
Word Embedding Based Query Expansion

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Amritap Chowdhury
[Roll No: CS1601]

under the guidance of

Dr. Mandar Mitra
Associate Professor

Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
Kolkata-700108, India

July 2018

CERTIFICATE

I certify that I have read the thesis prepared under my guidance by Amritap Chowd-
hury, entitled “Word Embedding Based Query Expansion” and in my opinion
it is fully adequate, in scope and in quality, as a dissertation for the degree of Master
of Technology in Computer Science of Indian Statistical Institute

Dr. Mandar Mitra
Associate Professor,
Computer Vision and Pattern Recognition Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I am sincerely grateful to my supervisor Dr. Mandar Mitra for constantly supporting
and encouraging me throughout the dissertation with his patience and knowledge
whilst giving me the freedom to work in my own way. He has literally taught me how
to do good research and has always motivated and refined my ideas. He has not only
been my supervisor but has been an ideal inspiration from whom there are a lot of
things to learn about life. He is such a nice person, that he just can’t say ’No’ to
anyone, he is always willing to help. One just cannot wish to have a friendlier and
better supervisor than him.

I am deeply thankful to Dr. Pabitra Mitra of IIT Kharagpur for motivating me
towards Information Retrieval and Machine Learning and for suggesting me to work
under the guidance of Dr. Mandar Mitra.

I would also like to convey my gratitude to all the members of the Information Re-
trieval lab for making it such a convival place to work in. Specially I would like to
thank Dwaipayan Roy for helping me out with Lucene and other technicalities that
were required for my dissertation. This year we were not lucky enough to have a
formal course in Information Retrieval, but he has personally taken the pain to clear
all my doubts and has explained me every single concept whenever I needed, he has
really been my IR Guru. I am also thankful to the other members of the lab including
Riya Roy, Ayan Bandapadhyay and Suchana Datta for inspiring me in research and
life through our interactions during the long hours in the lab.

Last but not the least, I am really grateful to my parents for their everlasting support.
They have always had faith in me and have inspired me in every difficult situations
of my life.

Amritap Chowdhury
M.Tech Computer Science
Indian Statistical Institute

Kolkata - 700108 , India.

Abstract

Continuous space word embeddings have received a great deal of attention in Informa-
tion Retrieval for their ability to model term similarity and other relationships. We
have studied the use of term relatedness in the context of query expansion for ad-hoc
information retrieval. In our first approach we have proposed a time efficient retrieval
algorithm for query expansion using pseudo-locally constrained word embeddings. In
our second approach we have tried to present a learning approach that adaptively
predicts the balance co-efficients between the original query model and the local and
global expansion language models. In this approach we have also tried to predict
the optimal number of expansion terms required for the local and global embedding
based query expansion methods. In our third approach we have fused the results of
query expansion based on local and global embeddings to have an improved perfor-
mance over both the methods. In all the above approaches, we have performed our
experiments on standard TREC ad-hoc data(Disk 4 and 5) with query sets TREC 6,
7, 8 and robust. Our first and third approaches have shown comparable performance
with the state-of-the-art query expansion methods, based on word embeddings, but,
our second approach has failed to perform in accordance to our hyposthesis.

Keywords: Information Retrieval, Query Expansion, Word Embedding.

1

Contents

1 Brief Overview on Information Retrieval 5

1.1 What is Information Retrieval . 5

1.1.1 Document and Collection . 6

1.1.2 How Information Retrieval is different from tradional databases 6

1.2 The Retrival process . 7

1.2.1 Indexing . 8

1.2.2 Retrieval . 8

1.3 Evaluation of an IR system . 10

1.3.1 Basic requirements for the evaluation of an IR system 10

1.3.2 Evaluation metrics . 11

1.4 Language models for Retrieval . 13

1.4.1 Smoothing . 13

2 Word Embedding using Word2Vec 15

2.1 Continuous Bag-of-Words model of Word2Vec 15

2.1.1 Single-word context . 15

2.1.2 Multi-word context . 17

2.2 Computational Optimization . 18

2.2.1 Negative Sampling . 19

3 Related Work 21

3.1 Using Word Embedding for Automatic Query Expansion 21

3.1.1 Pre-retrieval kNN based approach 22

3.1.2 Post-retrieval kNN based approach 22

3.1.3 Extended Query Term Set . 22

2

CONTENTS 3

3.1.4 Retrieval . 23

3.2 Query Expansion with Locally-Trained Word Embeddings 23

3.2.1 Local Word Embeddings . 24

3.2.2 Query Expansion with Word Embeddings 25

3.3 Adaptive Relevance Feedback in Information Retrieval 26

3.3.1 Discrimination of Query . 26

3.3.2 Discrimination of Feedback Documents 28

3.3.3 Learning Algorithm . 29

4 Proposed Methods 30

4.1 Approach 1 : Automatic Query Expansion using Pseudo-local Embed-
dings . 30

4.1.1 Motivation . 30

4.1.2 Grouping similar topics by Clustering 30

4.1.3 Selection of Core Terms . 31

4.1.4 Initial Retrieval and Cluster Pruning 32

4.1.5 Learning Pseudo-local Embeddings 32

4.1.6 The final Retrieval Process with pseudo-locally expanded queries 32

4.1.7 Experimental Setup . 33

4.1.8 Results and Discussion . 34

4.2 Approach 2 : Adaptive Query Expansion using Locally and Globally
embedded word vectors . 35

4.2.1 Motivation . 35

4.2.2 Problem Formulation . 35

4.2.3 Feature Selection . 37

4.2.4 Learning Algorithm . 40

4.2.5 Experimental Setup . 41

4.2.6 Discussion . 41

4.3 Approach 3 : Combining Local and Global Embedding based Query
Expansion methods by Data Fusion 42

4.3.1 Motivation . 42

4.3.2 Normalizing techniques . 42

4.3.3 Data Fusion Methods . 43

4.3.4 Results and Discussion . 44

4.4 An Observation . 45

4 CONTENTS

4.5 Conclusion . 45

4.6 Future Work . 46

Chapter 1

Brief Overview on Information
Retrieval

The history of archieving and finding information from them can be traced back to
3000 BC, when the Sumerians used to store clay tablets with cuneiform inscriptions
[1]. Organization and access to archieves has always been critical for efficient use of
information. Even back then the Sumerians have developed special classifications to
identify every tablet and its content.

With the advancement in the ways of storing information and enhancement in the
computational power, accessing and retrieving information from large collections effi-
ciently has become a necessity. In 1945 Vannevar Bush published a ground breaking
article titled “As We May Think” that gave birth to the idea of automatic access to
large amounts of stored knowledge. In the 1950s, this idea materialized into more
concrete descriptions of how archives of text could be searched automatically. Several
works emerged in the mid 1950s that elaborated upon the basic idea of searching text
with a computer [1]. A lot of Information Retrieval based applications have been
developed and commercialized in the last sixty years. Many of them like google web
search engine and conversational information seeking agents like alexa and siri has
become an integral part of our day to day life.

1.1 What is Information Retrieval

Information Retrieval is a very broad term. From searching for a book in a library
management system to searching for a document in the world wide web, seeking of
any kind of archieval information is Information Retrieval. It ranges from looking for
a phone number in a telephone directory to asking a conversational information seek-

5

6 1. Brief Overview on Information Retrieval

ing agent to dial a specific person’s office number. In academic terms, Information
Retrieval can be formally defined as :

Definition. Information Retrieval(IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers) [2].

1.1.1 Document and Collection

A document is a file in text format for storing information on a storage media, es-
pecially for use by computers. A document consists of some minimal structures like
title, author, date, subject, content etc. Documents can be in the form of web pages,
emails, books, news articles, text messages, blogs etc.

A set of similar documents is called a collection. IR systems usually operate on a
collection with documents stored in a pre-defined format (pdf, txt, doc etc.).

1.1.2 How Information Retrieval is different from tradional
databases

Databases are datasets where related data is stored in a structured nature. Databases
mainly consists of tables, where each record in a table can be uniquely identified with
a special attribute called key. Each record in a database comprises of well defined
attributes or fields. And each field in a record has a specific datatype. Therefore
searching in a database is easy and efficient. Whereas on the other hand documents
consists of free, unstructured texts. And there are no restrictions on the content of a
document. As there is no defined structure, searching something from a large collec-
tion of documents becomes a hard problem. The main focus of IR is to address this
difficulty to improve the efficiency and accuracy of the search results.

Structured queries can be used for comparison with the well defined semantics of
database records which makes searching in a database easier. The following is an
example of a structured query :

select name from Employee where salary > 50 ,000

Here Employee is a table in a company’s database where name and salary are its
attributes and this query returns the names of the employees whose salary is greater

1.2. The Retrival process 7

than fifty thousand.

Similar to documents, the queries in IR are also unstructured, hence a user need not
be aware of any semantics or structured query language before posing a query. One
can query in the naural language. An example of a query in IR is as follows :

Average paid employees

Due to the boom of the Big-Data scenario, and reduction in the cost of storage de-
vices, people now have access to terabytes data available in unstructured nature.
Storing such huge volumes of data in a well defined structured way is very difficult
and time consuming, so IR is gaining popularity these days, as it is user friendly and
can handle unstructed data efficiently.

