investigates the struc-
tural information present in the image to get the size information
of objects in the image. This class of algorithms tend to find the
size of an object from geometry in the image. We try to study one
such approach in this chapter. In order to study this approach we
use geometric illusions. To understand how the size of an object
is affected from its geometry, geometric illusions becomes one of
the most interesting problems to look at. Further, the fact that an
ability to explain the exceptions make a model more closer to real-
ity should also to be appreciated. The work proposed is to explain
how length is perceived in the Muller Lyer illusion(MLI) (a geomet-
ric illusion) using a bio-inspired model namely, nCRF(non Classical
Receptive Field) discussed in Chapter 1. The nCRF model which
has been used is also considered a model for the 2.5D representa-
tion of an image by (Marr, 1982). The proposed work further in-
vestigates the relevance of a crucial parameter forming the Muller
Lyer illusion, the angle between converging or diverging arrows,
with the percentage of induced illusion for a better understanding
of space cognition. The percentage of induced illusion, experienced
by humans found experimentally, is compared with the percentage
of induced illusion, indicated by the proposed method, with respect
to change in the angle between wings.
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2.2 Introduction

An image when presented to a complex image processing or com-
puter vision system always converts it to an intermediate represen-
tation for better understanding and feature extraction which can be
used by higher modules to do complex tasks like object recogni-
tion, motion detection and so on. Our brain similarly has been be-
lieved to have a certain representation of the crude image that it
gets from the retina which is then forwarded to higher regions to
do the complex tasks as discussed in Chapter 1 by (Marr, 1982). A
considerable understanding of some bio-inspired model for finding
these inherent representation of image will certainly help in both
computer vision and cognitive science community.In particular the
understanding of type of inherent representation of an image in hu-
man visual system and its modeling will certainly help in a number
of improvements in the efficiency of computer image processing.

Most of the methods studied in this regard in the community to
understand visual system explores only about the brightness infor-
mation content in the image not the geometrical aspects present in
the image. The alternative way to explore about an image is the
geometrical information contained in the image. The geometric in-
formation infers the shape and size of an object present in an image.
In order to extract this size information from geometry of an image
the nCRF model has been used which is discussed in Chapter 1. In
order to test the method proposed for estimating size we use geo-
metric illusion as a test case. Illusions have been an area of much
interest for a long time. It shows some of the most critical struc-
tural and functional aspects of human visual system. Geometric
illusions, in particular, are worth exploring for the task.

A number of approaches have been taken in past to explore about
geometric illusions using models corresponding to lower level model
in Marr’s hierarchy like DoG by (Mandal, 2016).At the same time
the 2nd tier model like nCRF have been used to explain brightness
illusions by (Ghosh, Sarkar, and Bhaumik, 2006) where they used
nCRF to explain the White effects. In contrast in this work an at-
tempt has been made to explain the geometric illusion MLI with the
help of a bio inspired model nCRF which has been seen as a model
for the 2nd layer in Marr’s hierarchy. The attempt to explain MLI
and hence understanding how size is perceived using nCRF is also
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very important because either the models which have been used
to explain MLI are not as versatile as nCRF or the versatile mod-
els nCRF have been used to explain brightness illusions. Discussed
next are the MLI in detail followed by a discussion on perceptual
field understanding of which is required for the methodology sec-
tion.

2.2.1 Muller Lyer illusion

FIGURE 2.1: The Muller Lyer illusion.

The Muller Lyer Illusion (MLI) is a classical geometrical illusion
of size. In this illusion, perceived line length is decreased by arrow-
heads and increased by arrow tails as shown by (Day and Knuth,
1981). It is a classic case of image inducing misjudgment in length
of two lines of same length. The Muller Lyer illusion is shown in
Figure 2.1. Some of its variations are shown in Figure 2.2.

FIGURE 2.2: Variations of Muller Lyer illusion.

It is a classic example of a case where the geometry of and near a
point in space influences the perceived position of the point in the
space. Many theories have been put forward to explain the MLI.
Still there is ongoing debate for the source of the MLI.
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2.2.2 Perceptual field

The concept of the perceptual field and its use for mathematical
analysis for visual illusion was first given by (Kawabata, 1976). They
emphasized that the visual information captured by retina while
transferred to cortical areas for vision goes through a lot of neuronal
activity and modifications. Since the activation of higher level neu-
rons is nothing but superposition of a number of receptive fields the
image as received by cortical regions is also different than the orig-
inal image. This representation is referred to as perceptual field by
them and analysis of this perceptual field will certainly give prop-
erties of the perceptual image.

2.3 Methodology

2.3.1 Convolution filter: nCRF

In Chapter 1 idea of the non Classical Receptive field and its mathe-
matical formulation is discussed in detail. In Section 2.2 its has been
discussed how the nCRF model has been used to explain different
brightness illusions. As stated in Section 2.1 nCRF has been used
in this case too for convolving with the illusion image and getting a
representation of it, followed by getting a contour plot which indi-
cates the neuronal activity(discussed in next section) to get the per-
ceived length of the lines. To recall the nCRF filters mathematical
formulation is given as follows:

EDoG(σ1, σ2, σ3) = a1 ∗
1
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where σ1, σ2andσ3 are standard deviation of the three Gaussian and
a1, a2anda3 are the empirical constants determining the relative con-
tribution of the different regions towards the activity of neuron.
these coefficients a1, a2anda3 are drawn from the same relation used
in Section 3.3.1.
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FIGURE 2.3: Sample contour plot

2.3.2 Contour Plot

In Chapter 1 a number of models representing the retinal neural
activity has been discussed. Since the models represent the activity
of retinal neural net, it then must indicate the changes in retinal
image while transferring to cortical area. Hence using these models,
we can get the perceptual field and perceptual image of an image.
So it can be concluded from above arguments that the perceptual
field of an image could be found through the application of models
discussed in Chapter 1.

In order to view this perceptual field we have used a contour
plot through Python programming language. A contour plot is a
graphical technique for representing a 3-dimensional surface on a
2D colored plane. It is done so by plotting constant z slices, called
contours, on a 2-dimensional format. For a given of z, lines are
drawn for connecting the (x, y) coordinates where that z value oc-
curs. The contour plot can be seen as an alternative to a 3-D surface
plot. A sample contour plot is shown in Figure 2.3.

