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SOME TOPICS IN THE THEORY OF ORDER STATISTICS

1. Introduction

Take a sample (X{, X5, +.., X;) from a population and rearrange

the sample values according t0 their magnitudes

Xl < ng_...g Xn
Xi is called the i-th order statistic, and ‘the total of Xl,..., Xn is
called the order statistics of the sample, The termm order statistic in

the wide sense, conmnotés some statistics which relate with the statistics

above mentioneds:
(xl + xn)/z, (X, -_xn__l)/(xn - Xl.)’ etc,

We can say that it is a combination of the techniques used 'in conven-
tional statistics with thoese of rank order statistics.

In the first volume of the journal Biometrika (1901-02), Francis
Galton presented thé following problem. In Derby 'or 'in Some race only
the first and the second placé winners are swardsd the i)fizes. ‘The sum
of prize money is fixed. Then what is the rational ratio of the first v
prize to the second ? He suggested the rat'io"(E.‘(Xs) - E(Xl)) ‘(E(Xj) -
E(Xz)), where Xi is the ith order statistic of a normal sample. In the
same issue of Biometrika Karl Pearson studied the ratic. This is one of
the earliest works on the theory of order statistics.

The subsequent works of this field of statistics cover the wvarious
subjects, which may be classified in the following way.

(In most cases the nomality of the population distribution is agsumed).

POTOOQ
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Test for rejecting the outlying observation
Smirnov - Grubbs! test
(X, = X)/s = 2(X;== X)"/n
Dixon's test
(X, =X,/ (X,
Test for normality
David-Hartley-Pearson &, - Xl)/ 8.
Test for homogeneity, Multiple comparisons.
Studentized range (}-(n - il)/ s
Maximum F-retio S.max./<S min,
Short cut method
Use of range instead of standard.deviation in statistical
inferences
X - R chart,: R/d2, (X -w)/R, X + CR,
(X - 1)/R, R max/R min, etc,
Systematic estimate
Limit. distribution of extreme statistics (large sample
theory).
Non~parametric methods
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@. Moments of order statistics

The inverse function x(F) of a cdf. F(x) suitably defined at the
discontinuous points is called a representative function. For most of
usual distributions x(#) is not simple ,and numerical methods are neces-

sary to obtain the moments.

. 1.
(X)) =/ ¢ Lol
(6]

" F n-2
E(xnxl)_= [ [ n(e~1)x(F) x(6)(F-G) ~ dGdF .
o O

With the development of the electronic computers, many tables have
been and will be published. For normal distribution H.Ruben (Biometrika
1954) and D. Teichroew (AMS, 1956) are useful.

If x(F) = F the distribution is uniform on (0, 1), the moments
of order statistics are easily computed.. From these values the asympto-
tic formulas.for the moments of transformed variables are obtained.

C.E.Clark and ¢.T.7illiams (AMS 1958)

m
n+1

=1 = = = 1
. q Xp X(P)’ f F(Xp)

2

‘ B 1 pq ) §f'~ff " 2 - S -]:.- .
E%n) T T o3 TS ) A "Lh?.;_)

viy .._l_ Pa_ _ it- 2 ol i —L-
V(Xm) B f2' n+2 f4' '(11+2 i(n+:3_ ) = 0( 2)

n

i}

For example, the.expected value of the median (say R ) of N.ranges in
normal samples of size n can be computed from the formula:

P.T.0.
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E(R)/o =

Robustness of rénge

-

1. )

dm + Nj_2+O(N2 ), when N 1is odd
dm ¢ e+ O 1 ), when N ‘is’'even

AT 2

n dm e

2 0.95367 0.29519

3 1.588 0.162

4 1,978 0.124

5 2257 0.108

6 2.472 0.098

7 2.645 0.093

8 2.791 0.090

10 0.084

3.024

The ertrect of non-normality to the conventional statistic is an

importaht problem for practical applications,. Special attentions htg

been paid to

the expected value of sample range, The values of

B(R)/0 for several distributions are shown below (Tsukibayashi,. Rep.

Stat. Appl. Res.s; JUSE 1958).

n Rectang.  Triang. Exp. }(2 df=d Normai Upper

' - . _____bound
2 1,547 1.1314 1.0000  1.0607 1,1284 1,1547
3 1l.9321 1.6971 1.5000  1.5910 1.6926  1.7%1
4 2.0785  2.0472 1.8333  1.9392 2.0588  2.0840
6 2.4744 2.4696 2.2833  2.3994 2.5344  2,5533
T 2.5981 2.6095 2.4500  2.5665 2.7044  2,7441
8  2.6943 2.7222 . 2,599  2.7082 2.8072  2.9208
10 2.8343 2.8940 . 2.8290  2.9394 3.0775  3.2444

comtA
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The -expected values are affected little by the mon-normality. ‘They are

close to each other and close to the upper limit, which is. proved in the

following theorem.

Theorem (Plackett-Moriguti): Whatever e the distribution,

0.< E(R)/0.£

where

Equality holds when
2n-1 m-1 {1 - F)n’i-l -

x(F) = ¢ 'é‘(f_g;') Fl.

4. Systematic estimate

The distributions which belong t6 the class of distributiong
{F(;c:ﬁ J0): m0 B <o, 0 <G < oo} are 88id to be of the same type.

The linear combinations of the o¥der statistics of a sample from
F(x-'p/o), as estimates of U or O, are named s¥stematic estimates.

Ex. Sample range, Midrange, Median, Arithmetic mean.

The systematic estimate which is unbiased and has the minimum
variance is called the btest s.c.

Best systematic estimate.

Let Xl < ene £ Xn be the ordered sample from the contindous
cdf. PF(x), and lat

b(Xi) = o

]

V(X)) = Ty V(XX = 4, [w:1= W

P.T.O.
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Then if ¥, < ... < ¥ is the ordered sample from the population
with cdf. F(y-p /0)
E(Yi). = }L + Goci
and the errors €., =7, - E(Yi) haw the variance-covariance matrix WOZ.

Put

2k it ] ol

Y
T= (1)

% %1
i) o= e= ()

n
Y=P9+8‘

Then the best estimate is obtained by

o= (o0 )5 » Y
Bx. 1.  Uniform distribution on ( - /3, /3)

T 2T wnel
n+l

12r(n-s+1) r¢s

W= ~=/,
TS (me1)? (ne2)

«, = /3

f—.). - §n+112} §n+2 ) 5 -1 o

=>

1
~»§-(Y1 + .Yn)
';‘ - o+l

(Y
2 [3(n-1)

Ex, 2. Normal distribution, H.Godwin (Hiometrika, 1949)
=Y =
b= Y G =2 s, Y,

- Yl).

contd,
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n=>5 gy 8y = & 0.37238
84, 8, = & 0.13521

So = 0

V(3 Y = 0.135352 v(s/ ¢,) = 0.13177.
Ex. 3. Exponential, F(X) = 1 - exp.(~x)
= (oxy = B/(n1), VR = Yn(n-1)
- @ - 1)y (), ¥(E) = Y(a-)
/\
E(Y) = =3

Other examples

>

F.Downton (AMS, 1954) single triangle

A.E. Sarhan (AMS,1954) double triangle, U shape
Parabolic, skewed.

The case of single parameter
P(Y/0)
= (ar () oc)"1 a () Y.
In the nomal sample of size 5, if upper 2 observations are lost.
A
b= ~0.06377 Yl + 0.14983 Y, + 0.91395 Y,
}‘ g Y
0 = -0.76958 Y1 + 0,21212 Y5 + 0.98170 Y3
v(ﬁ) = 0.61123
A
v(8) = 0.69571.

A.X. Gupta,(Biometrika 1952)

P.T.C.
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N A ) 1
u=‘zb1 Yiyo=ZCiYi’ l==I’1+ 9 v e n r2

b, = - — ’
- - -2
i nery-r, Z(uj - %)
J

(u, -u) , 1 ATy
c, = 2 5 U = ———— > u,
RO )2 BT T2 jerosl
J
The orem (Lloyd, Biometrika 1952)

V(l].b < Oz/n

Equality is true when W }'= e

5. The limit distributions of the extreme observations

The study of the limit distribution of the largest value is
nothing but the investigation of the asymptotic behaviours of the cdf
Fn(x) when n increases infinitely, But, t,b.y_tnderstand its meaning
from the view point'of statistics, the following characteristics are
useful. The 'characteristic largest value!, w3 F(%) = 1 -,-_.l/n.
The 'extremal intensity function?, @ ¢ O‘h = u(uﬁ) = nf(un), where u(x)
is the 'intensity function', B(x) = £(x)/(1-F(x).

Three initial distributions; Exponential, Pareto, Limited

distributions are typical.



1. Exponential
Tnitial distribution
Characteristic largest value
Asymptotic distribution

2, Pareto

Initial distribution

Characteristic largest value

Asymptotic distribution
3. Limited

Tnitial distribution

Characteristic largest value.

Asymptotic distribution

1 -exp(-ox), a>0, x>0
I explau ) =1

exp (~exp a(x = u ))

exp (=(z - t‘:/un - e)‘k)

Wel <X (W
k
n(w - un) =1

e (<0 - 55 = 0.

Such important distributions as logistic, normal, chi-square,

logarithmic normal, belong to the exponential type, although

for some of them the limit is approachea sivwiy.

Three asymptotic distributions are derived from the stability

condition (Fisher~Tippett, 1928)

Pl (x) = F(a x + bn).
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The necessary and sufficient conditions for the existence of
three distributions of largest values are ootained by B. Gnedenko

(1943).

The first asymptotic, the double exponential distribution, is
fit to investigate many phenomena. For the applications, the proba-

bility paper is of great use.

6. Bivariatée extréme statistics

Safe blast:  When dynemite is used to blow-up rocks, meny sticks of
dynamite are charged in separate positions and exploded by electric
detonators which are connected in a series circuit. - An electric
detonator consists of two parts, that is, the initiating explosive
around an electric bridge and the larger cha'r'ge of "sensitive high
explosive. Béing heated by the bridge the initiatiﬁgaexplosive Yegins
to fire, and in next the larger charge is fired by flying sparks. The
éxci_tation time X, which is necessary for ignition, and the bursting
time Y, the time from switching-on to the burst, aré the wmain
cheracteristics.

When n detonators are connected if Xmas is larger than Y min,
1i.  at least one stick of dynamite misses fire. Then, the maker of
detonators must control the process, so that the probability to miss

fire is small enocugh,
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Limit distribution of (X max, Y max) is discussed, The condi-.
tion under which X max and Y max are mutually asymptotically indepene-
dent is obtained. 1In the bivariate case, types-of the limit joint
distributions are variocus. The possible forms are found.

pefinition.:: Depehdence function L—)_ (G,H)s

F(x, ¥)= () (e(x), H(y))a(x) H(y)

The oren -
LG, H) < () (e, H) <U(G, H)
U(G, H) = min (1/(;’, 1/H)
L(G, H) = max (0, (G+H-1)/GH)
Theoren.

If the function P(G(x), H(y)) = Pr(X > x, Y > y)

converges to zero as G and H approach 1 in such = Way that
P(1~-s,1~38)=o0(s)
X max and Y max are asymptotically independent, and vice versa.
Theorem.
the

If P(l-s, 1-8) = s-0(s), dependence function of (X mex,
X min) converges to U(G,H).
Definition.

The distribution of (X max, Y max) is said to be stable with
resgpect to dependence, if

or %™, g¥my . ) (¢, 1)

for all n.
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Theorem.
(X max, Y max) is stable, if and only if

1;).(G' H).= Gx(log E/IOg @)

where A(x). 0' . < oo is a convex function.

7. Cutting out procedures for material with Poisson defects

Material with one-dimensional extension is sent to a market,
after being cut out into parts of @ unit length. If a cut out part
contains mofe .than ¢ (say) defects on it, it is rejected. Four
procefures are suggested.

Proc.1l. Simple cutting out, Starting from the end point we cut
out the intervals. of ﬁﬁit,lengﬁh,;and inspecting defects we reject the
intervals with more. than ¢ defects,

Proc, 2. Sequéntial cutting. out. - From the end point we measure
the interval of unit length aﬁdAcdunf»the nuﬁﬁer of défects.~ If it is
less then or equal to ¢, we cut out the interval, and otherwise we
move the origin of measurement~to.@he1position of. first defect and
count again the humber of defects on thé interval of unit length. In
this way we continue to measure the interval of unit length until it
does not contain more than..c defects.

Proc. 3. Cutting out the interval of length , (1 < L<-2)-~. e
cut out intervals in the seme way as iw Proc. 1, .

but those of length

Q . If the defects are situated near the end points, we cuﬁifhe end
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parts to get a unit interval containing not more than ¢ defects.

Proc. 4. Cutting out the interval of length g.(z < L< 3).

In the same way as in Proc. 3, we cut out, if possible_two unit inter-
vals to be accepted, and if it ig not possible to get the two, we try
to obtain an inierval.

As a measure of performance c¢f these procedures the yield, that
is the.ratio of the expected léngth of‘accepted?parﬁ%Z;mat of the
original material,is computed for each procedure. The defects are
assumed to be distributed according to the Poisson process with

parameter A,

Analysis
Proc., 1.

C . .
- e™N A /my
m=0

The yield is Py

Proc, 2.
Iet X be the distance betwsen the ith and (i+1)th defects,

and the event Ai be

A, +T. >1> T -1, where T. = max > .
ATy i i 1¢5¢i k=3 Xk
Then the yield is

i-1 -1
Pp= By 2 X5+ ld %}{Pr{f%}}*

when ¢=0 P2 - A(eA - 1)

Proc. 3.

Iet O = Uy €0p < vee KT < Um+,’i be the order statistics from

1

the wniform distribution on (0, 1).
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mgec
D (m) L) 1/{},, m>e
Jj £ m+l J
The yield is N e_}\& ?\91 n
P, =7 3 p3(m3—‘mig"")'
3 v m=0
S N AN/
e o }f,) 2 U oh oMy
Loy eae -+ e™ - .
°=1 'P5=‘L»[{}\(/Q‘ ' [ 1 4e1
w ka+c+1 U < 1/g k =0y Lreees
The event Al 1 - 15 1/1,
l+C+ k =n+l, By .a.y j+l,
/(Uk “ U1 S l/i
The event Bj :\LUj i Uj-c-l N 1/2,
S u.-u >2/
pyo) - o0 2,0 Loy o> 2/ ]
V() = Pr{l\. OsO oy -y g2/
p)m ol 3
1 32 () M oLy
P, = .QT .HEO (2p4(m) + p4(m =
c =0

P4=e-)\‘§ +1é>\j —ZA{?\}lT.z)\—}.,

For ¢ =0, 1, 2 numerical values of the yields Pl, oo P4
Q. =

ted, Some of ,them were obtained by Monte Carlo methods.
were computed. TY ;
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CIOAPTER 1

INTRODUCTION

‘In recent years there has been an enormous growth in the methods
of non-parametri‘c analysis, The bibliogr_aphy. .on non-parametric sta-
tistics and other related topics by Savage (1953 ) runs to 63 pages in
the Journal of the American Statistical Association, and this gives a

fair idea of the recent growth in the subjé‘ct;

It is well nigh impossible to examine and deal with this huge
literature in the course of our lectures., The subject of non-parame~
tric methods can be broadly divided into two parts - its 'test of
significance '..aspect and its 'analytical! aspect. We will mainly deal
with the tanalytical! (in parts I and II) and briefly touch upon the
recent discoveries made at the I.S.I. (in part III), which normally
belong to the 'test of significance! domain.,

The ttest of significance! approach may also be called the
tdescriptive! approach. In this approach, we have a null hypothesis
in mind and set of alternatives, at times only vaguely defined, against
which we wish to propose some tests.' The tests are usually hased on
'measures of divergence' computed from the sample, which have the pro-
perty that, measured from the population they assume a value a, for

the ‘distributions of the null hypothecis and a value # 8 for
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distributions in the alternative. Iarge deviations of the 'measure of
divergence! from a, frm the critical region. uch tests are usually
easy to propose, These tests become' Inon-parametric! or 'distributicn
freet if the exact or at least the approrimate _sampling distributions
of the test functiun is independe__nt of the parent distribution. The
eva.Z_Luation of the sampling distribution of these tests is the more
difficult problem in many:in_s_tances.

