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Abstract

We consider a variant of collision-free routing problem CRP . In this problem,

we are given set C of n vehicles which are moving in a plane along a prede�ned

directed rectilinear path. Our objective (CRP ) is to �nd the maximum number

of vehicles that can move without collision. CRP is shown to be NP-Hard by

Ajaykumar et al. [1]. It was also shown that the approximation of this problem is

as hard as Maximum Independent Set problem (MIS) even if the paths between a

pair of vehicles intersects at most once. We study the constrained version CCRP

of CRP in which each vehicle ci is allowed to move in a directed L-Shaped Path.

We prove CCRP is NP-Hard by a reduction from MIS in L-graphs, which was

proved to be NP-Hard even for unit L-graph by Lahiri, Mukherjee, and Subra-

manian [2]. Simultaneously, we show that any CCRP can be partitioned into

collection L of L-graphs such that CCRP reduces to a problem of �nding MIS

in L-graph for each partition in L. Thus we show that any algorithm, that can

produce a β-approximation for L-graph, would produce a β-approximation for

CCRP . We show that unit L-graphs intersected by an axis-parallel line is Co-

comparable. For this problem, we propose an algorithm for �nding MIS that runs

in O(n2) time and uses O(n) space. As a corollary, we get a 2-approximation

algorithm for �nding MIS of unit L-graph that runs in O(n2) time and uses O(n)

space.

Keywords: Maximum Independent Set, L-Graphs, Approximation Algorithm,

Collision-free, Co-comparable Graph.
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Chapter 1

Introduction

The problem is motivated by the recent development of automated driver-less

vehicles, which are capable of various decision activities such as motion-controlling,

path planning. If we consider a simple road network like Manhattan (grid network)

and restrict it to be one way for the simplicity of driver-less vehicles routes, many

interesting problems can be seen in this network.

The paper on Problems on One Way Road Networks [1], gives an idea of One

Way Road Network(OWRN) and Tra�c Con�guration(TC), where each vehicle

moves in a predetermined path in an OWRN and the aim is to �nd the maximum

number of vehicles that can be allowed to move without having any collision for a

given TC. They proved that this problem is NP-hard by reducing it to MIS, and

also showed that the approximation for this problem is as hard as approximating

MIS. It is known that, for every �xed ε > 0, MIS cannot be approximated within

a multiplicative factor of n1−ε for a general graph, unless NP = ZPP [5].

We can generalize TC to CRP , where each vehicle is allowed to move in a recti-

linear path, replacing the vertices of the OWRN by their coordinate points and

the path same as in TC. Similar kind of road network has also been studied by

Dasler and Mount [3].
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If we constrain the vehicles to move in directed straight lines parallel to the axis,

then the corresponding graph to CRP will be a Bipartite Graph. MIS of a Bi-

partite Graph can be computed using K®nig's Theorem[18] and Network-Flow

Algorithm [19] in polynomial-time.

Asinowski et.al [4], discuss the class of vertex intersection graphs of paths on a

grid (V PG), they consider a special subclass where each path is of at most k

bends. This subclass is denoted as Bk-V PG graphs, k ≥ 0. If k is unrestricted

then V PG is equivalent to a class of string graphs.

The maximum independent set problem (MIS) of B1-V PG graphs is studied by

Lahiri, Mukherjee, and Subramanian [2], they gave a O(log2 n) approximation for

B1-V PG graphs.

Together CRP and Bk-VPG has motivated us to study the union of both i.e, A

CRP where each vehicles is allowed to move in a k bend path on a grid. We

consider a subclass of this problem where k = 1 and prove its hardness and give

a couple of approximation algorithms for this problem and its restricted versions.

Though the problem is very restricted it has few applications in aeroplane schedul-

ing on a runway, automated driving vehicles, and chemical �ows in a bio-chip etc.



Chapter 2

Related Work

2.1 Decision Problem and Reduction

Michael and David [10] discussed in details about reduction, decision problems

and NP-hardness etc.

A problem is said to be a decision problem if its output is a single boolean value:

Y ES or NO. P denotes the set of decision problems that can be solved in poly-

nomial time. NP denotes the set of decision problems where we can verify a Y ES

answer in polynomial time if we have the solution.

A problem Π1 is said to be reducible to another problem Π2 if there exists a

polynomial time algorithm to convert any given instance of Π1 into an instance of

Π2. Hence if Π1 is reducible to Π2, then a solution to Π2 can be used to solve Π1.

A problem Π is said to be NP-hard if every problem in NP can polynomial

time reducible to Π. Alternatively if a polynomial time algorithm for Π imply a

polynomial time algorithm for all problem in NP, then Π is said to be NP-hard.

A problem is said to be NP-complete if it is both NP-hard and NP.

To prove that problem Π1 is NP-hard, reduce a known NP-hard problem to Π1.

i.e, If there exists a polynomial time algorithm such that given any instance of

3
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a known NP-hard problem Π2, the algorithm produces an instance of another

problem Π1, then Π1 also belong to NP-hard.

2.2 Maximum Independent Set

Håstad [5] in his work has discussed in details about the hardness of the clique

problem, maximum independent set, and the hardness of approximation.

An independent set in a graph G = (V,E) is de�ned as a subset of vertices S ⊆ V

in G such that no two vertices in S have an edge in E.

Given an undirected graph G = (V,E), the maximum independent set problem

(MIS) is to �nd an independent set in G with maximum cardinality. MIS is a well

know problem and is proven to be NP-Hard, and its decision version is to �nd if

there exists an independent set of size k in G. The decision version is known to

be NP-Complete.

