
On a Class of Board Games

Manaswi

M.Tech. Computer Science
Indian Statistical Institute, Kolkata

A dissertation submitted in partial fulllment of the requirements for the
degree of

Master of Technology in Computer Science

July 2018

CERTIFICATE

This is to certify that the dissertation titled “On a Class of Board Games” submitted by
Manaswi to Indian Statistical Institute, Kolkata, in partial fulfillment for the award of the
degree of Master of Technology in Computer Science is a bona fide record of work carried
out by him under my supervision and guidance. The dissertation has fulfilled all the require-
ments as per the regulations of this institute and, in my opinion, has reached the standard
needed for submission.

Arijit Bishnu
Associate Professor,
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgements

I am extremely grateful to my advisor Dr. Arijit Bishnu for constant support and encour-
agement. He provided me with exciting problems to think upon and was always available for
discussions.

Abstract

Lab-on-Chip (LOC) is a device on which several laboratory functions are integrated on a chip
of very small size. LOC can detect and manipulate microorganisms by applying electric field
so that they can be collected at desired locations. The manipulation step involves swapping
the content of one cell with another. The aim is to separate desired microorganisms from
undesired ones by collecting them in their respective receptors.

In this dissertation we abstract the setting of LOC to Board Games and study their
efficiency and complexity. We begin identifying the desired chips as red cells or blue cells
and chips that we do not care about as black cells. The interpretation may vary depending of
context. Game-0 is used to define the setting for the games we study. We give a proof that
Game-0 is in PSPACE and then define Game-1 and Game-2 which are our main focus in
this thesis.

Game-1 is NP-Complete which follows from a reduction from Rectilinear Steiner Tree
problem. On approximation side, it admits a Polynomial Time Approximation Scheme
(PTAS). The ideas used in these proofs are also used to study Game-1. We give an O(1+ 1

n)

approximation for Game-1. For each of these games we also study their integer linear
programs.

Contents

List of Figures xi

1 Introduction 1
1.1 Biological cell sorting and Lab-on-Chip 1
1.2 Problem Definition . 2

1.2.1 Game-0 . 2
1.2.2 Game-1 . 4
1.2.3 Game-2 . 5

1.3 Game-0 is in PSPACE . 5
1.3.1 Related Work . 6

1.4 Organization of Thesis . 7

2 Game-1 9
2.1 Problem . 9

2.1.1 Decision Problem(D-Game-1) . 9
2.1.2 Optimization Problem(O-Game-1) 9

2.2 D-Game-1 . 9
2.2.1 Solvability of Game-1 . 9
2.2.2 Bound on Optimum . 10
2.2.3 D-Game-1 is in NP . 11
2.2.4 D-Game-1 is NP-Complete . 11

2.3 O-Game-1 . 13
2.3.1 Integer Linear Program . 13
2.3.2 Variables . 13
2.3.3 Constraints . 15
2.3.4 Objective Function . 17

2.4 O-Game-1 is in PTAS . 17
2.5 Using Game-1 for Biological Cell Sorting 18

x Contents

3 Game-2 19
3.1 Problem . 19

3.1.1 Decision Problem(D-Game-2) . 19
3.1.2 Optimization Problem(O-Game-2) 19

3.2 D-Game-2 . 20
3.2.1 Solvability of Game-2 . 20
3.2.2 D-Game-2 is in NP . 21
3.2.3 Integer Linear Program . 21
3.2.4 Variables . 21
3.2.5 Constraints . 23
3.2.6 Objective Function . 25

3.3 An Approximation Algorithm for O-Game-2 26
3.4 Using Game-2 for Biological Cell Sorting 27

Bibliography 29

List of Figures

1.1 Instance of Game-0 . 2
1.2 Rule 1 of Game-0 applied to Figure 1.1 3
1.3 Instance of Game-1 . 5
1.4 A possible next configuration . 5

2.1 Cycling white cell to remove any red cell 10
2.2 Set of points in a grid . 12
2.3 RST corresponding to Figure 2.2 . 12
2.4 Reduction from Fig 2.2 . 12
2.5 Labeling of tiles of the game . 14

3.1 Solving Game-2 using single white cell 20
3.2 Labeling of the tiles . 22
3.3 Clearing the first two rows . 26

Chapter 1

Introduction

Board Games (Games) are games of complete information played on two dimensional grid.
They can serve as model to abstract various practical problems of interest. The Games that
we study in this dissertation are motivated by sorting biological cells with Lab-on-Chip [4].

1.1 Biological cell sorting and Lab-on-Chip

Rare cell populations occur is small concentration is samples. Such samples are enriched
by magnetic or automatic cell picking followed by manual or automatic cell picking or
analysis [6]. There are various applications of this process in stem cell research, cell therapy
and cell based diagnosis.

Lab-on-Chip (LOC) is a device on which several laboratory functions are integrated on a
chip of very small size. LOCs can handle very small very of fluid and equipped with sensing,
processing and actuation functions they can be used for cell sorting purpose. The main
principle that allows LOCs to displace and manipulate microorganisms is dielectrophoresis
(DEP). Dielectrophoresis refers to the physical phenomena in which a force is exerted on
neutral particles when it is subject to non-uniform electric field. Microorganism detection is
achieved using DEP cage approach and impedance sensing. Differences in permittivity and
conductivity between the particles and the suspending medium is used for detecting and then
manipulating the microorganisms. The manipulation is done by applying electric fields using
DEP.

