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Abstract

Tweakable Enciphering Scheme (TES) is a length preserving scheme which
provides con�dentiality and admissible integrity. XCB (Extended Code Book) is
a TES which was introduced in 2004. In 2007, it was modi�ed and security bound
was provided. Later, these two versions were referred to as XCBv1 and XCBv2
respectively. XCBv2 was proposed as the IEEE-std 1619.2 2010 for encryption of
sector oriented storage media. In 2013, �rst time Security bound of XCBv1 was
given and XCBv2's security bound was enhanced. A constant of 222 appears in
the security bounds of the XCBv1 and XCBv2.

We showed that this constant of 222 can be reduced to 25. Further, we modi�ed
the XCB (MXCB) scheme such that it gives better security bound compared to
the present XCB scheme. We also analysed some weak keys attack on XCB and
a type of TES known as HCTR (proposed in 2005). We performed distinguishing
attack and the hash key recovery attack on HCTR. Next we analysed the depen-
dency of the two di�erent keys in HCTR.

Keywords: Disk encryption · IEEE-std 1619.2 2010 · Tweakable enciphering
scheme · XCB · MXCB · Weak keys · HCTR.
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Chapter 1

Introduction

Day-by-day we are becoming more reliable on the data which can be personal,
organisational, top secret, anything or everything. Often we come across the news
of data breach and fraud. Recently (in 2018), Cambridge Analytica was in news
due to data breach of facebook users. In India, Unique Identi�cation Authority of
India (UIDAI) which is responsible for AADHAR scheme is facing data breach on
daily basis. In 2012, we generated approx 2.5 exabytes of data every day. Majority
(90%) of all the present data is generated in last few years. As data is asset of the
21st century and it is on continuous threat, question arises whether we can make
the data secure or not? If yes then up-to what extent? As a wise man said, �The
hardest thing of all is to �nd a black cat in a dark room, especially if there is no
cat�. Providing security is more or less like that.

At any instant, data can be in two states - stored or in transit. Generally,
we are interested in the con�dentiality and integrity of the data in both of these
states and the techniques involved in these two di�erent scenarios are di�erent.
In most schemes which provide integrity/con�dentiality in a strong sense a length
expansion of the original data takes place, i.e., the transformed data occupies more
space than the original data. Though such expansion can be easily tolerated for
most scenarios, there are speci�c application areas where such length expansion
cannot be tolerated. One such area is the application of low level disk encryption.
Disk encryption ensures con�dentiality and integrity of the stored data. Even if
the hardware containing the disk is stolen the data stored in it would be unreadable
to the adversary, also the adversary would be unable to change the contents of the
disk in a meaningful way.

In low level disk encryption, the encryption/decryption algorithm resides on
the disk controller and sees the disk as a bare collection of sectors. It encrypts the
data before storing it into the sector and decrypts it after reading a sector and
before sending it to high level applications. As each sector is of �xed length (4096
bytes, in modern disks), so length expansion after encryption cannot be tolerated.
A well accepted solution for the problem of disk encryption is a cryptographic
object called a Tweakable Enciphering Scheme (TES).

A TES (Wide block encryption) is a block-cipher mode of operation with the
following properties:
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1. Length preserving: The length of the cipher text is same as the length of the
plain text.

2. Ciphertext Variability: A TES takes as input a key, a plaintext and a special
quantity called the tweak. If the same message is encrypted with the same
key but di�erent tweaks then unrelated ciphertexts are obtained. In the
application of disk encryption, sector addresses are considered as tweaks.
This property ensures that even if the same data is stored in two di�erent
sectors the cipher texts would look di�erent.

3. Con�dentiality: The cipher texts produced by a TES are indistinguishable
from random strings to any computationally bounded adversary. Which
means that any practical adversary would see the cipher texts as random
strings and would be thus unable to derive any information regarding the
plain text which produced this cipher text.

4. Integrity: If a single bit of a valid ciphertext produced by a TES is changed,
then this altered ciphertext on decryption will produce a random looking
plaintext. This property ensures that an adversary would not be able to
alter a ciphertext so that it gets decrypted to something meaningful.

In designing a TES, we have certain goals. We can list them as follows:

1. First and foremost goal is TES's correctness i.e. decryption should undo
encryption for every message in the message space.

2. Our next aim, TES should be as e�cient as possible. Some of the important
dimensions of e�ciency expected of a TES are the following:

� Less running time for encryption/decryption.

� Small circuit area when implemented in hardware.

� Low power consumption when implemented in power constrained de-
vices.

� Small code size and low memory usage in memory constrained software
implementations.

3. In TES, we are using tweak for getting variability in the output for the same
input. So to change the tweak should be cheaper than changing the key. In
most of the block cipher changing the encryption key is relatively expensive
since there is need to perform �key setup� operation.

4. TES should be secure i.e. even the adversary has control of the tweak input
than also the scheme should be secure.

Designing e�cient TESs which provide the required security in provable terms
is a challenging problem. In the last two decades there has been some intense work
in designing and proving the security of TES. Some of the existing constructions
are PEP [5], HCTR[20], HCH[4], TET [6], HEH [18], CMC[7], XCB[11, 12] and
EME[8]. TES has been standardised because of its practical application in disk
encryption.
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1.1 XCB and HCTR

In this dissertation we study two TES called XCB and HCTR.
XCB (Extended Code Book) and HCTR are Hash-Counter-Hash Tweakable

Enciphering Schemes i.e. both the schemes use �rst a layer of universal hash
function then a counter (CTR) mode and then again another layer of universal
hash function for encryption and decryption. The universal hash functions used in
both constructions is a variant of polynomial evaluation hash [21]. Let us consider
a message M which is parsed into m blocks M1,M2, . . . ,Mm, each of length n
bits. To hash M using a polynomial hash with a key n bit key H, the polynomial
hH(M) =

∑
iMiH

i is computed. Variants of this polynomial evaluation hash has
been widely used to construct message authentication codes (MAC) [1, 13, 21],
authenticated encryption (AE), TES [11, 4, 20] and other cryptographic schemes.
CTR mode uses the block cipher to generate the key stream used in the message
encryption: EK(Si), i = 1, 2, · · ·, where K is the key of block cipher and Si is the
number generated by a counter. The main di�erence between HCTR and XCB is:
HCTR has two master keys, one for counter mode and other for universal hash
function while XCB has only one master key from that other keys are generated.
XCB and HCTR use di�erent variants of the Counter mode and the polynomial
evaluation hash [19].

In 2004, McGraw and Fluherer proposed Tweakable Enciphering Scheme (TES)
named as XCB in [11] without providing a proof. Later in 2007, they made changes
in original construction and proved security of the updated construction in [12].
Authors claim that the changes were made for the improvement of performance
of XCB and make it easier to analyse. Later Chakraborty, Hernandez-Jimenez
and Sarkar [2] did a detailed analysis of two versions of XCB as described in [11]
and [12]. The study in [2] names the version of XCB in [11] as XCBv1 and the
one in [12] as XCBv2, we will also follow the same nomenclature. The analysis
in [2] concludes that the security claims regarding XCBv2 as presented in [12] are
largely erroneous. XCBv2 is completely insecure for certain types of messages, in
particular, there is an easy distinguishing attack on XCBv2 if it is used on messages
whose length is not a multiple of the block length n of the underlying block cipher.
Though XCBv2 is secure for other messages, the proof and the security bound was
shown to be incorrect. In [2] a correct security bound for XCBv2 (message for
which it is secure) was derived and also a proof for XCBv1 was provided. That
proof was based on the analyses done in [10]. In [10] the security bounds of an
authenticated encryption scheme called GCM were analyzed, as GCM and XCB
shares almost the same hash function. Hence, the techniques used and analyze
GCM in [10] could be adopted to analyze XCB in [2]. Further, analysis of the GCM
bound was done in [15]. We use the analyses done in [15] to give an improved
security bound on XCBv1 and XCBv2. We also modify the XCB (MXCB say)
and give its security bound. Further, we compare the improved security bound
and MXCB with some existing TES mode having parameter of practical value
followed by some weak keys analysis on XCB.
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We also do some analysis on HCTR. It was proposed by Wang, Feng and Wu
in 2005. It is a mode of operation which provides a tweakable strong pseudoran-
dom permutation [20]. We show how the hash function is insecure. We perform
distinguishing attack and the hash key recovery attack on HCTR. Next we analyse
the dependency of the two di�erent keys in HCTR. In particular, we analyse the
following scenario. Suppose HCTR with keys K and h has been used for some
time, and K gets compromised. We show that only changing K would rise to a
completely insecure scheme.

