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Abstract

In this thesis we tried to catch the word variations in the noisy corpus. Initially
we tried to solve the problem using string similarity and context similarity in the
Generalized Language Model. But then this model was unable to improve the retrieval
performance as seen experimentally. On delving into the depth of the problem as to
why the model was not performing well we came up with a simple and effective
approach to solve the problem. This is a simple Query Expansion based method
which is used to increase the retrieval performance.
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Chapter 1

Introduction

1.1 Noisy Corpora

Noisy Corpora contains Noisy text. Noisy text is a text with differences between
the surface form of a coded representation of the text and the intended, correct, or
original text. The noise may be due to typographic errors or colloquialisms always
present in natural language and usually lowers the data quality in a way that makes
the text less accessible to automated processing by computers, including natural lan-
guage processing. The noise may also have been introduced through an extraction
process (e.g., transcription or OCR) from media other than original electronic texts. 1

These days it is very common to come across such type of noise in text.
The social media like twitter, sms proliferates with such type of noisy
text. Moreover these noises are very common in Legal Documents which
are misread by OCR.

1.2 Motivation

1. The process of word normalization enhances retrieval performance at query
time

2. The stemming algorithm in the paper Combining Local and Global Word Em-
beddings for Microblog Stemming CIKM 2017 is ad hoc

3. Goal is to see if a simpler approach can yield equal retrieval effectiveness

4. Challenges In Microblog Data

(a) Tweets needs to be of 140 characters and hence they are abbreviated :
iloveindia

1The definition has been taken from wikipedia
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(b) There are lot spelling variations example : building is written as bdlng.

5. Challenges In OCR Data

The ocr data is very poorly tampered and the data not only conatins wrong
spelling of the words but it also includes non alphanumeric characters. So to
retrieve from such a collection is really a challenging work.

Our aim is to come up with a simplified approach to solve the problem related to
noisy corpus in an effective way. It is a huge challenge to solve this problem because
the most of the time it becomes difficult to find out which valid word it is referring
to after being corrupted.

Effective information retrieval from noisy corpus is a very practical prob-
lem. Hence we have chosen our problem as Increasing Retrieval Efficiency
In Noisy Corpora

1.3 Our Approach

We tried using only context similarity and only string similarity to catch the word
variation in noisy corpus. Later we combined the string similarity and context simi-
larity in a linear combination to perform the same. This was a document expansion
approach with contextual words or with semantically similar words. We experimen-
tally found out that this approach was unable to produce the effective result we were
looking for. Hence we changed our approach from document expansion to query ex-
pansion methodology. In this approach we used string similarity measures as well as
context based methods independently to catch the word variations. Every time we
found out that the string similarity based approach was doing better than the context
similarity based approach. Our method is able to produce good result in more than
4 data set so we presume it is a presentable work.

1.4 Thesis Outline

Here is a outline of what each of the chapter is about. The first chapter i.e chapter
1 is a introductory chapter which is about the motivation behind choosing the topic
and a very brief outline of what our approaches were. chapter 2 is the about the
details of IR and also about the tools and terminolgies used throughout the thesis
work. chapter 3 is the related work which is about the two baseline paper we have
used and their algorithms. chapter 4 is our proposed methodology 1 and chapter
5 is our proposed methodology 2. The algorithms and details are explained here.
chapter 6 is about the results of the experiments. chapter 7 is about the future
work and conclusion.
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Chapter 2

Preliminaries

2.1 Definition

Information retrieval is the activity of obtaining information resources relevant to an
information need from a collection of information resources. Searches can be based
on metadata or on full-text.1

Information retrieval is finding material (usually documents) of an unstructured na-
ture (usually text) that satisfies an information need from within large collections
(usually stored on computers).

2.2 Document, Collection And Query

A document is a any textual content containing significant information about a topic.
Examples of documents are web pages, email, books, news, stories, scholarly papers,
text message .

A set of documents of same type is called Collection.

An information retrieval process begins when a user enters a query into the system.
Queries are formal statements of information needs, for example search strings in web
search engines. In information retrieval a query does not uniquely identify a single
object in the collection. Instead, several objects may match the query, perhaps with
different degrees of relevancy.2

1Certain portions were taken from previous thesis on Information Retrieval
2Certain portions were taken from previous thesis on Information Retrieval
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Figure 2.1: Overview Of IR Model.
3

2.3 Cranfield Paradigm

This paradigm gives an overview of how an overall IR model works. This overview is
explained diagramatically in the above figure.

2.4 Vector Space Model

In vector space model documents and queries are represented as vectors. This model
is very commonly used.
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dj = (w1j , w2j , w3j , ....wtj)
q = (w1q , w2q , w3q , ....wnq)

Each dimension corresponds to a separate term. If a term occurs in the document,
its value in the vector is non-zero. Several different ways of computing these values,
also known as (term) weights, have been developed. One of the best known schemes
is tf-idf weighting. TF means term frequency which is the number of times a term
occurs in a document. IDF means inverse document frequency which is the log of the
ratio of collection size and number of documents containing that term. The definition
of term depends on the application. Typically terms are single words, keywords, or
longer phrases. If the words are chosen to be the terms, the dimensionality of the
vector is the number of words in the vocabulary (the number of distinct words occur-
ring in the corpus). Vector operations can be used to compare documents with queries.

2.5 Language Modelling

In language model based retrieval methods, for a given query Q, documents are scored
based on the probability P (Q|d). d is taken to be a language model i.e a probability
distribution over words. P (Q|d) represents the probability of generating Q from d.
P (Q|d) is the probability of observing the query Q in the document d.