1.2 The Retrival process

The retrieval procedure mainly comprises of two components or sub-processes : In-
dexing and Retrieval. Figure 1.1 shows the overview of a Retrieval system.

Figure 1.1: Overview of an Information Retrieval system [4].

8 1. Brief Overview on Information Retrieval

1.2.1 Indexing

Indexing is the process by which documents are converted to data structures that
enable faster search, i.e. precomputing as much as possible. Indexing consits of the
following steps :

1. Reading and parsing the document.

2. Stopword Rmoval.

3. Stemming the words in the document.

4. Inserting each term in the data structure(index).

Definition. Stop Words are words that are very common such as ”the”, ”and”, thus
are assumed to carry very little standalone meaning for searching, since nearly every
document will contain the word, so it fails to discriminate between the relevant and
non relevant documents and thus can be removed.

Definition. Stemming is the process of reducing inflected (or sometimes derived)
words to their word stem, base or root form—generally a written word form. The
stem need not be identical to the morphological root of the word, it is usually sufficient
that related words map to the same stem, even if this stem is not in itself a valid root
[3].

Efficiency of an IR system is largely determined by the data structure it uses to store
the indexed documents. Therefore choice and design of proper data structures is very
important. One of the dominating indexing data structure for supporting basic search
algorithms is Inverted Index.

For a term t, the Inverted Index data structure stores a list of IDs of all the documents
that contain t. The term set is then organized in a suitable data structure for example
an array, a hash table, a binary search tree etc. Figure 1.2 shows an example of the
Inverted Index data structure.

1.2.2 Retrieval

The Retrieval process can only be performed after the documents have been indexed.
The user presents his information need in the form of a query. The query is then
parsed and stemmed using the same parser and stemmer that have been used during

1.2. The Retrival process 9

Figure 1.2: An example of Inverted Index data structure.

indexing. Sometimes additional operations like Query Expansion is also performed
as a query processing step.

After processing the query, the query terms are matched with the index terms, if
a match is found, the documents containing the matched term are treated as rele-
vant documents. Then the matched documents are ranked according to some ranking
function and the set of ranked documents are presented to the user as a response to
his information need.

In some cases the subset of the ranked set of documents, that have been examined
and judged as relevant by the user are treated as feedback documents. These feedback
documents are used to initiate a user feedback cycle. In such a cycle, the system uses
the documents selected by the user to change the query formulation. The modified
query is assumed to be a better representation of the user’s real need. This process
is known as Relevance Feedback.

10 1. Brief Overview on Information Retrieval

1.3 Evaluation of an IR system

Evaluating retrieval results is a key issue for IR systems. One common assumption
is that the retrieval result is presented as a ranked list of documents. In binary rel-
evance judgement, documents are classified into two categories : relevant and non
relevant. The ranking positions of the relevant and non relevant documents are the
major concern for most evaluation metrics.

As large document collections are used for retrieval evaluation these days, it is not
affordable to judge all the documents retrieved any more. Therefore, incomplete rel-
evance judgment, or partial relevance judgment, is commonly used. A pooling policy
is used, i.e. for a group of runs submitted to a task for a given topic, only a cer-
tain number (say, 100) of top-ranked documents from all or some submitted runs
are put into a pool. All the documents in the pool are judged, and all those docu-
ments that are not in the pool are not judged and are treated as irrelevant documents.

1.3.1 Basic requirements for the evaluation of an IR system

The performance evaluation of an ad-hoc IR system requires the following three com-
ponents in a test collection :

1. A document collection

2. A test set of queries

3. A set of relevance judgement, which is a binary judgement (relevant or non
relevant) for a query-document pair.

The document collection and the test set of queries should be of reasonable size (a
minimum of 50 queries is standard).

In recent years, there are quite a few IR evaluation test collections such as TREC
i, NCTIR ii, CELF iii and FIRE iv. A document in the test collection is judged as
relevant or non relevant according to the user’s need. This classification is referred
to as the ground truth of relevance judgement.

ihttp://trec.nist.gov/
iihttp://research.nii.ac.jp/ntcir/index-en.html
iiihttp://www.clef-initiative.eu/
ivhttp://www.isical.ac.in/~clia/

http://trec.nist.gov/
http://research.nii.ac.jp/ntcir/index-en.html
http://www.clef-initiative.eu/
http://www.isical.ac.in/~clia/

1.3. Evaluation of an IR system 11

1.3.2 Evaluation metrics

In binary relevance judgement, many different metrics such as average precision,
recall-level precision, precision at k (10 is most commonly used, other common op-
tions include 5, 20, and 100) document level, normalized discounted cumulative gain,
the reciprocal rank, and many others, have been proposed for retrieval evaluation.
Most of these commonly used metrics are ranking-based.

Average Precision

Let C be a document collection, q be the given query, and total r be the total
number of relevant documents in C for q. Let an IR system(irs) return a ranked
list of documents L = < d1, d2, ,,, ,dn >. Average precision(AP) over all relevant
dcouments is defined as :

AP =
1

total r

total r∑
i=1

i

ti
(1.1)

where ti is the ranking position of the i-th relevant document in the resultant list L.

If all total r relevant documents does not appear in L, then the following equation
can be used instead (m is the number of relevant documents that appear in L) :

AP =
1

total r

m∑
i=1

i

ti
(1.2)

where nu(i) is a function, which gives the number of relevant documents in the top i
documents. napd best is a normalization coefficient, which is the best possible NAPD
value for such a resultant list.

In recent years, Mean Average Precision(MAP) has become a standard parameter. It
has been observed that MAP has good discrimination and stability among evaluation
metrics. Let Q be the query set, MAP of Q is the average of APqi ∀ qi ∈ Q. Hence :

MAP =
1

| Q |

|Q|∑
i=1

APqi (1.3)

12 1. Brief Overview on Information Retrieval

Recall-level Precision

Recall-level precision is defined as the ratio of the number of relevant documents
retrieved in L(num ret r) to the total number of relevant documents(total r). So :

Recall =
num ret r

total r
(1.4)

Precision at k document level

Precision at 10 document level(P@k) is defined as the percentage of relevant docu-
ments in the top k documents in L.

Normalized Discounted Cumulative Gain

In Normalized Discounted Cumulative Gain(NDCG@k) each ranking position in a
resultant document list is assigned a given weight. The top ranked documents are
assigned the heaviest weights since they are the most convenient ones for the users
to read. The first k documents are assigned a weight of 1 ; then for any document
ranked i that is greater than k, its weight is w(i) = ln(k)/ln(i). For a resultant list
of upto m documents, its discounted cumulative gain(DCG@k) is defined as :

DCG =
m∑
i=1

(w(i)*r(i)) (1.5)

where r(i) is defined as: if the i-th document is relevant, then r(i) = 1; if the i-
th document is non relevant, then r(i) = 0. DCG@k can be normalized using a
normalization coefficient DCG best, which is the DCG value of the best resultant list.
Therefore :

NDCG =
1

DCG best

m∑
i=1

(w(i)*r(i)) =
DCG

DCG best
(1.6)

bpref

Incomplete relevance judgement’s pooling policy does not affect some metrics such as
precision at a given cut-off document level. However, in the evaluation of information
retrieval systems, both precision and recall are important aspects and many metrics
concern both of them at the same time. The pooling method is reliable, but recall
is overestimated since it is likely that 30% - 50% of the relevant documents are not
found. Therefore, some alternative metrics have been defined for incomplete relevance
judgment. For a topic with total r relevant documents where r is a relevant document

1.4. Language models for Retrieval 13

and n is a member of the first total r judged non-relevant documents as retrieved by
the system, bpref is defined as :

bpref =
1

total r

∑
r

1− | n ranked higher than r |
total r

(1.7)

1.4 Language models for Retrieval

A common suggestion to users for coming up with good queries is to think of words
that would likely appear in a relevant document, and to use those words as the query.
The language modeling approach to IR directly models this idea: a document is a
good match to a query if the document model is likely to generate the query, which
will in turn happen if the document contains the query words often. Instead of overtly
modeling the probability P (R = 1 | q, d) of relevance of a document d to a query q, as
in the traditional probabilistic approach to IR, the basic language modeling approach
instead builds a probabilistic language model θ from each document d, and ranks
documents based on the probability of the model generating the query: P (q | θ) [2].

Let the query q be a n term query, then q can be written as q = q1q2 · · · qn. A unigram
language model is assumed to generate text by generating each word independently.
Thus, p(q) = p(q1q2 · · · qn) = p(q1)p(q2) · · · p(qn). Therefore the maximum likelihood
estimator of the unigram model is given by :

p(qi | θ) = p(qi | d) =
tf(qi, d)

| d |
(1.8)

Definition. To compute a score between a query term t and a document d, based on
the weight of t in d. The simplest approach is to assign the weight to be equal to the
number of occurrences of term t in document d. This weighting scheme is referred to
as term frequency and is denoted by tf.

1.4.1 Smoothing

The key intuition behind smoothing is that if a non occuring term in the document
occurs in the query q then the probability p(q) = p(q1q2 · · · qn) = p(q1)p(q2) · · · p(qn)
will become zero and the term(s) in the query which also occurs in the document
will be penalized and as a result the document will be scored low, to solve this issue
smoothing is required.

