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Abstract

Though neural networks are inspired by human brains, recent studies have

reported several differences between them in terms of their working prin-

ciples. Specifically, some investigations on animal brains have shown that,

in an animal brain, for different stimuli, different clusters neurons get acti-

vated. For example, when an animal visualizes different images, neurons

from different parts of the brain gets activated. Being inspired from such

an observation, here we propose a multilayered model of neural network

that incorporates an idea of local activation of neurons for different group

of objects (classes). In order to realize activation of distinct spatial clus-

ters of neurons for different types of stimuli, the proposed model makes

an interesting integration of a multi-layer perceptron and a self-organizing

map. When compared to a conventional multilayer perceptron, the pro-

posed model produces distinct locally activated regions for different classes

and at the same time it learns to discriminate between classes.

Keywords: multi-layer perceptron, self-organizing maps, visual cortex, vi-

sual stimuli.
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Chapter 1

Introduction

1.1 Introduction

Neural networks are one of the most frequently used tools in Machine

Learning. One of the main characteristics of neural networks is that it is

inspired from brain. There is a study done by Karpathy [1], the director of

Artificial Intelligence Tesla, where he showed that almost 10% of all papers

submitted to arxiv-sanity database in March 2017 mention Tensorflow and

almost 31% of all papers use deep learning frameworks (including Tensor-

flow). There he also gives the top hot keywords that are used in the papers

and some of these are ResNet, Tensorflow, GANs. He used last five years

arxiv-sanity database which contains 28303 machine learning papers to do

the study [1]. This clearly suggests that neural networks, particularly deep

neural networks, is a very active area of research now.

Though neural networks are used in many applications there are some

fundamental differences between the way a human brain and a neural net-

work works. In neural networks, we use backpropagation to update the

weights of the neurons’ axons. There we find the amount it will be up-

dated by multiplying the error signal with every synaptic weight on each

neuron’s axon and further we go downstream. For this, there needs to be

a precise, symmetric backward connectivity pattern, but in a human brain,

it is thought to be impossible [2]. Neurons in the human brain fire spikes

whenever the cell potential crosses a threshold. When the neurons fire the

13



14 CHAPTER 1. INTRODUCTION

potential of the cells continuously rise to a peak and suddenly it falls to un-

dershoot its resting value. It then slowly decays towards its resting value.

But in neural networks, we simplified the idea by assuming that when a

neuron fires its cell potential value directly goes to the resting value [3].

So we can say that the neural networks that we are using is much simpler

version than the actual one.

Recently some interesting observations have been made by scientists

by doing experiments on brains of animals including humans. In one ex-

periment different visual stimuli were shown to rats and cats and period-

ically the activity of the neurons were captured. It has been seen that for

different stimuli different group of neurons are activated [4]. In another

experiment images of different persons and places were shown to five peo-

ple and the activity of different parts of the brain were captured. Here it

has been seen that for images of different persons or of different places,

neurons of different parts of the brain are activated [4].

All these experiments on the brain suggest that depending on the stim-

uli, different groups of neurons are activated, where members of each group

are spatial neighbors. Moreover these groups are distributed over different

regions.

Here our objective is to design neural networks that are more strongly

influenced by our brains. For this, we attempt to build a model where

neurons of different parts of the network will be participating in different

classes in the dataset.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Section 2, we briefly

discuss the preliminaries and background related to our work. In Section 3,

we describe some of the works that are related to our work. Section 4 de-

scribes the detailed construction of our scheme along with the data struc-

tures used in the construction. There we show some of the experimental

results. And finally in Section 5 we conclude and we discuss some of the

possible future works.



Chapter 2

Preliminaries

2.1 Multi-layer Perceptron

Here we consider a Multi-Layer Perceptron (MLP) with a single hid-

den layer. Figure 2.1 shows the architecture. Let an input pattern be x =

(x1, x2, ..., xn)T. Therefore in the input layer, there will be n fan out nodes

for an n dimensional input and a single bias node. We assume that in the

hidden layer there are k sigmoidal neurons. Let there be m classes, so in the

output layer there are m sigmoidal neurons. Let W IH be the set of weights

between the input and the hidden layers, and WHO be the set of weights

between the hidden and output layers. Therefore, we can write weight ma-

trices as,

W IH = [wIH
ih ](n+1)×k (2.1)

WHO = [wHO
hj ](k+1)×m (2.2)

Now we discuss the general model of an MLP [3]. Here the activation func-

tion of a neurons is denoted by S(·).

