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Abstract

We consider the problem of clustering observations Xi ∈ Rp, i = 1, 2, ...n into K
possible clusters. We are mainly interested in the modern regime of p >> n, i.e., when
we have a potentially large set of features compared to the number of observations,
and where classical clustering methods face challenges.

In the framework of sparse clustering that uses lasso-type penalty to adaptively
select the best features for clustering, we propose the method of Sparse MinMax k-
Means Clustering. We use the MinMax k-Means Clustering algorithm, that assigns
weights to the clusters relative to their variance and optimizes a weighted version
of the k-Means objective. The Influential Features PCA (IF-PCA) method selects
features based on largest Kolmogorov-Smirnov(KS) scores and has been able to obtain
good results on high-dimensional gene microarray data sets. The method suggested
by us has out performed this IF-PCA method and also the general Sparse k-Means
method.

Keywords: High-Dimensional Data Clustering, k-Means Clustering, Feature Selec-
tion, Sparsity, IF-PCA, MinMax k-Means.
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Chapter 1

Introduction

1.1 Introduction

High-Dimensional Data Clustering problems, i.e., where the objects to be clustered
have a very large feature set, are still very challenging [5, 12, 14, 26]. In most of the
real-world scenarios, only a small portion of the features is assumed to be relevant for
clustering [5,12,26]. For example, only a tiny portion of genes (relevant features) are
responsible for a certain biological activity, while the others are irrelevant or noisy fea-
tures [12]. The goal of a good clustering approach is to be able to identify the relevant
features and avoid the negative influences of the noisy features [12,26]. Intuitively, if
we do a thresholding by assigning positive weights to the relevant features and exact
zero weights to the noisy features, the negative influences of the noisy features could
be avoided.

One of the most well-studied clustering algorithms is k-Means [16], which min-
imizes the sum of the intra-cluster variances. Its simplicity and efficiency have es-
tablished it as a popular means for performing clustering across different disciplines.
Even an extension to kernel space has been developed [6, 20] to enable the identifi-
cation of non-linearly separable groups. Despite its wide acceptance, k -Means suffers
from a serious limitation. Its solution heavily depends on the initial positions of
the cluster centers, thus after a bad initialization it easily gets trapped in poor local
minima [4,19].

To deal with this problem, several methods have been proposed. k-Means with
multiple random restarts is often employed in practice. Another alternative approach
is the Global k-means algorithm [29]. It is an incremental approach that starts from
one cluster and at each step a new cluster is deterministically added to the solution
according to an appropriate criterion. Based on the algorithm, Bagirov et al. proposed
some modifications [2, 3]. A new method to tackle this problem is the MinMax k-
means clustering algorithm [23], which starts from a randomly picked set of cluster
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6 1. Introduction

centers and tries to minimize the maximum intra-cluster variance instead of the sum.
This method assigns weights to clusters relative to their variance. The proposed
weighting scheme limits the emergence of large variance clusters and allows high
quality solutions to be systematically uncovered, irrespective of the initialization.

The MinMax k-Means Clustering Algorithm does not perform any weighting on
the the attributes. Hence to extend its clustering performance in high-dimensional
data clustering, sparse regularizations may be imposed. We first justify that Min-
Max k-Means can be reformulated into Witten and Tibshirani’s [26] sparse clustering
framework. Witten and Tibshirani’s [26] sparse clustering framework offered a specific
attribute-weighting method, which optimizes a weighted cost objective function using
the `1-norm regularization technique, thus is able to assign exact zero weights to noisy
features [26]. We propose the Sparse MinMax k-Means algorithm which maximizes a
new weighted between cluster sum of squares (BCSS) with `1-norm regularization.

1.2 Our Contribution

Our contributions are summarized as follows.

• We have proved that the MinMax k-Means algorithm can be reformulated into
Witten and Tibshirani’s [26] sparse clustering framework and hence developed
the Sparse MinMax k-Means algorithm.

• We have proposed the new weighted Between Cluster Sum of Squares (BCSS)
measure for our Sparse MinMax k-means model.

• We have also provided the performance evaluation of our scheme. We have
compared our method with the Influential Features PCA (IF-PCA) method
[12] and also the general Sparse k-Means method [26] on real world as well
as synthetic data sets. We have mainly evaluated our scheme on the high-
dimensional gene micro-array data sets.

• We have also done a complexity analysis of our method.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we briefly discuss about
the preliminaries and the MinMax k-Means algorithm. In Chapter 3, we discuss about
the background related to our work. Chapter 4, describes the detailed construction
of our scheme. In Chapter 5, we give a detailed performance analysis of our scheme.
In Chapter 6, we summarize the work done and discuss about the future directions
related to our work.



Chapter 2

Preliminaries

2.1 Notations

We consider X = (xij) ∈ Rn×p to be our data set in matrix format where xi represents
the ith observation (row) and Xj represents the jth feature (column). Here n represents
the number of observations and p represents the number of features and we will mostly
deal with the scenario of n >> p. We consider K clusters and the set of cluster centers
C = (Ckj) ∈ RK×p. Ck represents the kth cluster center and ck represents the kth

cluster. Vk denotes variance of the cluster k where the cluster variance is defined
as the sum, and not the average, of the squared distances from the observations
belonging to the cluster to its center. δik is a cluster indicator variable with δik = 1
if xi belongs to cluster k and 0 otherwise. εsum and εmax denote the sum of intra-
cluster variances and the maximum intra-cluster variance respectively. εw represents
the weighted formulation of the sum of intra-cluster variances and wk denotes the
weight assigned to cluster k in the MinMax k-Means algorithm.

2.2 The k-Means Algorithm

To partition a data set X into K disjoint clusters, k-Means [16] minimizes the sum
of intra-cluster variances (2.1).