The maximum likelihood unigram language model based on term frequencies in the
collection(C) as a whole is given by :

14 1. Brief Overview on Information Retrieval

p(qi | θC) = p(qi | C) =
tfC(qi, C)

| C |
(1.9)

Jelinek-Mercer Smoothing

Jelinek-Mercer smoothing creates a mixture model with both the distributions (doc-
ument model(θ) and collection model(θC)), i.e. it mixes the probability from the
document with the general collection frequency of the word. It is given by :

p(qi | d, θC) = λ · p(qi | θ) + (1− λ) · p(qi | θC)

⇒ p(qi | d, θC) = λ · tf(qi, d)
| d |

+ (1− λ) · tfC(qi, C)
| C |

(1.10)

High value of λ is more conjunctive and tends to retrieve documents containing all
query words. Low value of λ is more disjuctive and is suitable for long queries. Thus,
correctly setting λ is very important for good performance.

Chapter 2

Word Embedding using Word2Vec

The word2vec model by Mikolov et al. and its applications have attracted a great
amount of attention in recent years. The vector representations of words learned
by word2vec models have been shown to carry semantic meanings and are useful in
various IR and Natural Language Processing(NLP) tasks.

2.1 Continuous Bag-of-Words model of Word2Vec

2.1.1 Single-word context

Figure 2.1: A simple CBOW model with one word context [5]

The continuous bag-of-words model (CBOW) was introduced by Mikolov et al. in
2013. In the most simple version of this model one word is considered per context,

15

16 2. Word Embedding using Word2Vec

which means that the model will predict one target word given one context word.
Figure 2.1 shows the network architecture under this simplified context definition.

In this setting V is the vocabulary size and N is the size of the hidden layer. The
adjacent layers are fully connected. The input to the network is a one-hot encoded
vector i.e. for a given context word only one out of V, {x1, · · · , xV }, units will be 1
and all other units will be 0.

The weights between the input and the hidden layer can be represented by a V × N
matrix W. Each row of W is a n-dimensional representation vw of the word presented
at the input layer. For a given context word, (xk = 1 and xk′ = 0 ∀ k′ 6= k) :

h = W Tx = vTwI (2.1)

i.e. the k-th row of W is copied to h, where vwI it the vector representation of the
input word wI . This implies that the activation function of the hidden unit directly
passes its weighted sum of inputs to the next layer.

The weight matrix between the hidden layer and the ouput layer is W
′
. It is a N ×

V dimensional matrix. These weights are used to calculate a score uj for each word
in the vocabulary,

uj = v
′

wj

T
h (2.2)

where v
′
wj

is the j-th column of W
′
. Then a softmax classifier is used to obtain the

posterior probability of the words :

p(wj | wI) = yj =
exp(uj)∑V
j′ exp(uj′)

⇒ p(wj | wI) =
exp(v

′
wj

T
vwI)∑V

j′ exp(v
′
w
j
′
TvwI)

(2.3)

vw and v
′
w are both representations of the word w. vw comes from the rows of the

input to hidden weight matrix W and v
′
w comes from the hidden to output weight

matrix W
′
.

The training objective (for one training sample) is to maximize 2.3, the conditional
probability of observing the actual output word wO given the input context word wI
with regard to the weights is :

2.1. Continuous Bag-of-Words model of Word2Vec 17

max(p(wo) | p(wI)) = max(yj∗)

= max(log(yj∗))

= uj∗ − log(
V∑

j′=1

exp(uj′)) = −E
(2.4)

where E = − log(p(wo) | p(wI)) is the loss function, and j∗ is the index of the actual
output word in the output layer.

2.1.2 Multi-word context

Figure 2.2: CBOW model with multiple words context [5]

Figure 2.2 shows the CBOW model with a context of multiple words. The hidden
layer of this CBOW model takes the average of the vectors of the input context words
as input, and uses the product of the input to hidden weight matrix and the average
vector as the output.

18 2. Word Embedding using Word2Vec

h =
1

C
W T (x1 + x2 + · · ·+ xC)

=
1

C
(vw1 + vw2 + · · ·+ vwC)T

(2.5)

where C is the number of words in the context, w1, · · · , wC are the words in the
context and vw is the input vector of a word w. The loss function is :

E = − log(p(wO | wI,1, · · · , wI,C))

= −uj∗ + log(
V∑

j′=1

exp(uj′))

= −v′wO
T · h+ log(

V∑
j′=1

exp(v
′

w
j
′

T · h))

(2.6)

which is same as the objective of the single-word context model, except that h is
different, as defined in 2.4.

The update equation for the hidden to output layer weights is :

v
′

wj

(new)
= v

′

wj

(old) − η · ej · h for j = 1, 2, · · · , V. (2.7)

where ej is the prediction error of the output layer and η > 0 is the learning rate.
The above equation needs to be applied to every element of the hidden to output
layer weight matrix for each training instance.

For updating the weights of the input to hidden layer the following equation is to be
applied to every word wI,c in the context.

v(new)wI,c
= v(old)wI,c

− 1

C
· η · EHT for c = 1, 2, · · · , C. (2.8)

where EH, a N-dim vector, is the sum of the output vectors of all words in the vo-
cabulary, weighted by their prediction error and vwI,c is the input vector of the c-th
word in the input context.

2.2 Computational Optimization

The CBOW model has two representstions for each word in the vocabulay : the input
vector vw and the output vector v

′
w. Learning the input vectors is cheap; but learning

2.2. Computational Optimization 19

the output vectors is very expensive. From the update equation 2.7, in order to up-
date v

′
w, for each training instance, one has to iterate every word wj in the vocabulary,

compute their net input uj, probability prediction yj, their prediction error ej and
finally use their prediction error to update their output vector v

′
j.

Performing such computations for all the words, for every training instance is very
expensive, making it impractical to scale up to large vocabularies or large training
corpora. To solve this problem, an intuition is to limit the number of output vectors
that must be updated per training instance. An elegant approach is perform sampling.

2.2.1 Negative Sampling

The idea of negative sampling is more straightforward : in order to deal with the
difficulty of having too many output vectors that need to be updated per iteration,
one only needs to update a sample of them.

The ground truth output word, i.e. the positive sample should be present in the
sample so that its corresponding weights get updated and a few other negetive words
should also be sampled so that the networks learns to discriminate between the cor-
rect and the erroneous words. A probabilistic distribution is needed for the sampling
process, and it can be arbitrarily chosen. This distribution is called the noise distri-
bution, and it is denoted as Pn(w). word2vec uses a unigram distribution raised to
the 3

4
-th power for the best quality of results.

In word2vec, instead of using a form of negative sampling that produces a well-defined
posterior multinomial distribution, the authors argue that the following simplified
training objective is capable of producing high-quality word embeddings :

E = − log(σ(v
′

wO

T
h))−

∑
wj∈ωneg

log(σ(−v′wj
T
h)) (2.9)

where wO is the output word, i.e. the positive sample, and v
′
wO

is its output vector.
h is the output value of the hidden layer, in CBOW :

h =
1

C

C∑
c=1

vwc (2.10)

ωneg = {wj | j = 1, · · · , K} is the set of words that are sampled based on Pn(w), i.e.
the negative samples.

20 2. Word Embedding using Word2Vec

The update equations of the word vectors under negative sampling is given by :

v
′

wj

(new)
= v

′

wj

(old) − η(σ(v
′

wj

T
h)− tj) (2.11)

where tj is the “label” of word wj . t = 1 when wj is a positive sample, t = 0
otherwise. The output vector only needs to be applied to wj ∈ { wO } ∪ ωneg instead
of every word in the vocabulary.

Chapter 3

Related Work

A document may not explicitly contain the terms present in the query. Still the
document may be relevant with respect to the idea of information need presented by
the query. If a relevant document does not contain the terms that are in the query,
then that document will not be retrieved. The aim of query expansion is to reduce
this query-document mismatch by expanding the query using words or phrases with
a similar meaning or some other statistical relation to the set of relevant documents
[4].

3.1 Using Word Embedding for Automatic Query

Expansion

IR and Neural Network have started exploring deep learning based techniques for
various IR problems in recent years. Word Embeddings generated using NNs is the
focus of many recent IR researchers. Word Embeddings as discussed in the previous
chapter gives a vector representation of the words in the corpus. If a and b are two
words, and ~a and~b are their embeddings, then it is expected that the distance between
~a and ~b is a quantitative indication of the semantic relatedness between a and b. The
semantic relatedness between words is generally accurately captured by the vector
similarity between the corresponding embeddings produced by Word2Vec. Thus, it
provides a convenient way of finding words that are semantically related to any given
word. As the purpose of query expansion is to find the words that are semantically
similar to a given query, word embeddings obtained from Word2Vec can be used to
select suitable terms that will improve the effectiveness of automatic query expansion.

21

22 3. Related Work

In [6] the authors have designed the following methods for automatic query expansion:

1. Pre-retrieval kNN (Nearest Neighbour) based approach

2. Post-retrieval kNN based approach

3.1.1 Pre-retrieval kNN based approach

For a given query Q ({q1 · · · qm}), C the set of candidate expansion terms has been
defined as :

C = ∪q∈Q NN(q) (3.1)

where NN(q) is the set of k terms that are closest to q in the embedding space. For
each candidate expansion term t in C, the mean cosine similarity between t and all
the terms in Q have been computed according to the following equation :

Sim(t, Q) =
1

| Q |
∑
qi∈Q

t · qi (3.2)

The terms in C have been sorted on the basis of the above mean score and the top
K
′

terms has been selected as the actual expansion terms.