1.2 Outline of dissertation

In chapter 2, we discuss and formalise the notion of security for Tweakable Enci-
phering Scheme. In chapter 3, we formalise the XCB and prove a lemma. Then
gives the security proof of XCBv1 followed by security bound for MXCB and com-
parison with some existing TES. Also, weak keys analysis on XCB. In chapter 4,
we discuss the construction of HCTR, distinguishing and key recovery attack on
the existing HCTR scheme followed by key dependency of the master keys . In
chapter 5, we conclude the discussion.



Chapter 2

Preliminaries

Following are the notation which we will use in subsequent chapter.

2.1 Notation

The set of all n-bit strings will be denoted by {0, 1}n. For a binary string X, |X|
will represent the size of the string in bits. We will use X‖Y for concatenating
binary string X and Y ; for r ≤ |X|, r left most and r right most bits of X
would be denoted by msbr(X) and lsbr(X) respectively. By int(X) we denote the
integer represented by the binary string X, binn(i) will denote the n-bit binary
representation of i, where the leftmost bit is the most signi�cant bit and i is
non-negative such that i ≤ 2n − 1. For X, Y ∈ {0, 1}n, X ⊕ Y and XY will
respectively denote addition and multiplication in GF (2n). We denote parsen(X)
by (X1, X2, . . . , Xm) where each Xi is of n-bit except last one while 1 ≤ |Xm| ≤ n
and cardinality of X would be denoted by #X.

In standard of XCB, �eld GF (2128) is represented by the irreducible polynomial
x128+x7+x2+x+1. Note that selection of irreducible polynomial doesn't a�ect the
security of scheme. Therefore, proofs and attacks are irrespective of the irreducible
polynomial.

2.2 Tweakable Enciphering Schemes (TES)

A Tweakable Enciphering Scheme is a pair of functions (E, D) where E and D are
the encryption and decryption functions respectively of the enciphering scheme.
Here, encryption E : K×T ×M→M and decryptionD : K×T ×M→M, where
K and T are non-empty sets, and they denote the key space and the tweak space
respectively. The message and the cipher spaceM⊆

⋃
i≥1{0, 1}i. We will denote

E(K,T, ·) by ET
K(·) andD(K,T, ·) byDT

K(·). Encryption and decryption are length
preserving i.e. for every K ∈ K,M ∈M and T ∈ T such that |ET

K(X)| = |X|. For
the correction purpose, X = DT

K(Y ) if and only if ET
K(X) = Y where D = E−1.

5
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2.3 Security of TES

Discussion of this section is based on [8]. An n-bit block-cipher is a function
E : K × {0, 1}n → {0, 1}n, where K 6= φ is the key space for any key K ∈ K and
E(K, ·) is a permutation.

An adversary A is a probabilistic algorithm which can access two oracles and
gives output either 0 or 1. The notation AO1,O2 ⇒ 1 denotes the events that the
adversary A, interacts with the oracles O1,O2 and �nally output the bit 1. Event

of choosing X uniformly at random from the �nite set S is represented by X
$← S.

Let Perm(n) denotes the set of all permutation on {0, 1}n. The advantage of
A in breaking the strong pseudo randomness of E is de�ned as

Adv
±prp
E (A) =

∣∣∣∣Pr[K $← K : AEK(·),E−1
K (·) ⇒ 1

]
− Pr

[
π

$← Perm(n) : Aπ(·),π
−1(·) ⇒ 1

]∣∣∣∣.
Let PermT (M) denote the set of all functions π : T ×M→M where π(T, ·)

is a length preserving permutation onM and π ∈ PermT (M) is known as indexed
permutation. For a Tweakable Encipher Scheme E : K×T ×M→M, we de�ne
the advantage an adversary A in distinguishing E and its inverse from a random
tweak indexed permutation and its inverse in the following way:

Adv
±p̃rp
E

(A) =

∣∣∣∣Pr[K $← K : AEK(·,·),E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·),π−1(·,·) ⇒ 1

]∣∣∣∣. (2.1)

We de�ne Adv±p̃rp
E

(q, σn) by maxAAdv
±p̃rp
E

(A) where maximum is taken over
all adversaries which makes at most q queries having at most σn many blocks. For
a computational advantage we de�ne Adv±p̃rp

E
(q, σn, t) by maxAAdv

±p̃rp
E

(A). In
addition to the previous restrictions on A, he can run in time at most t.



Chapter 3

Security of XCB

In 2004, McGraw and Fluhrer proposed Tweakable Enciphering Scheme (TES)
named as XCB in [11] without providing a proof. Later in 2007, they made changes
in original construction and proved security of the updated construction in [12].
Authors claim that the changes were made for the improvement of performance
of XCB and make it easier to analyse. Later Chakraborty, Hernandez-Jimenez
and Sarkar [2] did a detailed analysis of two versions of XCB as described in [11]
and [12]. The study in [2] names the version of XCB in [11] as XCBv1 and the
one in [12] as XCBv2, we will also follow the same nomenclature. The analysis
in [2] concludes that the security claims regarding XCBv2 as presented in [12] are
largely erroneous. XCBv2 is completely insecure for certain types of messages, in
particular, there is an easy distinguishing attack on XCBv2 if it is used on messages
whose length is not a multiple of the block length n of the underlying block cipher.
Though XCBv2 is secure for other messages, the proof and the security bound was
shown to be incorrect. In [2] a correct security bound for XCBv2 (message for
which it is secure) was derived and also a proof for XCBv1 was provided. That
proof was based on the analyses done in [10]. In [10] the security bounds of an
authenticated encryption scheme called GCM were analyzed, as GCM and XCB
shares almost the same hash function. Hence, the techniques used and analyze
GCM in [10] could be adopted to analyze XCB in [2]. Further, analysis of the GCM
bound was done in [15]. We use the analyses done in [15] to give an improved
security bound on XCBv1 and XCBv2.

In this chapter, we give the improved security bounds on XCBv1 and XCBv2
(with full block). Further, we modify the XCB (MXCB say) and give its security
bound. Also, we compare the improved security bound and MXCB with some
existing TES mode having parameter of practical value. After that in last section
of the chapter, we show some weak keys analysis on XCB.

3.1 Description of XCB

XCB is hash-counter-hash scheme which use hash function and counter mode as
the basic building blocks of the scheme. The construction of XCBv1 and XCBv2
are shown in the Figure 3.1 and Figure 3.2 respectively, and encryption algorithms

7
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P1 P2
Pm

C2 CmC1

Hh2

Hh1

EKe

E−1

Kd

CtrKc;S

T

T

. . .

. . .

.

.

.

.

.

.

S

Figure 3.1: Encryption of XCBv1

for XCBv1 and XCBv2 are shown in the Figure 3.3.

Following de�nition of hash function and Ctr mode are as de�ned in [2].
Hash function H : {0, 1}n × X × Y → {0, 1}n, where X ,Y are non-empty

subsets of {0, 1}∗. For T ∈ Y andX ∈ X , we writeHh(X,T ) instead ofH(h,X, T ).
The hash function H is de�ned as

Hh(X,T ) = X1h
m+p+1 ⊕X2h

m+p ⊕ . . .⊕ pad(Xm)h
p+2 ⊕ T1hp+1

⊕ T2hp ⊕ . . .⊕ pad(Tp)h
2 ⊕ (binn

2
(|X|)‖binn

2
(|T |))h, (3.1)

where (X1, X2, . . . , Xm) = parsen(X), (T1, T2, . . . , Tp) = parsen(T ). The pad func-
tion is de�ned as pad(Xm) = Xm‖0r where r = n− |Xm|. Thus, |pad(Xm)| = n.
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Counter mode: Ctr with key K, counter value S and message A1, . . . , Am is
de�ned as:

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(inc0(S)), . . . , Am ⊕ EK(incm−1(S)).
If the last block Am is incomplete then the quantity Am ⊕ EK(incm−1(S)) is

replaced by the quantity Am ⊕ dropr(EK(inc
m−1(S)) where r = n − |Am| and

dropr(EK(inc
m−1(S)) is the �rst (n− r) bits of EK(incm−1(S). In the de�nition of

Ctr, for a bit string X ∈ {0, 1}n, inc(X) treats the last signi�cant 32 bits of X as
a non-negative integer and increment this value modulo 232 i.e.

inc(X) = msbn−32(X)‖bin32(int(lsb32(X)) + 1 mod 232).
For r ≥ 0, we write incr(X) to denote the r times iterative applications of inc

on X. We use the convention that inc0(X) = X. For this speci�c structure of
inc both XCBv1 and XCBv2 can only be used with block ciphers where the block
length n ≥ 32, which does not amount to a practical constraint.

