
Indian Statistical Institute, Kolkata

Inverse Free HCTR: A Length

Preserving Tweakable Enciphering Mode

by

Mohammad Chharchhodawala

A report submitted in partial fulfillment for the

degree of Master of Technology in Computer Science

Guided by

Prof. Debrup Chakraborty

CSR UNIT

July 2018

https://www.isical.ac.in/
mhdc677\spacefactor \@m {}gmail.com
https://www.isical.ac.in/~debrup/
https://www.isical.ac.in/~csru/

Declaration

I hereby declare that the dissertation report entitled “Inverse Free HCTR: A Length

Preserving Tweakable Enciphering Mode” submitted to Indian Statistical Insti-

tute, Kolkata, is a bona fide record of work carried out in partial fulfilment for the award

of the degree of Master of Technology in Computer Science. The work has been

carried out under the guidance of Prof. Debrup Chakraborty, Associate Professor,

CSRU, Indian Statistical Institute, Kolkata.

I further declare that this work is original, composed by myself. The work contained

herein is my own except where stated otherwise by reference or acknowledgement, and

that this work has not been submitted to any other institution for award of any other

degree or professional qualification.

Place : Kolkata

Date : July 2018

Mohammad Chharchhodawala

Roll No: CS-1618

CERTIFICATE

This is to certify that the dissertation entitled “Inverse Free HCTR: A Length Pre-

serving Tweakable Enciphering Mode” submitted by Mohammad Chharchho-

dawala to Indian Statistical Institute, Kolkata, in partial fulfillment for the award of

the degree of Master of Technology in Computer Science is a bona fide record

of work carried out by him under my supervision and guidance. The dissertation has

fulfilled all the requirements as per the regulations of this institute and, in my opinion,

has reached the standard needed for submission.

Prof. Debrup Chakraborty

Associate Professor & Head,

Cryptology and Security Research Unit,

Indian Statistical Institute,

Kolkata-700108, India.

Abstract

Inverse Free HCTR (IFHCTR) is a length-preserving encryption scheme, which provides

a tweakable strong pseudorandom permutation. IFHCTR is modification of HCTR

scheme in which inverse of block cipher is not required. IFHCTR supports arbitrary

variable input length with the minore restriction that data should be at least 2n bits

long, where n is the block length of block cipher. IFHCTR also supports variable

length tweaks. We prove that IFHCTR is a strong tweakable pseudorandom permutation

(sprp), when the underlying blockcipher is a pseudorandom function (prf). IFHCTR

can be used in disk sector encryption, and other applications where length-preserving

encryptions are required, especially when size of the message is not multiple of n bits.

Keywords: Inverse free schemes, Length-preserving enciphering scheme, Tweakable en-

ciphering scheme, HCTR

Acknowledgements

I would like to thank my thesis advisor Prof. Debrup Chakraborty. The door of his

office was always open whenever I ran into a trouble spot or had a question about my

work or writing.

I would be failing in my duties if I don’t mention friends and people who mattered and

conversing with whom did help me during two years at ISI Kolkata. In this period I

have been enriched and nurtured in numerous ways by interaction with many people.

Especially I would like to express my gratitude to research scholars of CSRU & ASU

and Manish for keeping a positive workspace.

Lastly, about Deepayan Sanyal and Neilutpal Saha, whose friendships, I have cherished

the most during two years at ISI Kolkata. I am indebted to them for their help during

my trying times. We three enjoyed good times. Hope our friendship continues with the

same fervor.

iv

Contents

Abstract iii

Acknowledgements iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 Preliminaries 4

3 Inverse Free HCTR (IFHCTR) 8

3.1 Construction of IFHCTR . 8

3.2 Characteristics of the IFHCTR . 9

3.3 Some Insecure Constructions . 11

3.4 Security of IFHCTR . 15

3.5 Game Sequence . 16

3.5.1 Bounding collision probability in D 20

4 Implementation of IFHCTR 28

v

List of Figures

3.1 IFHCTR algorithm . 9

3.2 IFHCTR encryption . 10

3.3 IFHCTR decryption . 11

3.4 Insecure construction-I . 12

3.5 Insecure construction-II . 13

3.6 Insecure construction-III . 14

3.7 Games IFHCTR1 and RAND1 . 18

3.8 Game RAND2 . 19

vi

List of Tables

4.1 Comparison of the cycles per byte measure of HCTR with original HCTR
and FAST . 28

vii

Chapter 1

Introduction

Data privacy is usually achieved by encryption. A block cipher is a vital primitive

to design encryption schemes. However, in most application environments, only block

ciphers can’t provide the required security. In such cases block ciphers are used in a

special way, which is called a block cipher mode of operation, to achieve the required

functionality and security. Among others, this case occurs in case of security of stored

data, especially in the application of disk sector encryption.

A well accepted solution for encryption of sector/block oriented storage devices is low

level disc encryption or in-place disc encryption. Low level disk encryption is encryption

at the hardware level which converts data on a hard disks, USB sticks etc into a form that

cannot be understood by anyone who doesn’t have the key to “undo” the conversion.

Without the proper key, even if the hard drive is removed and placed in another machine,

the data remains inaccessible. In low level disc encryption, the encryption and decryption

algorithms reside in the disk-controller. These algorithms have no knowledge about the

high-level logical partitions of the disk, like files and directories but have access only

to the disk sectors. The disk-controller performs encryption of data before it writes a

sector, and performs decryption of data which is stored in sector before sending it to

the operating system.

An important property required for low level disc encryption is length preservation. We

call an encryption scheme an enciphering scheme when it is length-preserving, i.e., when

the length of the plaintext matches the length of the ciphertext. Another important

property required of schemes to be used for low level disc encryption is ciphertext vari-

ability. In simple terms, it means that, the encryption of the same data which resides

in different disc sectors should be unrelated and different. If an adversary swap the

data of two disc sectors, then their decryption should give random looking data which

is unlikely to be meaningful. The security requirement of these schemes is that the

1

Introduction 2

ciphertext should look random and a one bit change in the ciphertext should yield a

random plaintext on decryption. All these properties are provided by a cryptographic

object called tweakable enciphering scheme (TES).

A tweakable enciphering scheme takes as input a tweak t, a key K, and a message M ,

and outputs a ciphertext C. Here, the tweak is an extra input, generally it may be an

initial value, a state, a position, a mark, a file name, or something else. As mentioned

earlier, the disk is encrypted sector-wise. Each sector is 4096 bytes and has a sector

address. To perform encryption of sector data the requirement is to use a tweakable

enciphering scheme with the sector address as the tweak and the plaintext as the 4096

byte data in the sector.

In the last two decades several tweakable enciphering schemes have been proposed. The

existing constructions can be broadly classified into two categories; ones which use only

block ciphers and the others use both block ciphers and some kind of polynomial hash

functions. Some notable examples in the former category are EME[1], EME*[2], CMC[3],

Fmix[4] and AEZ-core[5] etc. Whereas some examples in the later category are PEP[6],

TET[7], HEH[8], HCTR[9], XCB[10], FAST[11] etc. STES[12] is a construction related

to the later category but it uses stream ciphers instead of block ciphers.

Efficiency in both software and hardware is a major design goal for TES. Thus schemes

with lesser operation counts, better options for parallel implementation and small foot-

print when implemented in hardware are preferred. Another design goal is to reduce

the number of keys required for the construction. As keys are to be stored securely and

storing more keys securely is more difficult.

We call a block cipher based TES an inverse free scheme if the construction depends only

on the encryption function of the blockcipher both while encrypting and decrypting, thus

never needing to call decryption function of block cipher. These designs have various

advantages, like requiring just a a least stringent assumption on the security of the

underlying blockcipher and substantial savings in hardware as the decryption module of

the block cipher is not required to be implemented, Especially in disc encryption where

encryption algorithm resides just above the disk controller). A hardware implementation

would be preferred for a typical deployment and thus inverse free schemes which occupies

less area in hardware are well suited. This scheme is also advantageous when decryption

function takes more time to execute than encryption function or vice versa in some

enciphering scheme. As per our knowledge the first inverse free tweakable enciphering

scheme was proposed in [13]. Later proposed constructions are FAST[11], Fmix[4] and

AEZ-core[5].