1. In the input layer at the ith neuron the computation is,

S(x0) = 1;

S(xi) = xi; i = 1, 2, · · · , n. (2.3)

15



16 CHAPTER 2. PRELIMINARIES

Thus, except the bias node, other input nodes just fan out the inputs.

2. In the hidden layer at the hth neuron the computation is,

S(p0) = 1; (2.4)

S(ph) =
1

1 + e−ph
; h = 1, 2, · · · , k (2.5)

where

ph =
n

∑
i=0

wIO
ih × S(xi); h = 1, 2, · · · , k. (2.6)

3. In the output layer at the jth neuron the computation is,

S(yj) =
1

1 + e−yj
; j = 1, 2, · · · , m, (2.7)

where

yj =
h=k

∑
h=0

wIO
hj × S(ph); j = 1, 2, · · · , m. (2.8)

For an input x, let o = (o1, o2, ..., om)T be the desired output and after

feeding the input x into the network at the output layer we found y =

(y1, y2, ..., ym)T. Our objective is to minimize the difference between the

actual output y and the desired output o. So we want to minimize the

error, E, where E =
1
2 ∑m

i=1(yi − oi)
2.

Now we need to modify the set of weights from input to hidden layer

and hidden to output layer so that the difference between the obtained out-

put y and desired output o is minimised. Here we assume that we are giv-

ing the input vectors one by one. So after feeding each input vector into

the network, we find the error and we update W IH and WHO with respect

to the error. This strategy is called the online update strategy. One can also

use a batch mode update strategy to minimize the error [3]. The gradient

descent technique is used to modify the weights.

Let, ∆W = be the amount of modification necessary towards minimization
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Figure 2.1: Multi-layer Perceptron (MLP) with one hidden layer

of error, E.

∆W ∝ − δE
δW

(2.9)

∴ ∆W = −η
δE
δW

, (2.10)

where η is the learning rate. Now after doing derivative with respect to

WHO and W IH we obtain the amount of modification needed for the hidden

to output layer links and input to hidden layer links respectively.

The amount of weight update between the lth output layer node and the jth

hidden layer node is,

∆wl j = −η(yl − ol)yl(1− yl)S(pj) (2.11)

The amount of weight update between the jth hidden layer node and the ith

input layer node is,

∆wji = −η
m

∑
l=1

(yl − ol)yl(1− yl)wl jS(pj)(1− S(pj))xj (2.12)

To design our networks we shall make use of some processing similar to
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that of Kohonen’s self organizing map. Hence, we introduce it next.

2.2 Self-Organizing Maps

The Self-Organizing Maps (SOM) [3] is also a type of artificial neu-

ral network (ANN). SOM is trained in an unsupervised way which gen-

erates a lower dimensional (usually two or three dimensional) discred-

ited representation of the input training samples, which is called a map.

For the learning purpose, unlike error-correction learning which is used in

many artificial neural networks, SOM uses competitive learning. Figure

2.2 shows the architecture of a SOM. The visible part of SOM is known as

the map space which consists of components called neurons or nodes. Like

any other artificial neural network, SOM also works in two modes: Train-

ing and mapping. In the “training” mode for input data, it builds the map,

whereas in the “mapping” mode it classifies a new input example automat-

ically. The finite two-dimensional map space is defined before it goes to the

“training” mode. This is a two-layer network. The first layer is the input

layer. If the training data are in an n-dimensional space, the input layer will

have n fan-out nodes. The second layer is the competitive layer of nodes.

There is complete connection between the two layers. The second layer

nodes are arranged on a q-dimensional latice, typically q = 1, 2 or 3. With

each node, a weight vector is associated which represents a position in the

input space, i.e. it has the same dimension as that of the input. The task

of “training” is to move the weight vectors towards input data, but with-

out damaging the topology induced from the map space. In the “training”

mode the essential processes are given below:

1. Competition : For each input pattern, the neurons in the output layer

will determine the value of a function. We call that function as dis-

criminant function. So for each neuron in the map space, we com-

pute the discriminant function. This function provides the basis of

the competition. So the neuron with the largest discriminant will be

the winner.