The python library matplotlib has been used to create the con-
tour plot of the converted image or perceptual field. To summarize,
the main approach for explaining the illusion used proposed in this
work is to convolute the Muller Lyer illusion image with a nCRF fil-
ter with a particular set of parameters which are biologically most
plausible. This convoluted image is then subjected to method de-
scribed in Section 2.3.2 to find a contour plot of the filtered image.
With the help of this contour plot the perceived end points and per-
ceived distance of lines.
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FIGURE 2.4: Angle between wings.

2.3.3 Relevance of angle

The angle between the wings (α) is an essential parameter for MLI. It
has been shown via experimental data by (Restle and Decker, 1977)
that angle between the wings of converging or diverging arrow af-
fects the amount of induced illusion. To understand the relevance of
the angle between the converging or diverging arrowheads of lines
in MLI. For the sake of better understanding the angles between
the axis and the diverging or converging wing of the arrowhead is
named α. This angle is kept same for both diverging and converg-
ing wing for the sake of consistency in induced illusion. The angle
is shown in Figure 2.4.

FIGURE 2.5: Angle between wings.

α is varied from 20 to 900. All the images are subjected to the
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methodology discussed in Section 2.3.2. The perceived length of
both the lines is found for all the varied angle images. Some of the
images are shown in Figure 2.5.

2.4 Result

2.4.1 Original Muller Lyer illusion

FIGURE 2.6: Contour plot of filtered MLI image.

The original MLI is subjected to the method proposed. On the
convolution of the illusion image with nCRF filter produced an im-
age shown in Figure 2.6, seeming not very different from original
image except for a small blur. Further when this resultant image is
subjected to contour plot, the result is shown in Figure 2.6 and the
perceptual field or contour plot is shown in Figure 2.7. The contour
plots show the presence of circular artifacts at the junction of arrow
wings and the lines.

FIGURE 2.7: Contour plot of filtered image.

These artifacts are marked by high valued(red colored) circular
shapes. This in terms of neuronal activity represents increase in fir-
ing rate and hence taken as the perceived end points in the perceptual
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field. Once these endpoints are identified via the artifacts. The co-
ordinates for the exact endpoints could be identified manually by
roughly locating the center for the circular artifact. In order to find
the perceived distance the geometric distance between these two end-
points for a line is considered. Once the perceived distance is found,
the percentage illusion could be found by comparing the perceived
distances for both converging and diverging arrowed lines. This
perceived distance is calculated for an MLI image with length of
line being 150 pixels and lengths of the wings being 30 pixels. The
proposed method is applied on the MLI image a number of times
and the average of the perceived distance is taken for the finding
induced illusion percentage. 10 trials on the image give an average
perceived length of 113.5 pixels for diverging arrowed line where as
for converging arrowed line the average was found as 96 pixels. In
order to find the induced illusion percentage the following formula
is used:

Illusionpercentage = Lengtho f divergingarrowedline−Lengtho f convergingarrowedline
Lengtho f originalline

where length is Perceived length of a line. In this case the in-
duced illusion percentage comes our as 16.5%. It is a encouraging
result since it shows a significant perceived illusion length and also
very close to experimental data for adult human as by (Restle and
Decker, 1977).

FIGURE 2.8: Plot for perceived pixel position vs angle for diverging arrow-
head line.
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FIGURE 2.9: Plot for perceived pixel position vs angle for converging ar-
rowhead line.

2.4.2 Relevance of angle between wings

The MLI configuration at 45 different angles from 00 to 900 is used
to find the induced illusion. Each of the images has the same config-
uration as for the original image i.e. length of the line is 100 pixels
and length of wings is 30 pixels. The images, unlike previous case,
are subjected to nCRF filter and then contour plot only once. The
plots for the perceived pixel location of the end points of both the
lines are given in Figure 2.8 and Figure 2.9.

FIGURE 2.10: Plot for perceived length vs angle for both line.

In the figures top indicated the perceived pixel position of higher
endpoint colored in blue for both the plots whereas the bottom in-
dicates the perceived pixel position of lower endpoint colored in
orange. The plots show that the perceived pixel position for diverg-
ing arrowed line decreases with the increases in the arrow angle
whereas doesn’t change much for converging arrowhead. The plot
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for perceived lengths for both the lines is given in Figure 2.10. In
the plots the blue line represents perceived length for the diverg-
ing arrowhead line and orange line shows the same for converging
arrowhead line.

2.4.3 Comparison with experimental data

(A) Plot for percent illusion vs angle
between wings from (Bulatov, Bertulis,

and Mickienė, 1997).
(B) Plot for percent illusion vs angle be-

tween wings from our approach.

FIGURE 2.11: Comparison of percent illusion from experimental and com-
putational data.

The plot for experimental data is given in Figure 2.11a. The in-
duced percent illusion from the computational approach proposed
is shown in Figure 2.11b. It could be seen that the nature of the
curves in both the plots is similar. There exist an initial rising pat-
tern in both the plots succeeded by a sharp decrease in the induced
percentage illusion.
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Chapter 3

Dynamic Extended Classical
Receptive field and its applications

3.1 Abstract

In this chapter the ability of ECRF based models for giving a better
mid level representation of an image and hence it’s candidature for
being a model for 2nd level in Marr’s hierarchy is explored. In order
to show that ECRF as a model can be a good candidate for modeling
2nd level in Marr’s hierarchy in this chapter, one of its modification
is shown to be giving better mid level representation of an image.
The variance of the applied model in this chapter is in the use of
brightness information present in the image along with a top down
approach in vision. The variant model known as the dynamic ECRF
was originally proposed by (Wei, Wang, and Lai, 2012). In this work
their model is understood and implemented to see how it is giving a
better representing by segmentation process. Further in this work a
variant of the original work by (Wei, Wang, and Lai, 2012) has been
developed which produces both a mid level representation of the
image and also give an edge map of the original image from a single
algorithm. This work further gives support o the candidature of
ECRF as a model for both 1st level and 2nd level in Marr’s hierarchy.

In the work by (Wei, Wang, and Lai, 2012), they show that the hu-
man visual and attention system is not only a bottom up process i.e.
from retina to higher parts of the brain but has also been found to be
a top down process i.e. from higher parts of brain to retina. Various
modeling techniques have been given for this assimilation of both
top down and bottom up method of vision and attention. Adap-
tive receptive field size and dynamic non classical receptive field is
one of the models proposed by them for this process. In their work
the size of each receptive field is calculated dynamically as a part
of the top down process. They have shown it to provide better mid
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level representation of an image by showing that it is doing better
for segmentation tasks.