Introduction 3

Our Contribution: We present a new inverse free TES which has simpler description

compared to the existing ones. Also it is comparable to the existing ones in the terms

of security and efficiency.

Our construction is obtained as a modification of HCTR. HCTR is a scheme which uses

two layers of polynomial hashes along with a block cipher counter mode as it’s main

components. Other than these, HCTR also has a “single” block cipher call whose inverse

is required to be computed at decryption. We remove this “single” block cipher call in

our construction and obtain an inverse free cipher. We call our scheme as IFHCTR, i.e,

inverse free HCTR.

The rest of the document is organized as follows. In Chapter 2 we fix some notations

and introduce some basic cryptographic objects which we extensively use in the later

chapters. Chapter 3 forms the most important part of this report where we describe the

construction of IFHCTR and prove its security. Chapter 4 provides some preliminary

experimental results on performance of IFHCTR when implemented in modern Intel

Processors equipped with the AES-NI instruction set.

Chapter 2

Preliminaries

Notation: We denote the concatenation of two strings X and Y by X||Y . By |X| we

shall mean the length of X in bits. By |X|n we mean d |X|n e, which we call the number

of n-bit blocks in X. binn(`) will denote the n bit binary representation of an integer `,

where 0 ≤ ` < 2n. {0, 1}n denotes set of all binary strings of the length n. pad(X) will

denote the string X||0i, where i is the minimum nonnegative integer such that |X||0i| is
divisible by n. dropr(X) drops last r bits of X and gives a string |X| − r bits.

Binary Strings and Finite Field: We sometimes see n-bit strings to be elements

in a finite field of size 2n, i.e we view {0, 1}n as GF (2n). Thus, we think of an n-bit

string L = Ln−1 . . . L1L0 ∈ {0, 1}n as the polynomial L(x) = Ln−1x
n−1 + . . .+L1x+L0.

For A,B ∈ GF (2n), A ⊕ B and AB will denote addition and multiplication in the

field respectively. To add two points A,B, we take their bit wise xor. To multiply

two elements we must fix an irreducible polynomial Pn(x) having binary coefficients

and degree n: say the lexicographically first polynomial among the irreducible degree-

n polynomials having a minimum number of nonzero coefficients. For n = 128, the

indicated pentanominal polynomial is P128(x) = x128 + x7 + x2 + x + 1. Now multiply

A(x) and B(x) by forming the degree 2n− 2 (or less) polynomial that is their product

and taking the remainder when this polynomial is divided by Pn(x). B(x) is called as

an inverse of A(x) if we multiply A(x) and B(x) and it gives reminder 1 when their

product is divided by Pn(x). Inverse of A(x) is denoted by A(x)−1.

Block Cipher: A conventional block cipher takes two inputs. a key K ∈ {0, 1}k and a

message(plaintext) M ∈ {0, 1}n; and produces a single output- a ciphertext C ∈ {0, 1}n.

The signature for a block cipher is E : {0, 1}k × {0, 1}n → {0, 1}n. We generally write

EK(M) instead of E(K,M). We call k as the key length and n as the size of block

throughout this report. Formally, a block cipher is seen as family of permutations where

the key selects a particular permutation from that family.

4

Preliminaries 5

Tweakable Block Cipher: A tweakable block cipher takes three inputs a key K ∈
{0, 1}k, tweak T ∈ {0, 1}t and a message (plaintext) M ∈ {0, 1}n; and produces a

single output- a ciphertext C ∈ {0, 1}n. The signature for a tweakable block cipher

is Ẽ : {0, 1}k × {0.1}t × {0, 1}n → {0, 1}n. We generally write ẼTK(M) instead of

Ẽ(K,T,M). With a tweakable block cipher both key and tweak are used to select a

permutation.

Tweakable Enciphering Scheme: A tweakable enciphering scheme is a function

E : K × T ×M → M where M = ∪i≥1{0, 1}i is the message space, K 6= φ is the key

space and T 6= φ, is the tweak space. We require that for every K ∈ K and T ∈ T we

have that E(K,T, .) = ETK(.) is a length-preserving permutation on M. The inverse of

an enciphering scheme E is the enciphering scheme D = E−1 where X = DTK(Y) if and

only if ETK(X) = Y . A block cipher is the special case of a tweakable enciphering scheme

where the message space is M ∈ {0, 1}n (for some fixed n ≥ 1) and the tweak space

is T = {ε} (the empty string). A tweakable block cipher is a TES with message space

M∈ {0, 1}n (for some n ≥ 1).

Adversary: An adversary A is a (possibly probabilistic) algorithm with access to some

oracles. Oracles are written as superscripts. The notation AO ⇒ 1 describes the event

that the adversary A interacting with the oracle O outputs the bit one.

Pseudorandom Function(PRF): Let {FK}K∈K be a function family, such that for

every K ∈ K, FK : {0, 1}n → {0, 1}n. Let Func(n) is a set of functions mapping n-bit

strings to n-bit strings and A be an adversary. We define the prf advantage of A for F

as:

Advprf
F (A) = |Pr[K

$← K : AFK(.) ⇒ 1]− Pr[f
$← Func(n) : Af(.) ⇒ 1]|. (2.1)

We say the family {FK}K∈K is a pseudorandom function family if for all “efficient” A,

Adv is “small”.

Pseudorandom Permutation(PRP): Let {ΠK}K∈K be a permutation family, such

that for every K ∈ K, ΠK : {0, 1}n → {0, 1}n. Let Perm(n) is a set of permutations map-

ping n-bit strings to n-bit strings and A be an adversary. We define the prp advantage

of A for Π as

Advprp
Π (A) = |Pr[K

$← K : AΠK(.) ⇒ 1]− Pr[π
$← Perm(n) : Aπ(.) ⇒ 1]|. (2.2)

We say the family {ΠK}K∈K is a pseudorandom permutation family if for all “efficient”

A, Adv is “small”.

Preliminaries 6

Strong Pseudorandom Permutation(SPRP): Let {ΠK}K∈K be a permutation

family, such that for every K ∈ K, ΠK : {0, 1}n → {0, 1}n. Let Perm(n) is a set of

permutations mapping n-bit strings to n-bit strings and A be an adversary. We define

the prp advantage of A for Π as

Adv±prp
Π (A) = |Pr[K

$← K : AΠK(.),Π−1
K (.) ⇒ 1]− Pr[π

$← Perm(n) : Aπ(.),π−1(.) ⇒ 1]|.
(2.3)

We say the family {ΠK}K∈K is a strong pseudorandom permutation family if for all

“efficient” A, Adv is “small”.

Block Cipher Security: The standard security assumption on a block cipher E :

{0, 1}k × {0, 1}n → {0, 1}n is that EK is a strong pseudorandom permutation. In

certain usage scenarios, say where the inverse of block cipher is never used, a weaker

assumption like the block cipher is a secure prf may suffice. In the construction that we

later propose we will never use the decryption functionality of the block cipher and thus

for us assuming the block cipher to the prf secure would be enough.

Security Measure For Tweakable Enciphering Scheme: For a tweakable enci-

phering scheme E : K × T ×M →M we consider the advantage that the adversary A

has in distinguishing E and its inverse from a random permutation and its inverse as

Adv± ˜prp
E (A) = |Pr[K

$← K : AEK(·,·),E−1
K (·,·) ⇒ 1]−|Pr[π

$← PermT (M) : Aπ(·,·),π−1(·,·) ⇒ 1]|.
(2.4)

where, PermT (M) is the set of all functions π : T ×M→M where π(T , .) is a length-

preserving permutation. In ˜prp the tilde serves as a reminder that the PRP is tweakable.

In the above definition we assume some restrictions on the adversary. Without loss of

generality we assume that an adversary never repeats an encrypt query, never repeats

a decrypt query, never queries its decrypting oracle with (T,C) if it got C in response

to some (T,M) encrypt query, and never queries its encrypting oracle with (T,M) if it

earlier got M in response to some (T,C) decrypt query. We call such queries pointless

because the adversary already “knows” the answer that it should receive.

Let E : K × T ×M →M be a tweakable enciphering scheme and let D be its inverse.

Define the advantage of A in distinguishing E from random bits, Adv±rnd
E , by

Adv±
˜rnd

E (A) = |Pr[K
$← K : AEK(·,·),DK(·,·) ⇒ 1]− |Pr[A$(·,·),$−1(·,·) ⇒ 1]|. (2.5)

where $(T,M) returns a random string of length |M |. We insist that A makes no

pointless queries, regardless of oracle responses, and A asks no query (T,M) outside of

T ×M.