One of the first instances of this approach is the famous dis-
crepancy )(2 of Karl Pearson (1900). The discrepancy }(2 statistic is
a "measure of divergence'! between the sémple and thé‘ distribution of ’
the null hypothesiss and the limiting distribution of this statistic
under thé null hypothesis was established to be a )(2 distribution.
Other great pioneers of this approach are Fisher (1935), f’itman (1937),
(1937a), (1937vb), Mosteller (1948) and others. An exce.lle‘nt account
of the §vorks of these and :other pioneers is gi;ren in Siegal!‘s (1956)
book.,

In Part III of our lectures we shall deal with some new methods
of estimé.fion of the density function by Parthasarathy (1961) and the
methods of fixed interval analysis and fractile analysis first formula-
~ted by Mahalanobis (1958) and (1961). Work on the 1étter topic has
been done by Tskeuohi(1961) and the author (1961) »(19%1aY, The- rpsults i

this connection are still in their infancy and these actually belong

to the domain of the ttests of significance!,
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It is to be admitted that the 'tests of significance approach
is the earliest phase of vafll non-parametric procedures, The success
of this phase depends on the penetrating i.rﬁruition that should be
exercised in order that the tests proposed actually rrsgess certain
optimum prqperties. Thus it is very necessary that we have a general
theory of non-parametric methods which starts with a gene.ral get up,
defines some optimum properties of tests, examinees whether the tests
based on intuition‘ possess the optimum properties and develops general
techniques of obtaining tests with these optimality criteria. Such
an approach could be termed as the ‘analytical' approach. For deve-
loping this approach it is necessary, af the outset, to review the
techniques of the 'analytic' approach to parametric problems, prefe-
rab}y in a more g_eneral set up, and then, to proceed to apply them in
non-parametric problems. Such a review can be found in the notes by
Lehmann (1949), (1950) and ILehmann (19502). The special techniques
that are suited to nori-parametric problems were developed by the
pioneers Iehmann and Stein (1949), Iehmann (1950a), (1951), (1953) etc.
An excellent and satisfying account of these topics is given in Fraser
(1957). Ve hope to follow this book in our lectures, This comprises
part I of our lectures.

The theory of limiting distributions plays a central role in
probability theory. Under the name of asymptotic distribution theory

it is very useful in Statistics. The parameter, n, that tends to
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infinity in these limit theorems is usually the sample size and in
those instances whers small sample distributions are difficult to
obtain or compute, the asymptotic distributions which are easier to
obtain, serve as convenient approximations., Thus the general theory
of limit distributions céan be very helpful in non-parametric problems
also. There are also somé limit theorems that have been developed
specially for'non-parametric'problems.' The results of Hoeffding and
Robbins (1948), Toeffding (1948 Y, (1951), Wald and Wolfowitz (1944),
noetner (1949), Mood (1940), etc., can'be quoted in this context.

The results of the present author (1961b) are also useful in meny
gsituations, We shall gdeal With‘these results in Parf IT of our

lectures.
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METHODS OF NON-PARAMETRIC ANALYSIS



CHAPTER II™

GENERAL TUEORIES OF INFERENCE
2.1, The decision theoretic. approach.

The general problem of statistical inference can. be mathematically
sunmarised as follows (*', S’) is the sample space together with an
associated o-field of events. P, for each @ () is & probability
distribution., (Ve shall adhere to this notation throughout this book,)
On the basis of a random oObservation x some inference has to be drawn
about @6, the classifying index of the true probability distribution on
(% , S). For this purpose we can define (} tne class of all inferences,
a, which we would like to make. AS soon as X is observed we méke an
inference or a decision, d(x), which is a2 member of é@ . Thus the
procedure of _}inference that we adopt can be viewed as a function 4
from X into (& . 4 is called a decision function. It is also possible
that the statistician chooses one of the inferences from Q at .random
when x 1is observed instead of choosing a fixed member d(x). This may
e called a randomised decision function, denoted by b'x‘(.), which for each
X, is a measure on (@,67) where ./ is some suitable 0-field uf subsets
on (X .

The statistician will then tgke into account the loss involved
in making an inference a when the true situation is that dehoted

by 6. For this we have the lees function, denoted by W(a, ©) » real

valued non-negative function oriax L_)_ . The average loss or the

-5
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risk, R(d,e), in using @ decision function when € is true is
R(d,8) = Ee(w(d(x), 8)) =»/ w(a(x), 8) dp,

and R (9,8), the risk in wsing bx(.) is given by

R (2,6) = [ [ W(a, €)d, (da)p,(dx)
x A

where it should be assumed that 9_(A) for each A and d(x) are measura-
ble functions.

The performance of a decision function is judged by ‘its risk
functien.,
Definition: ~ A decision function 0 is said to be a uniformly mini-
mm risk decision function (UMRDF) if R (9,6) < R(D',8) for any deci-
sion function O0' and any 6.

Such UMRDF do not exist in general. There are certain problems,
where Wwe can produce UMRDF within a suitably restricted class of deci-

sion functions.

Definition: Iet M(®) = sup R(D8). D is said to & minimax decision
. o 0 .
function (MDF) if M(d) < M(d') for any other decision function d°,

quite often M(D) = oo for all decision functions O so that

the above definition does not provide an optimal decision function

There are other problems where non~trivial MDF's exist. The minimax

property stated here is related to the mogt stringent property defined
in section 2.3. |

Definition: A decision function d is said to be inadmissible if
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there exists another decision function d¢ such that
r(2,8) > Rr(d',8) for all 6 .

and R(2,6) > R(d',8 ) for some 6

A decision function is said to be admissible if it is not inadmissible.

Admissibility should be a property possessed by any decision
function that is to be used in practice. There are several techniques
of obtaining admissible decision functions, but we shall not relate

them here, for admissibility alone is not an optimum property.

Definition: A class D of decision functionsis said to be a com-
plete class if for every ® £ D there exists a d3'¢D such thét
Ry(8) 2Ry, (6) for all e.

One of the importani.: problems of decision theory is to obtain
a complete class. One can refer to some of '#&1d's results in this
connection, for example see Wald (1950).:

All the main problems of inference, namely point estimation,
testing of hypothesisy rconfidence intervals and tolerance regions can
‘be -treated by the:general approach outlined above by suitably choosing
CQ and W(a;8). As an il‘lustration,-&_ can be taken to be -the range of
"g(8) in the point estimation of a real valued function g(8) . W(a,e)
can then chosen to be (a-g(€) )2 if the mean square deviation is to be

the criterion of the performance of our decision procedure.
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The following lemma shows that randcnised decision procedures can
be ignored in the above point estimation problem and other similar
problems. Let CQ be an interval in Rk’ the "uclidean space of k=dimen-
sions. ILet the loss function W(a, ©) be a convex (downwards) function
of a for each 9.

Lemma‘z.l. In this case corresponding to each randomised deci-
sion functidn O there exists a non-randomised d2cision function d such
that

R(d,8) < R(d,8) for all- e.

Proof: Define d(x‘) = [ abx(da).

. D :
Now R(d,8) = [ W(a(x),0)apy = [ [W( [ ad (aa), &)Jap
X | x 1 7
<[] w(e,8)0 (ca)]dpg
YD
= r(0,0).

2.2. The estimation of real valved functions of the parameter,

The problem herc is the estimation of a real ve lued function
‘g(e)‘of © on the basis of an observation x. @ is the range of g(e).
1et the loss function W(a,e) be convex (downwards) for each 6. This
is satisfied by the c.;c;nVen'vtictma’l ch§ices of the loss ifuhctidn pamely,
~W(a,8) = 1 a - g(o) Ip’ p2 1. Theorem 2.4, otherwise called the Rao-
Blackwell theorem Wwith the Lehmann-Scheffe extensién is the fundamental

result in the above situation.
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Definition:  t(xY is said to be a sufficient statistic for the family
of distributionsin} if the conditional -distribution of x given

t(x) = t is independent of © (a.e. Pg)'

Definition: A statistic t(x) is said to be complete with respect

to a family of distributions §p'g}6n (€, s) if for any function £ of t,
B £ (s(XN] = / £(s(x))apy = 0 for all o
X
implies that f(t(x)) =0 a.e. JP }+

Definitions A statistic s(x) is.said to be an unbiased estimate
of g(e) if
EQ(S(X)) = g(®8) for all o.
Temma 2.2_; if s(x) is unbiased for g(8) and t(x) is sufficient
for ng} then there exists a function u of t .such that
R(s, ©) > R(u, &) for all 6.
Proof :
Let u(t) = Eg(s(X)It(x) = t). (1)
It is to be noted that the right hand side does not depend on 8. It is
obvious that u is unbiased for g(8). Now from (1) we have
wu(t), ) < B(W(s(X),0)I1t(x) = t)
Teking the expectations over the distribution of t we tave
r(U,8) < R(s,0).

COrbllary 2.3, The class of estimates depending only on t forms



a complete class among the class of all estimates.
Theorem 2.4, ILet t(x) be a statistic complete and sufficient

with respect to{P }'. If. s(x) is unbiased for - g(8) there exists a

e
statistic u depending only on t which is the minimum risk unbiased

estimate (MRUE) of g(8).

Proofs- Let u be defined #s8 in (1). Now let s'(x) be any un~
biased estimate of g(8). Define ur(t) = B(s'(X) | fl(x) = t). Then
R(s',6) > R(u',0) and u' is unbiased for | g(e). Now Ee(u(T) - ut(T))
= g(6) - g(6) =0 forall & . Tence u(t) = u'(t) a.e. Thus
R(W,8) = R(u',G){_(_R(.s_; ¢) This completes the proof.'

Corollary 2.5. Every function of t is the MRUE of its expec-
tation.

Corollary 2.6. Every function of @ which is unbiasedly estima-

ble possesses a MRUL‘.

2.3, The theory of testing hypothesis.

In the theory of testing hypothesis there are only two elements,
al, and 8y in the space of ac'tions(} . &8, corresponds to the statement
16 is in - wt r:\.nd"a2 to the statement '8 is in _L—)_ - W,! where W is
some fixed subset in () .. One of the actions (say al) is usually called
the null hypothesis, !, and .the other is called the alternative, A. In

. s Ae

practice the null hypothesis corresponds %o the situation sanctioned by

Previous experience and the alternative takes into account the possible

changes that might have set in the »ld situation. The problem is to
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find out whether such a change has occurred.
alternative are not set on a commen footing.
some protection against making the decision
oEw,

defined by (3).

Thus the hypothesis and
We Would like to seek

8, too often when actually

This is made by fixing 'The size' of our decision procedure as

The special nature- of (7 makes the loss assume a simple form:

{ o if
W(a, ,8) =i
W, (8) if
A if
w(az,e) = e{
L © if

e EwWw
e ()-v
e EWw

ee()~-w.

Any nonsrandomised decision procedure d(x) is of the form

if XEW.

i(x) = a; if xeX~-¥ and a(x) = a Such a procedure

2
involves tHe acceptance of T when x€XaW and rejeétion of 11 when xEW,.
W is - called the eritical region., A randomised decision function bx
ig for each x a distribution assigning probabilities’ 1 - ¢ (x) and

p (x)

with which T is rejected when x 1is observed and is called a test

a

land a,

to the points vespectively.  f(x) is the probability

2

function. W¥e can easily see

B(# ,8)W,(8) if e 2w

R(2,8) = R(#,0) =((1 .. (2)

(¢ 807, (e) if ee ()
where B(f, 6) = By( ¢ (X)) = [ # (x)aFg -
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B(p ,6) is called the power of the test 7 and it is the probability
of rejecting H under the distribution P . From (2) we see that we
should minimise B( #,8) for each 6ew and maximise B(g ,8) for each

ec j_‘)_ ~w to obtain tests with smaller average loss.

Definition: The size, x, of a test ¢ is defined by the relation

o« = sup B(¢ ,8) cee (3

ecw
Definition: If C is a certain class of tests, then ¢* €C is said

to be most powerful in C if

B(g *,8) > B(F ,8) for ecch o€ () - and each ¢ in C.

The following theorem called the Neyman-Pearson Iemma is of funda-
mental importance in the theory of testing hypothesis. All the techni-
ques 1in this theory are consgquences of this lemma.

let X be.a random variable with a density function f(x,6),

ee(") ={-o, 1'}. H: 9=0 As 6 = 1. (This notation, to be unsed repeated]

hereafter, means that H =’{9

Theorem 2.7. There exists a size o test ¢ * which is most power-
ful in the class, Ca’ of all tests of size g. Constants a and Cy
0£2<1l, 0{c o can be found so that @* can be written in the

form

v
o

f . i 9(x)
Lo RIS

0 if 9(x) <c

§r(x) =

"
o

.o ()
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where Q(x) =

Proof: The proof of this important lemma is elementary and is
found in many text bookss for instance in Fraser (1957), Lenmann
(1949), and 'so is omitted.

When the hypothesis or alternative contains only a single point
it is said to be simple. Otherwise it is said to be composite. The
Neyman -Pearson lemma finds the most powerful (m.p.) size o test when
both the hypothesis and alternative are simple. We shall see below
how we can adapt this lemma to yield m.p. size o« tests in other
gituations.

Iet the hypothesis, E : 6tw, he composite and the alternative,
.Azeeiv)_-w ={é'}, be sim:p'le. C, is the clags of all tests of size q
for this problem. In such situations we can sometimes use the techni-
que of lsast favourable distributions to obtain the m.p. test in Coc'

Iet us take a point GO in w s0 that P@ resembles Pe very closely,
o 1

Iet Coc(go) denote the class of all tests of size o for the problem
H+6=0,A0=06. Iet ¢*bethe mp. test in ¢ (8 ). If p*
can ‘be fshown "o be in G, then ¢ * is m,p. in C, Insuch a case g
is called a least favourable distribution in w . In certain other
gsituations we may use a mixture of the distr,i“butions invw, obtained
from some a priori distribu‘bibn, to play the role of GO. In such

instances the a priori distribution is defined on a suitable o-field
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of sets in w which makes PQ(B) a measurable function of @ for each
B es.
Definition: A test ¢ is said to be unbiased if B(P ,6) > a for all
ee()-w where o is the size of the test.

Unbiasedness of a test is a desirable property in as much as
thé probability of rejection of the null hyvothesis at a distribution
" in the alternative should not be smaller than at a distribution in the
hypothesis; A m,p. size o test, whenever it exists, is always unbiased
gsince it is more powerful -than the test @ (x) which is identically
equal to q. It often happrens that in situations with a composite
alternative there 1s 1o m.p. test in C(x’ the class of tests of size
&, but there exists a m.p. test in Cg, the class of unbiased size
tests, Thus unbiasedness may also be helpful to restrict the class
of tests in .the search of a m.p. test. |

The condition of unbiasedness is not easily algebraically expressed,
There is another condition, which may not be a very desirable property,
but is easily amenable to algebraic methods, and this s ihe- similarity
of a test..
Definition: . A test . is said to be similar of gize o if

£( ¢9) = « for all © & w .. (5)
Consider the situation where the distributions-{Pe} ’ Qew admit

of a sufficient statistic t(x) = t.
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Definition: A test ¢ (x) is said to e of Neyman structure, if

Eg( FX)1t(x) = t) = « for all t and for all Gew ... (6)

We note that for each 4, the conditional distributions
'PG(. 1t (x)=t) = Qg can be indexed by 6 varying in {o, f_l_w%, where
Qf, = Q; for some G(and therefore for all e) in w. Thus if we use
tests of Neyman strﬁcture, the problem of testing \m'ou;d_,_ for each %,
correspond to the problem H : 6 = G, 4 3 66 ( ) ~.v, that is asproblem
with a simple hypothesis instead of ¢ ccaposite hypothesis. The
following theorem (Theorem 2.8) shows thet under certain conditions

the restriction to tests of Neymar structure is equivalent t0.the

restriction to similar tests.