Score(Q, d) = p(Q|D)

=
∏
t∈Q

p(t|d)

=
∏
t∈Q

λp̂(t|d) + (1− λ)p̂(t|C)

=
∏
q∈Q

λ
tf(t, d)

|d|
+ (1− λ)

cf(t)

|C|
(2.1)

In Equation 2.1, the set C represents a universe of documents (commonly known
as the collection), p̂(t|d) and p̂(t|C) denote the maximum likelihood estimated prob-
abilities of generating a query term t from the document d and the collection C
respectively. The probabilities of these two (mutually exclusive) events are denoted
by λ and 1−λ respectively. The notations tf(t, d), |d|, cf(t) and |C| denote the term
frequency of term t in document d, the length of d, i.e total number of words or terms
contained in d, collection frequency of the term t, and the collection size respectively.
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2.6 Retrieval And Evaluation Procedure

2.6.1 Retrieval

Before actual retrieval begins, the documents within the collection must be indexed.
Indexing involves processing each document in a collection and building a data struc-
ture of indexed documents. Following are the steps of indexing :

• 1 . Reading and parsing a document.

• 2 . Stopword removal and stemming of each term in the document.

• 3 . Inserting each term in the data structure of indexed documents.

• 4 . Using some retrieval model to index the data set.

The first step of retrieval is to assign a score to each document according to its
relevance with the given query.

2.6.2 Evaluation

• Precision Precision is the fraction of the documents retrieved that are relevant
to the user’s information need.

Precision = Number Of Relevant Documents Retrieved
Number Of Documents Retrieved

• Recall

Recall is the fraction of the documents that are relevant to the query that are
successfully retrieved.

Recall = Number Of Relevant Documents Retrieved
Number Of Relevant Documents In The Collection

• Mean Average Precision(MAP)

Average Precision Mean of the precision scores for a single query after each
relevant document is retrieved, where relevant documents not retrieved have P
of zero.MAP is the mean of average precisions for a query batch.

• Bpref

The bpref measure is designed for situations where relevance judgments are
known to be far from complete. It was introduced in the TREC 2005 terabyte
track. Bpref computes a preference relation of whether judged relevant docu-
ments are retrieved ahead of judged irrelevant documents. Thus, it is based on
the relative ranks of judged documents only.

8



2.7 Stemming

In linguistic morphology and information retrieval, stemming is the process of reduc-
ing inflected ( or sometimes derived ) words to their word stem, base or root form
generally a written word form. The stem need not be identical to the morphological
root of the word , it is usually sufficient that related words map to the same stem,
even if this stem is not in itself a valid root.

Stemming is a vital step employed to improve retrieval performance through
efficient unification of morphological variants of a word

2.8 Different Stemmers Used

In our proposed work we have tried out various stemmers :

• Porter Stemmer

The porter stemming a ( language dependent ) algorithm is a process of
removing suffices from words in English. Removing suffixes automatically is
an operation which is specially useful in the field of information retrieval. In
a typical IR system a document is represented by a vector of words or terms.
Terms with a common stem usually have same meaning.

• Yass

Yet Another suffix Stripper ( Yass ) is a statistical stemmer. In this stemmer
the distance between two words X and Y are measured using the distance for-
mula :

D3(X, Y ) = n−m+1
m
∗
∑n

i=m 2i−m if m > 0
0 otherwise

The distance functions defined previously are used to cluster words into ho-
mogeneous groups. Each group is expected to represent an equivalence class
consisting of morphological variants of a single root word. The words within
a cluster are stemmed to the central word in that cluster. Since number of
cluster is not known from before hand graph theoretic clustering algorithm is
used. Therefore the complete linkage method of clustering is used to cluster the
words.
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• Gras

It is a novel graph based language independent computationally inexpensive
stemming algorithm for information retrieval. In this algorithm first the words
are clustered based on the condition that they have some common prefix of
length l. Now for any two words in the cluster, the suffix pairs should be
obtained. In this way the count of the suffix pair will be obtained. A graph
is constructed from the words of the lexicon and the weight of the edges being
the frequency of suffix pair. A vertex is selected with the maximum degree
and considering all its adjacent or neighbouring vertices the ones having strong
cohesion value are kept rest are deleted. The new graph obtained is devoid of
the vertices removed in the first step. Now again the process of finding a vertex
with maximum degree is found and process of is repeated. So basically in every
step we are getting the classes of the words in the algorithm.

2.9 String Similarity

4

• Longest Common Subsequence (LCS) Similarity

Given a sequence X = ( x1 , x2 ,..., xm ) a sequence Z = ( z1 , z2 ,..., zk
) ( k ≤ m ) is called a subsequence of X if there exists a strictly increasing
sequence i1 , i2 ,..., ik of indices of X such that for all j = 1,2,..., k , we have
xij = zj . Now, given two sequences X and Y , we say that Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y. A common
subsequence of X and Y that has the longest possible length is called a longest
common subsequence or LCS of X and Y.

LCSSimilarity( w1 , w2 ) = StringLength(LCS(w1,w2) )
Maximum(StringLength(w1) ,StringLength(w2) )

• Edit Distance Based Similarity

Edit distance is a popular measure for measuring distance between two strings.
Edit distance between two words is the minimum number of single character
edits, i.e., insertions, deletions or substitutions, required to change one word
into the other. Let ED denotes edit distance and ES denotes edit similarity.

ES( w1 , w2 ) = 1− ED(w1,w2)
Maximum(StringLength(w1) ,StringLength(w2) )

4The defintions of these metrics were taken from baseline paper.
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2.10 Data Set

2.10.1 Microblog

Microblogging sites ( e.g., Twitter, Weibo ) have become important sources of in-
formation on various topics and events. On such forums, the user generated content
is usually written in cavalier, informal ways without adhering to standard grammar
rules. Also , due to strict limitation on the length of tweets ( 140 characters ) indi-
vidual words are often shortened in non standard ways or multiple words are clubbed
together. These factors pose unique challenges to researchers looking to perform In-
formation Retrieval (IR) from such texts. The data set which was used here is TREC
2016 Microblog Data set. This is a twitter data which has lot of word inflections.