3.1.2 Post-retrieval kNN based approach

In this approach, the authors have used a set of pseudo-relevant documents (PRD)
— documents that were retrieved at top ranks in response to the initial query — to
restrict the search domain for the candidate expansion terms. Instead of searching
for nearest neighbours within the entire vocabulary of the document collection, only
those terms that occured within PRD were considered. The size of PRD have been
varied as a parameter. The remaining procedure for obtaining the expanded query
was the same as section 3.1.1.

3.1.3 Extended Query Term Set

When the nearest neighbours of individual query words are considered for choosing
expansion terms it might not reflect the information need properly as individual query
words might have many senses but when combined together they might convey a dif-
ferent meaning altogther, the authors have captured this by composing the vectors
of two adjacent terms (bigrams) in the query.

3.2. Query Expansion with Locally-Trained Word Embeddings 23

For a given query Q consisting of m terms {q1 · · · qm}, Qc, the set of query words
bigrams was constructed as :

Qc = {〈q1, q2〉, 〈q2, q3〉, · · · , 〈qm−1, qm〉} (3.3)

The embedding for a bigram 〈qi, qi+1〉 was obtained simply by adding ~qi and ~qi+1,
where ~qi and ~qi+1 are the embeddings of the words qi and qi+1. An extended query
term set Q

′
has been defined as :

Q
′
= Q ∪Qc (3.4)

In the above approaches Q
′

has been considered instead of Q to integrate the effect
of compositionality.

3.1.4 Retrieval

For retrieval, the language model with Jelinek Mercer smoothing has been used. The
following query model for the expanded query has been used :

p(w | Qexp) = α p(w | Q) + (1− α)
Sim(w,Q)∑

w′∈Qexp
Sim(w′ , Q)

(3.5)

where Qexp is the set of top K
′

terms from C, the set of candidate expansion terms.
As discussed in section 3.1.3 Q

′
can be used instead of Q. α is the interpolation

parameter that has been used as the likelihood estimate of a term in the query, in
combination with the normalized vector similarity with the query.

3.2 Query Expansion with Locally-Trained Word

Embeddings

Corpus statistics often makes sense absent in some information. But often times the
analysis that is made, is topically constrained. For example one might be analysing
the sports documents in the collection. The language in such a domain is specialized
and the distribution of over the word(w)-context(c) pair is unlikely to be similar to
pc(w, c), where pc is the distribution of the word-context pairs in the training cor-
pus and can be estimated from corpus statistics. Prior works in IR also suggests
that documents on subtopics in a collection have very different unigram distributions
compared to the whole corpus.

24 3. Related Work

In general a corpus consists of sufficiently diverse data. The support of pt(w, c) (the
probability of observing a word-context pair conditioned on the topic t) is much
smaller than and contained in that of pc(w, c). The loss, l, of a context that occurs
more frequently in the topic, will be amplified by the importance weight :

ω =
pt(w, c)

pc(w, c)
(3.6)

As topics require specialized language, it is likely that training with the whole corpus
will underemphasize these contexts.

The highly weighted terms may have a low value for pt(w, c) but a very high value
relative to the corpus. The weights can be adjusted by considering the pointwise
Kullback-Leibler divergence for each word w :

Dw(pt || pc) = pt(w) log
pt(w)

pc(w)
(3.7)

Words which have a much higher value of pt(w) than pc(w) and have a high absolute
value of pt(w) will have high pointwise KL divergence.The higher ranked terms (i.e.
good query expansion candidates) tend to have much higher probabilities than found
in pc(w). If the loss on those words is large, it might result in poor embeddings for
the most important words in the topic.

The authors of [7] has observed a dramatic change in distribution between the corpus
and the topic that has implications for performance precisely because of the objective
used by word2vec. The training emphasizes on word-context pair that occur with
high frequency in the corpus. Even with heuristic downsampling of frequent terms
in word2vec, these techniques resulted in inferior performance for specific topics. A
qualitative difference was observed in pc(w, c) and pt(w, c) by training two word2vec
models: the first on the large, generic Gigaword corpus and the second on a topically-
constrained subset of the gigaword.

3.2.1 Local Word Embeddings

In information retrieval scenarios users rarely provide the system with examples of
topic-specific documents, instead they provide a small set of keywords. IR techniques
have been used to generate a query-specific set of topical documents. A language mod-
eling approach have been adopted for doing so. In a language model, each document is
represented as a maximum likelihood language model estimated from document term
frequencies. Query language models are estimated similarly, using term frequency in

3.2. Query Expansion with Locally-Trained Word Embeddings 25

the query. A document score then, is the Kullback-Leibler divergence between the
query and document language model, which is given by :

D(pq || pd) =
∑
w∈ν

pq(w) log
pq(w)

pd(w)
(3.8)

Documents whose language models are more similar to the query language model
have a lower KL divergence score.

The scores in equation 3.8 have been passed through a softmax function to derive a
multinomial over the entire corpus :

p(d) =
exp(−D(pq || pd))∑
d′ exp(−D(pq || pd′))

(3.9)

The query-based multinomial, p(d), provides a weighting function capturing the doc-
uments relevant to the topic. Although an estimation of the topic-specific documents
from a query is imprecise (i.e. some nonrelevant documents might be scored highly),
the language use tends to be consistent with that found in the known relevant docu-
ments.

A local word embedding have been trained using an arbitrary optimization method
by sampling documents from p(d) instead of the entire corpus.

3.2.2 Query Expansion with Word Embeddings

As language model has been used for retrieval, query expansion involves the estima-
tion of an alternative to pq. As each expansion term is associated with a weight,
the weights have been normalized to derive the expansion language model, pq+ . This
language model has then been interpolated with the original query model as :

p1q(w) = λ pq(w) + (1− λ) pq+(w) (3.10)

where λ is the interpolation parameter that has been used as the likelihood estimate
of a term in the query in combination with the expansion language model. The in-
terpolated language model have been referred to as the expanded query score of a
document.

The weight of an expansion term is equal to UUT q, where U is a ν×k term embedding
matrix and q is a ν×1 column term vector for a query. The top k terms have been

26 3. Related Work

taken and their weights have been normalized to compute pq+ .

3.3 Adaptive Relevance Feedback in Information

Retrieval

In existing embedding based query expansion methods the balance, between the orig-
inal query language model pq and the expansion language model pq+ , is usually con-
trolled by some parameter(α), which is often set to a fixed value across all the queries
and collections. However, due to the variations of queries and expansion terms, this
balance parameter presumably should be optimized for each query and each set of
expansion terms. One needs to carefully balance the original query and the expan-
sion terms because if the expansion terms are over trusted, the query might drift,
but under-trusting it would not take advantage of query expansion, therefore having
a perfect balance is very critical for efficient performance.

In relevance feedback also has a parameter that balances the original query and the
feedback information. The authors in [8] have studied this novel problem and have
proposed an adaptive relevance feedback method to dynamically predict an optimal
balance coefficient using machine learning.

The authors have proposed the following heuristics to characterize feedback coeffi-
cients:

1. Discrimination of query: One expects that more discriminative the query is,
the more drifting-tolerant it could be, and thus it would be safe to utilize more
feedback information.

2. Discrimination of feedback : It can be hypothesized that clearer feedback doc-
uments could be trusted more.

Following the above three heuristics, the authors have explored a number of features
and have combined them using logistic regression to predict the feedback coefficient.

3.3.1 Discrimination of Query

More discriminative a query is, the more drift tolerant it is, thus it is safe to utilize
more feedback information. Therefore it is expected that the discrimination of query
is correlated with the feedback coefficient. The following measures have been proposed
to quantify it :

3.3. Adaptive Relevance Feedback in Information Retrieval 27

1. Query Length :

A longer query is generally more discriminative than a short one, so the first
feature selected by the authors is query length, which is formally defined as:

| Q |=
∑
w∈Q

c(w,Q) (3.11)

where c(w, Q) is the count of term w in Q.

2. Entropy of Query :

The queries are often very short, so the query entropy score is computed based
on top-N resultant documents (F

′
) of the initial retrieval, which is defined as :

QEnt A =
∑
w∈F ′
−p(w | θF ′) log2 p(w | θF ′) (3.12)

where p(w | θF ′) is estimated as p(w | θF ′) = c(w,F
′
)∑

w c(w,F
′)

.

3. Clarity of Query

The clarity of a query is the Kullback-Leibler divergence of the query model
from the collection model.

Query clarity computation requires the estimation of the query language model,
which, however, involves an interpolation between the original query model θQ
and the pseudo feedback model θF ′ , as well as setting an interpolation coef-
ficient. To avoid such problems the authors did not estimate an entropy for
the interpolated query model instead they have computed two separate clarity
scores based on θQ and θF ′ and have used them directly as features in the su-
pervised learning framework, leaving the optimization of their combination to
the training process. The relative entropys are defined as :

QEnt R1 =
∑
w∈Q

p(w | θQ) log
p(w | θQ)

p(w | C)
(3.13)

QEnt R2 =
∑
w∈F ′

p(w | θF ′) log
p(w | θF ′)
p(w | C)

(3.14)

28 3. Related Work

where p(w | C) is the collection language model.