εsum =
K∑
k=1

Vk =
K∑
k=1

n∑
i=1

δik‖xi − Ck‖2

whereCk =

∑n
i=1 δikxi∑n
i=1 δik

(2.1)

7



8 2. Preliminaries

2.3 The MinMax k-Means Algorithm

In this section we are going to discuss the MinMax k-Means Algorithm proposed
by G. Tzortzis and A. Likas [23] in detail. In the Section 1.1 we have already talked
about the sensitivity of k-Means to initialization and stated that the MinMax k-Means
methodology allows k-Means to produce high quality partitionings more systemati-
cally, while restarted from random initial centers. It seeks to minimize the maximum
intra-cluster variance instead of the sum.

2.3.1 The maximum variance objective

The MinMax k-Means algorithm minimizes the maximum intra-cluster variance (2.2).

εmax = max
1≤k≤K

Vk = max
1≤k≤K

n∑
i=1

δik‖xi − Ck‖2 (2.2)

The summation over all clusters in k-Means would give similar εsum values, for both,
when there are a few clusters with large variance that are counterbalanced by others
with small variance, or when there is a moderate variance for all clusters. Hence it does
not take into account the relative variances among clusters. The variance of a cluster
is a measure of its quality. While minimizing εmax in MinMax k-Means [23], large
variance clusters are avoided and the solution space is restricted towards clusters that
exhibit more similar variances. Thus with the above objective the MinMax k-Means
algorithm [23] is less likely to converge to a local minima owing to bad initialization
(as shown in Figure 2.1) and produces balanced partitionings based on the variance
of clusters, which is highly desirable in most cases.

Figure 2.1: Example of (a) a bad initialization that leads to (b) a poor k-Means
solution but (c) a good solution is obtained by MinMax k-Means using the same
initialization
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2.3.2 The relaxed maximum variance objective

Minimizing εmax is a non-trivial optimization problem so a relaxed maximum variance
objective was proposed [23]. A weighted formulation εw of the sum of the intra-cluster
variances was thus constructed (2.3), where a higher weight wk was placed on clusters
with large variance, to mimic the behavior of the maximum variance criterion.

εw =
K∑
k=1

wαkVk =
K∑
k=1

wαk

n∑
i=1

δik‖xi − Ck‖2,

wk ≥ 0,
K∑
k=1

wk = 1, 0 ≤ α < 1

(2.3)

The exponent α is a user defined constant. We would discuss the role of α in Section
2.3.4. To penalize large clusters, a higher variance should lead to a higher weight,
which can be realized by maximizing εw with respect to the weights. Thus the min-
max problem can be written as:

min
{ck}Kk=1

max
{wk}Kk=1

εw

s.t. wk ≥ 0,
K∑
k=1

wk = 1, 0 ≤ α < 1
(2.4)

2.3.3 The Algorithm

The MinMax k-Means algorithm iteratively alternates between the ck and wk opti-
mization steps which are the minimization and maximization steps that are explained
below. The algorithm stops when the stopping criteria is met (like cluster assignments
do not change in successive iterations or maximum iterations have been reached).

2.3.3.1 Minimization step

In this step new cluster assignments are made keeping the wk values fixed. The
assignments are made as shown below:

δik =

{
1 k = argmin1≤k′≤K wαk′

∑n
i=1 δik‖xi − Ck′‖

2

0 otherwise
(2.5)

The new cluster centers Ck are calculated using the new cluster assignments.

Ck =

∑n
i=1 δikxi∑n
i=1 δik

(2.6)
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2.3.3.2 Maximization step

For updating weights, the new cluster assignments and centers, the weight constraints
(2.4) are incorporated into the objective via a Lagrange multiplier and the derivatives
with respect to wk are set to zero. Since α ∈ [0, 1) so it is a concave objective function.
Weights are updated as:

wk = V
1/1 − α

k /
K∑

k′=1

V
1/1 − α

k′

whereVk =
n∑
i=1

δik‖xi − Ck‖2
(2.7)

As proposed by the authors in [23], a memory effect could be added to the weights
enhance the stability of the MinMax k-Means algorithm.

w
(t)
k = βw

(t−1)
k + (1− β)

(
V

1/1 − α

k /
K∑

k′=1

V
1/1 − α

k′

)
(2.8)

After updating the wk values, the stopping criteria is checked, if it is not met, we go
back to the Minimization step.

2.3.4 The role of the exponent α

The greater (smaller) the α value is, the less (more) similar the weight values become,
as relative differences of the variances among the clusters are enhanced (suppressed).
Therefore for a high value of α, large variance clusters accumulate considerably higher
wk and wαk values compared to low variance clusters, resulting in an objective that
severely penalizes clusters with high variance. So higher α values restricts high vari-
ance clusters and lower α values allows high variance clusters. In practice, a moderate
value of α is usually suitable. In [23], the authors give a practical framework that
extends the MinMax k-Means to automatically adapt the exponent α to the data set.
It begins with a small α (αinit) that is increased by αstep after each iteration, until
a maximum value α (αmax) is attained. For the method, we should first decide the
values of parameters αinit, αmax and αstep.



Chapter 3

Related Work

3.1 Past Work on High-Dimensional Data Cluster-

ing

Different approaches have been suggested for clustering data in a high-dimensional
setting. Here we do a brief review of the the previous proposals of dimensionality
reduction and feature selection in clustering which are generally used in the high-
dimensional setting.

Ghosh and Chinnaiyan [10] and Liu et al. [15] proposed to perform principal
component analysis (PCA) to reduce the dimensionality of the data matrix X from
n×p to matrix A of dimensions n×q where q << p and then the n rows were clustered.
Similarly, Tamayo et al. [21] suggested to use Non-negative Matrix Factorization (Lee
and Seung [13]) to decompose X to obtain the A matrix. But these methods have
multiple drawbacks; like A is a function of the full set of p features and there was
no guarantee that A would contain the signal that one is interested in detecting via
clustering.