Preliminaries 7

Let A be an adversary and R be a list of resources for A and suppose Advxxx
Π (A) already

has been defined. We write Advxxx
Π (R) for the maximal value of Advxxx

Π (A) over all

adversaries A that use resources at most R. Resources of interest are the running time

t and the number of oracle queries q and the query complexity σn (where n ≥ 1 is a

number). The query complexity σn specifies the number of blocks (each of size n-bits)

of queries made by an adversary. We will be specially interested in query complexity of

adversaries for tweakable enciphering schemes. In such cases, the query complexity of

any one query (T, P) is d|P |/ne+ d|T |/ne, and the query complexity of an adversary is

the sum of the query complexity of all the queries.

Chapter 3

Inverse Free HCTR (IFHCTR)

HCTR was proposed by Wang, Feng and Wu in 2005 [9]. Later in 2008 a better security

bound for HCTR was proved[14]. Inverse Free HCTR (IFHCTR) is the modification

of HCTR scheme in which decryption module is not required. IFHCTR is a function

E : K × T ×M→M where M = ∪i≥2n{0, 1}i is the message space and K = {0, 1}n ×
{0, 1}n × {0, 1}n is the key space and T = {0, 1}∗ is the tweak space.

As in HCTR, IFHCTR uses a polynomial hash function and a counter mode of operation.

Here we have modified the definition of hash function Hh, to incorporate use of arbitrary

length tweaks. We remove “single” block cipher call in HCTR and replace it by a

finite field multiplication. But for security we have to introduce two more block cipher

calls, we encrypt outputs of the polynomial hashes before using them. Thus, for fixed

length tweaks. IFHCTR requires one more block cipher call and one more finite field

multiplication compared to HCTR. Also it uses one additional key. Thus IFHCTR

requires, three keys, m+ 1 block cipher calls and 2m+ 2t+ 1 finite field multiplications

for encrypting/decrypting a m blocks of message with t blocks of tweak.

3.1 Construction of IFHCTR

We first describe the two building blocks of IFHCTR, the hash function H and the

counter mode Ctr.

Hash Function: In IFHCTR, we use hash a hash function H : {0, 1}n×{0, 1}ii≥n×T →
{0, 1}n defined as:

Hh(X,T) = X1h
m+t+1 ⊕X2h

m+t ⊕ . . .⊕ padr(Xm)ht+2

⊕T1h
t+1 ⊕ . . .⊕ padr(Tt)h

2 ⊕ binn/2(|X|)||binn/2(|T |)h

8

Inverse Free HCTR (IFHCTR) 9

Figure 3.1: IFHCTR algorithm

IFHCTR.EncryptIFHCTR.EncryptIFHCTR.EncryptTK,h,α(P)

1. P1||P2|| . . . ||Pm ← P
2. MM ← P1 ⊕ EK(Hh(P2|| . . . ||Pm, T))
3. CC ← α×MM
4. S ←MM ⊕ CC
5. (C2, . . . , Cm−1, Cm)
← CtrK,S(P2, . . . , Pm)

6. C1 ← CC ⊕ EK(Hh(C2|| . . . ||Cm, T))
returnreturnreturn(C1|| . . . ||Cm);

IFHCTR.DecryptIFHCTR.DecryptIFHCTR.DecryptTK,h,α(C)

1. C1||C2|| . . . ||Cm ← C
2. CC ← C1 ⊕ EK(Hh(C2|| . . . ||Cm, T))
3. MM ← α−1 × CC
4. S ←MM ⊕ CC
5. (P2, . . . , Pm−1, Pm)
← CtrK,S(C2, . . . , Cm)

6. P1 ←MM ⊕ EK(Hh(P2|| . . . ||Pm, T))
returnreturnreturn(P1|| . . . ||Pm);

where h ∈ {0, 1}n is the hash key. X = X1||X2|| . . . ||Xm, where |Xi| = n for 1 ≤ i ≤
m − 1 and 0 < |Xm| ≤ n. So, |padr(Xm)| = n and T = T1||T2|| . . . ||Tt, where |Ti| = n

for 1 ≤ i ≤ t− 1 and 0 < |Tt| ≤ n. We denote H(h,X, T) by Hh(X,T). Hh is different

from the hash function of the original HCTR[9]. By the fact that we incorporate the

tweak length in the definition to allow arbitrary length tweaks. Our definition of Hh is

exactly the same as the hash function used in XCB[10].

Counter Mode: Counter mode which is used in case of IFHCTR defined as follows.

Let K,S ∈ {0, 1}n be given and A1, A2, . . . , Am ∈ {0, 1}n and Am is a non-empty string

of size at most n. Then we define.

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S1), . . . , Am ⊕ EK(Sm)). (3.1)

Where, Si is defined as S ⊕ binn(i). If last block is incomplete, i.e., if Am < n, then

Am⊕EK(Sm) is replaced by Am⊕dropr(EK(Sm)) in Equation (3.1), where r = n−|Am|.

The encryption and decryption algorithms for IFHCTR are described in Figure [3.1]

and schematic diagrams for encryption and decryption are shown in Figures 3.2 and 3.3

respectively.

3.2 Characteristics of the IFHCTR

1. Inverse Free: This construction is inverse free as the inverse of the block cipher

is never required. So encryption function of block cipher is sufficient for this

construction. Since inverse of block cipher is not required then we can take a PRF

assumption on the encryption function of a block cipher than SPRP assumption

on the block cipher. So security of construction is based on a PRF assumption

Inverse Free HCTR (IFHCTR) 10

�trK

P2 Pm

HhEK

EK Hh

�

P�

� �

�

C� C2 Cm

T

T

	

: : :

: : :

...

...

Figure 3.2: IFHCTR encryption

on the underlying block cipher, which is a weaker assumption than the SPRP

assumption.

2. Number Of Finite Field Multiplications: For encrypting a m block message

with a t block tweak, This construction requires m + t finite field multiplications

for evaluation of hash function in line 2 and line 6 and one more multiplication

is required when α/α−1 is multiplied with MM/CC. Since in construction, eval-

uation of hash function is performed twice, it requires 2m + 2t + 1 finite field

multiplications.

3. Number Of Block Cipher Calls: This construction requiresm−1 block cipher

calls in Ctr mode and one block cipher calls after evaluation of hash function which

is evaluated twice. So this construction requires m + 1 block cipher calls, while

HCTR requires m block cipher calls.

4. Number Of Keys: This construction requires three keys, K for the block cipher,

h for the hash function and α. All these three keys must be chosen uniformly and

independently from {0, 1}n.

5. Message Length Restrictions: This construction works for variable length

messages which are not necessarily multiples of the block length of block cipher.

Inverse Free HCTR (IFHCTR) 11

�trK

C2 Cm

HhEK

EK Hh

�

C�

� �

�

P� P2 Pm

T

T

	
��

: : :

: : :

...

...

Figure 3.3: IFHCTR decryption

We are restricting message length should be at least 2n (at least two full blocks

of message) to make the construction secure. There are attacks which have been

found when message length is less than 2n. Some of them are described in the

Section 3.3.

6. Tweak Length: This construction works for variable length tweaks. We can

query different length tweaks with message in different queries. While in HCTR

if we fix the length of the tweak than we can’t query different length tweak with

message.

3.3 Some Insecure Constructions

We have thought about several constructions about IFHCTR before the finalization of

construction shown in Figure 3.1, but they have turned to be insecure. We summarize

some of the insecure versions with the hope that these can give some insights on the

security of our final construction.

Inverse Free HCTR (IFHCTR) 12

Here are few insecure constructions related HCTR/IFHCTR on which we have found

out attacks. Because of those attacks we have imposed minimum query length restric-

tion, used S as counter instead of CC and performed encryption after evaluating hash

function.

length denotes binn/2(X)||binn/2(T) where X is a message and T is a tweak.

Insecure Construction 1:

Why we have preformed encryption after evaluating hash function in IFHCTR?

First we have thought about construction in Figure 3.4 in which we are not performing

encryption after evaluating hash function. But, we have found out key recovery attack

on this construction.