Its is natural to try to give an approximation algorithm for NP-Hard problems,

but the theorem by Håstad proved that MIS is extremely hard to approximate.

The Håstad theorem says the following: there are a class of graphs in which the

maximum independent set size is either less than nδ or greater than n1−δ and it

is NP-Complete to decide whether a given graph falls into the former category or

the latter.

Chordal graphs, perfect graphs, comparable graphs, and co-comparable graphs are

few special classes of graph for which MIS can be found in polynomial time.

2.3 Tra�c Crossing Problem

The automated vehicles moving through an intersection are bound to have colli-

sions if the motion of vehicles are not coordinated. The tra�c crossing problem is
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how to coordinate the motions of a given set of vehicles in a given network with

intersections. The decision version for this problem is, given a tra�c crossing C,

is there any valid set of speed assignments for C.

The work by Dasler and Mount [3], focuses on the control of a vehicle over a span

of interval(seconds to minutes). The tra�c network they have considered is a

collection of axis-parallel lines, which represent roads. Each vehicles is represented

by a line segments. The vehicles are allowed to move monotonically along the

roads(axis parallel lines in the plane), they are allowed to change their speeds at

any instant, provided it doesn't exceed the speed limit. No vehicle is allowed to

make a turn, reverse the direction, or change lanes. The objective is to �nd speed

pro�ling for these vehicles which are moving from source to destination(No two

vehicles have same source and destination), without any collision.

They reduced 3-SAT to tra�c crossing problem and thus proved tra�c crossing

problem is NP-Hard.

A one-sided tra�c crossing problem is a restricted version of the tra�c crossing

problem, in which vehicles moving in one direction have a �xed speed, and the

vehicles moving in the other direction will have to adjust their speeds to avoid the

collisions. The objective is to �nd a valid speed pro�le for the vehicles moving in

the direction where their speed should be adjusted.

The One-Sided Tra�c Crossing Problem can be solved in O(n log n) time. The

algorithm involves two applications of plane sweep.

2.4 Tra�c Con�guration Problem

A One way road network is de�ned to be a set of axis parallel roads forming a

grid network, and each road has a speci�c direction (each road is a one way).

Given a set of vehicles, each moving in a prede�ned path with a unit velocity
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in a one way road network. When two vehicles reach a junction at same time

orthogonally they will collide. The tra�c con�guration problem is to �nd the

maximum subset of vehicles that can be allowed to move such that no collision

occurs. The decision version is to �nd if there exists a subset of vehicles that

doesn't have a collision with cardinality k. This problem is also called collision-

free routing problem.

The tra�c con�guration problem is proven to be NP-hard by Ajaykumar et.al [1]

, even when the path of no two vehicles over lap more than once. They achieved it

by reducing the MIS for general graph to tra�c Con�guration problem, by using

a gadget called delay which modi�es the path to avoid/create a collision. This

reduction is gap preserving and hence it is as hard as MIS for general graph to

approximate.

2.5 Intersection of Paths on a Grid

Asinowski et.al [4] in their work presented the following ideas.

A vertex intersection graphs of paths on a grid (VPG) is a graph with the set of

vertices representing the paths and set of edges representing the intersection of the

respective path, also note that no two paths have an overlap and the intersection(s)

is(are) the common point(s) where segments of the two paths are orthogonal and

have a point in common.

When each path in the representation has at most k ≥ 0 bends this subclass is

named as Bk-VPG is de�ned, if k is unbounded then MIS for Bk-VPG is NP-hard

and even hard to approximate.

Lahiri, Mukherjee and Subramanian [2] has proven MIS of unit length equilateral

B1-VPG is NP-hard. i.e, when each path has at most 1 bend and the length of both

the segments are unit for all paths. They also proposed a O(log2 n) approximation
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algorithm for MIS of B1-VPG.

2.6 Comparable and Co-comparable Graphs

A directed graph G = (V,E) is called transitive oriented graph, if there exists

directed edges (u, v) ∈ E and (v, w) ∈ E, then for all such u, v, w ∈ V there exists

a directed edge (u,w) ∈ E.

An undirected graph is called a comparability graph if it has a transitive orienta-

tion, i.e, an assignment of directions to the edges such that the resultant graph is

transitive oriented graph.

Alternatively, a simple undirected graph is called the comparability graph of the

poset P if the vertices of G are the elements P , and two vertices are adjacent if

and only if the corresponding elements of P are comparable.

A co-comparability graph is an undirected graph that connects pairs of elements

that are incomparable to each other in a partial order. The co-comparability

graphs and comparability graphs are complements to each other.

Mirsky's theorem [14] proves that every comparability graph is a perfect graph, and

Dilworth's theorem [13] proves that complement of every comparability graph(co-

comparable graph) is a perfect graph. i.e, Both comparability graphs and co-

comparability graphs are perfect graphs.

Golumbic, Rotem and Urrutia [8] proved that Interval graphs are chordal graphs

and their graph complements are comparability graphs.

Because comparability graphs are perfect, many problems that are hard on more

general classes of graphs, including graph coloring and the independent set prob-

lem, can be computed in polynomial time for comparability graphs. Same goes

for the co-comparability graphs.
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2.7 Our Contribution

We considered a special case of CRP , called constrained collision-free routing

problem CCRP , where each vehicle is restricted to move in an L-shaped path.

We prove CCRP is NP-hard by reduction from MIS in L-graphs.