XCBv1 and XCBv2 has length constraints with respect to plaintext and tweak
as n ≤ |P | ≤ 239 and 0 ≤ |T | ≤ 239 respectively. XCBv2 is speci�ed in the
standard IEEE 1619.2 2010. In the standard, AES is �xed as the block cipher and
message length is always multiple of 8 bits.

3.2 Di�erences between XCBv1 and XCBv2

The main di�erence between XCBv1 with XCBv2 is that later version uses only
one hash key whereas the earlier one uses two hash keys which was made to reduce
the cost of additional hash keys. There are some other di�erences which we can
list as follows:

1. Keys generating by the same master key are di�erent for XCBv1 and XCBv2.

2. In XCBv1, length of the key is �xed to 128 bits while XCBv2's key length
is variable which can be 128, 192 or 256 bits as per requirement.

3. As mentioned earlier, XCBv1 uses two hash keys as compare to XCBv2
which use only one hash key.

4. In XCBv1, �rst block of the message is encrypted (in line 6) and then XOR
with hash function (in line 7) while XCBv2 perform same operation with
the last block of the plaintext.

5. Padding is the part of XCBv2 hash function while XCBv1's hash function
has no padding.

6. XCBv2 append the string of 0n before tweak and after message in hash func-
tion (in line 108) while XCBv1 is simple hash function without appending
any string with tweak and message.

7. In XCBv1, both hash function use the di�erent hash key and same de�nition
of hash function while XCBv2 uses same hash key and di�erent hash function
in the scheme (in line 108 and 110).
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Pm P1
Pm−1

C1 Cm−1Cm

Hh

Hh

EKe

E−1

Kd

CtrKc;S

T

T

. . .

. . .

.

.

.

.

.

.

S

Figure 3.2: Encryption of XCBv2

All keys are supposed to be random by the security of AES.

3.3 Security Claims

In this section, we state both security bounds as claimed in [2] and our updated
security bounds for both XCBv1 and XCBv2. We are interested in so called in-
formation theoretic security bound, i.e., we only state the bound for the schemes
where the block ciphers are replaced by true random permutations. In both ver-
sions of XCB three block ciphers with di�erent keys are used. We replace these
block ciphers with three independent random permutations on {0, 1}n, we call the
resulting construction as XCBvl[3Perm(n)] where l ∈ {1, 2}. For XCBv1 security
bound as stated in [2] is:

Theorem 3.3.1. Let A be an arbitrary adversary which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
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Encryption under XCBv1 : ETK(P )

0. (P1, . . . , Pm)← parsenP
1. h1 ← EK(0n−3‖001)
2. h2 ← EK(0n−3‖011)
3. Ke ← EK(0n)
4. Kd ← EK(0n−3‖100)
5. Kc ← EK(0n−3‖010)
6. CC ← EKe (P1)
7. S ← CC ⊕Hh1

(P2‖ . . . ‖Pm−1‖Pm, T )
8. (C2, . . . , Cm)← CtrKc,S

(P2, . . . , Pm)

9. MM ← S ⊕Hh2
(C2‖ . . . ‖Cm−1‖Cm, T )

10. C1 ← E−1
Kd

(MM)

11. return(C1, C2, . . . , Cm)

Encryption under XCBv2 : ETK(P )

100. Pm ← lsbn(P )
101. A← msb|P |−n(P )
102. (P1, P2, . . . , Pm−2, Pm−1)← parsen(A)
103. h← EK(0n)
104. Ke ← msb|K|(E|K|(0

n−3‖001)‖E|K|(0n−3‖010))
105. Kd ← msb|K|(E|K|(0

n−3‖011)‖E|K|(0n−3‖100))
106. Kc ← msb|K|(E|K|(0

n−3‖101)‖E|K|(0n−3‖110))
107. CC ← EKe (Pm)
108. S ← CC ⊕Hh(0n‖T, P1‖ . . . ‖Pm−2‖pad(Pm−1)‖0n)
109. (C1, . . . , Cm−1)← CtrKc,S

(P1, . . . , Pm−2, Pm−1)

110. MM ← S ⊕ Hh(T‖0n, C1‖ . . . ‖pad(Cm−1)‖binn
2
(|T‖0n|)‖binn

2
(|C1‖ . . . ‖Cm−2‖Cm−1|))

111. Cm ← E−1
Kd

(MM)

112. return(C1, C2, . . . , Cm)

Figure 3.3: Encryption using XCBv1 and XCBv2

overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
XCBv1[3Perm(n)](A) ≤

(3 + 222)`qσn
2n

.

For XCBv2 the security bound given in [2] is:

Theorem 3.3.2. Let A be an arbitary adversary which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
XCBv2fb[3Perm(n)](A) ≤

(5 + 222)`qσn
2n

.

We show that the bound of (3+222)`qσn
2n

and (5+222)`qσn
2n

in both the above theorems

can be improved to (3+25)`qσn
2n

and (5+25)`qσn
2n

for XCBv1 and XCBv2 respectively.
Speci�cally, we prove the following two theorems.
For XCBv1, our security bound is as follows:
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Theorem 3.3.3. Consider an arbitrary adversary A which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
XCBv1[3Perm(n)](A) ≤

(3 + 25)`qσn
2n

. (3.2)

and for XCBv2 our security bound is given as:

Theorem 3.3.4. Consider an arbitrary adversary A which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
XCBv2fb[3Perm(n)](A) ≤

(5 + 25)`qσn
2n

. (3.3)

The complete proof of these theorems are presented in the following section.
The proof heavily uses a technique from [15] where an improved bound on GCM
was proved.

3.4 Some useful lemmas

We start with a few useful lemmas which would be used later.
The following Version of the Schwartz-Zippel lemma is from [14].

Lemma 1. Let F be a �eld and p ∈ F[x1, x2, . . . , xr] be a r-variate, non-zero
polynomial with total degree d. Let S be �nite subset of F, and x1, x2, . . . , xr be
selected uniformly at random from S. Then

Pr[p(x1, x2, . . . , xr) = 0] ≤ d

|S|
.

For 0 ≤ r ≤ 232 − 1, Yr
def
= {bin32(int(Y ) + r mod 232)⊕ Y |Y ∈ {0, 1}32} and

incr(X) = (X ⊕ 0n−32‖Y ) for some Y ∈ Yr.

From [15] we de�ne Wr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as W0
def
= Y0 and

Wr
def
= Yr\

⋃r−1
i=0 Yi and r ≥ 1. We denote cardinality as wr

def
= #Wr and

wmax
def
= max{wr | 0 ≤ r ≤ 232 − 1} and it was shown in [15] that wmax ≤ 32.

Lemma 2. 1. Let X, Y,X ′, Y ′ ∈ {0, 1}∗, such that (X, Y ) 6= (X ′, Y ′). Let

C,C ′ ∈ {0, 1}n and h
$← {0, 1}n, S = C ⊕ Hh(X, Y ), and S ′ = C ′ ⊕ Hh(X

′, Y ′),
where Hh(·) is de�ned in (3.1). Then,

Pr

[ms−2∨
i=0

(
inci(S)⊕ S ′ = 0

)]
≤ wmax`(m

s − 1)

2n
.
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2. Let X, Y,X ′, Y ′ ∈ {0, 1}∗, C,C ′ ∈ {0, 1}n and h1, h2
$← {0, 1}n, S = C ⊕

Hh1(X, Y ), and S ′ = C ′ ⊕Hh2(X
′, Y ′). Then,

Pr

[ms−2∨
i=0

(
inci(S)⊕ S ′ = 0

)]
≤ wmax`(m

s − 1)

2n
.