Let input vector be n dimensional, so an input vector is x = (x1, x2, · · · , xn)T.
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Let the map space be one dimensional (for simplicity, we can also

consider two-dimensional map space). Let there are k neurons in the

map space.

So for the jth neuron the weight vector will be, wj = (wj1, wj2, · · · , wjn)
T

where j = 1, 2, · · · , k.

Now we want to find the best match between x and wj. The best

matching node with x that j will emerge as the winner and the corre-

sponding weight will be the winning weight vector. Let,

i(x) = arg min
j
||x−wj||2 (2.13)

Thus for input x, the ith neuron in the competitive layer is the winner.

Note that, in reality, for a 2-D latice each neuron will be identified by

two indices. For simplicity, we used one index. This does not cause

any problem as we can have a unique mapping between 2-D and 1-D

indexes.

2. Co-operative : We want to find a neighborhood around the winning

neuron (i.e. the ith neuron). For a 1-D lattice defining topological

neighborhood is straight forward. For a 2-D lattice we can define dif-

ferent kinds of neighborhood: square, hexagonal, circular and so on.

Instead of defining explicit neighborhood we use an implicit neigh-

borhood function. For this, we define topological neighborhood cen-

tered around i. We define hji which is the topological neighborhood

centered around i, encompassing neuron j where we are measuring

it. This hji should decrease with the lateral distance (on the lattice),

that is the distance between the winning neuron i and neuron j. The

lateral distance between i and j is denoted by dji, where i is the win-

ning neuron and j is the excited neuron which is excited as an effect

of the winning neuron. Here a typical choice is to use Gaussian type

neighborhood function i.e.

hji = exp
−

d2
ji

2σ2 (2.14)
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This does not depend on the position of the winning neuron, so it is

translation invariant.

In the case of 1-D lattice the dji = |j− i|. In case of 2-D lattice d2
ji =

||rj − ri||2; where, rj = coordinate of the excited neuron j and ri =

coordinate of the winning neuron i.

Now as the iteration progresses σ decreases as:

σ(t) = σ0 − t
σ0 − σf

maxstep
(2.15)

So now (2.14) become

hji(t) = exp
−

d2
ji

2σ2(t) ; t = 0, 1, 2, · · · , maxstep. (2.16)

Here, maxstep is the number of times we want to iterate with the

dataset in the network.

3. Synaptic Weight Adaptation : It enables the excited neurons to in-

crease their discriminant function in response to the input example

which caused the winning of the neurons. Here we generally use

Hebbian learning. It means that when the pre-synaptic and post-

synaptic are correlated then the synaptic connection is strengthened,

if they are not correlated then the synaptic connection is weekend.

We can take g(·) to be a linear function of yj (for simplification), i.e.,

g(yj) = yj. Now we can take yj = hji. Normal way of writing the

Hebbian hypothesis is

∆wj = ηyjx (2.17)

Now introducing forgetting term,

∆wj = ηyjx− g(yj)wj (2.18)

Now if we take g(yj) = ηyj, therefore, ∆wj = ηyjx− ηyjwj. In case
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of a 2-D lattice g(yj) = ηhji. Therefore,

∆wj = ηhjix− ηhjiwj (2.19)

= ηhji(x−wj) (2.20)

Using discrete time formulation we can write it as,

wj(t + 1) = wj(t) + η(t)hji(t)(x−wj(t)) (2.21)

Here we take η as a function of t. This is the updation rule. Here we

have two time varying factors η(t) and hji(t).

Now we can update η(t) by using the formula, η(t) = η0

(
1− t

maxstep

)
.

Now, using eq. (2.21) we update the weights. Note that using this

update rule, the winning node’s weight vector gets the maximum

amount of update and it move closer to the input x. All other weight

vector also move closer to the input, but for them the strength of up-

date reduces as the distance of the node from the winner on the lattice

increases.

Typically SOM learning is done in two phases. In the first phase the

weights of the winner and its neighbors are updated as explained

above. Then in the second phase only the winner is updated for some

iterations.
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Figure 2.2: Self Organizing Maps (SOM)



Chapter 3

Related Works

Here we concentrate mostly on some existing works that are related to

our work.

