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An Distinguishing Attack on LDT

by MANABENDRA GIRI

Length doublers are cryptographic functions that transform an n bit tweakable
block cipher into an efficient and secure cipher that length-preservingly encrypts
any string of length in [n,...,(2n-1)] . One of them, LDT by Chen et al.(ToSC 2017 ) is
secure up to 2n/2 queries . Let m ∈ [kn,(n-1)] for some constant k < 1 .They described
a possibility of attack against LDT in approximately 2n−(m/2) queries of size n + m
based on distinguishing a truncated permutation from random function . We here
describe attack for k = 2/3 .. . .
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Chapter 1

Introduction

Block ciphers are keyed-deterministic functions that can encrypt bit strings of fixed length n
into bit strings of the same length. Many applications, however, deal with arbitrary-length
messages, hence block ciphers on their own are not sufficient. Variable-input-length (VIL)
encryption is achieved by evaluating a block cipher iteratively in a mode of operation. Basic
solutions such as CBC mode can only encrypt messages of size a multiple of n. To handle
messages whose size is not a multiple of n bits, one can pad the data to an integral number of
n-bit blocks.

Padding is, in many cases, an undesirable solution: message length is typically not pre-
served, which means the resulting ciphertext will always be larger or equal to the original
plaintext. This makes the solution unsuitable for disk encryption (where the size of ciphertext
and plaintext must remain the same as the sector size of the disk) and low-bandwidth network
protocols (as an increase in ciphertext length results in more data to be transmitted).

A generic method of length preserving variable length encryption is cyphertext stealing .
Informally , it encrypts the first (l−1) blocks as is, but to encrypt the non-integral lth block, it
is expanded first to n bits by scraping sufficiently many ciphertext bits from (l−1)-th block and
gluing these to Ml . But this approach only works on modes of use for which ciphertext block
can be decrypted independently of each other ; otherwise one cannot recover the ciphertext
bits scrapped off of Cl−1.

In 2007, Ristenpart and Rogaway introduced length doublers as an elegant way of achieving
variable-length encryption. A length doublers is a length-preserving-encryption on the set of
bit strings of size between n and (2n-1) bits, where n is the block size of underlying primitive .

Length-preserving VIL encryption can then be achieved by gluing a VIL encryption scheme
for integral data blocks with the doubler. Length doublers are suitable solutions for various
authenticated encryption schemes that treat integral and fractional data separately.

Chen et al. considered the design of length doublers from tweakable block ciphers and
introduced LDT which makes 2 two calls of tweakable block cipher and uses a pure mixing
function ( generalisation of swap ).Without loss of generality , here we replace pure mix function
by swap. LDT is secure up to 2n/2 queries . Let m ∈ [kn, (n−1)] for some constant k < 1 .They
described a possibility of attack against LDT in approximately 2n−(m/2) queries of size n +m
based on distinguishing a truncated permutation from random function . We here describe a
PRP distinguishing attack for k = 2/3 .



Chapter 2

All Related definitions

2.1 Notations

• For two bit strings X, Y ∈ {0, 1}∗ , we let X||Y or XY be their concatenation and X⊕
Y be their bitwise exclusive or..

• We denote by |X| the length of the string X .

• For a natural number n, we denote by {0, 1}n the set of bit strings of size n.

• For natural numbers m ≤ n we define {0, 1}[m,...,n] .

• For some finite set S, we denote by s
$← S the uniformly random selection of s from

S .

• We denote by Func(n,m) the set of all functions from {0, 1}n to {0, 1}m .

• For a natural number n and X ∈ {0, 1}[0,...(n−1)] , we define a padding function

pad(X) = X||10n−|X|−1.

As the function is injective, we can consider its inverse unpad that on input of a string
of length n removes the rightmost string 10∗ and outputs the remainder.

• Perm(n) is the set of all permutation on {0, 1}n

• Perm(t, n) is the set of all functions π : {0, 1}t × {0, 1}n → {0, 1}n such that π(T, .)
is in Perm(n) for all T ∈ {0, 1}t

• V Perm([n...2n− 1]) the set of all functions ρ that are length-preserving and invertible.

Note that a randomly drawn function ρ
$← V perm([n..2n1]) is equivalent to n random

permutations ρi
$← Perm(i) for i = n , ..., 2n− 1 as ρ(M) = ρ|M |(M) .