Simultaneously, we show that any CCRP can be partitioned into a collection L of

L-graphs such that CCRP reduces to a problem of �ndingMIS for each partition

in L. Thus we show that any algorithm, that can produce a β-approximation for

L-graph, would produce a β-approximation for CCRP . Since the best-known

algorithm for L-graph by Lahiri, Mukherjee, and Subramanian [2] has O(log2 n)-

approximation, CCRP has O(log2 n)-approximation.

Further, we extended our work to study the properties of unit L-graph∗, denoted

as GLU , where all the objects are of unit size. We prove that unit L-graph, denoted

as GLU(`), where all L's are intersected by a single axis parallel line ` is a Co-

comparable graph. This characterization gives us an algorithm for �nding MIS

in O(n2) time using O(n2) space using results by Rose, Tarjan and Lueker [20].

We propose a dynamic programming based algorithm for �nding MIS of GLU(`)

that runs in O(n2) time and uses O(n) space. Also as a corollary, we get a 2-

approximation for �nding MIS of GLU .

∗Both the horizontal and vertical segments of an L are of unit length



Chapter 3

Our Work

3.1 De�nitions and Notations

Following are the few de�nitions we will be using throughout this work and our

main problem statement.

De�nition 3.1. An L-shaped path Pi = (pi, qi, ri) is de�ned by three co-ordinate

points, where the path segment piqi of Pi forms a vertical segment (directed down-

wards) and path segment qiri of Pi forms a horizontal segment (directed right-

wards).

De�nition 3.2. A vehicle ci is de�ned as a 3-tuple (ti, si, Pi), where ti is the start

time, si is a constant speed with which it will travel till it reaches the destination,

Pi is the L-shaped path (with source pi and destination ri).

De�nition 3.3. If two L-shaped paths have a common point, then they are said

to be intersecting with each other. This common point is called the intersection

point of the two vehicles moving in these L-shaped paths.

De�nition 3.4. If two vehicles reach an intersection point orthogonally at the

same time, then we call it a collision.

9
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Problem 3.1 (CCRP). Given a set C of vehicles moving in an L-shaped path on

a plane, �nd the maximum subset Cmax ⊆ C such that no two vehicles in Cmax

has a collision.

Problem 3.2 (B1-CRP). Given a set C of vehicles moving in a single bend path

on a grid network∗, �nd the maximum subset Cmax ⊆ C such that no two vehicles

in Cmax has a collision.

Clearly CCRP is a subclass of B1-CRP where each path is of L shape. Hence

as a corollary of CCRP we also prove the hardness and give approximation for

B1-CRP.

3.2 Hardness of CCRP

In this section we prove the hardness of CCRP . Throughout this work, we assume

that each vehicle is moving with a unit velocity, and the paths intersect at a single

point.

De�nition 3.5. We de�ne x(p), y(p) as the X-coordinate and Y-coordinate of the

point p.

Observation 3.1. If two paths Pi and Pj intersect with each other such that

x(qi) < x(qj), then y(qi) > y(qj).

Lemma 3.1. If two vehicles collide with each other, then a third vehicle whose

path intersects with both paths would either (i) collide with both the vehicles or (ii)

does not collide with both the vehicles.

Proof. Consider three vehicles c1, c2 and c3 with paths P1, P2 and P3, respectively.

Without loss of generality, we can assume x(q1) < x(q2) < x(q3). Thus from

∗all the possible paths in B1-VPG graphs
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Observation 3.1 we can claim y(q1) > y(q2) > y(q3). Let P1, P2 intersect at point

γ, P3 intersects with both P1 and P2 at points α, β respectively. Let the distance

from γ to α be a units, and the distance from α to β be b units, refer to Fig 3.1.

c1

c2 c3

{
      a

b

γ α

β

Figure 3.1: Illustration of Lemma 3.1

Let c1 reaches point γ at time t1γ, then the time at which it reaches point α is

t1α = t1γ + a. Let c2 reaches point γ at time t2γ, then the time at which it will reach

point β is t2β = t2γ + a + b. Let c3 reaches point α at time t3α, then the time at

which c3 reaches point β is t3β = t3α + b.

Clearly (t1α − t1γ) − (t2β − t2γ) + (t3β − t3α) = 0, rearranging the terms we get, (t1α −

t3α) + (t2γ − t1γ) + (t3β − t2β) = 0. If two vehicles collide then one of the three parts

in the above equation will become zero. Thus, if one of the remaining two parts

becomes zero so does the other, this concludes the proof.

De�nition 3.6. We de�ne an L-path graph Gt
L as a collision graph of vehicles

moving in an L-shaped path, where each vehicle represents a vertex in Gt
L, and

there is an edge between two vertices in Gt
L if the respective vehicles collide.

So our CCRP problem reduces to the problem of �nding MIS of Gt
L.We may use

MIS of Gt
L and CCRP interchangeably. We denote |S| as the cardinality of the

set S. We also denote |a− b| as the distance between two points a and b on a real
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line.

De�nition 3.7. Any induced sub-graph H t of Gt
L is called a connected component

in L-path graph, if for every vertex pair u, v in H t there exists a path from u to v

in H t.

Theorem 3.2. If the path of a vehicle ci intersect with paths of two or more

vehicles in a connected component and it collides with one of them, then it collides

with all the vehicles whose path it intersects.

Proof. We prove this theorem using strong induction. As the base case, if the

connected component has two vehicles and the path of a third vehicle intersects

the path of both vehicles, and it collides with one of them, then from Lemma 3.1

the statement holds for the base case of three vehicles.

We assume that any connected component of size less than k follows this property,

and we prove the claim holds for any connected component of size k.