In both cases ` is the max{`s, `s′} where `s and `s′ are the degrees of the two
polynomials S and S ′ respectively. In the �rst case probability is taken over the
random choice of h, and in the second case it is taken over the random choice of
h1, h2.

Proof. Case 1. The proof uses technique given in [15].

Let's �gure out the upper bound on collision with two distinct pair (X, Y ) and
(X ′, Y ′) with 0 ≤ r < r′ ≤ 232 − 1 i.e.

Pr[(incr(S) = S ′) ∨ (incr
′
(S) = S ′)]

Also we obtain the following upper sum bound

Pr[(incr(S) = S ′) ∨ (incr
′
(S) = S ′)] ≤

∑
Y ∈Yr

Pr[S ⊕ (0n−32‖Y ) = S ′]

+
∑
Y ′∈Yr′

Pr[S ⊕ (0n−32‖Y ′) = S ′] (3.4)

since incr(X) = (X ⊕ 0n−32‖Y ) for some Y ∈ Yr.

Claim: For 0 ≤ r′ < r ≤ 232 − 1, and Y ∈ {0, 1}32 such that Y ∈ Yr and
Y ∈ Yr′ . Then there does not existX ∈ {0, 1}n such that incr(X) = X⊕(0n−32‖Y )
and incr

′
(X) = X ⊕ (0n−32‖Y ) simultaneously.

Proof: Proof by contradiction. Let's such r and r′ exist, without loss of gen-
erality r′ < r. Therefore, incr(X) = incr

′
(X) which imply incr−r

′
(X) = X which

is not possible. Hence, r and r′ are not distinct.

So, we can conclude with an upper bound i.e.

Pr[(incr(S) = S ′) ∨ (incr
′
(S) = S ′)] ≤

∑
Y ∈Yr

Pr[S ⊕ (0n−32‖Y ) = S ′]

+
∑

Y ′∈Yr′\Yr

Pr[S ⊕ (0n−32‖Y ′) = S ′]. (3.5)

After generalisation for ms − 2, we get

Pr

[ms−2∨
i=0

(
inci(S)⊕ S ′ = 0

)]
≤

∑
0≤i≤ms−2

∑
Y ∈Yi\

⋃i−1
j=0 Yj

Pr[S ⊕ (0n−32‖Y ) = S ′].

(3.6)
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Now, by using Schwartz-Zippel Lemma, we know

Pr[S ⊕ (0n−32‖Y ) = S ′] ≤ `

2n
.

Therefore,∑
0≤i≤ms−2

∑
Y ∈Yi\

⋃i−1
j=0 Yj

Pr[S ⊕ (0n−32‖Y ) = S ′] ≤
∑

0≤i≤ms−2

wmax`

2n
. (3.7)

From equations (3.6) and (3.7), we can conclude

Pr

[ms−2∨
i=0

(
inci(S)⊕ S ′ = 0

)]
≤ wmax`(m

s − 1)

2n
.

Case 2. h1, h2 are selected independently and uniformly at random from
{0, 1}n, and S = Hh1(X, Y ) and S ′ = Hh2(X

′, Y ′). According to the de�nition of
H(·), both S and S ′ are non-zero polynomials. So, the result will be same as of
Case 1 by Lemma 1.

3.5 Repairing XCB Security proofs

Proof of the theorem is heavily based on the proof given in [2]. As stated earlier,
in place of three block cipher given in line 6,8 and 10 of XCBv1, we use the
three di�erent permutation on n-bit string. The encryption and decryption of the
scheme of XCBv1[3Perm(n)] by Eπ̃,h̃ and Dπ̃,h̃ respectively, where π̃ = (π1, π2, π3)

and π1, π2, π3 are three permutation selected uniformly and independently and h̃ =
(h1, h2) where h1 and h2 are two hash keys selected uniformly and independently
to other variables.

For proving (3.2), we need to consider an adversary's advantage in distinguish-
ing XCBv1[3Perm(n)] from an oracle which simply returns random bit strings.
This advantage de�ned in following way :

Adv±rndXCBv1[3Perm(n)](A) =

∣∣∣∣Pr [π̃ $← 3Perm(n), h̃
$← {0, 1}n : AEπ̃,h̃,Dπ̃,h̃ ⇒ 1

]

− Pr

[
A$(·,·),$(·,·) ⇒ 1

]∣∣∣∣, (3.8)

where $(·,M) or $(·, C) returns independently distributed random bits of length
|M | or |C| respectively. The basic idea of proving (3.2) is as follows.
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Adv
±p̃rp
XCBv1[3Perm(n)](A) =

(
Pr

[
π̃

$← 3Perm(n), h̃
$← {0, 1}n : AEπ̃,h̃,Dπ̃,h̃ ⇒ 1

]
−Pr

[
π

$← PermT (M) : Aπ(·,·),π
−1(·,·) ⇒ 1

])
=

(
Pr

[
π̃

$← 3Perm(n), h̃
$← {0, 1}n : AEπ̃,h̃,Dπ̃,h̃ ⇒ 1

]
−Pr

[
A$(·,·),$(·,·) ⇒ 1

])
+

(
Pr

[
A$(·,·),$(·,·) ⇒ 1

]
−Pr

[
π

$← PermT (M) : Aπ(·,·),π
−1(·,·) ⇒ 1

])
≤ Adv±rndXCBv1[3Perm(n)](A) +

(
q

2

)
1

2n
. (3.9)

where q is the number of queries made by the adversary. For proof of the last
inequality see [8]. Thus, the main task of the proof now reduces to obtaining an
upper bound on Adv±rndXCBv1[3Perm(n)](A). We prove this by the usual techniques of

sequence of games which are in games XCB1 (Figure 3.4), RAND1 (Figure 3.4)
and RAND2 (Figure 3.5).

Game XCB1 is same as in Figure 3.4 except the algorithm of XCBv1 uses
three independent random permutation π1, π2, π3 instead of the block cipher im-
plementation. We denote this as follows:

Pr

[
AEπ̃,h,Dπ̃,h ⇒ 1

]
= Pr

[
AXCB1 ⇒ 1

]
. (3.10)

Game RAND1 is also described in Figure 3.4 with the boxed entries removed.
In this game it is not guaranteed that πi(i = 1, 2, 3) are permutation as though
we do the consistency checks but we don't reset the values of Y (in Ch-πi) and X
(in Ch-π−1i ). Thus, the games XCB1 and RAND1 are identical apart from what
happens when the bad �ag is set. By the fundamental lemma of game-ploting or
di�erence lemma, we have∣∣∣∣Pr [AXCB1 ⇒ 1

]
− Pr

[
ARAND1 ⇒ 1

]∣∣∣∣ ≤ Pr

[
ARAND1 set bad

]
. (3.11)

Here, we see RAND1 gives the random string in response of encryption and de-
cryption queries. So,

Pr

[
ARAND1 ⇒ 1

]
= Pr

[
A(·,·),(·,·) ⇒ 1

]
. (3.12)
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Subroutine Ch-πi(X)(i = 1, 2, 3)

11. Y
$← {0, 1}n; if Y ∈ Rangei then bad ← true; Y

$← Rangei ; end if

12. if X ∈ Domaini then bad ← true; Y ← πi(X) ; end if

13. πi(X)← Y ;Domaini ← Domaini ∪ {X}; Rangei ← Rangei ∪ (Y ); return (Y);

Subroutine Ch-π−1i (Y )

14. X
$← {0, 1}n; if X ∈ Domaini then bad ← true; X

$← Domaini ; end if

15. if Y ∈ Rangei then bad ← true; X ← π−1i (Y ) ; end if

16. πi(X)← Y ;Domaini ← Domaini ∪ {X}; Rangei ← Rangei ∪ (Y ); return (X);

Initialization:

17. for all X ∈ {0, 1}nπi(X) = undef end for

18. bad = false

19. h1, h2
$← {0, 1}n

Respond to the sth query as follows:

Encipher query: Enc(T s;P s1 , P
s
2 , . . . , P

s
ms) Decipher query: Dec(T s;Cs1 , C

s
2 , . . . , C

s
ms)

101. if P s1 = P s
′

1 for s′ < s then 101. if Cs1 = Cs
′

1 for s' < s then

102. CCs ← CCs
′

102. MM s ←MM s′

103. else 103. else

104. CCs ← Ch-π1(P
s
1 ) 104. MM s ← Ch-π3(C

s
ms)