2.2 Related Theorems

Definition 2.1 Statistical Distance : Let X and Y be two random variables taking values
on a finite set S. We define statistical distance between two random variables by

dstat(X, Y ) := max
T⊆S

|Pr[X ∈ T ]− Pr[Y ∈ T ]|
= max

T⊆S
|Pr[X /∈ T ]− Pr[Y /∈ T ]|

The statistical distance is also popularly known as information theoretic distance.

Definition 2.2 Computational Distance :Let A() be a probabilistic algorithm which runs
with an input a ∈ S and giving output 0 or 1. Define, A-distance between X and Y as follows;
by

dA(X, Y ) := |Pr[A(X) = 1]− Pr[A(Y ) = 1]|
Here, A(X) means the distribution of output of A(z) where z follows the distribution of X.
Similarly for A(Y ).

Theorem 2.1 For any function f : R → R, dstat(X, Y ) ≥ dstat(f(X), f(Y ))

Theorem 2.2 Chebyshev’s Inequality:- Let X (integrable) be a random variable with fi-
nite expected value m and finite non-zero variance σ2. Then for any real number k > 0,

Pr(|X −m| ≥ kσ) ≤ 1

k2
.

2.3 Tweakable Block Cipher

For k, t, n ∈ N , a tweakable block cipher is a function
E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n such that for fixed key K ∈ {0, 1}k and tweak
T ∈ {0, 1}t , EK(T, ) = E(K,T, ) is a permutation on {0, 1}n . We denote its inverse (for
fixed key and tweak) by E−1

K (T, ) = E−1(K,T, ) . The key is usually a secret parameter; the
tweak is a public parameter, and E−1

K should behave independently for different tweaks.The
security of a tweakable block cipher E is measured by considering a distinguisher D that is

given two-sided access to either EK for secret key K
$← {0, 1}k or a random tweakable

permutation π
$← Perm(t, n) and its goal is to determine which oracle it is given access to:

Advsprp
E (D) = | Pr

�
K

$← {0, 1}k;DEK ,E−1
K = 1

�
− Pr

�
π

$← Perm(t, n);Dπ,π−1
= 1

�
|

2.4 Length Doubler

For k, n ∈ N, a length doubler is a function

E : {0, 1}k × {0, 1}[n,...,2n−1] → {0, 1}[n,...,2n−1]

such that for fixed key K ∈ {0, 1}k , EK( .) = E(K, .) is a length preserving invertible
function on {0, 1}[n,...,2n−1] . We denote its inverse (for fixed key) by E−1

K ( .) = E−1(K, .) . E
should behave like a random permutation for every length input m ∈ [n..2n− 1]. The security
of a length doubler E is measured by considering a distinguisher D that is given two-sided

access to either EK for secret key K
$← {0, 1}k or a random length preserving permutation

ρ
$← V Perm([n, ..., 2n− 1]) and its goal is to determine which oracle it is given access to:

Page 3



Advvsprp
E (D) =

| Pr
�
K

$← {0, 1}k;DEK ,E−1
K = 1

�
− Pr

�
ρ

$← V Perm([n, ..., 2n− 1]);Dρ,ρ−1
= 1

�
|

2.5 LDT Doubler

Let k, n ∈ N. Let E : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable block cipher.
Our length doubler E = LDT [E] with key space {0, 1}2k and state {0, 1}[n..(2n−1)] is given in
Figure 1. Note that the decryption function is very similar to the encryption function and can
be defined as

LDT [E]−1
K1,K2

= LDT [E−1]K2,K1

EK1

EK2

M2M1

C2Z M2

C2C1

❄

❄

❄

✫✪
✬✩

pad✛

◗
◗
◗

◗
◗
◗

◗
◗
◗�

✑
✑

✑
✑

✑
✑

✑
✑

✑✰

❄

❄

✫✪
✬✩

pad✛

❄

Figure 2.1: Encryption of length doubler LDT, with E a tweakable block cipher

Here |M1| = |C1| = n > m = |M2| = |C2| and without loss of generality , we replace pure
mix function by swap.