Given any connected component H t of size k, select any vehicle c3, if its path inter-

sects with only one vehicle (which is a collision since c3 belongs to the connected

component), then the claim is true. If the path of c3 intersects with the path of

more than one vehicle, then it must collide with at least one of the vehicles since

it belongs to the connected component. So we choose one intersection and one

collision to prove that the intersection will be a collision, thus inductively prove

that all intersections will be collisions.

Let c1 and c2 be vehicles such that either c1 or c2 has a collision with c3, while the

other has an intersection with the path of c3. Without loss of generality we can

assume y(q1) > y(q2).

Delete c3 from H t and �nd the path in H t with minimum number of nodes from

corresponding vertex of c1 to respective vertex of c2. Consider all the corresponding

vehicles of the vertices in this path and remove the rest of the vehicles. If c1 and
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c2 intersect with each other then by our inductive assumption c1 and c2 belong to

a connected component of size less than k. Thus c1 and c2 collide with each other.

By Lemma 3.1 c3 collides with both c1 and c2.

Thus we only need to show for the case where P1 and P2 doesn't intersect with

each other. Since it is the shortest path in H t no vehicle's path will intersect more

than two vehicles. P1 and P2 intersect with only one path each. Note all these

vehicles together form a single connected component. If we insert c3 it will still

collide with c1(or c2) while its path intersect with the path of c2 (or c1).

Here we have following two cases, where in each case we replace c1 with another

vehicle c′1 and c2 with another vehicle c′2. Such that (i) P ′1 and P ′2 will intersect

and (ii) the set of vehicles in the plane after replacing c1 and c2 will still be a

connected component.

Case 1: x(q1) < x(q2). Since we assumed y(q1) > y(q2) and P1 and P2 doesn't

intersect, we can have following three con�gurations as shown in Fig 3.2.

p1

q1 r1

p2

q2 r2

p1

q1 r1

p2

q2 r2

p1

q1 r1

p2

q2 r2

c1 c1 c1

c2 c2

c2

(a) (b) (c)

Figure 3.2: Illustration of Case 1

For con�guration in Fig 3.2 (a) If we extend q1r1 in rightward direction and p2q2 in

upward direction they intersect as shown in Fig 3.3.(a) where c′1 and c
′
2 represent

this modi�cation.

For con�guration in Fig 3.2 (b) If we extend p2q2 in upward direction they intersect

as shown in Fig 3.3.(b) where c′1 and c
′
2 represent this modi�cation.
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For con�guration in Fig 3.2 (c) If we extend q1r1 in rightward direction they

intersect as shown in Fig 3.3.(c) where c′1 and c
′
2 represent this modi�cation.

We replace c1 with c′1 and c2 with c′2, such that t′1 = t1, p
′
1 = p1, q

′
1 = q1,

y(r′1) = y(r1), x(r′1) = max(x(r1), x(q2) + ε), and r′2 = r2, q
′
2 = q2,x(p′2) = x(p2),

y(p′2) = max(y(p2), y(q1) + ε), t′2 = t2 − (y(p′2)− y(p2)), for some ε > 0.

p′1

q′1 r′1

p′2

q′2 r′2

p′1

q′1 r′1

p′2

q′2 r′2

p′1

q′1 r′1

p′2

q′2 r′2

c′1 c′1 c′1

c′2 c′2

c′2

(a) (b) (c)

Figure 3.3: Modi�cations for Case 1

The above modi�cation doesn't change the time at which c′1 (or c′2) reaches the

collision point of c1 (or c2). Hence, after the replacement, c′1 and c
′
2 belongs to the

same connected component. In our construction we also made sure that P ′1 and

P ′2 intersect. Now we have a connected component of size less than k. Hence c′1

and c′2 must also collide.

Now consider c3, if it collides with c1(or c2) then it must also collide with c′1(or c
′
2)

according to our construction. From Lemma 3.1 it is evident that it collides with

both c′1 and c
′
2. Hence the intersection must also be a collision.

Case 2: x(q1) > x(q2). In the previous case we only extended one of the line

segments for c1 and c2 to get c
′
1 and c

′
2 respectively, but in this case we are moving

the segment i.e both points p1, q1 are moved by some distance leftwards or both

q1,r1 are moved by some distance downwards. In order to keep the connectivity

we check the immediate neighbour c4 of c1 and the segment say p1q1 (or q1r1) of

P1 with which the path P4 intersects. Then modify the other segment q1r1 (or

p1q1) of P1 to get c′1. c
′
2 can be generated just by extending one of the segments.
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The vehicle c4 that collides with c1 could have y(q4) > y(q1) or y(q4) < y(q1).

1. If y(q4) < y(q1) (i.e, P4 intersects segment q1r1 of P1) then we can have

following three con�gurations as shown in Fig 3.4.

q3
q2

q1

p3

p2

p1

r3

r1

r2

c3
c2

c1

q3

q2

q1

p3
p2

p1

r3

r1

r2

c3

c2

c1

q2

q1

p2

p1

r1

r2

c2

c1 p3

q3 r3

c3

(a) (c)(b)

Figure 3.4: Illustration of Case 2.1

For con�guration in Fig 3.4 (a) If we shift p1, q1 to the left direction and

extend p2q2 in upward direction and P3 intersects segments q1r1 and q2r2

then they intersect as shown in Fig 3.5 (a) where c′1 and c′2 represent this

modi�cation.

For con�guration in Fig 3.4 (b) If we shift p1, q1 to the left direction and P3

intersects segments q1r1 and q2r2 then they intersect as shown in Fig 3.5.(b)

where c′1 and c
′
2 represent this modi�cation.