2.10.2 Fire Risot Bangla Collection

Bangla original is the clean or error free version created from Anandabazar Patrika.
Bangla OCRed is the scanned and OCRed version of the same. A document in the
original version and its OCRed version had the same unique document identifica-
tion string so that the original-OCRed pairs can be easily identified. The number
of unique terms in Bangla original corpus is 396968 while the same number in its
OCRed version is 466867.

2.10.3 Fire Risot Hindi Collection

Hindi original is the clean or error free version created from Anandabazar Patrika.
Hindi OCRed is the scanned and OCRed version of the same. The number of unique
terms in Hindi original corpus and its OCRed version are 242047 and 264240 respec-
tively. This discrepancy is caused by OCR errors. Most of the inflations are caused by
misrecognition ( as multiple candidates ) . We will have a more detailed discussion
on this issue in a subsequent section. The Bangla collection has 66 topics and the
Hindi collection has 28 topics. These topics were created for previous FIRE Ad Hoc
tasks. A subset of the Ad Hoc topics was selected for the RISOT task.

2.10.4 IIT CDIP

IIT CDIP 1.0 (Illinois Institute of Technology Complex Document Information Pro-
cessing Test Collection, version 1.0) is a data set supporting research in informa-
tion retrieval, document analysis, computational linguistics, data mining, and related
fields. IIT CDIP Records 1.0: 6,910,192 XML records describing documents that
were released in various lawsuits against the US tobacco companies and research in-
stitutes.IIT CDIP Assessments 1.0: Relevance judgments on the 40 topics against
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pooling-based samples of the records. IIT CDIP collection lacks the clean-text origi-
nal version which is useful in error-modelling.

2.10.5 Trec 5 Confusion Track

This is the document set used in the TREC-5 confusion track. It consists of the
1994 edition of the Federal Register. The United States Government Printing Office
(GPO) prints the Federal Register as a record of the transactions of the government.
One issue is published each business day and contains notices to Federal agencies and
organizations, executive orders and proclamations, proposed rules and regulations,
etc. The Federal Register was selected for these experiments because it is a large
collection for which both hardcopy and electronic versions are readily available. The
corpus contains 395MB of text divided into approximately 55,600 documents.

2.11 Word2Vec

Word2vec is a group of related models that are used to produce word embeddings.
These models are shallow, two layer neural networks that are trained to reconstruct
linguistic contexts of words. Word2vec takes as its input a large corpus of text and
produces a vector space, typically of several hundred dimensions, with each unique
word in the corpus being assigned a corresponding vector in the space. Word vectors
are positioned in the vector space such that words that share common contexts in
the corpus are located in close proximity to one another in the space. Word2vec can
utilize either of two model architectures to produce a distributed representation of
words continuous bag of words or continuous skip gram.
In the continuous bag of words architecture, the model predicts the current word
from a window of surrounding context words. The order of context words does not
influence prediction (bag of words assumption) .
In the continuous skip-gram architecture, the model uses the current word to pre-
dict the surrounding window of context words. The skip-gram architecture weighs
nearby context words more heavily than more distant context words . 5

2.12 Fasttext

fastText is a library for learning of word embeddings and text classification created
by Facebook’s AI Research (FAIR) lab. The model is an unsupervised learning al-
gorithm for obtaining vector representations for words. FastText differs in the sense
that word vectors a.k.a word2vec treats every single word as the smallest unit whose
vector representation is to be found but FastText assumes a word to be formed by a

5The details were being taken from wikipedia.
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n-grams of character. 6

2.13 Retrieval Methods

2.13.1 LM Jelinek Mercer Smoothing

The first approach we can do is to create a mixture model with both distributions:

P (q|d, C) = λP (q|d) + (1− λ)P (q|C)
where q is the Query .d is the document and C is the collection in which the

documents are present.

This model tries to find out the probability of finding the query terms in the doc-
uments and in case it misses that it smoothes the model using the probabilistic
occurence in its collection.
High value of λ : conjunctive like search tends to retrieve documents containing all
query words.
Low value of λ: more disjunctive, suitable for long queries

2.13.2 LM Dirichlet Smoothing

This model in general performs better than LM Jelinek Mercer in terms of retrieval
performance.

Pµ(w|d, C) = |d|
|d|+µ

c(w,d)
|d| + µ

|d|+µP (w|C)

where w is the query word , d is the document ,|d| is the length of the document , µ
is a parameter and c(w, d) is the count of the word w in the document d.

6The details were being taken from wikipedia.
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Chapter 3

Related Work

3.1 Combining Local and Global Word Embed-

dings for Microblog Stemming

The above paper (CLGWEMS) [?, ?, ?, ?] illustrates a method to improve retrieval
performance through efficient unification of morphological variants of a word. They
have proposed an unsupervised, context-specific stemming algorithm for microblogs,
based on both local and global word embeddings, which is capable of handling the
informal, noisy vocabulary of mi-croblogs .

Word context plays a crucial role in the case of microblogs where non-standard
word representations are frequent. Here,a combination of common prefix and con-
text is essential in identifying semantically related variants. In this work, they have
used word embedding tools word2vec for local embeddings, and GloVe in https:

//nlp.stanford.edu/projects/glove/ for global embeddings to capture the con-
text of word variants, in amalgamation with common prefix length and other string
similarity measures, to identify morphological variants of words.

3.1.1 Two Measures Of Similarity

• String Similarity : This is achieved in two ways. First, if the two words have
a common prefix of length p which is a positive integer, they are similar in the
sense that they are likely to be morphological variants of each other. We con-
sider p to be very short for tweets where mismatches can occur very early in the
word. We choose p ≤ 3 for noisy , informal microblogs, since a common prefix
of length 3 was used for formally written text. Second, we compute the length
of the Longest Common Subsequence LCS of the residual suffixes, say wsuff ,
w

′

suff of the two words w and w
′
respectively , after ignoring the common prefix

14
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of length p. This LCS similarity is denoted by LCSlength(wsuff , w
′

suff ) .

• Contextual Similarity : There is two types of contextual similarity . One
is local context and other global context .

