
Design of Anonymous Endorsement System
in Hyperledger Fabric

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Subhra Mazumdar
[Roll No: CS1609]

under the guidance of

Dr. Sushmita Ruj
Assistant Professor

Cryptology and Security Research Unit

Indian Statistical Institute
Kolkata-700108, India

July 2018

To my family, friends and Hyperledger community

CERTIFICATE

This is to certify that the dissertation entitled “Design of Anonymous Endorse-
ment System in Hyperledger Fabric” submitted by Subhra Mazumdar to
Indian Statistical Institute, Kolkata, in partial fulfillment for the award of the degree
of Master of Technology in Computer Science is a bonafide record of work
carried out by him under my supervision and guidance. The dissertation has fulfilled
all the requirements as per the regulations of this institute and, in my opinion, has
reached the standard needed for submission.

Sushmita Ruj
Assistant Professor,
Cryptology and Security Research Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would first like to express my sincere gratitude to my advisor, Dr. Sushmita Ruj,
Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, for
her continuous support, advice, encouragement and motivation. Her guidance and
knowledge helped me in pursuing good research and writing of this thesis. It is a
privilege to have a supervisor who has constantly supported me, both academically
and personally.

I would also like to thank Prabal Banerjee, Cryptology and Security Research
Unit, Indian Statistical Institute, Kolkata, who provided insight and valuable sugges-
tions that greatly assisted the research.

I would like to express my gratitude to all the community members of Hyper-
ledger project, for the discussions and prompt reply to all my queries.

I take this opportunity to sincerely acknowledge the contributions of all the teach-
ers of Indian Statistical Institute, who have deeply influenced my research acumen.

I thank my parents, for being my pillar of strength and supporting me in all
my endeavours. Last but not the least, I want to thank my friends, for keeping me
motivated at times when I felt like giving up.

Abstract

Permissioned Blockchain has become quite popular with enterprises forming consor-
tium since it prioritizes trust over privacy. One of the popular platforms for dis-
tributed ledger solution, Hyperledger Fabric, requires a transaction to be endorsed or
approved by a group known as endorsers as per the specifications in the endorsement
policy. To endorse a transaction, an endorser mentions its identity along with the
signature so that it can be verified. However, for certain transactions, difference in
opinion may exist among endorsers. Disclosure of identity of endorser may lead to
conflict within the consortium. In such cases, an endorsement policy which allows an
endorser to support a transaction discreetly but simultaneously takes into account
the decision of the majority is preferred. As a solution, we propose an Anonymous
Endorsement System which uses a threshold endorsement policy. For hiding the iden-
tity of endorsers, a new ring signature scheme, called Fabric’s Constant-Sized Linkable
Ring Signature (FCsLRS) with Transaction-Oriented linkability has been proposed.
We have implemented the signature scheme in Golang and analyzed its security and
performance by varying the RSA modulus size. Feasibility of implementation is sup-
ported by experimental analysis. Signature generation and verification is quite fast,
with execution time remaining constant irrespective of change in message length or
endorsement set size for a given RSA modulus value. Lastly, we also discuss the
integration of the scheme with existing version of Hyperledger Fabric.

Keywords: Permissioned Blockchain, Hyperledger Fabric, Anonymous Endorsement
System, Fabric’s Constant-Sized Linkable Ring Signature (FCsLRS), Transaction-
Oriented linkability.

1

Contents

1 Introduction 6
1.1 Blockchain - Decentralized trust . 6
1.2 Problem Statement & Motivation . 8
1.3 Designing a new Endorsement System 11
1.4 Our Contributions . 12
1.5 Organization of the thesis . 12

2 Background 13
2.1 Hyperledger Fabric . 13

2.1.1 Hyperledger Fabric Components 13
2.1.2 Endorsement policies . 14
2.1.3 Transaction flow . 15

2.2 Related Work . 17
2.2.1 Ring Signature . 17
2.2.2 Threshold Signature . 17
2.2.3 Zero Knowledge Proofs . 19
2.2.4 Threshold Cryptography in Permissioned Blockchain 19

2.3 Preliminaries . 20
2.3.1 Mathematical Notations . 20
2.3.2 Hardness Assumptions . 20
2.3.3 Building Blocks . 20

3 Proposed Anonymous Endorsement System 25
3.1 Proposed construction of Fabric’s Constant-Sized Linkable Ring Sig-

nature (FCsLRS) . 26
3.2 Extending to threshold endorsement policy 31

4 Security Model 33
4.1 Assumptions made . 33
4.2 Syntax . 33
4.3 Security Notions . 35

4.3.1 Adversarial Model . 35

2

CONTENTS 3

4.3.2 Correctness . 35
4.3.3 Soundness . 35
4.3.4 Security Analysis of Signature Scheme 36

5 Performance Analysis of FCsLRS 42
5.1 Theoretical Analysis . 42
5.2 Experimental Analysis . 42
5.3 Description of the Implementation 45

6 Integration of FCsLRS Module in Hyperledger Fabric 49

7 Conclusion and Future Work 52

List of Figures

1.1 Hyperledger Fabric Architecture . 9
1.2 crypto-config.yaml template in Hyperledger Fabric 10
1.3 Tracking endorser’s identity . 10

2.1 Transaction flow in Hyperledger Fabric v1.1 16
2.2 Execution of Σ-Protocol. 21

3.1 PKI . 27

5.1 Signature Run time vs endorsement set size plot 44
5.2 Verification Run time vs endorsement set size plot 44
5.3 Class Diagram . 48

6.1 PROPOSE message format in Hyperledger Fabric 50
6.2 PROPOSE RESPONSE message format in Hyperledger Fabric 50
6.3 Modified PROPOSE RESPONSE message format in Hyperledger Fabric 50
6.4 Modified transaction flow diagram when any one endorser is willing to

endorse . 51

4

List of Tables

2.1 Comparison of Ring Signature Schemes 18

5.1 Asymptotic complexity analysis of FCsLRS 42
5.2 Signature generation time for FCsLRS vs number of participants . . . 43
5.3 Verification time for FCsLRS vs number of participants 43

5

Chapter 1

Introduction

With the explosion in the magnitude of transaction carried out worldwide, complexity
and cost of functioning has also magnified. Further, presence of third party for valida-
tion of these transactions leads to duplication of effort as well as issue of trust. With
the onset of net banking and online purchases, users are more vulnerable to fraud, cy-
berattacks. The identities of participants in a network remains under constant threat
of getting exposed, if the controller of network gets compromised.

Blockchain, the leading technology underpinning bitcoin and other cryptocurren-
cies, offers a solution to all such problems. It has the potential to revolutionize the
financial services by replacing intermediaries involved in any business transaction,
thereby reducing risks in the event of breach of trust. This leads to transparency
and accountability for services offered by banking, insurance etc. It allows people to
create digital property without depending on third parties.

1.1 Blockchain - Decentralized trust

In technical terms, blockchain is a shared, distributed ledger that facilitates the pro-
cess of recording transactions and tracking assets in a business network [28]. An asset
can be tangible - a house, a car, cash, land - or intangible like intellectual property,
such as patents, copyrights, or branding. Each block contains a unique identifier,
timestamped batches of recent valid transactions, and the hash of the previous block.
This results in blockchain being tamper-proof and immutable where addition of sub-
sequent block strengthens the verification of the previous block and hence the entire
blockchain. The blockchain architecture supports peer-to-peer replication whereby
participants(node) in the network update the shared ledger on the occurrence of a
transaction. Each node can receive or send transactions to other nodes, and the data
is synchronized across the network as it is transferred.

6

1.1. Blockchain - Decentralized trust 7

Some Applications:

• Bitcoin: One of the very popular use case for blockchain is Bitcoin. It acts as
a shared ledger for the cryptocurrency, recording transactions. Bitcoin is not
governed by a central monetary authority. It is cost effective as well as secure.
Other relevant use cases are

• Financial Services: In cross border remittance, commercial financing of its
business partners by a company.

• Insurance: It eliminates the cost of processing insurance claims, reduces the
instance of insurance fraud and improves customer satisfaction.

• Supply Chain Management: With no single authority “owns” the prove-
nance information, it lead to reductions in time taken to diagnose and remedy
a fault improving system utilization.

• Healthcare: Ensures secure storage of medical data, retrieval of patient’s med-
ical history is easier and medical claim processing time reduces.

• Internet of Things(IoT): As machines interact with one another, any relevant
interactions can be reported by the machines and recorded in the blockchain to
increase efficiency and accuracy, automating IoT processes.

• Other applications: Retail, energy management, voting, real estate etc.

Types of Blockchain

There are two types of blockchain [24],[14]:
Permissionless Blockchains: It is open and decentralized where any node can
join and leave the network at any point of time. There is no central entity which
manages the membership, or which could ban illegitimate members. Each party can
choose to run a node for the blockchain and participate in transaction verifications
(via the mining mechanism), as well as create smart contracts on the network. These
networks employ a crypto-economic model (driven by proof-of-work, proof-of-stake
consensus algorithm) that incentivizes more participants to join the network. Use of
cryptocurrency is necessary to simplify exchange of value among participants as well
as rewarding them for their contributions.
Example: Bitcoin, Ethereum.

Permissioned Blockchains: It is a closed ecosystem in which each node needs
permission to participate in the network, suitable for business applications. Such
nodes are involved in validation of transaction and execution of smart contracts.
This type of blockchain is suitable for an organization or consortium of organization
to efficiently exchange information and record transactions, retaining confidentiality

8 1. Introduction

and privacy unlike permissionless blokchains. No monetary tokens or incentivization
mechanism involved due to the nature of these business networks. Computationally
inexpensive consensus mechanisms like Practical Byzantine Fault Tolerance (PBFT),
Simplified Byzantine Fault Tolerance (SBFT) are used which results in substantially
better scalability and performance.
Example: Kadena, Tendermint, Hyperledger Fabric.

1.2 Problem Statement & Motivation

In permissionless blockchains, the miners and other participants of the network can
stay anonymous. No central authority has total controls over the functioning of the
system. But for political or business organizations, transparency is of utmost im-
portance for fair governance. On the contrary, the permissioned counterpart is gov-
erned by the members of the blockchain business network. Economic incentives, code
quality, code changes, and power allocation among peers are based on the business
dynamics for which the network has been designed and built.

One of the most popular open-source permissioned blockchain framework, Hy-
perledger Fabric, is one of the most mature and active project of Hyperledger. It is
quite scalable and robust, hence used mainly for enterprise purpose. It’s architecture
is illustrated via a diagram in Fig. 1.1. A membership service provider (MSP) is
responsible for maintaining the identities of all nodes in the system - clients,orderer
and validator or peer. It issues credentials in the form of cryptographic certificates
which is used for the purpose of authentication and authorization.

Let us the define the role played by each of the entities given in Fig. 1.1 [23].

• Client: Represented as Application in the diagram, the client represents the
entity that acts on behalf of an end-user. It must connect to a peer(of its choice
or pre-defined) for communicating with the blockchain. Clients are responsible
for invoking transactions.

• Peer: Peers are a fundamental element of the network because they host ledgers
and smart contracts. A peer receives ordered state updates in the form of blocks
from the ordering service and maintain the state and the ledger. It can addi-
tionally take up a special role of an endorsing peer, or an endorser. The special
function of an endorsing peer occurs with respect to a particular chaincode and
consists in endorsing a transaction based on specified endorsement policy, before
it is committed.

• Ordering Service Nodes or Orderers: The ordering service establishes the
total order of all transactions in Fabric by reaching a consensus among all peer
nodes. Blocks are disseminated to all the peer nodes via peer-to-peer gossip
service. Orderers are entirely unaware of the application state, and do not
participate in the execution nor in the validation of transactions. An ordering

1.2. Problem Statement & Motivation 9

Application

(SDK)

Send Proposal

 Peer

> Endorser
> Committer or
Validator
> Chaincode
- State (KVS)

Fabric CA
(membership)

 Orderer

Order
transaction
 In a batch as
per
consensus
(Solo/PBFT)

Relay

Batch
Send ordered
transaction for validation

Enr
ol

Get proposal
response

Ledger

Validated tx put in ledger

Figure 1.1: Hyperledger Fabric Architecture

service atomically broadcasts state updates to peers and establishes consensus
on the order of transactions.

• Fabric CA(Certification Authority): It is a private root CA provider ca-
pable of managing digital identities of Fabric participants that have the form
of X.509 certificates. Because Fabric-CA is a custom CA targetting the Root
CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers.

Any interaction among nodes occur through messages that are authenticated
via digital signatures. A client, willing to put the transaction on the ledger, signs
and submits a transaction proposal to the set of endorsers, specified by underlying
endorsement policy, for execution (for example as per the configuration defined in Fig.
1.2). It is deemed as valid if and only if it collects sufficient number of endorsement for
satisfying the endorsement policy. Endorsing peer after verifying the correctness of the
transaction executes it against the current state database. Signature of the endorser
along with endorser id is attached to response (as in Fig. 1.3). Peer nodes, responsible
for validation, verifies it by inspecting the identity and signature of each endorser.
This ensures transparency in transaction flow (explained in details in Section 2.1.3)
where every details can be monitored.

