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Abstract

Message Authentication Code is an important cryptographic concept which is used for checking message
integrity. The Wegman-Carter construction is important in this field. The polynomial-based hash
function, Poly1305 as proposed by Daniel J.Bernstein, is a widely used construction. It can be used to
instantiate the hash function as required in Wegman-Carter construction. The vectorization of Poly1305
by Shay Gueron and Martin Goll has shown improvement over the known pre-existing implementations.

The algorithm developed by Shay Gueron and Martin Goll has left some scope of improvement
both for 256-bit and 512-bit vectorizations. In 256-bit vectorization, improvement has been achieved
for messages each of whose number of 16-byte blocks is not a multiple of 4. In 512-bit vectorization,
improvement has been achieved for messages each of whose number of 16-byte blocks is not a multiple of
8. For the said cases the alignment of the input is disturbed repeatedly because 4-decimation Horner and
8-decimation Horner for 256-bit and 512-bit vectorizations respectively have been applied incompletely.
Goll and Gueron have used Intel Intrinsics for 256-bit and 512-bit vectorizations of Poly1305. For 256-
bit vectorization AVX2 has been used. For 512-bit vectorization AVX512 has been used. We have used
4-decimation Horner and 8-decimation Horner throughout the length of input message for 256-bit and
512-bit vectorizations respectively irrespective of the message length. We have obtained better results
both for 256-bit and 512-bit vectorizations. Detailed result analysis is available for 256-bit vectorization.
The detailed result analysis of 512-bit vectorization is unavailable due to time constraints.

In this report we have shown how to balance a message whose number of 16-byte blocks is not divisible
by 4 so that it becomes suitable for application of 4-decimation Horner throughout its length. Same
modifications have been done for application of 8-decimation Horner. We also provide a modified SIMD
multiplication algorithm for handling messages where in each case, the number of 16-byte blocks when
divided by 4 leaves 1 as remainder. Then we give detailed result analysis for Skylake and Kaby Lake
cores using suitable graphs and tables.



List of Figures

1 Speed-up vs message size in bytes graph for Skylake core . . . . . . . . . . . . . . . . . . 28
2 cycles/byte vs message size in bytes (49 - 500 bytes) graph for Skylake core . . . . . . . 29
3 cycles/byte vs message size in bytes (501 - 1000 bytes) graph for Skylake core . . . . . . 29
4 cycles/byte vs message size in bytes (1001 - 1500 bytes) graph for Skylake core . . . . . 29
5 cycles/byte vs message size in bytes (1501 - 2000 bytes) graph for Skylake core . . . . . 29
6 cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Skylake core . . . . . 29
7 cycles/byte vs message size in bytes (49 - 4000 bytes) graph for Skylake core . . . . . . 30
8 Speed-up vs message size in bytes graph for Kaby Lake core . . . . . . . . . . . . . . . . 33
9 cycles/byte vs message size in bytes (49 - 500 bytes) graph for Kaby Lake core . . . . . 33
10 cycles/byte vs message size in bytes (501 - 1000 bytes) graph for Kaby Lake core . . . . 33
11 cycles/byte vs message size in bytes (1001 - 1500 bytes) graph for Kaby Lake core . . . 34
12 cycles/byte vs message size in bytes (1501 - 2000 bytes) graph for Kaby Lake core . . . 34
13 cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Kaby Lake core . . . 34
14 cycles/byte vs message size in bytes (49 - 4000 bytes) graph for Kaby Lake core . . . . . 35

List of Tables

1 Some results as observed for a Skylake core . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Some results as observed for a Kaby Lake core . . . . . . . . . . . . . . . . . . . . . . . 35



Contents

1 Introduction 1

2 Preliminaries 3
2.1 Message Authentication Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Hash Functions and MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Polynomial-based Universal Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Horner’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Poly1305- A polynomial based hash function . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Intel Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Previous Work: 256-bit Vectorization of Poly1305 by Goll and Gueron 7
3.1 5-limb representation of an operand and a related operation . . . . . . . . . . . . . . . . 7
3.2 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Partitioning the message space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Description of the Goll-Gueron 4x130 multiplication algorithm . . . . . . . . . . . . . . 9
3.5 Description of Goll-Gueron SIMD Reduction From 64 bits to 32 bits . . . . . . . . . . . 18

4 Our Contribution: Improved 256-bit Vectorization of Poly1305 20
4.1 Revisiting 4-decimation Horner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Partitioning the message space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Modified 4-decimation Horner for Optimized Evaluation . . . . . . . . . . . . . . . . . . 21
4.4 Modified 4x130 multiplication algorithm for messages belonging to case 1 . . . . . . . . 22

5 Result Analysis 26
5.1 Environment for Measuring Machine Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Results for Skylake and Kaby Lake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 512-bit vectorization of Poly1305 37

7 Conclusion 38



1 Introduction

MAC is required for checking message integrity. If the receiver wants to ensure that the message received
by it has not been changed en-route then MAC is required. If sender (Alice) sends a message m to the
receiver (Bob) and Bob wants to ensure that the message m′ that he has received is same as that has
been sent by Alice, Bob needs another piece of information t called a tag. So a secret key k is required.
Alice computes the tag t from message m using key k and sends (m, t) to Bob. Let us assume that
Bob receives m′. Now, Bob uses k and m′ to compute the tag t′. If t and t′ are equal then Bob accepts
m′ (i.e., m = m′). Otherwise, he rejects m′ (i.e., m 6= m′).

Universal Hash Functions are used for generating the tag. A well-known MAC construction is by
Wegman and Carter. Let N be the nonce space, M be the message space. The general concept is

as follows: (N, M)
(k,τ)7−→ Fk (N) ⊕ Hashτ (M), where k and τ are keys. Here F is a pseudo-random

function or pseudo-random permutation. One can use univariate polynomial for Hashτ . One such
polynomial-based hash function is Poly1305 [5] which has wide acceptance.

Importance and Uses of Poly1305

• Google uses Poly1305 for authentication in OpenSSL and NSS since March 2013.

– In Chrome 31 it deployed a new TLS message suite based on Prof. Dan Bernstein’s ChaCha20
and Poly1305 algorithms and it has deployed a standardized variant in Chrome49.

– In Chrome58 Google has removed the pre-standard variants.

– Till CHROME 68, which is the latest version available, TLS message suits have not been not
changed.

– Google has deployed a new TLS message suite in Chrome that operates three times faster
than AES-GCM on devices that do not have AES hardware acceleration, including most
Android phones, wearable devices such as Google Glass and older computers. This reduces
latency and saves battery life by cutting down the amount of time spent encrypting and
decrypting data.

These imply the importance and acceptance of Poly1305.

• Poly1305 also saves network bandwidth, since its output is only 16 bytes compared to HMAC-
SHA1, which is 20 bytes.

• While the ChaCha20-Poly1305 combination is geared towards 32-bit architectures that do not
have AES-NI and PCLMULQDQ (or equivalents), performance is a crucial factor, especially on
the server side where multiple TLS connections are processed in parallel. Such servers use high-
end processors and it is therefore important to make the performance of the ChaCha20-Poly1305
combination comparable to the highly optimized AES-GCM, if it is to be equally attractive for
the servers as well.
More detailed usage can be found in [4] and [1].

Due to its wide acceptance, efficient software implementation of Poly1305 is important. One such
efficient implementation has been done by Goll And Gueron [9]. The 256-bit vectorized implementation
of Poly1305 on Intel platforms by Martin Goll and Shay Gueron gives significant speed-up compared
to the existing non-vectorized implementations. But this implementation [8],[9] requires repeated fresh
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packing of operand(s) into 256-bit register(s) for messages where the number of 16-byte blocks is not a
multiple of 4 due to the incomplete 4-decimation Horner that has been followed. Our improved SIMD
implementation reduces the number of machine cycles using a variant of 4-decimation Horner [7].

Our Contribution

Instead of using an incomplete 4-decimation Horner as in [8], we have used complete 4-decimation
irrespective of input message lengths. A message whose number of 16-byte blocks is not a multiple of
4 can be said to be in an ’unbalanced’ state. So some kind of balancing is required for application of
complete 4-decimation Horner. Same concept applies for 8-decimation Horner.

In order to achieve this notion of balancing we have logically ’prepended’ to the message required
number of zeros(i.e., added at the beginning of the input message) for achieving a balanced form suitable
for application of 4-decimation Horner throughout the entire message length. An obvious alternative
is to append the required number of zeros. But we have ’prepended’ instead of appending. The reason
behind it is [8] uses larger decimations for message-lengths greater than 832 bytes. In such cases,
appending zeros will increase the number of machine cycles in the multiplication algorithm as discussed
in Section 3.4. Since not much information (apart from throughput and latency) has been revealed by
Intel in [2] about the intrinsics to be used and the underlying pipeline’s architecture, we have avoided
appending zeros to the input message. Similarly, we have ’prepended’ required number of zeros to
achieve balancing for 8-decimation Horner in case of 512-bit vectorization.