105. end if 105. end if

106. Ss ← CCs ⊕Hh1(P
s
2 ‖ . . . ‖P sms , T s) 106. Ss ←MM s ⊕Hh2(C

s
2‖ . . . ‖Csms , T s)

107. for i = 1 to ms -1 107. for i = 1 to ms-1

108. Zsi ← Ch-π2(inc
i(Ss)) 108. Csi+1 ← P si+1 ⊕ Zsi

109. Csi+1 ← P si+1 ⊕ Zsi 109. P si+1 ← Csi+1 ⊕ Zsi
110. end for 110. end for

111. MM s ← Ss ⊕Hh2(C
s
2‖ . . . ‖Csms , T s) 111. CCs ← Ss ⊕Hh1(P

s
2 ‖ . . . ‖P sms , T s)

112. Cs1 ← Ch− π−13 (MM s) 112. P s1 ← Ch− π−11 (CCs)

113. return (Cs1 , C
s
2 , . . . , C

s
ms) 113. return (P s1 , P

s
2 , . . . , P

s
ms)

Figure 3.4: Games XCB1 and RAND1 : In RAND1 the boxed entries are re-
moved.
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Respond to the sth adversary query as follows:

ENCIPHER QUERY Enc(T s;P s)

10. (P s
1 , P

s
2 , . . . , P

s
ms)← parsen(P

s)

11. tys = Enc

12. Cs
1‖Cs

2‖ . . . ‖Cs
ms−1‖Ds

ms
$← {0, 1}nms

13. Cs
ms ← dropn−rs(D

s
ms)

14. return Cs
1‖Cs

2‖ . . . ‖Cs
ms

DECIPHER QUERY Dec(T s;Cs)

20. (Cs
1 , C

s
2 , . . . , C

s
ms−1, C

s
ms)← parsen(C

s)

21. tys = Dec

22. P s
1 ‖P s

2 ‖ . . . ‖P s
ms−1‖V s

ms
$← {0, 1}nms

23. P s
ms ← dropn−rs(Vms)

24. return P s
1 ‖P s

2 ‖ . . . ‖P s
ms

Finalization:

001. h1
$← {0, 1}n; 002. h2

$← {0, 1}n

for s = 1 to q

if tys = Enc then else if tys = Dec:

101. if P s
1 = P s′

1 for s' < s then 201. if Cs
1 = Cs′

1 for s' < s then

102. CCs ← CCs′ 202. MMs ←MMs′

103. else 203. else

104. CCs $← {0, 1}n 204. MMs $← {0, 1}n

105. D1 ← D1 ∪ {P s
1 } 205. D3 ← D3 ∪ {Cs

1}

106. R1 ← R1 ∪ {CCs} 206. R3 ← R3 ∪ {MMs}

107. end if 207. end if

108. Ss ← CCs ⊕Hh1
(P s

2 ‖ . . . ‖P s
ms , T s) 208. Ss ←MMs ⊕Hh2

(Cs
2‖ . . . ‖Cs

ms , T s)

109. MMs ← Ss ⊕Hh2
(Cs

2‖ . . . ‖Cs
ms , T s) 209. CCs ← Ss ⊕Hh1(P

s
2 ‖ . . . ‖P s

ms , T s)

110. D3 ← D3 ∪ {Cs
1} 210. D1 ← D1 ∪ {P s

1 }

111. R3 ← R3 ∪ {MMs} 211. R1 ← R1 ∪ {CCs}

112. for i = 0 to ms − 3, 212. for i = 0 to ms − 3,

113. Y s
i ← Cs

i+2 ⊕ P s
i+2 213. Y s

i ← Cs
i+2 ⊕ P s

i+2

114. D2 ← D2 ∪ {inci(Ss)} 214. D2 ← D2 ∪ {inci(Ss)}

115. R2 ← R2 ∪ {Y s
i } 215. R2 ← R2 ∪ {Y s

i }

116. end for 216. end for

117. Y s
ms−2 ← pad(P s

ms)⊕Ds
ms 217. Y s

ms−2 ← pad(Cs
ms)⊕ V s

ms

118. D2 ← D2 ∪ {incm
s−2(Ss)} 218. D2 ← D2 ∪ {incm

s−2(Ss)}

119. R2 ← R2 ∪ {Y s
ms−2} 219. R2 ← R2 ∪ {Y s

ms−2}

end if

end for

SECOND PHASE
bad = false;
if(some value occurs more than once in Di, i = 1, 2, 3)then bad = true end if;

if(some value occurs more than once in Ri, i = 1, 2, 3)then bad = true end if.

Figure 3.5: Game RAND2 for XCBv1
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Now, by using the de�nition

Adv±rndXCBv1[3Perm(n)](A) =

∣∣∣∣Pr [AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1

]
−Pr

[
A(·,·),(·,·) ⇒ 1

]∣∣∣∣
=

∣∣∣∣Pr [AXCB1 ⇒ 1

]
−Pr[ARAND1 ⇒ 1

]∣∣∣∣
≤ Pr

[
ARAND1 set bad

]
. (3.13)

Game RAND2 is slightly di�erent from RAND1, in this permutation is not
maintained, just a random string of appropriate length in response of an encryp-
tion/decryption query is returned. In the �nalisation step of game, the internal
variable are adjusted and the appropriate variables are inserted in the multi sets
D1,D2,D3 and R1,R2,R3. If collision occurs in these multi sets then the bad �ag
is set.

Games RAND1 and RAND2 are indistinguishable to the adversary as both
returns the random strings in response to queries. And also for both the cases,
probability for which RAND1 and RAND2 have bad �ag set is same. Therefore,
we can write:

Pr[ARAND1 set bad] = Pr[ARAND2 set bad]. (3.14)

Thus, from equations (3.13) and (3.14)

Adv±rndXCBv1[3Perm(n)](A) ≤ Pr[ARAND2 set bad]. (3.15)

So, our goal is to bound Pr[ARAND2 set bad]. If there is a collision in these
multi sets in Game RAND2 then the bad �ag is set. So if COLLDi and COLLRi
denote the events of a collision in Di and Ri respectively then we have

Pr[ARAND2 set bad] ≤
∑
1≤i≤3

(Pr[COLLRi] + Pr[COLLDi]). (3.16)

In the rest of the section we analyze the collision probabilities in the sets Di and
Ri. After q queries of the adversary where the s

th query has ms blocks of plaintext
or ciphertext and ts blocks of tweak, then the sets Di and Ri can be written as
follows:

D1 = {P s
1 : 1 ≤ s ≤ q},

D2 =
⋃q
s=1{incj(Ss) : 0 ≤ j ≤ ms − 2},

D3 = {Cs
1 : 1 ≤ s ≤ q},

R1 = {CCs : 1 ≤ s ≤ q},
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R2 =
⋃q
s=1{Y s

j = Cs
j+2 ⊕ P s

j+2 : 0 ≤ j ≤ ms − 3},
R3 = {MM s : 1 ≤ s ≤ q}.

Following are the points which will help in the analysis:

1. For the sth query tys ∈ {enc, dec} will denote whether the query is an en-
cryption or a decryption query.

2. In each query, the adversary speci�es a tweak T s, we consider ts = d(|T s| /n)e.
Thus, for any s, Hh1 andHh2 in line 108 and 109 respectively (Hh1 andHh2 in
line 209 and 208 respectively for decryption) for encryption of game RAND2
has degree at most ms + ts. We denote σn =

∑
s t
s +

∑
sm

s. We denote
` = max{ms + ts,ms′ + ts

′}.

3. In game RAND2 the hash key h1 and h2 are selected uniformly at random
from {0, 1}n.

4. For an encryption query, the response received by A is (Cs
1 , C

s
2 , . . . , C

s
ms) and

for a decryption query the response received is (P s
1 , P

s
2 , . . . , P

s
ms). Both these

responses are uniformly distributed and independent of other variables.

In the following claims we bound the required collision probabilities.

Claim 1. Pr[COLLD1] ≤
(
q
2

)
/2n.