.
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Algorithm 1 LDT[E,mix] encryption

Input : (K1, K2)∈ {0, 1}2k, M1||M2 ∈ {0, 1}[n,...,(2n−1)] with |M1| = n and |M2| = s
Output : C1||C2 ∈ {0, 1}n+s

process :

1. Z||U ← EK1(pad(M2),M1) with |Z| = n− s

2. V ||C2 ← mix(U,M2)

3. C1 ← EK2(pad(C2), Z||V )

4. return C1||C2

Figure 2.2: LDT encryption algorithm

2.6 Mix function

Let U, V,M,C are all of s bit for m≤ s ≤n and m,n,s∈ N. If V ||C = mix(U,M) then
we define mixL(U,M) = V = left half of its evalution and mixR(U,M) = C = right half of its
evalution . In above algorithm mix : ∪n

s=m({0, 1}s)2 → ∪n
s=m({0, 1}s)2 be a length preserving

permutation with following properties:

• mixL(U,.) is a permutation for all U∈ {0, 1}s

• mixR(.,M) is a permutation for all M∈ {0, 1}s

2.7 Truncation and Truncated Permutation

Let Truncation functionTruncn,m : {0, 1}n → {0, 1}m be defined by the mapping (xn, xn−1, ..., x1)
�→ (xm, xm−1, ..., xm). The “Truncated Permutation Family” is defined by the composition
Truncn,m ◦ π, where π is a permutation on {0, 1}n, choosen uniformly at random.

Page 5



Chapter 3

Previous Work

Chen et al studied the security of LDT length doubler. They declared the lower bound and
upper bound stated below.

Theorem 3.1 Let k, n ∈ N. Let E{0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable block
cipher. Consider E = LDT [E,mix] is of Algorithm 1. For any distinguisher D making at
most q queries,there exist distinguishers D1 and D2 with the same query complexity such that

Advvsprp
LDT (D) ≤ Advsprp

E (D1) + Advsprp
E (D2) +

q(q − 1)

2n

Let m ∈ [kn, (n−1)] for some constant k < 1 .They described a possibility of attack against
LDT in approximately 2n−(m/2) queries of size n + m based on distinguishing a truncated
permutation from random function .

Theorem 3.2 Let k, n ∈ N. Let E{0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable block
cipher.mix : ∪n

s=m({0, 1}s)2 → ∪n
s=m({0, 1}s)2 be a mixing function. Consider E = LDT [E,mix]

is of Algorithm 1. Let m ∈ [kn, (n − 1)] for some constant k < 1. Then there exists a distin-
guisher D making at most q queries, such that

Advvsprp
LDT (D) ≥ c1

q2

22n−m
− c2

q2

22n+m

for some constant c1, c2

For increasing m, the 1st term becomes larger whereas the 2nd term becomes negliigible.
For m=n-1, the bound is tight.

In original paper; type of attack, adversary algorithm and details analysis are not present.
Our work is to give all this things for some certain range.



Chapter 4

Our contribution in short

We want to distinguish LDT from a random length preserving invertible function taking input
from n-bit to (2n-1)-bit strings. We take m such that n≤(n+m)≤(2n-1) . Adversary do atmost
q encryption queries only of distinct (n+m) bit strings keeping last m-bit same ( length and
value both ) for all queries, say 00...0 [last m-bit of strings ]. Due to construction of LDT, if
1st n-bit is ignored, it is simply a permutation on n-bit and then truncation from n-bit to m-bit
strings .So we have advantage at least distinguishing advantage of truncated permutation from
random string.

Here we show a PRP distinguishing attack between LDT and length preserving function.
Using the reply of encryption queries (q) more than 1 + 50 · 2(n−m

2
) based on messages of size

(n +m) at least 4 + 5
3
· n, we distinguish LDT with at least 0.98 probability. Here n is block

size.
Let X is total number of pairwise collision on reply of q queries. Let indexed 0 denote the

oracle for truncated permutation on without replacement on n bits; and indexed 1 for random
selection with replacement on m bits . Let mi and σi be mean and standard deviation of X
when oraclei is used. For a > 10(1 +

√
2) , q > 1 + a

√
2 N−1√

M−1
, N = 2n and M = 2m ; we get

a threshold T such that

m0 + tσ0 < T < m1 − tσ1.

with probability more than 0.98

Algorithm 2 Adversary

Input : Response of q encryption queries; Last m bits of query messages are all 0
Output : 0/1
process :

1. X is total number of pairwise collision on last m bits.

2. If X > T return 1 otherwise return 0

We will describe later the value of q, m and T

Figure 4.1: Adversary algorithm



Advantage of adversary :- Adv(q)=
= |Pr[Adv(random) =⇒ 1]− Pr[Adv(tr-Permut) =⇒ 1]|
=|Pr[X(random) > T ]− Pr[X(tr-Permut) > T ]|
=|Pr[X(random) > T ] + Pr[X(tr-Permut) < T ]− 1|

And Pr[X(random) > T ] + Pr[X(tr-Permut) < T ]− 1
≥ Pr[ |X(random)−m1| < tσ1] + Pr[ |X(tr-Permut)−m0| < tσ0]− 1
. if m0 + tσ0 < T < m1 − tσ1

≥ 2(1− 1
t2
)− 1 = 0.98 if t = 10 (by Chebyshev’s Inequality).