Also, for sparse operands, we have given a compact representation which is suitable for complete 4-
decimation Horner. The said modifications have been done for both 256-bit and 512-bit vectorizations.

Detailed results have been obtained and analysed for 256-bit vectorization in Skylake and Kaby
Lake processors. Significant speed-up has been observed for messages up to 1 KB size. Beyond that,
noticeable speed-up has been observed. The following result is for 256-bit vectorization using AVX2.

• We have obtained maximum 34.46% speed-up and an average of 12.58% speed-up till 1 KB size in
Skylake processor and maximum 34.63% speed-up and an average of 14.44% speed-up till 1 KB
size for Kaby Lake processor.

Beyond 1KB, noticeable speed-up has been observed for 256-bit vectorization. The following result is
for messages having size between 1 KB and 4 KB.

• For message size between 1 KB and 2 KB maximum speed-up of 20.69% with average 6.10% in
Skylake core and for Kaby Lake Core maximum speed-up is 16.03% with an average speed-up of
6.53% have been obtained.

• For message size between 2 KB and 3 KB maximum speed-up of 13.79% with average 3.92% in
Skylake core and for Kaby Lake Core maximum speed-up is 13.79% with an average speed-up of
4.13% have been obtained.

• For message size between 3 KB and 4 KB maximum speed-up of 10.26% with average 2.90% in
Skylake core and for Kaby Lake Core maximum speed-up is 13.75% with an average speed-up of
2.64% have been obtained.
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For 512-bit vectorization AVX512 intrinsics and 8-decimation Horner have been used. The performance
of our work is better than that in [9]. The detailed analysis of result obtained after modification for 512-
bit vectorization is not available due to time constraint. We have given performances of implementations
in Skylake and Kaby Lake cores for 256-bit vectorizations. It may be noted that some Kaby Lake cores
have been designed for mobile devices and such cores support AVX2. Hence our work is also suitable
for mobiles devices using such Kaby Lake cores.

2 Preliminaries

2.1 Message Authentication Code

Let M be a finite message space, K be a finite key space and T be a finite tag space. A MAC system
(S,V) is a pair of polynomial time algorithms with the following characteristics:

• S is probabilistic polynomial time algorithm which takes in as inputs the message m ∈ Mand a
key k ∈ K to produce an output called tag t, where t ∈ T .

• V is a deterministic polynomial time algorithm which takes in as inputs the same key as S, message
m and tag t and outputs either accept or reject.

2.2 Hash Functions and MAC

A keyed hash function is a deterministic algorithm which takes a message and key as inputs and the
output is called digest. The message space is much larger than the digest space.

Two Kinds of Probabilities. Let us consider three non-empty finite sets M, K,T . Let Hκ be an
indexed family of functions such that for each κ ∈ K, Hκ :M→ T .

• For two distinct M ∈M, M ′ ∈M, Pr[Hκ (M) = Hκ (M ′)] is called a collision probability.

• Let T be an additively written group. For distinct M ∈ M, M ′ ∈ M and y ∈ T , the probability
Pr[Hτ (M)−Hκ (M ′) = y] is called a differential probability.

ε-Almost Universal Hash Function. The family {Hκ} is said to be ε-almost universal ε-AU if for
all distinct M, M ′ ∈M the collision probability for the pair (M,M ′) is at most ε.

ε-Almost XOR Universal Hash Function. The family {Hκ} is said to be ε-almost XOR Universal
if for all distinct M, M ′ ∈M and any y ∈ T the differential probability for the triplet (M,M ′, y) is at
most ε.

2.3 Polynomial-based Universal Hash Functions

Universal Hash Functions can be constructed using polynomials modulo a prime. Let us define the
following hash function Hκ where m = (m1, . . . ,mn) be the input message and each mi ∈ F, i ∈
{1, . . . , n} and F is a finite field.
Hκ(m1, . . . ,mn) = m1κ

n−1 + m2κ
n−2 + . . . + mn, where κ ∈ F

Let m = (m1, . . . ,mn) and m′ = (m′1, . . . ,m
′
n) be two distinct messages. Now, let us find the collision

and differential probability for Hκ.
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Collision Probability for Hκ. We need to find Pr[Hκ (m) = Hκ (M ′)] or,
Pr[Hκ (m)−Hκ (m′) = 0].
Hκ (m)−Hκ (m′) = 0
or, (m1 −m′1) · κn−1 + . . .+ (mn −m′n) = 0
Since, m and m′ are distinct all the coefficients are not zero. As the LHS of the above equation is a
polynomial of degree n − 1, it has at most n − 1 distinct roots. Hence, Pr[Hκ (m) = Hκ (m′)] ≤ n−1

|F | .

We see that Hκ is n−1
|F | -AU.

Differential Probability for kHκ. We need to find Pr[k Hκ (m)− k Hκ (m′) = y]. Note that k Hκ−
k H ′κ − y is a polynomial of degree n. Hence, this polynomial has at most n distinct roots. So kHκ is
n
|F | -AXU.

2.4 Horner’s Rule

A polynomial f(κ) of degree κ−1 may be evaluated at a point τ by κ−1 multiplications and κ−1 addi-
tions using Horner’s Rule, where all the coefficients belong to a finite field and for κHornerτ (m1, ...,mn),
κ multiplications and κ− 1 additions are required.

Hornerκ (m1, ...,mn) = (((m1κ+m2)κ+ .......)κ+mn−1)κ+mn. Thus, Hornerκ is n−1
|F | −AU and

κHornerκ is n
|F | -AXU.

2.5 Poly1305- A polynomial based hash function

An input message of length L bits is broken down into blocks of 128-bit length. Let there be ` (` = dL/128e)
such blocks. Each of the blocks is padded first with 1 and then with 0 to make it 130-bit long. If the
last block is lesser than 128 bits then at first it is padded with 1 and then with required number of
zeros to make it 130-bit long. The resulting block is treated as an unsigned little-endian integer. Let
us denote the ith such converted block as ci, where i ∈ {1, . . . , `}.

The computation of the tag is written as follows:(((
c1 ·R` + c2 ·R`−1 + ...+ c` ·R

)
mod 2130 − 5

)
+K

)
mod 2128,

where R and K are the 2 128-bit divisions of the 256-bit key and ` is the number of 16-byte blocks of
the message.

2.6 Intel Intrinsics

Intrinsics are assembly-coded functions that allow one to use C function calls and variables in place of
assembly instructions. Intrinsics are expanded inline eliminating function call overhead. Providing the
same benefit as using inline assembly, intrinsics improve code readability, assist instruction scheduling,
and help reduce debugging. Intrinsics provide access to instructions that cannot be generated using the
standard constructs of the C and C++ languages. Intel intrinsic instructions are C style functions that
provide access to many Intel instructions - including Intel SSE, AVX, AVX-512, and more - without the
need to write assembly code.

Intel Intrinsics Background. Advanced Vector Extensions (AVX, also known as Sandy Bridge New
Extensions) are extensions to the x86 instruction set architecture for microprocessors from Intel and
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first supported by Intel with the Sandy Bridge processor. AVX provides new features, new instruc-
tions and a new coding scheme. AVX2 expands most integer commands to 256 bits. Advanced Vector
Extensions 2 (AVX2), also known as Haswell New Instructions,[5] is an expansion of the AVX instruc-
tion set introduced in Intel’s Haswell microarchitecture. AVX2 makes the expansion of most vector
integer SSE and AVX instructions to 256 bits. In addition, AVX2 provide enhanced functionalities for
broadcast/permute operations on data elements, vector instructions with variable-shift count per data
element, and instructions to fetch non-contiguous data elements from memory.

Intel CPUs with AVX2 support

• Haswell processor, Q2 2013

• Haswell E processor, Q3 2014

• Broadwell processor, Q4 2014

• Broadwell E processor, Q3 2016

• Skylake processor, Q3 2015

• Kaby Lake processor, Q3 2016(ULV mobile)/ Q1 2017 (desktop/ mobile)

• Skylake-X processor, Q2 2017

• Coffee Lake processor, Q4 2017

• Cannon Lake processor, 2018

• Cascade Lake processor, 2018

• Ice Lake processor, 2018

We have used Skylake and Kaby Lake processors for our implementation. Thus we have been able to
give speed-up for modern processors.