However, transparency does not always ensure fairness in governance. Consider
a situation where a cluster of members or organization more powerful than the rest of
the members of consortium. They are the ones usually deciding the rules and policies,
which is biased in their favour. Rest have very little say in such matter and might lend
support by default, for fear of adverse consequences. Even in an egalitarian-styled
consortium, openly voicing one’s opinion may cause internal conflict. There exists
possibility of external conflict as well, where particular organizations gets sabotaged
for making decision against public interest. In such cases where none of the parties
can be trusted with sensitive information, privacy must be given preference over
transparency.

10 1. Introduction

Figure 1.2: crypto-config.yaml template in Hyperledger Fabric

Figure 1.3: Tracking endorser’s identity

1.3. Designing a new Endorsement System 11

Blockchain was created to solve the specific problem of providing trust when all
participants are anonymous. In permissionless setting, anyone can join the network
without credentials. This is not true in the permissioned setting, where a participant’s
identity is know by everyone within the network. However, recently Hyperledger Fab-
ric intends to integrate Identity Mixer MSP (Membership Service Provider)[10] in it’s
future releases where client and/or peer nodes can sign the transaction by remaining
anonymous, generating unlinkable signature. With the aid of zero-knowledge proofs,
a peer node can prove the correctness of the generated signature, without the veri-
fier obtaining extra information. A privacy preserving distributed ledger, zkLedger
[31] claims to support strong transaction as well as participants privacy (for hid-
ing transaction value it uses Pedersen commitments) but at the same time provides
fast and provably correct auditing using Schnorr-type non-interactive zero-knowledge
proofs. But none of them address the concern of hiding the identity of endorser.
This motivated us to design of a bias-free endorsement system, allowing provision
of an endorsement policy which takes into account substantial amount of support by
members of a pre-specified endorsement set without explicitly specifying who all must
endorse.

1.3 Designing a new Endorsement System

A threshold endorsement policy serves the purpose which requires atleast t out of
n, (1 ≤ t ≤ n/2) endorsers to approve of the transaction without explicitly men-
tioning their identity. Any implementation of threshold cryptosystem might seem
an obvious answer, but it does not ensure perfect anonymity. A trusted third party
is requested to generate the keys shares and distribute among signing parties (Kate
et al. [25] proposed a scheme for distributed key generation scheme but it comes
with fair amount of computation overhead). Any entity performing the task of sig-
nature combination in threshold signature scheme must know id value of the signer
so that it can compute the Lagrange co-efficient. But our motive is to achieve a
t-out-of-n endorsement without revealing the identity of endorsers to any member
within the network, including the endorsers themselves. To alleviate this problem,
we make each endorser sign the transaction anonymously using a very popular cryp-
tographic protocol, Ring Signature. It allows any signer to create an ad-hoc group
(termed as ring) and produce a signature on behalf of the group, without revealing
the individual signer’s identity. This offers “unconditional anonymity” not attain-
able through generic digital signature schemes, without requiring any complex setup
procedure. Detachment of identity of signer from the endorsement leads to problem
of double-signing whereby a member tries to endorse more than once. We prevent
this by making multiple signatures generated by a particular signer for a particular
session linkable. For accomplishment of threshold endorsement policy, verifiers resort
to simple counting of each valid endorsement till it crosses the threshold value.

12 1. Introduction

1.4 Our Contributions

In this thesis, we have made the following contributions.

• We have proposed an Anonymous Endorsement System which implements a
simple threshold endorsement policy which requires at least t out of n endorsers
to approve of the transaction without explicitly mentioning their identity.

• We have given the construction of a constant sized linkable ring signature
scheme, Fabric’s Constant-Sized Linkable Ring Signature (FCsLRS), to hide
the identity of an endorser.

• A new linking criterion, called as “transaction-oriented” linkability, is used∗

which prevents an endorser from signing same transaction more than once.

• We have implemented this scheme in Golang (refer [2]) and analysed its perfor-
mance.

• A detailed description of the integration of the scheme with existing framework
of Hyperledger Fabric has been discussed.

1.5 Organization of the thesis

Chapter 2 discusses about Hyperledger Fabric - it’s components, endorsement pol-
icy and transaction flow. Few related works on various signature schemes and its
application in blockchain system has been studied. Later, under preliminaries, we
define the mathematical notations and basic building blocks needed for the new en-
dorsement system. In Chapter 3, we describe our proposed anonymous endorsement
system. Construction of Fabric’s Constant-Sized Linkable Ring Signature (FCsLRS)
scheme is stated in Section 3.1. In Chapter 4, we describe our definition of secu-
rity model. Chapter 5 gives the Performance Analysis. Chapter 6 gives details of
possible steps needed to integrate the Fabric’s Constant-sized linkable ring signature
(FCsLRS) scheme with Fabric. Conclusion and Future work is mentioned Chapter

7.

∗Possibility of double signing may arise for a given transaction when more than one endorsement
is required.

Chapter 2

Background

2.1 Hyperledger Fabric

Upto version 0.6, Fabric used to follow the order-execute architecture which had
several limitations. From version 1.0 onwards, it has been revamped to execute-
order-validate, ensuring resiliency, flexibility, scalability and confidentiality.

2.1.1 Hyperledger Fabric Components

Fabric is written in Go and uses the gRPC framework for communication between
clients, peers, and orderers. The following definitions are as stated in[3].

Membership Service

The membership service provider (MSP) maintains the identities of all nodes in the
system (clients, peers, and orderers) and is responsible for issuing node credentials
that are used for authentication and authorization. Since Fabric is permissioned,
all interactions among nodes occur through messages that are authenticated, typi-
cally with digital signatures. Fabric CA can also be used to generate the keys and
certificates needed to configure an MSP.

Ledger

The ledger component at each peer maintains the ledger and the state on persis-
tent storage and enables simulation, validation, and ledger-update phases. Broadly,
it consists of a block store and a peer transaction manager(PTM). For transaction
validation , the PTM validates all transactions in a block sequentially. This checks
whether a transaction conflicts with any preceding transaction (within the block or
earlier).

13

14 2. Background

Chaincode Execution

Chaincode is executed within an environment loosely coupled to the rest of the peer,
which supports plugins for adding new chain- code programming languages. Currently
Go, Java, and Node are supported.

System Chaincodes

System Chaincode (SCC) is a chaincode built with the peer and run in the same
process as the peer. SCC is responsible for broader configurations of fabric behavior,
such as timing and naming services. They run as part of the peer process as opposed
to user chaincodes that run in separate docker containers. As such they have more
access to resources in the peer and can be used for implementing features that are
difficult or impossible to be implemented through user chaincodes. Examples of
System Chaincodes are ESCC (Endorser System Chaincode) for endorsing proposals,
QSCC (Query System Chaincode) for ledger and other fabric related queries and
VSCC (Validation System Chaincode) for validating a transaction at commit time
respectively.

To invoke a transaction, in the current implementation, the client sends a PROPOSE
message to a set of endorsing peers of its choice. The set of endorsing peers for a given
chaincodeID is made available to client via peer(a client may connect to a submitting
peer for invoking transactions and obtaining results), which in turn knows the set of
endorsing peers from endorsement policy . That said, some endorsers could be offline,
others may object and choose not to endorse the transaction. The submitting client
tries to satisfy the policy expression with the endorsers available.

2.1.2 Endorsement policies

An endorsement policy, is a condition which states which endorser/s must endorse a
transaction. Blockchain peers have a pre-specified set of endorsement policies, which
are referenced by “deploy transaction” that installs specific chaincode. Peers can
additionally take up a special role of an endorsing peer, or an endorser. A transaction
is declared valid only if it has been endorsed according to the policy. An invoke
transaction for a chaincode will first have to obtain an endorsement that satisfies the
chaincode’s policy or it will not be committed. The evaluation of an endorsement
policy predicate must be deterministic. An endorsement shall be evaluated locally by
every peer such that a peer does not need to interact with other peers, yet all correct
peers evaluate the endorsement policy in the same way.

Examples of endorsement policy

The predicate may contain logical expressions and evaluates to TRUE or FALSE.
Let the endorsement set be E = {A,B,C,D,E, F}. Some examples are:

2.1. Hyperledger Fabric 15

• All 5 endorsers in E must approve of the transaction.

• Any one endorser in E must approve of the transaction.

• Endorser A “AND” endorser B approve of the transaction.

• Either endorser C “OR” endorser B approve of the transaction.

• Any 3 out of 5 endorsers approve of the transaction.

• Suppose there is an assignment of ”stake” or ”weights” to the endorsers, like
{A = 3, B = 2, C = 2, D = 1, E = 1, F = 1} , where the total stake is 10: The
policy requires valid endorsement from a set that has a majority of the stake
(i.e., a group with combined stake strictly more than 5), such as {A,B,C} or
{B,C,D,E, F} etc.

2.1.3 Transaction flow

The transaction flow is illustrated in Fig. 2.1. It involves three main phases - execu-
tion (step 〈1〉 & step 〈2〉), ordering (step 〈3〉) and validation (step 〈4〉)(as in [3]).

Execution Phase

In the execution phase, clients sign and send the transaction proposal to one or more
endorsers for execution. A “proposal” contains the identity of the submitting client,
the transaction payload in the form of an operation to execute, parameters, and the
identifier of the chaincode, transaction id and other miscellaneous information. On
receipt of the proposal by the endorsers, it simulate the proposal against it’s local
blockchain state , by executing the operation on the specified chaincode, which has
been installed on the blockchain. After the simulation, the endorser cryptographically
signs a message called endorsement, which contains readset and writeset (together
with metadata such as transaction ID, endorser ID, and endorser signature) and sends
it back to the client in a “proposal response”. The client collects endorsements until
they satisfy the endorsement policy of the chaincode, which the transaction invokes.
In particular, this requires all endorsers as determined by the policy to produce the
same execution result (i.e., identical readset and writeset). Then, the client proceeds
to create the transaction and passes it to the ordering service.

Ordering Phase

The ordering phase establishes a total order on all submitted transactions per channel.
In other words, ordering atomically broadcasts endorsements and thereby establishes
consensus on transactions, despite faulty orderers. Moreover, the ordering service
batches multiple transactions into blocks and outputs a hash-chained sequence of
blocks containing transactions. This phase is executed after a client has collected

16 2. Background

O
R

D
E

R
IN

G
 S

E
R

V
IC

E
S

Orderers

Endorsing
Peer 1Client

Endorsing
Peer 2

Endorsing
Peer 3 Validators/Comm

itters

tx=<clientID,
chaincodeID,
txPayload, time-
stamp,clientSig

<1>

Simulate
/Execute
tx ,Sign
Transact-
ion-
endorsed

<2>

<3>

Collect
Transaction-
Endorsed
messages
into a valid
endorsement
that satisfies
endorsement
policy

broadcast(endor-
sement)

<4>

Verify
endorse-
ment,
readset;
If OK
apply
writeset to
the state

<4>

Figure 2.1: Transaction flow in Hyperledger Fabric v1.1

enough endorsements on a proposal. It assembles a transaction and submits this to
the ordering service.

Validation Phase

Blocks are delivered to peers either directly by the ordering service or through gossip.
A new block then enters the validation phase which consists of three sequential steps:

• Endorsement policy evaluation - It occurs in parallel for all transactions
within the block and is responsible for validating the endorsement with respect
to the endorsement policy configured for the chaincode.

• Read-write conflict check - This is done for all transactions in the block
sequentially. For each transaction it compares the versions of the keys in the
readset field to those in the current state of the ledger, as stored locally by the
peer, and ensures they are still the same. In case of mismatch, transaction is
marked invalid.

• The ledger update phase - Block is appended to the locally stored ledger
and the blockchain state is updated. A bit mask is maintained denoting the
transactions that are valid within the block. This facilitates the reconstruction
of the state at a later time. Furthermore, all state updates are applied by
writing all key-value pairs in writeset to the local state.

2.2. Related Work 17

2.2 Related Work

2.2.1 Ring Signature

When a user with secret key SK wishes to generate an anonymous signature on a
message M , he chooses a ring R of public keys which includes his own, computes
σ ← SignSK(M,R) and outputs (σ,R). Anyone can now verify that this signature
was generated by someone holding a key in R. A comparative study of various ring
signature schemes, including our proposed scheme, has been made in Table 2.1.

Even though hiding identity using ring signature is a quite well studied area
[8],[9],[33],[12], it’s applicability in cryptocurrencies and blockchain is being recently
explored. Monero, an anonymous cryptocurrency, improves on its existing Cryptonote
[38] protocol by using a new efficient Ring Confidential Transactions protocol - RingCT
2.0 [35]. It is based on the well-known Pedersen commitment, accumulator with
one-way domain and signature of knowledge related to the accumulator. Over here,
the size of signature is independent to the number of groups of input accounts in a
transaction.

2.2.2 Threshold Signature

It is definitely better to distribute the storage of the cryptographic key for authoriz-
ing transactions among various parties instead of just trusting a single entity. Thus
threshold signature scheme is preferred in blockchain systems. In a threshold signa-
ture scheme, the ability to construct a signature is distributed among n participants,
each of whom receives a secret share of the private signing key. The participation
of t or more of them is required to sign (for some fixed t ≤ n). Various threshold
signature scheme, as seen for Bresson et al. [6] in Table 2.1, involves a third party
which is responsible for signature generation. Some are quiet complex to implement
practically with signature size being dependent on the ring size(as in Yuen et al. [40]).

