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Abstract

One of the consequences of No-Cloning[1] theorem is that we cannot identify a given

state drawn from a set of non-orthogonal states with certainity using a single copy.

The Unambiguous Quantum State Discrimination(UQSD) deals with number of copies

required so as to identify such a state drawn from a set of non-orthogonal states though

not certainly but with some probability. The UQSD between linearly independent states

has been solved by A.Chefles[5] and later he solved UQSD between linearly dependent

states[6].

We have taken a few examples and shown that for these examples the number of copies

required for UQSD between linearly dependent states is far less than the one obtained

by A.Chefles and have shown that if the set of states can be partitioned into sets of

linearly independent states then from each partition a probable candidate for the state

whose identity is under question can be obtained. It has been seen that this method

works atleast as good as the one proposed by Anthony Chefles. Also, we deduced the

condition on the size of partitions when our method would outperform the method given

by A.Chefles.

Keywords: Unambiguous,State Discrimination, Linearly independent, Linearly depen-

dent.
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Chapter 1

Introduction

1.1 The No-Cloning Theorem

The quantum No-Cloning[1] theorem tells us − "There doesn’t exist a universal cloning

machine" − one which can make copies of a given arbitrary state. It also tells us that if

at all there exists a cloning machine that can clone any given state from a given set of

states then these set of states are mutually orthogonal.

|ψ〉

|B〉

|ψ〉

|ψ〉
Cloning Machine

Figure 1.1: A Cloning Machine

Proof. ∗ Let us assume a cloning machine as described in above figure exists then it

corresponds to a unitary operator UCM that takes two distinct states |ψ〉 and |φ〉 along

with a blank state |B〉 each time such that:

UCM |ψ〉|B〉 = |ψ〉|ψ〉 (1.1)

UCM |φ〉|B〉 = |φ〉|φ〉 (1.2)

∗Even though the proof presented here deals with just pure states, the actual proof is a generalized
one.

1



1.2. Consequences of No-Cloning Theorem 2

Taking inner product between (1.1) and (1.2) we have 〈φ|ψ〉 = 〈φ|ψ〉2

⇒ 〈φ|ψ〉 = 0 which means existence of such a unitary is possible for mutually orthogonal

states only.

So, even though there cannot exist a universal cloning machine but there exists a spe-

cialized cloning machine, the speciality being the set of states which this machine can

clone are mutually orthogonal to one other.

1.2 Consequences of No-Cloning Theorem

The consequences of No-Cloning theorem are profound. Few of them are as follows:

• Non-Orthogonal states and Perfect Distingushability

The immediate concequence of No Cloning Theorem is the limitation on the perfect

distinguishability of non-orthogonal states. That is, given a state from a set of non-

orthogonal states one can’t make a perfect copy of it.

• Error Correction

The classical error correction techniques cannot be applied in quantum computa-

tion as copying an arbitrary qubit is not possible.

• In Quantum Information Processing

In quantum cryptography, this is the back bone in generating secret random key[2].

The No-Cloning theorem supports many other theorems like No-Communication theorem[3][4]

etc.,

1.3 Unambiguous Quantum State Discrimination

As it was discussed in the earlier section, No-Cloning theorem puts a restriction on

perfect distinguishability of non-orthogonal states. If Alice and Bob follow the BB84[2]

protocol and are sharing a random secret key and Eve wants to eavesdrop on their

communication, she has to conclude about the state that is being sent by Alice to Bob

but with less disturbance to the system and at the same time achieving a high fidelity.
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Even though we know that − a single copy of unknown given state from a set of non-

orthogonal states cannot be identified perfectly, an interesting question that now arises

is − "How many copies of a unknown state (taken from a set of non-orthogonal states)

are required inorder to identify it perfectly?". This problem is dubbed as Unambiguous

Quantum State Discrimination.

Unambiguous Quantum State Discrimination(UQSD) can be stated as
"Number of copies of an unknown state |ψ〉i taken from a set of N distinct

non-orthogonal states {|ψ〉j}Nj=1 required to perfectly identify it.†"

The next chapter deals with the solution to the UQSD problem given in the past.