In [5] Laurent et al. presented a visual attention system which is in-

spired by the behavior and the neuronal architecture of the early primate

visual system. Into a single topographical saliency map, multiscale image

features are combined. In order to decrease saliency, a dynamical neural

network then selects the attended locations. In a computationally efficient

manner, the system breaks down the complex problem of scene under-

standing by rapidly selecting conspicuous locations.

Ciresan et al. in [6] proposed a biologically plausible deep artificial

neural network architecture. Where they show that their model can match

human performance on tasks such as handwritten digits recognition or traf-

fic signs recognition unlike traditional methods of computer vision and

machine learning which cannot. Small receptive fields of convolutional

winner-take-all neurons yield large network depth which results in roughly

as many sparsely connected neural layers as found in mammals between

the retina and visual cortex. There they trained only winner neurons. Here

the inputs are pre-processed in different ways and then given to several

deep neural columns which become experts and then their predictions are

averaged. This is the first time on a widely used computer vision bench-

marks human-competitive results are reported.

23
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In [7] Glorot et al. show that rectifying neuron is a better model of bi-

ological neurons and it gives equal or better performance than hyperbolic

tangent neurons. Their results can be seen as a milestone in the attempts to

understand the difficulty in training deep but purely supervised neural net-

works and also closing the performance gap between the neural networks

learned with and without unsupervised pre-training.

Now we discuss some of the relevant experiments done on animals and

humans.

Kreiman et al. in [8] mentioned that the entorhinal cortex, amygdala,

and hippocampus obtain inputs from the temporal neocortical regions. These

inputs are convergent and specialized for processing complex visual stim-

uli. Therefore, they are critical in the recognition and representation of

visual information. In this experiment 427, single neurons are examined

which are in human hippocampus, entorhinal cortex, and amygdale. As a

result, they found a remarkable degree of category-specific firing of indi-

vidual neurons on a trial-by-trial basis.

In [9] Quiroga et al. mentioned that when we see a person or an object

it takes a fraction of second to recognize even when it has been seen under

strikingly different conditions. Still, it is unclear how such robust high-level

representation is achieved by neurons in human brain. It has been shown

that neurons in the human medial temporal lobe (MTL) fire on category-

specific inputs. Here they report on a remarkable subset of MTL neurons

which are selectively activated when different pictures of some given land-

marks, individuals or objects are presented. This experiment is done on 5

participants. They recorded the activation pulse of 993 neurons from each

participant.



Chapter 4

Proposed Scheme

In this section, we propose a model to meet our objective that has been

already discussed. Here we first describe the architecture of our model.

Figure 4.1 shows the architecture. Figure 4.1 shows four layers including

the input and output layers. This is the minimum number of layers the

network can have. Between the second and the output layers there can

be more than one hidden layer. In this model, we integrate concepts of

multilayered perceptron and self-organizing maps. It should be noted that

we could use multiple hidden layers but for simplicity, we use one hid-

den layer. In this model we have four layers these are input layer, spatial

activation and intermediate feature extraction layer (SAIFEL), discrimina-

tory feature extraction layer (DFEL) and output layer. Like any other neu-

ral network model here we first train the model then we test it. We train

the network in two different phases. First, we train the full network and

then we train a part (the discriminatory part) of the network to improve

the classifier performance. Let the dimension of the input vector be n.

So in the network, the number of nodes in the input layer is n. The sec-

ond layer (SAIFEL) has two component: spatial activation layer (SAL) and

intermediate feature extraction layer (IFEL). Now let in the SAL there be

k = q× q = q2 hidden nodes arranged on a 2-D lattice like a SOM. Then

in IFEL also there are k nodes and there is a one-to-one correspondance

between the two sets of nodes. The output of the ith SAL node will be de-

noted by si and the output of ith IEFL node will be denoted by pi. So on the

25
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second layer, we have total 2k nodes. In fig. 4.1 the 2k nodes are shown on

a 2-D lattice. Now after that, we have DFEL layer with k nodes. We will

discuss the usage of this layer later. The last layer in our model is output

layer. If we have m classes in the dataset, then in the output layer we have

m nodes. Now we will discuss the training in details.