Thus LOC can detect and move microorganisms. The microorganisms are moved by
applying electric field so that they can be collected at desired locations. The first step is
to prepare the sample on a cell array by culturing it with some reagent so that normal or
desired samples can be differentiated from undesired ones, thus enabling detection. The
manipulation step involves swapping the content of one cell with another. The aim is to

2 Introduction

separate desired microorganisms from undesired ones by collecting them in their respective
receptors.

We model this problem by representing the array by a matrix where each entry of the
matrix can be empty (white), desired cell (red) or undesired cell (blue). There are two
receptors: one for the desired cells and one for undesired cells. The aim to collect the the
cells at their respective receptors.

1.2 Problem Definition

We define several problems inspired from the above model. The general setup in all these
problems is similar to Game-0 described below.

1.2.1 Game-0

Let A = (ai j) be a m× n matrix. Each entry(or cell) ai j is assigned a color which can be
Red(R), Blue(B), Black(K) or White(W). The white cell will also be called Empty cell. Such
an arrangement of colors on cells of A is called Configuration of A. C0 denotes the Initial
Configuration of A and Ci is Configuration of A at some step i ∈ N. Two cells at Manhattan
Distance one are called Adjacent Cells.

Red Receptor Blue Receptor

Figure 1.1 Instance of Game-0

1.2 Problem Definition 3

Red Receptor Blue Receptor

Figure 1.2 Rule 1 of Game-0 applied to Figure 1.1

There are two receptors, one for red cells and another for Blue cells. The Red Receptor
is placed adjacent to (left) one of the entries of first column of the matrix while the Blue
receptor is placed adjacent to (right) one of the entries of the last column of the matrix. Once
the Receptors are initialized, their position does not change for the rest of the game i.e. for
all configurations Ci the position of Red and Blue Receptor is the same. In the next step one
of three things can happen. This changes the configuration of Game-0 from Ci to Ci+1.

1. if a red cell is adjacent to the Red Receptor, in one step, the red cell can be “swapped
out” by Red Receptor and replaced by an empty cell

2. if a blue cell is adjacent to the Blue Receptor, in one step, the blue cell can be “swapped
out” by Blue Receptor and replaced by an empty cell.

3. a white cell can swap its position with a non-White cell adjacent to it

Thus all swaps happen between adjacent cells and each such swipe takes one step. Also
each swap involves swap with an adjacent white cell or creation of a new white cell.

Let CF denote the configuration (or a set of configurations) of the matrix Game-0 which
we want to reach from a given initial configuration C0. We say the configuration C0 is
Solvable for the configuration CF if there exists a number k ∈ N such that there exists
sequence of configurations C0, . . . ,Ci,Ci+1, . . . ,Ck where Ck =CF (Ck ∈CF). k is the number
of steps or time taken to solve C0. The smallest k for which such a sequence exists is called
Optimum Solution of C0 and denoted by OPT (C0)(OPT when clear from context).

To make analysis easier, we define the notion of a “move”. A Contiguous Section of
white cells is a set of cells in a configuration Ci such that any two cells are connected by

4 Introduction

a Manhattan path. When a contiguous section of white cells are present, a non-white cell
adjacent to this section can freely move to any position inside the section. We call such
movements “move” and count such movements to take 1 unit of time. If contiguous sections
are not present then move and step denote the same thing. Objective of Game-0 is to clear
the Red and Blue chips in minimum number of moves. We do not care about the black chips
in any of the games. They act as obstacles and can be swapped out from either Red or Blue
Receptor.

The notions defined in Game-0 serve as the basis for defining other games that follow.
Our analysis is mainly for the next two games and results we obtain there are applicable to
Game-0 as well.

Figure 1.1 shows a configuration of a 3×5 matrix A where each cell is Red, Blue, Black
or Empty (White). The Red Receptor is adjacent to a1,1 and the Blue Receptor is adjacent to
a1,5. One of the possible next steps is the red cell located at a1,1 getting swapped out by Red
receptor and empty cell is created at a1,1 as shown in Figure 1.2.

1.2.2 Game-1

Let A = (ai j) be an m×n matrix. Each entry (or cell) ai j is assigned a color which can be
Red, Black or White(Empty). There is a single receptor for the Red cells which is placed
to the left of one of the entries of first column of the matrix. All other things are same as
Game-0, in particular, both Red and Black cells can be swapped out by the Red receptor.

Let C = {C | C is a configuration of Game-1 and C has no red cells}. An instance of
Game-1 is given by an initial configurations C0 and the game is solvable if there exists a
number k ∈N such that there exists a sequence of configurations C0, . . . ,Ci,Ci+1, . . . ,Ck such
that Ck ∈ C . The objective of Game-1 is to clear all the Red chips in minimum number of
steps.

Figure 1.3 shows a 2×3 matrix A where each cell is Red, Black or Empty (White). There
is a single Red Receptor adjacent to a2,1. One of the possible next steps is the Black cell
located at a2,1 getting swapped out by Red receptor and empty cell is created at a2,1 as shown
in Figure 1.4.