Page 8



Chapter 5

Our work in details

Gilloba and Gueron studied truncated permutation and gave a tight bound. If 0 ≤ m < n and
q > 1. Then given a budget of q queries and truncation from n bit to m bit, Advantage of
truncated permutation dishtinguishing from random function is

Advn,m(q) = Θ

�
min

�
1,

q2

2n
,
q
√
2m

2n

��

Then Advn,m(q) = 1 =⇒ 1 ≤ q
√
2m

2n
< q2

2n
. Therefore q should be at least order of 2n−

m
2

(q > 2
n
2 = 2n−

n
2 , q > 2n−

m
2 ).

5.1 Truncate/Random String

Consider a set N of size N and a set M of size M . Let trun be given N
M
-regular function from

N toM. PERM(N) = set of all permutations onN . And FUNC(N,M) = set of all functions

from N to M. Let C
(1)
2 , C

(2)
2 , ..., C

(q)
2 be values from M either choosen randomly or choosen a

permutation π from PERM(N) and apply trun function on it. Let w = (C
(1)
2 , C

(2)
2 , ..., C

(q)
2 )

be transcript and lies in (M)q, collection of all possible transcript.
We will introduce some parameters related to w.

• Let I(i,j) be idicator variable gives 1 if C
(i)
2 = C

(j)
2 ; otherwise gives 0. Then { Ie : e ∈ I}

be the collections of all indicator variables.

• Let X =
�
e∈I

Ie . So X is total number of pairwise collision on reply of q queries.

• Let indexed 0 denote the oracle for truncated permutation on without replacement on N ;
and indexed 1 for random selection with replacement on M .

• Let mi and σi be mean and standard deviation of X when oraclei is used.

• Let pi is mean of Ie when oraclei is used.

5.2 Main Calculations

Let r = M−1
N−1

, 1
c·t > 1 +

√
2 where c and t are constants; B and |I| is defined in chapter 4.4.

We also use formulas given in chapter 4.4 to calculate mean and variance .



π

M1||00...0

C1

C2

IDEAL

❄

❄

❄

EK1

00...0M1

Z

C2

REAL

❄

❄

✫✪
✬✩

pad✛

◗
◗

◗
◗

◗
◗
◗

◗
◗�

Figure 5.1: A part of LDT

• p1 =
1
M

, p0 =
N−M

M(N−1)
= 1

M
(1− r) < 1

M

• Ideal World

– Mean :- m1 = |I| 1
M

– Variance :- V ar1[X] = |I| 1
M

M−1
M

≤
�
|I|
M

· c · r
�2

if |I|(cr)2 > M − 1

• Real World

– Mean :- m0 = |I| · 1
M

�
1− r

�
< m1

– So we want to find T such that m0 + tσ0 < T < m1 − tσ1.

– Variance :- V ar0[X] ≤ |I|·Var0[Ie] + 2 · 0 + 2B·Cov0[ I(i,j) , I(k,l) ] ;
. i,j,k,l are all distinct
≤ |I| 1

M
· (1− r)N

M
r + 2 · 0 + 2B · 5

M3

= |I|
M2 · r(1− r)N · 1 + 2B · 5

M3

≤ |I|
M2 · (M − 1) · |I|(cr)2 1

M−1
+ |I|2 · 5

M3

≤
�
|I|
M

· c · r
�2

·
�
1 + 5

Mr2c2

�
≤ 2 ·

�
|I|
M

· c · r
�2

if 5 < Mr2c2

• m0 + tσ0 ≤ |I| 1
M
(1− r +

√
2t · c · r)

= |I| 1
M

�
1− (1−

√
2t · c)r

�

• m1 − tσ1 ≥ |I| 1
M
(1− t · c · r) > m0 + tσ0 , if (1−

√
2t · c) > t · c

• If q ≥ 1 + 2
c

�
N√
M

�
and 5

Mr2c2
< 1 and t = 10

– |I| = 1
2
q(q − 1) > 1

2
(q − 1)2 > 2N2

c2M
> (N−1)2

c2(M−1)
= ( 1

rc
)2(M − 1) > N2

c2M

=⇒ |I| · (cr)2 · 1
M−1

> 1
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– Adv(q) > 0.98

– 5 < Mr2 · c2 = c2 ·M(M − 1)2(N − 1)−2

⇐⇒ 5 · (N − 1)2 < c2 ·M(M − 1)2

• If n is block size, c = 2
50

and t = 10; then the followings are sufficient for advantage of
adversary > 0.98

– no. of query ≥ 1 + 50 · 2(n−m
2
)