3.3.2 Discrimination of Feedback Documents

The documents, that are judged relevant by the user, have only been used for feedback
and no negative feedback documents have been considered. Therefore if feedback doc-
uments are more discriminative it means that they focus more on the relevant topic
and far from noise, thus discriminative feedback documents have been trusted.

1. Feedback Length :

The number of feedback documents, i.e. feedback length | F |, has been used
as one of the features. It is defined as :

| F | =
∑
d

δ(d, F) (3.15)

where δ(d, F) = 1 if document d ∈ F , otherwise 0.

2. Feedback Radius :

Feedback radius can be used to measure the broadness of the feedback doc-
uments, i.e. whether the feedback documents are concentrated on similar topic
or not. Feedback radius can be defined as the average divergence between each
document and the centroid of the feedback documents, which can be approxi-
mated using the Jensen-Shannon divergence among feedback document models.
It is defined as :

FBRadius =
1

| F |
∑
d∈F

∑
w∈d

p(w | θd) log
p(w | θd)

p(w | θcentroid)
(3.16)

where p(w | θcentroid) = 1
|F |

∑
d∈F p(w | θd).

3. Entropy of Feedback Documents :

Feedback length and feedback radius, captures the discrimination of feedback
documents on the document level, whereas the entropy of feedback documents,
measures the term distribution, on the term level. Similarly to the computation
of query entropy, the entropy of feedback document model θF is defined as :

3.3. Adaptive Relevance Feedback in Information Retrieval 29

FBEnt A =
∑
w∈F

−p(w | θF) log2 p(w | θF) (3.17)

where p(w | θF) is estimated as p(w | θF) = c(w,F)∑
w c(w,F)

.

4. Clarity of Feedback Documents :

Similar to query clarity QEnt R1, the feedback entropy FBEnt R1 is computed
as :

FBEnt R1 =
∑
w∈F

p(w | θF) log
p(w | θF)

p(w | C)
(3.18)

3.3.3 Learning Algorithm

For any relevance feedback model the balance parameter α ∈ [0, 1], therefore the au-
thors have chosen logistic regression for learning the values of α̂ for different queries,
using the above heuristically defined features as input, as logistic regression can take
as input any value from -∞ to ∞, whereas the output is confined to values between
0 and 1.

Logistic regression models are of the form :

f(z) =
1

1 + exp(−z)
(3.19)

where variable z represents some set of features, while f(z) represents the probability
of a particular outcome, given that set of features. The authors have used f(z) as the
predicted value for the coefficient α, and has interpreted it as the probability that one
would use only the feedback model (as opposed to the original query model) in the
mixture model formed by interpolating the two models. Variable z is a measure of
the total contribution of all the features used in the model, defined as z = w̄x̄. x̄ is a
vector of numeric values representing the features. And w̄ represents a set of weights,
which indicates the relative weights for each feature. A positive weight means that
the corresponding feature increases the probability of the outcome, while a negative
weight means that its corresponding feature decreases the probability of that out-
come, a large weight means that the feature strongly influences the probability of
that outcome, while a near-zero weight means that the feature has little influence on
the probability of that outcome.

Chapter 4

Proposed Methods

4.1 Approach 1 : Automatic Query Expansion us-

ing Pseudo-local Embeddings

4.1.1 Motivation

Query expansion intuitively requires terms that are semantically similar to query
terms. We have seen in the previous chapter that the word embeddings obtained
from Word2vec capture the semantic relationship between words very well. Thus, we
chose to use word embeddings for selecting suitable terms for query expansion.

In [7], we the authors have shown that globally-trained word embeddings may not
work well for queries where the query terms have more than one sense, as global
embeddings only tend to capture the globally dominant sense of such words, so in
this chapter we propose a novel approach that we refer to as pseudo-local embedding
based query expansion. The local embedding approach in [7] gives good accuracy
but it does so at the expense of a slower retrieval rate, as the word embeddings are
trained on the fly during retrieval (on the resultant documents obtained during the
initial retrieval), so we prefered a pseudo-local embedding for expanding the queries
over local embedding.

4.1.2 Grouping similar topics by Clustering

It has been observed in previous works [6] [7] that the related word’s vectors (obtained
from Word2Vec) remain close to each other in the embedding space.

It has been observed that on training word embeddings on a topically constrained

30

4.1. Approach 1 : Automatic Query Expansion using Pseudo-local Embeddings 31

corpus, the nearest neighbours of embeddings yield better expansion terms, which are
more related to the topic [7].

We also know that clustering algorithms aim to maximize the inter-cluster distance
and minimize the intra cluster distance i.e. the clustering algorithms focus on group-
ing similar data together.

Keeping all the above observations in mind we have used the k-means clustering algo-
rithm, with random seed initialization, to model the topics in the corpus, where each
cluster(ςi) is expected to represent a topic set. Word2Vec i has been trained on the
entire collection to obtain the word embeddings. 1000 ii clusters have been formed,
using the k-means++ iii software package in java, these are assumed to represent 1000
different topics in the collection.

4.1.3 Selection of Core Terms

Definition. When a set of related documents are grouped together, the terms that
represent the topic of discussion in the set of documents are called core terms. In our
case the terms that represent the main matter of discussion in a cluster are called
core terms.

We know that the centroid of a cluster is a point in the space that captures the central
information about the cluster. The points that are close to the cluster center also
contain central information about the cluster (similar to the centroid). As the points
(terms in our case) that are close to the centroid form the core of the cluster, they
are the most noise-free terms of the cluster. Therefore, we have selected k(= 30) iv

nearest neighbours of the cluster centoid as core terms(Cj,ςi) that represent the topic
of the cluster. The nearest neighbours were selected based on the cosine similarity
between the globally embedded word vectors.

iGoogle’s implementaion of Word2Vec has been used : https://code.google.com/p/word2vec/
iiWe have arbitrarily chosen this parameter, it has not been varied as varying it is very much

compute expensive.
iiihttps://en.wikipedia.org/wiki/K-means%2B%2B
ivThe parameter k has been varied in the set {30, 40} but k = 30 worked better, other variations

have not been tried as the remaining procedure, which is very much time and space expensive,
depends on this parameter.

https://code.google.com/p/word2vec/
https://en.wikipedia.org/wiki/K-means%2B%2B

32 4. Proposed Methods

4.1.4 Initial Retrieval and Cluster Pruning

Each individual core term, Cj,ςi , of cluster ςi was treated as a query and was used for
retrieving documents from the entire collection. The union of resultant documents
(top thousand documents) over all j core terms, per cluster, was taken to form a
pseudo-topically-constrained corpus. Language model with Jelinek-Mercer smooth-
ing was used for retrieval (with parameter 0.5 v).

The above method has been performed for all ςi clusters. The clusters whose core
term set retrieved less than three thousand documents, in total, were pruned, as such
clusters represent very rare topics or random noise. The final number of clusters
obtained after the pruning procedure was 644.

4.1.5 Learning Pseudo-local Embeddings

We have learned the pseudo-local word embeddings for each cluster, ςi, by training
Word2Vec on the pseudo-topically-constrained corpus obtained per cluster. These
word embeddings are assumed to carry the senses of the words that are dominant in
the topically constrained sub-corpus.

Note : all the above procedure have been done at index time, no training of word
embeddings is required during retrieval.

4.1.6 The final Retrieval Process with pseudo-locally expanded
queries

For expanding a given user query, we first need to select the pseudo-local embedding
from which the expansion terms are to be chosen. We have chosen k

′
(= 3) vi clos-

est core terms per query term, based on cosine similarity of their globally embedded
word vectors. These k

′
nearest core terms (Cj,q, j ∈ {1, 2, · · · , k

′} , q ∈ Q) were
used to select the corresponding pseudo-local embeddings (trained on the documents
retrieved by the corresponding core term set to which the chosen core term belongs)
for selecting expanding terms per query term.

vthis parameter has not been varied as we have kept this parameter fixed throught all experiments,
both in the case of baselines and proposed methods, so it won’t affect the comparison.

vik
′

has been varied in {3, 5}, but k
′
= 3 worked better.

4.1. Approach 1 : Automatic Query Expansion using Pseudo-local Embeddings 33

k
′′
(= 30) vii most similar terms (tl,j,q, l ∈ {1, 2, · · · , k

′′}) to the core term, Cj,q, were
chosen from the corresponding pseudo-local embedding Ej,q. The net similarity of a
similar term, tl,j,q, is given by :

Net simtl,j,q = Sim(q, Cj,q) · Sim(Cj,q, tl,j,q) (4.1)

where Sim(q, Cj,q) is the cosine similarity between the query word, q (q ∈ Q), and
the core term, Cj,q, and Sim(Cj,q, tl,j,q) is the cosine similarity between the core term,
Cj,q and the similar term, tl,j,q. The set of net similarities of the similar terms corre-
sponding to a core term have been sum to one normalized.