†The discussion from now onwards is only for pure states



Chapter 2

Solution to UQSD

The problem of UQSD has been solved by Anthony Chefles in two stages. First the

UQSD problem was solved for linearly independent states in 1998[5] and later in 2001[6],

A.Chefles again showed how UQSD between linearly dependent states case can be con-

verted to linearly independent case thus solving the UQSD problem.

2.1 UQSD between Linearly Independent States

Let us assume the N states under consideration of UQSD be {|ψ〉i}Ni=1. It is shown[5]

that we can construct N+1 POVM operators {Mi}N+1
i=1 where for each |ψ〉i there is corre-

spondingMi formed by taking outer product of some |φ〉i, that isMi = |φ〉ii〈φ|, which is

perpendicular to the sub-space spanned by the rest of the states {|ψ〉1, |ψ〉2,...,|ψ〉i−1, |ψ〉i+1,

|ψ〉i+2, ..., |ψ〉N}. The MN+1 operator is choosen so that ΣN+1
i=1 Mi = I.

Now, when the given unknown state is measured and if the measurement results in one

of the {Mi}Ni=1, sayMj then we conclude |ψ〉j is the state given but if we getMN+1 then

the measurement result is inconclusive and we repeat the experiment again.

4



2.2. UQSD between Linearly Dependent States 5

The following algorithm describes the above discussion:

Algorithm 1 UQSD between Linearly Independent States
1: S = {|ψ〉i}Ni=1

2: procedure Create POVM Operators(S)
3: Set O = {}
4: for each |ψ〉j ∈ S do
5: Find the set of orthogonal states for the sub-space spanned by the rest.
6: Remove the components of all these orthogonal states from |ψ〉j
7: Normalize the reminder of |ψ〉j . This is |φ〉j .
8: Add Mj = αj |φ〉jj〈φ| to O, αj is a positive real constant.
9: end for

10: Now construct MN+1 = I − ΣN
i=1Mi.

11: Add MN+1 to O
12: Determine αi’s so as to minimize the expectation of inconclusive result, MN+1

13: return O
14: end procedure
15: Now perform measurement on given |ψ〉j using the POVM operator set O.
16: if the measure result is Mj and j 6= N + 1 then
17: |ψ〉j is the given state
18: else repeat Step-15
19: end if

2.2 UQSD between Linearly Dependent States

Let us assume the N states under consideration of UQSD be {|ψ〉i}Ni=1 and they span

a dimension D (< N). It was shown in [5] that only linearly independent states can be

unambiguously discriminated. So, to apply a POVM approach described in the previous

section we need to find a way to make these states linearly independent.

A.Chefles showed[6] that if the N states {|ψ〉i}Ni=1 that span a dimension D are linearly

dependent then the states {|ψ〉⊗N−D+1
i }Ni=1 are linearly independent. So, we construct

POVM operators for {|ψ〉⊗N−D+1
i }Ni=1 and demand for N − D + 1 copies of unknown

state say |ψ〉j and perform measurement on |ψ〉⊗N−D+1
j and conclude about the unknown

state when the measurement result is not inconclusive.

Algorithm 2 UQSD between Linearly Dependent States
1: S = {|ψ〉⊗N−D+1

i }Ni=1

2: Create POVM Operators(S)
3: Now perform measurement on |ψ〉⊗N−D+1

j using the POVM operator set O.
4: if the measure result is Mj and j 6= N + 1 then
5: |ψ〉j is the given state
6: else repeat Step-3
7: end if
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2.3 Related Works

The various recent works related to Quantum State Discrimination are:

• Minimum Error State Discrimination

Here[7] inconclusive results are not allowed and error in decision about the identity

of state should be minimum.

• Operator Discrimination Problem

Here, instead of state discrimination, looking at the output state we have to identify

the operator from a set of operators which has acted upon the input state.[8] [9]

Various other works on the mixed states and optimal distinguishability[10] are done.

2.4 Our Contribution

The UQSD between linearly independent states has been extensively studied and has

been used in varied applications. The linearly dependent case was tackled just by con-

verting the given set of states into linearly independent states. This doesn’t take into

account the arrangement of given set of states and identifies the states using exactly

N −D+ 1 copies. We have proposed a new approach for UQSD between linearly depen-

dent states that takes the given set of states into account and identifies the state under

question in atmost N −D + 1 copies.