– Local Context :

To get the corpus specific embedding of the words they have trained
word2vec over the set of tweets. This will construct the embeddings of
words which are present specifically in the cor- pus and in the queries.
The word2vec model provides a vector for each term in the corpus, which
we call the term-vector. Let w” and w”

′ be the word2vec term-vectors of w
and w′ respectively. The term vector is designed to arrest the context in
which a word appears in the corpus . Hence, we measure the contextual
similarity of the two words as the cosine similarity of the corresponding
w” and w”

′ term-vectors, denoted as cossim ( w”,w”
′ ) . So, we consider

w′ to be a possible variant of w only if they have high string similarity as
well high contextual similarity as observed in the corpus.

– Global Context : To incorporate more robust context embeddings for
the general words, they used the a pretrained embedding for tweets pro-
duced by the GloVe algorithm which is pretrained on 2 billion random
tweets available at https://nlp.stanford.edu/projects/glove/. They
used the 50 dimensional word vectors for the exper- iments. The global
context is used to refine the final clusters of word variants, as described
later in the section. Then computing the global contextual similarity be-
tween two words w and w′ as the wg and w

′
g cosine similarity between the

word vectors of the GloVe model.

3.1.2 Algorithm

For given tweets let L be the lexicon or set of words of the corpus which are lower
case folded excluding the stopwords, URLs, user mentions, email ids, and other non
alpha numeric words.

• Grouping : Identification of possible variants by string matching. The purpose
of this step is to identify the possible variants of words using string similarity.For
each word w ∈ L , a set Lw is formed containing all the words w′ ∈ L satisfying
the following three conditions:

– 1 : w′ has the same common prefix of length p as w, where p ≤ 3

15
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– 2 : |w′ |, |w| � p + 2 , ( where |s| denotes the length of string s ) i.e., w′ ,
w are of length not less than p+2. The need for this condition is explained
below.

– 3 : The length of the Longest Common Subsequence of characters between
the suffixes wsuff and w

′

suff follows the condition , LCS l length ( wsuff ,

w
′

suff ) � α ∗MAX ( |wsuff |, |w
′

suff | ) where α ∈ [ 0, 1] is a parameter of
the algorithm, and MAX ( a,b ) denotes the larger value between a and b.

The condition ( 3 ) described above captures suffix match beyond the com-
mon prefix. The condition ( 2 ) above ensures the LCS of the suffixes (
after ignoring the common prefix ) may be too small to ensure a reasonable
comparison.

• Filtering : Identify possible variants by contextual matching . In this step, it
is aimed at selecting the variants of w from the set Lw that have considerable
contextual similarity with w. First the word w ∈ Lw is found , w 6= w′ such
that cossim( w , w′ ) > cossim( w , w” ) for all w” ( 6= w , w′ ) ∈ Lw
that is w′ is a word in Lw that is semantically most similar to group head w (
measured by the cosine similarity of the word2vec vectors of the two terms) .
γ = λ∗ cossim( w , w′ ) where λ is between 0 to 1 .This threshold is used
to calibrate the relative similarity of all other words in Lw with respect to the
maximum similarity of any word in Lw with group head w.
Lrefinedw = { ws : ws ∈ Lw and cossim ( w , ws ) ≤ γ } . Lrefinedw is expected
to contain those words which are both string and semantic simialarity with w .

• Selection : Now Lrefinedw is formed for each w but this Lrefinedw have overlaps
. So for a word w′ belonging to more than one Lrefinedw , it is kept in only that
particular Lrefinedw which has highest semantic simialrity with root word w.

• Refinement : Now Lrefinedw is a modified set . The similarity between two
words in Lrefinedw is that of glove similarity. Now the words in Lrefinedw are
clustered according to the given condition. Two words w1 and w2 ∈ Lrefinedw are
in same cluster if they satisfy the below condition.

– 1 : Among all the words in Lrefinedw either w1 has the highest glove similarity
with w2 or vice versa.

– 2 : Glove similarity of the 2 words are more than β times the maximum
glove similarity among all pair similarity of the words in Lrefinedw .

– 3 : If w1 or w2 are absent in the glove model than by default they are put
in the same cluster.
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Now each of the Lrefinedw is splitted into several cluster . The cluster which con-
tains w is choosen as the final cluster . In that cluster the word of the shortest
length is found as the stem of the cluster.

3.2 Improving Information Retrieval Performance

On OCRed Text in the Absence of Clean Text

Ground Truth

The above paper proposes a novel language independent approach for detecting OCR
errors and improving retrieval performance from the erroneous corpus in a situation
where training samples are not available to model errors. In this paper a method
has been proposed that automatically identifies erroneous term variants in the noisy
corpus, which are used for query expansion, in the absence of clean text. An effective
combination of contextual information and string matching techniques has been used
here .

3.2.1 Algorithm

This has two major parts :

• Agglomeration

• Melding

Agglomeration

• Segregation

Let D denotes document collection and L denotes the set of lexicon or the set
of all unique words in the documentents D. Let q ∈ Q be a query . A set Lαwi

= { w ∈ L : string similarity( w, wi ) > α } where α is a threshold value
lying in the interval ( 0, 1) . So this set has all the words in L which has string
similarity with the query word wi .

• Graph Formation

Now with the words in Lαwi
a graph is formed where an edge between the words

are placed if the co-occur in a document.

• Pruning

The maximum edge weight of the graph is maxew . Those edges of the graph are
removed which has edge weight β∗ maxew where β is a parameter. Since this
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can produce wrong result the pruning is done only when maximum document
frequency of nodes of the connected sub graph is greater than γ .

• Congregation

We now cluster the vertices of graph G based on edge weights . Basically v1 is
the strongest neighbour of v2 if of all the neighbouring vertices of v2 , the weight
of the edge joining v1 and v2 is maximum. The clustering is done according to
the following condition .