Proof. In case of encryption i.e. tys = tys
′
=enc then Pr[P s

1 = P s′
1 ] = 0 because of

the condition in line 101 of RAND2. In case of at least one decryption. Without
loss of generality, if tys = dec, then P s

1 is a uniform n-bit string, hence Pr[P s
1 =

P s′
1 ] = 1/2n.

For q queries, Pr[COLLD1] ≤
(
q
2

)
/2n.

Claim 2. Pr[COLLD2] ≤ (`qσn)wmax/2
n.

Proof. D2 = Z1 ∪ Z2 ∪ . . . ∪ Zq, where
Zs = {incj(Ss) : 0 ≤ j ≤ ms − 2}, for 1 ≤ s ≤ q and

Ss =

{
CCs ⊕Hh1(P

s
2 ‖ . . . ‖P s

ms , T
s) if tys = enc,

MM s ⊕Hh2(C
s
2‖ . . . ‖Cs

ms , T
s) if tys = dec.

As Zs contains distinct elements, if ∀x1, x2 ∈ Zs then Pr[x1 = x2] = 0. We
need to bound collision between x1 and x2 when these are in di�erent set then
without loss of generality x1 ∈ Zs and x2 ∈ Zs′ , for s 6= s′. For s 6= s′, we de�ne
COLL(Zs, Zs′) as the event that at least one element of Zs collide with one element
of Zs′ . Hence, we have

Pr[COLLD2] ≤
∑

1≤s<s′≤q

Pr[COLL(Zs, Zs′)]. (3.17)
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We also have

incj(Ss)⊕ incj
′
(Ss

′
) =

{
incj−j

′
(Ss)⊕ Ss′ if j ≥ j′.

Ss ⊕ incj
′−j(Ss

′
) if j < j′.

Now we de�ne the following events

Ui ≡ inci(Ss)⊕ Ss′ = 0, for 0 ≤ i ≤ ms − 2, (3.18)

Vi ≡ Ss ⊕ inci(Ss
′
) = 0 for 0 ≤ i ≤ ms′ − 2. (3.19)

Hence,

COLL(Zs, Zs′) =

(
ms−2∨
i=0

Ui

)∨(
ms
′−2∨
i=0

Vi

)
. (3.20)

Now we will bound Pr[Ui]. We assume s < s′. For computing Pr[inci(Ss)⊕Ss′ = 0],
In case of encryption of both message, where P s

1 6= P s′
1 . CC

s is chosen randomly
hence for any i

Pr[inci(Ss)⊕ Ss′ = 0] =
1

2n
. (3.21)

Similarly, in case of decryption of both the message where MM s is chosen ran-
domly hence the same probability of (3.21) holds.

If one of them is decryption and other one is encryption. Without loss of
generality, if tys = dec then both Ss and Ss

′
are polynomials of h1 or h2 of degree

at most ` = max{ms + ts,ms′ + ts
′} Then using Lemma 2, we have

Pr

[ms−2∨
i=0

Ui

]
≤ wmax`(m

s − 1)

2n
. (3.22)

Similarly, we have

Pr

[ms−2∨
i=0

Vi

]
≤ wmax`(m

s − 1)

2n
. (3.23)

Thus, using equations (3.22) and (3.23), we have

Pr[COLL(Zs, Zs′)] ≤
wmax(m

s +ms′ − 2)`

2n
. (3.24)

Using equations (3.24) and (3.17) we have

Pr[COLLD2] ≤
∑

1≤s<s′≤q

wmax(m
s +ms′ − 2)`

2n

≤ `wmax
2n

∑
1≤s<s′≤q

(ms +ms′)

≤ `wmaxqσn
2n

.
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Claim 3. Pr[COLLD3] ≤
(
q
2

)
/2n.

The proof is similar to the proof of the Claim 1.

Claim 4. Pr[COLLR1] ≤ (q−1)σn
2n

.

Proof. In case P s
1 6= P s′

1 and tys = tys
′
= enc then CCs and CCs′ are selected

uniformly at random from {0, 1}n. Then, Pr[CCs = CCs′ ] = 1/2n.
In case If tys = dec, then

CCs =MM s ⊕Hh2(R
s, T s)⊕Hh1(Q

s, T s),

where Qs = P s
2 ‖P s

3 ‖ . . . ‖P s
ms and R

s = Cs
2‖Cs

3‖ . . . ‖Cs
ms .

Now, we have the following two cases to solve:

Case I: When tys
′
= enc then CCs is selected uniformly and independently

from {0, 1}n, then Pr[CCs = CCs′ ] ≤ 1/2n.

Case II: When tys
′
= dec and MM s =MM s′ . In this case we have

CCs ⊕ CCs′ =
[
Hh2(R

s, T s)⊕Hh2(R
s′ , T s

′
)
]
⊕
[
Hh1(Q

s, T s)⊕Hh1(Q
s′ , T s

′
)
]
.

Let

Hs,s′

2 = Hh2(R
s, T s)⊕Hh2(R

s′ , T s
′
),

Hs,s′

1 = Hh1(Q
s, T s)⊕Hh1(Q

s′ , T s
′
).

Note that Hs,s′

1 ⊕Hs,s′

2 is non-zero bivariabe polynomial on h1, h2 with (total)
degree `. Hence, from Schwartz-Zippel Lemma

Pr[CCs ⊕ CCs′ = 0] ≤ `

2n
.

Therefore, we have

Pr[COLLR1] ≤
∑

1≤s≤s′≤q

`

2n
(3.25)

≤ (q − 1)σn
2n

.

Claim 5. Pr[COLLR2] ≤
(∑

sm
s−q

2

)
/2n.

Proof. From the game RAND2, we have for 1 ≤ s ≤ q, Y s
j = Cs

j+2 ⊕ P s
j+2, where

0 ≤ j ≤ ms − 3, and

Y s
ms−2 =

{
pad(P s

ms)⊕Ds
ms if s = enc,

pad(Cs
ms)⊕ V s

ms if s = dec.

Hence, there are
∑

sm
s − q uniformly and independently generated n-bit strings.

Hence, the Claim follows.
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Claim 6. Pr[COLLR3] ≤ (q−1)σn
2n

.
Proof of the Claim is similar to the Claim 4.

Now by using Claim 1 to 6 and equation 3.13, we get :

Adv±rndXCBv1[3Perm(n)](A) ≤
2

2n

(
q

2

)
+
`qσnwmax

2n
+

1

2n

(∑q
s=1m

s − q
2

)
+

2(q − 1)σn
2n

≤ 2σ2
n

2n
+
`qσnwmax

2n
. (3.26)

By using above bound, equation (3.9) and the fact wmax ≤ 25 as stated in [15].
We get the bound of XCBv1 as stated in Theorem 3.2 i.e.

Adv
±p̃rp
XCBv1[3Perm(n)](A) ≤

(3 + 25)`qσn
2n

.

Similarly, we can prove the bound for XCBv2 as stated in Theorem 3.3.

3.6 Security of MXCB

In Claim 2, if we change the Ctr mode used in XCBv1 to

CtrK,S(P1, . . . , Pm) = (P1 ⊕ EK(S ⊕ 1), . . . , Pm ⊕ EK(S ⊕m)),

where S is the counter andK is the key, let's say this is �new counter mode�. Thus,
we have a modi�ed XCBv1, say, MXCBv1. Then MXCBv1's security bound will
be di�erent from the original due to �new counter mode�. Proof of the security
bound of this MXCBv1 will be similar to the previous, but we notice the change
in the security bound due to �new counter mode�. All the games are similar as we
have shown, in the original XCBv1 we only replace Counter mode to �new Counter
mode�. The collision probability of all the multi sets will be same except D2. Let
us rename COLLD2 as COLLDmod which we calculate as follows:

Claim 7. Pr[COLLDmod] ≤
(
σn−q

2

)
1
2n
.

Proof. D2 = Z1 ∪ Z2 ∪ . . . ∪ Zq, where
Zs = {Ss ⊕ binn(j) : 1 ≤ j ≤ ms − 1}, for 1 ≤ s ≤ q and

Ss =

{
CCs ⊕Hh1(P

s
2 ‖ . . . ‖P s

ms , T
s) if tys = enc,

MM s ⊕Hh2(C
s
2‖ . . . ‖Cs

ms , T
s) if tys = dec.

It is easy to see for x1, x2 ∈ Zs then Pr[x1 = x2] = 0. So our main task is to �gure
out Pr[x1 = x2] when x1 ∈ Zs and x2 ∈ Zs′ , where s 6= s′.