Figure 3.4: Insecure construction-I

IC1.EncryptIC1.EncryptIC1.EncryptTK,h,α(P)

1. P1||P2|| . . . ||Pm ← P
2. MM ← P1 ⊕Hh(P2|| . . . ||Pm, T)
3. CC ← α×MM
4. S ←MM ⊕ CC
5. (C2, . . . , Cm−1, Cm)
← CtrK,S(P2, . . . , Pm)

6. C1 ← CC ⊕Hh(C2|| . . . ||Cm, T)
returnreturnreturn(C1|| . . . ||Cm);

IC1.DecryptIC1.DecryptIC1.DecryptTK,h,α(C)

1. C1||C2|| . . . ||Cm ← C
2. CC ← C1 ⊕Hh(C2|| . . . ||Cm, T)
3. MM ← α−1 × CC
4. S ←MM ⊕ CC
5. (P2, . . . , Pm−1, Pm)
← CtrK,S(C2, . . . , Cm)

6. P1 ←MM ⊕Hh(P2|| . . . ||Pm, T)
returnreturnreturn(P1|| . . . ||Pm);

For an attack consider an adversary with the following behaviour:

1. for i=1 to 3

(a) Query (P i1||0n) to the encryption oracle and gets response (Ci1||Ci2), where

P i1 6= P j1 for each i < j

As per construction, an adversary gets following equations:

2. for i=1 to 3

(a) Ci1 = αP i1 ⊕ α((length)h)⊕ Ci2h2 ⊕ (length)h

3. From above equations, an adversary gets two equations C1
1 ⊕ C2

1 = α(P 1
1 ⊕ P 2

1)⊕
(C1

2 ⊕ C2
2)h2 and C1

1 ⊕ C3
1 = α(P 1

1 ⊕ P 3
1)⊕ (C1

2 ⊕ C3
2)h2.

4. By solving these equations he retrieves two keys α and h.

Inverse Free HCTR (IFHCTR) 13

To prevent this key recovery attack, we must have to do encryption after evaluating

hash function.

Insecure Construction 2:

Why S is used as counter not CC in original HCTR?

We have thought using CC as initial counter value to counter mode instead of S in

original HCTR construction showed in Figure 3.5. But, there is a key recovery attack,

that we have found out.

Figure 3.5: Insecure construction-II

IC2.EncryptIC2.EncryptIC2.EncryptTK,h,α(P)

1. P1||P2|| . . . ||Pm ← P
2. MM ← P1 ⊕Hh(P2|| . . . ||Pm, T)
3. CC ← EK(MM)
4. (C2, . . . , Cm−1, Cm)
← CtrK,CC(P2, . . . , Pm)

5. C1 ← CC ⊕Hh(C2|| . . . ||Cm, T)
returnreturnreturn(C1|| . . . ||Cm);

IC2.DecryptIC2.DecryptIC2.DecryptTK,h,α(C)

1. C1||C2|| . . . ||Cm ← C
2. CC ← C1 ⊕Hh(C2|| . . . ||Cm, T)
3. MM ← E−1

K (CC)
4. (P2, . . . , Pm−1, Pm)
← CtrK,CC(C2, . . . , Cm)

5. P1 ←MM ⊕Hh(P2|| . . . ||Pm, T)
returnreturnreturn(P1|| . . . ||Pm);

For an attack consider an adversary with the following behavior:

1. Query (C1
1 ||C1

2) to the decryption oracle and gets response (P 1
1 ||P 1

2).

Here counter value is CC1, so C1
2 ⊕ P 1

2 = EK(CC1 ⊕ 1).

2. Query (P 2
1 ||P 2

2)=(C1
1 ⊕1||C1

2) to the encryption oracle and gets response (C2
1 ||C2

2).

Here counter value is CC2 = EK(CC1 ⊕ 1). So C2
1 = CC2 ⊕ C2

2h
2 ⊕ length2h,

which forms quadratic equation and solving this equation adversary can retrieve

h.

To prevent this attack it is necessary to use S as a counter value instead of CC.

Insecure Construction 3:

Why S is used as counter not CC in IFHCTR?

We have thought using CC as initial counter value to counter mode instead of S in

IFHCTR construction showed in Figure 3.6. But, there is a distinguishing attack, that

we have found out.

Distinguishing attack:

Inverse Free HCTR (IFHCTR) 14

Figure 3.6: Insecure construction-III

IC3.EncryptIC3.EncryptIC3.EncryptTK,h,α(P)

1. P1||P2|| . . . ||Pm ← P
2. MM ← P1 ⊕ EK(Hh(P2|| . . . ||Pm, T))
3. CC ← α×MM
4. (C2, . . . , Cm−1, Cm)
← CtrK,CC(P2, . . . , Pm)

5. C1 ← CC ⊕ EK(Hh(C2|| . . . ||Cm, T))
returnreturnreturn(C1|| . . . ||Cm);

IC3.DecryptIC3.DecryptIC3.DecryptTK,h,α(C)

1. C1||C2|| . . . ||Cm ← C
2. CC ← C1 ⊕ EK(Hh(C2|| . . . ||Cm, T))
3. MM ← α−1 × CC
4. (P2, . . . , Pm−1, Pm)
← CtrK,CC(C2, . . . , Cm)

5. P1 ←MM ⊕ EK(Hh(P2|| . . . ||Pm, T))
returnreturnreturn(P1|| . . . ||Pm);

1. Query (C1
1 ||C1

2 || · · · ||C1
m) to the decryption oracle and gets response (P 1

1 ||P 1
2 || . . . ||P 1

m).

2. Query (C2
1 ||C2

2 || · · · ||C2
m) to the decryption oracle and gets response (P 2

1 ||P 2
2 || . . . ||P 2

m),

where C2
1 = C1

1 ⊕ 1 and C2
i = C1

i for i = 2 to m.

Suppose CCi is the counter value of ith query, then CC2 = CC1 ⊕ 1.

An adversary defines Zji = P ji ⊕ C
j
i .

3. for all j = 3 to m.

(a) An adversary checks whether Z1
i = Z2

i−1 or not.

Insecure Construction 4:

Why we have restricted message query length should be at least 2n bits in IFHCTR?

There is a key recovery attack has been found when we allow the length of query is less

than 2n bits in the construction described in Figure 3.1.

1. for i = 1, 2

(a) Query (P i1||0) to the encryption oracle and gets response (Ci1||Ci2).

Here an adversary gets equations as per our construction are

C1
1 = αP 1

1 ⊕ αEK((length)h) ⊕ EK(pad(C1
2)h2 ⊕ (length)h) and C2

1 = αP 2
1 ⊕

αEK((length)h)⊕ EK(pad(C2
2)h2 ⊕ (length)h).

Length of C1
2 and C2

2 is one bit. So they will be same with probability 1/2. if they

are same than C1
1 ⊕ C2

1 = α(P 1
1 ⊕ P 2

1).

2. So, an adversary recovers α = (C1
1 ⊕ C2

1)/(P 1
1 ⊕ P 2

1) with 1/2 probability in two

queries.

Inverse Free HCTR (IFHCTR) 15

Here problem is that there is only one bit of randomness in the second evaluation hash

function which causes collision with 1/2 probability. This problem will be solved by

adding at least n bits of randomness, in other words, restricting query length at least

2n.

3.4 Security of IFHCTR

Theorem 3.1. Fix n, σn to be positive integers and function E : K×{0, 1}n → {0, 1}n.

Then,

Adv± ˜prp
IFHCTR(Func(n))(σ) ≤ 6.5σ2

2n
(3.2)

Adv± ˜prp
IFHCTR(E))(σ, t) ≤

6.5σ2

2n
+ AdvprfE (σ, t′) (3.3)

where, t′ = t+O(σ)

To prove Theorem 3.1, we have done following reductions. First we define:

Adv±rnd
IFHCTR(Func(n))(A) = Pr[f

$← Func(n) : AEf ,Df ⇒ 1]

−Pr[A$(·,·),$(·,·) ⇒ 1]| (3.4)

Adv± ˜prp
IFHCTR(Func(n))(A) = Pr[f

$← Func(n) : AEf ,Df ⇒ 1]

−Pr[π
$← PermT (M) : Aπ(·,·),π−1(.,.) ⇒ 1]

= Pr[f
$← Func(n) : AEf ,Df ⇒ 1]

−Pr[A$(·,·),$(·,·) ⇒ 1]

+Pr[A$(·,·),$(·,·) ⇒ 1]

−Pr[π
$← PermT (M) : Aπ(·,·),π−1(.,.) ⇒ 1]

≤ Adv±rnd
IFHCTR(Func(n))(A) +

(
q

2

)
1

2n
(3.5)

To bound Adv±rnd
IFHCTR(Func(n)), we use a sequence of games as used in [7, 8, 14, 15] and

Difference Lemma 3.2 and some properties of hash function H.