3.2 Introduction

According to (Marr, 1982) the human visual system can be consid-
ered as an information processing system where an image in its
crude for is converted to a number of representations of different
tasks to be performed easily. It includes conversion to an interme-
diate representation for better understanding and feature extraction
which can be used by higher modules to do complex tasks like ob-
ject recognition, motion detection and so on.

In this regard it is important to see that the information content
of a crude image is broadly explored in two ways, one of it is to
explore the brightness or intensity content of the image and provide
a better representation of image so that more complex tasks could
be easily performed. The other way is to use the structural and
geometric information present in the crude image. This alternative
way helps cognition of the shape and size of an object and space
around it.This chapter deals with use of inherent brightness and
intensity information in the image to find a better mid level image
representation, performing better at segmentation. Where as model
based on the alternative way is discussed in Chapter 2.

Now to understand how the information content could be used
for getting better representation of image the significant questions
which are to be asked are

• What is the nature of inherent representation of image?

• What are the biological mechanisms for it?

• How to incorporate these mechanisms in computational model?

Each of the succeeding subsection will discuss about each of the
question.

3.2.1 Mid level image representation

A single pixel has very limited information content. It can noway
be used for finding any semantic information content. A number of
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neighboring pixel only can give a semantic information about the
image. This happens via the representation of an image on different
levels as suggested by (Marr, 1982) in this book. He suggests and
is believed widely that image is represented on mainly 3 different
levels. First level in the physical representation is similar to the reti-
nal image, containing zero crossings edges bars, etc. (Marr, 1982)
names it as the primal sketch. Second level is that of a grain size of
the block It contains more semantic information than the first level
image. It mainly contains information about color intensity, shows
broad segments and textures. In this regard this second level of
image representation is referred to as mid-level image representa-
tion. It has a very important role in the in-line processes of vision.
The mid level image representation is more of an abstract but still
general in nature. It is also to be noticed that this mid level repre-
sentation is only possible with integration of pixels on image based
features itself. The third level representation contains information
and semantic clues up to the level of object. It contains the 3d and
background information too.

3.2.2 Biological mechanism for mid level image representation

The human visual system as discussed must also attain a mid level
visual representation in order to provide the higher regions so that
these can have a final representation of image and can do the com-
plex tasks like object detection, etc. The main components of the
human vision system in the retinal region are the cells and arrays
in the ganglion layer of the retina, the lateral geniculate nucleus
(LGN), and the primary visual cortex (V1). The constant change
in the input via the retina due to fast change in surrounding is a
very important point to note. This indicates a self-adaptive mecha-
nism to cope up with external varying stimuli. The concept of the
receptive field is already discussed in the Section 1.2.2 the existing
models for it like CRF and nCRF has also been discussed in the sub-
sequent sections. (Wei, Wang, and Lai, 2012) believe that the nCRF
based model which explain the neuronal activity in retinal ganglion
cells and LGN give the neural basis for the integration of features in
a local region. They also believe that this is done using an interme-
diate size scale. Of almost all the models that have been studied it
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was (Wei, Wang, and Lai, 2012) who first incorporated the top down
methodology.

3.2.3 Reverse control mechanism

Research shows that size of the ganglion RF depends on changes in
brightness, background, the duration of stimuli, the speed of mov-
ing objects, and so on (Li, 1997). Since there are evidences from
electro-physiological, anatomical, and morphological perspectives
that modulation coming from higher cortical layers is of a func-
tional importance. A model must include top-down feedback. This
is done using a reverse control mechanism. It is a top down pro-
cess. The more physiological evidence includes interplexiform cells,
exerting backward control over horizontal cells as well as bipolar
cells to change the size of the CRF surround. Similarly the mesen-
cephalon exercise backward control over interplexiform cells and
amacrine cells for changing the size of the CRF center through cen-
trifugal fibers. The cortico-geniculate pathway also has top-down
modulations (Webb et al., 2002). These give enough evidence for
presence of a reverse control mechanism in pre cortical regions in
human visual system for the purpose of mid level image represen-
tation.

3.2.4 Self Adaptive receptive field

By now it is evident from biological and physiological findings that
there is a need for a reverse control mechanism for finding mid level
image representations in our visual system. But the exact mech-
anisms for it is still under question.As discussed in section 3.2.3
that the size of receptive field changes with the external factors.
Broadly speaking to locate and represent borders and details of ob-
jects smaller RFs are used, while to represent the regional area of
an image larger RFs are used . To look at a portion of image in de-
tail, the portion require a smaller RF size where as to have a look
at a larger object as a whole it needs larger RF size too. A detailed
region must be having high spatial frequency where as the recog-
nition of an object of higher scale as a whole requires the opposite
analogy. This dynamic behavior can only be incorporated via its
correspondence with retinal visual cells. One of the ways suggested
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by (Wei, Wang, and Lai, 2012) was to adjust the size of the receptive
field for each ganglion cell computation dynamically. This dynamic
adjustment needed to be both task specific including the top down
method as well as depends upon the receptive field central pixel
neighborhood in image. The receptive field size change in this dy-
namic method is named the self-adaptive receptive field

3.3 Methodology

The methodology used in this work is mostly drawn from (Wei,
Wang, and Lai, 2012) as described in the Section 3.1. In order to find
a mid level representation of image with the advantage of the top
down approach the size of the filter to be convolved with is adjusted
dynamically. This mechanism of the dynamic changes in the RFs of
GCs must have some important criteria like the rules determining
how to find RF size must apply to any image, the adjustment in
RF size should be performed automatically and mechanically. This
dynamic adjustment is done using the self adaptive size of the re-
ceptive fields. (Wei, Wang, and Lai, 2012) have done it by observing
surround at a certain GC’s receptive field central pixel. If the sur-
rounding is homogeneous then, the size of RF must be increased
and do it until it hits an inhomogeneous region where there is a
considerable difference in neighboring pixels. To quote (Wei, Wang,
and Lai, 2012), we propose the following mechanism: a GC first detects
the properties of adjacent small areas in an image, then, if it finds the prop-
erties are similar, it extends its RF to integrate and represent them; in
contrast, if the properties are dissimilar, the RF shrinks, enabling the prop-
erties to be distinguished and represented separately. They name it as
dynamic nCRF. In section 3.3.1 the pseudo code for finding the size
of the receptive field for every GC is given along with finding the
convoluted result when convolved with nCRF filter of dynamically
found receptive field size.