For con�guration in Fig 3.4 (c) If we shift p1, q1 to the left direction and P3

intersects segments p1q1 and p2q2 then they intersect as shown in Fig 3.5.(c)

where c′1 and c
′
2 represent this modi�cation.

q3
q′2

q′1

p3p′2

p′1

r3

r′1

r′2

c3c′2

c′1

q3

p3
p′2

p1

r3

c3
p3

q3 r3

c3

(a) (c)(b)

c′2

c′1

p′1

q′1

q′2 r′2

r′1

p′2
p′1

r′1

r′2

q′1

q′2

c′1

c′2

Figure 3.5: Modi�cation for Case 2.1
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We replace c1 with c
′
1, c2 with c

′
2 such that, y(p′1) = y(p1), x(p′1) = x(p2)− ε,

y(q′1) = y(q1), x(q′1) = x(p′1), t
′
1 = t1 − (x(q′1) − x(q1)), r

′
1 = r1 and y(p′2) =

max(y(p2), y(p1) + ε), r′2 = r2, q
′
2 = q2, t

′
2 = t2 − (y(p′2) − y(p2)), for some

ε > 0.

By our construction P ′1 and P
′
2 intersect with each other, c′1 collides with c4,

and c′2 reaches the collision points at the same time as c2. Hence even after

replacing c1 by c
′
1 and c2 with c

′
2, the whole component remains connected

with size less than k. By inductive hypothesis c′1 collides with c
′
2.

Now we have the following three scenarios, (a), (b), (c) as shown in Fig 3.4

for scenario (a) and (b), from Lemma 3.1, it is evident that c3 collides with

both c′1 and c
′
2 as shown in Fig 3.5 (a) and (b). Hence it collides with both

c1 and c2 as well.

In Fig 3.4.(c) if c3 collides with c1, then it must also collide with c′1 which

can be proved in a way similar to Lemma 3.1 by considering c1, c
′
1 and c3.

Since c′1 and c
′
2 collide with each other c3 must also collide with c′2. Hence

c3 collides with both c1 and c2. Else, if c3 collides with c2 then it trivially

collides with c′2. Hence c3 collides with c
′
1. Thus c3 collides c1 which can be

proved in a way similar to Lemma 3.1 by considering c1, c
′
1 and c3.

2. If y(q4) > y(q1) (i.e, P4 intersects segment p1q1 of P1) then similar arguments

can be made but instead of shifting the vertical segment p1r1 by some dis-

tance, we shift the horizontal segment q1r1. This makes sure that replacing

c1 and c2 with c
′
1 and c

′
2 respectively doesn't disturb the connectedness. We

can have the following three con�gurations as shown in Fig 3.6.

For con�guration in Fig 3.6 (a) If we shift q1, r1 to downward direction

and P3 intersects segments p1q1 and p2q2 then they intersect as shown in

Fig 3.7.(a) where c′1 and c
′
2 represent this modi�cation.

For con�guration in Fig 3.6 (b) If we shift q1, r1 to downward direction and
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q3

q2

q1

p3
p2

p1

r3

r1

r2

c3

c2

c1

q3

q2

q1

p3
p2

p1

r3

r1

r2

c3

c2

c1

q2

q1p2

p1

r1

r2

c2

c1 p3

q3 r3

c3

(a) (b) (c)

Figure 3.6: Illustration of Case 2.2

extend q2r2 in rightward direction and P3 intersects segments p1q1 and p2q2

then they intersect as shown in Fig 3.7.(b) where c′1 and c′2 represent this

modi�cation.

For con�guration in Fig 3.6 (c) If we shift q1, r1 to downward direction

and P3 intersects segments q1r1 and q2r2 then they intersect as shown in

Fig 3.7.(c) where c′1 and c
′
2 represent this modi�cation.

q3

q′2
q′1

p3
p′2

p′1

r3

r′1

r′2

c3

c′2

c′1

(a) (b) (c)

p3
p3

p′1 p′1
p′2

p′2

r′1

r′1

r3

r3r′2

r′2

c3

c3

c′1
c′1

c′2 c′2
q3

q3
q′1

q′1q′2

q′2

r1

Figure 3.7: Modi�cation for Case 2.2

Replace c1 with c′1, c2 with c′2 such that p′1 = p1, x(q′1) = x(q1), y(q′1) =

y(q2) − ε, x(r′1) = x(r1), y(r′1) = y(q′1), t
′
1 = t1 and p′2 = p2, q

′
2 = q2,

x(r′2) = max(x(r2), x(q1) + ε), y(r′2) = y(r2), t
′
2 = t2, for some ε > 0. The

proof can be argued in a similar manner to the above sub-case.

De�nition 3.8. We de�ne an L-graph GL as an intersection graph of L-shaped

paths, where each L-shaped path represents a vertex in GL, and there is an edge

between two vertices in GL if the respective L-shaped paths intersect.
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Now we propose an algorithm to reduce any given instance of GL to an instance

of Gt
L, as follows: For every object ` ∈ GL there exists a vehicle c ∈ Gt

L, such that

if and only if li, lj ∈ GL has an edge then their corresponding vehicles ci and cj

collides in Gt
L.

Algorithm 1 Assignment of Time in GL to obtain Gt
L

1: procedure assignTime(C, S, i)
2: insert i into S
3: for ∀j ∈ C do

4: if i = 0 and j /∈ S then

5: set tj = 0
6: else

7: if j /∈ S and intersects with i then
8: setTime(C, i, j)
9: assignTime(C, S, j)
10: end if

11: end if

12: end for

13: end procedure

Theorem 3.3. Given an L-graph, there exists a Gt
L Computable in polynomial

time, such that the cardinality of MIS of GL is k if and only if the cardinality of

MIS of Gt
L is k.