H is a special AXU (Almost Xor Universal) hash function. It has following property:

For any X1, X2 ∈ {0, 1}∗ , Y ∈ {0, 1}n and X1 6= X2 , Hh(X1) ⊕Hh(X2) is a nonzero

polynomial in h without constant term. So Pr[h
$← {0, 1}n : Hh(X1)⊕Hh(X2) = Y] ≤

`/2n , where ` = max{|X|n, |Y |n}+ 1. In other words, H is a `/2n -AXU hash function.

Inverse Free HCTR (IFHCTR) 16

Lemma 3.2. (Difference Lemma): Let A,B, F be events over some probability space

such that A ∧ ¬F ⇔ B ∧ ¬F , then |Pr(A)− Pr(B)| ≤ Pr(F)

Proof.

|Pr(A)− Pr(B)| = |Pr(A ∧ F) + Pr(A ∧ ¬F)− Pr(B ∧ F)− Pr(B ∧ ¬F)|

= |Pr(A ∧ F)− Pr(B ∧ F)|

= |Pr(A|F)Pr(F)− Pr(B|F)Pr(F)|

= Pr(F)|Pr(A|F)− Pr(B|F)|

≤ Pr(F)

In subsection 3.5.1 we prove that,

Adv±rnd
IFHCTR(Func(n))(σ) ≤ 6σ2

2n
(3.6)

3.5 Game Sequence

Game IFHCTR1: in IFHCTR1, the adversary interacts with Ef when f is a randomly

chosen function from Func(n). Instead of initially choosing f , we build f in the following

manner.

Intially f is assumed to be undefined everywhere. when f(X) is required, but f(X) is

undefined then a random value is chosen from {0, 1}n.

The domain of f is maintained in set Domain. The game IFHCTR1 is shown in Figure

3.7. The figure shows the sub-routine Ch-f , the initialization steps and how the game

responds to a encryption and decryption query. The ith query of the adversary depends

on its previous queries, the responses to those queries and on randomness of the adver-

sary. As the game IFHCTR1 completely mimics the IFHCTR scheme instantiated with

a uniform random function f we have.

Pr[AEf ,Df ⇒ 1] = Pr[AIFHCTR1 ⇒ 1]. (3.7)

Game RAND1: We modify IFHCTR1 by removing the boxed entries in IFHCTR1

and call the modified game as RAND1. By removing the boxed entries it cannot be

guaranteed that f is a function as though we do the consistency checks, but we do not

Inverse Free HCTR (IFHCTR) 17

reset the value of Y (in Ch-f), the games IFHCTR1 and RAND1 are identical except

when the bad flag is set. By using Lemma 3.2, we obtain

|Pr[AIFHCTR1 ⇒ 1]− Pr[ARAND1 ⇒ 1| ≤ Pr[ARAND1 sets bad]. (3.8)

In line 106 Zsi gets set to random values for both encryption and decryption queries.

Thus the adversary gets random values in response to both his encryption and decryption

queries. Similarly in line 111 ws2 gets set to a random value for an encryption query and

ws1 gets set to a random value for a decryption query.

Pr[ARAND1 ⇒ 1] = Pr[A$(·,·),$(·,·) ⇒ 1]. (3.9)

Thus using Equations (2.5), (3.7), (3.8) and (3.9) we have

Adv±rnd
IFHCTR(Func(n)) = |Pr[AEf ,Df ⇒ 1]− |Pr[A$(·,·),$(·,·) ⇒ 1]|

= |Pr[AIFHCTR1 ⇒ 1]− Pr[ARAND1 ⇒ 1]| (3.10)

≤ Pr[ARAND1 sets bad]. (3.11)

Game RAND2: Now we make some subtle changes in the game RAND1 to get a new

game RAND2 which is described in the Figure 3.8. In game RAND1 the function was

not maintained and a call to the function was responded by returning random strings,

so in Game RAND2 we no more use the subroutines Ch-f . The Game RAND2 returns

random strings to the adversary in response to his encryption or decryption queries.

Later in the finalization step we adjust variables and maintain multi set D that was

supposed to be inputs of the function f . In the second phase of the finalization step, we

check for collisions in the set D. If collision occurs we set the bad flag to true.

Game RAND1 and Game RAND2 are indistinguishable to the adversary, as in both

cases he gets random strings in response to his queries. Also, the probability of RAND1

sets bad is same as the probability of RAND2 sets bad. Thus we get:

Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad] (3.12)

Thus from Equations (3.11) and (3.12) we obtain

Adv±rnd
IFHCTR(Func(n)) ≤ Pr[ARAND2 sets bad] (3.13)

Inverse Free HCTR (IFHCTR) 18

Figure 3.7: Games IFHCTR1 and RAND1

Subroutine Ch-f(X)

11. Y
$← {0, 1}n;

12. if X ∈ Domain then
bad ← true;

Y ← f(X) ;

endif
13. f(X)← Y ; Domain← Domain ∪ {X}; return(Y);

Initialization:
14. for all X ∈ {0, 1}n f(X)← undef endfor
15. bad← false

Respond to the sth query as follows: (Assume ls = n(ms − 1) + rs, with 0 ≤ rs < n.)

Encipher query: Enc(T s, P s)

100. parse P s as Xs
1 ||Xs

2 such that
Xs

1 ← P s1
Xs

2 ← P s2 || . . . ||P sm
101. if (Xs

2 , T
s) = (Xs′

2 , T
s′) for any s′ < s

ws
1 ← ws′

1

else if (Xs
2 , T

s) = (Y s′
2 , T s

′
) for any s′ < s

ws
1 ← ws′

2

else
ws
1 ← Ch-f(Hh(Xs

2 , T
s))

102. MM s ← P s1 ⊕ ws
1;

103. CCs ← α×MM s;

104. Ss ←MM s ⊕ CCs;
105. for i = 1 to ms − 2,
106. Zsi ← Ch-f(Ss ⊕ binn(i));
107. Csi+1 ← P si+1 ⊕ Zsi ;
108. end for
109. Zsms ← Ch-f(Ss ⊕ binn(ms − 1));
110. Csms ← P sms ⊕ dropn−rs(Z

s
ms);

111. ws
2 ← Ch-f(Hh(Cs2 || . . . ||Csm, T s))

112. Cs1 ← CCs ⊕ ws
2;

113. return Cs1 ||Cs2 || . . . ||Csms

Decipher query: Dec(T s,Cs)

parse Cs as Y s
1 ||Y s

2 such that
Y s

1 ← Cs1
Y s

2 ← Cs2 || . . . ||Csm
if (Y s

2 , T
s) = (Y s′

2 , T s
′
) for any s′ < s

ws
2 ← ws′

2

else if (Y s
2 , T

s) = (Xs′
2 , T

s′) for any s′ < s

ws
2 ← ws′

1

else
ws
2 ← Ch-f(Hh(Y s

2 , T
s))

CCs ← Cs1 ⊕ ws
2;

MM s ← α−1 × CCs

Ss ←MM s ⊕ CCs;
for i = 1 to ms − 2,
Zsi ← Ch-f(Ss ⊕ binn(i));
P si+1 ← Csi+1 ⊕ Zsi ;

end for
Zsms ← Ch-f(Ss ⊕ binn(ms − 1));
P sms ← Csms ⊕ dropn−rs(Z

s
ms);

ws
1 ← Ch-f(Hh(P s2 || . . . ||P sm, T s))

P s1 ←MM s ⊕ ws
1;

return P s1 || . . . ||P sms

Inverse Free HCTR (IFHCTR) 19

Figure 3.8: Game RAND2

Respond to the sth adversary query as follows:

Encipher query Enc(T s;P s
1 , P

s
2 , . . . , P

s
ms)

tys = Enc; Cs
1 ||Cs

2 || . . . ||Cs
ms−1||Ds

ms
$← {0, 1}nms

;
Cs

ms ← dropn−rs(Dms) return Cs
1 ||Cs

2 || . . . ||Cs
ms ;

Decipher query Dec(T s;Cs
1 , C

s
2 , . . . , C

s
ms)

tys = Dec; P s
1 ||P s

2 || . . . ||P s
ms−1||V

s
ms

$← {0, 1}nms

;
P s
ms ← dropn−rs(Vms) return P s

1 ||P s
2 || . . . ||P s

ms ;

Finalization:
Case tys = Enc:

parse P s as Xs
1 ||Xs

2 such that
Xs

1 ← P s
1

Xs
2 ← P s

2 || . . . ||P s
m

if (Xs
2 , T

s) = (Xs′

2 , T
s′) for any s′ < s

ws
1 = ws′

1

else if (Xs
2 , T

s) = (Y s′

2 , T s′) for any s′ < s

ws
1 ← ws′

2

else

ws
1

$← {0, 1}n
ys1 ← Hh(Xs

2 , T
s)

D ← D ∪ {ys1}

parse Cs as Y s
1 ||Y s

2 such that
Y s
1 ← Cs

1

Y s
2 ← Cs

2 || . . . ||Cs
m

ys2 ← Hh(Y s
2 , T

s)
D ← D ∪ {ys2}

MMs ← P s
1 ⊕ ws

1;
CCs ← α×MMs;
Ss ←MMs ⊕ CCs;
for i = 2 to ms,
D ← D ∪ {Ss ⊕ binn(i− 1)};

end for

Case tys = Dec:

parse Cs as Y s
1 ||Y s

2 such that
Y s
1 ← Cs

1

Y s
2 ← Cs

2 || . . . ||Cs
m

if (Y s
2 , T

s) = (Y s′

2 , T s′) for any s′ < s

ws
2 = ws′

2

else if (Y s
2 , T

s) = (Xs′

2 , T
s′) for any s′ < s

ws
2 ← ws′

1

else

ws
2

$← {0, 1}n
ys2 ← Hh(Y s

2 , T
s)

D ← D ∪ {ys2}

parse P s as Xs
1 ||Xs

2 such that
Xs

1 ← P s
1

Xs
2 ← P s

2 || . . . ||P s
m

ys1 ← Hh(Xs
2 , T

s)
D ← D ∪ {ys1}

CCs ← Cs
1 ⊕ ws

2;
MMs ← α−1 × CCs;
Ss ←MMs ⊕ CCs;
for i = 2 to ms,
D ← D ∪ {Ss ⊕ binn(i− 1)};

end for

Second phase
bad← false;
if (some value occurs more than once in D)

bad ← true

Inverse Free HCTR (IFHCTR) 20

3.5.1 Bounding collision probability in D

For an encryption query (T s, P s), we take P s = Xs
1 ||Xs

2 where, |Xs
1 | = n and |Xs

2 | =

|P s|−n. Similarly, for a decryption query (T s, Cs), we take Cs = Y s
1 ||Y s

2 where, |Y s
1 | = n

and |Y s
2 | = |Cs| − n.

Here our goal is to bound the probability that two elements in the set D take the same

value. After adversary asks q queries where the sth query has ms blocks of plaintext or

ciphertext and ts blocks of tweak, then the elements in set D can be written as follows:

1. ys1 = Hh(Xs
2 , T

s), where Xs
2 = P s2 ‖ · · · ‖ P sms .

2. ys2 = Hh(Y s
2 , T

s), where Y s
2 = Cs2 ‖ · · · ‖ Csms .

3.

Ssj = Ss ⊕ binn(j) =

(α⊕ 1)(P s1 + ws1)⊕ j if tys = enc

(α−1 ⊕ 1)(Cs1 + ws2)⊕ j if tys = dec

For, 1 ≤ s ≤ q, 1 ≤ j ≤ ms − 1.

For making collision analysis smoother, let us identify the random variables based on

which the probability of collision would be computed. In game RAND2, the outputs

that adversary will get are uniformly distributed, and are independent of the previous

queries asked by the adversary. This game is interactive but as the output of RAND2

is not dependent on the hash key h which is also uniformly distributed. So output of

game RAND2 is independent of h.

Let’s consider T s as ts many n bit blocks. we define σ =
∑

s(m
s + ts).

Now, Degree of Xs
2 or Y s

2 is at most ms+ ts, So we define `s,s
′

= max(ms+ ts,ms′ + ts
′
).

Claim 1: For s 6= s′, Pr[ys1 = ys
′

1] ≤ (`s,s
′
+ 1)/2n.

Proof. There are four sub cases to consider.

Case 1.1 tys = tys
′

= enc.

As Game RAND2 proceeds, it is guaranteed that (Xs
2 , T

s) 6= (Xs′
2 , T

s′). Thus, Hh(Xs
2 , T

s)⊕
Hh(Xs′

2 , T
s′) is a nonzero polynomial with degree at most `s,s

′
. So by fundamental the-

orem of algebra,

Pr[ys1 = ys
′

1] ≤ `s,s
′

2n
. (3.14)

Case 1.2 tys = tys
′

= dec

Note, here both Xs
2 and Xs′

2 are random strings.

Inverse Free HCTR (IFHCTR) 21

Here there are two sub cases to consider.

Case 1.2.1 |Xs
2 | 6= |Xs′

2 |

Here Hh(Xs
2 , T

s)⊕Hh(Xs′
2 , T

s′) is nonzero polynomial. So by fundamental theorem of

algebra,

Pr[ys1 = ys
′

1] ≤ `s,s
′

2n
. (3.15)

Case 1.2.2 |Xs
2 | = |Xs′

2 |

Here there are two sub cases to consider:

Case 1.2.2.1 |T s| 6= |T s′ |

Here (Xs
2 , T

s)⊕(Xs′
2 , T

s′) is nonzero polynomial. So by fundamental theorem of algebra,

Pr[ys1 = ys
′

1] ≤ `s,s
′

2n
. (3.16)

Case 1.2.2.2 |T s| = |T s′ |

Pr[ys1 = ys
′

1] = Pr[ys1 = ys
′

1 |Xs
2 = Xs′

2]Pr[Xs
2 = Xs′

2]

+Pr[ys1 = ys
′

1 |Xs
2 6= Xs′

2]Pr[Xs
2 6= Xs′

2]

≤ 1× 1

2|X
s
2 |

+
`s,s

′

2n

(
1− 1

2|X
s
2 |

)
≤ `s,s

′

2n
+

1

2|X
s
2 |

≤ `s,s
′

2n
+

1

2n

≤ `s,s
′
+ 1

2n
. (3.17)

So, from Equations (3.15), (3.16) and (3.17) we get,

Pr[ys1 = ys
′

1] ≤ `s,s
′
+ 1

2n
. (3.18)

Case 1.3 tys = enc, tys
′

= dec

In this case proof is similar to Case 1.2. So,

Pr[ys1 = ys
′

1] ≤ `s,s
′
+ 1

2n
. (3.19)

Case 1.4 tys = dec, tys
′

= enc

Inverse Free HCTR (IFHCTR) 22

In this case proof is similar to Case 1.3. So,

Pr[ys1 = ys
′

1] ≤ `s,s
′
+ 1

2n
. (3.20)

So, from Equations (3.14), (3.18), (3.19) and (3.20) we get,

Pr[ys1 = ys
′

1] ≤ `s,s
′
+ 1

2n
. (3.21)

Claim 2: For s 6= s′, Pr[ys2 = ys
′

2] ≤ (`s,s
′
+ 1)/2n.

Proof. Here, proof is similar to the proof of Claim 1. So,

Pr[ys2 = ys
′

2] ≤ `s,s
′
+ 1

2n
. (3.22)

Claim 3: Pr[ys1 = ys
′

2] ≤ (`s,s
′
+ 1)/2n.

Proof. Here, there are four sub cases to consider.