1.3 Game-0 is in PSPACE 5

Red Receptor

Figure 1.3 Instance of Game-1

Red Receptor

Figure 1.4 A possible next configuration

1.2.3 Game-2

Let A = (ai j) be an m×n matrix. Each entry (or cell) ai j is assigned a color which can be
Red, Blue or White. There are two receptors, one for Red cells and another for Blue cells.
The Red receptor is placed to the left of one of the entries of first column of the matrix while
the Blue receptor is placed to the right of one of the entries of the last column of the matrix.
A Red chip can only be swapped out by the Red receptor and a Blur chip can be swapped out
only by the Blue Receptor in one step.

Let CE = Configuration of Game-2 with all empty cells. An instance of Game-2 is given
by the initial configuration C0 and the game is solvable if there exists a number k ∈ N such
that there exists sequence of configurations C0, . . . ,Ci,Ci+1, . . . ,Ck such that Ck =CE . The
objective of Game-2 is to clear both the Red and Blue chips in minimum number of steps.

1.3 Game-0 is in PSPACE1

We show Game-0 is in PSPACE. Given a configuration Ci, the next possible configurations
depend on white cells and their location, or if a new white cell can be created by the Red/Blue
Receptor. Let the possible next configurations be Ci1,Ci2. . . . ,Cik. Given Ci and Ci j we
want to determine Ci(j+1) such that Ci(j+1) ̸∈ {Ci1,Ci2. . . . ,Ci j}. To do this we first fix an
enumeration scheme, given configurations Ci:

1. Swap the red cell out of the Red Receptor to get Ci1

2. Swap the blue cell out of the Blue Receptor to get Ci2

3. Pick the left most and top most unmarked cell. Swap the cell in order up, down, left
and right to obtain next configurations. After enumerating all possible configurations
attainable from this cell, mark the cell

1This section is based on preliminary work on the problem. The results in the next chapters make this result
infructuous

6 Introduction

4. Repeat Step 3 to get all possible configurations

Thus given Ci and Ci j, we can obtain Ci(j+1) using polynomial space.
In section 3.3 we see that optimum is upper bounded by a polynomial in size of the

input, which puts a polynomial bound on the number of configurations, say K. So we
start enumerating from C0 and follow the first line of computation for at most K steps i.e.
C0,C01,C011 . . . ,C01...1(K−1) . If all red and blue cells are removed in K steps, we stop. Note
that using only C0 and C01 we can find C02. Thus it is possible to enumerate all possible
paths on computation in polynomial space, as we have to store only the last sequence of
computation which is at most polynomial in the length of input.

1.3.1 Related Work

Problems in similar setting have been analyzed in [7] and [2].
The paper [7] defines a problem GMP1R where the input is a connected, undirected

graph G on n vertices with a mobile robot on one of the vertices labelled s. The other vertices
may contain an obstacle or may be free.The robot or the obstacle can move along the edge to
an adjacent empty vertex in one step. A target vertex t for the robot is also given. The aim
is to move from s to t in minimum number of moves. The paper shows the problem to be
NP-Complete for general graphs as well as planar graphs. A generalization of the problem
GMP1R is to GMP1kR where there are k robots and each has their destination vertices. For
k = n−1 on a grid, GMPkR reduces to 15-Puzzles Problem which is similar to the problems
discussed in this thesis. It is known that 15-Puzzles Problem on 4×4 grid admits a solution
if and only if the given permutation is an even permutation [5]. Also, the (N ×N) extension
of the 15-Puzzles Problem are known to be NP-Complete [8].

The results in [2] are more closely related to our problem. The paper studies the problem
of Motion Planning on graphs and grids. Let G be a graph and V and V ′ be two subsets of
vertices of the graphs. A move is defined as shifting a chip from v1 to v2 (v1,v2 ∈V (G)) on
a path formed by edges of G so that no intermediate vertices are occupied. The problem is
studied for the case when G is a graph or grid and when the chips are labelled or un-labelled,
giving four variants of the problem. Of these, the problem U-GRID-RP, i.e. motions planning
on grid with un-labelled chips is directly related to our work. The paper shows the problem
to be NP-Complete.

1.4 Organization of Thesis 7

1.4 Organization of Thesis

We started the problem definitions with Game-0 which helped us to define other games
in a general setting but we are mainly interested in complexity of Game-1 and Game-2.
The results in these games translate to Game-0 as well.

In Chapter 2 we study the decision and optimization versions of Game-1 i.e. the
problems D-Game-1 and O-Game-1 respectively. We study the complexity, integer linear
program and approximation algorithm for these problems. The setting and techniques
used in this chapter translate to Chapter 3 where we study integer linear program and
approximation algorithm for Game-2.

Chapter 2

Game-1

2.1 Problem

The general setting of the problem is same as defined in section 1.2.2. The input of the
problem is initial configurations C0. The objective is to clear all red cells. Next we define
the corresponding Decision and Optimization Problem. The Decision Problem asks if all
the Red cells can by cleared using the rules of the game in at most k moves, k ∈ N. The
Optimization Problem asks for the minimum number of steps to clear all the red cells.

2.1.1 Decision Problem(D-Game-1)

Given Game-1 as input C0 and integer k ∈ N, is it possible to remove all red cells in C0 in
at most k moves.

2.1.2 Optimization Problem(O-Game-1)

Given Game-1 as input C0, find the smallest positive integer k ∈ N such that in k moves,
all red cells of C0 can be removed.