Major Intel Intrinsics Used In This Work

• mm256 mul epu32 ( m256i a, m256i b): Multiply the low unsigned 32-bit integers from each
packed 64-bit element in a and b, and store the unsigned 64-bit results in dst.
Operation:
FOR j := 0 to 3

i := j ∗ 64
dst[i+ 63 : i] := a[i+ 31 : i] ∗ b[i+ 31 : i]

END FOR
dst[MAX : 256] := NULL

• mm256 set epi32 (int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0): Set packed 32-bit in-
tegers in dst with the supplied values.
Operation:
dst[31 : 0] := e0
dst[63 : 32] := e1
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dst[95 : 64] := e2
dst[127 : 96] := e3
dst[159 : 128] := e4
dst[191 : 160] := e5
dst[223 : 192] := e6
dst[255 : 224] := e7
dst[MAX : 256] := 0

• mm256 permute4×64 epi64 ( m256i a, const int mm8): Shuffle 64-bit integers in a across lanes
using the control in imm8, and store the results in dst.
Operations:
SELECT4(src, control)
{
CASE(control[1 : 0])
0 : tmp[63 : 0] := src[63 : 0]
1 : tmp[63 : 0] := src[127 : 64]
2 : tmp[63 : 0] := src[191 : 128]
3 : tmp[63 : 0] := src[255 : 192]
ESAC RETURN tmp[63 : 0]
}
dst[63 : 0] := SELECT4(a[255 : 0], imm8[1 : 0])
dst[127 : 64] := SELECT4(a[255 : 0], imm8[3 : 2])
dst[191 : 128] := SELECT4(a[255 : 0], imm8[5 : 4])
dst[255 : 192] := SELECT4(a[255 : 0], imm8[7 : 6])
dst[MAX : 256] := NULL

• mm256 permutevar8×32 epi32 ( m256i a, m256i idx): Shuffle 32-bit integers in a across lanes
using the corresponding index in idx, and store the results in dst.
Operation:
FOR j := 0 to 7
i := j ∗ 32
id := idx[i+ 2 : i] ∗ 32 dst[i+ 31 : i] := a[id+ 31 : id] END FOR
dst[MAX : 256] := NULL

• mm256 add epi64 ( m256i a, m256i b): Add packed 64-bit integers in a and b, and store the
results in dst. Operation:
FOR j := 0 to 3
i := j ∗ 64
dst[i+ 63 : i] := a[i+ 63 : i] + b[i+ 63 : i]
END FOR
dst[MAX : 256] := NULL

• mm256 srli epi64 ( m256i a, int imm8): Shift packed 64-bit integers in a right by imm8 while
shifting in zeros, and store the results in dst. Operation:
FOR j := 0 to 3

i := j ∗ 64
IF imm8[7 : 0] > 63
dst[i+ 63 : i] := 0
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ELSE dst[i+ 63 : i] := ZeroExtend(a[i+ 63 : i] >> imm8[7 : 0])
FI

END FOR dst[MAX : 256] := 0

• mm256 and si256 ( m256i a, m256i b): Compute the bitwise AND of 256 bits (representing
integer data) in a and b, and store the result in dst. Operation:
dst[255 : 0] := (a[255 : 0] AND b[255 : 0])
dst[MAX : 256] := 0

• mm256 blend epi32 ( m256i a, m256i b, const int imm8): Blend packed 32-bit integers from
a and b using control mask imm8, and store the results in dst. Operation:
FOR j := 0 to 7
i := j ∗ 32
IF imm8[j]
dst[i+ 31 : i] := b[i+ 31 : i]

ELSE dst[i+ 31 : i] := a[i+ 31 : i]
FI

END FOR
dst[MAX : 256] := NULL

• mm256 slli epi64 ( m256i a, int imm8): Shift packed 64-bit integers in a left by imm8 while
shifting in zeros, and store the results in dst.
Operation:
FOR j := 0 to 3

i := j ∗ 64
IF imm8[7 : 0] > 63
dst[i+ 63 : i] := 0

ELSE
dst[i+ 63 : i] := ZeroExtend(a[i+ 63 : i] << imm8[7 : 0])
FI

END FOR
dst[MAX : 256] := NULL

3 Previous Work: 256-bit Vectorization of Poly1305 by Goll and
Gueron

3.1 5-limb representation of an operand and a related operation

Each 130-bit unsigned integer is represented as 5-digit number in base 226. Let Y be such an integer.

Y = y4 · 24·26 + y3 · 23·26 + y2 · 22·26 + y1 · 226 + y0 (1)

, where each of the 5 limbs is placed in a 32-bit register. Let X be another 130-bit integer represented
in the same way. Thus, if we want to multiply (modulo 2130 − 5) X and Y , the multiplication is done
as follows:

z0 = y0 · y0 + 5 · x1 · y4 + 5 · x2 · y3 + 5 · x3 · y2 + 5 · x4 · y1

7



z1 = x0 · y1 + x1 · y0 + 5 · x2 · y4 + 5 · x3 · y3 + 5 · x4 · y2
z2 = x0 · y2 + x1 · y1 + x2 · y0 + 5 · x3 · y4 + 5 · x4 · y3
z3 = x0 · y3 + x1 · y2 + x2 · y1 + x3 · y0 + 5 · x4 · y4
z4 = x0 · y4 + x1 · y3 + x2 · y2 + x3 · y1 + x4 · y0

Note: z0, z1, z2, z3, z4 are not in a 5-limb format. In order to represent them in 5-limb format
we should do a reduction.

The total number of multiplications is 25 if (5 · x15 · x2, 5 · x3, 5 · x4) or 5 ·X is precomputed. Since
each of the multiplications is 32× 32, we need 5 64-bit registers to store them.

3.2 Alignments

Let us denote four blocks of the message as M0, M1, M2 and M3. Each of them is represented according
to the 5-limb representation. So we can denote Mi as (mi0,mi1,mi2,mi3,mi4) where i ∈ {0, 1, 2, 3}.
Let us denote the intermediate results of 32× 32 multiplications

(
Mi ·R4

)
corresponding to each of the

chunks Mi, i ∈ {0, 1, 2, 3} as ti0, ti1, ti2, ti3, ti4. Note that R is the 128-bit key which comes as input.
If immediately after these multiplications the intermediate results are reduced modulo 2130 − 5, then
the reduced intermediate results can be stored in 3 256-bit registers.

Alignment of reduced intermediate results (message in the first step) in 3 256-bit registers is as follows:

t32 t30 t22 t20 t12 t10 t02 t00

t33 t31 t23 t21 t13 t11 t03 t01

x t34 x t24 x t14 x t04

In the first step 130× 4 bits of message is aligned into 3 256-bit registers as shown below.

m32 m30 m22 m20 m12 m10 m02 m00

m33 m31 m23 m21 m13 m11 m03 m01

x m34 x m24 x m14 x m04

Apart from the intermediate results (or 4 message blocks in first step), the other operands for vector-
ized multiplication are R4 or (g4, g3, g2, g1, g0) and 5 · R4 or (5 · g4, 5 · g3, 5 · g2, 5 · g1) which are stored
in 2 256-bit registers in the following way:

5 · g4 5 · g3 5 · g2 g4 g3 g2 g1 g0

5 · g1 5 · g1 5 · g1 5 · g1 5 · g1 5 · g1 5 · g1 5 · g1

3.3 Partitioning the message space

In [9], which has been implemented according to [8] the following message partitioning concept has
been used. Since 256-bit vectorization is followed, four 16-byte blocks are handled simultaneously. Let
n be the total number of bytes in the input message. Note that n = dL/8e. So if 16|n and 4|` then
a 4-decimation Horner [7] is followed for evaluation. Else, if 16|n but 4 6 |`, then 4-decimation Horner
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[7] is followed up to the length where number of 16-byte blocks is a multiple of 4. The rest of the
n′ (= n− (` ∗ 16)) bytes are handled using one of the following methods. Let P be the result up to the
length for which 4-decimation Horner is possible without appending extra zeros (logically/physically).

• 16|n′. Let `′ = n′/16

– case 1: `′ = 1. P = PR+M`−1R. Fresh packing is required only once.

– case 2: `′ = 2. P = PR2 +M`−2R
2 +M`−1R. Fresh packing is required only once.

– case 3: `′ = 3. P = PR3 +M`−3R
3 +M`−2R

2 +M`−1R. This case is again broken down into
2 cases. First 32 bytes is handled as if `′=2. Then the last 16 bytes or less is processed as if
`′ = 1. This requires fresh packing of operands three times.

• 16 6 |n′.

– 1 ≤ n′ ≤ 15 : Case 1 is followed. Fresh packing is required once.

– 17 ≤ n′ ≤ 31 : Case 1 is followed, where 16-bytes are considered every time till the message
ends. Fresh packing is required twice.

– 33 ≤ n′ ≤ 47 : Uses similar concepts as the previous case. Fresh packing is required twice.

– 49 ≤ n′ ≤ 63 : For first 32-byte case 2 is followed and for the rest of the bytes case 1 is
followed, where 16-bytes are considered every time till the message ends. Fresh packing of
operands is required three times.

If 16 6 |n, then ` = dn/16e. This means the last block is incomplete. This last block is handled as stated
in [5] and the computation follows the said methods.

It can be said that 4-decimation Horner [7] is followed up to the length where number of 16-byte
blocks is multiple of 4. Then one of the above discussed methods is followed.

Example:

• If after applying 4-decimation Horner on input message still 63 more bytes are left, these 63 bytes
are broken into 3 parts: 32 bytes, 16 bytes, 15 bytes. Thus, fresh alignments of the remaining
data are done 3 times.