Several threshold signature schemes for enhancing Bitcoin security has been pro-
posed. Goldfeder et al. [18] presented the first threshold signature scheme compatible
with Bitcoin’s ECDSA signatures and show how distributed Bitcoin wallets can be built
using this primitive. Gennaro et al. [17] presented a threshold DSA algorithm with
a similar motive of of securing Bitcoin wallets. Another scheme build on distributed
Schnorr signatures to enhance the security and performance of Bitcoin by Kogias et
al. [27] has been studied. They introduced ByzCoin, a cryptocurrency that replaces
the proof-of-work used to reach a consensus in Bitcoin with a dynamic version of the
PBFT protocol to achieve strong consistency.

∗Exponentiation operation is of the form ga for base g, multibase exponentiation operation is of
the form ga.hb for base g, h.

18 2. Background

Table 2.1: Comparison of Ring Signature Schemes

Scheme Signature Security Linking Signing ∗ Verify ∗ Problem
Size Notions Complexity Complexity Complexity Encountered

1-out-of-n O(1) Unforgeability, O(1): check Uses Signature based on 7 multibase
Ho. Au et al. [4] Linkable Anonymity, linkability tag Proof of Knowledge, (n+2) exponentiation Adversary can

Linkability, group oriented exponentiation and corrupt a member
Non slanderability linkability 7 multibase the signer S

- all wrt adversarially exponentiation overhead of certificate
chosen keys check, need event

oriented linkability since
ring members are fixed

t-out-of-n[6] O(l.2tn log n) Unforgeability, unlinkable t.2t log n+ t symmetric t.2t log n symmetric
Bresson et al. t-CMA secure cipher operation, cipher op, Prover may

Anonymity n.2t log n+ n t.2t log n exponen- be malicious,
exponentiation tiation t signers need

to share their need
secret keys, compu-
tationally expensive,
double signing can’t

be prevented
t-out-of-n O(n) Unforgeability, O(n2) 2(n+d) exponentiations O(n) multibase

Tsang et al.[37] Linkable Anonymity, Event-oriented and 2(n-d) exponentiations Prover/Signer may
Event-oriented Linkability, Linkability multibase create 2 different

Non slanderability. exponentiation event-id(double
signing possible),

Problem of CDS [12]
scheme exist,

sharing of secret key
with prover P ,when
P gets compro-

mised, is not desired
1-out-of-n[40] O(

√
n) Unforgeability, O(1), event- (8+4

√
n) exponentiation, (8+8

√
n) pairing, Dependency on

Yuen et al. linkable anonymity oriented linka- (4+2
√
n) multibase 2 exponentiation, event-id,

event-oriented link- bility exponentiation one-time veri- ,complex verifica
ability, non- One-time signature fication tion mechanism,

signature complexity
is high

t-out-of-n[40] O(t.
√
n) Unforgeability, O(t log t),event- (8t+4t

√
n) exponentiation, (8t+8t

√
n) pairing, More complex than

Yuen et al. linkable anonymity oriented linka- (4t+2t
√
n) multibase 2t exponentiation, 1-out-of-n signa-

event-oriented link- bility exponentiation t one-time veri- ture scheme
ability, non- fication

slanderability
URS O(n) Unforgeability, O(1) - tag is 2n-1 multibase 2n multibase Computationally expensive

Franklin,Zhang[16], secure linkability, hash of message, exponentiation and exponentiation scheme, not
[29] and restricted ring members and 1 exponentiation yet extended to

anonymity private key t-out-of-n
of signer scheme.

Our proposed O(1), Unforgeability O(1), 11 exponentiations 10 multibase Extension to
signature scheme constant size Linkability, transaction ori- and 5 multibase exponentiations t-out-of-n

FCsLRS Linkable Anonymity, ented linkability exponentiations and 6 exponentiation signature scheme
Non-slanderability, not efficient.

-all wrt adversarially chosen keys

2.2. Related Work 19

2.2.3 Zero Knowledge Proofs

Zero-knowledge proofs allow one party (prover) to prove to another (verifier) that
a statement is true, without revealing any information beyond the validity of the
statement itself. Zero-knowledge proofs which are short (or “succinct” with a proof
length of only a few hundred bytes even for statements about programs that are
very large) can be verified within a few milliseconds. In interactive zero-knowledge
protocols, the prover and verifier had to communicate back and forth for multiple
rounds, but in “non-interactive” constructions, the proof consists of a single message
sent from prover to verifier. This is achieved by generation of a common reference
string shared between prover and verifier. Such proof constructions are referred to as
Zero-Knowledge Succinct Non-Interactive Argument of Knowledge or zk-SNARK [1].

ZCash, another popular cryptocurrency secured by zero knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs), requires a trusted set up stage,
but after that the system is entirely anonymous [21]. Hardjono, et al. [20] presented
a new architecture called ChainAnchor, address the issue of retaining user anonymity,
bringing in the concept of semi-permissioned blockchains. ChainAnchor builds upon
and makes use of the zero knowledge proof mechanisms of the EPID scheme, which
has the advantage of an optional cryptographic binding to a TPM tamper-resistant
hardware. When a user seeks to prove that he or she is a group member to a verifier,
it uses the Camenisch-Lysyanskaya (CL) signature which is based on “signature of
knowledge” (as defined in 7).

2.2.4 Threshold Cryptography in Permissioned Blockchain

Till date, the only work which has focused on threshold signatures in permissioned
blockchain - Hyperledger Fabric, is [34]. They have identified numerous potential
application of threshold signature which can be used for group of Certificate Author-
ities, Byzantine Consensus protocols, chaincode applications and transaction valida-
tion. For this they have compared the performance of threshold signature schemes
- threshold RSA signtaure/threshold BLS signature (ensures short signature size),
against multisignature. However they have not focused on the problem of ensuring
anonymity of endorsers. The main motive behind use of threshold signatures for
transaction endorsement was to reduce the task of validator where verification of one
signature instead of verifying each signature submitted by the pre-defined endorsers
will serve the purpose.

Since our problem statement demands perfect anonymity on the identity of endorsers
and not efficient transaction validation, we consider use of linkable ring signature for
our anonymous endorsement system. It avoids all the complexities associated with
the implementation of threshold cryptosystem. In the next chapter, we provide the
detailed construction of the proposed signature scheme and extended it to implement
threshold endorsement policy.

20 2. Background

2.3 Preliminaries

2.3.1 Mathematical Notations

We first give some notations to be used in the rest of the thesis. N is an RSA integer
if N = pq for distinct primes p and q such that |p| = |q|. Let λ, l, µ ∈ N : λ >
l − 2, l/2 > µ+ 1 be the security parameters and RSAλ be the set of RSA integers of
size λ. A number p is a safe prime if p = 2p′ + 1 and both p and p′ are odd primes.
A number N is a rigid integer if N = pq for distinct safe primes p and q such that
|p| = |q|. For λ ∈ N, let Rigλ be the set of λ-bit rigid integers. QR(N) denotes the
group of quadratic residues modulo N .

2.3.2 Hardness Assumptions

• Decisional Diffie-Hellman (DDH) Assumption. [4] Let G be a group
where |G| = q and g ∈ G such that 〈g〉 = G. No PPT algorithm can, on input
two distributions 〈g, ga, gb, gab〉 and 〈g, ga, gb, gc〉 where a, b, c ∈R Zq, distinguish
them with non-negligible probability over 1/2 in time polynomial in q.

• Strong RSA (SRSA) Assumption. [4]There exists no probabilistic polyno-
mial time (PPT) algorithm which, on input a random λ-bit safe prime product
N and a random z ∈ QR(N), returns u ∈ Z∗N and e ∈ N such that e > 1 and
ue = z(mod N), with non-negligible probability and in time polynomial in λ.

• Link Decisional RSA (LD-RSA) Assumption.[4] There exists no PPT
algorithm which, on input a λ-bit safe prime product N = p.q = (2p′+1).(2q′+
1), ĝ ∈ QR(N) with order p′q′, n0 = p0q0 and n1 = p1q1 (where p0, q0, p1, q1
are sufficiently large random primes of size polynomial in λ), and ĝpb+qb where
b ∈R {0, 1}, returns b′ = b with probability non-negligibly over 1/2 and in time
polynomial in λ.

2.3.3 Building Blocks

Definition 1 (NP-Relations). An NP-relation R is a relation over bitstrings
for which there is an efficient algorithm to decide whether (x, y) ∈ R in time poly-
nomial is the length of x. The NP-language LR associated to R is defined as
LR = {x|(∃y)[(x, y) ∈ R]}

Definition 2 (Σ-Protocols.) [13] A Σ-protocol (Fig. 2.2) for an NP-relation R
is an efficient 3-round two-party protocol, such that for every input (x, y) to prover
P and x to verifier V , the first round, initiated by P , yields a commitment message
COM, subsequently V replies with a random challenge message CH. The last round by
P concludes by sending response message RES. At the end of a run, V outputs a

2.3. Preliminaries 21

Prover P Verifier V
(input : (x,y)) (input : x)

Generate commitment
message (COM) Send COM

 CH

Generate chanllenge
message (CH)

 Send RES
 Generate response
 (RES) Output 0 on reject

 or 1 on accept

Figure 2.2: Execution of Σ-Protocol.

0/1 value, functionally dependent on x and the transcript π =(COM,CH,RES) only; a
transcript is valid if the output of the honest verifier is 1.

A Σ-protocol satisfies :

• Special Soundness- there exists an efficient algorithm (called a Knowledge Ex-
tractor) that on input any x ∈ LR and any pair of valid transcripts with the
same commitment message, (COM, CH1, RES1) and (COM, CH2, RES2) outputs
y such that (x, y) ∈ R;

• Special Honest-Verifier Zero-Knowledge - there exists an efficient algorithm
(called a Simulator) that on input x ∈ LR and any challenge message CH,
outputs a pair of commitment/response messages COM, RES such that the tran-
script π

.
= (COM, CH, RES) is valid, and it is distributed according to the

probability distribution (P (x, z)↔ V (x)), for any y such that (x, y) ∈ R.

Theorem 1 A Σ-protocol for any NP-relation can be constructed if one-way func-
tions exist.

Definition 3 (Knowledge extractor). Let V outputs 1, (on input x, auxiliary in-
put z̃ and random input r : x ∈ LR, and z̃, r ∈ {0, 1}∗) after interacting with prover
specified by Px,z̃,r with probability p(x, z̃, r) and κ(.) be error, κ : N→ [0, 1].

If p(x, z̃, r) > κ(|x|), then a probabilistic oracle machine K, on input x (same as
that given to V) and access to oracle Px,z̃,r, outputs a solution y ∈ R(x) within an
expected number of steps bounded by

q(|x|)
p(x, z̃, r)− κ(|x|)

where q(.) is a positive polynomial. This oracle machine K is called a (universal)
knowledge extractor ([19]).

22 2. Background

It can also be formulated alternatively as follows - A probabilistic oracle machine
K is a knowledge extractor, if having access to oracle machine Px,z̃,r, runs in expected

polynomial time and outputs a solution s ∈ R(x) with probability atleast p(x,z̃,r)−κ(|x|)
q(|x|) .

Definition 4 (PK-bijectivity). Let R ⊆ X ×Y be a one-way efficiently sampleable
NP-relation. Let XR = {x ∈ X : there exists y ∈ Y , (x, y) ∈ R}. A mapping
θ : XR → Z is PK-bijective if the first two out of following three properties are
satisfied. If all the three properties are satisfied, then it is special PK-bijective.

1. The mapping θ is one-way and bijective.

2. Let (x0, y0) and (x1, y1) be two random samples of R with y0 6= y1. Let b ∈ {0, 1}
be a fair coin flip and z=θ(xb). Then there is no PPT algorithm which can,
given z, distinguish between the two cases b=0 and b=1 with success probability
non-negligibly over half.

3. Let (x0, y0) and (x1, y1) be two samples of R with y0 6= y1. Let b ∈ {0, 1}
be a fair coin flip and z=θ(xb). Then there is no PPT algorithm which can,
given z, distinguish between the two cases b=0 and b=1 with success probability
non-negligibly over half.

Definition 5 (Sphere Truncations of Quadratic Residues). Given that N is
a RSA Modulus integer where N = pq and p = 2p′ + 1 and q = 2q′ + 1 with p, q, p′, q′

all are prime. Let S(2l, 2µ) = {2l − 2µ + 1, . . . , 2l + 2µ − 1} be a sphere for two
parameters l, µ ∈ N where |S(2l, 2µ)| = 2µ+1− 1. Assuming factoring is hard and the
fact the sphere S(2l, 2µ) is sufficiently large (but still not very large), then the random
variable ax with x ∈ RS(2l, 2µ) is indistinguishable from the uniform distribution
over QR(n). Intuitively, this means that a truncation of the QR(N) as defined by the
sphere S(2l, 2µ) is indistinguishable to any probabilistic polynomial-time observer.

Definition 6 (Discrete-log Relation Sets). A discrete-log relation set R with z
relations over r variables and m objects is a set of relations defined over the objects
A1, . . . , Am ∈ G, G is an unknown order group, and free variables α1, . . . , αr with the
following specifications :

1. The i-th relation in the set R is specified by a tuple 〈ai1, . . . , aim〉 so that each aij
is selected to be one of the free variables {α1, . . . , αr} or an element of Z. The

relation is to be interpreted as Πm
j=1A

aij
j = 1.