– length of query messages ≥ (4 + 5
3
· n)

– T = |I|
M

�
1− 0.417 · M−1

N−1

�

5.3 Covariance

5.3.1 Results for covariance

For (i, j) < (k, l) and (i, j), (k, l) ∈ I,

• In real world, Cov[ I(i,j),I(k,l) ] ≤
�

5
M3 for {i, j} ∩ {k, l} = φ
0 for {i, j} ∩ {k, l} �= φ

• In ideal world, Cov[ I(i,j),I(k,l) ] = 0

5.3.2 Proof of results for covariance

Covariance of Oracle1 (Ideal World)

• If (i,j) < (k,l); i,j,k,l are not all distinct
Cov1(I(i,j), I(j,l)) = Cov1(I(i,l), I(j,l))

= Cov1(I(i,j), I(i,l)) = Pr1[C
(i)
2 = C

(j)
2 = C

(l)
2 ]− (p1)

2

= 1 · 1
M

· 1
M

− ( 1
M
)2 = 0

• If (i,j) < (k,l); i,j,k,l are all distinct

Cov1(I(i,j), I(k,l)) = Pr1[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 ]− (p1)

2

= 1 · 1
M

· 1 · 1
M

− ( 1
M
)2 = 0

————————————————————————

Covariance of Oracle0 (Real World)

• If (i,j) < (k,l); i,j,k,l are not all distinct
Cov0(I(i,j), I(j,l)) = Cov0(I(i,l), I(j,l))

= Cov0(I(i,j), I(i,l)) = Pr0[C
(i)
2 = C

(j)
2 = C

(l)
2 ]− (p0)

2

= N
N
·

N
M

−1

N−1
·

N
M

−2

N−2
− (N−M)2

M2(N−1)2

= (N−M)
M2(N−1)

· (M−1)(−N)
(N−1)(N−2)

≤ 0
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• If (i,j) < (k,l); i,j,k,l are all distinct

Cov0(I(i,j), I(k,l)) = Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 ]− (p0)

2

= Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 = C
(k)
2 ] · Pr0[C

(j)
2 = C

(k)
2 ]

+ Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 �= C
(k)
2 ] · Pr0[C

(j)
2 �= C

(k)
2 ] −(p0)

2

≤ Pr0[C
(i)
2 = C

(j)
2 = C

(k)
2 = C

(l)
2 ]

+ Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 �= C
(k)
2 ]− (p0)

2

≤ 2 1
M3 +

3
M3 ≤ 5

M3 (probability is calculated below)

————————————————————————

Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 �= C
(k)
2 ]

Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 �= C
(k)
2 ]

= N
N
·

N
M

−1

N−1
· N− N

M

N−2
·

N
M

−1

N−3

= N(N−M)2(M−1)
M3(N−2)(N−3)(N−1)

= (N−M)2

M3(N−2)(N−3)(N−1)2
(M + 3)(N − 2)(N − 3)−N(N − 5M)

= p20
1
M
(M + 3)

= p20 + 3 · 1
M

· p20
= p20 + 3 · 1

M3

————————————————————————

Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 = C
(k)
2 ]

Pr0[C
(i)
2 = C

(j)
2 ;C

(k)
2 = C

(l)
2 |C(j)

2 = C
(k)
2 ]

= Pr0[C
(i)
2 = C

(j)
2 = C

(k)
2 = C

(l)
2 ] = 1 ·

N
M

−1

N−1
·

N
M

−2

N−2
·

N
M

−3

N−3

= 1
M

· p20 · N−2M
N−2

· N−3M
N−3

· N−1
N−M

≤ 1
M

· p20 · 1 · 1N−1
N

· N
N−M

≤ 1
M

· p20 · 1 · 1 · 1 · 2N
2N−N

≤ 1
M

1
M2 · 2 = 2 1

M3
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5.4 Indexed set and Indicator variable

1. Indexed Set :Let I = {(i, j) : 1 ≤ i < j ≤ q} be indexed set.

(a) |I| = 1
2
q(q − 1)