28 Chapter 3. Dynamic Extended Classical Receptive field and its applications

3.3.1 Dynamic nCRF

To recall from 1.2.4 the nCRF filter could be found by using the fol-
lowing expression:
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where σ1σ2andσ3 are standard deviation of the three Gaussian and
a1, a2anda3 are the empirical constants determining the relative con-
tribution of the different regions towards the activity of neuron.
Here the parameters are considered fixed for this implementation.
The values of parameters a1, a2anda3 are found using the relations
established in (Wei, Wang, and Lai, 2012) with σ1, σ2andσ3 as follows
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Algorithm 1 Simplified algorithm for Dynamic Adjustment of RF size

1: Set initial parameters min, max scale initial size for RF
2: for each central pixel for convolution do
3: size← init_size
4: GC_val ← image convolved with nCRF filter of size
5: Calculate GC_val-GC_val_small and GC_val-GC_val_large
6: if GC_val-GC_val_small differs from GC_val-GC_val_large then
7: for size = init_size− 1 : min_size do
8: GC_val ← GC_val_size
9: GC_val_small ← GC_val_size− 1

10: if GC_val not differs much from GC_val_small then break
11: else
12: for size = init_size + 1 : max_size do
13: GC_val ← GC_val_size
14: GC_val_large← GC_val_size + 1
15: if GC_val differs much from GC_val_small then break
16: intensity_value_this_pixel ← GC_val
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The algorithm presented is a simplified form of the algorithm by
(Wei, Wang, and Lai, 2012). In the algorithm for each pixel which
is a candidate for center pixel during convolution process an iter-
ative process is repeated (line 2). Initially a minimum and maxi-
mum scale for the algorithm is set which acts as the smallest and
largest filter size after adaptation of the receptive field(line 1). In
this case min size is set as 10 pixels whereas max size is set as min
of length or breath of image input. An initial size of the filter is set
which hold for each iterative process. Initially the value of image
convolved with nCRF filter of initial size is stored in GC_val(line
4). Now for each of the candidate central pixels its neighborhood
is checked for similarity starting from initial size of the filter. To do
this GC_val_small and GC_val_large is calculated which are con-
volved result between image and nCRF filter of size size-1 and size+1
respectively(line 5). GC_val_small and GC_val_large are compared
to check the region of the filter(line 6). If the convolved value of
initial size filter differs much from convolved value of smaller size
filter then the region is not homogeneous (line 6) other wise the re-
gion is homogeneous(line 11). In the earlier case the region(filter)
size is decrease and increased in later case. While decreasing the
size of the filter gradually to get homogeneous region until min_size
(line 7) the convoluted value of current region is found(line 8) and
convoluted value of smaller region is found(line 9). Comparison
between these two values GC_val and GC_val_small is done after
each pass to find whether homogeneous region achieved(line 10).
Similarly for the other case while increasing the size of the region
gradually(line 12) convoluted value of current and larger region
is kept in GC_val and GC_val_large(line 13,14). These are com-
pared to check if current region still remains homogeneous after
each pass(line 15).Finally when desired region has been found it is
stored as intensity value of the pixel(line 16).A representation of the
iterative process is given in Figure 3.1.

3.3.2 Adaptive receptive field size as edge detector

The algorithm for dynamic nCRF provides an image as filtered with
dynamically adjusted receptive field size. Most of the models which
have been studied till now on dynamic nCRF (Wei, 2016) (Wei, Dai,
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FIGURE 3.1: Visualization of Dynamic nCR by (Wei, Dai, and Zuo, 2016).

and Zuo, 2016) have not utilized the size dynamically adjusted re-
ceptive field size for any other process. In most of the cases, it has
been used for better image representation (Wei, 2016) and saliency
detection (Wei and Zuo, 2015).

In this work the information contained in this dynamic receptive
field size is used to find edges in the input image. The basic intu-
ition behind this is an edge or boundary point or region will have
a inhomogeneous surround where as a non boundary region has
a relatively homogeneous region. Further in case of dynamically
finding RF size for a GC if the surround is inhomogeneous then ac-
cording to the algorithm the size of the receptive field will shrink
down to a much smaller value where as for a homogeneous region
the adjusted RF size will be much higher. Hence from above two
lines it could be inferred that a boundary region or an edge point
will have a small receptive field size associated with it where as a
non boundary region point will have a much larger value of ad-
justed RF size associated with it. This very inference serves as the
base for the edge detection method proposed here. In this way if the
adjusted size of the receptive field for each pixel is stored as color
intensity value for this pixel in a new image. The edge or bound-
ary region points will appears as black due to a smaller value and
a non edge or non boundary point will be appearing as more white
as following from the inference made above.

Hence, this inference can be modeled as an edge or boundary
point detector. It is to be further noted that the particular value
of adjusted receptive filed size not only indicate the nature of the
pixel but also indicate about how big of a blob of the homogeneous
region can be found around this pixel. This extended information
can further be used for a blob detection system. The algorithm for
edge or boundary point detection is given as follows:



3.4. Results 31

Algorithm 2 Algorithm for edge detection using dynamic nCRF

1: Set image for edge detection as all black pixel value image of same size as that of
input image

2: Set initial parameters min, max scale initial size for RF
3: for each central pixel for GC as pixel_value do
4: size← initsize
5: GC_val ← image convolved with nCRF filter of size
6: Calculate GC_val-GC_val_small and GC_val-GC_val_large
7: if GC_val-GC_val_small differs from GC_val-GC_val_large then
8: for size = init_size− 1 : min_size do
9: GC_val ← GC_val_size

10: GC_val_small ← GC_val_size− 1
11: if GC_val not differs much from GC_val_small then break
12: else
13: for size = init_size + 1 : max_size do
14: GC_val ← GC_val_size
15: GC_val_large← GC_val_size + 1
16: if GC_val differs much from GC_val_small then break
17: intensity_value_this_pixel ← GC_val
18: intensity_value_this_pixel_new_image← size

As explained earlier the algorithm 2 is mostly similar to algo-
rithm1. The introduced concept for edge detection is done in Line
18 where the adjusted size of the filter is kept as intensity value for
pixel position in edge map image.

3.4 Results

FIGURE 3.2: Various sample images.