• If after applying 4-decimation Horner on input message still 40 more bytes are left, these 40 bytes
are broken into 2 parts: 32 bytes, 8 bytes. Thus, fresh alignments of the remaining data are done
2 times.

3.4 Description of the Goll-Gueron 4x130 multiplication algorithm

Input: Padded and converted 64 bytes of the input message in 3 256-bit registers, R4 and 5 ·R4 aligned
in 2 256-bit registers. All the alignments are done as discussed earlier.
Output: The output is stored in 5 256-bit registers.

t30 t20 t10 t00

t31 t21 t11 t01

t32 t22 t12 t02
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t33 t23 t13 t03

t34 t24 t14 t04

Note 1: Thus, all the registers used for this purpose are 256-bit long. Operands are divided into 8
32-byte parts and the products are divided into 4 64-byte parts.
Note 2: A brief summary of the intrinsics used in this algorithm:
Step 1:
To obtain partial results of t00, t10, t20 and t30.
Operation involved: mm256 mul epu32

operand 1: t32 t30 t22 t20 t12 t10 t02 t00

operand 2: g1 g0 g1 g0 g1 g0 g1 g0

Product: t30 · g0 t20 · g0 t10 · g0 t00 · g0

Step 2:
To obtain partial results of t01, t11, t21 and t31.
Operation involved: mm256 mul epu32

operand 1: t33 t31 t23 t21 t13 t11 t03 t01

operand 2: g1 g0 g1 g0 g1 g0 g1 g0

Product: t31 · g0 t21 · g0 t11 · g0 t01 · g0

Step 3:
To obtain partial results of t02, t12, t22 and t32.
Operation involved: mm256 mul epu32

operand 1: x t34 x t24 x t14 x t04

operand 2: g1 g0 g1 g0 g1 g0 g1 g0

Product: t34 · g0 t24 · g0 t14 · g0 t04 · g0

Step 4:
To obtain partial results of t04, t14, t24 and t34.
Operation involved: mm256 mul epu32

operand 1: t32 t30 t22 t20 t12 t10 t02 t00

operand 2: g3 g2 g3 g2 g3 g2 g3 g2

product: t30 · g2 t20 · g2 t10 · g2 t00 · g2
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Step 5:
To obtain partial results of t03, t13, t23 and t33.
Operation involved: mm256 mul epu32

operand 1: t33 t31 t23 t21 t13 t11 t03 t01

operand 2: g3 g2 g3 g2 g3 g2 g3 g2

Product: t31 · g2 t2 · g2 t1 · g2 t01 · g2

Step 6:
To obtain partial results of t01, t11, t21 and t31.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t32 t30 t22 t20 t12 t10 t02 t00

operand 2: g0 g1 g0 g1 g0 g1 g0 g1

product: t30 · g1 t20 · g1 t10 · g1 t00 · g1

Add this product with result obtained from Step 2 to obtain:

t31 · g0 +
t30 · g1

t20 · g0 +
t21 · g1

t11 · g0 +
t10 · g1

t01 · g0 +
t00 · g1

Step 7:
To obtain partial results of t02, t12, t22 and t32.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t33 t31 t23 t21 t13 t11 t03 t01

operand 2: g0 g1 g0 g1 g0 g1 g0 g1

product: t31 · g1 t21 · g1 t11 · g1 t01 · g1

Add this product with the results obtained in Step 4 to obtain:

t30 · g2 +
t31 · g1

t20 · g2 +
t21 · g1

t10 · g2 +
t11 · g1

t00 · g2 +
t01 · g1

Step 8:
To obtain partial results of t03, t13, t23 and t33.
Operation involved: mm256 mul epu32 and mm256 add epi64
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operand 1: t32 t30 t22 t20 t12 t10 t02 t00

operand 2: g2 g3 g2 g3 g2 g3 g2 g3

product: t30 · g3 t20 · g3 t10 · g3 t00 · g3

Add this product with result obtained from Step 5 to get:

t31 · g2 +
t30 · g3

t21 · g2 +
t20 · g3

t11 · g2 +
t10 · g3

t01 · g2 +
t00 · g3

Step 9:
To obtain partial results of t04, t14, t24 and t34.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t33 t31 t23 t21 t13 t11 t03 t01

operand 2: g2 g3 g2 g3 g2 g3 g2 g3

product: t31 · g3 t21 · g3 t11 · g3 t01 · g3

Add this product with result obtained in Step 3 to get:

t34 · g0 +
t31 · g3

t24 · g0 +
t21 · g3

t14 · g0 +
t11 · g3

t04 · g0 +
t01 · g3

Step 10:
To obtain partial results of t00, t10, t20 and t30.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t32 t30 t22 t20 t12 t10 t02 t00

operand 2: 5 · g1 g4 5 · g1 g1 5 · g1 g4 5 · g1 g4

product: t30 · g4 t20 · g4 t10 · g4 t00 · g4

Add this product with result obtained in Step 9:

t34 · g0 +
t31 · g3 +
t30 · g4

t24 · g0 +
t21 · g3 +
t20 · g4

t14 · g0 +
t11 · g3 +
t10 · g4

t04 · g0 +
t01 · g3 +
t00 · g4

Till now only the lower order 32 bits of each packed 64 bits of the 256-bit long registers were mul-
tiplied with the corresponding lower order 32 bits of each packed 64 bits of the 256-bit long registers
containing R4. Now, the multiplications on the higher order 32 bits of each packed 64 bits of the 256-
bit long registers with the corresponding lower order 32 bits of each packed 64 bits of the 256-bit long
registers containing R4 need to be done. So the lower and upper order 32 bits of each packed 64 bits of
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those registers are swapped.

Step 11:
To obtain partial results of t00, t10, t20 and t30.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t31 t33 t21 t23 t11 t13 t01 t03

operand 2: g4 5 · g1 g4 5 · g1 g4 5 · g1 g4 5 · g1

product: 5 · g1 · t33 5 · g1 · t23 5 · g1 · t13 5 · g1 · t03

Add this product with the result obtained from Step 1

t30 · g0 + 5 ·
g1 · t33

5 · g1 · t23 +
t20 · g0

t10 · g0 + 5 ·
g1 · t13

t00 · g0 + 5 ·
g1 · t03

Step 12:
To obtain partial results of t04, t14, t24 and t34.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: x t34 x t24 x t14 x t04

operand 2: g4 5 · g1 g4 5 · g1 g4 5 · g1 g4 5 · g1

product: 5 · g1 · t34 5 · g1 · t24 5 · g1 · t14 5 · g1 · t04

Add this product to result obtained from Step 6.

t31 · g0 +
t30 · g1 +
5 · g1 · t34

t21 · g0 +
t20 · g1 +
5 · g1 · t24

t11 · g0 +
t10 · g1 +
5 · g1 · t14

t01 · g0 +
t00 · g1 +
5 · g1 · t04

Step 13:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t30 t32 t20 t22 t10 t12 t00 t02

operand 2: g0 g1 g0 g1 g0 g1 g0 g1

product: t32 · g1 t22 · g1 t12 · g1 t02 · g1

Add this product with the result obtained from Step 8:
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t31 · g2 +
t30 · g3 +
t32 · g1

t21 · g2 +
t20 · g3 +
t22 · g1

t11 · g2 +
t10 · g3 +
t12 · g1

t01 · g2 +
t00 · g3 +
t02 · g1

Step 14:
To obtain partial results of t33, t23, t13 and t03.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t31 t33 t21 t23 t11 t13 t01 t03

operand 2: g0 g1 g0 g1 g0 g1 g0 g1

product: t33 · g1 t23 · g1 t13 · g1 t03 · g1

Add this product with the result from Step 10

t34 · g0 +
t31 · g3 +
t30 · g4 +
t33 · g1

t24 · g0 +
t21 · g3 +
t20 · g4 +
t23 · g1

t14 · g0 +
t11 · g3 +
t10 · g4 +
t13 · g1

t04 · g0 +
t01 · g3 +
t00 · g4 +
t03 · g1

Step 15:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t30 t32 t20 t22 t10 t12 t00 t02

operand 2: g1 g0 g1 g0 g1 g0 g1 g0

product: t32 · g0 t22 · g0 t12 · g0 t02 · g0

Add the result obtained from Step 7

t30 · g2 +
t31 · g1 +
t32 · g0

t20 · g2 +
t21 · g1 +
t22 · g0

t10 · g2 +
t11 · g1 +
t12 · g0

t00 · g2 +
t01 · g1 +
t02 · g0

Step 16:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t31 t33 t21 t23 t11 t13 t01 t03

operand 2: g1 g0 g1 g0 g1 g0 g1 g0

product: t33 · g0 t23 · g0 t13 · g0 t03 · g0
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Add this product with the result obtained from Step 13:

t31 · g2 +
t30 · g3 +
t32 · g1 +
t33 · g0

t21 · g2 +
t20 · g3 +
t22 · g1 +
t23 · g0

t11 · g2 +
t10 · g3 +
t12 · g1 +
t13 · g0

t01 · g2 +
t00 · g3 +
t02 · g1 +
t03 · g0

Step 17:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t30 t32 t20 t22 t10 t12 t00 t02