(b) Now i < j < l ⇔ (i,j) < (j,l) ; (i,l) < (j,l) ; (i,j) < (i,l)

(c) |{(i, j, l) : 1 ≤ i < j < l ≤ q}| = �q
l=3

�l−1
j=2 (j − 1)

=
�q

l=3

�l−2
j=1 (j) =

�q
l=3

1
2
· (l − 2)(l − 1) =

�q−2
l=1

1
2
· l(l + 1)

= 1
2
· (q−2)(q−1)(2q−3)

6
+ (q−2)(q−1)

2
= 1

12
· (q− 2)(q− 1)[(2q− 3)+ 3] = 1

6
· (q− 2)(q− 1)q

(d) (i,j) < (k,l) means either i < j and i < k < l or i = k and i < j < l
So (i,j) < (k,l) means
either i < j and i < k < l and i,j,k,l are all different
or j = k and i < j < l
or j = l and i < k < l
or i = k and i < j < l

(e) |{((i,j),(j,l)) ∈ I×I : (i,j)< (j,l)}|= |{(i, j, l) : 1 ≤ i < j < l ≤ q}|= 1
6
·(q−2)(q−1)q

|{((i,l),(k,l)) ∈ I×I : (i,l)<(k,l)}| = |{(i, k, l) : 1 ≤ i < k < l ≤ q}| = 1
6
·(q−2)(q−1)q

|{((i,j),(i,l)) ∈ I×I : (i,j)< (i,l)}| = |{(i, j, l) : 1 ≤ i < j < l ≤ q}|= 1
6
·(q−2)(q−1)q

(f) B = |{((i,j),(k,l)) ∈ I × I : (i,j) < (k,l) and i,j,k,l are all distinct }|
=1

2
· |I|(|I|− 1)− 3 · 1

6
· (q − 2)(q − 1)q

=1
4
· |I| · [ 2 · |I|− 2− 4 · (q − 2)]

=1
4
· |I| · [ q2 − q − 2− 4q + 8]

=1
4
· |I| · [ q2 − 5q + 6]

= 1
8
· q(q − 1)(q − 2)(q − 3) < 1

2
· |I|2

2. Indicator variable :If Ie be indicator variable and E[Ie] = p and e, e1, e2 ∈ I then

(a) Var[Ie] = p− p2

(b) E[
�
e

Ie ] = |I| · E[Ie] = |I| · p , where e ∈ I

(c) Var[
�

e ∈ I
Ie ] = |I|·Var[Ie] + 2 ·

� �
e1<e2

Cov[ Ie1 ,Ie2 ]
�

= |I| · (p− p2) + 2 ·
� �
e1<e2

Cov[ Ie1 ,Ie2 ]
�
, where e1 < e2 .

(d) Cov(I(i,j), I(j,l)) = Pr[C
(i)
2 = C

(j)
2 , C

(j)
2 = C

(l)
2 ]− p2 = Pr[C

(i)
2 = C

(j)
2 = C

(l)
2 ]− p2

Similarly Cov(I(i,j), I(j,l)) = Cov(I(i,l), I(j,l)) = Cov(I(i,j), I(i,l))

= Pr[C
(i)
2 = C

(j)
2 = C

(l)
2 ]− p2

5.5 Helping Calculations

1. constant: c and t are constants such that c > 0, t > 1, t · c < 1
1+

√
2
. t has

impact on advantage and c has impact on query. . Consider a sequence {kn} where
(n · kn − 1)2 ≤ 2 · n2 < (n · kn)2 and (n · kn) ∈ N . Then

√
2 < kn ≤

√
2 + 1

n
. Then

we can replace t · c by suitable 1
1+kn

. Example, for n = 2 we have k2 =
3
2
and c = 3

5
· 1
t
;

for n = 31 we have k31 =
44
31

and c = 31
75

· 1
t
.
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2. Let q ≥ 1 + 2
c

�
N√
M

�
, and r = M−1

N−1

3. r(1− r)N = N−M
N−1

· N
N−1

· (M − 1) < M − 1

4. M ≤ 1
2
N ; and let N ≥ 10 , then

N(M − 1)(N − 1) − (N − 2)(N − 3)M
< N(M − 1)N − (N − 2)(N − 3)M
< N2(M − 1) − (N2 − 5N)M
= N(5M −N) ≤ N(5

2
N −N) = 3

2
N2

≤ 3N(N − 5) ≤ 3(N − 2)(N − 3)
So, N(M − 1)(N − 1) < (M + 3)(N − 2)(N − 3)
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