The model based clustering frameworks have also been popular in recent years.
The basic idea of model based clustering approaches is as follows. One can model
the rows of X as independent multivariate observations drawn from a mixture model
with K components; usually a mixture of Gaussians is used. The Gaussian density
can be parametrized by its mean µk and covariance matrix Σk. The EM algorithm
(to maximize the log likelihood) can be used to fit the model but problem arises in
the p >> n case as the p × p covariance matrix cannot be estimated from only n
observations. Proposals for overcoming this has been proposed by Mclachlan, Peel,
and Bean in [17,18], which assumes observations lie in a low-dimensional latent factor
space. This leads to dimensionality reduction. Rather than choosing µk and Σk that
maximize the log likelihood, instead one can maximize the log likelihood subject to
a penalty that is chosen to yield sparsity in the features. This approach is taken in
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12 3. Related Work

many papers [24,27,28] and they lend to feature selection by yielding sparsity.

Friedman and Meulman [9] proposed Clustering Objects on Subsets of Attributes
(COSA), but unfortunately it did not truly result in sparse clustering as all variables
had non-zero weights. Witten and Tibshirani [26] (2010) proposed a framework for
feature selection in clustering and used it to design the Sparse k-Means clustering
method and the Sparse Hierarchical clustering method. J. Jiashun and W. Wang [12]
(2016) propose Influential Features PCA (IF-PCA) as a new clustering procedure. In
IF-PCA features were selected based on the largest Kolmogorov-Smirnov (KS) scores
and then PCA was applied on the post-selection normalized matrix. Finally it was
clustered using the classical k-means. This approach seems to outperform most of
the well known clustering algorithms [30]. We would broadly discuss the IF-PCA [12]
and the Sparse k-Means [26] methods in the coming sections (3.2, 3.3), with which
we mainly compare our proposal.

3.2 Sparse k-Means Clustering Method

The k-means algorithm minimizes the Within-Cluster Sum of Squares (WCSS) which
can be written as follows:

K∑
k=1

1

nk

∑
i,i′∈ck

p∑
j=1

di,i′,j (3.1)

where nk = |ck| and di,i′,j = (xij−xi′j)2. It is same as maximizing the Between-Cluster
Sum of Squares (BCSS) which can be written as:

p∑
j=1

{
1

n

n∑
i=1

n∑
i′=1

di,i′,j

K∑
k=1

1

nk

∑
i,i′∈ck

di,i′,j

}

we write aj ,
1

n

n∑
i=1

n∑
i′=1

di,i′,j

K∑
k=1

1

nk

∑
i,i′∈ck

di,i′,j

(3.2)

Witten and Tibshirani [26] defined a sparse clustering framework and modelled the
K-means algorithm as

max
ω,Θ(C)∈D

p∑
j=1

ωjfj(Xj ,Θ(C)) =

p∑
j=1

{
1

n

n∑
i=1

n∑
i′=1

(xij − xi′j)2

−
K∑
k=1

1

nk

∑
i,i′∈ck

(xij − xi′j)2

}
s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤ s, ωj ≥ 0, ∀j

(3.3)

where fj(Xj ,Θ(C)) is a function that involves only the jth feature of the data, Θ(C)
is a parameter restricted to a set D, s is a tuning parameter and 1 ≤ s ≤ √p, ‖.‖2 is
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the Euclidean norm, ‖.‖1 is the `1 norm, ω = (ω1, ω2, . . . , ωp)
T is the feature weight

vector, and the rest of the notations are same as in Section 2.1.

k-means algorithm can be fit to the above framework where Θ = (c1, c2, . . . , cK)
(a partitioning into K clusters), fj(Xj ,Θ(C)) = aj , and D denotes the set of parti-
tions of all possible observations intoK clusters. Witten and Tibshirani [26] optimized
(3.3) using an iterative algorithm: holding ω fixed, (3.3) is optimized with respect to
Θ, and holding Θ fixed, (3.3) is optimized with respect to ω.

3.2.1 Algorithm for Sparse k-means Clustering

The Algorithm as described in [26] is as follows:

1. Initialize ω as ω1 = . . . = ωp = 1√
p
.

2. Iterate until convergence:

(a) Holding ω fixed, optimize (3.3) with respect to c1, c2, . . . , cK . Hence max-
imize (3.2) which is same as minimizing (3.1). That is,

minimize
c1,c2,...,cK

{ K∑
k=1

1

nk

∑
i,i′∈ck

p∑
j=1

di,i′,j

}
(3.4)

by applying the standard k -means algorithm to the n × n dissimilarity
matrix with (i, i′) element =

∑
j ωjdi,i′,j.

(b) Holding c1, c2, . . . , cK fixed, optimize (3.3) with respect to ω by applying

the Proposition: ω = S(a+,4)
‖S(a+,4)‖2

where aj is as defined in (3.2) and 4 = 0

if that results in ‖ω‖1 < s; otherwise, 4 > 0 is chosen so that ‖ω‖1 = s.

3. The clusters are given by c1, c2, . . . , cK , and the feature weights corresponding
to this clustering are given by ω1, ω2, . . . , ωp.

Here d is squared Euclidean distance, Step 2(a) can be optimized by performing K-
means on the data after scaling each feature j by

√
ωj. Iterate Step 2 until the

stopping criterion ∑p
j=1

∣∣ωrj − ωr−1
j

∣∣∑p
j=1

∣∣ωr−1
j

∣∣ < 10−4

is satisfied.
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3.3 Influential Features PCA (IF-PCA) Method

X = [x1, x2, . . . , xn]T

The Influential Features PCA (IF-PCA) is a new spectral clustering method by Jin
and Wang [12]. The IF-PCA contains an IF part and a PCA part. In the IF part, fea-
tures are selected by exploiting the sparsity of the contrast mean vectors, where many
columns of X are removed, leaving only those which are influential for clustering. In
the PCA part, classical PCA is applied to the post-selection data matrix.