operand 2: g3 g2 g3 g2 g3 g2 g3 g2

product: t32 · g2 t22 · g2 t12 · g2 t02 · g2

Add result obtained from Step 14:

t34 · g0 +
t31 · g3 +
t30 · g4 +
t33 · g1 +
t32 · g2

t24 · g0 +
t21 · g3 +
t20 · g4 +
t23 · g1 +
t22 · g2

t14 · g0 +
t11 · g3 +
t10 · g4 +
t13 · g1 +
t12 · g2

t04 · g0 +
t01 · g3 +
t00 · g4 +
t03 · g1 +
t02 · g2

Step 18:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t30 t32 t20 t22 t10 t12 t00 t02

operand 2: 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2

product: 5 · g2 · t32 5 · g2 · t22 5 · g2 · t12 5 · g2 · t02

Add this product with the result obtained from Step 11:

t30 · g0 +
5 · g1 ·
t33 + t32 ·
g3

5 · g1 ·
t23 + t20 ·
g0 + t22 ·
g3

t10 · g0 +
5 · g1 ·
t13 + t12 ·
g3

t00 · g0 +
5 · g1 ·
t03 + t02 ·
g3

Step 19:
To obtain partial results of t33, t23, t13 and t03.
Operation involved: mm256 mul epu32 and mm256 add epi64
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operand 1: t31 t33 t21 t23 t11 t13 t01 t03

operand 2: 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2

product: 5 · g2 · t33 5 · g2 · t23 5 · g2 · t13 5 · g2 · t03

Add this product with the result obtained from Step 12:

t31 · g0 +
t30 · g1 +
5 · g1 ·
t34 + 5 ·
g2 · t33

t21 · g0 +
t20 · g1 +
5 · g1 ·
t24 + 5 ·
g2 · t23

t11 · g0 +
t10 · g1 +
5 · g1 ·
t14 + 5 ·
g2 · t13

t01 · g0 +
t00 · g1 +
5 · g1 ·
t04 + 5 ·
g2 · t03

Step 20:
To obtain partial results of t34, t24, t14 and t04.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: x t34 x t24 x t14 x t04

operand 2: 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2

product: 5 · g2 · t34 5 · g2 · t24 5 · g2 · t14 5 · g2 · t04

Add this product with the result obtained from Step 15:

t30 · g2 +
t31 · g1 +
t32 · g0 +
5 · g2 · t34

t20 · g2 +
t21 · g1 +
t22 · g0 +
5 · g2 · t24

t10 · g2 +
t11 · g1 +
t12 · g0 +
5 · g2 · t14

t00 · g2 +
t01 · g1 +
t02 · g0 +
5 · g2 · t04

Step 21:
To obtain partial results of t34, t24, t14 and t04.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: x t34 x t24 x t14 x t04

operand 2: 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3

product: 5 · g2 · t34 5 · g2 · t24 5 · g2 · t14 5 · g2 · t04

Add this product with result obtained from Step 16:

t31 · g2 +
t30 · g3 +
t32 · g1 +
t33 · g0 +
5 · g2 · t34

t21 · g2 +
t20 · g3 +
t22 · g1 +
t23 · g0 +
5 · g2 · t24

t11 · g2 +
t10 · g3 +
t12 · g1 +
t13 · g0 +
5 · g2 · t14

t01 · g2 +
t00 · g3 +
t02 · g1 +
t03 · g0 +
5 · g2 · t04
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Step 22:
To obtain partial results of t32, t22, t12 and t02.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t30 t32 t20 t22 t10 t12 t00 t02

operand 2: 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3

product: 5 · g2 · t32 5 · g2 · t22 5 · g2 · t12 5 · g2 · t02
Add this product with the result obtained from Step 19:

t31 · g0 +
t30 · g1 +
5 · g1 ·
t34 + 5 ·
g2 · t33 +
5 · g2 · t32

t21 · g0 +
t20 · g1 +
5 · g1 ·
t24 + 5 ·
g2 · t23 +
5 · g2 · t22

t11 · g0 +
t10 · g1 +
5 · g1 ·
t14 + 5 ·
g2 · t13 +
5 ·g2 · t12

t01 · g0 +
t00 · g1 +
5 · g1 ·
t04 + 5 ·
g2 · t03 +
5 · g2 · t02

Step 23:
To obtain partial results of t33, t23, t13 and t03.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t31 t33 t21 t23 t11 t13 t01 t03

operand 2: 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3

product: 5 · g2 · t33 5 · g2 · t23 5 · g2 · t13 5 · g2 · t03
Add this product to the result obtained from Step 21:

t31 · g2 +
t30 · g3 +
t32 · g1 +
t33 · g0 +
5 · g2 ·
t34 + 5 ·
g2 · t33

t21 · g2 +
t20 · g3 +
t22 · g1 +
t23 · g0 +
5 · g2 ·
t24 + 5 ·
g2 · t23

t11 · g2 +
t10 · g3 +
t12 · g1 +
t13 · g0 +
5 · g2 ·
t14 + 5 ·
g2 · t13

t01 · g2 +
t00 · g3 +
t02 · g1 +
t03 · g0 +
5 · g2 ·
t04 + 5 ·
g2 · t03

Step 24:
To obtain partial results of t31, t21, t11 and t01.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: t33 t31 t23 t21 t13 t11 t03 t01

operand 2: 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2 5 · g3 5 · g2

product: 5 · g3 · t31 5 · g3 · t21 5 · g3 · t11 5 · g3 · t01
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Add this product to the result obtained from Step 18:

t30 · g0 +
5 · g1 ·
t33 + t32 ·
g3+5·g3 ·
t31

5 · g1 ·
t23 + t20 ·
g0 + t22 ·
g3+5·g3 ·
t21

t10 · g0 +
5 · g1 ·
t13 + t12 ·
g3+5·g3 ·
t11

t00 · g0 +
5 · g1 ·
t03 + t02 ·
g3+5·g3 ·
t01

Step 25:
To obtain partial results of t34, t24, t14 and t04.
Operation involved: mm256 mul epu32 and mm256 add epi64

operand 1: x t34 x t24 x t14 x t04

operand 2: 5 · g0 5 · g0 5 · g0 5 · g0 5 · g0 5 · g0 5 · g0 5 · g0

product: 5 · g0 · t34 5 · g0 · t24 5 · g0 · t14 5 · g0 · t04

Add this product to the result obtained from Step 24

t30 · g0 +
5 · g1 ·
t33 + t32 ·
g3+5·g3 ·
t31 + 5 ·
g0 · t34

5 · g1 ·
t23 + t20 ·
g0 + t22 ·
g3+5·g3 ·
t21 + 5 ·
g0 · t24

t10 · g0 +
5 · g1 ·
t13 + t12 ·
g3+5·g3 ·
t11 + 5 ·
g0 · t14

t00 · g0 +
5 · g1 ·
t03 + t02 ·
g3+5·g3 ·
t01 + 5 ·
g0 · t04

Step 26:
End

After this multiplication operation, we need a reduction operation so that the result can be stored
in 3 256-bit registers i.e, each of the 64-bit products are reduced to fit in 32-bit registers.

Operation Count for the 4× 130 multiplication algorithm

Name of Intrinsic Count

mm256 mul epu32 25

mm256 set epi32 1

mm256 add epi64 20

mm256 permutevar8x32 epi32 9

mm256 permute4x64 epi64 4

3.5 Description of Goll-Gueron SIMD Reduction From 64 bits to 32 bits

Let us consider any i ∈ {0, 1, 2, 3}. The corresponding (ti0, ti1, ti2, ti3, ti4) is reduced using and inter-
leaving the following 2 independent chains: ti0 → ti1 → ti2 → ti3 → ti4 and ti3 → ti4 → ti0 → ti1. The
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basic concept is explained by Bernstein in [6]. The computation is as follows:

1. ti1 = ti1 + bti0/226c, ti0 = ti0 mod 226

2. ti4 = ti4 + bti3/226c, ti3 = ti3 mod 226

3. ti2 = ti2 + bti1/226c, ti1 = ti1 mod 226

4. ti0 = ti0 + 5 · bti4/226c, ti4 = ti4 mod 226

5. ti3 = ti3 + bti2/226c, ti2 = ti2 mod 226

6. ti1 = ti1 + bti0/226c, ti0 = ti0 mod 226

7. ti4 = ti4 + bti3/226c, ti3 = ti3 mod 226



..... B

This reduction alternates between the two chains. Using the above concept Goll and Gueron have
proposed the following algorithm.

The 4× 130 reduction algorithm by Goll-Gueron

Input: The product obtained from the 4×130 multiplication algorithm contained in 5 256-bit registers.

t30 t20 t10 t00

t31 t21 t11 t01

t32 t22 t12 t02

t33 t23 t13 t03

Output: Reduced form the input product stored in 3 256-bit registers.
Note: A brief summary of the intrinsics [2] used in this algorithm:

• mm256 add epi64 ( m256i a, m256i b): Add packed 64-bit integers in a and b, and store the
results in dst.