2.2 D-Game-1

2.2.1 Solvability of Game-1

We first prove that Game-1 is always solvable i.e. given any configuration C0 of Game-1
it is always possible to reach a configuration CF with no red cells in finite number of steps,

10 Game-1

following the rules of the game. The reason for this is that we do not care about black
cells as they can be swapped out from Red receptor.

The algorithm to do this is trivial. If there is a red/black cell adjacent to Red Receptor
then swap it out replacing with a white cell. If this is not the case then a white cell is adjacent
to Red Receptor, say at (1,1). Consider a red cell located at position (i, j). Moving the
white cell along the path: (1,1),(1, j),(i, j),(i,1),(1,1) decreases the Manhattan Distance
of every Red cell in the path (i, j),(i,1),(1,1) by 1. Thus repeatedly cycling the white cell
at (1,1) at most (i+ j)) times brings at least one red cell adjacent to the Red Receptor.
Each such cycle takes 2× (i+ j) steps. Thus, in O(nm(n+m)2) moves we can clear all
Red cells. This is illustrated in Figure 2.1.

Red Receptor

R

W

(i, j)

(1, 1)

Figure 2.1 Cycling white cell to remove any red cell

2.2.2 Bound on Optimum

Using the algorithm in section 2.2.1 we get an upper bound on the number of steps
needed to solve the problem, i.e. an upper bound for O-Game-1. Since in maximum

2.2 D-Game-1 11

2nm(n+m)2 steps we can clear entire board, the optimum for O-Game-1 must be less
than 2nm(n+m)2.

2.2.3 D-Game-1 is in NP

Input of D-Game-1 is the initial configuration C0 and a positive integer k. We now
show D-Game-1 is in NP by making a simple certificate. The certificate consists of k′

configurations C1, . . . ,Ck′ . A deterministic Turing machine checks:

1. k′ should be at most k i.e. k′ ≤ k

2. Ci+1 can be obtained from Ci following the rules of the game

3. the configuration Ck′ has no Red cells

Clearly, the certificate is polynomial in size of input with k configurations each of size nm.
Checking if Ci+1 can be obtained from Ci following the rules of the game can be done in
O(nm) time. Each move of the game consists of either swapping out a Red/Black cell
from the Red receptor or swapping one of the White cells with its adjacent cell or moving
a Red/Black chip in contiguous section of white cells. There are at most 4 adjacent cell
of each white cell and at most nm white cells. Other two checks can also be done in
polynomial time. Thus the certificate is polynomial in size of input and can be verified in
polynomial time.

2.2.4 D-Game-1 is NP-Complete

We have already shown that D-Game-1 is in NP. Next we show that it is NP-Hard. We
do this by reducing Rectilinear Steiner Tree to D-Game-1. This proof closely follows
[2].

The Rectilinear Steiner Tree (R-Steiner) is a Decision Problem defined as follows.
We are given n points in R2 and the aim is to find a tree, consisting of only horizontal and
vertical segments (in R2), that connects all points of length at most k. We can assume
that points have integer coordinates and further we can assume that all coordinates are
given in unary since R-Steiner is strongly NP-Hard [3]

Consider an instance of R-Steiner i.e. a set of n points {p1, . . . , pn} with integer
coordinated in R2 such that p1 is the left-most point. Let δ be the smallest axis parallel
rectangle enclosing all points. Now we construct Game-1 corresponding to given instance of
R-Steiner. We map δ to a board of same dimensions where corresponding to each point pi

we put a red cell, the remaining cells are colored black. The Red Receptor is placed adjacent

12 Game-1

to p1. An instance of R-Steiner is shown in Figure 2.2 and Figure 2.3 which is taken from [9].

p1

Figure 2.2 Set of points in a grid

p1

Figure 2.3 RST corresponding to Fig-
ure 2.2

The corresponding reduction to Game-1 is shown in Figure 2.4.

B B B B

B B B

B B

B B

B

B B

B

B

R

R

R

R

Red Receptor

Figure 2.4 Reduction from Fig 2.2

Theorem 2.2.1. There is a rectilinear Steiner tree of length at most k if and only if the
corresponding Game-1 can be solves in at most k moves.

2.3 O-Game-1 13

Proof 2.2.1. If there is a rectilinear Steiner tree of length k, then first remove p1 in one move.
This creates a white cell and in next move another Red/Black square can be removed along
the tree and the process continues inductively. As our construction ensures the number of
Red/Black squares to be exactly equal to the length of rectilinear Steiner tree, we can remove
all Red cells in at exactly k steps.

Conversely, the minimum number of steps that pi must take to reach the Red Receptor is
the Manhattan distance between pi and p1. There are several paths that can be taken by pi to
reach the Red Receptor. Let Vi denote the set coordinates taken by pi in the optimum solution.
The union V =

⋃n
i Vi are all the squares that move. |V | is minimum when vi’s follow Steiner

tree. This is because each vi leaves the board from v1 so V represents connected graph say G.
Further we can remove loops while preserving path length of all vi thus giving a tree. The
length of the tree which corresponds to the number of moves of the game is minimum when
the length of the tree is minimum. This happens when V represents (rectilinear) Steiner tree.

We have proved D-Game-1 is NP-Complete. Now we look at the optimization version
of the problem O-Game-1.

2.3 O-Game-1

2.3.1 Integer Linear Program

In this section we give an ILP to solve the problem. Our goal here is to minimize the
number of steps.

2.3.2 Variables

Let us first define some sets and variables.