Definition: A statistic t(x) is boéundedly complete if Jt(x)| < K
and _EQ(t(X)) =0 implies $(X) = 0 &.e. {Pg}...

Theorem 2.8, A necessary and sufficient condition that all
similar tests are of Neyman structure (with regard to the sufficiéent
statistic t(x)) is that t(x) is boundedly ccmplete.

Proof: Let t(x) be boundedly complete and ¢(x) be & similar
test of size a. Iet Lf (t) = E,( ¢ (M 5(x) = t), eew, - Then
0 < \y (t) <1 and Eé(dy.(w)) -« for ©EW. Sinoce t(x) is boundedly
comélete we must have Wb (t)...- o =..Ov. a.e. QZ . and hence ¢ (x) is of

Neyman. structure.
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let '\’/(t) be a function of t such that | f\i/‘(t)l < X and
. . f () + X _
Ee;(my(t)) = O for all eew, Consider the test % - @(x)

which is similar and of size 4. So it should be of Neyman structure,

)+ kg . ‘ o
T =%, Thus - () = 0 a.e. Qe

Consider the sample spacs (X,S) and the family of measures{Pg?,

that is,

ot (). Iet G beaclass of 1~1 transformations of X .onto

itself. The product gigz of two transformations g1 and gzl'is defined
as (glgz)(x) = gl(gzx). Iet Gbe a group of transformations under this
then gX has the distribu-

operation.’ If X has the distribution Py

tion »P(gXE:-B) = Pg(g-lB) = Pég'-l. For each 0, let this’/distribution

“be “Pée and belong to the distributions indexed :by«f-)_. Thus corres-
ponding to each g, there is a transformation g of () into () that
takes © into g@. Iet us assume that this transformation is-lel and

G ‘“*’: é} be a group of transformations. Iet the testing problem be

H: Gew, A : © € () = W. Further let gvw = w for each g in G. Then
G is said to constitute an invariant group of transformations for the
above testing problem.

The princip,.le of invariance states that in such a situation we
'should restriet ourselves to invariant tests, that is to tests 3 (x)
w'ith_.fche property, $ (X')'i;: jé (&x) for all geG .

in example will illustrate ‘the.idea of invariance. If X has a
. normal distribution with mean & and variance 1 thgén to test H ¢+ 9 = 0,

. ~
4 : e 30, one should get the same results whether we measure X or aX
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for any a, 0 ¢ a (o, This natural condition is generalised as the
addition of invariance,

We shall see how the principle of invariance effects a reduction
in the sample space, the space of the parameter, the hypothesis and the
alternative. After this reduction is carried out we should apply other
methods to obtain tests with desired optimum properties. An- optimum
property possessed by invariant tests forms the content of the famous
Hunt and Stein Iemma (Theorem 2.16 and Corollary 2,17).

We now partition £ into a union of disjoint invariant sets,

Thus starting from & point x we form the set CrX = fgx; )gEG. X, can be

, \J ' I : . s
written as XE¥ Gx" We .can pick out x4 to form {xtj 1ndex§d by teT
Csuch that b oo, =3 and 6 (VG = the null set if t# tr. W
t X, X, X,

can have a similar partitioning of ( ) by means of the transformation

group G. 1ot () =Yy Gg,» ety where G -{& ¢}, &6s agu(\ g -

u
null set if u%'u' « . Since w. is invariant under G, W = 1}?:)1{ ’f:Gg
. U
where K is some subset of M. A function f(x) on ZK is said to be

2

invariant if f(x') = f(gx) for each geG. The following twc lemmas
concern invariapt tunctions.
Lemma 2.9. Any invariant function on -{- is constant on each

Gx s that is, depends on x ‘only thirough t. The proof is elementary.
+

Lemma 2.10. The distribution of an invariant function on %

depends on 8 only througiya -

Proof: Iét f(x) be an invariant function. Then f(x) = f(gx)
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for each x.
Py(£(x)eB) = Q(B)

- 7, (2(ex)e) = Po(£()E & D)
- 2o (1) €B) = g

f £
= - . th .
Thus Q9 qQ 26 Hence e lemma
The principle of invariance, the invariance of H and the above two
lemmas show clearly how the testing problem can be reduced to the
following. Iet () be the o-field induced by the invariant function

t(x). We have the new sample space (T,)) ) and probability measures

%

6 in é‘e . The hypothesis and alternative are now reduced to X and
n

M-K respectively.

,UEM, where Qu(B) is 139 ‘;‘.t(x)st for somé,>and therefore for any,

Definition: The power envelope of tests of size o is defined as

Y(6) = sup B( f,6) where C, is the class of all tests of size «.

gec,

- Definition: = The short-coming of any size « test p is defined as

S@) = e (V@) - B( g0,

e( )-w

Definitions: ﬁS *¥ dis said to be more stringent‘ than f if

sC%) < s( B).

The .following theorems;{stated without proof for they are plainly
obvious,outline the genersl methods of obtaining most stringent tests.
Theorem 2.11. If Y(e) is constant over L—_l—w and $ * is such

that it maximises inf B( £,8) among a1l tests $ of size « then

ec _(_1-W
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is the most stringent test of size «.
Theorem 2,12: Let Y(8) be constant over -C)d’ for each d in D,

where (), = () -w. Tet ¢; e the test that meximises

ae
inf B(f,0) among all tests of size « and let ¢*d not depend on 4,
ec( ) 4 ' |
Then ¢* (= $*,) is the most stringent test of size « .

Theorem 2.13. Let ¢f* be of size o and he most powerful for the
problem H: &ew, A: 9=91 where Ql is some fixed point in L—_)_-w. 1t

B (£1) 2B(g*py) for all ee( ). Then ¢ * maximises . inf B(AQ)
among'all size o tests. | 981 .)."W :

Let the group of transformations G be a compact. topological
group. Any finite group and the group of orthogonal matrices as exam-
ples of such groups. We have the following theorems,

Theorem 2.14: Let f (x) be any test. There exists an invariant

test \V (x) such that

inf [ plex)ap (x) < [P (®)apy(x) & swp [ plex)pg(x) ... (T
g E€EG g£E€G

proof: Let @ be the left invariant Haar measure on the group G

u(B) = w(gB) for all sets B of the o-field in G.

let ’\f/ (x) = [ B(ex)ap(e)/nia)- ¥ (x) is invariant since, |
G

fr(8,%) = [ plegx)dn(e)/n(c)
G

[ #(g'x)an(g')/n(e)
G

¥ )

il
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Now / I gex)ap (x)an(g) = [dpg (x)f #(gx)an(e) ﬂ(x)dP (x). We find

that /'X/ (x)dP (x\ is an averuge of the quantities / ¢(gx)dp (x). This

proves (7).
Lemma 2.15. The power envelope Y(G) is constant over any E’g .
' u
This lemma is plain.

Theorem 2.16, Given any non-invariant test @ there exists a

more stringent invariant test

Proof:- Take any 59 . )’(9) is constant over G . Lat/f/ (x) =

B
I a . Since x) is invariant ’ x b
é g(ex)an(e)/u(G). s ”)l/ (x) B~ 9) /7/( )dr, (%)

is constant for @ in 59 . Ve ghall show that
u

B(P+0) » inf . /ﬁ(x)dp () = nf [ p()agg (x) ... (8)

€ €

e Ggu‘ geé
This is an immediate 'consequence of theorem 2.15.
Thus (8) and theorems 2,12 and 2.13 show that r)[/ is more stringent
than @.

Theorem 2.14 and 2,16 can be shown to be true in the. following
more general situations also. % is the euclidean space cf X dimen-
gsions and the group G is of the followirg type: 8X = AX + B, where A
is a positive defimdte :metric, etc., for other examples see
Iehmenn (1959) pp.335.

2.4, The theorem of confidence regions.

The space of actions, A, is the class of all subsets w of i_‘).

The element w of A corresponds to the statemont that 6 is in w

The natural loss function that one shall assume in this case is
i
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0 if 8 EW
W(W, e) =
1 if W
¥or each x, the decision procedure, S(x), is a subset of i-l and is
called a confidence.region.

“ R(S(x), 8) = P_(5(X) does not cover o).

e
If R(S(x),8) is a constant (=x) for all & then s(x).is called a
100(1 -~ «) ¢ confidence region for 6.

The construction of a 100(1 - «) ¢ confidence region is very
simple if we note the very close relafionship between criticél region

tests and confidence regions. Iet Wé
o}

o« for the testing problem H : 0 = 90, A e gs_(_-_l- Go.' There is a one

be a critical region of size

to one correspondence between a family of critical regiohs {Wg},

ee(") and a 100(1 - «) confidence region S(x). Thus giveniwg} define
T(X) ={9 3 Xﬁ We}.

It is easy to verify that T(x) is a 100(1 - &) ¢ confidence region.

Conversely if §(x) is a 100 ¢ confidence region then define

e e

V. = {x Y S(x)} . Then it is easy to verify that W. is a size a
' o]
critical region for the testing problem, H : 6 = eo, A eaj_—)_ - Go'

This one to one correspondence can be extended to randomised terts
also. Giv'n any randomised test - ¢(x),[_<]:-;cn be viewed as a critical
region test on the sample space %x R of the raﬁdom variable (X,T)
where X has the distribution Pg and T has a rectangular distribution

on R = [0, 1] and X and T &aré independent. ILet W(x, T) = {'(X, T):

r £ }O(X)} . Then the test that rejects if (x, r)eW(x,r) is a
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critical region test. Since E( @ (X)) = P(W(X,r)) the critical region
test W(x,r) and the randomised test J(x) are equivalent.

Optimal properties of a confidence regionm, S(x) are defined in
terms of the probabilities of S(x) covering ©' under the distribution
of PG'

Definition: A confidence region S(x) is said to be shorter than anoti
confidence region S'(x) if

PGV{S(X) covers "}_(. Pe -{S"V(X) covers 9'} for all 8,0',0 ¥6'.
Definition: S(x) is the shortest 100(1 - a) # confidence if S(x) is
shorter than every other 100(1 - a}$ confidence region.
Definition: A 100(1 = «) ¢ confidence region S(x) is said to be
unbiased if

PQiS(X) covers 9:}5 Pg ]SS(X) covers 9}‘for all e % o',

It is ,easily_“proved, that in the one to one correspondence betweeJ
confidence regions and test functions that shortest unbiased confidenei
region .correspond to most powerful unbiased test functions. This fact
reduces the problem of,construc'ting;.:optimum confidence regions to a
problem in tests of hypothesis.

Other optimality conditions on confidence are known (see for ins

tance Kendall (11959 ) p. 72 ) but the construction of such optimsl

regions becomes difficult.
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2.5. The theory *of tolersnce regions.

Let (X,S) be the semple space and the asgsociated o-field of events
of a random variable X with a distribution P, () . (36“, ") is the
n-dimensional product space and the associated measure is Py X Pg X oo Py
A tolerance region is & mapping T(x-l,...' xn) from xn to S.

Pe(_T('xl, Cens ;cn)), the. probability of the Borel set T(xl,...,xn) is a

real valued statistic on %7,

Definition: T(Xy;...y _xn) is said to be & o - B tolerance region if
Prob{Pe(T(xl,...,xn))}_B PPy % oo ng‘{=oc (9)

Definition: T(Xy, .e.; ,xn) is said. to be a distribution free a - B
tolerance region it the distribution of PQ(T(X]_"'-’XA)) under

PG X 400 X P9 is the same for all & and (9) holds.

Definition: T(xl,..., _Xn) is said to be a B-expectation tolerance
region if EQ(PG(T(XI,...,Xn))) = B for all e.

One notes atonce that in practice we would liké to choose « and P
to be large. Again, even though T(xl,..., xn) =% is a 1-1 tolerance
region it is hardly useful. A tolerance region should seek to limit
a very large probability un'er Pe to as sm&all a set as poéssible. This

condition of optimality can be formulated as follows. 1Iet W be a

measure on (¥, S).
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Definition: A t¢lerance region T is better than T' if
Eg (W(1')) < Eg (W(T)).

The detérmination of a best « - B tolerance region is a difficuld
problem. 1In case U is 2 probability measure, the determination of a heg
B - expectation tolerance region can be reduced to a prohlem in testing
of hypothesis. Let the indicator function of T(xl, oy xn) be

P (x; X5 sy % ). The condition that T is a B-tolerance region is

ff O (x; xl,...,Xn)dpe(x)dye(xl)...dPe(xn) =B for all @
o &
(m+1) ... (10)
The condition of optimality of T is that
i‘/..% P (x5 Xppeensx JAR(x)APL(%)) . --dP (x ) @ minimam ... (11)
(n+1)
The problem of choosing @ to satisfy (10) with the condition (11) is
equivalent to finding 2 most powerful simi-lar~region test for the
problem
H: (X, Xiseees Xn)"distributéd independéntly and identically as
P 8()
A: (Xy5+-.5 X)) distributed indepbndently and identically as
P, 0e( nd X independe ,
g’ 88( ) and X indspendent of (Xyseees X ) and distributed as p.

For further material on thesé lines see Fraser and’ Guttnsn (1956)



CHAPTHER III
APPLICATICNS TO NONPARAMETRIC METHODS

3.1. The estimation of real parameters.
let (¥, S) be the real line with its usual Borel O-field of
subsets. The admissible class of distributions for the random varia-
ble X is {pe} , 0 () , the class of all distributions on (X, ).

X oo Xn are independently and identically distributed as P

1? , o
This distribution of (X, «.es XJ on (% 7 g™ will be denoted by
n

Fy- g(8) is a real valued functional of @ defined possibly only on &

subset Ww of‘ifl . One .of the problems in nonparametric estimation
is to estimate g{8) on the basis of (X;, «.oy Xn).
Definition, A real valued functional f(xl, cees .xn) on # is

said to be an unbiased estimator of g(8) if

Ee(f(xl’ cees Xn)) = ['f(xl;..., xn)dfe(xl)h,.{ dPé(xn) = g(o)

for all o¢tw,

Definition. g(®) is said to be unbiasedly estimable if there
exists an integer n and a function’ff(xl,..,, x ) such that f(xl,...,xn)
is unbiased for g(G). " The smallest such integer n is called the
degree of g(s).

As an example if g(8) is the mean (Whenever it exists) of the
distribution.Pé, then g(®) is ﬁnbiasedly estimab1e'by xl;and so ig of

degree 1. Similarly the kbh raw moment of;PQ.is unbiasedly estimable

25
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and of degree 1. We can also show that the kJch central moment of Pe
ig unbiasedly estimable and of Jegree k.

If gl(e) and gz(e) are unbiasedly estimable and of degree k, and
k2 respectively, then we can easily see that gl(e) + 8 (8) is unmbia-
sedly estimable and of degree less than or equal to min (kl, k2) and
that gl(e), gz(e) is unbiasedly estimable and of degree less than or
equal to k1k2'

let

1 ,
h(x1’.c¢9 Xn) =n‘—l'z f(Xi [ Xi Ses0y Xi ) e v e (l)
w 1 2 : n

where the summation is over all permutations of the n integers (il’
gy eesy i) of (1, 2, aeuy n).. h(xl, ceey Xn) is now symmetric in

Xyy eeey X o f(xl, ceny xn) and h(xl, ...y % ) are unbiased for the

1’
seme parametric function, g(®) say. Thus we can always find

a symmetric and unbiased estimete for any unbiasedly estimable parame -
tric function.