• mm256 srli epi64 ( m256i a, int imm8): Shift packed 64-bit integers in a right by imm8 while
shifting in zeros, and store the results in dst.

• mm256 and si256 ( m256i a, m256i b): Compute the bitwise AND of 256 bits (representing
integer data) in a and b, and store the result in dst.

• mm256 blend epi32 ( m256i a, m256i b, const int imm8): Blend packed 32-bit integers from
a and b using control mask imm8, and store the results in dst.

• mm256 slli epi64 ( m256i a, int imm8): Shift packed 64-bit integers in a left by imm8 while
shifting in zeros, and store the results in dst.
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1. Generate mask such that only lower order 26 bits of each packed 64-bit of a 256-bit register are
set.Thus, mask is stored in a 256-bit register.
mask ← (vec256) {0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0}

2. /*Computing the first equation of the system B*/
x.v1= mm256 add epi64 (x.v1, mm256 srli epi64 (x.v0, 26)))
x.v0= mm256 and si256 (x.v0,mask)

3. /*Computing the second equation of the system B*/
x.v4= mm256 add epi64 (x.v4, mm256 srli epi64 (x.v3, 26)))
x.v3= mm256 and si256 (x.v3,mask)

4. /*Computing the third equation of the system B*/
x.v2= mm256 add epi64 (x.v2, mm256 srli epi64 (x.v1, 26)))
x.v1= mm256 and si256 (x.v1,mask)

5. /*Computing the fourth equation of the system B*/
x.v0= mm256 add epi64 (x.v0, mm256 mul epu32 ( mm256 srli epi64 (x.v4, 26))) , 5)
x.v4= mm256 and si256 (x.v4,mask)

6. /*Computing the fifth equation of the system B*/
x.v3= mm256 add epi64 (x.v3, mm256 srli epi64 (x.v2, 26)))
x.v2= mm256 and si256 (x.v2,mask)

7. /*Computing the sixth equation of the system B*/
x.v1= mm256 add epi64 (x.v1, mm256 srli epi64 (x.v0, 26)))
x.v0= mm256 and si256 (x.v0,mask)

8. /*Computing the seventh equation of the system B*/
x.v4= mm256 add epi64 (x.v4, mm256 srli epi64 (x.v3, 26)))
/*This x.v4 is the 3rd register of the required alignment*/
x.v3= mm256 and si256 (x.v3,mask)
/*At this point all the reductions are complete.Now it is required to achieve the required align-
ment. Since we have obtained the third register, we need to find the other two registers*/

9. x.v0 = mm256 blend epi32 (x.v0, mm256 slli epi64 (x.v2, 32) , 0xAA)/*content of the first 256-
bit register*/

10. x.v1 = mm256 blend epi32 (x.v1, mm256 slli epi64 (x.v3, 32) , 0xAA)/*content of the second
256-bit register*/

4 Our Contribution: Improved 256-bit Vectorization of Poly1305

4.1 Revisiting 4-decimation Horner

Given a sequence of ` 130-bit blocks M0, ...,M`−1, HornerR (M0, ...,M`−1) can be computed in the
following way which is termed as decimated Horner [7].
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HornerR (M0, ...,M`−1) = R4HornerR4 (M0,M4, ...,M4i, ...)

+R3HornerR4 (M1,M5, ...,M4i+1, ...)

+R2HornerR4 (M2,M6, ...,M4i+2, ...)

+RHornerR4 (M3,M7, ...,M4i+3, ...)

4.2 Partitioning the message space

In [5] it is clearly stated that if a message has n bytes, then it has dn/16e 16-byte blocks. But the
implementation [9] considers n/16 16-byte blocks. If 16 6 |n, due to the presence of an incomplete last
block, fresh packings are required. This may require multiple fresh packings depending on the length
of the message. In the improved version of 256-bit vectorization of Poly1305, we follow the a variant
of 4-decimation Horner for computation irrespective of the message length and thus the message space
can be partitioned into the following four disjoint cases.

• case 0: messages where number of 16-byte blocks ≡ 0 mod 4

• case 1: messages where number of 16-byte blocks ≡ 1 mod 4

• case 2: messages where number of 16-byte blocks ≡ 2 mod 4

• case 3: messages where number of 16-byte blocks ≡ 3 mod 4

4.3 Modified 4-decimation Horner for Optimized Evaluation

We get scope for modifying the 4-decimation Horner due to the 8 cases mentioned in the previous
section. The repeated fresh packings that are required by [8] waste some machine cycles. So we use a
variant of 4-decimation Horner.

Various forms of Modified 4-decimation Horner’s Rule for optimized evaluation

1 ≤message text length in bytes left after 4-decimation ≤ 15. In this case the incomplete 16-
byte block is appended with 1-bit and required number of 0 bits as stated in [5] and 48 zeros are
prepended logically. Then the modified 4-decimation Horner is followed as in the next case.

message text length in bytes left after 4-decimation = 16. The modified input format for the
optimized version is: 0 ·R`+3 + 0 ·R`+2 + 0 ·R`+1 + c0 ·R` + . . .+ c`−1 ·R. Here 48 zeros are prepended
logically. So the 4-decimation Horner for this modified form of input looks like:

HornerR (c0, ..., c`−1) = R4 HornerR4 (0, c1, ..., c4i−3, ...)

+R3 HornerR4 (0, c2, ..., c4i−2, ...)

+R2 HornerR4 (0, c3, ..., c4i−1, ...)

+R HornerR4 (c0, c4, ..., c4i, ...)

21



17 ≤ message text length in bytes left after 4-decimation ≤ 31. In this case the incomplete
16-byte block is appended with 1-bit and required number of 0 bits as stated in [5] and 32 zeros are
prepended logically. Then the modified 4-decimation Horner is followed as in the next case.

message text length in bytes left after 4-decimation = 32. The modified input format for the
optimized version is: 0 ·R`+2 + 0 ·R`+1 + c0 ·R` + . . .+ c`−1 ·R. Thus 32 zeros are prepended logically.
So the 4-decimation Horner for this modified form of input looks like:

HornerR (c0, ..., c`−1) = R4 HornerR4 (0, c2, ..., c4i−2, ...)

+R3 HornerR4 (0, c3, ..., c4i−1, ...)

+R2 HornerR4 (c0, c4, ..., c4i, ...)

+R HornerR4 (c1, c5, ..., c4i+1, ...)

33 ≤ message text length in bytes left after 4-decimation ≤ 47. In this case the incomplete
16-byte block is appended with 1-bit and required number of 0 bits as stated in [5] and 16 zeros are
prepended logically. Then the modified 4-decimation Horner is followed as in the next case.

message text length in bytes left after 4-decimation = 48. The modified input format for the
optimized version is: 0 · R`+1 + c0 · R` + . . . + c`−1 · R. So the 4-decimation Horner for this modified
form of input looks like:

HornerR (c0, ..., c`−1) = R4 HornerR4 (0, c3, ..., c4i−1, ...)

+R3 HornerR4 (c0, c4, ..., c4i, ...)

+R2 HornerR4 (c1, c5, ..., c4i+1, ...)

+R HornerR4 (c2, c6, ..., c4i+2, ...)

Logically 16 zeros are prepended. Then the algorithm for case 0 as stated in this section 4 is followed
for evaluation. As stated in [5] the each 16-byte block of the input message should be concatenated
with 1-bit. But in this case the zeros prepended are not part of the real message, so no 1-bit should be
concatenated.

49 ≤ message text length in bytes left after 4-decimation ≤ 63. In this case the incomplete
16-byte block is appended with 1-bit and required number of 0 bits as stated in [5] and then 4-decimation
Horner is followed as given in Section 4.1.

4.4 Modified 4x130 multiplication algorithm for messages belonging to case 1

For case 1 in Section 3.3, i.e., n′ = 16, the alignment of the message is:

t32 t30 0 0 0 0 0 0

t33 t31 0 0 0 0 0 0

x t34 x 0 x 0 x 0

So, when the 4×130 multiplication algorithm is applied during this case, we obtain the following output:
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t30 0 0 0

t31 0 0 0

t32 0 0 0

t33 0 0 0

t34 0 0 0

This result hints that some optimization is possible because of the following reasons:

• In case 1, the rightmost 6 32-bit blocks of the operand registers contain zeros.

• The lower order 192 bits of each of the 256-bit registers containing the product are zero.

• We need 25 multiplications only for a single message block and the other message blocks are set
to zeros. Hence, SIMD implementation can be followed for this single message block.