Each column of X is normalized and the resultant matrix is denoted by W :

W (i, j) = [xij − X̄j]/ ˆσ(j), 1 ≤ i ≤ n, 1 ≤ j ≤ p, (3.5)

where X̄j = 1
n

∑n
i=1 xij and ˆσ(j) = [ 1

n−1

∑n
i=1(xij − X̄j)

2]1/2 are the empirical mean
and standard deviation associated with feature j, respectively.

W = [W1,W2, . . . ,Wn]T

For any 1 ≤ j ≤ p , the empirical CDF associated with feature j is denoted by

Fn,j(t) =
1

n

n∑
i=1

1{Wi(j) ≤ t}. (3.6)

3.3.1 The IF-PCA Algorithm

The IF-PCA algorithm contains two ‘IF’ steps and two ‘PCA’ steps as described
in [12] and is as follows:

Input: Data matrix X, number of classes K, and parameter t.

Output: Predicted n× 1 label vector ŷIFt = (ŷIFt,1 , ŷ
IF
t,2 , . . . , ŷ

IF
t,n).

IF-1: For each 1 ≤ j ≤ p, compute a Kolmogorov-Smirnov (KS) statistic by

ψn,j =
√
n. sup
−∞<t<∞

|Fn,j(t)− Φ(t)|, (Φ : CDF of N(0, 1)). (3.7)

IF-2: Following the suggestions by Effron [7], renormalize by

ψ∗n,j = [ψn,j −mean of all p KS-scores]/SD of all p KS-scores. (3.8)

PCA-1: Fix a threshold t > 0. Let W (t) be the matrix formed by restricting the
columns of W to the set of retained indices Ŝp(t), where

Ŝp(t) = {1 ≤ j ≤ p : ψ∗n,j ≥ t} (3.9)

Let Û (t) ∈ Rn,K−1 be the matrix consisting K−1 (unit-norm) left singular
vectors of W (t).
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PCA-2: Cluster by applying the classical k-means to Û (t) assuming K classes. Let
ŷIFt be the predicted label vector.

Here the threshold t is the only tuning parameter. A data-driven threshold choice by
Higher Criticism (HC) has been suggested in [12]. The pseudocode of the algorithm
including threshold choice by HC is given below.

Figure 3.1: Pseudocode for IF-HCT-PCA (threshold set by Higher Criticism)



Chapter 4

The Proposed Sparse MinMax
k-Means Algorithm

4.1 Notations

The previous notations defined in Sections 2.1 and 3.2 for the MinMax k-Means and
Sparse k-Means algorithms, remains the same for our proposal also.

Table 4.1: Notations used in our method

Notations Description

n The number of observations
p The number of features

X = (xij) ∈ Rn×p Data set in matrix form
xi ∈ Rp and Xj ∈ Rn The ith row and the jth column of X
C = (Ckj) ∈ RK×p Cluster Centers

Ck and ck, k = 1, . . . , K The kth cluster center and the kth cluster
nk Number of observations in cluster k

Vk, k = 1, . . . , K Variance of the kth cluster
δik Cluster indicator variable

εw
Weighted formulation of the intra-cluster

sum of squares
wk, k = 1, . . . , K Weight assigned to cluster k

α The exponent for cluster weights
ω = (ω1, ω2, . . . , ωp)

T Feature weights
aj = BCSS(G)j The new BCSS for feature j

s The tuning parameter

16
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4.2 Sparse MinMax k-Means

Witten and Tibshirani [26] showed that the classical k-means and hierarchical clus-
tering models can be reformulated using their framework which is as follows:

max
Θ(G)

p∑
j=1

fj(Xj ,Θ(G)) (4.1)

where fj(Xj ,Θ(G)) is a function related only to the jth feature of the data, and Θ(G)
is a model parameter. They further defined a sparse clustering framework

max
ω,Θ(G)

p∑
j=1

ωjfj(Xj ,Θ(G))

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤ s, ωj ≥ 0,∀j
(4.2)

where s is a tuning parameter and ‖ω‖1 =
∑p

j=1 |ωj| is the `1-norm of ω. Here, ωj can
be interpreted as the contribution of the jth feature to the objective function (4.2) and
the tuning parameter s controls the number of features relevant for clustering. The
`1-norm has been proved to be able to generate sparse solutions in various applications
[5, 14,26].

4.2.1 The Formulation

We introduce a new variable zik, which is similar to the cluster indicator variable δik
and can be defined as

zik =

{
wk if i ∈ ck
0 otherwise

and zαik = wαk if i ∈ ck.
(4.3)

Here wk are the cluster weights as defined in the MinMax k-Means algorithm [23] in
Section 2.3. Thus the εw defined in (2.3) can be re-written as follows:

εw =
K∑
k=1

wαk

n∑
i=1

δik‖xi − Ck‖2 =
K∑
k=1

n∑
i=1

zαik‖xi − Ck‖
2 (4.4)

Next, we provide Lemma 1 which justifies that the MinMax k-Means clustering model
is also a special case of the framework (4.1). We use a method similar to the one used
by Chang et al. [5] .
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Lemma 1 Suppose X is the data matrix, then

K∑
k=1

n∑
i=1

zαik‖xi − Ck‖
2 =

K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − xi′‖

2

where n′k =
∑n

i=1 z
α
ik = nk.w

α
k , nk is the number of observations in cluster k, and Ck

is the kth cluster center as defined in (2.6).

Ck =

∑n
i=1 z

α
ik.xi

n′k
=
wαk .

∑n
i=1 δik.xi

wαk .nk
=

∑n
i=1 δikxi∑n
i=1 δik

Proof:
The right hand side can be written as

K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − xi′‖

2 =
K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − Ck + Ck − xi′‖2

=
K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k

{
‖xi − Ck‖2

+ ‖xi′ − Ck‖2 + 2(xi − Ck)T(xi′ − Ck)
}
.