2. Every free variable αj is assumed to take value in a finite integer range S(2lj, 2
µ
j)

where lj, µj ≥ 0.

Such sets are quite useful in planning complex proofs of knowledge for protocols
operating over groups of unknown order in general like for group QR(N).

2.3. Preliminaries 23

A discrete-log relation set R is said to be triangular, if for each relation i involv-
ing the free variables α1, α2, . . . αk, it holds that the free-variables α1, α2, . . . αk are
contained in relations 1, . . . , i− 1.

Definition 7 (Signature of Knowledge). Every three-round Σ-protocols or Proof
of Knowledge protocols (PoKs) that is Honest-Verifier-Zero-Knowledge(HVZK) can
be transformed into a signature scheme by setting the challenge to the hash value of the
commitment concatenated with the message to be signed [15]. Such signature schemes
generated are provably secure [32] against existential forgery under adaptively chosen
message attack in the random oracle model [5]. It is referred to as Signatures based
on Proofs of Knowledge or SPK [9].

As an example, consider SoK{(x) : y = gx}(m), where m is the message, the signature
scheme derived from the zero-knowledge proof of the discrete logarithm of y using the
above technique. Let R be a fixed NP-hard relation with the corresponding language
L = {y : ∃ x such that(x, y) ∈ R}. A relation is called hard if it is infeasible for
any efficient algorithm, given some instance y, to compute a valid witness such that
(x, y) ∈ R. It’s security follows from the definition given in [11].

Definition 8 (Accumulators with One-Way Domain). An accumulator fam-
ily is a pair ({Fλ}λ∈N, {Xλ}λ∈N), where ({Fλ}λ∈N is a sequence of families of functions
such that each f ∈ Fλ is defined as f : Uf × Xext

f ← Uf for some Xext
f ⊆ Xλ and

additionally the following properties are satisfied:

- (efficient generation) There exists an algorithm G that on input a security pa-
rameter 1λ outputs a random element f of Fλ, possibly together with some aux-
iliary information af .

- (efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.

- (quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ,

f(f(u, x1), x2) = f(f(u, x2), x1) (2.1)

{Xλ}λ∈N is referred to as the value domain of the accumulator. For any λ ∈
N, f ∈ Fλ and X = {x1, . . . , xs} ⊂ Xλ, f(. . . f(u, x1), . . . , xs) is the accumulated
value of the set X over u: due to quasi-commutativity, such value is independent
of the order of the x′is and will be denoted by f(u,X).

Based on the Strong RSA assumption, an accumulator with one-way domain[4] is a
quadruple ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N), such that the pair ({Fλ}λ∈N, {Xλ}λ∈N)
is a collision-resistant accumulator, each Rλ is a relation over Xλ×Zλ with the follow-
ing properties: (efficient verification). There exists an efficient algorithm D that on
input (x, z) ∈ Xλ×Zλ, returns 1 if and only if (x, z) ∈ Rλ. (efficient sampling). There
exists a probabilistic algorithm W that on input 1λ returns a pair (x, z) ∈ Xλ × Zλ

24 2. Background

such that (x, z) ∈ Rλ, z is the pre-image of x. (one-wayness). It is computationally
hard to compute any pre-image z′ of an x that was sampled with W . Formally, given
a negligible value ν(λ), for any adversary A:

Pr[(x, z)
R←− W (1λ); z′

R←− A(1λ, x) | (x, z′) ∈ Rλ] = ν(λ) (2.2)

For λ ∈ N, the family Fλ consists of the exponentiation functions modulo λ-bit rigid
integers :

f : QR(N)× ZN/4 → QR(N)
f : (u, x)→ ux mod N

(2.3)

where N ∈ Rigλ.
The accumulator domain {Xλ}λ∈N is defined by:

Xλ = {e prime | (
e− 1

2
∈ RSAl) ∧ (e ∈ S(2l, 2µ))} (2.4)

where S(2l, 2µ) is the integer range (2l−2µ, 2l+2µ) that is embedded within (0, 2λ) with
λ−2 > l and l/2 > µ+1. The fact that the sphere S(2l, 2µ)) is sufficiently large so that
any random variable ux mod N is indistinguishable from the uniform distribution
over QR(N) (from Definition 5. Sphere Truncation of Quadratic Residue). The
pre-image domain {Zλ}λ∈N and the one-way relation {Rλ}λ∈N are defined as follows:

Zλ =

{ (e1, e2) | e1, e2 are distinct l/2− bit
primes and e2 ∈ S(2

l
2 , 2µ)

Rλ = {(x, (e1, e2)) ∈ Xλ × Zλ | (x = 2e1e2 + 1)}

}
(2.5)

Chapter 3

Proposed Anonymous
Endorsement System

To address the problem of biased endorsement policy as well as ensuring privacy of
endorsers, we have designed an anonymous endorsement system. To ensure privacy
of the system, we have proposed a new ring signature scheme which is discussed in
Section 3.1.

In Hyperledger Fabric, membership service provider(MSP) identifies the parties,
who are the members of a given organization in the blockchain network. The endorse-
ment set for a particular chaincode is presumed to be predefined and remains fixed for
a long time, unless any of the members get revoked. The right measure of “signature
size” constructed for each transaction must not involve explicit description of the ring
members(endorsers for this case). Thus for our proposed signature scheme, both the
signer and the verifier need to perform a one-time computation of accumulation of
public keys proportional to the size of the ring and get some constant-size information
which allows them to generate or verify many subsequent signatures in constant time.

Entities present in the network

• Fabric CA(Certification Authority) Server ∗ issuing enrolment certificates to all
the peer nodes (endorser and validators). Setup mentioned in [22].

• Client : An entity lying outside the blockchain network, having a transaction
request. A peer node, within the network, acts as a proxy for the client node.

• Endorser set E : A pre-defined set to be specified before instantiation of chain-
code. Members of this set, based on a given endorsement policy, decides on
whether to endorse a transaction.

∗It is a private root CA provider capable of managing digital identities of Fabric participants
that have the form of X.509 certificates

25

26 3. Proposed Anonymous Endorsement System

• Signer S : A member of the endorsement set E which executes the ring signature
algorithm on the transaction response packet for the endorsed transaction.

• Verifier/Validator set V : Validator nodes verify whether the signature was
generated by a valid member of the endorsement set.

Requirement of the signature scheme

• Signature and tag generated must be of short.

• The signature generation and verification must be computationally efficient.

• None of the entities must get access to any secret of the signer.

• Signatures generated according to specification are accepted during verifica-
tion, with overwhelming probability.

• Two signatures signed according to specification are linked with overwhelming
probability, if the two signatures are generated by the same signer on the same
transaction for the same set of ring members.

3.1 Proposed construction of Fabric’s Constant-

Sized Linkable Ring Signature (FCsLRS)

In this section, we propose a new constant-sized Linkable Ring Signature scheme
called as Fabric’s Constant-Sized Linkable Ring Signature(FCsLRS) for a fixed set
of ring members and discuss the construction details. Our construction is inspired
by the signature scheme obtained by applying Fiat-Shamir transformation to the
Identification Protocol suggested in Dodis et al.[13]. Previously, this identifica-
tion protocol has been used as a short signature scheme by Tsang, et al.[36] and Ho
Au, et al.[4] for e-Cash, e-voting and attestation. But none of them could have been
used directly for our endorsement system.

Considering n to be the number of members in the endorsement set and t to be the
threshold value. FCsLRS is represented as a tuple (Init, KeyGen, AccumulatePubKey,

GeneratePubKeyWitness, Sign, Verify, Link) of seven polynomial time algorithms,
which has been described below in details.

- Init. On input security parameter 1λ, Fabric CA (Certificate Authority) pre-
pares a collision-resistant accumulator with one-way domain, together with its
description given above denoted by desc. A generator u ∈ QR(N) (|QR(N)| =
p′q′ = φ(N)/4, where φ(N) = (p− 1)(q− 1) is Euler’s totient)is picked up uni-
formly at random, where N ∈ Rigλ and outputs the system parameters param

as (1λ, desc, u). Public parameters g, h, y, t, s, ζ ∈ QR(N), is also generated.
These parameters remain same across all the transactions.

3.1. Proposed construction of Fabric’s Constant-Sized Linkable Ring Signature
(FCsLRS) 27

Fabric Certificate
Authority Endorser

Generates its own
 Public key and Private

key: (pk_i,sk_i)

Sends Public key pk_i

Certificate Revocation List
(CRL)

Checks whether endorser
was previously revoked or not

S
e

n
d

s
“y

e
s”

 o
r

“n
o

”
a

s
re

sp
o

n
se

Performs a Zero Knowledge
proof of whether pk_i is
product of 2 safe primes or not

Request enrolment
certificate

Send enrolment certificate

DB

Pk1 Cer1
Pk2 Cer 2
..
..

Figure 3.1: PKI

- KeyGen. On input the system’s parameters param, the algorithm parses it into
(1λ, desc, u). Key pair (ski, pki) is generated for each endorser Ei ∈ E , 1 ≤ i ≤ n
by executing the probabilistic sampling algorithm W of their accumulator† to
obtain (pki, ski) = (yi, (pi, qi)) such that yi is a prime number and and both pi
and qi is of length (in binary) approximately l/2 bits. Also, qi ∈ S(2l/2, 2µ).
Upon obtaining the key pair, endorser Ei submits its public key yi and verifiable
credentials to Fabric CA. The CA first checks whether such credentials matches
with any of those present in Certificate Revocation List(CRL). If yes, then its
enrolment certificate was previously revoked and hence cannot be added as a
network entity. Else, Ei proves in zero-knowledge to CA that (yi − 1)/2 is
a product of two primes of the same size. An interactive two-party protocol
called Prove [7], [8]. If endorser is able to prove, then CA issues an enrolment
certificate to it. The identity of the endorser, public keys yj, 1 ≤ j ≤ n along
with enrolment certificate gets added to the public database DB (any valid
entity in the network has access to this database).

- AccumulatePubKey. Fabric CA executes this algorithm for combining all the
public keys in public database DB. The accumulated value v calculated by

†All endorsers run the sampling algorithm of the accumulator in parallel

28 3. Proposed Anonymous Endorsement System

using data from DB, is :

v = f(u, {yj|1 ≤ j ≤ n})
= f(f(. . . f(u, y1), y2), y3) . . . , yn)

= f(f(. . . f(uy1 mod N, y2), y3), . . . yn)
= f(f(. . . f((uy1 mod N)y2 mod N, y3) . . .), yn)

.

.
= (. . . (((uy1 mod N)y2 mod N)y3 mod N) . . .)yn mod N)

(3.1)

This value is generated and used for long time unless the endorsement set E
changes. Hence the computation can be said to be performed one time before
instantiation of chaincode in all the peer nodes of the network.

- GeneratePubKeyWitness. Each member e of set E computes witness we ←
f(u, {ye|1 ≤ i ≤ n, i 6= e}), 〈u〉 = QR(N) for public key ye , where accumulated
value v can be generated by computing v ← f(we, ye). When the endorser is
willing to endorse or sign a transaction, it uses this value we for construction
of Signature based on Proof of Knowledge. As we have considered endorsement
set to be fixed, even this value can be pre-computed.

- Sign. Endorser Eπ ∈ E who wants to endorse a transaction is the Signer S. It
obtains the public key set DB = {y1, y2, . . . , yn}, posessing a valid enrolment
certificate and has not been revoked (CA performs the check and informs if any
endorser has been put in CRL).

A new linking criterion called Transaction-Oriented linkability has been used in
which one can tell if two signatures are linked if and only if they are signed by a
common signer for a given transaction (similar to the concept of Event-oriented
linkability in [37]). For this purpose we use a public parameter gtid instead of
simply using g ∈ QR(N). To construct gtid, we consider g ∈ QR(N) and a
function H̃ : N→ G, G ⊂ ZN/4 which generates t̃x = H̃(transaction-id), where
transaction-id is unique for each transaction, which is again the hash of the
transaction payload txPayload. Thus, gtid = f(g, t̃x) = gt̃x mod N , where f
is the function defined as in Eq. 2.3.

For a given message m ∈ M (which is the transaction-response) which has a
transaction id transaction-id, a private key skπ = (pπ, qπ) that corresponds to
original public key, yπ, accumulated value v and secret value wπ, signer S does
the following :

– S computes a signature for (notations used as per [4])

SPK

{(
wπ, yπ ,
pπ, qπ

)
:

wyππ = v mod N ∧ yπ = 2pπqπ + 1 ∧
yπ ∈ S(2l, 2µ) ∧ qπ ∈ S(2

l
2 , 2µ) ∧

ỹ = θd(pπ, qπ) : θd(pπ, qπ) = gpπ+qπtid mod N ,

}
(m)

(3.2)

3.1. Proposed construction of Fabric’s Constant-Sized Linkable Ring Signature
(FCsLRS) 29

where θd is a one-way bijective mapping and ỹ is the tag generated corre-
sponding to the signature.

Signature based on proof of knowledge is basically a signature scheme in which
a signer can speak on behalf of any NP statement (as stated in 3.2) to which he
knows a witness/es without revealing all the irrelevant information [11]. Here
the witness values are wπ, yπ, pπ and qπ. Any person who knows a satisfying
assignment (that means posses the knowledge of witness) to the statements (in
3.2) has signed the message.