Two vertices v1 and v2 will belong to the same cluster if

– 1: Either v1 is the strongest neighbour of v2

– 2: Or v2 is the strongest neighbour of v1

Melding

Let C = {Cl1 , Cl2 ,....Clk } be the cluster formed from Lαwi
. A word wcloset is found

out in all the cluster which has the maximum string similarity with wi . The cluster
containing wcloset is chosen as the error variant of the query word . If there are more
than one cluster having that variant then the word is not expanded.

18



Chapter 4

Proposed Scheme 1

4.1 A Generalized Language Model

In this section, we propose the generalized language model (GLM) that models term
dependencies using the embedding of terms. In Information Retrieval, generally it is
assumed that the occurrence of two terms ti and tj in a document is independent of
each other. Firstly it looks for a contribution of a term ti in the document and then
in the collection as in the equation 2.1. This is the smoothing technique.

4.1.1 Term Transformation Events

As per Equation 2.1, terms in a query are generated by sampling them independently
from either the document or the collection. We propose the following generalization
to the model. Instead of assuming that terms are mutually independent during the
sampling process, we propose a generative process in which a noisy channel may
transform (mutate) a term t′ into a term t. More concretely, if a term t is observed
in the query corresponding to a document d, according to our model it may have
occurred in three possible ways :

1. Direct term sampling: Standard LM term sampling, i.e. sampling a term t
(without transformation) either from the document d or from the collection.

2. Transformation via Document Sampling: Sampling a term t′(t′ 6= t) from
d which is then transformed to t by a noisy channel. We denote the probability
of this happening as P (t, t′|d). This is given by the below expression.

P (t, t′|d) =
∑
t∈d

tf(t′, d).
sim(t, t′)∑

t′′∈C sim(t′, t′′)
(4.1)
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3. Transformation via Collection Sampling: Sampling the term t′ from the
collection which is then transformed to t by the noisy channel. We denote the
probability of this happening as P (t, t′|C). The expression is given in the below
equation.

P (t, t′|C) = π.
∑
t′∈C

P (t′, C).
sim(t, t′)∑

t′′∈C sim(t′, t′′)
(4.2)

1. Direct Term Sampling

This is the standard language modelling term sampling; a term t in the query can be
generated from either the document or from the collection following 2.1

2. Transformation via Document Sampling

Let P (t, t′|d) denote the probability of generating a term t′ from a document d and
then transforming this term to t in the query.

P (t, t′|d) = P (t|t′, d)P (t′|d) (4.3)

P (t|t′, d) =
sim(t, t′)∑
t′′∈d sim(t, t′′)

(4.4)

In Equation 4.3, P (t′|d) can be estimated by maximum likelihood with the help of
the standard term sampling method as shown in Equation 2.1. For the other part,
i.e. transforming t′ to t, we make use of the cosine similarities between the two em-
bedded vectors corresponding to t and t′ respectively. More precisely, the probability
that the language model corresponding to document d generates t via the term t

′

contained in d is taken to be P (t′|d) is proportional to the similarity of t with t′. This
is shown in Equation 4.4, where sim(t, t′) is the cosine similarity between the vector
representations of t and t′.

Consequently, we can write Equation 4.3 as

P (t, t′|d) =
sim(t′, t)∑
t′′∈d sim(t, t′′)

tf(t′, d)

|d|
(4.5)

Words that are used in similar contexts with respect to the query term t over the
collection, as given by the vector embeddings, are more likely to contribute to the
term score of t.
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3. Transformation via Collection Sampling

Let the probability of event of transforming a term t′, sampled from the collection in-
stead of a particular document, to the observed query term t be denoted by P (t, t′|C).
This can be estimated as follows.

P (t, t′|C) = P (t|t′, C).P (t′|C) = P (t|t′, C).
cf(t′)

cs
(4.6)

Now P (t|t′, C) can be estimated in a way similar to computing P (t|t′, d), as shown
in Equation 4.4. However, instead of considering all (t, t′) pairs in the vocabulary for
computation, it is reasonable to restrict the computation to a small neighbourhood of
terms around the query term t, say Nt because taking too large a neighbourhood may
lead to noisy term associations. cf(t′) is the collection frequency of the term t

′
and cs

is the collection size i.e it is the total number of terms or words in the entire collection.

This is shown in Equation 4.7.

P (t|t′, C) =
sim(t, t′)∑

t′′∈Nt
sim(t, t′′)

=
sim(t, t′)

Σ(Nt)
(4.7)

Therefore, 4.6 can be written as

P (t, t′|C) =
sim(t, t′)

Σ(Nt)
.
cf(t′)

cs
(4.8)

4.1.2 Combining the Events

Finally, to place all the events together in the LM generation model, let us assume
that the probability of observing a query term t without the transformation process
(as in standard LM) is λ. Let α denote the probability of sampling the query term
t via a transformation through a term t′ sampled from the document d, with and
let β be probability of t′ sampled from the collection as shown schematically in the
diagram below.

The LM term generation probability can thus be written as shown in Equation 4.9.
This is a generalized version of the standard LM, which we henceforth refer to as
generalized language model (GLM). Note that the GLM degenerates to standard LM
by setting α and β to zero, i.e. not using the transformation model in the term
generation process. The equation 4.9 gives the modified score of the document.

Score(t, d) = λP (t|d) + α
∑
t′∈d

P (t|t′, d)P (t′|d) + β
∑
t′∈Nt

P (t|t′, C)P (t′|C) + (1− λ− α− β)P (t|C)

= λ
tf(t, d)

|d|
+ α

∑
t′∈d

sim(t, t′)

Σ(d)

tf(t′, d)

|d|
+ β

∑
t′∈Nt

sim(t, t′)

Σ(Nt)
.
cf(t′)

cs
+ (1− λ− α− β)

cf(t)

cs

(4.9)
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Figure 4.1: Schematics of generating a query term t in our pro- posed Generalized
Language Model (GLM). GLM degenerates to LM when α = 0 β = 0.