1. I = {1,2,3, . . . ,mn}. I is the set of cells i.e. I is labeling of cells of the board. This
is illustrated in Figure 2.5

14 Game-1

Red Receptor 1 2 3 4

5 6 7 8

9 10 11 12

Figure 2.5 Labeling of tiles of the game

2. R = {1,2, . . . ,r} is the set of Red cells

3. W = {1,2, . . . ,w} is the set of White cells

4. K = {1,2, . . . ,k} is the set of Black cells

5. T is total time for which we allow the game to run which should an upper-bound
on OPT. We obtained an upper bound on OPT in section 2.2.2. Thus we set
T = {1,2,3, . . . ,2mn(m+n)2}

6. PosRed(r, t) is position of Red cell labeled r at time t

7. PosWhite(w, t) is position of White cell labeled w at time t

8. PosBlack(k, t) is position of Black cell labeled r at time t

9. U pWhite(w, t) = 1 if wth white cell moves up at time t. It is 0 otherwise

10. DownWhite(w, t) = 1 if wth white cell moves down at time t. It is 0 otherwise

11. Le f tWhite(w, t) = 1 if wth white cell moves left at time t. It is 0 otherwise

12. RightWhite(w, t) = 1 if wth white cell moves right at time t. It is 0 otherwise

2.3 O-Game-1 15

13. x(w, t) is the x-coordinate of white cell w at time t

14. y(w, t) is the y-coordinate of white cell w at time t

15. Z(x, t) = 1 if some cell x (which may be red/black/white) moves right at time t. It is
0 otherwise

2.3.3 Constraints

1. We first set the Pos variables according to the initial board configuration: PosRed(r,1),
PosBlack(k,1) and PosWhite(w,1) for all red, black and white chips. Also in this
step we initialize the x and y coordinated of each white chip.

2. We set constraints relating coordinates and position on board for each white chip w
and at each time t:

PosWhite(w, t) = x(w, t)+(n× y(w, t))+1 ∀w ∈W ∀t ∈ T

3. Set final configuration:

PosWhite(w,T)≥ 1 ∀w ∈W

PosRed(r,T) = 1 ∀r ∈ R

These equations describe the final state of the game we want. We want all the red
cells to be at cell 1 when game ends. This is enforced by PosRed(r,T) = 1. We put
no constrains on the final position of Black cells.

4. Each white cell is allowed only one move:

U pWhite(w, t)+DownWhite(w, t)+Le f tWhite(w, t)+RightWhite(w, t) = Z(w, t)

. This should hold for all white cells w ∈W and for all time t ∈ T

5. Only one white cell moves in each step:

∑
w

Z(w, t) = 1 ∀w ∈W ∀t ∈ T

6. Update the position of all white cells after each step:

PosWhite(w, t+1)=PosWhite(w, t)−(n×U pWhite(w, t))+(n×DownWhite(w, t))−Le f tWhite(w, t)+RightWhite(w, t)

16 Game-1

This should hold for all white cells w ∈W and for all time t ∈ (T \{2mn(n+m)2}).
This ensures proper updates for all white cells at all time steps.

The above expression tells us that if the white cell moves left or right then we just
need to update its position by subtracting or adding 1, respectively. If the cell moves
up or down we do just the same thing but take into account the structure of the
board, which adds a factor of n.

7. Restrictions on movement of white cells:

(a) White square at bottom edge:

PosWhite(w, t)+n×DownWhite(w, t)≤ mn

(b) White square at top edge:

PosWhite(w, t)−n×U pWhite(w, t)≥ 1

(c) White square at left edge:

x(w, t)−Le f tWhite(w, t)≥ 0

(d) White square at right edge:

x(w, t)+RightWhite(w, t)≥ n−1

8. The cell 1 always has α cells on it where α is some number larger than length of
Steiner tree of red cells and smaller than nm. Rest all cells have one chip. Thus the
following should hold at all time t ∈ T :

∑
w∈W

PosWhite(w, t)+ ∑
r∈R

PosRed(r, t)+ ∑
k∈K

PosBlack(k, t) =

(α ×1)+2+ · · ·+mn

This step ensures every cell is assigned a position at all time t.

9. Next we ensure that a Red or Black cell moves each time a white cell moves:

∑
w∈W

Z(w, t) = ∑
r∈R

Z(r, t)+ ∑
k∈K

Z(k, t)

2.4 O-Game-1 is in PTAS 17

Above should be true at all time t ∈ T

10. Also we ensure that if white cell does not move then red/blue cell will also not move:

PosRed(r, t)−PosRed(r, t +1)+nZ(r, t)≥ 0 ∀r ∈ R ∀t ∈ T

PosRed(r, t)−PosRed(r, t +1)−nZ(r, t)≤ 0 ∀r ∈ R ∀t ∈ T

Similarly:

PosBlack(k, t)−PosBlack(k, t +1)+nZ(k, t)≥ 0 ∀k ∈ K ∀t ∈ T

PosBlack(k, t)−PosBlack(k, t +1)−nZ(k, t)≤ 0 ∀k ∈ K ∀t ∈ T

11. Putting bounds on variables:

1 ≤ PosWhite(w, t)≤ mn ∀w ∈W ∀t ∈ T

1 ≤ PosWhite(k, t)≤ mn ∀k ∈ K ∀t ∈ T

1 ≤ PosWhite(r, t)≤ mn ∀r ∈ R ∀t ∈ T

1 ≤ x(w, t)≤ n ∀w ∈W ∀t ∈ T

1 ≤ y(w, t)≤ m ∀w ∈W ∀t ∈ T

2.3.4 Objective Function

Minimize the following which is the total number of steps:

∑
t∈T

∑
w∈W

Z(w, t)

2.4 O-Game-1 is in PTAS

Rectilinear Steiner Tree problem is strongly NP-Hard. A FPTAS algorithm for O-Game-1
would imply P = NP. Thus we look for PTAS algorithm which directly follows from [1]
and the reduction described in section 2.2.4.