(Wei, Wang, and Lai, 2012) have used the Y valued image of the
Y, CbCr representation of the original image as a measure of compar-
ison with the results they have got. In this work instead it is tried



32 Chapter 3. Dynamic Extended Classical Receptive field and its applications

in more visual manner. They further show some images to be sub-
jected to segmentation which gave better results according to them.
Here also, some filtered images are again subjected to segmentation
and the results are inspected visually too. In the next two sections
results for both the basic algorithm and edge detection version are
discussed.Figure 3.2 shows some of the original images which have
been used for the task. It contains images from simple and widely
known domain like illusions as well as some segmentation bench-
mark image as egg on the plate.

3.4.1 Segmentation

This section discusses the effect of the dynamic nCRF method on
image and its segmentation. The comparison between the adap-
tively filtering of original image, segmented result of original im-
age using k means clustering and segmented result of the filtered
image using the same method and values is presented in Figure
3.3.Some of the key observations are: We can clearly see the dif-
ference between segmented images for 1st row and 4th row images.
In all the cases (specially in 1st and 4th row) the filtered image when
segmented we can distinguish between object and background well
even with similar colored object and back ground which is not there
in other segmented image. The other observation is it can detect
the region and counters shade effects too as can be clearly seen in
3rd and 5th images where despite shade regions are brought out in
a better way. On the basis of these observations, we can say that
a better segmentation result can be found through dynamic nCRF
process.

3.4.2 Edge detection

Edge detection as discussed in section 3.3.2 is performed by the
modified dynamic nCRF method. The result of sample images from
Figure 3.2 subjected to the algorithm 2 is shown in Figure 3.4 along
with the original and filtered images. The third column in Figure
3.4 shows the edge map for original images in 1st row. The expected
edged could be clearly seen in the images. It could be observed that
noise in the images are not considered as edges in all the figures.
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Both the algorithms discussed above are expensive with respect
to time because of its iterative nature. Along with size of image the
running time also depends a lot on the threshold and initial values
chosen for the algorithm. A small threshold means higher homo-
geneity is demanded within a region and vice-versa. A 240x150 im-
age takes 5 minutes to get filtered along with a few more seconds to
segment. For more heterogeneous images with smaller objects, the
algorithm terminates quickly whereas more homogeneous images
take more time to filter.
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FIGURE 3.3: Segmented result comparison with Dynamic nCRF and with-
out Dynamic nCRF
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FIGURE 3.4: Edge detection result using Dynamic nCRF
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Chapter 4

Impact of Convolutional Neural
Network input parameters on
classification performance

4.1 Abstract

Higher levels in visual hierarchy require more sophisticated mod-
els for performing higher level tasks like object recognition, face
recognition and other classification tasks. A model for these tasks
is usually complex and somewhat more abstract. All the models
that has been discussed so far are shown to be biologically plausi-
ble ones and more inclined towards the mid level image represen-
tation. These are however, not very useful for higher level tasks like
feature detection, object recognition, etc. From the pool of models
for the higher level vision, deep Convolutional Neural Networks
have shown impressive capabilities for solving complex image clas-
sification problems very well on a diverse range of problems in re-
cent past. In the case of CNN there are numerous input parameters
that decide the architecture of the network such as the number of
convolutional layers, convolution kernel size, number of convolu-
tion filters in one layer, type of activation function, pooling window
size, stride, etc. In this work an attempt is made to understand the
impact of some of the input parameters on the classification per-
formance of the network. The work is performed for a five class
problem using a widely used color fundus retinal image dataset to
classify stages of diabetic retinopathy. CNN input parameters such
as the number of convolutional layers, number of filters in one layer,
size of the convolution kernel and activation function is considered.
The impact of these input parameters on the accuracy of classifica-
tion and the runtime for training the network is analyzed. It has
been observed that both the classification accuracy and the runtime
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for training the network is more heavily dependent on the number
of convolution filters in one layer and size of the convolution ker-
nels than on the number of convolutional layers or the depth of the
network. It is also found the type of activation function is actually
having no impact on the accuracy. This preliminary work helps to
understand the functioning of CNN, identify the crucial parame-
ters which will finally lead to explanation of the reason behind their
impact on the performance.

4.2 Introduction

Chapter 1 reviews a number of bio inspired models for different
levels of vision. Chapter 2 and Chapter 3 uses the extensions or
modification of the models for exploring aspects of how geometry
affects size estimation via the Muller Lyer illusion and also under-
standing mid level vision to achieve goals like better mid level rep-
resentation of image. All the models that has been discussed so far
are shown to be biologically plausible ones and more inclined to-
wards the mid level image representation. These are however, not
very useful for higher level tasks like feature detection, object recog-
nition, etc. Traditionally a number of attempts have been made in
order to find bio motivated models which can perform well at these
higher order tasks too. Some of these are Cellular neural network
introduced by (Chua and Yang, 1988), spiking neural network by
(Maass, 1997), Pulse coupled neural networks by (Johnson and Rit-
ter, 1993) and others. Cellular neural nets are introduced as a par-
allel computing paradigm similar to neural networks, with the dif-
ference that communication is allowed between neighboring units
only. Spiking neural nets on other hand make an effort to model the
actions and firing phenomenon of neurons more accurately. Pulse
coupled neural networks are neural models proposed by modeling
a cat’s visual cortex. Most of the models have been used in a variety
of image processing applications, including: image segmentation,
feature generation, face extraction, motion detection, region grow-
ing, and noise reduction. A similar bio inspired modeling of the
visual system known as Convolutional Neural Networks(CNN) is
one of the most studied topics in the community in recent past as
shown by (Gu et al., 2017). It has been found to be very effective
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in a number of domains and variety of problems. Its biological in-
spiration, ability to bring out relevant features from data and little
requirement with respect to preprocessing of input data makes it a
key player in the field. It needs to be noted also that the Receptive
field modeling through spatial filters like DoG (low-level) or EDoG
(mid-level), described in the earlier chapters, are also convolutional
networks in a primitive form. A common issue for all of these mod-
els, mentioned here, is the choice of the non trainable parameters of
the model. In the study of each of the models attempts have been
made to understand the nature of these non trainable parameters.
Similar attempts have also been made in the field of Convolutional
neural nets and deep learning too. In this work also an attempt has
been made to understand the nature of these non trainable param-
eters with accuracy and training time for a classification problem.
A good understanding of the relevance of these will definitely help
the community to understand the convolutional neural networks
better. It would help to understand logically what parameter value
to be chosen for a given problem. To execute this job, an extensive
study has to be done on the various possible values of these non
trainable parameters on a certain dataset in a set up for classification
problem. In the next sections the various constituents of a convolu-
tional neural net as well as the terminology for the non trainable
parameters of a model under consideration here is discussed along
with the detail about the task on which the investigation is to be
done.