Pr[COLLDmod] ≤
∑

1≤s<s′≤q

Pr[COLL(Zs, Zs′)].

In case of tys = tys
′
= enc and P s

1 6= P s′
1 , CC

s is chosen randomly and indepen-
dently, for any i and j

Pr[Ssi = Ss
′

j ] =
1

2n
.
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Similarly, for the case tys = tys
′
= dec and Cs

1 6= Cs′
1 , for any i and j

Pr[Ssi = Ss
′

j ] =
1

2n
.

In rest of the case where tys = enc and tys
′
= dec, for ith and jth block, where

1 ≤ i ≤ ms − 1 and 1 ≤ j ≤ ms′ − 1,
Zi
s = Zj

s′ implies

binn(i)⊕CCs⊕Hh1(P
s
2 ‖ . . . ‖P s

ms , T
s) = binn(j)⊕MM s′⊕Hh2(C

s′

2 ‖ . . . ‖Cs′

ms′
, T s

′
)

Let s ≤ s′ and (s, i) 6= (s′, j). Thus, either CCs (in case sth is encryption query) or
MM s (in case s′th is decryption query) is uniformly and independently distributed
with all other variables. Thus, collision probability is 1/2n.
Hence, for σn − q messages

Pr[COLLDmod] ≤
(
σn − q

2

)
1

2n
.

Now we can calculate the security bound for the MXCBv1 which is similar to
the XCBv1. Di�erence in the security bound is due to the Claim 2 which we will
replace by the Claim 7. Thus, Except the Claim 2, by using the Claim 1 to 7, we
get:

Adv±rndMXCBv1[3Perm(n)](A) ≤
2

2n

(
q

2

)
+

2

2n

(∑q
s=1m

s − q
2

)
+

2(q − 1)σn
2n

≤ q2

2n
+

(σn − q)2

2n
+

2σnq

2n

≤ 2q2 + σ2
n

2n
.

By using above bound and equation (3.9). We get the bound of MXCBv1 i.e.

Adv
±p̃rp
MXCBv1[3Perm(n)](A) ≤

2.5q2 + σ2
n

2n
.

As we stated earlier, similarly we can state the security bound for the MX-
CBv2 (modi�ed XCBv2). Thus, we can state the security bound of MXCBv1 and
MXCBv2fb. For MXCBv1, security bound is as follows:

Theorem 3.6.1. Consider an arbitrary adversary A which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
MXCBv1[3Perm(n)](A) ≤

2.5q2 + σ2
n

2n
. (3.27)

Similarly, for MXCBv2 our security bound is given as:
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Theorem 3.6.2. Consider an arbitrary adversary A which queries only with mes-
sages/ciphers whose lengths are multiples of n and A asks a total of q queries of
overall query complexity σn where each query is at most ` blocks long (each block
of n bits). Then,

Adv
±p̃rp
MXCBv2fb[3Perm(n)](A) ≤

3.5q2 + σ2
n

2n
. (3.28)

3.7 Comparison of TES Security bounds

In this section, we compare our derived security bound with the bound compared
in [2] with the same practical values of the parameter as taken in [2]. So, Available
ciphertext/plaintext to adversary is 242. Also, the block length is 16 bytes. So,
total ciphertext/plaintext is 242/24 = 238 blocks. And sector size is 4 KB i.e. 212

bytes. Thus, we take message length 212/24 = 28 blocks. Therefore, we have total
number of message is 238/28 = 230. So, the total query complexity of the adversary
is 238 + 230 = 238.006, where 230 is the tweak for adversary.

Hence, q is number of queries i.e. 230, ` is maximum query length i.e. 28 + 1
and σn query complexity i.e 238.006.

In the Table 3.1, we can see even repaired XCB gives the worst security bound
as compare to listed TES scheme while MXCB gives the best bound.

3.8 Weak keys analysis of XCB

In 2008, Handschuh and Preneel [9] gave the following de�nition of weak keys:

In symmetric cryptology, a class of keys is called a weak key class if for
the members of that class the algorithm behaves in an unexpected way
and if it is easy to detect whether a particular unknown key belongs
to this class. For a MAC algorithm, the unexpected behaviour can
be that the forgery probability for this key is substantially larger than
average. Moreover, if a weak key class is of size C, one requires that
identifying that a key belongs to this class requires testing fewer than
C keys by exhaustive search and fewer than C veri�cation queries.

According to this de�nition, a lot of work has been proposed by Handschuh and
Preenel and Saarinen in MAC, AE based on polynomial hash function. Initially,
Handschuh and Preenel considered 0 as the only weak key for all polynomial hash
function. Later, in 2012 Marakku-Juhani [17], in 2015 Gorden Procter et al.[16]
increased the number of weak keys for GCM.

3.8.1 Saarinen's Cycling attacks

Saarinen's cycling attacks was proposed in 2012 in [17] against GCM and other
polynomial-based MACs and hashes. The main idea is, if a hash key h lies in a
subgroup of order r, then hr = 1. Hence, for any i, j message block Mi and Mi+jr
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List of some TES

TES mode Source Claimed Bound Numerical Value

TET [6]
3σ2

n

2φ(2n − 1)
2−50.40

HCTR [3]
4.5σ2

n

2n
2−49.81

CMC [7]
7σ2

n

2n
2−49.18

EME [8]
7σ2

n

2n
2−49.18

HEH, HMCH [18]
20σ2

n

2n
2−47.66

XCB [12]
8q2(`+ 2)2

2n
2−48.96

XCBv2fb [2]
(5 + 222)`qσn

2n
2−29.98

XCBv1 [2]
(5 + 222)`qσn

2n
2−29.98

Repaired
XCBv2fb

This
Dissertation

(5 + 25)`qσn
2n

2−46.78

Repaired
XCBv1

This
Dissertation

(3 + 25)`qσn
2n

2−46.87

MXCBv2fb This
Dissertation

3.5q2 + σ2
n

2n
2−51.99

MXCBv1 This
Dissertation

2.5q2 + σ2
n

2n
2−51.99

Table 3.1: Comparison of the Bounds, here φ is Euler's totient.
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can be swapped without changing the value of hash function. Saarinen also talk
about the speci�c bit swapping instead of whole block swapping while the other
condition ofMi andMi+jr will remain same. The forgery technique is successful if
the hash key is an element of low order subgroup with order dividing the distance
between the swapped message space. This method identi�es whether the hash key
is in that class or not, by one valid message, tag pair and single veri�cation query.
Saarinen observes that any r that divides 2128− 1 can be used and that swapping

of Mi and Mi+r will give successful forgery with probability at least
r + 1

2128
.

3.8.2 Saarinen's Cycling attacks on XCB

As XCB contain hash function, a relevant question which arise about XCB - Is it
contains weak keys? Some of weak keys attack on TES are present in [19], here we
will present how Saarinen's cycling attack (2012) which was done against GCM
and hashes, can be done in XCBv1 and XCBv2.

In XCBv2, line 108 in Figure 3.3, if a hash key h is of order t, then ht = 1.
Therefore, we can swap a plain text block Pi and Pi+jt (for some i, j) without
changing the original value of the hash function.

108. S ← CC ⊕Hh(0
n‖T, P1‖ . . . ‖Pm−2‖pad(Pm−1)‖0n).

For example, if h3 = 1 then we can swap plaintext Pi and Pi+3j, where 1 ≤
i, i + 3j ≤ m − 1 hence the plaintext P will change but not the hash function
value. Therefore, In line 109, counter mode will be same after swapping the
plaintext block. Before swapping, let ciphertext C, plaintext P and counter mode
CtrKc,S and after swapping ciphertext C ′, plaintext P ′ and counter mode will be
same i.e. CtrKc,S. Now as we know the plaintext and ciphertext before swapping,
therefore we can determine the Counter mode from line 109 i.e C ⊕ P = CtrKc,S
(here ⊕ is block wise XOR, as per XCB scheme). As counter mode before and
after swapping is same, so we can easily �gure out the C ′ i.e. C ′ = P ′ ⊕ CtrKc,S.
Thus, the cycling attack took place.

109. (C1, . . . , Cm−1)← CtrKc,S(P1, . . . , Pm−2, Pm−1).