Since n′k =
∑n

i′=1 z
α
i′k, we have

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − Ck‖

2 =
n∑

i′=1

zαi′k

n∑
i=1

zαik‖xi − Ck‖
2

= n′k

n∑
i=1

zαik‖xi − Ck‖
2.

Similarly, we have

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi′ − Ck‖

2 = n′k

n∑
i′=1

zαi′k‖xi′ − Ck‖
2.

Now
n∑
i=1

n∑
i′=1

zαikz
α
i′k(xi − Ck)T(xi′ − Ck) =

[ n∑
i=1

zαik(xi − Ck)
][ n∑

i′=1

zαi′k(xi′ − Ck)
]

= 0.

So
K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − xi′‖

2 =
K∑
k=1

n∑
i=1

zαik‖xi − Ck‖
2.

�
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The left hand side of Lemma 1 is the objective function (2.3) that is optimized
by the MinMax k-Means Algorithm [23], while the right hand side evaluates the
dissimilarity within cluster, which can be referred to as the within-cluster sum of
squares (WCSS) of MinMax k-Means. The right hand side of Lemma 1 can be
further simplified as

If i, i′ ∈ ck

zαik = zαi′k = wαk

K∑
k=1

1

2n′k

n∑
i=1

n∑
i′=1

zαikz
α
i′k‖xi − xi′‖

2 =
K∑
k=1

1

2nk.wαk

∑
i,i′∈ck

w2α
k ‖xi − xi′‖

2

=
K∑
k=1

wαk
2nk

∑
i,i′∈ck

‖xi − xi′‖2

(4.5)

Note that the product zαik.z
α
i′k is non-zero only when both i and i′ ∈ ck and is zero

otherwise.

From the objective function (2.3) of Tzortzis and Likas’s [23] MinMax k-Means
algorithm, we have

∑K
k=1wk = 1 and 0 ≤ α < 1. Hence wαk is always less than 1. So

we can write
K∑
k=1

wαk

n∑
i=1

δik‖xi − Ck‖2 <
K∑
k=1

n∑
i=1

δik‖xi − Ck‖2

That is the WCSS of MinMax k-Means will always be less than the WCSS defined
for classical k-Means. Therefore, we can model the between cluster sum of squares
(BCSS) of MinMax k-Means (4.6) as

BCSS(G)j =
1

n

n∑
i=1

n∑
i′=1

(xij − xi′j)2 −
K∑
k=1

wαk
nk

∑
i,i′∈ck

(xij − xi′j)2 (4.6)

where BCSS(G) = (BCSS(G)1, . . . , BCSS(G)p)
T with respect to the partition G .

Thus, the WCSS and the BCSS measures for our Sparse MinMax k-Means model can
be written as

WCSS(G)j =
K∑
k=1

wαk
nk

∑
i,i′∈ck

p∑
j=1

(xij − xi′j)2 (4.7)

BCSS(G)j =

p∑
j=1

{
1

n

n∑
i=1

n∑
i′=1

(xij − xi′j)2 −
K∑
k=1

wαk
nk

∑
i,i′∈ck

(xij − xi′j)2

}
(4.8)
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Now we can rewrite the MinMax k-Means problem as

max
c,G

min
w

p∑
j=1

BCSS(G)j

s.t. zik =

{
wk if i ∈ ck
0 otherwise

with zαik = wαk if i ∈ ck, i = 1, . . . , n

wk ≥ 0,
K∑
k=1

wk = 1, 0 ≤ α < 1

(4.9)

Note that in MinMax k-Means, we maximize εw with respect to the cluster weights
(wk-s), so we must minimize

∑p
j=1 BCSS(G)j with respect to cluster weights.

BCSS(G)j, j = 1, . . . , p is a function that is only related to the jth feature. Thus
we can conclude that MinMax k-Means satisfies the framework (4.1). According to
Witten and Tibshirani’s [26] sparse clustering framework (4.2), the MinMax k-Means
can be generalized to the following model:

max
G,c,ω

min
w

F (w, c,ω) = ωTBCSS(G)

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤ s, ωj ≥ 0,∀j

zik =

{
wk if i ∈ ck
0 otherwise

with zαik = wαk if i ∈ ck, i = 1, . . . , n

wk ≥ 0,
K∑
k=1

wk = 1, 0 ≤ α < 1

(4.10)

We will call (4.10) as the Sparse MinMax k-Means model.

We denote aj = BCSS(G)j, a = (a1, . . . , ap)
T and the objective function

of (4.10) as F (w, c,ω) =
∑p

j=1 ωjaj. We apply the alternative iteration technique
(similar to the one used in [26]) to construct an algorithm to solve the problem (4.10).
We first fix w and ω and maximize F (c) with respect to c, and then we fix ω and c
and minimize F (w) with respect to w. Finally, we fix w and c and maximize F (ω)
with respect to ω. The first two steps have been explained in detail in the Section
4.2.2. The optimization problem that arises in the final step can be written as

maximize
ω

ωTa

s.t. ‖ω‖2 ≤ 1, ‖ω‖1 ≤s, ωj ≥ 0,∀j
(4.11)
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As per the Proposition stated in [26], the solution to the convex problem (4.11) is

ω = S(a+,4)
‖S(a+,4)‖2

, where x+ denotes the positive part of x and where 4 = 0 if that

results in ‖ω‖1 < s; otherwise, 4 > 0 is chosen to yield ‖ω‖1 = s. S is the soft-
thresholding operator, defined as S(x, c) = sign(x)(|x| − c)+. The assumptions are
same as in [26], i.e., there is a unique maximal element of a, and 1 ≤ s ≤ √p.

4.2.2 The Algorithm

From our definitions of WCSS and BCSS in Section 4.2.1, we see that maximizing
the BCSS is equivalent to minimizing the WCSS and vice-versa. This property can
be used to simplify our algorithm.