4.2.1 Types of layers

A brief introduction about each type of layer and how they have
been used in this work is given as follows:

Convolutional Layer

This layer works very similar to the prototype of a layer in the sense
that it has learn able weights and biases. It receives input, performs
a dot product and allows an optional non-linearity. The main dif-
ference is that it takes a locality into account while calculating acti-
vation for a particular position in the input using the concept of the
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(A) Convolution layer. (B) Max pooling layer.

FIGURE 4.1: Convolution and max pooling layer visualization.

receptive field discussed in Section 1.2.2. The inner structure con-
sists of a set of filters(kernel) which means the neurons are arranged
in form of 3D structures to applicable on 3D image shown in Figure
4.1a. The convolution of the input image with each filter produces
features which are extracted by forming a new layer. Each layer
transforms the 3D input volume to a 3D output volume. Each layer
represents projection of input data into some higher dimensional
space.

Max-pooling Layer

Max-pooling is discretization process. It is used to down-sample an
input representation resulting in reducing it’s dimensionality and
reduced number of parameters to learn. Further reducing the com-
putational cost. The features contained in a sub region could be ab-
stracted by translational invariance property. This layer is generally
used after a convolutional layer. The action of a 2X2 max-pooling is
shown in Figure 4.1b.

Activation Layer

In order to add nonlinearity after each layer this layer is used. With-
out nonlinearity the whole network act as a simple linear transfor-
mation. It is known that the linear networks do not have so much
power for the complicated task such as image classification. A num-
ber of nonlinear activation function have been prevailing. We have
used some of them for our analysis. Sigmoid, Tanh and ReLU are
the three activations functions used here for investigation. Each
of these has a strong biological correspondence. The functions are
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given as follows:

Sigmoid f (x) =
1

1 + e−x

Tanh f (x) = Tanh(x) =
ex − e−x

ex + e−x

ReLU f (x) = max(0, x)

Dropout Layer

Dropout is a regularization technique for reducing over fitting in
neural networks by preventing too much reliance on training data
(Srivastava et al., 2014). Here, while updating a neural net layer, it
updates each node with probability p, and leave it unchanged with
probability 1-p. Hence, only the reduced network is trained on the
data in that stage. The removed nodes are then reinserted into the
network with their original weights.

Fully Connected Layer

The fully connected layers are used to perform the higher level rea-
soning on the features extracted by use of stack of convolutional
and max pooling layers. This layer takes all input from each neuron
from the previous layer and connects to each and every neuron of
the next layer.

Classification Layer

After a stack of multiple layers, the final layer is a classifier layer
which is stacked on the top for classifying the input. Softmax is
a popular choice for the classification function. This function has
been used for classification amongst classes in this work also.

Li = − log(
e fi

∑j e f j
)

where f j is the j-th element of the vector of class scores f . A correct
prediction probability is achieved by the softmax in the log of the
equation.
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4.2.2 Hyper parameter and related works

Traditionally the term hyperparameter refers to a parameter whose
value is set before the learning process begins in machine learn-
ing.In contrast the values of other parameters are derived via train-
ing. In this work intension is to find out the nature of these hyper-
parameters. Hence, these are also treated as the parameters to be
found via analysis in this work.

In recent times a seminal work in neural networks was in 2012
when (Krizhevsky, Sutskever, and Hinton, 2012) built a deep CNN
model called AlexNet. It consists of five convolutional layers and
three fully connected layers to train the ImageNet dataset for a im-
age recognition challenge. It obtained state-of-the-art performance
on the ImageNet dataset. It followed with a number of other ma-
jor architectures like VGGNet by (Simonyan and Zisserman, 2014),
ResNet by (He et al., 2016) and many more. The hyper-parameters
in all of these work are chosen in a more of trial and error method.
More recently approaches have been made to understand the rele-
vance of the parameters with accuracy and time required for train-
ing. Albelwi et al. used objective function that combines the infor-
mation from the visualization of learned feature maps to provide
a framework for choosing hyper-parameter of the network by (Al-
belwi and Mahmood, 2016). Sequential model based optimization
(SMBO) has been used for the same job for object recognition by (Ta-
lathi, 2015).(Kim, 2014) used convolutional neural networks (CNN)
trained on top of pre-trained word vectors for sentence-level clas-
sification tasks. It also examines the relevance of hyper-parameters
with accuracy for the problem. Extrapolation of learning curves has
been used by (Domhan, Springenberg, and Hutter, 2015) to auto-
matic hyper-parameter optimization. (Basu et al., 2015) proposed
a framework for the satellite imagery named DeepSat. They have
used a number of techniques on a number of satellite images datasets
to produce the learning framework.

4.2.3 Diabetic Retinopathy

Problems related to medical imaging in this regard are of a signifi-
cant interest. Since medical image analysis has seen notable interest
in recent past from community it has been chosen as the area for
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analysis here. It is assumed that if the analysis is done on a certain
specialized type of problem and dataset then more strong inference
can be made out of it.

Diabetic Retinopathy(DR) is a medical condition in which due
to prolonged diabetic mellitus some defects in retinal vision is ob-
served. This damaged retina can lead to blindness. It affects up to
80% of people having diabetes for more than 20 years. It is esti-
mated that diabetes mellitus affects 4 per cent of the world’s popu-
lation, almost half of whom have some degree of DR at any given
time as in (Kertes and Johnson, 2007). India has highest number
of diabetes mellitus with 31.7 million people, China is second with
20.8 million people and USA is third with 17.7 million people as
shown in (Kaveeshwar and Cornwall, 2014). The detection of DR
requires the examination of the color fundus photographs of retina
by trained clinicians which is a time consuming work. Further, the
clinicians require specialized fundus cameras to capture the photo-
graph of the retina.