Consider the function t(xl,..., xn) = (X(l)’ X(Z)’ cees X(n))
where (x<l), X(Z)’ cons X(n)) is a permutation of (xl, Xyy weey xn}
such that x(‘l) _<‘_xf<2) £ eees K Xyye This function is called the order
statistic, The set of all (xl, cees xn) with t(xl,..., xn) £B
(BSSn) is a set,gymmetric in the x's. The induced distribution of
t(xl, ceey xn) under Pg is defined over the O-field of such symme-—

tric sets and is denoted by Pn
0,t°
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Theorem 3.1. t(xl, ve oy xn) is a sufficient statistic for the
clags of measures Pg, OEL-l.
Proof, - Le,t‘Aesn, B e a set of the O-field of symmetric sets

P(As X ..'.,-xn) denoteg the indicator function of A, that is

'}
=

jﬁ(A; Xyy wees Xn) if (xl, ,.-.,_xn)aA

]
(@)

if. (xl’ seey xn))tA

]

Pg(m B) 3’3 PlAs Ty weny X JEPL(X)en oGP (x )

é oA Xy e 1§in)d:Pe(x1)... g (x,)

(because B is symmetric)

where (il, vouy in) is a permutation of the integers (1, ..., n)

l(A; xl’ RS Xn)

n .

Thup Pg(ANB) = é S @lxy).. s apg(x)
=/ H xyreees %) dp
3 nl 8,t '

where i(Aj X5 oeey Xn) is the number of permutations of (X;,...,x )
occurring in A. Thus,by definition, the.conditional probability
; ;
n . : . .
Py att = (x-l, ceny xn)) =1(A5 X35 eery xn)/n.;. This being
independent of ©, t is sufficient.
lemma 3.2, Let Q(pl,...', pn) be a homogeneous polynomial of
degree greater than 0. Iet _Q(pl, see)d pn) =0 Whene‘ver 0« P, £1,
i ad 1, srey n and pl + . een + pn = 10 'Then'Q‘(pl".," pn) =O fOI‘

all pl, e oy pnl
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Proof: .The lemma is trivial when n = 1, .'Now let the lemma be
true for n =m - 1. We shall prove that-the lemma is true for. n = m.

We- note that.'Q(cpl',‘..., cpﬁ) - ck-Q(,pl,. .oy "pn) When ‘Q is of degree
H%om'mMQ=omw-0$%ﬁl,Zg=l’mmm&Qﬂdﬁrul
p; with 0 K p; (1 =1, eory n).

Wreiting out Q(.pl,. .ey pn) as a polynomial in p, Ve note that for
a fixed Pq» “eer P71’ Q i_s zero for all P, > O. Thus each coeffi-
cient. of" p; .is‘geto. - But since these coefficdients’ are homogeneous
polynomials of degree less than m-l. the lemma is true for n =m,
Tke lemma now follows from induction.

Iemma 3.3: Any functionm of t()il,..., xn) is symmetric in
Xygeser. Xy and conversely.,

Proof: This lemma is Obviouss

Definition A distribution that has & constant density func=-
tion on disjoint intervals 'Il,.. .y ]ik and a zero density elsewhere
is called a distribution uniform over intervals.

Theorem 3.4, Iet () be the class of all & such that the distri-

butions P, is uniform .over a collecticn of n. disjoint intervalé.' Then

e
t(xl, eaey xn) is complete for the distributiorng; Qei_ll"

Proof: Iet h(xl’~~" -y xn).be synmetric in.x)p.s.; X o0 It is

a function of %(Xj,e..y X ). Taking the expectation under a distribus

tion uniformover Il" P 'Iim we have
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n n ‘
O= z oooz pi ce sy pi J(il,oo.’ in) e . (2)
i =1 i=1 "n n
1 n
B . 1 ) o .
where J(ll,... 1n) = T ) .../ h(xl,.,. xn)dxl...dxn
1 v n’. I, 1.
1 1n

and g(l)J Q.(n,. are the length of the intervals Il,... Y respec;

tively. Therefore (2) can be written as

a a
0=2 Pll'" pnn' c(agse.. ay) . (3)

where the summation is taken over all integers al,... an such that

2 a, a=n and where c(a,,... & ) is an .integral multiple of
i 1 n

J(ll, coe in) having &, of the -i! s equal to 1, &, of the it's

equal to 2, and so on.
The expression on the r‘-ight hand side of (3) satisfies the con-
ditions of lemma 3.2 and so c(al,.'.. e.n) = 0 and hence J(il,... in)=0

It follows that

f --a"f h(xl,... Xn)dxl',.‘-. an=O for all

I. 1.
i, i,

il""’ in = 1L,2.0r 2 and all disjoint inte‘rvals-“-__Il:,.... I.n

By lebesgue's theorem h(xl,... xn)-‘=_o a.e. This being
true for every symmetric function h, t is complete.
Theorem 3.5, The statistic t is complete for the class of
. . . n - - o . .
all distributions Py with eej_)Q, where eg( 12 whenever. Py is a dis~

crete distributior; with messes Bt n points on ths real line,
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Proof's The prqof of this theorem is on.the same line8 as the

previous theorem.

Definition: Iet ("), b the set of all @ such that P, Has &
continuous distribution function. Let KTIAbe the set of all 6 such thai
_ PG is an absolutely continuous distribution (w.r.t. Lebesgue measure)

Tet [_15 be the set of all © for which P_ i a discrete distribution.

8
We now have the following obvious lemma.,
Iemma 3.6,  t(x) is complete for the class of all distributions
Py With €£( ), or (), or {)s -
Theorem 3.7. Let g(8) be a parametric function defined on w,

a subset of () . Let f(x , xn) be unbiased for g(8). We have

17>
(i) h(x,... ,xn.) defined by (1) is unbiased for g(®), (ii) R(h,8) ¢
R(f,6) whemever the loss function is convex and (iii) if w contains
L_-l]_ or _(_22 then h is the unique unbiased minimum risk estimator.

Proqf: ~ These conclusions follow immediately from theorems
2.4, 3.1, 3.4 and 3.5.

Theorem 3.7 is the fundamental theorem in the theory of nonpara=-
- metric estimation. It states that we should always restrict our estie
mates to symmetric functions and in many situations this is the best
solution.

As examples we note that the raw-moments and the k~statistics

a s - . . R . . N -
Te unique unbiased minimum variance estimates of . their expectations.
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3.2. The theory of testing hypothesis applied to nonparametric
problems .

We start the discussion with a very interesting non-parametric
problem admitting of a uniformly most powerful test. Iet (x°, S°) be

the semple spice and Py ~with 65("), be the class of admissable dis-

tributions. The density function of P_ is denoted by fg(x). The

pth quantile of the distribution P, is denoted by % e,p' The hypo=-
: H

6
thesis H is the set of all @ with & , = Os the alternative A is the
9

set of all ¢ with = _ _ > O.
/6,p
The density function f_(x) of a distribution P, can be described
f_(x) is a density function on (-0, 0) &nd
by three quantities p¥, f(x) and f-(x), where 0 { p* ¢ l;i'_f+(x) is

a density function on (0, + =), as follows,. . Given any such triplet

)
p*_(x) + (1-p*) f+(x) = f(x\ is a density function of some Py With
8 in i-)—d,‘ Ccnversely let p* =/Pé]§X <.-Of,
£,(x)
f_‘(x) = - o if x<O0 and =0 otherwise,
£(x)
f+(x) = Tp* if x>0 and=0 otherwise.
.Then fg(x) = p*f_(x) + (1 = p*)f(x) (4)

Describing distributions in _(_—)_4 by p*, £_(x) and f+(x) we note that
H and A reduce to

H:p*=1p, A:p*¥<p.

+ In the problem of testing for the probabilities in k cells, a general
distribution can bé described in terms of théhe cell probabilities
Pys eees b 2nd density functions fl(x), cee fk(x) with 2 p,=1

The Karl pearsonts )(2 test can be then obtained as a good large
sample test,
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Ghoose and fix a distribution (p, f_(x), f+(x)) in the hypothésis, Iet
us take the distribution (p*,f_(x), f+(x));,Wi_th a p*.¢ p as our alter—
native. Iet us determine the most powerful size o test for this prob-

lem. Using the Neymane=pearson lemma 2.7. we find the test to be

@ (x'l,._.. xn) =1 if- k(xl, cee xn) > ¢
= a if. k(xl, . xn) % C
-0 if k(xi, X)) <o
T [ () + (1 - p*>f (%))
where k(,x.l,... ;n)- :l
[pf () + (1 =), (x,)]
" n-s(x ,...x) . s(x ,...x ;
- (121;)_! R = M
1=p¥* s(x,l’»“’?cn__) . E*..n
=(p¥(1p -5

where S'(xl"""xn) is the number of the :-xi's greater than O, Thus

the most powerful test can be Written as

[ (xl,‘. .. xn)

it

v

1 if s(x},... x) c!

[

= 0 if s(xl,... xn) < ¢!
where & and c¢' have to be chosen so that the test is of size o. We
note the test is similar with regard to the original hypothesis. Thus

it is most powerful similar against the alternative (p*, £ (x),f (x)Y.
- &>

Since the test does not depend on the alternative it is uniformly wodt
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powerful against the original set of alternatives.

The above test is called the sign test. There are a few other
problems where most powerful size « tests exist and they are just
minor variations of the above provlem. Thus to test %G’P_ = go
against EG}P )’%o the sign test based x) - 50, xn - ‘5.0 is
most powerful simiiar. The matchad pair sign test which tests thot the
mediaﬁ of the difference of {wo randcm variables is ze.ro is uniformly

nbat powerful. The hypothesis can be extended in all these cases to
say, ?e’p <0 instead of E’e,p = O, and the sign test would remain
most powerful and of size (.

For the nroblem of twe sided alternatives, e.g. H s ge,p = 0,

A : ge,p% 0,' we can show the exi.-%tence of uniformly most powerful
ullvnb'iaseélﬂ simila;- size o tesfcs baced on s(xl,... xn). Thié test will
éorrespond to the test in the Binomial d.Lstribufioﬁ' for p* =p
against p¥ %l‘p. For detailed proofs refer to Fraser (1953).

We now pass on to0 certain problems where we can construct most
powerful similar tests against sore specifi. aliternatives., As an exan-
ple let ‘-(-.-26 be the set of all 8 such that the distribution Pg is
absolutely éontinuous, symmetric and has median equal to O, ‘Let 1*17

be the set of & such thal the disiribution Pg has the density func-

exp (~(x = u)z/'zq,):, > 0 0,> 0. Set.the problem to be

tion

~—

V21 ©
Hs 961-26’ At 951—17 . We will novw determine the most powerful

similar size ¢ test. Consider the statistic 1).-(':::_1,,... 'Xn) =

(Ix(l)" ' X(g)'a een | X(n) i) which is She unsigned order statistic.
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We first note that u(xl,.. . xn) as a suffieient and complete statistic
for the distributions in () g+ This follows from simple extensions
in Theorems 3.1 and 3.4. When X;, ... X are distinct (this happens
with probability one) the conditional distribution of - Xl, coe Xn
given u(Xl,..., Xn) = (dl""’,dn) is the probability distribﬁtion
that agsigns the mass (% )n to each of the' possibilities

(£ 45 £dy, oo. £d ). This gistribution will be called the randomi-
sation distribution.

Applying theorem 2.8 we note that it is enough to consfruct the
most powerful test on this odnditional sample spaee for each u. The
resulting tesf will be most powerful .'similé,r size .oc test. Let vthe
alternative be restricted to a single distribution with parameters
Y and O. Using the Neyman~—Pearson lemma, we .find that the most

powerful size o test on the conditional space is given by

¢(x1, oo xn).

I

1 if h(xl, .o xn) > ¢

]
o

= a if h(xl, veo xn)

where h(xl, . xn) = ( L Y exp (-%3 (xi -1 )d)

J2n o

Now with 4 > 0, 6 > O, h_(xl,... x-n) is a monotonic function of

/- 5
2 Xi/ JZ x5 o= V(Xl, oo xn). Thus the most powerful similar size

« test against. L—l7 is. given by
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)] (xl,... xn) = 1 if v(xl, xn) > c.(u)
= a(u) if y(xl, eee X)) = c(u)
= 0 if v(xl,... xn) = c(u)

where a and c¢ are so determined that the size is  under randomi-

sation on eaCh of the conditional sample spaces.

For testing H : 6¢ i_)é against A : 6 such that Py has density
N :
function (210) = exp (-(x-u)z/z) n#¥ 0, 0> 0, we can show that the
’ distribution

two sided equal tail area test based on the randomisation / of v is
the most stringent similar. To prove this we first note that the power
envelope is constant at the two distributions with density functions
@n6)L exp (oo (x-p)2/26%) ana (21) exp (~(x + W2/22Y.  Next
choosing an apfiori distribution Withv masses 4 and 4 at these two
distributions we find the most ‘powerful size o test against this
mixture of distributions of the alternative. This test reduces to the
two sided equal tail area test.mentionéd earlier and is most stringent
similar in virtue of theorem 2.13.. The above two tests ai'e known as
Fisher's randomisation tests.

The above technique of constructing tests with such optimal
properties can be carried out whenever complete and sufficient statis-
tics are available., As & further illustration we present the follow=-
ing example without all the details.

: n,+0,
The sampla space is (% s S

o
9 ’

n1+n2
Y. The null hypothesis

consists of all distributions P ec L—)_4 Under the alternative
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X are independent and identical normal variables with mean

l,"' o oo Xn

1

2 . . .

ulvand variance ¢ and Xn y eeey Xn are independent and identical
‘ 1+1 ‘ 2 5

normal variables>with_mean u,2 and variance ¢ , with ul > u2. Consider

the test
™1
¢(X1, vee xn) = 1 if %{ X, > c(t)
. nl
= a(t) if Z X, = C(t)
7 i
n,
=0 if 2 x, < c(t)
a1t

where .a and ¢ are determined so that the size of the test on each

conditional space,wWith fixed t(xl,..., X - )}is . This test is

? s Rat- 3

most powerful similar. Now let the alternative be extended to include

the class of all normal distributions with ul;# W, Consider the

test
= .a(t) if I il‘- iz .= c(t)
= 0 if Ixy =%, 1< c(t)
nl nz
X, = h % / ny 5 = > %, /n2
1 ny+1
i
where a and ¢ are chosen to make the test of size o on each con-
. fixed . ‘
dition sample space With»[ﬁ(xl, ees X ). This test is most

ny+n,
Stringent similar., These tests are called the Pitman fandomisation

tests,
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Other applications of ‘these techniques can b2 Tound in Ieboiiw
and Stein (1949).

Another large class of tests can De camerated by the use of the
principle of invariance. Iet (x™, s™) ve the sample space. Under

the hypothesis (X;, ... X ) hes the distribution P, with ee( ).

n
2]
Under the alternative Xl""’ Xn are incependent and have distribubions

Pgl, Pen' respectively 6yy +.., 8.E( 13 and for some i,j, O, = 6

We thus parametrise the admissible distributions by © = (91,... 5.0

(corresponding to the distribution P

X a0 X P ond @ varies in
3] e ) o

. . ! n
( _f;. The Hypothesis corresponds o @ euch that 0.- .. =6_ and tho

n
alternative corresponds to § such that not all ei‘s are egual,

Considér the class g of transform .tions on the real line that
are strictly increasing and continuous. This class of transformziionc
is a group. Iet X be a random variable with distribusion Pg with
98_(___)_. The raéndom variable gX has a distribution which corrésponds to
gome 6 in _(__25. Iet this parameter be denoted‘by g3. Thus correspond-
ing to each transformation g therc is a tra 'férmation g on L-‘)_B.