Input: Data matrix X, number of classes K, and parameter s.

Output: Clusters c1, c2, . . . , ck.

1. Initialize ω as ω1 = . . . = ωp = 1√
p
.

2. Iterate until convergence:

(a) Holding w and ω fixed, optimize (4.10) with respect to c1, c2, . . . , cK .
Hence maximize (4.8) which is same as minimizing (4.7). That is,

minimize
c1,c2,...,cK

{ K∑
k=1

wαk
nk

∑
i,i′∈ck

p∑
j=1

(xij − xi′j)2

}
.

(b) Holding ω and c fixed, we optimize (4.10) with respect w. Hence
minimize (4.8) which is same as maximizing (4.7) with respect to w.
That is,

maximize
w1,w2,...,wK

{ K∑
k=1

wαk
nk

∑
i,i′∈ck

p∑
j=1

(xij − xi′j)2

}
.

Both steps (a) and (b) can be done by applying the standard MinMax
k-Means clustering algorithm to the updated data matrix with (i, j)
element =

√
ωj.xij. The cluster assignments are made as stated in

(2.5) and cluster weights are assigned as in (2.8).

(c) Holding c1, c2, . . . , cK and w1, w2, . . . , wK fixed, optimize (4.10) with

respect to ω by applying the Proposition: ω = S(a+,4)
‖S(a+,4)‖2

where aj =

BCSS(G)j and 4 = 0 if that results in ‖ω‖1 < s; otherwise, 4 > 0
is chosen so that ‖ω‖1 = s.

3. The clusters are given by c1, c2, . . . , cK , the cluster weights by w1, w2, . . . ,
wk and the feature weights corresponding to this clustering are given by
ω1, ω2, . . . , ωp.
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Steps 2(a) and 2(b) can be optimized together by performing MinMax k-means on the
data after scaling each feature j by

√
ωj. Iterate Step 2 until the stopping criterion∑p

j=1

∣∣ωnewj − ωoldj
∣∣∑p

j=1

∣∣ωoldj ∣∣ < 10−4 (4.12)

is satisfied. We should mention that although the iterative technique used in the
Algorithm (Section 4.2.2) is not guaranteed to converge to the global optimum, the
objective function will increase monotonically and achieve the local maximal value.

4.2.3 Selection of tuning parameters

Following a procedure similar to [26], we apply a permutation technique and calculate
the gap statistic [22] to select s, and α is chosen by using the data driven approach
of MinMax k-Means as mentioned in Section 2.3.4 [23]. The value αinit is taken as 0.
The values of αstep and αmax are taken as 0.01 and 0.5 respectively, as in [23]. The
method to select value of s for Sparse MinMax k-Means is discussed below.

Algorithm to select tuning parameter s by gap statistics

1. Obtain permuted datasets X1, . . . , XB by independently permuting the obser-
vations within each feature.

2. For each candidate tuning parameter value s:

(a) Compute O(s) =
∑

j ωjaj, the objective obtained by performing Sparse
MinMax k-Means with tuning parameter value s on the data X.

(b) For b = 1, 2, . . . , B, compute Ob(s), the objective obtained by performing
Sparse MinMax k-Means with tuning parameter value s on the data Xb.

(c) Calculate Gap(s) = log(O(s))− 1
B

∑B
b=1 log(Ob(s)).

3. Choose s∗ corresponding to the largest value of Gap(s).



Chapter 5

Performance Analysis of Sparse
MinMax k-Means

5.1 Complexity Analysis

The computational complexity of the classical k-Means is O(npKi) where i is the
number of iterations. The MinMax k-Means algorithm has an additional weight
updation step which can be done in O(nK), hence the algorithm also has a complexity
of O(npKi). To update ω in step 2(c), we have to solve (4.11) by the Dichotomy
searching scheme numerically. The main computational complexity of solving (4.11) is
O(p log 1/ε) where ε is the required error for searching. Therefore, the computational
complexity of each iteration of the proposed sparse MinMax k-Means algorithm is
O(npKi) +O(p log 1/ε). We iterate until the convergence criteria (4.12) is met.

5.2 Experimental Study

In this section, we evaluate and compare the performance of Sparse MinMax k-Means
mainly with the Sparse k-Means [26] and the IF-PCA method [12]. We use the
Clustering Error Rate (CER) measure for comparisons in our study, which is defined

as CER ,
∑

i>i′

∣∣∣1Ĝ(i,i′) − 1G(i,i′)

∣∣∣/(n2), where 1G(i,j) is an indicator function to record

whether the ith and jth observations are in the same cluster with respect to the
partition G.

We first evaluate the performance of our scheme on synthetic 2-D shape data
sets [8], so that the results can be visualized. We then compare the performance of our
scheme on 4 UCI real world data sets [1]. Finally we do a detailed comparative study
on the 10 high-dimensional gene microarray data sets [11]. Each of the simulations is
repeated 30 times.

23
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5.2.1 Description of data sets used in our study

Table 5.1: Synthetic 2-D shape data sets

Dataset Name K n p

Aggregation 7 788 2
Compound 6 399 2

Flame 2 240 2
Jain 2 373 2

Pathbased 3 300 2
Spiral 3 312 2

Table 5.2: UCI real world data sets

Dataset Name K n p

Iris 5 150 4
Wine 2 178 13

Libras Movement 15 360 90
Gesture Phase Segmentation 7 1747 50

Table 5.3: Gene microarray data sets (p: number of genes, n: number of subjects)

# Dataset Name K n p

1 Brain 5 42 5597
2 Breast Cancer 2 276 22215
3 Colon Cancer 2 62 2000
4 Leukemia 2 72 3571
5 Lung Cancer(1) 2 181 12533
6 Lung Cancer(2) 2 203 12600
7 Lymphoma 3 62 4026
8 Prostate Cancer 2 102 6033
9 SRBCT 4 63 2308
10 SuCancer 2 174 7909