Case 3.1 tys = tys
′

= enc

In this case proof is similar to Case 1.2. So,

Pr[ys1 = ys
′

2] ≤ `s,s
′
+ 1

2n
. (3.23)

Case 3.2 tys = tys
′

= dec,

In this case proof is similar to Case 1.2. So,

Pr[ys1 = ys
′

2] ≤ `s,s
′
+ 1

2n
. (3.24)

Case 3.3 tys = enc, tys
′

= dec

In this case proof is similar to Case 1.1. So,

Pr[ys1 = ys
′

2] ≤ `s,s
′

2n
. (3.25)

Inverse Free HCTR (IFHCTR) 23

Case 3.4 tys = dec, tys
′

= enc

In this case proof is similar to Case 1.2. So,

Pr[ys1 = ys
′

2] ≤ `s,s
′
+ 1

2n
. (3.26)

From Equations (3.23), (3.24),(3.25) and (3.26) we get,

Pr[ys1 = ys
′

2] ≤ `s,s
′
+ 1

2n
. (3.27)

Claim 4: Pr[ys1 = Ss
′
j] ≤ (ms + ts)/2n.

Proof. For finding collision probability between ys1 and Ss
′
j . Here, ys1 = Hh(Xs

2 , T
s) and

Ss
′
j = (α⊕ 1)(P s

′
1 ⊕ ws

′
1)⊕ j if tys

′
= enc.

Pr[ys1 = Ss
′
j] = Pr[Hh(Xs

2 , T
s) = (α⊕ 1)(P s

′
1 ⊕ ws

′
1)⊕ j]

=
∑

x∈{0,1}n
Pr[α = x]× Pr[Hh(Xs

2 , T
s) = (α⊕ 1)(P s

′
1 ⊕ ws

′
1)⊕ j|α = x]

≤ 1

2n
× 2n(ms + ts)

2n

≤ ms + ts

2n
. (3.28)

Similarly for tys
′

= dec, Pr[ys1 = Ss
′
j] ≤ (ms + t)/2n.

Claim 5: Pr[ys2 = Ss
′
j] ≤ (ms + ts)/2n.

Proof. Here, proof is similar to the proof of Claim 4. So,

Pr[ys2 = Ss
′
j] ≤ ms + ts

2n
. (3.29)

Claim 6: For (s, j) 6= (s′, j′), Pr[Ssj = Ss
′
j′] ≤ 3/2n.

Proof. Here, there are three sub cases to consider.

Case 6.1 tys = tys
′

= enc

There are two sub cases to consider.

Inverse Free HCTR (IFHCTR) 24

Case 6.1.1 (Xs
2 , T

s) = (Xs′
2 , T

s′)

if (Xs
2 , T

s) = (Xs′
2 , T

s′) then, ws1 = ws
′

1 but, P s1 6= P s
′

1

Pr[Ssj = Ss
′
j′] = Pr[(α⊕ 1)(P s1 ⊕ ws1)⊕ j = (α⊕ 1)(P s

′
1 ⊕ ws

′
1)⊕ j′]

= Pr[(α⊕ 1)(P s1 ⊕ P s
′

1)⊕ (j ⊕ j′) = 0] (3.30)

=
1

2n
. (3.31)

Since Equation (3.30) is nonzero polynomial which has solution for one choice of α. So

Pr[Ssj = Ss
′
j′] = 1/2n

Case 6.1.2 (Xs
2 , T

s) 6= (Xs′
2 , T

s′)

If (Xs
2 , T

s) 6= (Xs′
2 , T

s′) then, ws1 and ws
′

1 are two independent n bit strings. So,

Pr[Ssj = Ss
′
j′] = Pr[(α⊕ 1)(P s1 ⊕ ws1)⊕ j = (α⊕ 1)(P s

′
1 ⊕ ws

′
1)⊕ j′]

= Pr[(α⊕ 1)(P s1 ⊕ P s
′

1 ⊕ ws1 ⊕ ws
′

1)⊕ (j ⊕ j′) = 0] (3.32)

If Equation (3.32) is a zero polynomial, then this equation is already satisfied. This case

occurs with probability at most 1/2n. If Equation (3.32) is a nonzero polynomial then

this equation has solution for at most one choice of α. Let’s take P (α) as a polynomial

in Equation in (3.32) and E be an event that P (α) is a nonzero polynomial. Thus we

can write,

Pr[P (α) = 0] = Pr[P (α) = 0|E]Pr[E] + Pr[P (α) = 0|E]Pr[E]

≤ 1

2n

(
1− 1

2n

)
+ 1

(
1

2n

)
≤ 1

2n
+

1

2n

≤ 2

2n
(3.33)

From Equations (3.31) and (3.33),

Pr[Ssj = Ss
′
j′] ≤

2

2n
. (3.34)

Case 6.2 tys = tys
′

= dec

Here, proof is similar to Case 6.1. So,

Pr[Ssj = Ss
′
j′] =

1

2n
. (3.35)

Inverse Free HCTR (IFHCTR) 25

Case 6.3 tys = enc, tys
′

= dec

Proof. There are two sub cases to consider.

Case 6.3.1: (Xs
2 , T

s) = (Y s
2 , T

s)

If (P s2 , T
s) = (Cs2 , T

s) then, ws1 = ws
′

2 .

Pr[Ssj = Ss
′
j′] = Pr[(α⊕ 1)(P s1 ⊕ ws1)⊕ j = (α−1 ⊕ 1)(Cs

′
1 ⊕ ws

′
2)⊕ j′]

= Pr[(α2 ⊕ α)(P s1 ⊕ ws1)⊕ αj = (1⊕ α)(Cs
′

1 ⊕ ws
′

2)⊕ αj′]

= Pr[α2(P s1 ⊕ ws1)⊕ α(P s1 ⊕ Cs
′

1 ⊕ j ⊕ j′)⊕ Cs
′

1 ⊕ ws
′

2 = 0] (3.36)

If Equation (3.36) is a zero polynomial, then this equation is already satisfied. This case

occurs with probability at most 1/2n. If Equation (3.36) is a nonzero polynomial then

this equation has solution for at most two choice of α. Let’s take P (α) as a polynomial

in Equation in (3.36) and E be an event that P (α) is a nonzero polynomial. Thus we

can write,

Pr[P (α) = 0] = Pr[P (α) = 0|E]Pr[E] + Pr[P (α) = 0|E]Pr[E]

≤ 2

2n

(
1− 1

2n

)
+ 1

(
1

2n

)
≤ 2

2n
+

1

2n

≤ 3

2n
(3.37)

So,

Pr[Ssj = Ss
′
j′] ≤

3

2n
(3.38)

Case 6.3.2: (Xs
2 , T

s) = (Y s
2 , T

s)

If tys = enc, tys
′

= dec then, ws1 and ws
′

2 are two independent n bit strings.

Pr[Ssj = Ss
′
j′] = Pr[(α⊕ 1)(P s1 ⊕ ws1)⊕ j = (α−1 ⊕ 1)(Cs

′
1 ⊕ ws

′
2)⊕ j′]

= Pr[(α2 ⊕ α)(P s1 ⊕ ws1)⊕ αj = (1⊕ α)(Cs
′

1 ⊕ ws
′

2)⊕ αj′]

= Pr[α2(P s1 ⊕ ws1)⊕ α(P s1 ⊕ Cs
′

1 ⊕ ws1 ⊕ ws
′

2 ⊕ j ⊕ j′)

⊕Cs′1 ⊕ ws
′

2 = 0] (3.39)

Inverse Free HCTR (IFHCTR) 26

If Equation (3.39) is a zero polynomial, then this equation is already satisfied. This case

occurs with probability at most 1/2n. If Equation (3.39) is a nonzero polynomial then

this equation has solution for at most two choice of α. Let’s take P (α) as a polynomial

in Equation in (3.39) and E be an event that P (α) is a nonzero polynomial. Thus we

can write,

Pr[P (α) = 0] = Pr[P (α) = 0|E]Pr[E] + Pr[P (α) = 0|E]Pr[E]

≤ 2

2n

(
1− 1

2n

)
+ 1

(
1

2n

)
≤ 2

2n
+

1

2n

≤ 3

2n
(3.40)

So,

Pr[Ssj = Ss
′
j′] ≤

3

2n
(3.41)

From Equations (3.38) and (3.41),

Pr[Ssj = Ss
′
j′] ≤

3

2n
. (3.42)

From Equations (3.34),(3.35) and (3.42),

Pr[Ssj = Ss
′
j′] ≤

3

2n
. (3.43)

Suppose COL is an event that in RAND2 bad flag sets true. τ denotes Σ1≤s≤qt
s. There-

fore,

Pr[COL] ≤
∑

1≤s<s′≤q

`s,s
′
+ 1

2n
+

∑
1≤s<s′≤q

`s,s
′
+ 1

2n
+

∑
1≤s,s′≤q

`s,s
′
+ 1

2n

+
∑

1≤s≤q
(σ − τ − q)m

s + ts

2n
+
∑

1≤s≤q
(σ − τ − q)m

s + ts

2n

+

(
σ − τ − q

2

)
3

2n
. (3.44)

Inverse Free HCTR (IFHCTR) 27

Let’s bound the value of `s,s
′
. As per sum bound we can write as,

`s,s
′

= max(ms + ts,ms′ + ts
′
)

≤ ms + ts +ms′ + ts
′
.