The class of G such transformations é forms a group of transforma‘ions
on 1.-13 The fransformation g can be visualised as a transformation on
v';‘_‘.%has follOWs,-g(xl,..,, xn) = (8% qs0en gxn)g Correspondingly if

(Xys +-.5 X ) bas & distribution specified by "(el,... 8,) s 8(Xyser KD
will havwe a distribution specified by é(el,. ..en) =(é@l, é@n).

Further the null hypothesis and alternativc are left invariant by the
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transformations in G. The principle of invariance demands that we use
only those tests that are invariant under G.

Iet T be set of points (xl,..., Xn) in 3Enwith xi = xj for some
i and j. The probability of T is zero for all the admissible distribu-
tions. Consider the function r(xl,...,xn) é(rl,... rn) on Xﬂ- T that
gives the ranks (in the increasing order of magpitude) of Xysiee X o
Itfis easy to see thét' r(%)5... X)) is the maximal invariant function
with respect to ﬁhe group of transformations G. Iet hl(u),...,hn(u)
be n strictly increasing continuous functions from [0, 1} onto [0, 17.
For each such (hl,..., hn) consider the collection of distribution
functions (hy(Fy(x)se.. b (F (x))) with esf)_s.

Iemm2 3.8. The collectién of such distributions is invariant
under G. The distribution of any invariant statistic is the same
under the distributions .of each such collection,

Proof: The first part of the lemma is obvious. To prove the

éecond part we show that it is true for the function r(xl,..r, xn).

tet 6, = g6.. Then £
h = 89, Prod. 3 r(Xjse..X ) = 1 I hiFo yeoes BF }

1 g1
=Pr hed r{gX,40.. ' - - ) v e
!{ (g l! ’ an) r hl.F“" 1 Y 20y hang&
= P Ob' s e . = - ¢ -
r {r(xl, X) =z | thggl,... hangl}

= Probufr(X;, 4. X ) = ‘
1T&p e x) = 1 I ByFg s oo hanz}.

This proves the lemma.
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We note that though the collection of distributions defined
through (hl,... hn) does not yield a maximal invariant set, the dis-
tribution of every invariant function is constant cwer such a set. e
élso note that the distributicng of the hypothesis correspond to the
functions (e, ... e) where "e(u) = u. Now let the alternatives be
restricted to the set of distributions corresponding to (hl,.. . hn).
Restricting ourselves to invai*iant tests we note thét the hypothesis
and alternative become simple. If Prob. ¢ r(Xyye.. X_) -z | hyy..h }
were known theﬁ an application of Neyman - Pearson lemma will yield
the most powerful invariant test.

The following theorem due to Hoeffding (1951a) enables us to
calculate Prob. {r(xl,. X)) =1 } under any distribution. ILet P and
P* be two distributions on 9€Y + Their densities are f(x) and f£*(x)

respectively. Let us assume that £(x) is symmetric in x X

l’l.‘ n.
Given any permutation  r = (rl,.;. rn) of the integers (1, ... n) let

. - ,
8, denote the set of all (%1 xn) with r(Xi,... xn) r. Letr
denote the permutation which when applied to r takes it to l =(1,...n).
We also note that the density function of the order statisties

)

X(l)’ X(n) under P is nl £(X),... xn) on 5. and zero elsewhere.

-

Theorem 3.9.

(X, yee-X,0\) .

§ AN (=)
) 1 1 n

P{r(xl’--- SRR SRt Ty Xy f
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Proof':

) |
P{r(xl,... X) =z | P*y= éf*(xl,... x Yo ... d4x

T
= [ B¥(x,, 5 eee X )X .. X
BI 1 n
) f*(xr',... xr') '
1 - n _
T nt é f(xr,, ves xr'j ) n,'f(xl"" xn)'dxl’“' &x,
I 1 n

f*(x(ri)’" x(rr,l))‘

PR L
nt P f(x(ri)’mx(répf

\

As an example let us take n = D, + Dy, (hl,... h ) =

1t
(6y ++v €, hy ... h) where h(u) is differentiable. (hyy... hn1+n2)
.l’n - n .
. 1.. s 2-.
defines a class of alternatives in the two sample problem.
d d d d
= F (X)) .., 7 Fo(X) h(@E, (x)) ... h(F
: . dx, " e ax: "oV /dx e\ ax d
f*(xl,v. . xn) 1 ' n, n,+1 n
F(Xyy oue:X ) ] - a R d
1 n = Fe(x) e T Fe(x)--——------dX Fg(x).. T Fe(x)
1 n n,+1 n
IR 1
= ' ., '
h (un +1) es. N (un)

where u = Fg_(x).'

Thus

Prob §x(Xseee X)) =5 | (e,eeiey by oo ) }

f*(x(r,l),..; g(ir,l))

1 /
nlE(e e .e)

f(X(r,l), . ..X(rr,l))

B : ' )
=T Eyht(y )...h'(u )(
S D
n (’ I‘l!11+1 rn J
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where Ul’ .oe Un are the order stdtistics in a sample of n independent
observations on the rectangular distribution on (0,-1).
Specialising further let us take h(u) = uk, k > 0. After some

tedious algebra (for instance sce lehmann(1953)) we can obtain

k k
P.‘{.I‘(Xl,.-- Xn) =r l (e,n-’e.u Yeosy ‘1: )}

n B ™ - e
__.2_ ]ZSJ + Jk'J) l EJ+1

= const., X

b
=1 T, | (sj+1+'ak-3)

where 8., ... 8 are the ranks ° r! ees I " arranged in increas
1 n, . n+1, n,+n,

ing order of magnitude and s 1= nl+n2+1.

n,+
2

‘Thus if k = 2, the most powerful rark invariant test of size
would be

¢(sl,...sn2) =1 if 5,(s,41) eune (s fnz-l) >c

2
=a if §1(§2+1) cone _(sn2+n2-l).g c
=0 if -si(sz+;) roeo »(sn2+n2-l) <c

when a and ¢ are chosen to meke test of size o,
. 2
As another example let h(u) = hp(u) =qi+pu , q= 1-p, 0 <p < 1.
we will find out the locally most powerful invariant test against the

alternatives 0 < p < 1.
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P {r(xlpooo Xn) =r‘1"l(e’looe_7:»h 9000 h‘)}

=;L-—E{(q+2pU )...(q+2pU )2

da _,. . . s
[?{5 P(r(Xl,...Xn) = L ’ (b,...e, hp’o-- hp))]pno

) By
E{Z(zu .-1)} kz s, + L

bll-—'

where k » 0 and ﬂ are two constants. From this it follows that the

locally most powerful rank test of size  is

L

) (sl,... 82) 1 if . 2 si > G

1]
[N

Pay

[¢]

g B o O

where a and ¢ are chosen to give the test size @', This is the ome

sided Mann-vhitney test.

For other interesting examples of rank tests with optimum proper-
Ov?"
ties we can refer to Iehman (1953) 1erry (1952).

3.3. Confidence regions in non-parametric problems.
Confidence regions . in non-parametric problems are arrived at in
the seme way .&: n paremetric problems.
- Inithis section We give just one example, name ly'the confidence

interval for the population pth‘quantile. If Xl"" X, are n
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independent and identical random variables then the interval (X(k) WX (z))

is a shortest unbiased 100(1 - ) ¢¢ confidence Tregion

n-}

if S @ ()" = (5)
=k
n-ﬂ‘ ny_ T ner :
and Zk r(p)p  (1-P) = 0P ... (6)

This follows easily by an inversion of the sign test for the pth quantile.
In many situations the test would be-randomised and this should be reduced
to a critical region test before the inversion is carried out. The

details of such methods are explained in section 2.4.

3.4. Tolerance 'rGgionsin non-parametric problems.

Distribution free tolérance regions are very easy to construct
as will be obvious from theorem 3.10." There is an important. outstanding
pro'blém of defining optimality critéria and detemining.such optimal
tolerance regions. This was mentioneéd in section 2.5. _~-’I.‘ill'v this prob-
lem is solved, the material in this section will remain to be of purely
acéderﬁic interest.

Firstly we discuss some ‘sampling properties of the order statistics
of a rectangular population Wwhich play an important role in the construc-
tion of tolerance regions Let Zys eees ;Zn be n independent random

variables with a uniform distribution on (0, 1). The order sbatistics
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are Z(l)’ Z(z)’ ee e Z(n)o I.et Cl = Z(l), C2 = Z(2) - Z(l), vee
Cn} Z(n) - Z(n-l)’ Cn+1 =1 = Z(n)' Then Cl’ 02, PP Cn+l have a

gymmetric distribution with density function

n+l
nt if 0ge, <1, i,hc.:i=l
0 otherwise,
If 'S, "Cil‘+ ces + Cik (iljé 12-74 N
then
1 Ly ynk
S =l . __\n-
P{s 28} = B(k,n—k+l) é (-y)" " dy

= a(n, k, B).

Thus S, 1s & «(n, k, B) = B tolerance region for the rectangilar
population. Given n and B, we can choose .k so that @(n,k,B) > e

let xl., Xs ...,xn be n independent.observations on a random
variable X with a probability distribution P, ILet its distribution
function F(x) be continuouss Ie'.t_¢1 (x), ...¢n_ (x) be n functions
on % with continuous induced distributions.

1ot (pyse.. p,) De A permutation of the n

integers (1, ... n). Arrange the values ¢1(x1), ¢n(xn) in their

decreasing order of magnitude. let pl’ch largest value, denoted by

) mazi (pl) ¢1 (x )y be T . e then divide %.;into two. regions
is= ' '

Sl,-. .-y = i X' ;él(x) b3 Ty }

NOREN

?l+l..a n =}{x
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by means of the cut T = IIX' ﬁl(x) = r} . Since ¢1 (x) has a con-
tinuous distribution functlon we can agsume that there will be only one

x; with gfl (x‘i-) = r), that is, only one x; in Tp.l. There are
(py - 1) X8 in - S’i,"‘....p and (n = pl)xis in 8

1 Py+lse.. n'

The second cut is made by using the function gﬁzéx) and the inte-
ger Dy If p2 is one of the mtegers 1y eu.y pl—l then the region
l yoor By is cut into. tWo regions
X v . : =  S If\\ X X r
Sl,.;;-p2 l,...pi { () > 25
N

S i< x
Pz*lr‘ L Pl l"ﬂ‘Pi i

B ACREN S

by means of the cit T

ﬂ{x s ¢2(x) = T, }where

1 2, ) l’“_"pl . o v ‘ _
Ty'= T?}lcx.e .Y gfz(x If p, is one of the integers Py + Ly...n
1” pl
then the region S is cut into two regions

l+17 . opn

= (e s g 7
'Spl+l’c-' P2 s Spl'l'l,.,,ﬂ (X > qz(x) > r25

- 03 x }
Sp2+1,.o. n Spl'f"l,oo:a‘ i ¢2(:}{) <
by means of the cut 7 =5 {x : b'e Where
v Py p1+l,... n }252( ) =
n
r2.1.= ¢ mAx (p - pl) ¢2 (x )+ Ve continue this construction to the

next’ stage i a Sll%llar fasmon. In the end we will have n cuts

Tyree. T and (n+l) regions: 519 Sp9 eee 8- that will coverX .

n+l
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Theorem 3.10. P(S,), P(S,)y «oe P(Sm_l) haw a joint distribu~
tion wkioh is the seme as the joint dist;;ibution of Cqy Cpy see Gy 1

Proofs The proof is done stepwise, corres_ponding to the stages
in the constructional procedure, and a correspondence is set up with
the simple case of sampling from the uniform distribution.

Let G(y) be the distribution function f@,(X). Since it is assu-
med to be contimuous G( @,(X)) has a wiform distribution. Therefore

) is the same as the

5The came as
.n other wordg Athe

the joint distribution P(S ) _P(Sp1+1’ onel

and 2

1yeeepq

joint distribution of 1 - Z( (n=p.+1))
- 1

, n-p,+1)
joi t i .. i i 5 ; L - . ‘ LI
joint distribution of C_ , + «ui + Cn-p+2 and Cy + + C

n=p+l°

n
Given max (pl) pl(xi) STy the conditional distribution of
'Xl’ see Xn_ is the distribution of 2] -1 independent observations

on X restricted to S and n=py independént observations on

1;"'.P1

X restricted to S even as the conditional distribution of
p1+1,... n

Zysess 2, given Z(n-p+1) = G(rl) is the distridbution of py~1 inde-

pendent uniform variables on’ ( Z ), 1 ) and n-p1 independent

(n~p+1
uniform variables on (0, Z(n-p+l)) . Thus the further division of ¥

into regions S,

S : . i <1
1""P1’ pl'l’l,o-. p2, Sp2+l,.-r n+l (ln case pl < pz)

can be likened to corresponding division of (0, 1) into the regions
(z 1), (3 |
(n-py+1)’ ) (n=p,+1)’ Z(n-plfl))’ ©, Z(n-p2+1))_’

and -the joint distributions of the probabilities of these regions under

P and the uniform distribution, respectively are the seme, Applying
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W show ‘“II\(’
this procedure repeatedly /\P(Spgaa-’..; P(S,,,) have the same joint

distribution as Cl’ Ry _Cn+l' Hence the theorem.

Thus to choose an « - B tolerance region we first find k such
that x(n, k, 8) = « Then the union of any k regions from
_Sl’ rees Sn#—l forms a o -~ B distrib_ution f;;ee tolerance region.

The functions ﬁ}l (x) , ‘¢2 (x), e g ¢n (x) ' and the vermu-
tation (pl, pn)r can be chosen in a more general fashion by allowing
52‘1 and Pl ' to 'depend O Tysees Ty y i = 2,.,.n, without sltering
the construction of the tolerance region and the truth of Theorem 3.10.
Th:eorem 3,10 can be generalised to include‘di_‘scontinuous_ distributions

also. For these generalisations one can consult the series of papers
by Sheffe and Tukey (1945), Tukey (1947), (1948), Frascer and
Jormleighton (1951), Fraser (1951), (1953 a)etc.
345+ Efficiency and consistency of estimates.
‘The performance of an unbiased estimate: t ;of 'g(®) is measured
by its variance E (t - g(G)}Z.,; Undér certain assumptions in parametric
analysis, the well known theorem ¢f Cramer~Rac’ (See Cramer (1946) pp.480

or Rao ( 1952 ) pp. 131 ) gives a lower bound b(6) to this variance.

Thus we have the following definition of efficiency.

Defifition ¢ The efficiency e(t) of an estimate t of g(&)

-is defined by the relation
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2
o(t) = E“bzg@) (1)

Rhen tn is an estimate based on- n independent observations ¢on a
variable X, the asymptotic sfficiency of § tn} can be defined to be
th: limit of the e(t.).

The conditions under which the Oramer-Rao lower bound b(8)
holds do not obtain in the' problems of non-parametric estimation. In
fact even & formal evaluation of b(8) is not possible, Thus e(t)
gannot serve as. & measure of efficiency in non-parsmetric problems,
Bahadur (1960) has adopted another definition of efficiency on the
bagis of the concentration ¢f estimates. It can be showm that for a

large class of estimates that
| log P(F b, - g(8)1 > &)

lim lim 5 = log ¢(t)
€ =50 n =)o

B

oo (8)
with 0 € Q(t) < 1. Q(t) is a measure of the efficiency of L
and smaller values of Q(t) indicate higher efficiency of Q(t). The
evaluation Q(t), in case it exists, is difficult even in parametric
p'robl,ems which means that this method is now not available for non-

parametric problems. Mevertheless  Q(t) based on considerations of

ceucantration seems to be more satisfying than e (t) based on variance,

The\ performance of a test is based on its power function., Let
.