4.1.3 Modifications In The GLM Model

Term Transformation Events : via Document And Collection Sampling

In noisy corpus a term (e.g., ’cat’) may have been transformed into another word
(e.g., ’oat’) because the documen creation process (e.g., ocr) may randomly change
a few letters of any word. To address this problem, we considered both the string
similarity via yass and contextual similarity via word embeddings obtained from
word2vec or fasttext.

P (t|t′, d) is the probability of term t given that the terms t
′

is seen in document d.
Previously we were only considering the contextual similarity but now for computing
P (t|t′, d) we have also incorporated the string similarity. We have used a linear
combination of string similarity and contextual similarity to calculate P (t|t′, d) as
shown in the equation below.

P (t|t′, d) =
γWord2V ecSim(t, t′) + (1− γ)Y assSim(t, t′)∑

t′′∈d γWord2V ecSim(t, t′′) + (1− γ)Y assSim(t, t′′)
(4.10)

1. Yass [Yet Another Suffix Stripper] is a stemming algorithm which clusters words
using Yass Distance D3 to find their stem

2. Two strings are similar to each other if they have lesser Yass distance .

D3(X, Y ) = n−m+1
m
∗
∑n

i=m 2i−m if m > 0
0 otherwise
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3. To convert Yass distance to similarity.

Y assSim(X, Y ) = 1− D3(X, Y )

len(X) ∗ len(Y )
(4.11)

P (t|t′, C) =
γWord2V ecSim(t, t′) + (1− γ)Y assSim(t, t′)∑

t′′∈Nt
γWord2V ecSim(t, t′′) + (1− γ)Y assSim(t, t”)

(4.12)

Similarly P (t|t′, C) is defined as above equation, shown in eqaution 4.12.
P (t, t′|C) is a collection sampling event and we have used the yass similarity for (string
similarity) and the word2vec similarity for contextual similarity. The denominator is
the nearest neighbours union of both yass similarity and word2vec similarity of the
words.

4.1.4 Implementation Outline

The implementation of the GLM term weighting can be achieved with a two pass
indexing. After the first pass stores the LM term weights, the second pass reads
every document at a time, reweights the terms and adds new terms by making use
of the term embeddings. An efficient approach to get the neighbours of a given term
is to store a pre-computed list of nearest neighbours in memory for every word in
the vocabulary. After this step, for each document d in the collection, we iterate
over term pairs (t, t′) and assign a new term-weight to the term t representing the
document sampling transformation according to Equation 4.5. Then we iterate again
over every term t in d and use Nt, pre-computed nearest neighbours of t to compute
a score for the collection sampling transformation, as shown in Equation 4.8.

To account for the fact that these transformation probabilities are symmetrical, we
add the term t′ to d. Note that it is not required to add the term t′ in case of the
document sampling transformation event because t′ is already present in d.

In lucene retrieval system it is not possible to store term weights easily such that
it will take into account the weights while scoring the documents. Therefore it is
required to store the term weights separately in the index. We implemented this in
term indexing format.

For each term in the document there is a three tuple field stored. One is
the document id , another is the term and third is the is the weight cor-
responding to P (t|d) , P (t, t′|d) and P (t, t′|C) all normalized by P (t|C) which
are separated by pipe .

During retrieval process a query term is fetched from the index and each
of the documents which are retrieved are score according to the equation
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4.10 . Each of the score of the individual query terms is then combined
for a particular document. Then the documets are sorted according to the
combined score for each of the documents and reported in res files

4.1.5 BaseLine Methods For Comparing With GLM

• LM-JM (None) :

In this method, the α and β values in GLM are set to 0. This baseline thus
corresponds to the original LM approach of Jelinek Mercer smoothing.

• LM-JM using (3.1) :

In this method, all terms are stemmed with the CIKM 2016 Stemmer and then
the retrieval is done using LM-JM language model .

• LM-JM using (2.8) :

In this method, all terms are stemmed Porter stemmer and then the retrieval
is done using LM-JM language model .

• LM-JM using (2.9) :

In this method, all terms are stemmed using Yass stemmer and then the retrieval
is done using LM-JM language model .

4.1.6 OverAll FlowChart Of The Entire Process

This diagram 4.2 is the overall pipeline of the entire process flow in the Generalized
Language Model FrameWork. After the corpus were stemmed(unstemmed), using the
stemmers and then the embeddings are generated which are used to find the nearest
neighbours. The nearest neighbours are used to expand the documents. Then the
documents are scored according to the doc similarity(document similarity score ) and
the nearest neighbour score. Then the retrieval is performed on the Jelinek Mercer
Framework. There are various variant tried out in this framework which are explained

4.1.7 Various Combination Tried Out With GLM

• LM-JM (Word2Vec) :

In this method for computing P (t, t′|d) only the word2vec similarity is cosidered
and not the string similarity from yass. Similary for P (t, t′|C) the documents
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Figure 4.2: Flow Chart Of The Process

are expanded from the word2vec neighbour of each terms.

• LM-JM (Yass) :

In this method for computing P (t, t′|d) only the yass similarity is cosidered and
not the semantic similarity from word2vec. Similary for P (t, t′|C) the docu-
ments are expanded from the yass neighbour of each terms.

• LM-JM (Word2vec and Yass) :

In this method for computing P (t, t′|d) the yass similarity and word2vec simi-
larity are combined in a linear combination and used . Similary for P (t, t′|C)
the documents are expanded from the union of yass and word2vec neighbour of
each terms.

• GLM With Yass Stemmed :

Intially the documents were stemmed with yass and nearest neighbiurs are com-
puted for each stemmed word using word2vec. In this method for computing
P (t, t′|d) word2vec similarity are computed for two words in the documents.
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Similary for P (t, t′|C) the documents are expanded from the neighbour of each
terms.

• GLM With Porter Stemmed :

Intially the documents were stemmed with porter and nearest neighbiurs are
computed for each stemmed word using word2vec. In this method for comput-
ing P (t, t′|d) word2vec similarity are computed for two words in the documents.
Similary for P (t, t′|C) the documents are expanded from the neighbour of each
terms.