In the first part of the training we train the model in online learning

mode, that means that after feeding each input we modify the network

weights. Let an input vector be x = (x1, x2, · · · , xn)T. So after feeding the

input x into the network first, we need to find the output of the SAL nodes

and the IFEL nodes. The output for the ith SAL node is computed as:

si = exp
−

∑n
j=1(wij − xj)

2

c ; i = 1, 2, · · · , k. (4.1)

Where, c > 0 is a constant. Now the output of the hth IFEL node where

h = 1, 2, · · · , k is computed as follows:

p0 = 1;

ph =
1

1 + e−uh
; h = 1, 2, · · · , k

where

uh =
n

∑
i=0

wIO
ih × S(xi); h = 1, 2, · · · , k. (4.2)

Here S(·) is as in (2.3). As mentioned earlier the third layer, i.e., the DFEL

contains k nodes. The ith node in the 3rd layer is connected to the ith node

of the SAL and IFEL. The activation function of a neuron computes the

product of its inputs. All connection weights between second layer and

third layer are 1. Thus the output of the ith node of the DFEL is computed

as:

vi = pi × si; i = 1, 2, · · · , k (4.3)

Every neuron of third layer is connected to every neuron of the fourth layer

(output layer), i.e., it is fully connected. Suppose at the output layer we get
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Figure 4.1: The proposed model

y = (y1, y2, · · · , ym)T, and our desired output is o = (o1, o2, · · · , om)T. So

the square error is ||y− o||2. We update the weights in the same way as we

described in Section 2.1 to minimize the square error here.

In the second phase of the training it is same like the first phase except

in the first phase we update all weights between input layer and the second

layer (SAL and IFEL), but here we do not update the weights between input

and SAL. So if x = (x1, x2, · · · , xn)T is the input vector then we find the

output from a SAL node using eq. (4.1). Then we compute the output of an

IFEL node using eq. (4.2). After that we compute the DFEL output using

eq. (4.3). Finally, we compute outputs in the output layer and depending

on the error between the actual output and desired output we update the

weights. The algorithm is summarised in Algorithm 1.

4.1 Results

Here we use MNIST dataset to do our experiment. We took only characters

0, 1, 7, and 8. For each character in the MNIST dataset, there are 6000 exam-

ples in training data and 1000 examples for testing. So total we have 7000

examples for each class. Now we use four classes (i.e. for digit 0, 1, 7, and

8). So in total, we have 28000 data points. We use five-fold cross-validation



28 CHAPTER 4. PROPOSED SCHEME

mechanism. Here we randomly divide the dataset into five mutually exclu-

sive subsets, where the number of data points in each subset is the same.

We use four subsets (folds) for training and the remaining subset (fold) for

testing. We use all unique combination 4 folds for training and remaining

one for testing. So in total, we have five test accuracy results. We repeat the

5-fold experiment 5 times and report the average result. We have also done

another experiments using an ordinary MLP for comparison.

In the first experiment, we use an MLP with one hidden layer and

took 225 = (15× 15) nodes in the SAL and 225 nodes in the IFEL. So in

this network, the number of nodes in the input layer is 784. The number

of nodes in the hidden layer is 550 divided into two sets each of 225. The

number of nodes in the output layer is 4. Then we train the network using

the dataset for 2000 iterations.

First we want to investigate if for different kinds of stimuli (characters),

different spatial regions of the SAL are activated or not. Note that here in

every step the SAL influences the classification part of the network,so it

is no more remains an MLP because its inputs are perturbed by the SAL

output and this step may not be consistent with minimization of the square

error.

For this network, we shall analyze two kinds of outputs: the responses

in the DFEL nodes and the classification accuracy. To visualize the response

behavior of the DFEL, we proceed as follows.

The DFEL has k nodes, the response from the ith node for an input

x be vi, i = 1, 2, · · · , k. Since the ith node is connected with the (l, u)th

node of the SAL, i.e., there is a one-to-one correspondence between the

one-dimensional index of any node in DFEL and a node in SAL, we can

use the two dimensional index (l, u) to indicate the ith node. Thus,
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vl,u = vi; where, (4.4)

l = 1, 2, · · · , q

u = 1, 2, · · · , q

i = (l − 1)q + u

Now we take m arrays, Aj; j = 1, 2, · · · , m each of size q× q. Each cell of

every array is initialized to zero. To visualize the response surface of DFEL

we compute as shown in algorithm 2.