Chapter 3

UQSD − A new approach

3.1 Overview

We have seen that the problem of UQSD between linearly independent states has been

elegantly solved by the use of POVM measurement. Given just a single copy, one can tell

with certain probability what the given state is. Also, optimization of this probability

given the apriori probabilities of the set of states has been done.

When it comes to the UQSD between linearly dependent states the solution offered

by Anthony Chefles[6] is very simple.If we take N − D + 1 copies of the states then

the resulting states are linearly independent and thus we can employ POVM based

measurement technique to identify |X〉 unambiguously. It is a big jump from one copy

in the case of linearly independent states to N − D + 1 copies in the case of linearly

dependent states.

The question that comes right away is − "What if the given set of states under consider-

ation have in them several different sets of linearly independent states. Can’t we employ

some technique to use just a single copy for each of these sets and conclude something?"

− We found that the this infact could be done.

7



3.2. A better partitioning of given set of states 8

3.2 A better partitioning of given set of states

Our approach of UQSD between linearly dependent states greatly relies on partitioning

the given set of states in groups where each group is linearly independent.

Trivial Partition: A trivial partitioning scheme is to pair up the states to form (atmost)

bN2 c+ 1 partitions in total.

Algorithm 3 Trivial Partitioning
1: S = {|ψ〉i}Ni=1

2: procedure Trivial Partition(S, Part)
3: while S is not empty do
4: if |S| = 1 then
5: Add S to Part
6: return Part
7: end if
8: Make a partition P of D and add two states drawn from S to it.
9: Add P to Part

10: Set S = S - P
11: end while
12: end procedure
13: return Part

Example: A trivial Partitioning:

Let the given set of states be:

{|0〉, |1〉, |2〉, |0〉+|1〉√
2
, |1〉+|2〉√

2
, |0〉+|2〉√

2
, |0〉−|1〉√

2
, |1〉−|2〉√

2
}

Here we see that the set of states span a dimension of D = 3. and N = 8.The pratition

is as follows:

P1 = {|0〉, |1〉} (3.1)

P2 = {|2〉, |0〉+ |1〉√
2
} (3.2)

P3 = {|1〉+ |2〉√
2

,
|0〉+ |2〉√

2
} (3.3)

P4 = {|0〉 − |1〉√
2

,
|1〉 − |2〉√

2
} (3.4)

It will be seen later that trivial partitions cannot improve the number of copies required

for the UQSD. A better partitioning scheme is discussed next.
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Before going into the technique let us prove something.

Lemma 3.1. If the dimension spanned by a set of states is D then the dimension D1

spanned by the set of states after removing any D linearly independent states from the

original set cannot be greater than D

Proof. If D1 > D then the dimension of the original set would have been D1 by choosing

these D1 linearly independent states at the first place which contradicts the fact that

the original set of states span a dimension D Thus, D1 ≤ D

Now, coming to the scheme, first make D linearly independent states as the first parti-

tion. Now, find the dimension spanned by the remaning states. Let us call it D1. Now

if D1 > 2 then remove D1 linearly independent states in the reminder states and make

them into a new partition and continue the same process until Di = 2 or we are left with

only one or no state in our hand. When Di = 2 then by Lemma 3.1 we know only size-2

partitions can be made thus we pair up those remaining set of states.

Algorithm 4 Better partitioning
1: S = {|ψ〉i}Ni=1

2: procedure Partition(S, Part)
3: while S is not empty do
4: Set D to the dimension of the space spanned by S
5: if D = 2 then
6: P = Trivial Partition(S)
7: Add P to Part
8: return Part
9: end if

10: Make a partition P of D linearly independent states from S
11: Add P to Part
12: Set S = S − P
13: end while
14: end procedure
15: return Part
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Example: A better partioning

For the same states taken in previous example a better partitioning schemes results in

following partitions:

P1 = {|0〉, |1〉, |2〉} (3.5)

P2 = {|0〉+ |1〉√
2

,
|1〉+ |2〉√

2
,
|0〉+ |2〉√

2
} (3.6)

P3 = {|0〉 − |1〉√
2

,
|1〉 − |2〉√

2
} (3.7)

3.3 Motivating Example

Now let us first take an example to see that we can do better than N −D + 1 copies.