A practical Σ-protocol for relation stated in Eq. 3.2 is constructed using the
framework of discrete logarithm sets, which allows to construct complex proofs
of knowledge over groups of unknown order (φ(n) cannot be computed by any
member of endorsement set E). The public parameters gtid, h, y, t, s, ζ ∈ QR(N)
with unknown relative discrete logarithms alongwith the sequence of public
values T1, T2, T3, T4, T5 such that

T1 = grtid , T2 = hrζx+r , T3 = srge2tid , T4 = wyr , T5 = trg2e1tid

where r
R←− [0, bN/4c − 1] is used for the construction of proof.

The public values T1 is for the free variable r, T2 is for the free variable x, T3
is for the free variable e2, T4 is for the free variable w and T5 is for the free
variable e1. Note that all the construction from T2 to T5 satisfy the property
of triangularity with respect to first relation T1. The construction of T2 cannot
be chosen of the form hrgxtid mod N since x belongs to the set DB whose size

is negligible compared to the size S(2
l
2 , 2µ), exponential order of the security

parameter l. If prover P sends this value of T2 to verifier V , it can figure out,
in polynomial time, the public key of the endorser/signer during verification
phase. The NP statements used for generating Signature based on Proof of
Knowledge is given below :

T1 = grtid, (witness of r)
T2 = hr.ζr.ζx = hr.ζr+x, (witness of x ∈ S(2l, 2µ))

(T1)
x = ga1tid, (witness of a1)

(T1)e2 = ga2tid, (witness of a2)
T3 = srge2tid, (witness of e2 ∈ S(2l/2, 2µ))

(T4)
x = vya1 , (witness of x)

(T5)
e2gtid = ta2 .gxtid (witness of e2 being non-trivial factor of x)

(T3)
2T5 = s2r.tr.ỹ2 (correctness of ỹ)

(3.3)

for the free variables r, x, e2, a1, a2 such that x ∈ S(2l, 2µ), e2 ∈ S(2l, 2µ), a1 = rx
and a2 = re2. The signer S gives a proof of knowledge for witness w, yπ, pπ and
qπ by satisfying the above equations. The variables x, e1 and e2 is assigned

30 3. Proposed Anonymous Endorsement System

value yπ (public key of S), pπ and qπ respectively. A proof of the validity of the
above 8 statements ensures that the prover knows a witness w for some value
x in the accumulated value v and for the same x, the value x − 1 can be split
by the prover into two integers one of which belongs to S(2l/2, 2µ). This latter
range-property guarantees the non-triviality of the splitting i.e., that the prover
knows a non-trivial factor of x − 1 (i.e., different than -1, 1, 2). The security
parameters l, µ, ε, k must selected so that l/2 > ε(µ+ k) + 2.

Public Parameters : gtid, h, t, s, y, ζ, v ∈ QR(N), T1, T2, T3, T4, T5, ZN/4 ⊂ S(2l, 2µ).

1. Signer S computes

α1
R←− ZN/4,

α2
R←− ZN/4,

α3
R←− ZN/4,

u1 ← gα1
tid mod N,

u2 ← ζα1+α2 mod N,
u3 ← hα1 mod N,
u4 ← gα1

tid mod N,
u5 ← gα3

tid mod N,
u6 ← wα2 mod N,
u7 ← g2e1.α3

tid mod N,
u8 ← tα1 mod N
u9 ← gα2

tid mod N

(3.4)

2. S computes c = H1(m||u1||u2||u3||u4||u5||u6||u7||u8||u9), H1 :M×QR(N)8 →
C, C ⊆ QR(N) and uses it to compute

α̃1 ← α1 + c.r,
α̃2 ← α2 + c.x,

α̃3 ← r.α2 + r.c.x,
α̃4 ← α3 + c.e2,
α̃5 ← r.α3 + r.c.e2

(3.5)

S sends the signature σ′ = (u1, u2, u3, u4, u5, u6, u7, u8, u9, α̃1, α̃2, α̃3, α̃4, α̃5, ỹ)
where ỹ = gpπ+qπtid to all the validators in set V .

Signature size : Values to communicated to the Verifier as Signature based
on Proof of Knowledge are σ = (u1, u2, u3, u4, u5, u6, u7, u8, u9, α̃1, α̃2,
α̃3, α̃4, α̃5, ỹ), u1, u2, . . . , u9, α̃1, α̃2 and α̃5, each approximately being λ bits in
size and α̃3, α̃5 each approximately being 2λ bits in size. Hence the signature
generated is of constant size, being O(λ) where λ is the security parameter.

- Verify. To verify the signature σ′ = (u1, u2, u3, u4, u5, u6
, u7, u8, u9, α̃1, α̃2, α̃3, α̃4, α̃5, ỹ) on message m ∈M, all the validator nodes in V

3.2. Extending to threshold endorsement policy 31

computes c = H1(m||u1||u2||u3||u4||u5||u6||u7||u8||u9),
H1 :M×QR(N)8 → C, C ⊆ QR(N) and checks if all the statements in Eq. 3.6
is valid or not. For 1-out-of-n endorsement policy, if all check passes, then the
verifier outputs accept; otherwise it outputs reject and aborts. For t-out-of-n,
t > 1, we need to perform the test for signature linkability (Link) as well for
final acceptance.

- Link. In [4], the tag generated is θd = ((e1, e2)) = ge1+e2 . θd being PK-bijective,
it prevented double signing on the same message. However as the endorsement
set remains fixed, tag constructed must be function of the secret key as well as
the transaction payload. For (Transaction-Oriented linkability), tag construc-
tion is modified by introducing transaction-id, a unique value associated with
each transaction payload. Since gtid ∈ QR(N), modified θd = ge1+e2tid remains
PK-bijective. Given two valid signatures σ′1 and σ′2 for a given transaction, val-
idator node checks checks if ỹ1 = ỹ2. If yes, output linked. Otherwise, output
unlinked.

3.2 Extending to threshold endorsement policy

Given a threshold value t, 1 ≤ t ≤ n/2, if a validator node receives at least t out of

n transaction-response with a valid, pairwise unlinked signatures (after
(t
2

)
tests of

linkability) whose responses (read set and write set) are the same, then the endorse-

ment policy is said to be satisfied. If each of at least |V|
2

validator nodes in V reach a
consensus on receipt of at least t signatures for the given transaction, then one of the
honest validator node “broadcast” the transaction-response within a transaction mes-
sage to the Ordering Service so that the transactions can be ordered chronologically
by the channel.

32 3. Proposed Anonymous Endorsement System

gα̃1
tid

?
= u1.T

c
1 ,

gα̃1
tid

?
= gα1

tid.g
r
tid
c mod N (∵ Eq. 3.3, 3.4, 3.5),

gα̃1
tid

?
= gα1+r.c

tid mod N

ζ α̃2+α̃1hα̃1
?
= u2.u3.T

c
2 ,

ζ α̃1+α̃2hα̃1
?
= ζα1+α2 .hα1 .(hr.ζx+r)

c
mod N, (∵ Eq. 3.3, 3.4, 3.5),

ζ α̃1+α̃2hα̃1
?
= ζα2+α1+c.(x+r).hα1+r.c mod N

gα̃3
tid

?
= T α̃2

1 ,

gα̃3
tid

?
= (grtid)

α2+c.x mod N, (∵ Eq. 3.3, 3.5),

gα̃3
tid

?
= gr.α2+r.c.x

tid mod N.

gα̃5
tid

?
= T α̃4

1 ,

gα̃5
tid

?
= (grtid)

α3+c.e2 mod N (∵ ofEq.3.3, 3.5),

gα̃5
tid

?
= gr.α3+r.c.e2

tid mod N.

gα̃4
tid.s

α̃1
?
= T c3 .u4.u5,

gα̃4
tid.s

α̃1
?
= (srge2tid)

c.sα1 .gα3
tid mod N (∵ Eq. 3.3, 3.4, 3.5),

gα̃4
tid.s

α̃1
?
= gα3+c.e2

tid .sα1+c.r mod N

u6.v
c.yα̃3

?
= T α̃2

4 ,

wα2 .(wx)c.yα̃3
?
= (w.yr)α̃2 mod N (∵ Eq. 3.3, 3.4, 3.5),

wα2+c.x.yα̃3
?
= wα̃2 .yr.α̃2 mod N

tα̃5 .gα̃2
tid.u7

?
= T α̃4

5 .u9.g
c
tid

tα̃5 .gα̃2
tid.g

2.e1.α3
tid

?
= (tr.g2.e1tid)α̃4 .gα2

tid.g
c
tid mod N (∵ Eq. 3.3, 3.4, 3.5),

tα̃5 .gα̃2+2.e1.α3
tid

?
= tr.α̃4g2.e1.α̃4+α2+c

tid mod N

tα̃5 .gα̃2+2.e1.α3
tid

?
= tr.α̃4g

2.e1.(α3+c.e2)+α2+c
tid mod N

tα̃5 .gα̃2+2.e1.α3
tid

?
= tr.α̃4g2.e1.α3+2.c.e1.e2+α2+c

tid mod N

tα̃5 .gα̃2+2.e1.α3
tid

?
= tr.α̃4g

2.e1.α3+c.(x−1)+α2+c
tid mod N

ỹ2c.s2α̃1 .tα̃1
?
= (T 2

3 .T5)
c.u24.u8

ỹ2c.s2α̃1 .tα̃1
?
= ((sr.ge2tid)

2.tr.g2.e1tid)c.(sα1)2.tα1 mod N(∵ Eq. 3.3, 3.4, 3.5),

ỹ2c.s2α̃1 .tα̃1
?
= s2.r.c.g2.c.e2tid .tr.c.g2.e1.ctid .s2.α1 .tα1 mod N

ỹ2c.s2α̃1 .tα̃1
?
= g2.c.e1+2.c.e2

tid .s2.r.c+2.α1 .tr.c+α1 mod N

(3.6)

Chapter 4

Security Model

4.1 Assumptions made

Some assumptions made regarding the entities in Hyperledger Fabric are :

• Fabric CA is honest.

• Endorsement set is fixed.

• All the peer nodes have their local copy of database consistent with the world
state.

• Signature generation algorithm follows a Random Oracle Model.

• At least half of the verifiers and at least n/2 + 1 endorsers is honest.

The security model defined here is similar to the one defined in [36],[4].

4.2 Syntax

A Linkable Ring Signature scheme is a tuple (Init, KeyGen, AccumulatePubKey,

GeneratePubKeyWitness, Sign, Verify, Link) of seven polynomial time algorithms.
Instead of a single entity generating keys for all the participants in the permissioned
blockchain, we define KeyGen as an algorithm executed by each individual user for
the generation of the public and private key pair. Syntax is as follows :

- param ← Init(1λ), the poly-time initialization algorithm which, on input a
security parameter λ ∈ N, outputs the system parameters param containing,
among other things, 1λ. All other algorithms implicitly use λ as one of their
inputs.

33

34 4. Security Model

- (ski, pki)← KeyGen(), the PPT (probabilistic polynomial time) key generation
algorithm which outputs a secret/public key pair (ski, pki). SK and PK denote
the domains of possible secret keys and public keys respectively. All the gen-
erated pki, 1 ≤ i ≤ n for n participants is made publicly available along with
system parameter param.

- (v) ← AccumulatePubKey(), the deterministic poly-time algorithm which, on
input a set Y of n public keys in PK, where n ∈ N is of size polynomial in λ,
produces the value v.

- (w)← GeneratePubKeyWitness(), the deterministic poly-time algorithm which,
on input a set Y ′ = Y \ {pke} i.e. all public keys except that of the entity e
who executes it (n ∈ N is of size polynomial in λ), produces the value we such
that f(we, pke) = wpkee = v.

- For a Signatures based on Proofs of Knowledge, the Σ-protocol between signer
and verifier for the NP-relation stated in Eq.3.2 has been converted into a signa-
ture scheme. It comprises the (Sign,Verify) algorithm pair, executed on the
signer and verifier side respectively. Execution of this protocol is time indepen-
dent from the number of public keys that gets aggregated in AccumulatePubKey

or GeneratePubKeyWitness.

- σ ← Sign(Y ,M, x), the PPT signing algorithm which, on input a set Y
of n public keys in PK, where n ∈ N is of size polynomial in λ, a message
M ∈ {0, 1}∗, and a private key x ∈ SK whose corresponding public key is
contained in Y , produces a signature σ. We denote by Σ the domain of
possible signatures.

- 1/0 ← Verify(Y ,M, σ), the poly-time verification algorithm which, on
input a set Y of n public keys in PK, where n ∈ N is of size polyno-
mial in λ, a message M ∈ {0, 1}∗ and a signature σ ∈ Σ, returns 1
or 0 meaning accept or reject respectively. If the algorithm returns
accept, the message-signature pair (M,σ) is said to be valid. The signa-
ture scheme must satisfy Verification Correctness, i.e. signatures signed
by honest signer as per the specification must be accepted by an honest
verifier with overwhelming probability.

- 1/0 ← Link(σ0, σ1), the poly-time linking algorithm which, on input two valid
signatures, checks their corresponding tag and outputs 1 (if tags are same -
signatures are linked) or 0 (if tags are different - unlinked signature) meaning
linked or unlinked respectively. The signature scheme must satisfy Linking
Correctness, i.e. any two signatures signed by a common honest signer on the
same message are linked with overwhelming probability. On the other hand,
any two signatures signed by two different honest signer must be unlinked with
overwhelming probability.