In the first experiment, we use our model. Here in the input layer, we

have 784 nodes (n = 784). In the SAL we have 15× 15 neurons (k = 225),

consequently IFEL also has k = 225 nodes. So in the hidden layer DEFL, we

also have 225 neurons and at the output, we have 4 neurons (m = 4). We

train the model as discussed earlier. We train the network in two different

phase as explained earlier. In the first phase we train the whole network for

2000 iterations and in the second phase we train the discriminatory part of

the network for 20000 iterations. Now for each of the testing data, we find

the output of DEFL using Algo. 2. We show this outputs as a 15× 15 image

in Fig. 4.3 and in Fig. 4.4 for typical runs (for two different fold). Figure

4.3 and Fig. 4.4 both have four panels, one for each of the four classes.

Here we can see that for each class there is almost a separate set of neurons

that is activated. And in the region where the neurons are activated for

a specific class, all the neurons are not activated with full power all the

time. The activation strength of a neuron gives the extent it contributes

towards making the decision. We find that there are some neurons which

are always fully activated (i.e. vi = 1) but there others which are partially

activated like vj = 0.160.

Next we have reported the same experiment using a conventional neu-

ral network with 225 (15× 15) hidden nodes. Without any loss, we can also

view these 225 neurons to be arranged in 15× 15 grid.

For this MLP we show the hidden layer responses as a 15× 15 image

Fig. 4.2 (the image is formed in row major order). The top-left image is for
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Figure 4.2: Each image is the average output of the hidden nodes for each
class. a) is for digit 0. b) is for digit 1. c) is for digit 7. d) is for digit 8 for the
MNIST 0 1 7 8 dataset.

digit 0, top-right image is for digit 1, bottom-left image is for digit 7 and

bottom-right image is for digit 8. It is very clear that the active neurons

for each class is distributed randomly without revealing any local structure

(i.e., without forming a spatial cluster of neurons for a particular class).

The accuracy of this two experiment is shown in Table 4.1, which is

calculated using the mechanism discussed previously.

We have also run this proposed model on iris dataset. The experimen-

tal setup is same as we explained previously. Here in the input layer, we

have 4 nodes (n = 4). In the SAL we have 5× 5 neurons (k = 25), conse-

quently IFEL also has k = 25 nodes. So in DFEL, we have 25 neurons and

at the output, we have 3 neurons (m = 3). We train the network in two

different phase as explained earlier. In the first phase we train the whole

network for 100 iterations and in the second phase, we train the discrimi-

natory part of the network for 1000 iterations. Now for each of testing data,

we find the output of DEFL using Algo. 2. We show the output in the same
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Figure 4.3: Each image is the average output of the DFEL nodes for each
class for MNIST 0 1 7 8 dataset. a) is for digit 0. b) is for digit 1. c) is for
digit 7. d) is for digit 8. for a run

manner as we discussed previously, it is shown in Fig. 4.6 for a typical run

(for a fold). Now we repeated the same experiment using a conventional

neural network with 25 (5× 5) hidden nodes. Without any loss, we can

also view these 25 neurons to be arranged in 5× 5 grid. It is shown in Fig.

4.5. The accuracy of this two methods is shown in Table 4.2. In Table 4.2 we

also show the accuracy on wdbc, glass datasets.
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Figure 4.4: Each image is the average output of the DFEL nodes for each
class for MNIST 0 1 7 8 dataset. a) is for digit 0. b) is for digit 1. c) is for
digit 7. d) is for digit 8. for a run
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Algorithm 1: The proposed model

1 Data : Dataset D
2 Result : A trained network
3 Assumption : We have N data points in the dataset D
4 Assumption : We train the whole network for “MAXITER” number

of times, and only the subpart for “MAXITERSUB” number of
times

5 Assumption : The dimension of each of the input in the dataset is
n.

6 Initialize : Randomly initialize all the weights of the network , i =
0, iteration = 0

7 while iteration < MAXITER do
8 while i < N do
9 Take ith input vector form D. Let it is x = (x1, x2, · · · , xn)

10 Feed x to the Network
11 At the SAL we get si’s and pi’s
12 Update the weights between input and SAL using eq. (2.21)
13 Now at the integration layer we compute vi’s by doing

vi = si × pi
14 Now compute the outputs in the output layer and find the

error
15 Then back-propagate and update the weights between the

output layer and SAL and between the SAL and input
layer using eq. (2.11) and eq. (2.12) respectively;