Let’s bound the value of Σ1≤s<s′≤q(`
s,s′ + 1).

∑
1≤s<s′≤q

(`s,s
′
+ 1) ≤

∑
1≤s<s′≤q

(ms +ms′ + ts + ts
′
+ 1)

≤ (q − 1)
∑

1≤s≤q
(ms + ts) +

q(q − 1)

2

≤ (q − 1)σ +
q2

2

≤ σ2

2
+
σ2

8

≤ 5σ2

8
. (3.45)

Similarly to bound the value of Σ1≤s,s′≤q(`
s,s′ + 1),

∑
1≤s,s′≤q

(`s,s
′
+ 1) ≤

∑
1≤s,s′≤q

(ms +ms′ + ts + ts
′
+ 1)

≤ 2q
∑

1≤s≤q
(ms + ts) + q2

≤ 2qσ + q2

≤ σ2 +
σ2

4

≤ 5σ2

4
. (3.46)

From Equations (3.44), (3.45) and (3.46) we get,

Pr[COL] ≤ 2

(
5σ2

8

)(
1

2n

)
+

(
5σ2

4

)(
1

2n

)
+ 2

(
σ2

2n

)
+

(
σ2

2

)(
3

2n

)
≤ 6σ2

2n
.

So,

Adv±rnd
IFHCTR[Func(n)] ≤

6σ2

2n
. (3.47)

Chapter 4

Implementation of IFHCTR

Software implementation of IFHCTR are built from the implementation of AES and the

implementation of polynomial hash function. The AES based parts consist of the Ctr

mode while the hash function are built from Horner method. Here encryption function

of AES is used to instantiate Ctr mode. Three keys which are used in this construction

are chosen independently and stored. Inverse of α which is α−1 is calculated using math

sage and also stored.

A very efficient software implementation of a TES called FAST is done in [16]. The im-

plementation in [16] contains all the basic modules required for implementing IFHCTR.

We have used them in the implementation. The implementation in [16] uses the AES-

NI instructions for computing AES and polynomial multiplication. This table shows

comparison of IFHCTR with HCTR and FAST constructions in terms of cycles per

byte.

FAST[Horner] 1.46

HCTR 1.40

IFHCTR 1.42

Table 4.1: Comparison of the cycles per byte measure of HCTR with original HCTR
and FAST

28

Conclusion

In this dissertation, we proposed length preserving tweakable enciphering scheme called

as inverse free HCTR, which is the modification of HCTR scheme in which the in-

verse function of an underlying block cipher is not needed. We proved IFHCTR is a

strong tweakable pseudorandom permutation (sprp), when the underlying blockcipher is

a pseudorandom function (prf). We also implemented IFHCTR in modern Intel Proces-

sors equipped with the AES-NI instruction set and compared it’s performance against

HCTR and FAST schemes.

29

Bibliography

[1] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki

Okamoto, editor, Topics in Cryptology – CT-RSA 2004, pages 292–304, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24660-2.

[2] Shai Halevi. Eme*: Extending eme to handle arbitrary-length messages with associ-

ated data. In Anne Canteaut and Kapaleeswaran Viswanathan, editors, Progress in

Cryptology - INDOCRYPT 2004, pages 315–327, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg. ISBN 978-3-540-30556-9.

[3] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh,

editor, Advances in Cryptology - CRYPTO 2003, pages 482–499, Berlin, Heidelberg,

2003. Springer Berlin Heidelberg. ISBN 978-3-540-45146-4.

[4] Ritam Bhaumik and Mridul Nandi. An inverse-free single-keyed tweakable en-

ciphering scheme. In Advances in Cryptology - ASIACRYPT 2015 - 21st Inter-

national Conference on the Theory and Application of Cryptology and Informa-

tion Security, Auckland, New Zealand, November 29 - December 3, 2015, Pro-

ceedings, Part II, pages 159–180, 2015. doi: 10.1007/978-3-662-48800-3 7. URL

https://doi.org/10.1007/978-3-662-48800-3_7.

[5] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-

encryption: Aez and the problem that it solves. Cryptology ePrint Archive, Report

2014/793, 2014. https://eprint.iacr.org/2014/793.

[6] Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing a

tweakable strong pseudo-random permutation. IACR Cryptology ePrint Archive,

2006:275, 2006.

[7] Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred

Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages 412–429, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74143-5.

[8] Palash Sarkar. Improving upon the tet mode of operation. In Kil-Hyun Nam and

Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC 2007, pages

30

https://doi.org/10.1007/978-3-662-48800-3_7
https://eprint.iacr.org/2014/793

Bibliography 31

180–192, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-

76788-6.

[9] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enci-

phering mode. In Information Security and Cryptology, First SKLOIS Conference,

CISC 2005, Beijing, China, December 15-17, 2005, Proceedings, pages 175–188,

2005. doi: 10.1007/11599548 15. URL https://doi.org/10.1007/11599548_15.

[10] David A. McGrew and Scott R. Fluhrer. The security of the extended codebook

(xcb) mode of operation. In Carlisle Adams, Ali Miri, and Michael Wiener, editors,

Selected Areas in Cryptography, pages 311–327, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg. ISBN 978-3-540-77360-3.

[11] Debrup Chakraborty, Sebati Ghosh, Cuauhtemoc Mancillas Lopez, and Palash

Sarkar. Fast: Disk encryption and beyond. Cryptology ePrint Archive, Report

2017/849, 2017. https://eprint.iacr.org/2017/849.

[12] D. Chakraborty, C. Mancillas-Lpez, and P. Sarkar. Stes: A stream cipher based

low cost scheme for securing stored data. IEEE Transactions on Computers, 64(9):

2691–2707, Sept 2015. ISSN 0018-9340. doi: 10.1109/TC.2014.2366739.

[13] Palash Sarkar. Tweakable enciphering schemes using only the encryption func-

tion of a block cipher. Information Processing Letters, 111(19):945 – 955, 2011.

ISSN 0020-0190. doi: https://doi.org/10.1016/j.ipl.2011.06.014. URL http:

//www.sciencedirect.com/science/article/pii/S0020019011001852.

[14] Debrup Chakraborty and Mridul Nandi. An improved security bound for HCTR.

In Fast Software Encryption, 15th International Workshop, FSE 2008, Lau-

sanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages 289–

302, 2008. doi: 10.1007/978-3-540-71039-4 18. URL https://doi.org/10.1007/

978-3-540-71039-4_18.

[15] D. Chakraborty and P. Sarkar. Hch: A new tweakable enciphering scheme using

the hash-counter-hash approach. IEEE Transactions on Information Theory, 54

(4):1683–1699, April 2008. ISSN 0018-9448. doi: 10.1109/TIT.2008.917623.

[16] URL https://github.com/sebatighosh/FAST.

https://doi.org/10.1007/11599548_15
https://eprint.iacr.org/2017/849
http://www.sciencedirect.com/science/article/pii/S0020019011001852
http://www.sciencedirect.com/science/article/pii/S0020019011001852
https://doi.org/10.1007/978-3-540-71039-4_18
https://doi.org/10.1007/978-3-540-71039-4_18
https://github.com/sebatighosh/FAST

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	3 Inverse Free HCTR (IFHCTR)
	3.1 Construction of IFHCTR
	3.2 Characteristics of the IFHCTR
	3.3 Some Insecure Constructions
	3.4 Security of IFHCTR
	3.5 Game Sequence
	3.5.1 Bounding collision probability in D

	4 Implementation of IFHCTR