Different machine learning techniques have been applied to clas-
sify the different stages of DR using the color fundus images. The
automated techniques for identification of the stages of DR have
been developed by support vector machines in (Giraddi, Pujari, and
Seeri, 2015) and k-NN classifiers in (Mookiah et al., 2013). Recursive
region growing segmentation algorithms in (Sinthanayothin et al.,
2002) and artificial neural network has also been done in (Usher
et al., 2004). A random forest based model has been used for the
same problem by (Casanova et al., 2014). Most of the models work
by involving preprocessing to standardize color and enhance con-
trast. The classification accuracy provided by most of the models
are encouragingly high for the given datasets. A similar but slightly
mixed approach has been taken by top-down image segmentation
and local thresholding by a combination of edge detection and re-
gion growing in (Jaafar, Nandi, and Al-Nuaimy, 2011). More recent
work provided a very significant result with the use of the deep
neural network and CNN by (Ghosh, Ghosh, and Maitra, 2017). It
uses 27 layers deep neural network to provide a high accuracy on
both 2 class and 5 class variants of the problem.
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FIGURE 4.2: Sample images from DR dataset.

4.2.4 Dataset

Data is used from the dataset made available by the Kaggle compe-
tition website and maintained by EyePacs (DR dataset website Kag-
gle). The dataset consists of color fundus photographs of the retina.
The severity of DR is the basis for the classification. In the dataset
a trained clinician assigned each image to a class. The class labels
of the dataset are highly imbalanced i.e. more than 73.5% of the
class are negative. The class partition of the original 35000 images
provided for training purpose is given in Table 4.1, where PDR and
NPDR refers to proliferative and Non-proliferative DR respectively.
The classification task was to classify a given fundus image as to one
of the five classes. Some of the images from each class are shown in
Figure 4.2.

Class Instances Percentage
Negative 25810 73.5%

Mild NPDR 2443 6.9%
Moderate NPDR 5292 15.1%

Severe NPDR 873 2.5%
PDR 708 2%

TABLE 4.1: Class partition for DR dataset

4.3 Methodology

The main task in this work is to investigate the relevance of the
hyper parameters with respect to accuracy and time consumed for
training one epoch of data. Since an investigation involving all pos-
sibilities of the hyper-parameter is not feasible computationally, we
therefore settle here for a subset showing prominent behavior of
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variation. The main hyper-parameters which are dealt with here
are the depth of networks number of convolutional layers in partic-
ular, number of filters or neurons in the network, size of filters in
convolution layers and activation function.

4.3.1 Preprocessing

The size of images in the dataset is unequal throughout and rather
high for efficient computation. Hence, it is reduced to size 512X512
via cropping and resizing. The cropping is done manually in such
manner to keep only retinal image and then subjected to automate
resizing. Non-Local Means De-noising (NLMD) is implemented
as the prepossessing step introduced by (Buades, Coll, and Morel,
2005). The de-noising of an image x =(x1; x2; x3) at pixel j on chan-
nel i is given as:

Xi(j) =
∑k∈B(j,r) X(j).W(j, k)

C(j)

C(j) = ∑
k∈B(j,r)

W(j, k)

where B(j; r) is a neighborhood around pixel j with radius r, and
the weight w(j; k) is the square of Frobenius norm distance between
color patches centered at j and k that decays under a Gaussian ker-
nel.

4.3.2 Optimization function

Adam stands for adaptive moment estimation introduced by (Kingma
and Ba, 2014). It is an adaptive optimization algorithm to update
network weights iterative based in training data. The procedure
maintains a separate learning rate for each network weight and
adapts as learning unfolds. In this way it contains the advantages
of both AdaGrad and RMSProp algorithms. It uses both first and
second moments of the gradients. In this work a learning rate of 1e-
4 has been used. For other parameters like exponential decay rates
and epsilon default values are used.
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4.3.3 System specification and Evaluation metric

Dell Precision Tower T7810 is used for computation having Intel
Xeon 2.4 GHZ processor with 128GB RAM and 12GB Nvidia Titan
X GPU. The widely used open-source library TensorFlow is used
for implementing the CNN. Out of the complete dataset of 35000, a
portion of 80% has been used for training purpose and remaining
7000 has been used for testing purpose. Since we are computing
for only one epoch no validation data has been kept. All the three
channels of the original image have been kept intact. Accuracy in
our case has been defined as the proportion of the samples correctly
classified i.e.

Accuracy =
Number of correctly classified samples

Number of total samples

Time required in our case is defined as the time spent for train-
ing one epoch of the dataset on the hardware with no other major
process running simultaneously on it.

4.3.4 Conventions and Implementation details

The filter as well as the fully connected edge weights in all layers in
each of the architecture tested are all initialized randomly. It is done
so to avoid any effect of special initialization process since we are
not examining for the initialization method in this work.

The convention for representing an architecture configuration for
a layer with k convolutional layers and n fully connected layers is
as follows:

X1-Y1:X2-Y2:X3-Y3: :Xk-Yk::A1:A2: :Ak

Where Xi=number of filter in layer I
Yi=size of filter in layer i
Ai= number of neuron in fully connected layer I
: marks end of a layer and start of another
:: marks end of convolutional layer and start of fully connected lay-
ers

For the purpose of feasible computation complexity only a par-
ticular configuration of the fully connected layer containing 2 fully
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connected layer each with 128 units or neurons have been used. As
stated earlier main focus is on convolutional layers. Further one of
the two fully connected layer is connected to one layer of dropout.
Out of the two fully connected layer used here the one next to clas-
sification layer is chosen for dropout. The dropout is applied with
a keep probability p=0.25.

4.4 Results

The results and inference from the analysis of the subjected hyper-
parameter are presented next parameter-wise.

FIGURE 4.3: Plot for Highest Accuracy Vs Depth.

FIGURE 4.4: Plot for Average time Vs Depth.

4.4.1 Depth or Number of convolution layers

The effect of depth on highest accuracy achieved for the problem is
shown as a line graph in Figure 4.3. The trends show that a similar
level of accuracy could be achieved with different levels. Further, it
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remains high for a moderate depth and rather less for a low or high
number of depths.

The effect of depth on training time for one epoch for the problem
is shown as a line graph in Figure 4.4. The trends show that with
increasing depth the time consumed for training increases.

FIGURE 4.5: Bar graph for Accuracy Vs Depth for varying number of fil-
ters.

FIGURE 4.6: Bar graph for Time Vs Depth for varying number of filters.

4.4.2 Number of filters

The effect of variation of number of filters with accuracy is shown in
Figure 4.5 for a number of depths and configurations. In the given
bar graph each colored bar represents one architecture. The plot
shows that with increasing number of filters the accuracy decreases.
This could be because too many filters might over-fit the data.