16 end
17 end
18 iteration = 0
19 while iteration < MAXITERSUB do
20 while i < N do
21 Take ith input vector form D. Let it is x = (x1, x2, · · · , xn)
22 Feed x to the Network
23 At the SAL we get si’s and pi’s
24 Now at the integration layer we compute vi’s by doing

vi = si × pi
25 Now compute the outputs in the output layer and find the

error
26 Then back-propagate and update the weights
27 end
28 end
29 return the trained network
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Algorithm 2: Visualization of responses of DFEL

1 Assumption : We have N data points in the dataset D
2 Assumption : In the DFEL layer we have q× q nodes
3 Assumption : We have m classes. Among N data points, Ni is from

class i; ∑m
i=1 Ni = N

4 for i = 1, 2, · · · , N do
5 Apply xi to the network
6 Compute the response vl,u for l = 1, 2, · · · , q; u = 1, 2, · · · , q
7 if xi ∈ class j then
8 for l = 1, 2, · · · , q do
9 for u = 1, 2, · · · , q do

10 Aj(l, u) = Aj(l, u) + vl,u

11 end
12 end
13 end
14 end
15 for j = 1, 2, · · · , m do
16 for l = 1, 2, · · · , q do
17 for u = 1, 2, · · · , q do
18 Aj(l, u) = Aj(l, u)/Nj

19 end
20 end
21 end

Table 4.1: Accuracy obtained on MNIST 0 1 7 8 dataset

Dataset Multi-layer perceptron with one hidden layer Our model
MNIST 0 1 7 8 97.7418 97.2124
MNIST 0 1 7 8 98.1431 97.8981
MNIST 0 1 7 8 97.8469 97.8413
MNIST 0 1 7 8 97.8817 97.6714
MNIST 0 1 7 8 98.0124 97.8751

Average 97.9251 97.6996

Table 4.2: Accuracy obtained on other datasets

Dataset Multi-layer perceptron with one hidden layer Our model
IRIS 99.124 99.086

WDBC 96.421 96.121
GLASS 62.7901 62.261
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Figure 4.5: Each image is the average output of the DFEL nodes for each
class of Iris. a) is for Iris-setosa. b) is for Iris-versicolor. c) is for Iris-
verginica.
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Figure 4.6: Each image is the average output of the DFEL nodes for each
class of Iris. a) is for Iris-setosa. b) is for Iris-versicolor. c) is for Iris-
verginica.



Chapter 5

Conclusion

Though artificial neural networks (ANNs) are inspired by human brains,

there are notable differences between how present day ANNs and human

brains work. For example, researchers [8, 9] have shown that for differ-

ent visual stimuli clusters of neurons from different parts of the brain get

activated. Being inspired by this observation, here, we have proposed a

model integrating a multilayer perceptron and a self-organizing map. In

this context, we have introduced two new layers: a spatial activation layer

(SAL) and an intermediate feature extraction layer (IFEL). Together these

two layers comprise a new layer, called spatial activation and intermediate

feature extraction layer (SAIFEL). After that, we have a discriminatory fea-

ture extraction layer (DFEL). Basically, at DFEL pairwise multiplication of

the corresponding outputs from the SAL and the IFEL are computed. Then

form DFEL we have full connectivity to the output layer where we predict

the classes. Moreover, we have trained the proposed model in two different

phases. In the first phase, we have trained all the parameters of the model,

and then, in the second phase, we have trained only the discriminatory part

of the proposed model. From the experimental results, we have observed

that for inputs corresponding to different classes, different sets of neurons

get excited. We have, nonetheless, observed that the same set of neurons

get activated for different inputs that correspond to the same class. Note

that, this phenomenon is not observed in MLP. We found that the accuracy

of the proposed model and that of MLPs are similar. The MLP, however,

37
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needs a smaller number of iterations compared to our model.

Similar to most of the works, this work too has some limitations. First, we

have investigated four datasets. The above-mentioned observation needs

to be validated for a larger number of data sets. Second, for a given task, we

need a higher number of iterations to train the proposed model compared

to the number of iterations that we need to train an MLP. In other words,

the proposed model is computationally more costly compared to an MLP.

Third, we have not investigated the parameter sensitivities of the proposed

model. Fourth, though the intension of this work is not to design better

classifier but to realize a network which are a bit closer to the biological

neural network, the performance of the proposed model was comparable

to that of MLPs and was not better than the same. In future, we plan to

address these limitations.
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