5.2.2 Evaluation on Synthetic 2-D shape data sets

We use 6 synthetic 2-D shape data sets [8], the details of which are given in Table
5.1. We apply the proposed Sparse MinMax k-Means algorithm to these data sets and
plot the results. The results obtained on two of the data sets Aggregation and Flame
is shown in the Figure 5.1. 1(a) and 2(a) show the original cluster distributions,
and 1(b) and 2(b) show the respective results obtained by applying Sparse MinMax
k-Means.
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Figure 5.1: Sparse MinMax k-Means results on synthetic 2-D shape data sets

We apply Sparse MinMax k-Means algorithm with αmax = 0.5, αstep = 0.01
and β = 0 following the suggestions in [23]. The value of the tuning parameter s,
obtained by using Gap statistics as mentioned in Section 4.2.3, is not very important
for these sets as both the features are important for clustering and non-zero weights
are assigned for both features in all the cases. We also apply the Sparse k-Means
and the IF-HCT-PCA algorithms on these sets. The Clustering Error Rates (CERs)
obtained for all the three methods is given in the Table 5.4. From the table we can
see that Sparse MinMax k-Means produces lower error rates than both the other
methods for all the 6 data sets. In few of the cases, other methods also produce the
same lowest error rate as our scheme.

5.2.3 Evaluation on UCI real world data sets

We use the 4 real world data sets mentioned in Table 5.2 obtained from the UCI
machine learning repository [1]. The Iris and the Wine data sets have relatively
less number of features as compared to the Libras Movement and the Gesture Phase
Segmentation data sets.

Here we apply our Sparse MinMax k-Means algorithm with αmax = 0.5 and
αstep = 0.01, and we use β values of 0, 0.1, 0.3. The best of the three results is noted.
The value of the tuning parameter s is estimated using the Gap statistics. The
comparisons with Sparse k-Means and the IF-HCT-PCA algorithm for these data
sets is given in Table 5.5. In three out of the four cases, our scheme out performs the
other two methods. For the Libras Movement data set, the lowest clustering error
rate is obtained by the Sparse k-Means algorithm which is only 0.031 less than that
obtained by our scheme.
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Table 5.4: Comparison of Clustering Error Rates (CERs) obtained by the Sparse
k-Means, IF-HCT-PCA, and Sparse MinMax k-Means methods for the 2-D Shape
data sets introduced in Table 5.1

Dataset Name
Sparse

k -Means
IF-HCT-PCA

Sparse MinMax
k -Means

Aggregation 0.193 0.457-0.534 0.183
Compound 0.341 0.506-0.521 0.341

Flame 0.150 0.196 0.150
Jain 0.345 0.137 0.086

Pathbased 0.333 0.240 0.240
Spiral 0.577 0.657 0.577

Table 5.5: Comparison of CERs obtained by the Sparse k-Means, IF-HCT-PCA, and
Sparse MinMax k-Means methods for the UCI data sets introduced in Table 5.2

Dataset Name
Sparse

k -Means
IF-HCT-PCA

Sparse MinMax
k -Means

Iris 0.067 0.187 0.053
Wine 0.297 0.140 0.050

Libras Movement 0.075 0.094 0.106
Gesture Phase
Segmentation

0.574 0.376 0.376

Table 5.6: Comparison of CERs obtained by different methods for the 10 gene mi-
croarray data sets introduced in Table 5.3. Column 3: numbers in the brackets are the
standard deviations (SD); SD for all other methods are negligible so are not reported

Dataset Name kmeans kmeans++ Hier SpecGem IF-HCT-PCA
Sparse

k -Means
Sparse MinMax

k -Means
Brain 0.286 0.427(.09) 0.524 0.143 0.262 0.214 0.238
Breast Cancer 0.442 0.430(.05) 0.500 0.438 0.406 0.449 0.417
Colon Cancer 0.443 0.460(.07) 0.387 0.484 0.403 0.306 0.145
Leukemia 0.278 0.257(.09) 0.278 0.292 0.069 0.139 0.028
Lung Cancer(1) 0.116 0.196(.09) 0.177 0.122 0.033 0.122 0.122
Lung Cancer(2) 0.436 0.439(.00) 0.301 0.434 0.217 0.315 0.217
Lymphoma 0.387 0.317(.13) 0.468 0.226 0.065 0.032 0.274
Prostate Cancer 0.422 0.432(.01) 0.480 0.422 0.382 0.392 0.372
SRBCT 0.556 0.524(.06) 0.540 0.508 0.444 0.349 0.333
SuCancer 0.477 0.459(.05) 0.448 0.489 0.333 0.328 0.328

5.2.4 Evaluation on gene microarray data sets

Our study is mainly related to the 10 high-dimensional gene microarray data sets [11]
given in Table 5.3. The data sets include patients from several classes (normal,
diseased), and for each patient, we have measurements (gene expression levels) on
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the same set of genes. The classes are predicted by a clustering algorithm. These
data sets are the ones that have been used by Jiashun and Wang [12] in their study.
These data sets belong to the modern regime of p >> n and the value of K is also
small. In [12], a comparison study was done of IF-HCT-PCA with other well-known
clustering algorithms on these 10 data sets. Using their code, we obtain the clustering
error rates for IF-HCT-PCA and also the other algorithms. We now add two more
columns to the comparison table, which are the error rates obtained by Sparse k-
Means and our Sparse MinMax k-Means.

Similar to Section 5.2.3, here also we apply our algorithm with αmax = 0.5 and
αstep = 0.01, and we use β values of 0, 0.1, 0.3. The best of the three results is noted
for each data set. The comparison table of our scheme with IF-HCT-PCA, Sparse
k-Means and other well-known clustering algorithms including the classical k-means,
k-means++, Hierarchical clustering and the Spectral GEM algorithm is given in the
Table 5.6. On 6 out of the 10 data sets, our scheme obtains the lowest CER among
all the other algorithms. Sparse MinMax k-Means obtains lower or same CER as that
obtained by IF-HCT-PCA in 7 out of 10 cases and in 8 out of 10 cases for Sparse
k-Means.