Union of all such similar words (∪q∈Q ∪j∈{1,2,cdots,k′} tl,j,q), were taken per core term
per query. From this union, ξ most similar terms (Uξ represents the top ξ terms in
the union), based on their net similarity, were chosen as the final expansion terms for
the query Q. The Query model, θQexp , for the expanded query, Qexp is given by :

p(w | Qexp) = α p(w | Q) + (1− α)
Net simtl,j,q∑

t′∈Uξ Net simt
′
l,j,q

(4.2)

where α is the interpolation parameter used as balance between the original query
model and the expansion terms.

4.1.7 Experimental Setup

We have performed our experiments on TREC disk 4 and 5 collection and have used
the query sets of TREC 6 (50 queries), 7 (50 queries), 8 (50 queries) and TREC ro-
bust (100 queries) for evaluating the performance of our retrieval system. Parameter
setting has been done on the query set, TREC 6 and the remaining query sets have
been used as test query sets. The parameter α has been varied in {0.1, 0.2, · · · , 0.9}
and the number of expansion terms has been varied in the range {10, 20, · · · , 120}.

For training the word embeddings, we have used an embedding size of 400 and a win-
dow size of 5. Negative sampling with 5 negative samples have been used for training
using the CBOW architecture. The model has been trained for 80 epochs.

Indexing has been done using the Lucene viii package in Java. During indexing, stop

viithe parameter k
′′

has been varied in {30, 40, 50}. All of them yielded the same result, so we
stuck with k

′′
= 30

viiihttps://lucene.apache.org/core/

https://lucene.apache.org/core/

34 4. Proposed Methods

Query Set Method Parameters Metrics
Expansion Terms α MAP P@10 NDCG@10 bpref

TREC 6

LM - JM - - 0.2346 0.3720 0.4098 0.2662
Global (Pre-ret) 70 0.3 0.2379 0.3940 0.4319 0.2648

Local 120 0.2 0.2442 0.3720 0.4213 0.2674
Proposed pseudo-local 100 0.5 0.2382 0.3740 0.4194 0.2639

TREC 7

LM - JM - - 0.1779 0.3800 0.4005 0.1900
Global (Pre-ret) 70 0.3 0.1902 0.3940 0.4229 0.2018

Local 120 0.2 0.1934 0.3960 0.4135 0.2043
Proposed pseudo-local 100 0.5 0.1861 0.3840 0.4070 0.1972

TREC 8

LM - JM - - 0.2441 0.4320 0.4332 0.2629
Global (Pre-ret) 70 0.3 0.2603 0.4620 0.4796 0.2737

Local 120 0.2 0.2641 0.4640 0.4852 0.2768
Proposed pseudo-local 100 0.5 0.2609 0.4720 0.4847 0.2762

Robust

LM - JM - - 0.2678 0.3929 0.3741 0.2619
Global (Pre-ret) 70 0.3 0.2863 0.4152 0.4022 0.2731

Local 120 0.2 0.2945 0.4232 0.4068 0.2793
Proposed pseudo-local 100 0.5 0.2838 0.4141 0.3922 0.2702

Table 4.1: Comparison of our proposed method with different baselines.

words have been removed using the SMART ix stopword list, and the words have been
stemmed using Porter Stemmer.

4.1.8 Results and Discussion

Table 4.1 shows the comparison among the baseline language model with Jelinek-
Mercer smoothing, Pre-Retrieval query expansion with global embeddings (Roy et
al.) [6], query expansion with local embeddings (Diaz et al.) [7] and our proposed
pseudo-local embedding based query expansion.

Mean Average Precision(MAP) is the most standard metric in IR, as it is stable
and has good discriminative ability. Comparing the above results based on MAP
we found that our proposed method has outperformed Roy et. al.’s query expansion
from globally embedded terms in TREC 6 and TREC 8 query sets whereas the latter
has outperformed the proposed method in TREC 7 and TREC robust query sets.
The proposed method has performed better than the baseline language model with
Jelinek-Mercer smoothing in all the query sets. But Diaz’s query expansion with
locally embedded word vectors has out performed all the methods on all the query
sets. However the local embedding based method has a practical drawback, its re-
trieval operation is time expensive as it learns the word embeddings on the fly during
retrieval.

ixftp://ftp.cs.cornell.edu/pub/smart/

ftp://ftp.cs.cornell.edu/pub/smart/

4.2. Approach 2 : Adaptive Query Expansion using Locally and Globally embedded
word vectors 35

TREC 6 TREC 7 TREC 8 Robust
Global Embedding (Pre-ret) Vs Local Embedding × × × ×

Global Embedding (Pre-ret) Vs Proposed Pseudo-Local Embeddng × × × ×
Local Embedding Vs Proposed Pseudo-Local Embeddng × × × ×

× : can’t be claimed as significantly different.
X : significantly different.

Table 4.2: T-test of the proposed method with the other methods.

The performance in terms of MAP, P@10, NDCG@10 and bpref is comparable in
all the methods. So, we have done pair-wise significant tests between the methods.
Table 4.2 shows the T-test results between the methods, on all the four query sets.

4.2 Approach 2 : Adaptive Query Expansion using

Locally and Globally embedded word vectors

4.2.1 Motivation

On comparing the previous approach with the other word embedding based meth-
ods, we observed that Dias et al.’s method of query expansion with locally trained
word embeddings worked better than all the other methods. Also, Roy et al.’s Pre-
Retrieval query expansion with globally trained word embeddings worked better than
the proposed method in TREC 7 and TREC robust query sets. So, we analysed these
two methods on per query level and observed that the performance depends a lot on
the balancing parameter and the number of expansion terms added. Figure 4.1 shows
difference in AP, per query, between the two methods. From the figure it is evident
that local embedding doesnot work well for all queries, global embedding works much
better for almost half of the queries.

The above observations and Lv et al.’s work on adaptive relevance feedback [8] in-
spired us to design an oracle that will combine the two methods of Diaz et al. and
Roy et al. by learning the balancing parameters α and β and the number of expansion
terms for each method, through machine learning.

4.2.2 Problem Formulation

We represent the expansion language model of Diaz et. al. as p+Local and the expansion
language model of Roy et. al. as p+Global. Let pQ be the original query model, then
the expanded query model can be represented as :

pQExp(w) = α pQ + (1− α) (β p+Global + (1− β) p+Local) (4.3)

36 4. Proposed Methods

Figure 4.1: Plot of per query difference in AP between local embedding based query
expansion of Diaz and Global Embedding based query expansion of Roy.

4.2. Approach 2 : Adaptive Query Expansion using Locally and Globally embedded
word vectors 37

where α (∈ [0, 1]) is the balancing parameter between the original query model and
the expansion language models and β (∈ [0, 1]) is the balancing parameter between
the global expansion language model and the local expansion language model.

Our goal is to optimize the balancing parameters α and β for different queries. We
tried to design functions, that can map a given query, Q to its appropiate balancing
parameters α and β (α = F1(Q) and β = F2(Q)).

We also tried to design two more functions, that can map a given query, Q, to
the number of global (ExpGlobal) and local (ExpLocal) expansion terms it requires
(ExpGlobal = F3(Q) and ExpLocal = F4(Q)).

4.2.3 Feature Selection

Inspired from [8] and [9] we have selected the following features as input to our ma-
chine learning algorithm that tried to learn the functions F1, F2, F3 and F4.

1. Query Entropy :

As the queries are often very short, so we have computed the query entropy
score based on the top-N resultant documents (F

′
) of the initial retrieval, which

is defined as :

QE =
∑
t∈θ

F
′

−p(t | F ′) log2 p(t | θF ′) (4.4)

where p(t | θF ′) is estimated as p(t | θF ′) = c(t,F
′
)∑

t c(t,F
′)

, where c(t, F
′
) is the count

of term t in F
′
.

2. Simplified Query Clarity Score :

The simplified clarity score (SCS) measures the Kullback-Leibler divergence
of the (simplified) query language model from the collection language model,
as an indication for query specificity. The KL-divergence between the query Q
and the collection C is computed as follows :

QSCS =
∑
t∈Q

p(t | θQ) log2

p(t | θQ)

p(t | C)
(4.5)

38 4. Proposed Methods

SCS is strongly related to the avgICTF predictor, assuming each term appears
only once in the query. In such a case, QClarity = log 1

|Q| + avgICTF (Q). Thus,
SCS measures the specificity of the query while also taking into account the
query length.

3. Average Collection Query Similarity :

The vector-space based query similarity to the collection has been measured
by considering the collection as a one large document composed of concatena-
tion of all the documents. The collection query similarity (CQS) of a query
term is defined as follows :

QCQS(t) = (1 + log(tf(t, C))) · idf(t) (4.6)

where tf(t, C) is the term frequency of the term t in the collection C and idf(t)
is the inverse document frequency of the term t.

Average collection query similarity is given by :

avgQCQS =
1

| Q |
∑
t∈Q

QCQS(t) (4.7)

4. Average variance of term weights over the documents containing it :

VAR(w(t, d)) measures the variance of the term weights over the documents(d)
containing it in the collection.The weight of a term that occurs in a document
is determined by :

w(t, d) = (1 + log(tf(t, d))) · idf(t) (4.8)

Average variance is given by :

avgQV =
1

| Q |
∑
t∈Q

V AR(w(t, d)) (4.9)

5. Average pointwise mutual information :

The pointwise mutual information (PMI) is a popular measure of co-occurrence
statistics of two terms in the collection. It is defined as :

4.2. Approach 2 : Adaptive Query Expansion using Locally and Globally embedded
word vectors 39

PMI(t1, t2) = log
p(t1, t2 | C)

p(t1 | C)p(t2 | C)
(4.10)

where p(t1, t2 | C) is the probability of the two terms to co-occur in the corpus,
which can be approximated by maximum likelihood estimation.