• GLM With Yass Stemmed And Fasttext :

Intially the documents were stemmed with yass and nearest neighbiurs are com-
puted for each stemmed word using Fasttext. In this method for computing
P (t, t′|d) Fastext similarity are computed for two words in the documents. Sim-
ilary for P (t, t′|C) the documents are expanded from the Fasttext neighbour of
each terms.

• GLM With Porter Stemmed And Fasttext :

Intially the documents were stemmed with porter and nearest neighbiurs are
computed for each stemmed word using Fasttext. In this method for computing
P (t, t′|d) Fasttext similarity are computed for two words in the documents.
Similary for P (t, t′|C) the documents are expanded from the Fasttext neighbour
of each terms.
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Chapter 5

Proposed Scheme 2

This approach was mainly developed from a failure analysis of the previous method.
The nearest neighbours of the words were observed and it was found out that a
stemmed corpus might yield better retrieval results than an unstemmed corpus .
This is because an unstemmed corpus has lot of variations of a word and hence ei-
ther the document or query size keeps increasing on adding additional terms in the
documents or query respectively.

Another major observation behind coming up with the algorithm is the query terms
variants seemed to be more appropriate rather than expanding a documents with
every terms in it. So basically a documents also contains many non query words and
on expanding those non query words, it was misguiding the retrieval procedure. This
was also making the index size huge unnecesarily. There is an eamples of a neighbour
in 5.1 of a query word. Now in the document the exact query word may not be
present because it was tampered so while quering during retrieval we would never get
a match of the root word.

5.1 Algorithm

• Step 1 :

Intially the documents and queries are stemmed with a standard stemmer. For
this step we tried the following stemmers yass, gras and porter.

Figure 5.1: Top four neighbour of a query word in Risot Collection
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• Step 2 :

The stemmed query words are searched in the collection. If there is no match
for the query words, then it means those words are absent either they are mis-
recognized during the OCR process or they are genuinely not present in the
corpus. Thus we obtain the out of vocabulary words from the corpus.

• Step 3 :

Now for each of the query words, top k LCS neighbours or Edit distance neigh-
bours are calculated with respect to the stemmed words in the collection. These
neighbours are used to expand the query.

• Step 4 :

Now for each query word, a minimum of x of its LCS or Edit Neighbours are
considered for expansion of the query.

• Step 5 :

Each query word is expanded based on the following condition:

– First it is checked whether the query word is present in the corpus or not.
In case the query word is present in the collection and its neighbour’s LCS
score or the Edit Similarity score is above a certain threshold value th then
the query word is expanded. For in vocabulary word th is generally kept
high. So it may happen that a query word will not be expanded at all due
to the th value.

– In case it is a out of vocabulary word then it could have been inflected
due to noise in the corpus. In such case also we exand the query word if
its neighbour’s LCS score or the Edit Similarity score is above a certain
threshold value th. But here we keep a low th value to get a variant of the
missing query word.

• Step 6 :

In this step the query terms are given score in the following ways.

– If the number of expanded terms for a query word is zero and also it’s
neighbours has LCS score or Edit distance score then it implies it is not a
out of vocabulary word and that due to a high th value the query could
not be expanded. Thus in such case the query term is given score 1.
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– If the number of expanded terms for a query word is greater than zero
then in that case the original query word is given the Qmix score(0.1-
0.9) or query mix score which is a parameter. The neighbours or the
expanded terms are given score as (1-Qmix)∗LCS score or (1-Qmix)∗edit
score normalized by the sum total score of all the expanded terms.

– 3. If it is a out of vocabulary word then the normalization procedure
remains same as the step 2 except that the Qmix score is 0 for the out of
vocabulary word.

• Step 7:

Now when the query is ready the documents are retrieved using a retrieval
model, in our case it was mainly LM Dirichlet.

5.1.1 Methods tried in this model

• In addition to LCS and Edit neighbours we have tried with the neighbours
which Fasttext returns. This is for finding out how the query expansion with
contextual similarity in our model.

• We also used this model on unstemmed data. The neigbours were unstemmed
and query were expanded using unstemmed terms.

Note :The documents were initally preproceed and removed of all possible
noise

5.1.2 Various preprocessing techniques

• The stop words are removed.

• The words are converted to lower case.

• The numbers or digits are removed.

• If any non alphabetic character is present in between a word then those al-
phanumeric characters are removed and the word is squeezed it.

• In one of the variant we have let the non alphabetic character be present in
between the words as it is. This is because it may penalize the stemming
procedure due to false match.

• In another variant we have removed those words which have more than 60
percent non alphabetic character in them. This is done because stemming these
words would keep it as it is.
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Out of the two variants tried out the one with stemmed documents and query ex-
panded by LCS or Edit Neighbours performed best in atleast 4 dataset. There is
another dataset IIT-CDIP where we are unable to show the final result after stem-
ming since the dataset is huge and it was taking plenty of computation time.
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Chapter 6

Performance evaluation and
experimental results

6.0.3 Results of the baseLine paper as reported in :Combin-
ing Local and Global Word Embedding for Microblog
Stemming

The results were reported for Trec 2016 Microblog Data Set(RTS)

Algorithm Precision@20 MAP Bpref
Unstemmed 0.0292 0.006 0.008

Porter 0.2114 0.0964 0.1101
Yass 0.1077 0.0411 0.0547

Proposed 0.2125 0.1043 0.1162

Algorithm Precision@20 MAP Bpref
Unstemmed 0.1455 0.0870 0.1050

Porter 0.1911 0.1011 0.1386
Yass 0.1616 0.0923 0.1243

Proposed 0.1437 0.0675 0.1031

Note:The retrieval model used here is Jelinek Mercer and the queries were
title only query.

The above results were obtained when we implemented the baseline method. To our
surprise we found that it is the porter stemmer performing the best which could be
because the queries were plain english words.
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Note: The results of the Fire 2016 data set were not reported in the thesis
because there were only 7 queries in the data set and also the queries were
very vague.