18 Game-1

2.5 Using Game-1 for Biological Cell Sorting

Biological cell sorting in concerned with separation of desired cells which occur in low
concentration. Game-1 can be used as process to increases the concentration of desired
cells (red cells).

Chapter 3

Game-2

3.1 Problem

The general setting of the problem is same as defined in 1.2.3. The input of the problem
is initial configurations C0. The objective is to clear all red and blue cells. We note that
the red cells can not be swapped out by the Blue Receptor and the blue cells cant be
swapped out by Red Receptor. Next we define the corresponding Decision and Optimization
Problems. The Decision Problem asks if all the red and blue cells can by cleared using
the rules of the game in at most k moves, k ∈ N. The Optimization Problem asks for the
minimum number of steps to clear all the red and blue cells. Let CE = Configuration of
Game-2 with all empty cells.

3.1.1 Decision Problem(D-Game-2)

Given Game-2 as input C0 and integer k ∈ N, is C0 solvable for CE in at most k moves.

3.1.2 Optimization Problem(O-Game-2)

Given Game-2 as input C0, find the smallest positive integer k ∈ N such that the configu-
ration C0 is solvable for CE in k moves.

20 Game-2

3.2 D-Game-2

3.2.1 Solvability of Game-2

We first prove that Game-1 is solvable if and only if there is a White cell in C0 or a white
cell can be created in C1 by swapping from Red/Blue Receptor.

If there is no white cell in C0 but a white cell can be created in C1, then the proof is
same as that of Game-1. If there is a red cell adjacent to Red Receptor or a blue cell
adjacent to Blue Receptor then swap it out replacing with a white cell. This created a White
cell at (0,0) (or at (m,n)). Consider a Red cell located at position (i, j). Moving the white
cell along the path: (0,0),(0, j),(i, j),(i,0),(0,0) decreases the Manhattan Distance of
every Red cell in the path (i, j),(i,0),(0,0) by 1. Thus in at most (2(i+ j)× (i+ j)) steps
we can bring at least one Red cell adjacent to the Red Receptor. Clearly, in O(nm(n+m)2)

moves we can clear all red cells. This is illustrated in Figure 2.1. Same argument holds for
blue cells.

On the other hand if a white cell can’t be created at Red/Blue Receptor but C0 has a
white cell, then any Red/Blue cell can be removed. The argument is similar to the above
argument. This is illustrated in Figure 3.1

Red Receptor

Blue Receptor

B R

W

Figure 3.1 Solving Game-2 using single white cell

On the other hand, if there are no white cells and no white cells can be created in the
next move, then there are no legal moves according to the rules of the game.

3.2 D-Game-2 21

3.2.2 D-Game-2 is in NP

Input of D-Game-1 is the initial configuration C0 and a positive integer k. We now
show D-Game-1 is in NP by making a simple certificate. The certificate consists of k′

configurations C1, . . . ,Ck′ . A deterministic Turing machine checks:

1. k′ ≤ k

2. Ci+1 can be obtained from Ci following the rules of the game

3. The configuration C′
k has only White cells i.e. C′

k is CE

Clearly, the certificate is polynomial in size of input with k′ configurations each of size nm.
Checking if Ci+1 can be obtained from Ci following the rules of the game can be done in
O(nm) time. Each move of the game consists of either swapping out a red or blue cell
from the Red receptor or Blue Receptor respectively or swapping one of the White cells
with its adjacent cell or moving a Red or Blue chip in contiguous section of white cells.
There are at most 4 adjacent cell of each white cell and at most nm white cells. Thus the
poly-size certificate is verifiable in poly-time.

3.2.3 Integer Linear Program

In this section we give an ILP to solve the problem. Our goal here is to minimize the
number of steps.

3.2.4 Variables

Let us first define some sets and variables.

1. I = {1,2,3, . . . ,mn}. I is the set of cells i.e. I is labeling of cells of the board. This
is illustrated in Figure 3.2