Proof. For each object li in L-graph, assign a vehicle ci with path as li and a

unit velocity. Insert all vehicles into set C. Let S be an empty set. Now call

the procedure assignTime(C, S, 0). This will give a time assignment to each and

every vehicle. The procedure setTime(C, i, j) assigns time tj such that cj will

collide with ci (i.e if li, lj intersect at point g then tj = ti+ |x(pi)−x(g)|+ |y(pi)−

y(g)| − |x(pj)− x(g)| − |y(pj)− y(g)|).

In the above assignment for each connected component, the time of one of the

vehicle is set to zero and every other vehicle is set to collide with at least one of

the vehicles in the connected component. Hence from Theorem 3.2 we have, every

intersection in GL as a collision in Gt
L.
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This assignment might assign negative time to some vehicles. To ensure that the

start time to be non-negative for each vehicle, �nd the minimum time assignment

out of all vehicles and subtract that value from the time of each vehicle.

Hence as a corollary for the above theorem we can prove that B1-CRP is NP-Hard.

3.3 Approximation for MIS of Gt
L

We propose an algorithm to partition the Gt
L to collections of GL's.

Algorithm 2 Procedure to partition Gt
L

1: procedure seperateSet(i)
2: U = UniversalSet, S = φ
3: insert i into S
4: for ∀j ∈ U do

5: if j /∈ S and collides with i then
6: insert j into S
7: insert seperateSet(j) into S
8: end if

9: end for

10: returnS
11: end procedure

Lemma 3.4. Any set S generated by the procedure seperateSet is independent

of the set U \ S, i.e MIS(U) = MIS(S) + MIS(U \ S).

Proof. Let us assume S is not independent of U \ S, that implies ∃i ∈ U \ S and

∃j ∈ S such that i and j are not independent i.e, i and j collides but then by our

method seperateSet, i ∈ S which is a contradiction. Hence S is independent of

U \ S.

Lemma 3.5. Any set S generated by above algorithm is an L-Graph(GL).

Proof. From Lemma 3.4 and Thoerem 3.2 it is evident that S is a connected

component and if the path of any two l's intersects then they must collide with
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each other. Hence we can ignore the time function and say if the paths intersect

they collide. This results in nothing but an L-graph.

Theorem 3.6. For any L-path graph, there exists an approximation factor equiv-

alent to L-graph. i.e there exists a O(log2 n) approximation algorithm.

Proof. From Lemma 3.4 and Lemma 3.5, it is evident that given any L-path graph,

we can separate the L-path graph into subsets S1, S2, . . . , and all of them are pair

wise independent (i.e no collision between objects from two di�erent sets) and

from Theorem 3.2 each set Si can be treated as an L-graph i.e, each intersection

of objects belonging to same set Si is nothing but a collision in Si.

Now apply the known approximation algorithm of L-graphs [2] for each Si, and

return the union. Let Opt(Si) denote the optimal solution for Si and Sol(Si)

denote the solution generated by the algorithm [2]. Since we know Opt(Si) ≤

(k log2 n)Sol(Si), summing over all the sets on both sides will result in the desired

inequality,
∑

i=1Opt(Si) ≤
∑

i=1(k log2 n)Sol(Si). This concludes the proof.

Corollary 3.7. For a B1-CRP, there exists a O(log2 n) approximation algorithm.

Proof. If the path of any vehicle in B1-CRP is a straight line, then append a

orthogonal line of length δ ≈ 0. Now every path is a single bend path, four

di�erent single bends are possible in a grid (x, x, x

,

x

). For each single bend

the vehicle can travel in two di�erent ways i.e, the source and destination can be

interchanged, hence we have eight di�erent ways a vehicle can move.

Now divided the set of vehicles into 8 disjoint subsets U1, U2, . . . , U8, where each

subset has vehicles moving in similar path and direction, due to symmetry each

subset hold all the above properties. Solve for each subset Ui as mentioned in

Theorem 3.6, let the output for the set Ui be ISi. Return maximum set among

IS1, IS2, . . . , IS8, call it ISj.
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Since Opt(Ui) ≤ (k log2 n)|ISi|, therefore
8∑
i=1

Opt(Ui) ≤
8∑
i=1

(k log2 n)|ISi| =⇒
8∑
i=1

Opt(Ui) ≤ (8k log2 n)|ISj|. Thus concludes the proof.

3.4 Unit L Graph Approximation

De�nition 3.9. A unit L-graph GLU is a special graph of GL where each L-shaped

path is of the unit size, i.e, both the horizontal and vertical segments are of unit

length each.

In this section, we design a 2-approximation algorithm for the maximum indepen-

dent set in a unit L-graph problem. Let S = {P1, P2, . . . , Pn} be a set of n unit

L-shaped paths in a plane. We �rst place vertical lines from leftmost to rightmost

with a unit distance between each consecutive pair of lines. Assume that there

are k such vertical lines {L1, L2, . . . , Lk}. Let Si ⊆ S be the set of L-shaped paths

intersected by the line Li. The idea is to �nd MIS for each Si and then combine

them to produce an approximate solution. This method is well known for �nding

an approximate solution for MIS of �xed height rectangle by Agarwal et al. [6]

and for the unit disk by Nandy et al. [7]. But our problem is di�erent in a sense

that the intersection graph I(Si) of a Si may not be a triangulated graph. We

can construct an I(Si) that contains a four-cycle as shown in Fig 3.8. So we show

that I(Si) is a co-comparable graph. Then we give a dynamic programming based

algorithm that solves MIS of I(Si) in O(n2) time using O(n) space.