4.3. Security Notions 35

4.3 Security Notions

Before defining the security notions, let us define the adversarial model and the pos-
sible attacks :

4.3.1 Adversarial Model

• Any corrupt endorser may launch insider attack (threat or use of influence) on
the rest of the endorsers, acquiring their private keys

• Members (excluding the signer) belonging to the endorsement set may collude
and reveal their secret keys on receipt of signature

• Validator may hold back the packets without verifying.

• Validator can act maliciously by randomly mark a transaction as valid/invalid
without actually verifying.

Any adversary is assumed to have the following oracle access:

• ski ← CO(pki). The Corruption Oracle, on input a public key pki ∈ Y that is
an output of KeyGen(), returns the corresponding secret key ski ∈ X .

• SO(s,M,R). The Signing Oracle, on input a designated signer s, message M
and subring R, where R is some subset of Y returns a valid signature σ which is
computationally indistinguishable from one produced by Sign(Y ,M, x) using
the real secret key x of signer s on message M .

Note, that if endorsement logic gets corrupted by adversary then it needs a
mechanism of formal verification to check whether desired output is achieved or not.
This is beyond our scope of work. Based on the last two points, we discus the
correctness and soundness property of the Σ-protocol as well as security of signature
scheme in the permissioned blockchain framework.

4.3.2 Correctness

For correctness, any execution of the Σ-protocol for the NP-relation given in Eq.3.2
will terminate with the verifier outputting 1, with overwhelming probability, if and
only if a prover or an endorser possess the correct witness values (yπ, wπ, pπ, qπ) for
the corresponding accumulated public value v.

4.3.3 Soundness

The Honest-Verifier Zero-Knowledge property of the Σ-protocol for NP-relation Eq.3.2
guarantees that the transcript generated out of the interaction between signer and

36 4. Security Model

verifier does not leak any information to the adversary A that has no knowledge of
the secret. The soundness property is formalized in terms of the game played between
Fabric CA and adversary A, assuming all endorsers, participating in ring formation,
are honest.

• Fabric CA runs the Init algorithm for security parameter λ and generates
global parameters param. All endorsers executes KeyGen algorithm to generate
the public key and private key pair and stored in public database DB.

• A receives param from Fabric CA and gets the transcript of prior runs of the
protocol between an honest signer and verifier. Given A has access to the cor-
ruption oracle CO, it can query for the secret key of some but not all endorsers,
who has put their public keys in database DB.

• A now select a set of endorsers E ′ for which it has not queried their secret keys.
It generates a value v′ by accumulation of public keys of E ′.

• A starts executing the Σ-protocol in the role of the signer and the probabil-
ity of winning the game is negligible. Following the correctness property, an
honest verifier with output 1(accept) with overwhelming probability if and only
if the A can produce the correct secret value (yπ, wπ, pπ, qπ) corresponding to
accumulated value v′.

Note that if A is not given access to a correct tuple (yπ, wπ, pπ, qπ) but still it
wins the game, then it must have generated it by himself/herself. This contradicts
the one-wayness of accumulator’s domain.

4.3.4 Security Analysis of Signature Scheme

Since the architecture of Fabric is modular, the proposed signature scheme can be
plugged-in as a feature. Given that Fabric is secure (Security model discussed in
[23],[3]), we need to argue on the security of the proposed anonymous endorsement
system based on the security of FCsLRS scheme.

Theorem 2 If FCsLRS scheme is unforgeable, linkable anonymous, linkable and
non-slandearable, then the scheme is secure and hence the proposed Anonymous En-
dorsement System also remains secure in the random oracle model.

We have defined the security notions in details :

Unforgeability

The following construction of constant-sized linkable ring signature is unforgeable
against “chosen subring” or “chosen public-key” attacks. The adversary is further
allowed to corrupt endorsers and acquire their private keys i.e. it is unforgeable with
respect to insider corruption.

4.3. Security Notions 37

Definition 9 (Unforgeability).[4] A linkable ring signature scheme is unforgeable
if for any PPT adversary A and for any polynomial n(.), the probability that A
succeeds in the following game is negligible:

1. (Initialization Phase.) Key pairs (PKi, SKi)
n(k)
i=1 are generated by executing

KeyGen(1k), and the set of public keys S
.

= {PKi}n(k)i=1 is given to A.

2. (Probing Phase.) A is given access to a signing oracle SO(., ., .) where SO(s,M,R)
outputs Signs,SKs(M,R) and it is required that R ⊆ S and PKs ∈ R. A is also
given access to a corrupt oracle CO(.), where CO(i) outputs SKi.

3. (Output Phase.) A outputs (M∗, σ∗, R∗), and succeeds if VerifyR∗(M
∗, σ∗) =

1,A never queried (.,M∗, R∗) to its signing oracle, and R∗ ⊆ S \C, where C is
the set of corrupted users.

Linkable-Anonymity

A secure linkable ring signature cannot be anonymous against attribution attacks/key
exposure attack if all the participants except signer gets corrupted and reveals their
secret in order to frame the signer ([4]).

But if we consider t-out-of-n threshold endorsement policy , 1 ≤ t ≤ n/2, where
more than half of the endorsers in E is assumed to be honest, possibility of such
attacks is negligible since atleast n/2 + 1 members in E will not reveal their secret
keys .

Definition 10 (Linkable-anonymity).[4] A linkable ring signature is linkably anonymous
if for any PPT adversary A and for any polynomial n(.), the probability that A suc-
ceeds in the following game is negligibly close to 1/2:

1. (Initialization Phase.) Key pairs {(PKi, SKi)}n(k)i=1 are generated by execut-
ing KeyGen(1k;ωi) for randomly chosen ωi, and the set of public keys S

.
=

{PKi}n(k)i=1 is given to A.

2. (Probing Phase I.) A is given access to a signing oracle SO(., ., .), where SO(s,M,R)
outputs Signs,SKs(M,R) and it is required that R ⊆ S and PKs ∈ R. A is also
given access to a corruption oracle CO(.), where CO(i) outputs ωi : 1 ≤ i ≤
n(k).

3. (Challenge Phase.) A outputs a message M, distinct indices i0, i1, and a ring
R ⊆ S for which PKi0, PKi1 ∈ R ∩ S and all keys in R are distinct. If (i0, ., .)
or (i1, ., .) was an input to SO, or if i0 or i1 was an input to CO, A fails
and the game terminates. Otherwise a random bit b is chosen, and A is given
σ ← Signib,SKib (M,R).

4. (Probing Phase II.) A is again given access to SO and CO. If (i0, ., .) or (i1, ., .)
is queried to SO, or if i0 or i1 is queried to CO,A fails and the game terminates.

38 4. Security Model

5. (Output Phase.) The adversary outputs a bit b′, and succeeds if b′ = b.

Definition 11 (Linkable Anonymity w.r.t adversarially-chosen keys). [4]
A linkable ring signature is linkably anonymous w.r.t adversarially-chosen keys if for
any PPT adversary A and for any polynomial n(.), the probability that A succeeds in
the previous game, without restricting the ring R to be a subset of S in the challenge
phase (but atleast two members of the ring belong to set S), and without requiring
R ⊆ S for SO(., .,R) queries, is negligibly close to 1/2.

Linkability

It is hard to generate the secret keys (e1, e2) for a given public key value x under the
Strong RSA hardness assumption of Accumulators with one-way domain, hence the
probability of producing a valid signature for a given transaction(message) and secret
key pair is negligible. Security is ensured even in presence of adversarially-chosen
keys.

Definition 12 (Linkability).[4] A linkable ring signature is linkable if for any PPT
adversary A and for any polynomial n(.), the probability that A succeeds in the fol-
lowing game is negligible :

1. (Initialization Phase.) As in Definition 9.

2. (Probing Phase.) As in Definition 9.

3. (Output Phase.) A outputs (M∗
i , σ

∗
i , R

∗
i), i = 1, 2, and succeeds if it holds that

VerifyR∗i (M
∗
i , σ

∗
i) = 1 and R∗i ⊆ S for i = 1, 2, Link(σ∗1, σ

∗
2)=0, and |(R∗1 ∪

R∗2) ∩ C|+ |(R∗1 ∪R∗2) \ S| ≤ 1, where C is the set of corrupted users.

Definition 13 (Linkability w.r.t adversarially-chosen keys).[4] A linkable ring
signature is linkable w.r.t adversarially-chosen keys if for any PPT adversary A and
for any polynomial n(.), the probability that A succeeds in the previous game, without
restricting the rings R∗0, R

∗
1 to be subsets of S (but atleast two members of each of the

rings R∗0, R
∗
1 belong to set S) in the output phase, and without requiring R ⊆ S in

SO(., .,R) queries, is negligible.

Non-slanderability

It ensures that no one can produce a linkable signature on behalf of or frame an honest
signer ([39]). For our construction of FCsLRS, we consider a tag generation which
provides Transaction-Oriented linkability. Since each tag generated is dependent
on the transaction id and secret key pair and transaction id being unique for each
transaction∗ and assuming the function H̃ is a random oracle , it is hard to produce
two linked signatures for same transaction. Security is ensured even in presence of
adversarially-chosen keys.

∗transaction-id is the hash of the transaction payload

4.3. Security Notions 39

Definition 14 (Non-slanderability).[4] A linkable ring signature is non-slanderable
if for any PPT adversary A and for any polynomial n(.), the probability that A suc-
ceeds in the following game is negligible :

1. (Initialization Phase.) As in Definition 9.

2. (Probing Phase.) As in Definition 9.

3. (Output Phase.) A outputs (σ̂,M∗, σ∗, R∗) and succeeds if R∗ ⊆ S, σ̂ is the out-
put of SO(ŝ, M̂ , R̂) for some R̂ ⊂ S and ŝ such that PKŝ ∈ R̂∩S, Verify∗R(M∗, σ∗)=1,
Link(σ̂, σ∗)=1 and A never queried ŝ to CO(.).

Definition 15 (Non-slanderability w.r.t adversarially-chosen keys).[4] A
linkable ring signature is non-slanderable w.r.t adversarially-chosen keys if for any
PPT adversary A and for any polynomial n(.), the probability that A succeeds in
the above game, without the restrictions which the rings R̂, R∗ are subsets of S (but
atleast two members of each of the rings R̂, R∗ belong to set S) in the output phase
and R ⊆ S, in SO(., .,R) queries is negligible.

The following theorems [4] justify the security of our proposed construction under
our proposed security model.

Theorem 3 If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA
problem are hard and the function H̃ is random oracle, our construction is unforgeable.

Proof. As discussed under Security Notions, if the scheme is Non-Slanderable and
Linkable then it is implied to be Unforgeable. For if an adversary can forge a signature,
he can either slander an honest user or collude with any user to break the linkability
of the scheme. Therefore, the proof for is a direct consequence of Theorems 5 and 6.

Theorem 4 Under the assumption that the threshold value t in the endorsement
policy is greater than 1, if the DDH in QR(N) problem, the LD-RSA problem, the
Strong-RSA problem are hard and the function H̃ is random oracle , then our con-
struction is linkably-anonymous w.r.t. adversarially-chosen keys.

Proof. Construct a simulator S from adversaryA, which wins game linkable-anonymity
(as defined in Definition 10,11) with non-negligible advantage 1/2 + ε over random
guessing, to solve the LD-RSA problem under the DDH assumption.

S is given an instance of the LD-RSA problem (n0, n1, T = gpb+qbtid), where gtid =

gH̃(tid) (where ˜H(.) is a random oracle) , with pb.qb = n0 or n1 . S creates the
system parameters correspondingly and randomly generate a set of key pairs X =
{(PKi, SKi)} using KeyGen(). It randomly chooses a bit b′ = 0 or 1 and sets PK∗ =
2nb′+1. Denote X∗ = X ∪{PK∗}, which is then given to A as the set of public keys.

S handles the SO query as follows. For query involving PK ∈ X as the signer, S
is in possession of the secret key and can reply according to the algorithm specification.

40 4. Security Model

There are two ways to handle the public key generated adversarially - first is to
disallow the adversary from having this type of query(already knows the secret key)
or the second way is that adversary has to prove the validity of the generated key
pair to the simulator before it can be used. This models the scenario in practice
when endorsers need to prove the validity of the key pairs before Fabric CA issues an
enrolment certificate for it. In this case, the simulator extracts the secret key of the
corresponding public key during the proof of validity of the key and the rest follows.
Queries involving PK∗ as the signer need special attention. S sets tag ỹ = T and
computes the signature of knowledge. Under the DDH assumption in QR(N), the
simulated signature of knowledge (constructed as in Eq. 3.2.) is indistinguishable
from the actual one if T is correctly formed. T is correctly formed if and only if b = b′

.
If PK∗ is chosen to be the challenge signature, then A wins the game with

probability 1/2 + ε, (ε being a negligible value), if T is correctly formed. On the other
hand, A can only win with probability 1/2 since the whole challenge signature is not
related to either i0 or i1 .

In the challenge phase, with probability 2/|X∗|, PK∗ ∈ {i0, i1}. If T is correctly
formed, then A wins the game with probability 1/2 + ε. Otherwise, A can only win
with probability 1/2. Thus, S solves the LD-RSA problem with probability 1/2+ ε

2|X∗|
† which is non-negligible over random guessing.