22 Game-2

Red Receptor 1 2 3 4

5 6 7 8

9 10 11 12 Blue Receptor

Figure 3.2 Labeling of the tiles

2. R = {1,2, . . . ,r} is the set of Red cells

3. W = {1,2, . . . ,w} is the set of White cells

4. B = {1,2, . . . ,b} is the set of Blue cells

5. T is total time given which is an upper-bound on OPT. Thus we set T = {1,2,3, . . . ,4n2+

nm(n+m)}. The upper bound used here, (4n2 +nm(n+m)) is derived in section
3.3

6. PosRed(r, t) is position of Red cell labeled r at time t

7. PosWhite(w, t) is position of White cell labeled w at time t

8. PosBlue(b, t) is position of Blue cell labeled b at time t

9. U pWhite(w, t) = 1 if wth white cell moves up at time t. It is 0 otherwise

10. DownWhite(w, t) = 1 if wth white cell moves down at time t. It is 0 otherwise

11. Le f tWhite(w, t) = 1 if wth white cell moves left at time t. It is 0 otherwise

12. RightWhite(w, t) = 1 if wth white cell moves right at time t. It is 0 otherwise

13. x(w, t) is the x-coordinate of white cell w at time t

14. y(w, t) is the y-coordinate of white cell w at time t

3.2 D-Game-2 23

15. Z(x, t) = 1 if some cell x (which may be red/blue/white) moves right at time t. It is
0 otherwise

3.2.5 Constraints

1. We first set the Pos variables according to the initial board configuration: PosRed(r,1),
PosBlue(b,1) and PosWhite(w,1) for all red, black and white chips. Also in this step
we initialize the x and y coordinated of each white chip.

2. We set constraints relating coordinates and position on board for each white chip w
and at each time t:

PosWhite(w, t) = x(w, t)+(n× y(w, t))+1 ∀w ∈W ∀t ∈ T

3. Set final configuration:

2 ≤ PosWhite(w,T)≤ mn−1 ∀w ∈W

PosRed(r,T) = 1 ∀r ∈ R

PosBlue(b,T) = mn ∀b ∈ B

These equations describe the final state of the game we want. We want all white
chips to be in the board, of which |R| were initially places at position 1 and |B| were
initially placed at position mn. This is enforced by the first constraint. We want all
the Red cells to be at cell 1 when game ends and all Blue cells to be at position mn.
This is enforced by the next two constraints.

4. Each white cell is allowed only one move:

U pWhite(w, t)+DownWhite(w, t)+Le f tWhite(w, t)+RIghtWhite(w, t) = Z(w, t)

. This should hold for all white cells w ∈W and for all time t ∈ T

5. Only one white cell moves in each step:

∑
w

Z(w, t) = 1 ∀w ∈W ∀t ∈ T

6. Update the position of all white cells after each step:

PosWhite(w, t+1)=PosWhite(w, t)−(n×U pWhite(w, t))+(n×DownWhite(w, t))−Le f tWhite(w, t)+RightWhite(w, t)

24 Game-2

This should hold for all white cells w ∈W and for all time t ∈ (T \{4n2+nm(n+m)}).
This ensures proper updates for all white cells at all time steps except the last one.

The above expression tells us that if the white cell moves left or right then we just
need to update its position by subtracting or adding 1, respectively. If the cell moves
up or down we do just the same thing but take into account the structure of the
board, which adds a factor of n.

7. Restrictions on movement of white cells:

(a) White square at bottom edge:

PosWhite(w, t)+n×DownWhite(w, t)≤ mn

(b) White square at top edge:

PosWhite(w, t)−n×U pWhite(w, t)≥ 1

(c) White square at left edge:

x(w, t)−Le f tWhite(w, t)≥ 0

(d) White square at right edge:

x(w, t)+RightWhite(w, t)≥ n−1

8. The cell 1 always has |R|= r cells on it and the cell mn always has |B|= b cells on
it. Rest all cells have one chip. Thus the following should hold at all time t ∈ T :

∑
w∈W

PosWhite(w, t)+ ∑
r∈R

PosRed(r, t)+ ∑
k∈K

PosBlue(b, t) =

(r×1)+2+ · · ·+(b×mn)

This step ensures every cell is assigned a position at all time t and tiles 1 and mn
have r and b chips respectively.

9. Next we ensure that a Red or Blue cell moves each time a white cell moves:

∑
w∈W

Z(w, t) = ∑
r∈R

Z(r, t)+ ∑
k∈K

Z(k, t)

3.2 D-Game-2 25

Above should be true at all time t ∈ T

10. Also we ensure that if white cell does not move then red/blue cell will also not move:

PosRed(r, t)−PosRed(r, t +1)+nZ(r, t)≥ 0 ∀r ∈ R ∀t ∈ T

PosRed(r, t)−PosRed(r, t +1)−nZ(r, t)≤ 0 ∀r ∈ R ∀t ∈ T

Similarly:

PosBlue(b, t)−PosBlue(b, t +1)+nZ(b, t)≥ 0 ∀k ∈ K ∀t ∈ T

PosBlue(b, t)−PosBlue(b, t +1)−nZ(b, t)≤ 0 ∀k ∈ K ∀t ∈ T

11. We make sure that any blue chip ever goes to cell 1:

PosBlue(b, t)≥ 2

Also any red chip should never goes to cell n:

PosRed(r, t)≤ mn−1

12. Putting bounds on variables:

1 ≤ PosWhite(w, t)≤ mn ∀w ∈W ∀t ∈ T

1 ≤ PosWhite(k, t)≤ mn ∀k ∈ K ∀t ∈ T

1 ≤ PosWhite(r, t)≤ mn ∀r ∈ R ∀t ∈ T

1 ≤ x(w, t)≤ n ∀w ∈W ∀t ∈ T

1 ≤ y(w, t)≤ m ∀w ∈W ∀t ∈ T

3.2.6 Objective Function

We want to minimize the total number of steps thus we minimize the following:

∑
t∈T

∑
w∈W

Z(w, t)

26 Game-2

3.3 An Approximation Algorithm for O-Game-2

In this section we give a simple approximation algorithm for the problem. The algorithm is
based on the idea of clearing first two rows of the given instance. Let us assume that C0

is a m×n matrix and assume we are given a white cell at (1,1). Consider one rotation
of the white cell following the path (1,1),(1,n),(2,1),(2,n),(1,n),(1,1) as illustrated in
Figure 3.3. In the setting shown in the figure, how many steps does it take to clear the first
row? In 2n steps the white cell is back to position (1,1). In these moves every cell in the
the first row moves one position to right and every cell in second row moves one position
to left. At any time, if a red cell is adjacent to Red Receptor we swap it out and if any
blue cell is adjacent to Blue Receptor, we swap it out. Thus, repeating the cycle 2n times
removes all the red and blue cells in both first and second rows. This takes 4n2 steps.