6.1 Results of Generalised Language Model(GLM)

and its variants

The results were reported for Trec 2016 Microblog Data Set(RTS)

Method Stemming GLM-Neighbours Precision@20 MAP Bpref
GLM None word2vec 0.0679 0.1286 0.1171
GLM None Yass 0.1455 0.0909 0.1226
GLM None word2vec and Yass 0.1616 0.0961 0.1331
GLM Yass word2vec 0.1545 0.0975 0.1347
GLM Porter word2vec 0.175 0.1001 0.1416
GLM Porter Fasttext 0.1821 0.1043 0.1461
GLM Yass Fasttext 0.1518 0.0897 0.1232

Intially we were experimenting on unstemmed variant but then since the
stand only stemmed version were producing better results , we experi-
mented with stemmed data using the GLM framework.

Though our results were comparable to the baseline paper as well as to
Porter stemmer , it was not significant improvement over the Porter Stem-
mer stand alone. Hence we could find that the simplier approaches was
performing better than the complicated model like GLM or the Proposed
Stemmer in the paper.

We were also tried the above methods on RISOT corpus (Bengali) Version
, and to our surprise it was not performing well enough to beat raw base-
line in baseline paper 2 : Improving Information Retrieval Performance
On OCRed Text in the Absence of Clean Text Ground Truth
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6.2 Results of the baseLine paper : Improving In-

formation Retrieval Performance On OCRed

Text in the Absence of Clean Text Ground

Truth

The results were reported for RISOT Bengali Version

Algorithm MAP
Proposed Method 0.2231

Original 0.2567

The results were reported for RISOT Hindi Version

Algorithm MAP
SIGIR 2015 0.1685

Proposed Method 0.1672
Original 0.2551

The results were reported for IIT CDIP Data Set

Algorithm MAP Recall@1000
Proposed Method 0.1011 0.4056

The results were reported for Confusion Track at 5 percent Degradation

Algorithm MAP
Original 0.7653

Proposed Method 0.6446

The results were reported for Confusion Track at 20 percent Degradation

Algorithm MAP
Original 0.7653

Proposed Method 0.4619
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6.3 Results of the prosposed method 2 on the above

data set

Though different Query Expansion (QE) neighbours were tried out like
edit , lcs and fasttest but the results which performed the best were re-
ported only.
Note : The retrieval model used was LM-Dirichlet

The results were reported for RISOT Bengali Version .

Algorithm QE-Neigbours MAP
Proposed Method Edit-Neighbour .2459

These results were obtained at µ = 900 , which is a dirichle parameter , at
threshold 1 = .75 and threshold 2 = .80 , k=5 where k is the number of
expansion terms and Qmix=0.5

The results were reported for RISOT Hindi Version .

Algorithm QE-Neigbours MAP
Proposed Method Edit-Neighbour .1742

These results were obtained at µ = 300 , which is a dirichle parameter , at
threshold 1 = .71 and threshold 2 = .85 , k=5 where k is the number of
expansion terms and Qmix=0.5

The results were reported for IIT-CDIP . This is a huge collection and the
process of stemming was taking lot of time so for now we have reported
the results on the same model using unstemmed collection.

Algorithm MAP Recall@1000
Proposed Method 0.0860 .3584

These results were obtained at µ = 900 , which is a dirichle parameter , at
threshold 1 = .75 and threshold 2 = .80 , k=5 where k is the number of
expansion terms and Qmix=0.5 .
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The results were reported for Confusion Track at 5 percent Degradation

Algorithm QE-Neigbours MAP
Proposed Method Lcs-Neighbour .7503

These results were obtained at µ = 1200 , which is a dirichlet parameter ,
at threshold 1 = .77 and threshold 2 = .85 , k=5 where k is the number
of expansion terms and Qmix=0.5 .

The results were reported for Confusion Track at 20 percent Degradation

Algorithm QE-Neigbours MAP
Proposed Method edit-Neighbour .3387

These results were obtained at µ = 2100 , which is a dirichle parameter ,
at threshold 1 = .77 and threshold 2 = .85 , k=3 where k is the number
of expansion terms and Qmix=0.5 .

The results were pretty bad for this data set for stemmed collection.
Therefore we thought of delving deeper into why it is under perform-
ing, and we tried the variant into unstemmed corpus.

Algorithm QE-Neigbours MAP
Proposed Method(Unstemmed) edit-Neighbour .4364

These results were obtained at µ = 4000 , which is a dirichle parameter ,
at threshold 1 = .77 and threshold 2 = .87 , k=5 where k is the number
of expansion terms and Qmix=0.5 .

Still the underline baseline could not be beaten . Since the unstemmed
data set was giving a better result we tried with 60 percent pruning
method. In this method we have kept only those words which has 60
percent alphabets , otherwise we have ignored the words. Then we have
stemmed it with gras and fitted it in the proposed model.

Algorithm QE-Neigbours MAP
Proposed Method edit-Neighbour .4761

These results were obtained at µ = 2100 , which is a dirichlet parameter ,
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at threshold 1 = .75 and threshold 2 = .85 , k=2 where k is the number
of expansion terms and Qmix=0.7 .

Using this method we are able to solve the Confusion Track 20 percent degradation
data set problem.
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Chapter 7

Future work and conclusion

• While computing the lcs and edit neighbours many a times we have obtained
similar score for various words. How to break a tie between neighbours which
share similar score is a challenge. For now we have thought about a method
of breaking the tie. After we obtain the top 30 lcs or edit neighbours, we can
rearrange the ones with the same score with their context similarity obtained
from word2vec or fasttext.

• Stemmers like Yass and Gras are unable to handle large data like IIT CDIP
(44GB). So we would like to explore ways to make the stemmer code more
efficient for quick computation.

We conclude that so far we are able to improve the retrieval efficiency to certain
extent but may be not be across all data set mostly due computation inefficieny in
large data set like IIT-CDIP.
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