Example

Consider {Ei}ki=1 represent a collection of set of eigen states of k full rank operators

that span the same hilbert space HD of dimension D and also assume that all

the states in this collection are distinct.Now given a unknown state |X〉 from this

collection, we would like to identify |X〉

We have number of states in the collection, N = kD. Also, we can partition

these N states into k sets each of size D where each set is nothing but one of the Ei and

thus are linearly independent infact are orthogonal to one other with in the set.

We identify |X〉 in a two step process. The unknown state |X〉 must have come

from one of these k−partitions. First we try to pickout one state from each partition

which could possibly be our |X〉 and in the second step identify which among these

possible candidates is actually our |X〉.

To accomplish step 1, i.e., to get possible candidates from each partition, we

ask for k copies of the unknown state |X〉. We perform a measurement on each copy

with k different measurement sets where the measurement sets are drawn from the states

corresponding to each partition.

When measured with the measurement operators set drawn from the partition

to which |X〉 actually belongs will result in outcome |X〉 where as in the remaining
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partitions the outcome results in some |Xprobable〉 which is not orthogonal to |X〉 in that

corresponding partition.

Thus after the first step we have k distinct states among which one is our

unknown state |X〉. These k states shall span atleast a dimension of 2. Hence, to

identify |X〉 we need k− 1 copies it. In total we need 2k− 1 copies but we have k = N
D .

Thus total number of copies required is 2N
D − 1. The number of copies required actually

is N −D + 1 if the property satisfied by these states is not utilized.

3.4 Remarks on the result of motivation example

We need the condition on D such that 2N
D − 1 ≤ N −D + 1

⇒ 2N −D ≤ ND −D2 +D (3.8)

⇒ D2 −D(N + 2) + 2N ≤ 0 (3.9)

which gives the solution for D as 2 ≤ D ≤ N where equality holds in the edges i.e., when

D = 2 and D = N . Thus for any 2 < D < N the above method is effective.

Now consider the savings S in number of copies:

S = (N −D + 1)− (
2N

D
− 1) (3.10)

Differentiating S w.r.t D and setting to 0 we get D =
√

2N which maximizes the number

of savings. and corresponding savings,Smax is:

Smax = (
√
N −

√
2)2 (3.11)

So, savings are higher as D is near to
√

2N .
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3.5 Generalization

The results of the previous section and the result that when D =
√

2N the savings are

of the order of N motivates us. This section will generalize the technique used in our

motivation example.

Consider a set of distinct states {|ψ〉i}Ni=1 that span a dimension D in Hilbert

space HD. Now consider a subset of linearly independent states (of size ≤ D) in that set.

Let the subset be {|φ〉i}ki=1 (k ≤ D). We construct the k+ 1 POVM operators {Mi}k+1
i=1

where each Mi corresponds to the state |φi〉 and Mk+1 corresponds to the inconclusive

outcome. In case of k < D, to these k + 1 operators we also append the measurement

operators {Oi}D−ki=1 that form a measurement set of the orthogonal space to the space

spanned by the {|φ〉i}ki=1 in HD. Thus {Mi}k+1
i=1 and {Oi}D−ki=1 together will form the

complete set of measurement operators of HD

Theorem 3.2. Atmost a single probable candidate for |X〉 can be obtained from this

subset using a single copy provided the results are not inconclusive.

Proof. We ask for a single copy of |X〉 and perform measurement using this measurement

set. Here, there are three possible outcomes.

1) The measurement results in Mk+1

2) The measurement yields one of the {Oi}D−ki=1 as outcome

3) The measurement collapses on one of {Mi}ki=1 say Mj (which corresponds to |φj〉)

In case 1, the measurement results are inconclusive and thus we have to repeat the

experiment again. In case 2, |X〉 has a component in it that is orthogonal to the space

spanned by {|φi〉}k thus we can safely conclude the given subset doesn’t contain |X〉.