Observation 3.2. Any two L-shaped paths, Pa ∈ Si and Pb ∈ Si are independent

if |y(qa)− y(qb)| > 1, for 1 ≤ i ≤ k.

Observation 3.3. Any two L-shaped paths, Pa ∈ Si and Pb ∈ Si with y(qa) < y(qb)

are independent if x(qa) < x(qb).
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Li
P1

P4

P2

P3

Figure 3.8: GLU with four cycle

Observation 3.4. Any two L-shaped paths, Pa ∈ Si and Pb ∈ Sj are independent

if |i− j| > 1, for 1 ≤ i, j ≤ k.

Lemma 3.8. If P1, P2, P3 are three unit L-shaped paths that intersect a vertical

line Li such that (i) y(q1) > y(q2) > y(q3), (ii) P1, P2 doesn't intersect and (iii)

P2, P3 doesn't intersect, then P1, P3 doesn't intersect.

Proof. Since all the three unit L-shaped paths intersect with the vertical line Li,

we have the following three cases.

Case 1: y(q1) − y(q2) ≥ 1. Since P3 is a unit L and y(q3) < y(q2), therefore

y(q1)− y(q3) > 1. Hence P1 and P3 cannot intersect.

Case 2: y(q2) − y(q3) ≥ 1. Since P3 is a unit L and y(q1) > y(q2), therefore

y(q1)− y(q3) > 1. Hence P1 and P3 cannot intersect.

Case 3: y(q1)−y(q2) < 1 and y(q2)−y(q3) < 1. Since P1 and P2 doesn't intersect

with each other, thus x(q1) > x(q2). Similarly x(q2) > x(q3), therefore x(q1) >

x(q3). Hence P1 and P3 cannot intersect.
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De�nition 3.10. We denote G̃ = (V, Ẽ) as the complimentary graph of G =

(V,E), such that (u, v) ∈ Ẽ if and only if (u, v) /∈ E, for all u, v ∈ V .

Lemma 3.9. The graph G̃LU of the unit L-shaped path intersecting a vertical line

Li is a Comparable graph.

Proof. We show that G̃LU is orientable, such that if there is a directed edge from

vertex a to vertex b and there is a directed edge from vertex b to vertex c, then

there is a directed edge from vertex a to vertex c, for all vertices a 6= b 6= c in the

G̃LU .

The ordering of vertices is as follows: A vertex a precedes a vertex b if the Y -

coordinates of the respective L-shaped paths Pa and Pb follow the inequality

y(qa) > y(qb). Now if there is an edge between any two vertices a and b in

the graph G̃LU and a precedes b then direct the edge from a to b.

In the above mentioned ordering, we can conclude that G̃LU is a comparable graph

because if and only if there is an edge between a, b, and b,c in G̃LU then a,b and

b,c are independent in GLU . Since they are in increasing order, by Lemma 3.8 a,c

is also independent in GLU .Thus there is an edge between a and c in G̃LU . This

proves the lemma.

Corollary 3.10. The graph GLU(Li) formed by unit L-shaped paths which are

intersecting with a vertical line Li is a Co-comparable graph i.e the graph GLU(Li)

formed by Si is Co-comparable.

Given any Si, we sort the elements based on their Y-coordinates. i.e, a path Pa

will have an index less than Pb if y(qa) < y(qb). For the sake of simplicity we refer

to the path at index k as Pk.

For any index k, let R(k) be the maximum possible independent set till k that
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includes the path Pk and let Jk = {Pj1 , Pj2 , . . . , Pjl} be the set of all paths that

doesn't intersect with Pk and have index less than k.

Observation 3.5. R(k) =





1 if Jk = φ

1 +max(R(j1), R(j2), . . . , R(jl)) otherwise

Algorithm 3 Computing R(k) for each index in Si
1: procedure lineIntersectMIS(Si)
2: R,B are arrays of size |Si|
3: for k = 1 to |Si| do
4: Set R(k) = 0, B(k) = −1
5: end for

6: R(1) = 1
7: for k = 2 to |Si| do
8: for j = 1 to k − 1 do

9: if Pk and Pj doesn't intersect then

10: if R(j) > R(k) then
11: R(k) = R(j)
12: B(k) = j
13: end if

14: end if

15: end for

16: R(k) = R(k) + 1
17: end for

18: return R,B
19: end procedure

Lemma 3.11. The recurrence to compute the maximum independent set in Si till

index k is MIS(k) = max(MIS(k − 1), R(k)).

Proof. Consider the optimal solution MIS(k). There are two cases: Either Pk is

in the maximum independent set or it is not.

Case 1: If Pk is not in the maximum independent set then the maximum inde-

pendent set must have been from 1 to k − 1. By de�nition this is MIS(k − 1).

Case 2: If Pk is in the maximum independent set then by Observation 3.5 this is

R(k).
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If we compute R(k) for all index k, then in a single run i.e O(|Si|) we can compute

the maximum independent set for Si.

Note that, the procedure lineIntersectMIS(Si) can be modi�ed to solves MIS

for Si optimally. Run lineIntersectMIS on each Si, for 1 ≤ i ≤ k and let Ei

be the maximum independent in Si. We de�ne two sets EvenOPT =
⋃

1≤i≤k
i is even

Ei

and OddOPT =
⋃

1≤i≤k
i is odd

Ei. We report the set with the maximum cardinality among

EvenOPT and OddOPT as the result of our algorithm. Thus we have the following

theorem.