Red Receptor Blue Receptor

Figure 3.3 Clearing the first two rows

Next we look at lower and upper bound on optimum. The minimum number of steps
that a cell must move is the the Manhattan Distance of the cell from the receptor of its
color. Thus a trivial lower bound on optimum (OPT) is O(nm(n+m)). In the algorithm
described above, it takes 4n2 steps to clear the first two rows. After clearing these rows, all
other cells can follow one of their Manhattan Paths which is optimum. This will require
further O(nm(n+m)). Thus we get the following bounds on OPT , for some constants k1

and k2:

3.4 Using Game-2 for Biological Cell Sorting 27

k1(nm(n+m))≤ OPT ≤ 4n2 + k2(nm(n+m))

If we assume C0 is n×n board then we get, for some constants k′1 and k′2:

k′1n3 ≤ OPT ≤ 4n2 + k′2n3

Thus using the algorithm described above we get O(1+
1
n
) approximation of the

optimum. If we consider n×m board then we get O

(
1+

1

m(1+
m
n
)

)
approximation of

optimum.

3.4 Using Game-2 for Biological Cell Sorting

This game is directly related to the problem we want solve as it is related to removing
red and blue chips which can correspond to desired and undesired cells. We note that our
approximation algorithm performs better when n i.e. number of columns of LoC is smaller
than m i.e. number of rows of LoC. This also suggests a design paradigm for LoC.

Bibliography

[1] Arora, S. (1998). Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the ACM (JACM), 45(5):753–782.

[2] Călinescu, G., Dumitrescu, A., and Pach, J. (2008). Reconfigurations in graphs and
grids. SIAM Journal on Discrete Mathematics, 22(1):124–138.

[3] Garey, M. R. and Johnson, D. S. (2002). Computers and intractability, volume 29. wh
freeman New York.

[4] Ghosh, A., Shah, R., Bishnu, A., and Bhattacharya, B. B. (2009). Algorithms for
biological cell sorting with a lab-on-a-chip. In Nature & Biologically Inspired Computing,
2009. NaBIC 2009. World Congress on, pages 104–109. IEEE.

[5] Johnson, W. W. and Story, W. E. (1879). Notes on the “15” puzzle. American Journal
of Mathematics, 2(4):397–404.

[6] Medoro, G., Manaresi, N., Tartagni, M., and Guerrieri, R. (2000). Cmos-only sensors
and manipulators for microorganisms. In Technical Digest - International Electron Devices
Meeting, pages 415 – 418.

[7] Papadimitriou, C. H., Raghavan, P., Sudan, M., and Tamaki, H. (1994). Motion
planning on a graph. In Foundations of Computer Science, 1994 Proceedings., 35th
Annual Symposium on, pages 511–520. IEEE.

[8] Ratner, D. and Warmuth, M. (1990). The (n2-1)-puzzle and related relocation problems.
J. Symb. Comput., 10(2):111–137.

[9] Robins, G. and Zelikovsky, A. (2008). Minimum steiner tree construction. In Handbook
of Algorithms for Physical Design Automation.

	Contents
	List of Figures
	1 Introduction
	1.1 Biological cell sorting and Lab-on-Chip
	1.2 Problem Definition
	1.2.1 Game-0
	1.2.2 Game-1
	1.2.3 Game-2

	1.3 Game-0 is in PSPACE
	1.3.1 Related Work

	1.4 Organization of Thesis

	2 Game-1
	2.1 Problem
	2.1.1 Decision Problem(D-Game-1)
	2.1.2 Optimization Problem(O-Game-1)

	2.2 D-Game-1
	2.2.1 Solvability of Game-1
	2.2.2 Bound on Optimum
	2.2.3 D-Game-1 is in NP
	2.2.4 D-Game-1 is NP-Complete

	2.3 O-Game-1
	2.3.1 Integer Linear Program
	2.3.2 Variables
	2.3.3 Constraints
	2.3.4 Objective Function

	2.4 O-Game-1 is in PTAS
	2.5 Using Game-1 for Biological Cell Sorting

	3 Game-2
	3.1 Problem
	3.1.1 Decision Problem(D-Game-2)
	3.1.2 Optimization Problem(O-Game-2)

	3.2 D-Game-2
	3.2.1 Solvability of Game-2
	3.2.2 D-Game-2 is in NP
	3.2.3 Integer Linear Program
	3.2.4 Variables
	3.2.5 Constraints
	3.2.6 Objective Function

	3.3 An Approximation Algorithm for O-Game-2
	3.4 Using Game-2 for Biological Cell Sorting

	Bibliography