Similarly, we can perform the weak keys attack on XCBv1.



Chapter 4

Security of HCTR

HCTR was proposed by Wang, Feng and Wu in 2005. It is a mode of operation
which provides a tweakable strong pseudorandom permutation [20].

In this chapter, we show how the hash function is insecure. We perform dis-
tinguishing attack and the hash key recovery attack on HCTR. Next we analyse
the dependency of the two di�erent keys in HCTR. In particular, we analyse the
following scenario. Suppose HCTR with keys K and h has been used for some
time, and K gets compromised. We show that only changing K would rise to a
completely insecure scheme.

4.1 Description of HCTR

HCTR comprises a block cipher E and hash functionH. It is a Tweakable Encipher
Scheme with two master key : hash key h and block cipher keyK. HCTR and XCB
have the similar structure i.e. these are hash-counter-hash Tweakable Enciphering
Scheme. But HCTR's hash function and Ctr mode de�nition is di�erent from the
XCB.

Following is the de�nition of the HCTR as de�ned in [20]:
Polynomial hash function in HCTR : Let P be the plaintext such that

|P | = n(m − 1) + r for 1 ≤ r ≤ n. Partition of P into P1||P2|| . . . ||Pm, where
|Pi| = n for 1 ≤ i ≤ m−1, 0n−r will append at the end of P to complete the block
such that all block size will be n.

Hh(P ) : {0, 1}n × {0, 1}∗ → {0, 1}n,
and the hash function H is de�ned as

Hh(P ) =

{
h, if P is an empty string,

P1h
n+1 ⊕ · · · ⊕ (Pn||0n−r)h2 ⊕ ((|P |)h), otherwise.

Counter mode in HCTR: Given an n-bit string S, the counter mode Ctr is
de�ned as: CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S ⊕ 1), . . . , Am ⊕ EK(S ⊕m), where
S is the counter and K is the key.

HCTR's encryption algorithm is shown in Figure 4.1 and construction in the
Figure 4.2 with plaintext |P | ≥ n and tweak |T | ≥ 0.

27
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Encryption under HCTR : ET
K(P )

1. Partition P into P1, . . . , Pm
2. CC ← P1 ⊕Hh(P2, . . . , Pm||T )
3. S ← CC ⊕ EK(CC)
4. C2, . . . , Cm ← CtrK,S(P2, . . . , Pm)
5. C1 ← EK(CC)⊕Hh(C2, . . . , Cm||T )
6. return (C1, . . . , Cm)

Figure 4.1: Encryption using HCTR

4.2 Insecurity of the hash function

In 2005, the author showed a cubic security bound for HCTR in [20]. Later in
2008, Chakraborty and Nandi gave the quadratic Security bound of HCTR [3]
which showed distinguishing advantage of an adversary in distinguishing HCTR
and its inverse from a random permutation and its inverse is bounded above by
4.5σ2

2n
where n the block-length of the block-cipher and σ is the number of n-block

queries made by the adversary (including the tweak). In this section, we show
how the above claim is contradictory.

4.2.1 The Case of Empty Message

Here, we give distinguish attack on the HCTR. In distinguish attack on the con-
struction of HCTR, an adversary distinguish between the scheme and random
permutation with high probability. Distinguish attack on HCTR which we show
here generate the same internal value (i.e. CC) after performing hash function for
two di�erent messages. In HCTR's hash function if P is empty string (as an input
of hash function) or P = 0 (only single 0 as an input of hash function) then the
Hh(P ) return the same counter value i.e. h, which is collision in hash function.
Below we explain how distinguish attack can be performed on HCTR.

Suppose an adversary makes two queries P (1) and P (2) such that C(1) =
HCTRK,h(P

(1)) and C(2) = HCTRK,h(P
(2)) for empty tweak. Assume that P (1) =

x and P (2) = (x‖0) where x ∈ {0, 1}n is arbitrary. Now,

1. Due to collision in hash function for empty input and 0 input, internal value
CC(1) and CC(2) have the same value i.e. x ⊕ h. And so EK(CC

(1)) =
EK(CC

(2)) , say, EK(CC).

2. If C
(2)
2 has output 0 then C

(1)
1 = C

(2)
1 i.e. EK(CC)⊕ h.

3. Also, Pr[C
(2)
2 = 0] = 1/2.
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CtrK;S

P2 Pm

+

+

+

C1 C2 Cm

: : :

: : :

...

...
Hh

Hh

T

T

P1

EK
S

Figure 4.2: Encryption of HCTR

Thus, the advantage of the adversary is (1
2
− 1

2n
) which is very high. Therefore,

the bound proved in [3] is contradictory.
Not only distinguish attack, adversary can perform hash key recovery attack.

If we make the same set-up as above and C
(2)
2 is 1 instead of 0 then

C
(1)
1 ⊕ C

(2)
1 = EK(CC)⊕ h⊕ EK(CC)⊕ h2 ⊕ h

= h2.

After getting h2, adversary can easily retrieve the hash key h. Therefore, in k
iteration where k ≥ 1, adversary have a high probability of retrieving hash key h
i.e.

Pr

[
C

(2)
2 = 1

]
=

(
1− 1

2k

)
.

Thus, in the above discussion adversary not only perform the distinguishing
attack but also retrieve the hash key h with almost surety from HCTR scheme.

4.2.2 Comment about the Attack

In above two attacks, the weak point is de�nition of the hash function. Therefore,
we can avoid the above attacks by putting some restriction either on the input
query or hash function, or both. Here are the following way which can help us to
avoid these attacks:
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1. We can avoid these attacks if we do not de�ne the hash function for empty
string and exclude message of length n-bits or less from the message space
of HCTR i.e. |P | > n.

2. Above technique put restriction on the message. We can prevent the above
attack without changing the message size of HCTR just by modifying the
de�nition of hash function i.e increase the size of the input by one. So, the
new hash H

′
is de�ned as: H

′

h(P ) = Hh(P ||1).

4.3 Key Dependency in HCTR

In de�nition of HCTR, we didn't talk about the two master keys whether they
have some relation or not. Suppose in an implementation, Two master keys h1
(hash key) and K1 (block cipher key) were used and encryption, decryption took
place. Suppose after some time, block key K1 gets compromised and it changed
from K1 to K2. Also, we have su�cient amount of data available corresponding
to the old key pair. Here, we show how one can extract the hash key i.e. h1 with
certainty and the whole scheme is compromised i.e. hash key recovery attack is
possible. Thus, the scheme will not be secure any-more.

Suppose an adversary has a plaintext ciphertext pair (P,C) such that C =
HCTRK1,h1(P ) for empty tweak. Assume that P = x‖x where x ∈ {0, 1}n is
arbitrary. Now,

C1 = EK1(CC)⊕Hh1(C2), (4.1)

where CC = x⊕Hh1(x).

C2 = EK1(S ⊕ binn(1))⊕ x,

Here,

S = CC ⊕ EK1(CC)

= x⊕Hh1(x)⊕ EK1(CC). (4.2)

Now, as we know C2, x and K1, we have

S = E−1K1
(C2 ⊕ x)⊕ binn(1). (4.3)

By using equations (4.1), (4.2) and 4.3, we get

C1 ⊕ S ⊕ x = EK1(CC)⊕Hh1(C2)⊕ x⊕Hh1(x)⊕ EK1(CC)⊕ x,
= (x⊕ C2)h1

2. (4.4)

Here equation (4.4) is a quadratic equation in h1 which we can solve easily and
retrieve the hash key h1.

To prevent from this attack, we should change both the keys simultaneously.
Note we did not comment on changing only the hash key and keeping block cipher
key as it is.



Chapter 5

Conclusion

In this dissertation, we improved the security bound of a Tweakable Encipher-
ing Scheme (TES) known as XCB (Extended Code Book). Also, we proposed a
Modi�ed XCB (MXCB) and showed that the security bound of MXCB has better
numerical value than many other popular TES like HCTR, HCH, TET, HEH,
CMC, XCB and EME. We also analysed some weak keys attack on XCB.

Further, we analysed a TES known as HCTR. We performed distinguishing and
key recovery attack on the existing HCTR and also showed how it can be avoided
easily. We also showed why both the master keys of HCTR should be changed
simultaneously or otherwise it could be a serious attack on the construction of
HCTR.
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