* ) : "
i?'n} ’ §¢n[ be two sequences of size ¢ tests based on % for the
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problem H : e , A ee_(_‘-,-'_)_ - 6,. Iet € Yo a sequence. of points
. L . : e e N o X ‘ ¢ -
in A fending to 6 in some topology in ( ). —hetgnﬁ.% , ln;;’ be

defined so that

. . ¥
lm B(g ,6) = lin B(H* 8) =B, 0<B <L
1 =>o0 - I 74

’

. s _ { Y o * ) . .
Then the efficiency e(f , L*) of 1 B0 W.r.t.{jﬁn }13 defined by

n¥*

e(fo ff *) = lim —= e (9

i =y 73

whenever it exists. This efficiency, known as Pitman's efficiency,
when it exists, depends on B and the sequence (91’\ « In certain
parametri_q problems it becomes independent £ and the sequence ( Gi?;; .
For such theorems and other reductio__ns one can consult EFraser (197)
chap. /. An alternative definition of efficiency of a test due to
Reo (1961) ( analogous to Bahadur's asymptotic slope c.f. Bahadur
(1960)) is the following. It can be shown that for a large class

of tests {gﬂn} (vhen () is an interval on the real line) that

log (1 - B(¢ ., 9))
1lim lim X i (¢n

5 5 = log 9(g) (10)
8~->6, n > (e_-eo). .

with 0 < Q ¢ 1. AS in the case of estimates the test with the smallest
Q is mogt efficient.s Certain very interesting theorems concerﬁing this

new definition of efficiency can be found in Rao (1% 1_) and Bahadur (1960) 5
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unfortunately for parsmetric problems only,

The known results coneerning the efficiency of a non-parametric
test are those that compare a non-parametric test with & parametric
test at parametric altematives. For instance a general itwo sample
non-perametric test is compared with the Fisher's t-test when the
alternative is restricted to nommal distributiors with the saéme vari-
ance but different means, For such examples see Fraser (1957) chap.7-
Some very interesting limitb:distributions'have been developed by
Hoeffding (1952) in this commection. The main critioism against this

" approach i§ that tle non-parametric test and the parametric test have
been developed for entirely different problems and a comparison
between them could be misleading. If the efficiency of & non-parame-
tric teét is high it means that it is quite good at the parametric
alternatives, it throws no light on the performance of the test at
nén-parametrié altematives. In faét it may happen that a test with
low efficiency &t parametric alternatives may be good at non-parsmetric
alternatives. Thus a compéfi'ison between two non-parametric tests
alone and at all alternatives will be useful. Not withstanding the
fact that this might be a'difficult problem, wé should remark that we
rgrely come across §Ro non-parametric tests for the same problem and so
such comparisons are rarely necessary. And,the previous séctions of

this chapter were for developing good tests for specific problems.
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Part II1
Chapter IV

LIMITING DISTRIBUTIONS

l.1. General techniques of limiting distributions.

In the last chapter we introduced several tests.all of which
had to be adjusted to be of .a previously chosen size. [This means that
the sampling distribution of these test functions would havz to be’
‘determined. This problem is more complicated in the case of non-para-
metric tests than in the case of parametric tests. Am an altemative>
the limiting sampling distributions of these statistics as some cons-
tants (usually the sample size, n) in the distributions tends to
infinity ‘are. determined and then used as approximations to-the exact
sampling distributienss This-would enable us not only t6”fix the 'size
approximetely, but also to compute the power of the test, though only
approximately, Thus the theory of limitding distributions is a neces-
sary app:ndage to the- theory of non-parametric inference. It is also
interesting to note that the theory of limiting distributions has
been enriched by certain special problems peculiar to non-parametric
problems. A knowledge of the geveral techniques of limiting distribu-
tions would be very helpful in many situations..

To define convergence and limit distributions of random varia-

bles we should first examine how a distribution is defined. ''If there

=51~
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are several ways of defining a distribution, 2 natural mode of conver=-
gence can be associated with each definition. The study of the inter-
relation of these different modes of convergence will be useful in
deciding whether a given sequence of distributions converges in an
gccepted mode.,

By a distribution we mean & probability measure A defined on
the measurable subsets of (X , S). We assume that the space is topo-
Qogical and all continuous functions are measurable, . A sequence of

distributions }\n is said to converge to & -distribution A if

[ gdh => [ gdA

as n > o for every bounded continuous function g(x). If ¥ is the
Euclidean space of 'k dimensions, Rk’ then a distribution A can be
defined in terms of a distribution function F(x). we then have the

following well known result.

Theorem 4.1, A gequence, of, distributions }\n converges to A
if and only if.
Fn(x) -> P(x) for each
continuity point of F(x).
In the case }Lszgka;distribution can be defined in terms of the
characteristic function (t) =/ F an, with te R . We have

the following theorem.
Theorem 4.2. A sequence of, distribution 7\1 converges to A
it and only if ¢n(t) ->@¢(t) for each +t and g(t) is continuous at O.
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A distribution A on R may sometimes ‘be defined uniquely in
'(. ='o',;1, 2, .o ;’;: i = 1.). vey k.

l’ o ® . 9 J(k, 1
The following theorem is due to-ghohat and Tamarkin.

terms of its moments ua

Theorem 4.3, A sequence of distributions’ 7\n with moment

' 7
n) } converges to A with moment sequence
0(1, o e oy \’Xk
£, @) ]

if the sequence-ip,oc

sequence { u

converges to 1
19..- % C(.l,o-. xk

for each (acl, coe -xk) as n => «. and the moment Sequence U

(xl,.o- 'X.K

"\41:1,..., ¢

defines a distribution uniquely.

To verify this last condition of the theorem We w¢uld require
another result due to Shohat and Tamarkin that givés the restrictions
under which a moment sequence determines a distribution uniquely. It

howewver :
~ would/suffice to note that the moments of the multivariate nomal dis=-
tribution satisfy those restrictions.

In Cramer (1946) we fir that the distribution-A of 'a random
variable X on R, "is uniquely defined if the distribution of every
linear function IX of X is fivailable. In this connéction we have
the following result due to Varadarajan (1958).

Theorem 4.4. If for each linear function L, the distribution of
IX  converges to a distribution Ap then the distributions A, of X,

converge 10 a aistribution A and }\L ig.the distribution of IX com~

puted under = A,
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The. Euc lidean space Rk can be written as the product space
vax» R’r if p.+ r =k. A random variable X on Rk ig of the form
(Y, 2) with Y in Rp and 7 in'Rr. et 1 be a distribution on Rr'
‘1et ¥V (., z) for each sz € R, be a distribution on Rp. The collec-
tion U, ¥ (., z) define a distribution A on R as follows. For each

Borel set A in R define

A = [ V(A5 ) an(a) (1)

T
Where A, ={y :X=(y, 2) € A} < This A is a distribution on R
and is called the joint distribution of (Y,. Z). U is called the mar-
ginal distribution of Z and 3 (., z) is called the conditional distri-
bution of Y given 7 = z. . Theorems 4.5 and 4.6 due to Sethuraman (19%1),(M
are useful in determining the convergence of )\ﬁ when the associated
distributions u , })"‘(., z) converge.

Definition . A sequence of distributions ‘un is said to converge
strongly to pif (B) => u(B) for every Borel set B.

Theorem 4.5. let u.n- converge strongly ‘to u. Iet )Jh (o9 27)

converge to 7/ (., z) for almost all [u] z. Then }\n (associated with

L )4\(., z)) converges to A where A is defined by (1).

ol .
let { ¢n (t-’ 9)} be a family of sequences of characterigtic func-

tions on Rp with @ in an closed bounded interval.Il in. R
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Definition, { ¢n(t, 9)} is said to converge unifommly to a
characteristic function @(t, 6) in the UC* sense relative to @
in I if

a) suplg (t, 6) -¢ (t, 8)1 => 0  for each t

131
b) P (t, &) is equicontinuous in €€l at t =0

c) @(t, ©) is continuous in & for each t

Theorem 4.6, let the sequence of characteristic functions of

’)}ﬂ(., z) converge to the characteristic function of W (., z) in the
UC* sense relative to z in any bounded closed interval of RT. et
W converge to W. fThen A (associated with ., ))ﬁ(., z)) converges
to A where A is defined by (1).

After this brief review of the general techniques we now present
some of the fundamental theorems of limiting distributions which will
be used in our applications.

Let (X, 71)s (X5 Y,) be a sequence of random variasbles on R,.
Let the limiting distribution of Xn be F(x). Let the limiting dis-
tribution of Y be degenerate at c. ‘e have the following theorem.

Theorem 4.7« The limiting distribution function of Xn + Yn is
F{x - ¢). The limiting distributioh function of X / Yn is F(ox)
if ¢ > 0.

Te state three more theerems Withoad. proef.. .

Theorem 4.8, If xl,XZ,'.-.. Xn’
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is a sequence ot independent and identical random variables on'R,, and

Xl + eee + Xn _
if E(Xl) = 1 exists then ” tends to Y in probability.
Xl + oes +.Xn
I4 fact a tends UL with probability.one.

Theorem 4.9, ILet X., X., ... be a sequence of independent and

e R L
. 2
identical random variables with rinite mean U and variance O . Then

the limiting distribution function of (Xl +oeee+ X - np)/n® o is

(2n)~% fxexp(-t&/z)dt.

This theorem is one of the forms of the Central Limit Theorem.

Another form of the same theorem is cast as Theorem 4.10.. Iet

be a triangular scheme of random variables on Rl which are independent

in each row., Iet E(X;) =0 forall nand i.

E }(Z.b = . T, 5 =
( ni ) p‘Z,-n,l aad E(,I Xni 1 p'&,n;i"

3 1
Iet 97 = —=— ¥
n ‘)}'f:’\ i=l uB ’n ,i n '2/»“ i=1
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Theorem 4.10. The limiting distribution of . ;31;/_‘1(an+ ves + Xnv ) is
o . -

(2r)# o7 fF’exp (~t°/26%)as

- o]
if 02->a- Y. => oo and 9.-/0 -> 0 .88 n =>
n 777 A - In't Ty ‘ :
442. Central limit theorems for m~dependent random variables,

Definition. let Xl, X «.s be a sequence of random variables.

2’

This sequence of random variables is said to0 be m-dependent if

(Xl’ vee Xr) is independent of (Xs', X, ) whenever s-r > m.

1’ ose
Let |
m=1
A = Zj%o cov (Xi+j’ Xi+m). + var (Xi+m) vee (2)

where cov and var stand for covariance and variance respectively.
The central limit theorem for m-dependent random variables due to

Hoeffding and Robbins (1948) is 4¥e following.

Theorem 4.11. Iet xl’XZ" be a m~dovendent seguence of variables,
let E(Xi) =0, E(Jxﬁ_{?)_skﬂ3 o forall i=1,2, ,.. 3 Let the
limit
L 3 (5)
lim = Y A, =A vee 3
p => P oy i+h

exist uniformly in i. Then the limiting distribution distribution
n i
function of 2 X, J/(na)=  is
1
x

(21"&)'% [ exp (-t2/2) dt.

- 00
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Proof. The proof of this theorem is a modification of the proof
of the central limit theorem for Markov chains due to Bernstein. Iet
k be some integer less than n to be chosen to satisfy (5) and (.).

Integers ¥ > 1 and r, 0 { T (k-1 canbe found such that n =wker,

b

t
where S =U1 +,...+UV

and U. = X + eeo + X,
i i

(1-1)k+1 * X(E-1)ks2 Xem

V-1

and T = 3% (X
i=1

eee + X .

4 eee + Xik)-+ X

ik=m+l ))k--m+l+ Yk+1

m]b-

We shall show that n © §' has a limiting normal distribution
: -
with mean 0 and variance A and that n ® T tends to 0 in probability

The theorem is then immediate from Theorem 4.7 and the nelftion

- . it
nzs=n'%S' +n 2P,
Consider n 2 gt
R R LA T O
i=1
If k ©be ch_oéen so that
¥k
n ‘->l '.‘5_ o a0 (5)

then by an application of Theorem 4,7, it is enough to show that

~ifp. -3
Y Ell_k U; has a limiting normal distribution. Now for s > m We



have E{(xi+l+ cer + X, )2}

¢ 2 i

2y
E g(x'i+ Toeee X(1+s l) } * A rsen
Sem

E{(X“_l + eee + Xlﬁn)f +Z+

1+h

52 2 k=2m
Thus E LUi} =B {(X(i—l)k-{-l 4+ eee + X(i-l)k+m) } + Z A(l-l)k+h

From some well known inequalities we have

%2 ] 2/3 ¢ 5 2
EfI XS 1) £/ 11 %17} ¢ R

2

: » 2 2\1% 2
and E{ HXX, l} < [BED E(Xj)] <R .
Hence
s _ 2 2.2
EL(X<i 1)k+1 + ese-+ X(l-l)k+m) §'<’ mR
-2m 2 2
and ) E(U ) = 2 A Yk | < m°R
1
_ Y ) k-2m ¥ . ke<Z2m
1 % \2; _ 1
< o’k ... (6)
As Y => o, k =5 = from (6) and (3) it follows that
lim Z E }(k “v,) } (1
Y e )f j=1
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Now
Bimxx it <mimg ). B im0 I 12113 (4l
Thus
E$ lk"%UiIB_} <V aem)? 33 1 Y2 83,
Thus
-%— %}E{lk"% UiIB} < K23 (8)
Let k3/v -> 0 as 3, k => (9

(A suitable choice for 'k satisfying (5) and (8) is n* for some g
with 0 < « < _Zlf). (6)s (8), (9) and the fact > =) w are enough to
| shs b
verify the conditions of theorem 4.10. Thus Y/ 2k Ui has an
1
limiting normal distribution.

Since k =»o, k > 2m after a certain stage., Then

nlE{TZJs £ n-l-[(v-l)mz + (k+m)2.]—>0 as }J, k =) oo,

1 .
Thus n 2 T tends to O in probability. Hence the theorem.
Definition, A sequence: of random variables Xl,X-, veo i

said to be stationary if the joint distribution of X, 0%, X

+#17°°° Tiyr
is independent of i for all r.

The following theorem-is immediate,

Theorem 4,12, If X;s X55 +00 is a stationary m-dependent
sequence of with E(Xl) = Q a,'l;ld oy :l X1!3} < oo. -then the limiting

o -+
distribution function of n 2(X1 + .o + X ) is
n

)
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1 X
(na)" [ exp (~t°/2 A)dt where

A = var (X:zl) + 2[cov (Xlxg,) + oees + COV (Xle+1).J

Bivariate extensions and multivariate extensions of this theorem are available

« These can be easily established by the use of Theorem 4.4. T

shall now give an example ag an application of Theorem 4.12.

A is & sequence of independent and identical random

l, Zz, LI
. o 2 3
vafiables with E(2Z ) =0, E(Z]) =1, B(JZ{17) <. let ;=22 1
Xl’ Xz, ess 2 l=dependent stationary sequence of random variables,
: 1
c s . . . . -5 ..
Thus the limiting distribution function of n (Z1Z2+...+ZnZn+1) is

(27:)'% fxexp (-t2/2 Yds.

ZaZe + see + 4 7
let 7 = 3 e L =l
(Zl + L 4 + Zn)
- a2 (%9 Zp + oo+ By By )
2 2 *
(Zl + ese + Zn)/n
o 2
Since 2, Zi /n tends to 1 in probability the normalised serial cor=
1

relation coefficient Wn has a limiting normal distribution with mean

zero and variance 1l.