Theorem 5 If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA
problem are hard and the function H̃ is random oracle, then our construction is
linkable w.r.t. adversarially-chosen keys.

Proof Sketch. For adversary A to break the linkability property, it has to convince a
verifier to accept a tag ỹ for which it cannot generate a correct signature of knowledge
with any non-negligible probability. Then A must have conducted an incorrect proof
in the signature of knowledge such that at least one of the following holds true: a
successful forging of the constant-size ring signature ([13]) or incorrect proof of con-
struction of ỹ. The first part holds with negligible probability under the Strong-RSA
assumption, and the second part is valid with negligible probability under the (com-
putational) LD-RSA assumption. Thus, the total success probability is negligible.

Theorem 6 If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA
problem are hard and the function H̃ is random oracle, then our construction is non-
slanderable w.r.t. adversarially-chosen keys.

Proof Sketch. Similar to the proof corresponding to 4. If adversary A is able to output
a signature which slanders PK∗ and since the soundness property of Signature based

†AdvLD−RSA
A = AdvLinkable−anonymity

A × Pr(selecting PK∗ from X∗) × Pr(b = b′|PK∗) =
ε× 1

X∗ × 1
2

4.3. Security Notions 41

on Proof of Knowledge (Eq. 3.2) holds, then there exists a knowledge extractor (def.
3) which can extract the secret key (p′, q′) corresponding to the public key PK∗ such
that PK∗ = 2p′q′ + 1. Hence simulator S solves the LD-RSA problem.

Chapter 5

Performance Analysis of FCsLRS ∗

The (Sign,Verify) algorithm pair just involves the execution of the Σ-protocol which
is time independent from the number of public keys that were aggregated when con-
structing the accumulated value v and generation of witness value w. At the end of
each protocol run, verifier V outputs a 0/1.

5.1 Theoretical Analysis

Table 5.1: Asymptotic complexity analysis of FCsLRS

Algorithm Operations performed Asymptotic complexity
Tag generation 2E O(λ)

Signature 11E + 5M O(λ)
Verification 6E + 10M O(λ)

E is an exponentiation (single base of the form ga) operation, M is multibase exponentiation (of

the form ga.hb) operation and λ is the security parameter.

5.2 Experimental Analysis

The performance of the signature scheme was measured on Intel Core i5-4200U

CPU, quad core processor, frequency 1.60 GHz, OS : Ubuntu-16.04 LTS (64
bit). The programming language used is Go 1.10, packages used is crypto, golang.org/x/
crypto/sha3, rand and math. The code for Cyclic Group Generator is based on the
one given under Project-iris†. For the ananlysis of the signature generation and
verification time, the RSA modulus size, also the security parameter λ, has been

∗Over here we analyze the performance for generation and verification of one signature
†https://github.com/project-iris/iris/blob/v0.3.2/crypto/cyclic/cyclic.go

42

5.2. Experimental Analysis 43

varied as 1024 bits, 2048 bits and 3072 bits. The endorsement set size (number of
participants, n) was varied as 4, 8, . . . , 256, in ascending powers of 2 and message
length was varied as 2KB,4KB and 8KB respectively. The functions H1 and H̃ used
is SHA-3 producing a message digest of size 128 bits. The range of both the hash
functions must be a subset of QR(N), N is the RSA-modulus. Also as per Eq (4),
any element in the group QR(N) when raised to the power of a number in the group
ZN/4, again returns an element which belongs to QR(N). Since N is varied between
1024 bits to 3072 bits and least value of N/4 is 256 bits, so a message digest of 128 bit
is definitely falling in the range ZN/4 for any case. We had to do this approximation
since selection of an element from QR(N) when φ(N) is unknown is hard.

10 instances for each message length was generated and in total, the FCsLRS
algorithm was executed for 630 instances. However the execution time remains invari-
ant of change in message length for a given number of participants and RSA modulus
size . Thus for ease of tabulation, average over all 30 instances of such values was
taken. Time taken by the signature generation and verification algorithm with respect
to number of endorsers has been recorded in Table 5.2 and Table 5.3. Corresponding
graphs has been plotted in Fig.5.1 and Fig. 5.2 respectively. The signature generation
time and verification time remains constant for a fixed value of RSA modulus size.
On varying the λ value, increase in computation time has been observed for both
the algorithms. The Golang code for signature generation of 1-out-of-n endorsement
policy is available in [2]. Hence not only the signature size, but also the execution
time of the code remains constant for a given value of λ.

Table 5.2: Signature generation time for FCsLRS vs number of participants

Endorsement set Signature generation Signature generation Signature generation
size time(ms) for 1024 bit time(ms) for 2048 bit time(ms) for 3072 bit

RSA modulus RSA modulus RSA modulus
4 26.3810697 153.494131 484.8454402
8 25.9974438 156.6600916 467.8548517
16 25.9047032 153.3631163 462.5272153
32 26.0976248 153.1091731 467.6555261
64 25.9170626 153.0620514 482.5397836
128 25.187382 152.0527724 462.7118533
256 25.6127477 152.1151231 462.6459938

Table 5.3: Verification time for FCsLRS vs number of participants

Endorsement set Verification time(ms) Verification time(ms) Verification time(ms)
size for 1024 bit for 2048 bit for 3072 bit

RSA modulus RSA modulus RSA modulus
4 33.8444186 189.9202852 586.5080154
8 34.1522705 194.7279413 574.2996354
16 33.7478959 190.1404563 567.9998257
32 33.8859284 190.7751803 577.9523215
64 34.4397107 190.8586968 580.6172581
128 34.1952231 191.0990971 569.9051838
256 34.3507846 191.6187186 564.1658533

44 5. Performance Analysis of FCsLRS

Figure 5.1: Signature Run time vs endorsement set size plot

Figure 5.2: Verification Run time vs endorsement set size plot

5.3. Description of the Implementation 45

5.3 Description of the Implementation

In this section, we give a high level description of the main methods for 1-out-of-
n endorsement policy. Assuming that a signer S wants to endorse a transaction
with transaction id as tid = hash(transaction payload) and transaction payload
denoted by m ∈ M, where M ∈ 0, 1∗, S ∈ E , E is the endorsement set, secret key is
skS = (pπ, qπ) and public key of S is pkS = 2pπ.qπ + 1. Since we consider the case
of just one endorser, we eliminate the code for check of linkability match as of now.
But when it is integrated, check for linkability must be added for each transaction.

1. Initialization. This step involves generation of the RSA Modulus integer N
of size λ bits. This step is executed by Fabric CA which generates the values
by taking the security parameters as its input. To find a generator of QR(N),
we use the following lemma ([30]) :

Lemma 1 Let N = p.q be the product of two distinct safe primes, and u ∈
QR(N) a quadratic residue. Then u is a generator for QR(N) if and only if
gcd(u− 1, N) = 1.

Procedure 1: Initializations
Input : λ
Output: Public parameters : N, g, h, t, y, s, ζ

1. Generate 2 prime p, q, p 6= q.

2. Generate 2 safe primes p, q : p = 2p′ + 1, q = 2q′ + 1, |p| = |q| = λ
2
.

3. Find N = p.q.

4. Find a generator of the group QR(N) using Lemma 1. Let that be u.

5. u generates g, h, t, y, s, ζ using some random discrete logarithm value
rdi, 1 ≤ i ≤ 6, 2 ≤ rdi ≤ |QR(N)| − 1 where |QR(N)| = p′.q′.

2. Key Generation. Given an input n, which is the number of endorsers, each of
the endorsers generate their own public key and private key pairs independently.
(It only proves using zero-knowledge to Fabric CA about the correctness of the
public key generated ‡). Upon key generation , these values are made available in
the public database DB. The procedure mentioned below must be run parallely
for each endorser present in endorsement set E .

‡In our implementation, since we have developed the signature scheme as an independent mod-
ule without considering any Public Key Infrastructure, so for the ease of implementation we have
assumed the public keys generated by each endorser is correct.

46 5. Performance Analysis of FCsLRS

Procedure 2: Key Generation for endorser Ei

Input : λ, l, µ : λ > l − 2, l
2
> µ+ 1, where E is the endorsement set

Output: Public Key : pki, Secret Key : ski

1. Generate 2 prime p, q, p 6= q : q ∈ (2
l
2 − 2µ + 1, 2

l
2 + 2µ − 1). ski = (p, q).

2. Generate pki : pki = 2p.q + 1.

3. Send pki to database DB .

3. Public Key accumulation. Fabric CA uses its accumulator with one-way
domain to generate an accumulated value of all the public keys in DB, each
having valid enrolment certificate.

Procedure 3: Accumulated value computation

Input : all pk’s in database DB, generator u, 〈u〉 = QR(N)
Output: Accumulated value : v

1 v ← u
2 for pki ∈ DB do
3 v ← vpki mod N
4 end

4. Witness Generation for Signer S. Signer S can generate the witness w using
values of all public keys forming the ring except its own public key.

Procedure 4: Witness value for signer S

Input : all pk’s in database DB, generator u, 〈u〉 = QR(N), Signer S
public key : pkS

Output: witness value : w
1 w ← u
2 for pki ∈ DB : pki 6= pkS do
3 w ← wpki mod N
4 end

5. Tag Generation. To generate the tag, the signer S needs to compute gtid
from g given the transaction id tid.

6. Computation of public values for Signature based on Proof of Knowl-
edge Construction. Signer S computes public values T1, T2, T3, T4, T5 where

T1 = grtid mod N, T2 = (hrζpkS+r) mod N, T3 = (srgqπtid) mod N, T4 = (w.yr)
mod N, T5 = (trg2pπtid) mod N .

5.3. Description of the Implementation 47

Procedure 5: Tag generation for signer S

Input : Signer S secret key : skS = (pπ, qπ), transaction id : tid
Output: tag value : ỹ

1 x← H̃(tid)
2 gtid ← gx mod N

3 ỹ ← gpπ+qπtid mod N

Procedure 6: Public value generation by signer S

Input : Signer S secret key : skS = (pπ, qπ), public key pkS, gtid, witness
value : w

Output: Public values : T1, T2, T3, T4, T5
1 r

R←− ZN/4
2 Compute T1, T2, T3, T4, T5 as per equations mentioned above.

7. Signature Generation. Signer generates the challenge value which can be
generated again at the verifier side as well. This is the standard Fiat-Shamir
Transformation which has been used. Send all these value (mentioned in the
output of Signature Algorithm along with tag ỹ to verifier v ∈ V .

Procedure 7: Signature

Input : r,Signer S secret key : skS = (pπ, qπ), public key pkS, message
m ∈M

Output: u1, u2, . . . , u9, α̃1, α̃2, . . . , α̃5

1. Generate αi, 1 ≤ i ≤ 3 : 0 < αi < N/4− 1.

2. Compute u1, u2, . . . , u9 as per Eq. 3.4.

3. Computes the challenge value c = H1(m,u1, u2, . . . , u9), where H1 is a random
oracle.

4. Using c, compute α̃1, . . . , α̃5 as per Eq. 3.5.

8. Verification Algorithm. Verifier v computes c using the values sent to it
by signer S. Using equations under Eq. 3.6 it’s going to check whether the
Signature based on Proof of Knowledge construction is correct or not.

48 5. Performance Analysis of FCsLRS

The main methods described in section 5.3 is illustrated here.

<<abstract>>

 Initialization
 - PrivateRSA : struct
- PublicRSA : struct
- PrivateKey : struct
- PublicKey : struct

 +GenerateRSAInt(rand.Reader) : (*PublicRSA,
*PrivateRSA, error)

+GenerateKey(rand.Reader) : (*PublicKey,
*PrivateKey, error)

 Public Data

 - N – RSA modulus
 - g1,h,t,y,s,ζ – element in QR(N)
 - mesg – the transaction response
 Message
 - tid – the transaction id
 - N’ - numbe r of endorsers
 - PublicKeyOriginal[] - set of
 public keys of endorsers
 - acc – accumulated value of the
 public keys.
- g_tid – element in QR(N)

 - T1, T2,T3,T4, T5 – values nee-
ded for Proof of Knowledge con-
struction.

ge
ne

ra
te

s

ge
ne

ra
te

s

Main Golang Packages Used

- crypto/rand
- golang.org/x/crypto/sha3
- math/big

U
se

s

 Signer(Method)

+ g_tid = new(big.Int).Exp(g1,txid,
 publicRSA.N)

+ witness(publicKeyOriginal []PublicKey,
 id int,publicRSA *big.Int) : (*big.Int)

+ GenPublicVal(random io.Reader,secret
 *big.Int,privateKey *PrivateKey,witness
 *big.Int, N *big.Int): ([]*big.Int,*big.Int)

+ proof_signer(f *os.File,mesg string,
 rand.Reader,T []*big.Int, witness *big.Int,
 acc *big.Int, r *big.Int, pub_key *big.Int,
 pri_key1 *big.Int,pri_key2 *big.Int,
 tag *big.Int, N *big.Int)

U
se

s

ge
ne

ra
te

s

Tag Generation

+ GenTag(privateKey *PrivateKey,
N *big.Int): (*big.Int)

U
se

s

Uses

Verifier (Method)

- verify_signature(f *os.File,mesg string,b1
*big.Int,b2 *big.Int,b3 *big.Int,
 b4 *big.Int,b5 *big.Int,u1 *big.Int,u2
*big.Int,u3 *big.Int,u4 *big.Int,u5 *big.Int,
 u6 *big.Int,u7 *big.Int,u8 *big.Int,u9 *big.Int,
 v *big.Int,T []*big.Int,tag *big.Int, N *big.Int)

- txid = hash_txid(tid string) : (*big.Int)

ge
ne

ra
te

s- privateKey (of Signer)
- g_tid

U
se

s

Uses

U
se

s

Link (Method)

+ Given two valid
signature pair , check if
tags are same or different.