In case 3, if |X〉 is actually present in this subset then |φj〉 is our |X〉 but if |X〉 is not

present in the given subset then |φj〉 is just a state that is not orthogonal to it. The

case 3 presents some ambiguity on whether or not |φj〉 is |X〉. Thus, we call |φj〉 as

|Xprobable〉.
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Algorithm 5 Probable Candidate
1: S = {|φ〉i}ki=1

2: procedure Probable Candidate(S, |X〉)
3: M = Create POVM Operators(S)
4: if k < D then
5: O = Orthogonal measurement set of remaining space.
6: end if
7: Perform measurement on |X〉
8: if Result = Mk+1 then
9: goto Step-7

10: end if
11: if Result ∈ O then
12: return Null
13: end if
14: return |Xprobable〉 = State corresponding to the result
15: end procedure

Another Example:

Definition 3.1. A set of N distinct states that span a dimension D are said to be d-

spatially arranged if they can be arranged into bNd c+1 partitions of which bNd c are exactly

of size d(≤ D) and are linearly independent and the last partition is of size atmost d− 1

To answer UQSD in the case of a d-spatially arranged states, using the two

step process described in motivation example and applying result of generalization section

during the first step of that process, we get number of copies of |X〉 required as 2bNd c+

P − 1 where P is the size of the last partition. One can see our motivation example is a

special case of d−spatial arrangement with d = D and P = 0

3.6 Final Result

Now we are all set to propose our new approach.

Definition 3.2. Let us define secondary span(s) of a given set of N distinct states

that span a dimension of D as the dimension of the space spanned by remainder of the

(N −D)states after removing a set of D linearly independent states from the given set

of states.

It is easy to see that the secondary span s is atleast 2 and atmost D whenever

N − D > 1. Let us denote the secondary span of the given set of the N states as s1
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the secondary span of the remainder of the N −D states using which s1 is deduced be

s2 and call it ternary span. In this fashion a general n−ary span can be defined. From

lemma 3.1 it follows that si ≥ si+1

Now, let us consider the problem of UQSD of N distinct states that span a

dimension D < N and unknown state to be identified, |X〉 are given.

sk denotes the (k + 1)-ary span of given states and suppose i such spans are

identified such that si+1 > 1. Now we make the given set of states into (i+2) partitions.

The first partition P1 contains the D linearly independent states. A partition Pj in

second through i+ 1 partitions contains the linearly independent states that defined the

(j + 1)-ary span sj and the last partition Pi+2 contains the rest of the states.

The first i+ 1 partitions are linearly independent. So, we ask for i+ 1 copies

of the unknown state |X〉 using which we can get i+ 1 probable candidates for |X〉.

Effectively, after this step, we are dropping atleastD+(
∑i

j=1 sj)−(i+1) states.

Now, we have N−(D+(
∑i

j=1 sj)−(i+1)) states that span atleast a dimension 2 (as we

have si+1 > 1) from which |X〉 can be identified by using N−(D+(
∑i

j=1 sj)−(i+1))−1

copies of it.

Thus total number of copies required is

N − (D + (

i∑
j=1

sj)− (i+ 1))− 1 + (i+ 1) (3.12)

= N −D − (

i∑
j=1

sj) + 2i+ 1 (3.13)

For this method to work better, we need the condition:

N −D − (
i∑

j=1

sj) + 2i+ 1 ≤ N −D + 1 (3.14)

⇒
i∑

j=1

sj ≥ 2i (3.15)

The minimum value that any sj can take is 2. Thus the inequaity always holds. Hence,

the method suggested performs atleast as good as the one described by A.Chefles[6].
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We note that any sj = 2 in the above inequality actually does nothing to the

inequality. Thus if we have atleast a single sj ≥ 3 then we can have some savings. So,

a trivial partitioning as mentioned in the beginning of the chapter works worse when

D > 2. Also, one should note that the method in which partitions are made using

secondary spans is the same the "better partitioning scheme" discussed earlier.
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Conclusion And Future Work

Here, in our project we proposed a new approach for Unambiguous Quantum State Dis-

crimination between Linearly Dependent States. It is seen that given a set of N distinct

linearly dependent states that span a dimension D and if a number of subset of states

are linearly independent (apart from the trivial subset of size D) then we can improve

upon the bound if atleast one of these subsets spans a dimension greater than 2.

We put forward the following questions:

1. If there is no secondary span that is greater than 2 is it even then possible to do

better?

2. Can we apply this technique to improve upon the probability of UQSD between

linearly independent states?

3. Does there exist a better partition method than the approach presented here?

16
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