4.3, The limiting distributions of U-statistics.
We saw in Chapter 3 that if f(xl,' sesy xm) is an unbiased
estimator of a parametrie function g(@), then in many situations

h(xl, cees xm) is the minimm variance unbiased estimator of g(8)
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where
n(x x) s 3 f(x x. )
1’ o6 m n‘ 1 9 e i
P 1 m

and the summation is over all permutations (il, .es im) of the integers
(1,5 veoy m)o If X;s ooo X 8re n independent and identical random
variables: (each on Rl) then as an application of theorem 3.7 the'minimum
variance unbiased estimator of g(®) when 6 is restricted to a class

o - 1
containing ( ) or ( )5» 18 U(xys eevy X ) = Tzh(xi poaeey %)

(m) C 1 m
where the summation is over all combinations of the integers
(11 wees im) out of (1, ..., n). U is called a U-statistic and h

is called the kernel of the U-statistic, Theorem 4.1% is concerned with

the limiting distribution of U-statidtics.

Let Xl’ X2, ... be a sequence of independent and identical
. . 2 : : '
random variables, Let E {h ,(.Xl’ Xm)} < .
Define
hc(xl,.... XQ) = E{h(xl,..., Xy Kop1? oo Xm)}
¢ =1, 2, ... m=1,

Then E(hc(Xl,... Xc)) = E(h(Xl, Xm) = )’ say, for all ¢, Let

ver (b (X;,... X)) =% . It is easy to see that

"CO h L ]
v(h(Xypeee X ) ,h(xl,.,. Ko Xy goees Xop ) =T
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Thus Var (U(Xl,... Xn))

- L3 QOGS

(8)2 c=1 m=-C C
1 E My M=y
= EH; Cil(c)(z-z) c
‘m
ar m'z‘ci
= — o(l/n) as n -y . (10)

Theorem 4.13,
=y
n (Un(Xl, xn) -N
has a limiting normal distribution with mean: 0 and varience n‘%

. -+ 2
Proofs Iet Yn = mn iél(hl(xi) - Y.

From Theorem 4.9, it follows that Y~ has an limiting normal distribu-

tion with mean O and variance mZG, + Ve note the following
% 2 ,
Var (n Un) =m 5, + ...+ 0(1)
o
Var (Y ) ='m 5,

P m .
(Ye i 1 m '
i1
m- n=1
- (n) (m—l) 4
m
s
“1
Thus
B (n%D - 1Y) = o(1).
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ls

Hence n‘Un - Yn =% 0 in probability. The theorem is now an immediate

Q

consequence of theorem 4.7.

Hoeffding (1948) who gave this proof-has proved a similar theore
when the random variables Xl’ XQ, es. Aare ind_ependent and not identical
under some stronger conditions. Iehmamn (1951) defined 2 generalised
U~-statistic based on two sequences of random variables., ILet

h(xl,... X5 Ty, e Yy ) ‘be a function symmetric in the ny X-argu=

2
ﬂ«\_ i
ments a:mitl\m2 y-~arguments separately. Let X‘l’:’,'.‘ an, Yl, ove Yn2
be n, + n, independent random variables. Let
Un n = —ﬁ—}-_- Z h(xi 2 ,"",Xi ; Y""".‘ Y' )
12 (M1yM2y e 1 m, 1 “m,
my" '

where the summation is over all combinations of .y indicies ("il-,'...im)
from (1, ... nl) and m, indicies . ('jl"""' ..jmz)- from: (1, ..., nz).

Un 0 is called 2 generalised U-statistic,
1’72
Theorem 4,14. Let Xl’ X2, «.. be a sequence of independent and

identical random variables., Let Yl,.;Y2

sequence of independent and identical random variables. Let

s+ be another independent

. L2 A 2
E{h(xl, mls Yps e sz) f =Y ana B { R (Xps . xml; Yl,..,YmJ(

I . 1y, m, => o such that ny /n, =>'c, 0 < ¢ {w then [nn, /(nl+n2)]
(

ol

U, = Y ) has a limiting normal distribution.
1772
Prof: - The proof proceeds on the same lines as that of Theorem 4.1}

and so is omitted.



Examples of U=-statistics in non-parametric methods are numerous,
the minimum variance unbiased estimators of section 3,1 %being the first
examples., The Mannethitney U-test described in 3,2 involves a gtatis=-
tic which is a U~statistié in the generalised.sense and theorem 4.14
can be used to obbain its distribution both under the null hypothesis
and under the alternatives.

4.4, The limiting distribution of the order statistics and the
limiting joint distribution of U-statistics and order statistics.

The results of this section are useful in many non-parametric
problems. Since the proofs are involved we shéll"just state the results,
at times himting the nature of the proof. Important and conclusive work
about the limiting distributions of order statistics were done Gnedenko
(1943) and Smirnov (1949), (1952) and about the limiting joint distribu-
tions of U-statistics and order statistics by Sethuraman (1961).

let X;» X5 «+. De a sequence of independent and identical
random variables with a distribution function F(x). ILet
< .

y X cer. X be the order sia tistics based on X
l,n, 2 . .

,n n,n

lycno Xno

For convenience we gquite often drop the suffix n and denote .Xi:n.:by
| ’
X(i)' Theorems 4.15, 4.16 and 4.17 deal with the asymptotic distribu-
tion of X(a ) where a is a sequence of integers with 1 _g'an < n.
n

Definition. A sequence of random variables Zn is said to have

an asymptotic distribution function F(x) if there exist constants
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a > 0, bn such that

r
-

PiaZ +1b < x} - F(x)
at each continuity point of F(x).
Definition. Two distributions with distribution functions

F(x) and G(x) are said to be of the same type if there exist numbers

a » 0, b.such that
F(ax + b) = G(x)

Theorem 4,15
a

let /(- -p)->0 a8 n->0;0<p<l ... (1)

There exist constants o > 0, [, such that (X(an) - Bn)/ogn has a
limiting distribution if and only if un(x) = [F(ocnx + Bn) -plx
x[n/p(1 - p)!‘% ->u(x) as n => o, where u(x) is a non-decreasing
function, In this case the limiting distribution function @A(x) is
given by
u(x)

L) - @R s ex - 2ar . (12)

- OO0
Further u(x) can assume only one of the following forms,

f-ooX<O

u(X.) =I.. « ] "0 (13)
ex” X >0, ¢ >0, x>0

g.;o.-l*x-.lq XxX<0,¢c>0,a>0
u(x) =1 ere (14)
Lo x50
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- 1x1% X <0 o] 30, >0
u(x) .. (15)

]
O
i
L
N\ .
"
A
-}
L

u(x) . (Lb)
Proof:  The necessary and sufficient conditions Al, Ay A3 and
Ay on F(x) for u(x) to be of the form (13), ‘(:1541),(15) and (16)
respectively, together With the proof are found in Smirnow (1949).
Theorem 4.16. Iet a = k, a constant for all n e | (17).
There exist constants o > 0, B such that (X(an) - Bn)/ocn has a
limiting distribution if and only if
v (%) = nF (o X + B => vix)
ags n. =» o, where v(x) is a nondecreaging function of .x; In this case

the limiting distribution function §B(x) is given by

- 3 e (¥ (v(x))7/r1 (18)

r=k

Further v(x) can assume only one of the following three forms

(o =x<o
v(x) /= { cee (19)

= x>0, a>0

R
| v(x-)~.;-.{'x1 X <0, >0 o

o x>o oo

v(x) = ex’ =0 {Xx {® coe (21)
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Proof: The necessary and sufficient conditions B,, B, and B

1’ 72 3
on F(x) for v(x) to be of the form (19), (20) and (21) respectively,
together with the proof are found in Gnedenko (1943), Smirnov (1949).
We may note that the case . a = n-k, k & constant, is treated in the
same way as above,

a

Theorem 4.17. Let —g— - 1,n -8 -) 00. &S N =dico (22)

let F(x) satisfy eondition €y namely

1 - ngglﬁx;(x))) =1 - «e(x) + o(e(x)) (23)

as x = oo, where €(x) is any function of x which tends to 0 &s
X ->» and o >0 is a fixed constant. Then there exist constants

%, >0y ﬁn such that the limiting distribution function of
X
: . -2, ‘
n - 00

Proof: The proof of this theorem can be found in Kawdta (1951)
Theorem- 4.18, Iet X5 K55 «e. be @ sequehce of independent
and identical random variables with the same distribution function F(x).
Iet U e a U-statistic with a kernel h(xypee. X ) Let
E{h (Xy +er X )} < oo
A) Iet F(x) satisfy condition Ay Ay A3 or LYRE a satisfy

(11). Then the joint limiting distribution function of

. . 1
Koy~ By a0, = )] 38 A a9
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\ Z o Qy,t) o
where A (zy ¥) = -%E s exp(-t2/2) [ exp (-u2/2)du dt...(24)

and Q(y, t) = l—é’—ig- where 6 and O depend on the distribution

of h,(X;) and the pth quantile of X, .

B) Iet F(x) satisfy condition Cl,:C2 or Cz' et &,

satisfy (17). Then the limiting joint distribution function of

{(X(an) - Bn)/o‘n’ n.-{?(Un - )gis

oo «v(x) r o y/m '
Ek.e v . jEE I e (-t2/2)at (25)

C) Let PF(x) satisfy conditior C. Let a satisfy (§2).

Then the limiting joint distribution of {'(-x(a y =B/, 13(Un-- Y)}
n

is
X , ¥/m ,
-.21.1_{ [ exp(~t“/2)dt x [ exp (-u/2)au . ... (26)

Proof: Iet kn the number of random wvariablés among - Xl""Xﬁ

that are less then or equal to o x + Bn « The distribution of k and

X( are related to one another.

a )
n i

oL 1 dist . o 2 - . -

The conditional distribution of. n (Un Y ) given ck +d 5=z

(cn > 0 and dn- are suitable constants) is shown to converge in the

UC* sense with respect to z in any bounded interval im the cases A

and B, and to converge in the ordindry sense for each z in the case C.
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The distribution of cnkn + dﬁ converges to & distribution in
the ordinary sense in cases A and B and in the strong sense in case (,
Applications of theorems 4.5 and 4.6 yield “*he joint'limiting distri-

1 _ _
: £ - e . .
bution ,Of n #(U, Y)and ck +d . The relationship between the
distributions of kn and X(a ) establish the theorem., The complete
n

details of the proof are found in Sethuramen (1961).
"4.5. Combinatorial Céntral Limit Theorems.

We presented several tests in section 3.2 that were called permu~
tation or randomisation tests since the test depended on a statistic
‘whose distribution was to te determined under equally likely permuta=-
tions., This class of problems has led to completely new ‘and fascinating
problems in limit distributions. The first result in this commection
'ié}' due to Wald and Wolfowity (1944). Noether (1949) gave a generalisa-
tion of this result amd it forms our theorem 4.19.

Let ]’tn= (hnl""hnn).’ for n=1,2, ... be a triangular sequence
of real numbers.

Definition: A triangular sequence of real number }l'n is said

to satisfy condition W if




e

Definition: A triakgular scheme j’{ is said to satisfy the

n

condition N if

5 (h, - R
- h
i=1 n

[ rzl | 2y/2

= 0(1)

as n = for r = 3, 4, ...
Condition W 1is a stronger condition than condition N.
Corresponding to a triangular sequence ﬂﬁwe define a random
variable X, = (Xl’ . Xn) which taken each permutation (aln’ a2n""ann)
with the same probability 1/nt .Then corresponding to two triangular
sequences \»A'n and ane investigate the limiting distribution, as

n .=» oo, of

L= Cln Xl + o ens + onn'"Xn"'

It is easy to see that E(Ln) =nc_a
T -
ver (1p) = 377 2 Can = %)

where a = a,n/n and ¢ =oec. /n..
n 2 i n “ 1n/

Theorem 4.19, If C satisfies condition ‘W and ﬂ,n satisfies
. ' n
condition N then the limiting distribution of L; = (Ln-E<Ln))/

(Vvar (Ln))% is normsl With mean 0 and variance ‘1.
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Proof: Let Ce e bhe the symmetric function
1?*** “m
e e
1
C = Z C. 3y oo e C.
@preee e p iyn in

Wwhere the summation is over all permutations (il’ cos im) of m inde-
gers chosen from (1, ..., n). Iet Ael"" e denote the correspon-
ding symmetric -function derived from \ﬁ'n LI; ig unaffected by change
of scale and location. Hence we can assume without loss of generality
that. :Al = C’I = 0Oy Az = C'2 = n, These relations together.with the
conditions W and N imply

C.= o(n) =3, 4, ..., A, ='o(vnr/‘2.), r= 3, 4y ...
(27)

We find that E(Ln) = 0 and Var (Ln) = ?1&1"1 CyA, iswn (i.e,
is of the order of n). From theorem 4.7 Wwe see that it is enough to
prove that n-% Ln bkas a limiting normal distribution., This we
proceed to do by an application of theorem 4.3. We shall prove that
the rth moment of n-%. L approaches the rth moment of thée standard

normal distribution.

-r/2 T
Hp=m / Bl L, )
. n n
-r/2 -
=1 / 2 eee 2 E_(c:.L Xi eevc X, )
i=l 1=l 1t vy

~'-r/2 - ‘ ‘ _ el em
=n [CrE(Xl)+...+c(r,el,...em)Cei’.”emE(xl o X )

teeetey ) E(Xpe.. X)] (28)
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where €+ sen + € =T, € for k=1, ... m is a positive integer

and.: ¢(r, e -e.m) is the number of ways that the r indicies

1’0--

e oo i, can be tied into m groups so that the m groups in the

order in which their first element occurs in the sequence il"“ ir’
e e T

1
are, of size el,..., em;-, respectively. Since E(X1 vae Xmm) ~s
n"m Ae . 3 We have
l’ LI n
e e
- -r/2
l’..nm l’.l-m l,.o.m

e (29)
and we designate by B(r,el,... em) the right hand side of this rela-
tion. To complete the proof of the theorem we need the following
lemma which we shall prove later,

Lemma 4.20. B(r;"el-»,.._. em) ~ O unless m= g— y @i = 2
in which case B(r, 2, «.. 2) ~ 1.
By (28) B, is the sum of 2 finite number of expressions

B(r, ey, .. e ). Therefore, if r = 28+l (s =1, 2,

v o0 ))u‘2r+1N O

since atleast one of the e's in each 3 must be odds If r = 2s,

)

Wy e c(2s, 2y ... 2). Since the first index of the expression being
summed in (28) can be tied with any of the (2s-1) others, the next free
withbany of the (28-3) others, etc., it is seen that u, = (2s-1)-
.(2s=3) ... 3. But these are the moments of the standard normal distri-

‘bution, Hence the theorem.
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Proof of lemma 4.20. Let A(jly cas jh) = A. see. A, o Then by the
theory of symmetric functions Ael“ e can be expressed uniquely as
a linear combination of a finite number of A(jl,..., jh), where

jl+ ves + jh =85 + eev e =T, and the j's correspond to sums of e's,

Since A, = O we need consider only A(jl,.._. ,jh) with jg > 2 (g =1,..h).