U
se

s
U

se
s

Figure 5.3: Class Diagram

Chapter 6

Integration of FCsLRS Module in
Hyperledger Fabric

In current workflow of transaction ([23]), to invoke a transaction, the client sends a
“PROPOSE message” to a set of endorsing peers of its choice. The set of endorsing peers
for a given chaincodeID is made available to client via peer, which in turn knows the
set of endorsing peers from endorsement policy. The format of a PROPOSE message

is 〈PROPOSE,tx,[anchor]〉 as shown in Fig. 6.1.
On reception of a PROPOSE message message from a client, the endorsing peer

epID first verifies the client’s signature clientSig and executes the transaction (txPay-
load). This peer node forwards internally tran-proposal (and possibly transaction
) to the part of its (peer’s) logic that endorses a transaction, referred to as endors-
ing logic. By default, endorsing logic at a peer accepts the tran-proposal and
simply signs the tran-proposal. However, endorsing logic may interpret arbitrary
functionality, for e.g., interact with legacy systems with tran-proposal and trans-
action as inputs, to reach the decision whether to endorse a transaction or not. If
endorsing logic decides to endorse a transaction, it sends a PROPOSE-RESPONSE packet
containing the message :〈TRANSACTION-ENDORSED, tid, tran-proposal,epSig〉
message (as shown in Fig. 6.2) to the submitting client, where: tran-proposal

:= (epID,tid,chaincodeID,txContentBlob, readset,writeset), where txContentBlob is
chaincode/transaction specific information. The intention is to have txContent-
Blob used as some representation of transaction (e.g., txContentBlob=tx.txPayload).
epSig is the endorsing peer’s signature on tran-proposal. Else, in case the en-
dorsing logic refuses to endorse the transaction, an endorser may send a message
〈TRANSACTION-INVALID, tid, REJECTED〉 to the submitting client.

To integrate the Constant-Sized linkable ring signature module, we first have
to change the PROPOSAL RESPONSE format (as shown in Fig. 6.3). In the source
code, under hyperledger/fabric/protos/peer/proposal response.proto in the structure
ProposalResponse, add a field called as Tag which will enable Transaction-oriented
linkability. The structure Endorsement must be changed by deletion of the field

49

50 6. Integration of FCsLRS Module in Hyperledger Fabric

TX PROPOSE Optional [ANCHOR]

TX message format

Client id Chain-
code id

txPayload Timestamp clientSig

tid = hash(TX)

Metadata

txPayload format for deploy transaction

Source code of
chaincode

Policies : endorsement
policy id and parameters

Figure 6.1: PROPOSE message format in Hyperledger Fabric

TRANSACTION
ENDORSED

tid Trans-proposal Endorsing peer
signature : epSig

epID,tid,chaincodeID,txContentBlob,readset,writesetEndorsing tid chaincode
Peer ID id

txContentBlob
(tx.txPayload)

readset writeset

Tran-proposal message format :

Figure 6.2: PROPOSE RESPONSE message format in Hyperledger Fabric

endorser (data type bytes[]) which reveals the endorsing peer ID. Create a FCsLRS∗

package under hyperledger/fabric/bccsp which can be used by the signer to sign the
message. In the file hyperledger/fabric/msp/identities.go, delete the field identity in
the structure signingidentity. The Verify function will just check the validity of
the signature corresponding to a message. Instead of checking the identity of signer,
it will verify whether signer can give a Signature based on Proof of Knowledge of the
secret to prove its membership to the Endorsement set E .

The Transaction flow diagram for 1-out-of-n endorsement policy is given in Fig.

∗Fabric’s Constant-Sized Linkable Ring Signature

TRANCTION
ENDORSED

tid Modified
Trans-proposal

Signature by a member of
endorsement set (E) :
identity of signer hidden.

Endorsement set E
(subset of Peer nodes)
Have their public key

registeredIn DB

tid ChainCode Id New txContentBlob
(tx.txPayload) readset writeset

Modified Tran-proposal message
format

Source of the
chaincode metadata

T out of N endorsement policy

New txPayload message format

Tag generated
(tx oriented link-
ability)

Figure 6.3: Modified PROPOSE RESPONSE message format in Hyperledger Fabric

51

Client validator ep0 ep1 ep2 ep3 ep4 validator

Endorsement set

validator

<1>

<1> : tx=<clientID,
chaincodeID,
txPayload, time-
stamp,clientSig

ep2 decides to
endorse. Simulate
/Execute tx ,Sign
Transaction-
Endorsed using
FCsLRS

<2>
<2>

<2>

<2>
<2>

<2>

<3>

<2> : validator nodes
collect Transaction-Endorsed
messages into a valid
Endorsement that satisfies
Endorsement policy.

<3> : broadcast(endorsement)

<4>

<4>

<4>

<4>

<4>

<4>

<4>

<4>: Verify
endorsemen,
readset;
If OK, apply
writeset to
the state.

O
R

D
E

R
IN

G
 S

E
R

V
IC

E
S

orderers

Figure 6.4: Modified transaction flow diagram when any one endorser is willing to
endorse

6.4. It is clear that when endorsing peer ep2 decides to endorse the transaction, it
just forms a ring with rest of endorser in the Endorsement set to construct the ring
signature and the PROPOSAL RESPONSE format being same as that shown in Fig.6.3.
This is broadcasted to all the Peer nodes (〈2〉 of Fig. 6.4). If majority of the nodes
reach a consensus on receipt of a valid endorsement, then one of the validator node
forwards it to the Ordering Service(〈3〉 of Fig. 6.4). From this step onwards, the
transaction flow is same as that shown in Fig. 2.1.

Chapter 7

Conclusion and Future Work

We have discussed about the design of an anonymous endorsement system for Hy-
perledger Fabric and gave the construction of a new constant sized linkable ring
signature scheme, FCsLRS. We plan to incorporate this module in future release of
Fabric and evaluate the performance in the actual setting. In our future work, we
aim to provide a construction of short ring signature scheme, probably using pairing
based cryptography.

Currently, verifiers are required to count individual valid ring signature and check
if the aggregate is above the threshold in order to implement threshold endorsement
policy. We would like to replace it with threshold signature scheme which can guar-
antee the same or better level of anonymity as it is offered now by the proposed
system.

Since the endorsement policy is specific to Hyperledger Fabric, we would like
to explore other permissioned blockchain systems and check whether the proposed
scheme can be extended for other use cases.

52

Bibliography

[1] What are zk-snarks? https://z.cash/technology/zksnarks.html (2017)

[2] Golang code : Fcslrs. https://www.dropbox.com/sh/

8zr0yvzuimtnyuu/AACUk0z8qRHCwecxXEIfePJ6a?dl=0 (2018)

[3] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro,
A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fab-
ric: A distributed operating system for permissioned blockchains. arXiv preprint
arXiv:1801.10228 (2018)

[4] Au, M.H., Chow, S.S., Susilo, W., Tsang, P.P.: Short linkable ring signatures re-
visited. In: European Public Key Infrastructure Workshop. pp. 101–115. Springer
(2006)

[5] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: Proceedings of the 1st ACM conference on Computer
and communications security. pp. 62–73. ACM (1993)

[6] Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications
to ad-hoc groups. In: Proceedings of the 22Nd Annual International Cryptology
Conference on Advances in Cryptology. pp. 465–480. CRYPTO ’02, Springer-
Verlag, London, UK, UK (2002)

[7] Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the
product of two safe primes. In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 107–122. Springer (1999)

[8] Camenisch, J., Michels, M., et al.: Separability and efficiency for generic group
signature schemes. In: Annual International Cryptology Conference. pp. 413–
430. Springer (1999)

[9] Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Annual International Cryptology Conference. pp. 410–424. Springer (1997)

[10] Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Proceedings of the 9th ACM conference on
Computer and communications security. pp. 21–30. ACM (2002)

53

54 BIBLIOGRAPHY

[11] Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Annual Interna-
tional Cryptology Conference. pp. 78–96. Springer (2006)

[12] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Advances in Cryptol-
ogy—CRYPTO’94. pp. 174–187. Springer (1994)

[13] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in
ad hoc groups(full version). In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 609–626. Springer (2004)

[14] Dreifuerst, D.: Permissioned vs. permissionless blockchains: Who will
win and will it matter? https://medium.com/dustindreifuerst/

permissioned-vs-permissionless-blockchains-acb8661ee095 (2018)

[15] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of
cryptology 1(2), 77–94 (1988)

[16] Franklin, M.K., Zhang, H.: A framework for unique ring signatures. IACR Cryp-
tology ePrint Archive 2012, 577 (2012)

[17] Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal dsa/ecdsa signa-
tures and an application to bitcoin wallet security. In: International Conference
on Applied Cryptography and Network Security. pp. 156–174. Springer (2016)

[18] Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.W.,
Narayanan, A.: Securing bitcoin wallets via a new dsa/ecdsa threshold signature
scheme (2015)

[19] Goldreich, O.: Foundations of Cryptography: Volume 1. Cambridge University
Press, New York, NY, USA (2006)

[20] Hardjono, T., Smith, N., Pentland, A.: Anonymous identities for permissioned
blockchains. Technical report (2014)

[21] Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification.
Tech. rep., Tech. rep. 2016-1.10. Zerocoin Electric Coin Company (2016)

[22] IBM, L.F..: hyperledger-fabric-ca Documentation , Release master. Read the
Docs (2018)

[23] IBM, L.F..: hyperledger-fabricdocs Documentation , Release master. Read the
Docs (2018)

BIBLIOGRAPHY 55

[24] Kadiyala, A.: Nuances between permissionless and per-
missioned blockchains. https://medium.com/akadiyala/

nuances-between-permissionless-and-permissioned-blockchains-f5b566f5d483/

(2018)

[25] Kate, A., Goldberg, I.: Distributed private-key generators for identity-based
cryptography. In: International Conference on Security and Cryptography for
Networks. pp. 436–453. Springer (2010)

[26] Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: International
Conference on the Theory and Applications of Cryptographic Techniques. pp.
571–589. Springer (2004)

[27] Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: En-
hancing bitcoin security and performance with strong consistency via collective
signing. In: 25th USENIX Security Symposium (USENIX Security 16). pp. 279–
296 (2016)

[28] Laurence, T.: Blockchain for Dummies. John Wiley & Sons (2017)

[29] Mercer, R.: Privacy on the blockchain: Unique ring signatures. arXiv preprint
arXiv:1612.01188 (2016)

[30] Micciancio, D.: The rsa group is pseudo-free. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 387–403.
Springer (2005)

[31] Narula, N., Vasquez, W., Virza, M.: zkledger: Privacy-preserving auditing for
distributed ledgers. auditing 17(34), 42 (2017)

[32] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 387–398. Springer (1996)

[33] Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. Advances in Cryptol-
ogy—ASIACRYPT 2001 pp. 552–565 (2001)

[34] Stathakopoulou, C., Cachin, C.: Threshold signatures for blockchain sys-
tems. https://domino.research.ibm.com/library/cyberdig.nsf/papers/

CA80E201DE9C8A0A852580FA004D412F/$File/rz3910.pdf (2017)

[35] Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In: European Symposium on Research in Computer Security. pp. 456–474.
Springer (2017)

56 BIBLIOGRAPHY

[36] Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. In: ISPEC. vol. 3439, pp. 48–60. Springer (2005)

[37] Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable
linkable threshold ring signatures. In: Indocrypt. vol. 3348, pp. 384–398. Springer
(2004)

[38] Van Saberhagen, N.: Cryptonote v 2. 0 (2013)

[39] Wei, V.K.: Tracing-by-linking group signatures. In: International Conference on
Information Security. pp. 149–163. Springer (2005)

[40] Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. The Computer Journal 56(4),
407–421 (2012)

	Introduction
	Blockchain - Decentralized trust
	Problem Statement & Motivation
	Designing a new Endorsement System
	Our Contributions
	Organization of the thesis

	Background
	Hyperledger Fabric
	Hyperledger Fabric Components
	Endorsement policies
	Transaction flow

	Related Work
	Ring Signature
	Threshold Signature
	Zero Knowledge Proofs
	Threshold Cryptography in Permissioned Blockchain

	Preliminaries
	Mathematical Notations
	Hardness Assumptions
	Building Blocks

	Proposed Anonymous Endorsement System
	Proposed construction of Fabric's Constant-Sized Linkable Ring Signature (FCsLRS)
	Extending to threshold endorsement policy

	 Security Model
	Assumptions made
	Syntax
	Security Notions
	Adversarial Model
	Correctness
	Soundness
	Security Analysis of Signature Scheme

	Performance Analysis of FCsLRS
	Theoretical Analysis
	Experimental Analysis
	Description of the Implementation

	Integration of FCsLRS Module in Hyperledger Fabric
	Conclusion and Future Work