Table 5.7: CER, Number of Non-zero weights out the p weights (denoting number
of useful features), s values obtained from the Gap statistics method for our Sparse
MinMax k-Means Model for the gene microarray data sets

Dataset Name CER
# Non-zero
weights/p

s value from
Gap stats

Brain 0.238 1810/5597 27.51
Breast Cancer 0.417 79/22215 6.26
Colon Cancer 0.145 76/2000 5.69
Leukemia 0.028 148/3571 7.27
Lung Cancer(1) 0.122 16/12533 2.84
Lung Cancer(2) 0.217 5/12600 1.61
Lymphoma 0.274 717/4026 14.22
Prostate Cancer 0.372 5650/6033 41.41
SRBCT 0.333 1019/2308 6.04
SuCancer 0.328 1370/7909 14.97

We apply the Gap statistics method explained in Section 4.2.3 to obtain the
value of the tuning parameter s. For data sets with n values less than 100, we use
number of permutations B = 10, and for others we use B = 20, for estimating the
value of s. The number of non-zero feature weights ωj out of the p weights would
signify the number of features useful for clustering as determined by our algorithm.
These values, along with the values of the tuning parameter s, as obtained from the
Gap statistics method for the gene microarray data sets, is listed in the Table 5.7.
In few of the cases, we see that a lower s value renders the same clustering as that
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given by s∗ obtained from Gap statistics (see Section 4.2.3). Hence for them, a lower
number of features can be considered to be effective for clustering than the number
of non-zero weights obtained by using the value of s from Gap statistics.

Table 5.8: RF (Retained Features) and DI (Dunn Index) obtained by the Sparse k-
Means, IF-HCT-PCA, and Sparse MinMax k-Means methods for the gene microarray
data sets

Dataset Name IF-HCT-PCA
Sparse

k -Means
Sparse MinMax

k -Means
RF DI RF DI RF DI

Brain 453 0.634 123 0.589 1810 0.647
Breast Cancer 728 0.182 22215 0.189 79 0.197
Colon Cancer 25 0.427 1237 0.377 76 0.435
Leukemia 213 0.556 3571 0.620 148 0.621
Lung Cancer(1) 251 0.128 260 0.245 16 0.245
Lung Cancer(2) 418 0.548 12600 0.244 5 0.548
Lymphoma 44 0.509 4026 0.651 717 0.616
Prostate Cancer 1551 0.509 6033 0.399 5650 0.393
SRBCT 52 0.433 742 0.443 1019 0.544
SuCancer 805 0.486 7909 0.505 1370 0.505

For analyzing the performance of our algorithm, we evaluate it’s performance
based on two more criteria and compare the results with IF-HCT-PCA and Sparse
k-Means in Table 5.8. Dunn Index (DI) is the ratio of the smallest distance between
observations not in the same cluster to the largest intra-cluster distance. It can
be mathematically defined as DI , (min1≤k≤l≤K δ(Gk, Gl)/max1≤m≤K4m), where
δ(Gk, Gl) is the inter-cluster distance between clusters Gk and Gl, and 4m calculates
the maximum distance between all items within cluster Gm. Retained Features (RF)
is the number of retained features in each of the algorithms or basically the number
of non-zero feature weights (for sparse algorithms). Higher DI values would indicate
better clustering and our method obtains the highest DI values among the three
methods in 8 out of the 10 cases. The lowest RF values are however obtained in only
4 cases by our method but it has the best CER values in most cases, which is our
main criteria.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Clustering data in the high-dimensional setting is challenging due to the existence of
abundant noisy features. In our study, which is inspired by the literature of sparse
clustering, we proposed a novel MinMax k-Means with sparse regularization. Based
on the framework, we developed an efficient algorithm to solve the model and named
it as the Sparse MinMax k-Means algorithm. Our algorithm is based on Witten and
Tibshirani’s [26] sparse clustering framework.

The experimental results obtained in Section 5.2 confirmed the outperformance
of our approach over other approaches like the Sparse k-Means [26] and the Influential
Features PCA (IF-PCA) [12] in most of the cases. We have mainly worked with the
10 high-dimensional gene microarray data sets [11]. Our algorithm, outperforms both
of them and all other common clustering methods in most of the cases. For the UCI
and the synthetic 2-D shape data sets also, our scheme has performed better or equal
in most of the cases. In the cases where the other two algorithms have produced
better clustering error rates, our scheme is only marginally behind.

For our comparisons, we have used the original codes by Jiashun and Wang [12]
for IF-HCT-PCA and the R-package sparcl by Witten and Tibshirani [26] for the
Sparse k-Means. The code for our implementation of the Sparse MinMax k-Means
algorithm is available at https://github.com/sayak94/Sparse-MinMax-k-Means.

6.2 Scope for Future Work

Despite its good performance, this method has a few limitations and there is scope
of improvement. Firstly, the parameters αmax, αstep and β included in the MinMax
k-Means part, are to be entered by the user and not completely auto tuned. We have
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used the empirical values for them suggested in [23], but the results often vary with
the change in those parameters. We can address this issue by a method suggested by
Wang et al. [25] of using PSO (Particle Swarm Optimization) to obtain the α and
β values. Secondly, we can also explore and search for more consistent approaches
rather than using the Gap statistics to estimate the value of the tuning parameter
s. Finally, we can look to improve the time complexity of our algorithm by using an
approach similar to the one suggested in [5] for sparse FCM, where rather than going
up to convergence in the MinMax k-Means part in each iteration, we can use only
a single run of the algorithm in each iteration. This would significantly reduce the
complexity of our algorithm.
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