Let B the set of all adjacent overlapping bigrams in the query Q. Then average
pointwise mutual information is given by :

avgQPMI =
1

| B |
∑

(t1,t2)∈B

PMI(t1, t2) (4.11)

6. Pseudo-feedback Radius :

Pseudo-feedback radius (PFBR) can be used to measure the broadness of the
pseudo feedback documents (documents retrieved by the query after initial re-
trieval), i.e. whether the pseudo feedback documents are concentrated on a
single topic or not. Pseudo-feedback radius can be defined as the average diver-
gence between each document and the centroid of the pseudo feedback docu-
ments, which can be approximated using the Jensen-Shannon divergence among
pseudo feedback document models. It is defined as :

QPFBR =
1

| F ′ |
∑
d∈F ′

∑
t∈d

p(t | θd) log
p(t | θd)

p(t | θcentroid)
(4.12)

where p(t | θcentroid) = 1
|F ′ |

∑
d∈F ′ p(t | θd).

7. Pseudo-feedback clarity score :

Similar to the simplified query clarity score, pseudo-feedback clarity score (PF-
BCS) can be calculated as :

QPFBCS =
∑
t∈F ′

p(t | θF ′) log
p(t | θF ′)
p(t | C)

(4.13)

8. Average Local/Global Term Similarity :

Term similarity, Sim(t, q) is the cosine similarity between the term t ∈ Nearest Neighbour(q)
in the embedding space and the query term q ∈ Q.

40 4. Proposed Methods

Average local term similarity(QALTS) is the average of Sim(t, q) ∀ t ∈ Nearest Neighbour(q)
in the local embedding space, ∀ q ∈ Q.

Average global term similarity(QAGTS) can be defined similarly.

9. Range of Local/Global Term Similarity :

Range of term similarities is defined as :

RTS = max(Sim(t, q))−min(Sim(t, q)) (4.14)

wheremax(Sim(t, q)) is the maximum term similarity ∀ t ∈ Nearest Neighbour(q)
in the local embedding space, ∀ q ∈ Q. Similarly min(Sim(t, q)) is the mini-
mum term similarity.

Range of local term similarity is the RTS defined for the local embedding space,
similarly range of global term similarity is the RTS defined for the global em-
bedding space.

4.2.4 Learning Algorithm

The balance parameters α and β lie in [0, 1], we have chosen logistic regression for
learning the values of α̂ and β̂ for different queries, using the above heuristically de-
fined features as input, as in logistic regression the output is always confined to values
between 0 and 1.

Logistic regression models are of the form :

F (z) =
1

1 + exp(−z)
(4.15)

where the variable z represents the set of features. We have used F1(z) as the pre-
dicted value for α and F2(z) as the predicted value for β. Variable z is a measure of
the total contribution of all the features used in the model, defined as z = w̄x̄. x̄ is a
vector of numeric values representing the features; and w̄ represents a set of weights,
which indicates the relative weights for each feature.

4.2. Approach 2 : Adaptive Query Expansion using Locally and Globally embedded
word vectors 41

For predicting the number of global (ExpGlobal) and local (ExpLocal) expansion terms,
we have used linear regression as these values need not be confined between 0 and
1. For predicting the values of ExpGlobal and ExpLocal we have not used the features,
average local/global term similarity and range of local/global term similarity, as the
computation of these features require ExpGlobal and ExpLocal.

4.2.5 Experimental Setup

We have prepared the training set by performing a grid search on the parameters α (∈
{0.0, 0.1, 0.2, · · · , 0.9}), β (∈ {0.0, 0.1, 0.2, · · · , 0.9}), ExpGlobal (∈ {10, 20, · · · , 120})
and ExpLocal (∈ {10, 20, · · · , 120}), and have selected the best parameter setting per
query. All the features have been zero-one normalized. We have used the Python
package, Tensorflowx, by Google to implement the learning algorithm.

4.2.6 Discussion

The learning algorithm failed to learn the functions F1, F2, F3 and F4, possibly
because of inadequate number of discriminative features or possibly because of inad-
equate amount of training samples (200 training samples from the query sets TREC
6, 7, 8 and first 50 queries of TREC robust, the last 50 queries of TREC robust have
been used as test samples). We have tried different optimizing techniques like Adam,
Adagrad, stochastic gradient descent and RMS prop and have tried all possible pa-
rameter settings of these optimizers. We have even tried using dropouts in the weights
w̄, but nothing among this worked. The logistic regression and the linear regression
just gave random outputs which were not even close to the target values.

The Classification Approach

We have also tried to map the problem as a classification problem, where given a
query, Q, the classifier will choose whether to use Diaz et al.’s local embedding or
Roy et al.’s global embedding for expanding the queries.

For this approach, we have prepared the ground-truths by comparing the query-wise
eval files obtained by running TREC Evalxi on the resultant files of both the methods
and have chosen the better performing method in terms of AP per query.

xhttps://www.tensorflow.org/
xihttps://trec.nist.gov/trec_eval/

https://www.tensorflow.org/
https://trec.nist.gov/trec_eval/

42 4. Proposed Methods

This method also failed to classify accurately, it classified all the test samples to
the class of local embedding. We have obtained the following confusion matrix after
running the classifier on the test set :

PredictedLocal PredictedGlobal
TrueLocal 30 0
TrueGlobal 20 0

(4.16)

4.3 Approach 3 : Combining Local and Global

Embedding based Query Expansion methods

by Data Fusion

4.3.1 Motivation

Data Fusion usually works when a highly ranked document in one retrieval system is
lowly ranked in the other retrieval system and vice versa. On analysing the perfor-
mance of local embedding based query expansion with pre-retrieval global embedding
based query expansion we observed that almost half of the queries work better with
local embedding and the remaining work better with global embedding. Thus, we
decided to perform data fusion on these two methods.

4.3.2 Normalizing techniques

We have used the following normalizing techniques to normalize the scores that the
resultant documents have received from both local and global embedding based query
expansion methods :

1. Zero-One normalization :

If there are m component results Li, each of which is from an information
retrieval system iri and contains n documents dij (1 ≤ i ≤ m) and (1 ≤ j ≤ n).
rij is the raw score that dij obtains from iri. Then the scores of the documents
in each Li can be normalized in the range [0, 1] using :

sij =
rij −min ri

max ri −min ri
(4.17)

where min ri is the minimal score that appears in Li, max ri is the maximal
score that appears in Li, rij is the raw score of document dij , and sij is the

4.3. Approach 3 : Combining Local and Global Embedding based Query Expansion
methods by Data Fusion 43

normalized score for document dij.

2. Sum-to-One normalization :

If there are a group of raw scores {r1, r2, · · · , rn}, from a ranked list of doc-
uments, then sum-to-one method normalizes raw scores using :

si =
ri∑n
i=1 ri

(4.18)

4.3.3 Data Fusion Methods

Let there be a document collection C and a group of retrieval systems IR = {iri}
for (1 ≤ i ≤ n). All retrieval systems iri (1 ≤ i ≤ n) search C for a given query
Q and each of them provides a ranked list of documents Li =< di1, di2, · · · , dim >.
A relevance score si(dij) is associated with each of the documents in the list. Data
fusion techniques are use to merge these n ranked lists into one.

1. CombSum :

The data fusion method CombSum generates the merged scores for every doc-
ument, d, according to the equation :

g(d) =
n∑
i=1

si(d) (4.19)

where si(d) is the score that iri assigns to d. If d does not appear in any Li,
then a default score (0) is assigned to it. g(d) is the global score that every doc-
ument d gets. After assignment of the global scores the documents are ranked
according to their global score.

2. CombMNZ :

The data fusion method CombMNZ assigns the global scores to the documents
according to the equation :

g(d) = m ∗
n∑
i=1

si(d) (4.20)

where m is the number of results in which document d appears.

44 4. Proposed Methods

Query Set Method Parameters Metrics
Expansion Terms α MAP P@10 NDCG@10 bpref

TREC 6

LM - JM - - 0.2346 0.3720 0.4098 0.2662
Global(Pre-ret) 70 0.3 0.2379 0.3940 0.4319 0.2648

Local 120 0.2 0.2442 0.3720 0.4213 0.2674
Fusion method - - 0.2462 0.3860 0.4296 0.2682

TREC 7

LM - JM - - 0.1779 0.3800 0.4005 0.1900
Global(Pre-ret) 70 0.3 0.1902 0.3940 0.4229 0.2018

Local 120 0.2 0.1934 0.3960 0.4135 0.2043
Fusion method - - 0.1926 0.4080 0.4260 0.2054

TREC 8

LM - JM - - 0.2441 0.4320 0.4332 0.2629
Global(Pre-ret) 70 0.3 0.2603 0.4620 0.4796 0.2737

Local 120 0.2 0.2641 0.4640 0.4852 0.2768
Fusion method - - 0.2669 0.4840 0.4960 0.2797

Robust

LM - JM - - 0.2678 0.3929 0.3741 0.2619
Global(Pre-ret) 70 0.3 0.2863 0.4152 0.4022 0.2731

Local 120 0.2 0.2945 0.4232 0.4068 0.2793
Fusion method - - 0.2949 0.4394 0.4170 0.2822

Table 4.3: Comparison of the fusion method with different baselines.