If this concept is followed then the total number of mm256 mul epu32 operations, which has latency
5, is reduced to 7. We add 48 zeros at the beginning of the message. But this addition of zeros is logical.
No physical addition of zeros are required. The changed alignment is as follows:

0 t33 0 t32 0 t31 0 t30

This change in alignment is required only for those inputs which have a remaining block of length at
least 1 byte and at most 16 bytes. No change in alignment is required for those inputs whose lengths
satisfy one of the following conditions:

1. 17 ≤ (remaining length in bytes after 4-decimation Horner) ≤ 31

2. 33 ≤ (remaining length in bytes after 4-decimation Horner) ≤ 63

Modified Multiplication algorithm for case 1. Note: This change in alignment for inputs is
required only for case 1 and noticeable speed-up has been obtained against [9] due to this changed
alignment.

Input:

0 t33 0 t32 0 t31 0 t30

x t34 x 0 x 0 x 0

R4 and 5 ·R4 aligned in 2 256-bit registers. All the alignments are done as discussed earlier.
Step 1:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32
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operand 1: 0 t33 0 t32 0 t31 0 t30

operand 2: g0 g0 g0 g0 g0 g0 g0 g0

Product: t33 · g0 t32 · g0 t31 · g0 t30 · g0

Step 2:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t32 0 t31 0 t30 0 t33

operand 2: g1 g1 g1 g1 g1 g1 5 · g2 5 · g2

Product: t32 · g1 t31 · g1 t30 · g1 5 · t33 · g2

Step 3:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t31 0 t30 0 t33 0 t32

operand 2: g2 g2 g2 g2 g2 g2 5 · g3 5 · g3

Product: t31 · g2 g2 · t30 5 · g3 · t33 5 · g3 · t32

Step 4:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t30 0 t33 0 t32 0 t31

operand 2: g3 g3 5 · g4 5 · g4 5 · g4 5 · g4 5 · g4 5 · g4

Product: t30 · g3 5 · g4 · t33 5 · g4 · t32 5 · g4 · t31

Step 5:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t34 0 t34 0 t34 0 t34

operand 2: 5 · g4 5 · g4 5 · g3 5 · g3 5 · g2 5 · g2 5 · g1 5 · g1

Product: 5 · g4 · t34 5 · g3 · t34 5 · g2 · t34 5 · g1 · t34
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Step 4:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t30 0 t33 0 t32 0 t31

operand 2: g3 g3 5 · g4 5 · g4 5 · g4 5 · g4 5 · g4 5 · g4

Product: t30 · g3 5 · g4 · t33 5 · g4 · t32 5 · g4 · t31
Step 6:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t33 0 t32 0 t31 0 t30

operand 2: g1 g1 g2 g2 g3 g3 g4 g4

Product: t33 · g1 t32 · g2 t31 · g3 t30 · g4
Step 7:
To obtain partial results of t30, t31, t32 and t33.
Operation involved: mm256 mul epu32

operand 1: 0 t33 0 t32 0 t31 0 t30

operand 2: g1 g1 g2 g2 g3 g3 g4 g4

Product: t33 · g1 t32 · g2 t31 · g3 t30 · g4

Operation Count for the modified multiplication algorithm

Name of Intrinsic Count

mm256 mul epu32 7

mm256 set epi64x 8

mm256 add epi64 7

mm256 permutevar8x32 epi32 9

mm256 permute4x64 epi64 4

mm256 unpacklo epi64 1

mm256 unpackhi epi64 1

mm256 blend epi32 1
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5 Result Analysis

5.1 Environment for Measuring Machine Cycles.

Performance has been measured in terms of number of machine cycles per byte using the same condi-
tions as mentioned in [8]. Intel Turbo Boost Technology, Intel Hyper-Threading Technology and Intel
Speedstep Technology were disabled. The following code was used for measuring time using appropiate
number of iterations for cache warming and stabilizing the cycles/byte result.

int COMP(const void*a,const void *b) return ( *(double*)a - *(double*)b );
#define MEASURE(f)
MIN RESULT = 1.7976931348623158e+308;
for(R CNT=0;R CNT < 5;R CNT++)
for(W CNT=0; W CNT < WARMUP REPS; W CNT++)
f
for(M CNT=0; M CNT < MEASURE REPS; M CNT++)
START = getticks();
f
END = getticks();
RESULT = (double)(END - START);
time record[M CNT]=RESULT;

qsort(time record,MEASURE REPS,sizeof(double),COMP);
if(MEASURE REPS%2)
MEDIAN=time record[MEASURE REPS/2];
else
MEDIAN=(time record[MEASURE REPS/2]+time record[(MEASURE REPS/2)+1])/2;
if(MEDIAN<MIN RESULT)
MIN RESULT=MEDIAN;

5.2 Results for Skylake and Kaby Lake

Specifications for Skylake

• Software details

– Operating System: Ubuntu 14.04 LTS (64-bit)

– Compiler: gcc version 5.5.0 with AVX2 support (’-mavx2’ flag has been used) and compile
time optimizations like ’-O3’ and ’-fomit-frame-pointer’ were used.

• Hardware details:

– Intel Core i7-6500U CPU @ 2.50GHz × 2 Skylake GT2.
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Specifications for Kaby Lake

• Software details

– Operating System: Ubuntu 18.04 LTS (64-bit)

– Compiler: gcc version 7.3.0 with AVX2 support (’-mavx2’ flag has been used) and compile
time optimizations like ’-O3’ and ’-fomit-frame-pointer’ were used.

• Hardware details:

– Intel Core i7-7700U CPU @ 3.60GHz × 4 Kaby Lake GT2.

This modified implementation aimed at improving performance for small messages (up to length 4KB).
Similar kind of performance has been observed both in Skylake and Kaby Lake cores. The result analysis
is as follows.

Significant speed-up has been obtained for messages satisfying case 3 as discussed in Section 3.3
roughly up to 1KB length. Beyond this, noticeable improvement has been observed. Similar kind of
result has been obtained for cases where 49 ≤ n′ ≤ 63, 33 ≤ n′ ≤ 47 and 17 ≤ n′ ≤ 31.
Noticeable speed-up has been obtained in significant number of cases for messages satisfying Case 2 and
Case 1 for Section 3.3. Same kind of result has been obtained for cases where 1 ≤ n′ ≤ 15.

This version gives speed-up for messages till length 4KB. A very brief summary of the performance
for 256-bit vectorization using AVX2 is as follows:

• For Skylake core speed-up has been obtained in 93.36% cases. For 5.31% cases, this version gives
same performance as that of [9]. We have not been able to gain speed-up in 1.33% cases.

• For Kaby Lake core speed-up has been obtained in 92.60% cases. For 6.19% cases, this version
gives same performance as that of [9]. We have not been able to gain speed-up in 1.21% cases.

• We have obtained maximum 34.46% speed-up and an average of 12.58% speed-up till 1 KB size in
Skylake processor and maximum 34.63% speed-up and an average of 14.44% speed-up till 1 KB
size for Kaby Lake processor.

• For message size between 1 KB and 2 KB maximum speed-up of 20.69% with average 6.10% in
Skylake core and for Kaby Lake Core maximum speed-up is 16.03% with an average speed-up of
6.53% have been obtained.

• For message size between 2 KB and 3 KB maximum speed-up of 13.79% with average 3.92% in
Skylake core and for Kaby Lake Core maximum speed-up is 13.79% with an average speed-up of
4.13% have been obtained.

• For message size between 3 KB and 4 KB maximum speed-up of 10.26% with average 2.90% in
Skylake core and for Kaby Lake Core maximum speed-up is 13.75% with an average speed-up of
2.64% have been obtained.

The cases where more number of fresh packings of operands are required higher speed-up is obtained
compared to those cases where the number of fresh packings are less.
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Figure 1: Speed-up vs message size in bytes graph for Skylake core

Figure 1 shows the speed-up vs message size in bytes graph for Skylake core. Figure 8 shows the
speed-up vs message size in bytes graph for Kaby Lake core. Figure 2, Figure 3, Figure 4, Figure 5,
Figure 6, Figure 7 show the cycles/byte vs message size in bytes graphs for the indicated message-length
ranges for Skylake core. Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14 for Kaby Lake
core. All the experiments have been done on message lengths ranging from 49B to 4000KB except the
ones having size in integral powers of 2.

Table 1 and Table 2 give some raw data obtained from experiments for Skylake core and Kaby Lake
core respectively.
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Figure 2: cycles/byte vs message size in bytes (49 -
500 bytes) graph for Skylake core

Figure 3: cycles/byte vs message size in bytes (501 -
1000 bytes) graph for Skylake core

Figure 4: cycles/byte vs message size in bytes (1001 -
1500 bytes) graph for Skylake core

Figure 5: cycles/byte vs message size in bytes (1501 -
2000 bytes) graph for Skylake core

Figure 6: cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Skylake core
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Figure 7: cycles/byte vs message size in bytes (49 - 4000 bytes) graph for Skylake core
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The following table gives timing data for some selected message length. The claimed nature of
speed-up for Skylake core can be verified from this table and the figures given earlier.