The effect of variation of number of filters with time is shown
in Figure 4.6 for a number of depth and configuration. Similar to
Figure 4.5 in the given bar graphs each colored bar represents one
architecture. The plot shows that with increasing number of filters



4.4. Results 49

the time increases. This could be understood because larger number
of filters mean increase in number of parameters in the network.
This will lead to increased time for training.

4.4.3 Size of filters

FIGURE 4.7: Bar graph for Accuracy Vs Depth for varying size of filters.

FIGURE 4.8: Bar graph for Time Vs Depth for varying size of filters.

The effect of variation of size of filters with accuracy with respect
to the number of layers is shown in Figure 4.7. Each of the colored
bars is represented in the form x-y indicating all the layers have
filter of size x and each convolution layer is having y number of
filters. For each depth, filter size 3,5,7,9,13 and 17 are tested. 16 and
32 filters are used. The plot shows that with increasing size of the
filter the accuracy decreases for most of the depths.
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The effect of variation of size of filters with accuracy is shown in
Figure 4.8 for a number of depths. Colored bars hold same mining
as earlier. The plot shows that with increasing size of the filter the
training time increases.

4.4.4 Activation functions

FIGURE 4.9: Bar graph for Accuracy Vs Depth for varying Activation func-
tions.

FIGURE 4.10: Bar graph for Time Vs Depth for varying activation func-
tions.

The effect of variation of activation function with accuracy is
shown in Figure 4.9 for a number of depths. The 3 colored bars
indicate three activation functions used here. For each depth a con-
figuration in which all layers have filter size of five and number of
filters 16 has been used. The plot shows no real significant change
in accuracy with respect to activation functions.

The effect of variation of activation function of filters with train-
ing time is shown in Figure 4.10 for a number of depths. The signif-
icance of bars and configuration are same as earlier plot. The plot
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shows no real significant change in training time with respect to ac-
tivation functions except for the three convolution layered network
where it is unexpectedly high for sigmoid and Tanh functions.

This preliminary work, done here, helps to understand the func-
tioning of a deep CNN, and identify the crucial parameters which
will finally lead to explanation of the reason behind their impact
on the performance. This, in turn, may lead to a better under-
standing of the organization of visual structures and their func-
tions, how the three-dimensionsl world view emerges from a two-
dimensionsional intensity array on the retina, which pathways and
connections are crucial, and which are not and so on. For instance,
the LGN was originally envisaged as a relay station between eye
and cortex that transmits the weakend signals amplified, but now
it has emerged as a crucial point of interaction between bottom-
up and top-down signals; in fact, very surprisingly, the number of
cortico-geniculate synapses far exceed the retino-geniculate synapses
in LGN. Understanding the process of deep learning may amount
to taking some firm steps in realizing the processes of perception
and cognition in the brain.
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Chapter 5

Conclusion and Future work

A summery of the models studied in this work its correspondence
with Marr’s hierarchy and their applications is given in Table5.1.

Maar’s Hierarchy Bio motivated model Purpose
Primal Sketch DoG Edge detection

2.5D sketch EDoG Segmentation; size and edge estimation
3D deep CNN Classification

TABLE 5.1: Correspondence of models used and Marr’s hierarchy

The main idea of the thesis work was to understand the hierar-
chical approach to vision by (Marr, 1982) and present correspond-
ing biologically motivated models. In course of the study, the exist-
ing models have been used for different application. Modification
in the existing models have been made to get more features from
an image as well. The central idea of the thesis was to continue the
quest for a unified model of vision. Although it has, in a sense, been
achieved, a number of problems still awaits to be examined by the
models discussed. The future work for this is to find similar struc-
tures which can account for a unified model for visual. The con-
clusion made from individual chapter work has been given, along
with future works, for clarity. Nonetheless, the direction of future
work remains the same, viz an approach towards more biologically
plausible and useful networks.

In Chapter 2 an attempt has been made to explain the Muller Lyer
illusion with the help of nCRF model and contour plots. Further
The relation amongst the arrows angles and the induced illusion is
explored. The results found by computational methods proposed
are compared with the psychophysical experimental data. The re-
sults obtained from the computational model proposed to explain
the original Muller Lyer illusion are promising. The computational
method proposed finds the perceived length of both the lines and
their difference close to the experimental data. Further the attempt
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to find the relation between arrow angle and induced illumination
are also encouraging. The curve for the relation from both the pro-
posed approach and the experimental data looks close to each other.
Hence, it could be conclusively said that the proposed nCRF based
model is a good tool to understand how size is affected from shape
and geometry of and around an object. The future work includes
exploring other aspects of space cognition with the help of the pro-
posed method. It includes how other parameters of the MLI, like
length of the line or wings, relative brightness of the line colors, etc
affects the induced illusion. The application of the nCRF model to
explain similar geometrical illusions has also been planned. This

In Chapter 3 the concept of dynamic ECRF, a modeling technique
for incorporating the top down and bottom up approaches in vi-
sion have been discussed. In particular the work by (Wei, Wang,
and Lai, 2012)has been understood and implemented for getting a
better mid level representation of an image through the use of the
dynamic ECRF algorithm. Further, an edge detection algorithm has
been proposed by using the size of adaptive receptive field informa-
tion provided by the algorithm by (Wei, Wang, and Lai, 2012). This
results in providing a model which can simultaneously give a mid-
level representation along with edge map of an image. This feature
can prove to be very useful for jobs like motion detection, where
outline detection and object detection is required simultaneously.

Encouraging results have been observed for both segmentation
as well as edge detection algorithms visually in Section 3.4. In spite
of the model’s ability to provide better visual results, time con-
sumption, because of the iterative nature of the algorithm, is a big
concern. The future work in this regard is to modify the algorithm
to decrease time consumption. Another aspect includes verifying
the result and performance on some hand labeled datasets. The
adaptive nature of the algorithm is a nice concept, it is planned to
use this concept with other image filtering methods.

As an approach to higher level of vision in Marr’s hierarchy in
chapter 4 the basic components of the convolutional neural network
and deep learning is discussed. An investigation onto the relevance
of various hyperparameters with the accuracy and training time for
a particular dataset has been performed. The results show the re-
lation of the hyperparameters with the accuracy as well as training
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time for the classification problem. Future work includes doing this
extensive study on a more generalized dataset and produce more
inferences from the work. Another aspect for the future work is
to use bio inspired initialization for the filters of CNN. The filters
could be initialized with Gaussian, DoG or a combination of other
such filters for the purpose.
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