4.3.4 Results and Discussion

We have tried all the possible combinations of the normalizing techniques and data
fusion methods described above, and have found that CombSum with zero-one nor-
malization work equally well as CombMNZ with zero-one normalization. These two
methods work better than the other possible combinations. As both these methods
work equally well, we refer CombSum with zero-one as the final fusion method, with-
out loss of generality.

Table 4.3 shows the comparison among the baseline language model with Jelinek-
Mercer smoothing, Pre-Retrieval query expansion with global embeddings [6], query
expansion with local embeddings [7] and our fusion method.

On comparing the Fusion method with the other methods, in terms of MAP, we
found that the fused method has outperformed all the other methods in TREC 6, 8
and robust query sets, but Diaz et. al.’s local embedding based query expansion has
beaten the Fusion method in TREC 7 query set. But on comparing the Fusion method
with other methods in terms of the other metric like P@10, NDCG@10 and bpref, we
find that the fusion method has outperformed all the other methods except for global
embedding based query expansion, in terms of P@10, in TREC 6 query set. Thus
we can come to the conclusion that fusing the two different embedding based query
expansion techniques performs better than both of them according to our hyposthesis.

4.4. An Observation 45

TREC 6 TREC 7 TREC 8 Robust
Global Embedding (Pre-ret) Vs Local Embedding × × × ×

Global Embedding (Pre-ret) Vs Fusion method X × X X
Local Embedding Vs Fusion method × × × ×

× : can’t be claimed as significantly different.
X : significantly different.

Table 4.4: T-test of the Fusion method with the other methods.

The performance in terms of MAP, P@10, NDCG@10 and bpref is comparable in
all the methods. So, we have done pair-wise significant tests between the methods.
Table 4.4 shows the T-test results between the methods, on all the four query sets

4.4 An Observation

We have also compared the performance of Post-Retrieval query expansion with global
embeddings of Roy et al. [6] and query expansion with locally trained word embed-
dings of (Diaz et al.) [7], by changing the parameter of Jelinek-Mercer smoothing and
have found that the Post-retrieval method has performed better than the local em-
bedding based method in terms of the metrics MAP, P@10, NDCG@10 and bpref for
the parameter value 0.1 (This parameter value gave the best results over all possbile
values for the parameter). Table 4.5 shows the comparison. The Post-Retrieval based
method is also computaionally efficient in comparison with the Pre-Retrieval global
embedding based method and local embedding based method, as it has to perform
much less number of floating point operations compared to the Pre-Retrieval based
method, as the vocabulary used here is much smaller than that of the Pre-Retrieval
method and it also doesnot require any training during retrieval.

4.5 Conclusion

We have studied the use of term relatedness in the context of query expansion for
ad-hoc information retrieval. We have proposed three approaches for improving the
retrieval performance though word embedding based query expansion. In the first
approach we have proposed a time efficient retrieval algorithm for query expansion
using pseudo-locally constrained word embeddings. This method showed comparable
performance with the global embedding based query expansion technique but the lo-
cal embedding based expansion method was superior to our approach in all the cases.
In our second approach we have tried to present a learning approach that adaptively
predicts the balance co-efficients between the original query model and the local and
global expansion language models. In this approach we have also tried to predict the

46 4. Proposed Methods

Query Set Method Parameters Metrics
Expansion Terms α MAP P@10 NDCG@10 bpref

TREC 6

LM - JM - - 0.2339 0.3760 0.4126 0.2680
Global(Post-ret) 100 0.5 0.2496 0.4020 0.4456 0.2719

Local 120 0.3 0.2454 0.3780 0.4248 0.2710

TREC 7

LM - JM - - 0.1776 0.3920 0.4098 0.1884
Global(Post-ret) 100 0.5 0.1990 0.4140 0.4473 0.2089

Local 120 0.3 0.1916 0.4040 0.4200 0.2031

TREC 8

LM - JM - - 0.2453 0.4280 0.4270 0.2647
Global(Post-ret) 100 0.5 0.2735 0.4680 0.4899 0.2781

Local 120 0.3 0.2644 0.4600 0.4764 0.2796

Robust

LM - JM - - 0.2658 0.3909 0.3678 0.2590
Global(Post-ret) 100 0.5 0.2959 0.4465 0.4209 0.2814

Local 120 0.3 0.2949 0.4232 0.4036 0.2807

Table 4.5: Comparison between Post-Retrieval query expansion with global embed-
dings (Roy et al.) [6] and query expansion with locally trained word embeddings
(Diaz et al.) [7].

optimal number of expansion terms required for the local and global embedding based
query expansion methods. But this approach failed to perform in accordance to our
hyposthesis. In our third approach we used data fusion techniques to fuse the results
of query expansion based on local and global embeddings to have an improved per-
formance over both the methods. The third approach could beat the local embedding
based technique in three out of four query sets and it outperformed the global em-
bedding based method is all the query sets, in term of mean average precision (MAP).

4.6 Future Work

There is still scope for improvement in the following areas :

1. In Approach 1, we are yet to try with other methods of topic modelling and
selecting core terms. Other methods for choosing the relevant pseudo-local em-
beddings according to a user’s query is yet to be explored.

2. In Approach 2, we are yet to figure out why the machine learning algorithms
are failing to learn from the data, whether it is due to inadequate number of
discriminative features or due to the lack in number of training samples or
something else.

3. In Approach 3, there is room for trying out other linear and nor linear normal-
izing techniques. Fusion of Local and Global embeddings of different parameter

4.6. Future Work 47

settings, other than the optimal settings, can also be tried to improve the re-
sults.

Bibliography

[1] Amit Singhal. Modern Information Retrieval: A Brief Overview. IEEE Data
Eng. Bull., 24(4):35-43, Dec 2001.

[2] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[3] Wikipedia Contributors. Stemming. Wikipedia - The Free Encyclope-
dia, June 2018, https://en.wikipedia.org/w/index.php?title=Stemming&

oldid=843892309.

[4] Parantapa Goswami. Query Expansion using WordNet. Indian Statistical
Institute, Kolkata, Dissertation:2011-296, 2011, http://hdl.handle.net/

123456789/6453.

[5] Rong, Xin. word2vec parameter learning explained. arXiv, preprint
arXiv:1411.2738, Nov 2014.

[6] Dwaipayan Roy. Using Word Embedding for Automatic Query Expansion. arXiv,
preprint arXiv:1606.07608, Jun 2016.

[7] Fernando Diaz. Query expansion with locally-trained word embeddings. arXiv,
preprint arXiv:1605.07891, May 2016.

[8] Yuanhua Lv. Adaptive Relevance Feedback in Information Retrieval. Proceedings
of the 18th ACM conference on Information and knowledge management, ACM,
pp. 255-264, Nov 2009.

[9] David Carmel. Estimating the Query Difficulty for Information Retrieval. Mor-
gan and Claypool publishers, 2010.

[10] Shengli Wu. Data Fusion in Information Retrieval. Springer, 2012.

48

https://en.wikipedia.org/w/index.php?title=Stemming&oldid=843892309
https://en.wikipedia.org/w/index.php?title=Stemming&oldid=843892309
http://hdl.handle.net/123456789/6453
http://hdl.handle.net/123456789/6453

	Brief Overview on Information Retrieval
	What is Information Retrieval
	Document and Collection
	How Information Retrieval is different from tradional databases

	The Retrival process
	Indexing
	Retrieval

	Evaluation of an IR system
	Basic requirements for the evaluation of an IR system
	Evaluation metrics

	Language models for Retrieval
	Smoothing

	Word Embedding using Word2Vec
	Continuous Bag-of-Words model of Word2Vec
	Single-word context
	Multi-word context

	Computational Optimization
	Negative Sampling

	Related Work
	Using Word Embedding for Automatic Query Expansion
	Pre-retrieval kNN based approach
	Post-retrieval kNN based approach
	Extended Query Term Set
	Retrieval

	Query Expansion with Locally-Trained Word Embeddings
	Local Word Embeddings
	Query Expansion with Word Embeddings

	Adaptive Relevance Feedback in Information Retrieval
	Discrimination of Query
	Discrimination of Feedback Documents
	Learning Algorithm

	Proposed Methods
	Approach 1 : Automatic Query Expansion using Pseudo-local Embeddings
	Motivation
	Grouping similar topics by Clustering
	Selection of Core Terms
	Initial Retrieval and Cluster Pruning
	Learning Pseudo-local Embeddings
	The final Retrieval Process with pseudo-locally expanded queries
	Experimental Setup
	Results and Discussion

	Approach 2 : Adaptive Query Expansion using Locally and Globally embedded word vectors
	Motivation
	Problem Formulation
	Feature Selection
	Learning Algorithm
	Experimental Setup
	Discussion

	Approach 3 : Combining Local and Global Embedding based Query Expansion methods by Data Fusion
	Motivation
	Normalizing techniques
	Data Fusion Methods
	Results and Discussion

	An Observation
	Conclusion
	Future Work