Theorem 3.12. Our algorithm produces a 2-approximation for MIS in GLU , with

a time complexity of O(n2) and a space complexity of O(n).

Proof. We know S =
k⋃
i=1

Si. Hence
k∑
i=1

|Si| = |S| = n. Therefore
k∑
i=1

|Si|2 ≤ n2.

Thus the running time is O(n2). Since for each Si we used an O(|Si|) space

therefore the total space complexity if O(n).

Let OPT be the optimal solution for S. From observation 3.4, we can conclude

that the L-shaped paths in EvenOPT are independent and so are OddOPT . We

have EvenOPT +OddOPT ≥ OPT . Thus max{|EvenOPT |, |OddOPT |} ≥ |OPT |
2

.

Similarly for a Unit restricted B1-VPG we can get an 8 approximation using similar

approach as stated in Corollary 3.7 since we have four di�erent bends possible and

we solve for each set and return the maximum among them.



Chapter 4

Conclusion And Future Work

In this project, we obtained hardness results and approximation algorithms for

CCRP and B1-CRP. We showed that GLU(`) is a Co-comparable graph. We

proposed a dynamic programming based algorithm for �nding MIS of GLU(`) in

O(n2) time using linear space. Which produces 2-approximation for �nding MIS

of GLU with O(n2) time and O(n) space complexity. Finally we pose the following

open problems:

1. Can a 2-approximation for MIS of GLU be obtained in sub-quadratic time?

2. Does there exist a polynomial time sub-linear approximation algorithm for

CRP when the vehicles are moving only along XY-monotone paths?

3. Does there exists a better approximation for Bk-CRP than MIS for general

graph?

26



Bibliography

[1] Ajaykumar, J., Das, A., Saikia, N., & Karmakar, A. (2016, August). Prob-
lems on One Way Road Networks. In Canadian Conference on Computational
Geometry (p. 303).

[2] Lahiri, A., Mukherjee, J., & Subramanian, C. R. (2015). Maximum Indepen-
dent Set on B1-VPG Graphs. In Combinatorial Optimization and Applications
(pp. 633-646). Springer, Cham.

[3] Dasler, P., & Mount, D. M. (2015, August). On the complexity of an unreg-
ulated tra�c crossing. In Workshop on Algorithms and Data Structures (pp.
224-235). Springer, Cham.

[4] Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., &
Stern, M. (2012). Vertex Intersection Graphs of Paths on a Grid. J. Graph
Algorithms Appl., 16, 129-150.

[5] Håstad, J. (1997). Clique is hard to approximate within n1−ε. Acta Mathe-
matica., 182(1), 105-142.

[6] Agarwal, P. K., van Kreveld, M., & Suri, S. (1998). Label placement by
maximum independent set in rectangles. Computational Geometry: Theory
and Applications, 3(11), 209-218.

[7] Nandy, S. C., Pandit, S., & Roy, S. (2017). Faster approximation for max-
imum independent set on unit disk graph. Information Processing Letters,
127, 58-61.

[8] Golumbic, M. C., Rotem, D., & Urrutia, J. (1983). Comparability graphs and
intersection graphs. Discrete Mathematics, 43(1), 37-46.

[9] Crescenzi, P., Fiorini, C., & Silvestri, R. (1991). A note on the approximation
of the MAX CLIQUE problem. Information Processing Letters, 40(1), 1-5.

[10] Michael, R. G., & David, S. J. (1979). Computers and intractability: a guide
to the theory of NP-completeness. WH Free. Co., San Fr, 90-91.

[11] Kashiwabara, T., & Fujisawa, T. (1979). NP-Completeness of the problem of
�nding a minimum clique number interval graph containing a given graph as a
subgraph. In Proceedings International Conference on Circuits and Systems,
657-660.

27



BIBLIOGRAPHY 28

[12] Gavril, F. (1972). Algorithms for minimum coloring, maximum clique, mini-
mum covering by cliques, and maximum independent set of a chordal graph.
SIAM Journal on Computing, 1(2), 180-187.

[13] Dilworth, R. P. (1950). A decomposition theorem for partially ordered sets.
Annals of Mathematics, 161-166.

[14] Mirsky, L. (1971). A dual of Dilworth's decomposition theorem. The American
Mathematical Monthly, 78(8), 876-877.

[15] Lovász, L. (1972). Normal hypergraphs and the perfect graph conjecture.
Discrete Mathematics, 2(3), 253-267.

[16] Hochbaum, D. S. (1996). Approximation algorithms for NP-hard prob-
lems.PWS Publishing Co..

[17] Lovász, L. (2009). A characterization of perfect graphs. In Classic Papers in
Combinatorics (pp. 447-450). Birkhäuser Boston.

[18] Konig, D. (1931). Graphok es matrixok (Hungarian)[Graphs and matrices].
Matematikai és Fizikai Lapok, 38, 116-119.

[19] Malhotra, V. M., Kumar, M. P., & Maheshwari, S. N. (1978). An O(|V |3)
algorithm for �nding maximum �ows in networks. Information Processing
Letters, 7(6), 277-278.

[20] Rose, D. J., Tarjan, R. E., & Lueker, G. S. (1976). Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on computing, 5(2), 266-283.


	Introduction
	Related Work
	Decision Problem and Reduction
	Maximum Independent Set
	Traffic Crossing Problem
	Traffic Configuration Problem
	Intersection of Paths on a Grid
	Comparable and Co-comparable Graphs
	Our Contribution

	Our Work
	Definitions and Notations
	Hardness of CCRP
	Approximation for MIS of GLt
	Unit L Graph Approximation

	Conclusion And Future Work