Table 1: Some results as observed for a Skylake core

Message length in bytes cycles/byte for original cycles/byte for modified speed-up

65 4.62 4.15 10.17

66 4.61 4.03 12.58

67 4.51 3.97 11.97

68 4.76 3.91 17.86

69 4.35 3.86 11.26

70 4.46 3.86 13.45

71 4.23 3.77 10.87

72 4.28 3.75 12.38

73 4.16 3.7 11.06

74 4.16 3.59 13.70

75 4.00 3.65 8.75

76 4.00 3.53 11.75

77 3.95 3.45 12.66

78 3.92 3.41 13.01

79 3.80 3.37 11.32

80 3.40 3.38 0.59

81 4.35 3.46 20.46

95 3.86 2.97 19.29

96 2.83 2.92 -3.18

97 3.67 2.87 21.80

111 3.28 2.5 23.78

112 2.88 2.45 14.93

113 3.59 2.42 32.59

114 3.53 2.46 30.31

115 3.50 2.43 30.57

116 3.43 2.41 30.55

117 3.40 2.36 30.59

118 3.54 2.82 34.46

119 3.41 2.35 31.09

120 3.38 2.27 32.84

121 3.29 2.30 30.09

122 3.31 2.30 30.51

123 3.24 2.28 29.63

124 3.26 2.39 26.69

125 3.22 2.22 31.06

126 3.22 2.21 31.37

127 3.17 2.24 29.34

569 1.32 1.08 18.18

570 1.31 1.07 18.32
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575 1.29 1.07 17.05

577 1.20 1.13 5.83

592 1.11 1.09 1.80

593 1.25 1.11 11.20

594 1.24 1.11 10.48

595 1.25 1.12 10.40

596 1.24 1.12 10.48

612 1.23 1.08 12.20

639 1.23 1.04 15.45

1473 0.88 0.85 3.41

1474 0.89 0.85 4.49

1475 0.88 0.85 3.41

1476 0.88 0.85 3.41

1477 0.91 0.84 7.69

1478 0.89 0.85 4.49

1479 0.88 0.85 3.41

1480 0.88 0.84 4.55

1481 0.88 0.85 3.41

1482 0.88 0.84 4.55

1483 0.88 0.84 4.55

1484 0.87 0.84 3.45

1485 0.87 0.84 3.45

1486 0.88 0.86 2.27

1487 0.87 0.85 2.30

1488 0.85 0.84 1.18

1500 0.90 0.84 6.67

1529 0.91 0.83 8.79

1530 0.92 0.83 9.78

1531 0.94 0.84 10.64

1532 0.91 0.83 8.79

1533 0.91 0.82 9.89
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Figure 8: Speed-up vs message size in bytes graph for Kaby Lake core

Figure 9: cycles/byte vs message size in bytes (49 -
500 bytes) graph for Kaby Lake core

Figure 10: cycles/byte vs message size in bytes (501 -
1000 bytes) graph for Kaby Lake core
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Figure 11: cycles/byte vs message size in bytes (1001
- 1500 bytes) graph for Kaby Lake core

Figure 12: cycles/byte vs message size in bytes (1501
- 2000 bytes) graph for Kaby Lake core

Figure 13: cycles/byte vs message size in bytes (2001 - 4000 bytes) graph for Kaby Lake core
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Figure 14: cycles/byte vs message size in bytes (49 - 4000 bytes) graph for Kaby Lake core

The following table gives timing data for some selected message length. The claimed nature of
speed-up for Kaby Lake core can be verified from this table and the figures given earlier.

Table 2: Some results as observed for a Kaby Lake core

Message length in bytes cycles/byte for original cycles/byte for modified speed-up

65 4.46 3.94 11.65

66 4.52 3.91 13.49

67 4.39 3.85 12.30

68 4.26 3.82 10.32

69 4.26 3.77 11.50

70 4.17 3.63 12.95

71 4.08 3.69 9.56

72 4.08 3.56 12.74

73 3.97 3.51 11.59

74 3.95 3.49 11.64

75 3.89 3.41 12.34

76 3.95 3.37 14.68

77 3.77 3.32 11.94

78 3.77 3.28 13.00

79 3.75 3.27 12.80
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80 3.27 3.17 3.06

81 4.22 3.28 22.27

95 3.60 2.82 21.67

96 2.79 2.69 3.58

97 3.63 2.72 25.07

111 3.14 2.41 23.25

112 2.86 2.36 17.48

113 3.52 2.34 33.52

114 3.51 2.39 31.91

115 3.46 2.33 32.66

116 3.43 2.31 32.65

117 3.38 2.27 32.84

118 3.39 2.25 33.63

119 3.33 2.32 30.33

120 3.32 2.22 33.13

121 3.29 2.20 33.13

122 3.26 2.21 32.21

123 3.22 2.20 31.68

124 3.23 2.18 32.51

125 3.18 2.18 31.45

126 3.19 2.11 33.86

127 3.12 2.09 33.01

569 1.27 0.99 22.05

570 1.26 1.00 20.63

575 1.24 0.97 21.77

577 1.12 1.04 7.14

592 1.05 1.02 2.86

593 1.18 1.03 12.71

594 1.18 1.04 11.86

595 1.17 1.02 12.82

596 1.16 1.02 12.07

612 1.17 0.99 15.38

639 1.18 0.95 19.49

1473 0.87 0.83 4.60

1474 0.86 0.83 3.49

1475 0.85 0.83 2.35

1476 0.87 0.83 4.60

1477 0.86 0.83 3.49

1478 0.90 0.83 7.78

1479 0.85 0.83 2.35

1480 0.87 0.82 5.75

1481 0.87 0.83 4.60

1482 0.86 0.83 3.49

1483 0.87 0.82 5.75
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1484 0.85 0.82 3.53

1485 0.85 0.82 3.53

1486 0.85 0.82 3.53

1487 0.85 0.83 2.35

1488 0.83 0.82 1.20

6 512-bit vectorization of Poly1305

In [8], the 256-bit vectorization has also been extended to 512-bit vectorization. In this case 8-decimation
Horner has been used for messages where the number of 16-byte blocks is a multiple of 8. Otherwise,
incomplete 8-decimation has been used in the same way as 4-decimation Horner has been used incom-
pletely for 256-bit vectorization. The message space has been partitioned is a similar way. For messages
whose number of 16-byte blocks is not a multiple of 8, repeated fresh packing are required. Hence, again
we have used this gap for improvement.

8-decimation Horner. Given a sequence of ` 130-bit blocks M0, ...,M`−1, HornerR (M0, ...,M`−1)
can be computed in the following way which is termed as 8-decimation Horner [7].

HornerR (M0, ...,M`−1) = R8HornerR8 (M0,M8, ...,M8i, ...)

+R7HornerR8 (M1,M9, ...,M8i+1, ...)

+R6HornerR8 (M2,M10, ...,M8i+2, ...)

+R5HornerR8 (M3,M11, ...,M8i+3, ...)

+R4HornerR8 (M4,M12, ...,M8i+4, ...)

+R3HornerR8 (M5,M13, ...,M8i+5, ...)

+R2HornerR8 (M6,M14, ...,M8i+6, ...)

+RHornerR8 (M7,M15, ...,M8i+7, ...)

Partitioning The Message Space. We have used variants of 8-decimation Horner for improvement.
In the improved version of 512-bit vectorization of Poly1305, we follow the a variant of 8-decimation
Horner for computation irrespective of the message length and thus the message space can be partitioned
into the following 8 disjoint cases.

• case 0: messages where number of 16-byte blocks ≡ 0 mod 8

• case 1: messages where number of 16-byte blocks ≡ 1 mod 8

• case 2: messages where number of 16-byte blocks ≡ 2 mod 8

• case 3: messages where number of 16-byte blocks ≡ 3 mod 8

• case 4: messages where number of 16-byte blocks ≡ 4 mod 8

• case 5: messages where number of 16-byte blocks ≡ 5 mod 8
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• case 6: messages where number of 16-byte blocks ≡ 6 mod 8

• case 7: messages where number of 16-byte blocks ≡ 7 mod 8

Based on the above mentioned cases, we have used variants of 8-decimation Horner for evaluation.

Intel’s most recent processors like Skylake-X, Cannonlake and Ice Lake provide AVX-512 extension.
Since no such processor is available to us, we cannot find the cycles/byte for modified 512-bit vectorized
version. We have compiled the code using gcc 5.5.0 and the resulting binary has been executed using the
Software Development Emulator [3]. The instruction count obtained from the modified version is lesser
than the Goll-Gueron version. But the detailed result analysis is not available due to time constraint.

7 Conclusion

Horner’s rule is used widely for evaluation of polynomial-based hash. Intel intrinsics, together with
the underlying microarchitecture, allows parallelization of such evaluation. Hence, this work not only
gives improved SIMD implementation of Poly1305, our concept of balancing can be used in a wider
scope. From tables and figures (for 256-bit vectorization) given in the earlier section it is clear that this
modification gives considerable speed-up for Poly1305 which is an important polynomial-based hash
function. For small messages (≤1 KB) significant speed-up has been obtained. Noticeable speed-up has
been obtained till 4KB message size for modern Intel microarchitectures. So this work has practical
importance.
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