1
. . . r/2 .
If some 3g > 2 than A(Jl,... gh)= o(n/%). Ifall 3g = 2 then

A2, ... 2) = A§/2= nr/2, r is even, and all the e's must be 1's

or 2's; therefore m > r/2 wunless m = 2r, e, = =e =2. Thuswe
rf2y . » m
have A = qn/“) if m <r/2 and certainly A =0(n")
€oyeee € €.oyeee €
1°° m 1 m
if m» r/2 unless m=1x/2 &nd e, = =¢e =2 in Which case
: r/2 . C s
A 57 A(244., 2) =0/ ", Similarly writing C , @sa sum
g0 l,o-‘- m
of products of the form C(jl, jh) we obtain the relations
Co o T o(n™) if m <1r/2 and = o(nr/z) if m > r/2. Combining
1,0-0' o . m+r/2
these results we have A C = ofn ) unless r is

e . e €008
1oees %y "17°°"m

even and all the e's are equal to 2, in which casge AZ 2 c2 2,-\‘,n

This proves the lemma.

. The condition W can be given two simpler forms, both of which are
more convenient for application, as in the following theorem.
Theorem 4,21, The condition N for Hn is equivalent to either of the

following two conditions

In,_ -h
1 . n

lim 2
n =3 o - \241/2
[2, (o 77

st M5

=0 forsome r>2 ...(3%0)



=> 0 (31)

Proof: The proof is simple and therefore omitted.

Generalisations of theorem 4,19 of the following type are imme-
diate by an application of theorem 4.4.

Theorem 4.22. Iet the triangular sequences ‘An’ C; a.nc'hQrl satisfy
conditions W, W and W respectively, Further let

n

2i(e,

in ~ Sn)(din - an)
g - -3 =9 e (3)

n g -\ = \2-%
l:}1.‘J(Cil'1"cn) Z(din.dn) 1

as n «> . Then the limiting joint distribution of

1° - Ln -E(L?) , IO = Eﬂﬂl_)—
b (wr(n ) " (V&r(L;l))%
n n
where L = ? c;, Xy LY = % d, X,» is bivariate normal with means

0, variance 1 and correlation Q.

Theorem 4.23, the remarkable generalisation of Theorem 4.19,
is due to Hoeffding and is given below, .Iet bn(i,j), i, j=1, ... n,
be n2 real numbers defined for each n. Let (Rl’“' Rn) designate
the random variable thaet tai{eé each permutation of (1, ... n) the same

.
probability 1/ni. Iet Ln=z bn(i’Ri)' Define
i=1



d (i,3) = b (1,3)- % Z b (g,a)--— 2 b (i,h) + 2 Z b, (g:h).
n n

g" n g’h-'l
Then it is easy to see that

n

E(Ln) == > b (1,,]) Var (L ) = "—'i Z dn(i,j).
Theorem 4.23. Iet
n
2
‘]"' '2'—1dl’l (1’3)
lim ln :{’Jn r/2 O, r = 594 L] (35)

n -y o = > a° (1,3)]

i,j=1

Then I = EP——-.—E-(—I-h—;_— has a limiting normal distribution with mean
(ver(z,))*
O and variance 1.
Proof: The proof of this theorem alsoc makes use of Theorem 4.3.
The proof though elementary is very lengthy and can be found in

Hoeffding (1951). We may remark that condition (33) is satisfied if

mx & (i,))
1<i, j<n _
lim s = Q0 PRV (34)
1 2
IR
l, =1

Theorem. 4.24. Xl’ Xé, +.. is a sequence of independent and |
identical random variables with var (Xi) >0 and E(lxll) { o, Then

with probability 1, the triangular sequencez :(Xl,... Xn) satisfies
v\

condition N.
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Proof := From the second part of Theorem 4,8 it follows that, with
probability 1,

n n
1lim L X, =EX,)), lim _l pX x2..__:.- E(Xz) and
n i 1
n => o 1 n=y o0 1
n .
lim % s xi3 = E(X—%).
n = 1
Thus
15 = |2
lim =3 (X; =X ) =var (X,)
n i n 1
ne->e -1
13 = 3 3
and Hm =2 IX; =X 17 = E(IX] - E(X;)I") with probability 1.
h - oon 1 ‘1 n .

Since: Var (Xl) 5 0, we have with probability 1 that

-1

n. 5

=B

E(IX, - E(xl)'IB‘)

lim : - m——
n =) [’n-l % (Xi—in)zls/zh [Var (Xl)]B/Z

This together with Theorem 4.21 proves the .theorem.

We give two examples to illustrate the use of these theorems. The
rank correlation between a pair of observations (xl, yl),,, (xn, yn)

is defined to bhe

n+l n+l
Z (ri - 2 )(Sl = 2 )
n2 - 1

where (rl, .es rn) and (sl, .ee sn) are the rank statistics baged on

(xl, . xn) and (yl, .o yn) respectively., Under the null hypothesis

of perfect independence, (Try, ... rn) and (sl,... sn) are random
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variables teking all permutations of (1, ..., n) with the same proba-
bility 1/nt. We now find the asymptotic distribution of the rank cor-
relation coefficient under the null hypothesis, Iet in Theorem 4.19
Cn = (1, «+. n) and ﬂ“ = (1, ... n). Then the rank correlation
coefficient is a linear function of I e
2

1 12 n4l 1o, r
Now & == =73 (1~ 3% ntl 42 5 =%i° =0(a"). Therefore
n nl nl

i
N|
-e

= 0(n"). Thus gn satisfies W. Hence Aﬂ satisfies X,

Frem theorem 4.19 it follows that L and hence the rank correlation
coefficient«'w® asymptotically normal.
An another example take the gltman test criterion (see section
3. ) with n) =1, % Z -— > Xe Assuming that Xl,X »a e e2T€
1 Dni1
independent and identically distributed with E(X?L) { o and Var (x1)> 0
we shall establish thet the asymptotic distribution of this statistic,
under the randomisation distribution, is normal with probability 1.

Setting up a correspondence with Theorem 4.24 we see that we should

. . _ £1 1 1 1
show that the triangular scheme Can = (-r;, cee Y TR et T ;)
satisfies condition W,
1 1 :
. - R SR . - . .
Now c 0, 5= > ¢, = =F if r iseven and 0 if r is odd.

These show that condition W is satisfied. The same asymptotic distri-
bution can be established also when nyy Dy => @ so that n, ‘/nz -> Cy
0¢c o,
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Chapter V

ESTIMATES FOR THE DENSITY
FUNCTION QOF A DISTRIBUTION

5.1. Introduction.
et Xl’ Xé’ ...4'Xn be-n independent. and identical random

variables with a distribution function F(x). An estimate of F(x)
that suggests itself at once is the empirical distribution function
Sn(x). The famous Glivenko-Cantelli lemma asserts that
supl § (x) - F(x)| tends to 0 with probability one or that sn(x)‘is
axstrongly uniform consistent estimate of F(x) In this chapter we
propoge a class of estimates fn(x) for the density function f(x)
of F(x), which are strongly mean consistent for f(x), that is,
possess the property /1fh(x) - f(x)ldx => 0 a8 n =% o0 with proba-
bility one. The method of construction and the proof of.mean consig~
tency depend on the theory of integral operators of the Fejer type,
a discussion on which may be found in. Acheiser (1956). The results
described in this chapter are due t» K. R. Parthasarathy of the

Indian Statistiecal Institute, and have nct yet been published «

5. Definition and properties of kernels of the Fejer type.

Definition. A function K(x) 1is said to oe of the Fejer type

if it satisfies the following:
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a) K(x) = K(=x), K(x) >0
b) /00 K(x)dx = 1

¢) K(x) is bounded in the interval [-1, 1]
a) XZK(X) ig bounded everywhere

e) K(x) isof bounded variation.

-ax
a N _ .
Examples of such kernels are ;-];'- 57— v & > 03 ( E)"%e s a > 0;
a + X
2 sin2 x/2
5 ; etc. It is easy to prove the following.

T X

Lemma 5.1. If K(x) is a kernel of the Fejer type- then

( /oo Kz(tx)'-dxrl 'Kz(x) -and /§° K(x~y)K(y)dy are kernels of the

Fejer tyre.
The following theorem is important in the: proof of the mean

consistency of the density estimate in section 5. Let’ Wl e the

class of functions f(x) such that —f;ficlz, is integrable. For any
l+x

fe'Wl we define the operator K, by the relation

A

(o]

K}\‘(f) = A jf(u) K(A(x=u))du, A > O (1)

K, is said to be an operator with a Kernel of the Fejer type.

Theorem 5.2. Let f(x)ewl and f(x,\) = K}\(f(x)) where K,

is an operator with a kernel of the Fejer type.
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h y
i) If Um [ | f(x+t)2+ £l=t) _ g(x)ldt = 0, h >0
he0F°

then Iim f(x, A\) = g(x).
A =>

ii) If f(x) is the density function of a probability distri-

bution then so is f£(x, A) and

lim [ 1f(x, A) - £(x)1dx = 0
A => o

Proof := For the proof of the first part of the théorem we
refer to Achieser (1956). If f£(x) is a density function, it is
obvious that f(x, A) is also a density function. Since #£(x) is

integrable we have from a theorem of Iebesgue that

im fh y f(x+1) ;— f(x=t)

f(x)ldt =-0
h«0 o]

almost every where with respect to the Lebesgue measure, Hence by the

first part

lim f(x, A\) = £(x) a.e. (Iebesgue measure).
A => oo

Since f(x, A) and f(x) are densities the use of &cheffels Theorem
(See Scheffe (1947)) establishes the second part of the theorem,

We now state a theorem due to Prohorov (1959) which is useful
in proving some theorems in section 5.4.

Theorem 5,3. If Xl’ X2, oo Xn are independent random varia-

bles with mean zero, | X, 1 Lcyi= 1, 2, ...y n
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2 2
and B(X; + .. + xn) = 0 , then

X i X
P | Xq+ eee t an >x =2exp [-55‘ sinh L{zoz.é eee (2)

pProof:~ For the proof we refer to Prohorov (1959 ).
5.3, Estimates of the density function.

Let Xqs X X, be n independent observations on & ran-

2, LN ]

dom variable X with a density function f(x). Consider the estimate

Bx, A = A %1 KA - %)) (3)
Z

for A > 0. f(x,; X) is an unbiased estimate of f(x, )= K, (£) =
Nf(u) K(A(x-u))du: From theorem 5.2. we know-that f(x, A) con-
verges to f(x) in the mean. Thus it could be possible to choose a
sequence A - With ‘A, ~> oo 80 that ?(x, }\h) converges to f(x)
in the mean with probability one. This we propose to do in the next
section..
5.4. The strong mean consistency of %, }\n).

Lemma 5.4. The functions -?(:r., A) and f(x, A) are square
integrable densities.

Proof: In fact the functions ?(x, A) and £(x, A) are bounded
by A and bounded densities are alwavs sgquare integrable,

Lemma 5.5. If A =1n°, 0 <6 <4, then

lim [ I?(x, A) - £(x, A) ° ax = 0 (4)
n =) o

with provability 1.
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Proof:~ Iet

= [ B, ) - £(x, A)Pax

Then
- 15 T ] AP ) )R(A(x=x,) ) ax
- 2 % (A=) £ Nax + [ 1 £(x, N Pax <~ - (5)
Iet K*(x) = [ K(x=y)K(y)dy
and N J K¥(M(x=y) )£ (y)dy = T*(x, A) <. (68

Using (6) and (5) we find

A K*(A(x - Xs)‘)
%E [ § n - ~ f*(xr, A3

-3 SLexG,, N = B(E*(x, M . L . (D)

n

Since K*(x) is a Fejer kernel by lemma 5.1, there exists a constant

Cl such that

K*(x) < cqy £%(x, A) L 04N (8)

1
Thus by (7) end (8)

26N [*(A(x, = x ))=f*(x_, A)]

1< R . -

'\

1<s<n,s $r

+ %} % [f*(xr, A) - E(f*(xr’ M) ‘

A
= 201 ot Yn + Zn’ say (9)
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Since
| f*(xr’ }\) - E(f*(xl" }\))l _<_2Cl?\

and 2 2
B 1 £ (x A) = B e AV fLB(* G 0T g X

and sinh™t x < log (1 + x)
we have by lemma 5.3 that

no.
401A

P[z, > 2] <2 exp [~ log {14 ‘421’.‘)] ‘ < - (10)

Further, we have n
% [AR* (M(xy=x, ))=£*(x) 5A)]

P[Yn>b]_§‘n1>[}s=2 -~ 'l)b]
: % [k ( )\(_Xl’ - XS)) ~ % (xl"’ A]
- { o [£2 D2 [x)

When Xy is given, x = X5 Xy = X3y ... 8T independent random
variables. Noting that
* - - ’ =
E[ X (}\(xl xs)) £*(xps A) lxl] 0

and

’?\K*(?\‘(Xl - xs)) = £*(xy, A) ,_(_ 20, A
and aPPlying lemma 503, we have

PV, > 0] < memp [ 222 1og (14 2] - - 4 (1)
1 1
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Thus if A =1n°, 0 < & < %, Wwe have

Z{P[Yn>b]+P[zn>“bl} oo oo L (12)

(9), (12) and an application of the Borél-Cantelli lemma, establish
(4) with probability one. Hence the theorem

We now prove the strong mean consistency of ?(x, A

Theoren 5.6, If Xys X553 «.. 13 a sequence of independent
observations from a population with a density function £(x) and
xn=ng, 0<6 <%, then

lim [ | g(x, A - f(x)l dx =0 (13)
n =»o

with probability 1.
Proof:= Tet Sn(x)v be the empirical distribution, function

based on x ) eee X 1et
1 n
x
6, 6) = A/ KOW)dy (14)

From the @livenko-Cantelli lemma it follows that Sn(X) converges

to F(x) with probability 1. Further Gy (x) converges to the distri-
n
bution which is degenerate at the origin. Hence the convolution

S, (x)*e¢, (x) of the distributions s, (x) end G, (x) converges to the
n . N

o A

distribution F(x) with probability 1.  f(x, -)\n) and f(x, }\n) are

the density functions of the distributions S (X)*G, (x) and F(x)*G, (%)
. N "

respectively, pHence for any given € > O, there exists a constant

A>0 depending on the ‘sequence Xys Xpy e of observations and € but



86~

not on ‘n such that for all m > n

[T @&+ [ £ \)ax e (15)
Ixi>A IxI>A

fie(x, A) - £(x)1ax

< f l?(x,. }\n) - f(x, ?\n)ldx + [ |§(x, A,) lax
XA IxIpA

v [ £(x ADax + [ E@s A) - £(x) lax (16)
IxI>A

Since }\n «> 0 as n => o, by Theorem 5.2 the last term in
(16) tends to zero. For n 2ns by (15) the two middle terms are
less than €. By lemma 5.5 the first term tends to zero as  n =) «
gince the integral is over a bounded interval, This.completes the
proof of the theorem.

Thus there arises a new problem of choosing the kernel K(x)
with some optimum properties, since all kernels yield estimates with
the strong mean consistency property. Since E{f(x, )\)} = f(x, A)
a measure of the bias of the density estimate would be
J I£(x, A) - £(x)1dx = e(K,\). Imposing certain desirable restrictions
on e(KsA), it can be shown that ostimates satisfying these restric-
tions can be obtained by restricting K to the class of all kernels

that are linear combinaticns of ( -S—;—n—z)zr, r=1,2, 4..



Chapter VI

FIXED INTERVAL ANALYSIS
AYD FRACTIIE ANALYSIS

6.1. The methods of fixed interval analysis and fractile analysis.

One -of the important problems of statistics is the study of the
relationship of one variable Y with another variable X and of‘the
comparison of such relationships among different populations, These
are usually made through the study of the regression function of Y
on X, i.e. through the study of the function T(Y IX-x). A common
problem met with in practice is the comparison of the regression func-
tions in two populations (Y, X) and (Y', X'). We can give illustra-.
tions for this problem from practically every applied field of Statis-
tics, We will however content ourselves With one exampie which We will
refer to, for purposes of illustration, in the sequel. Data on a pair
of random variables (Y, X) and (Y', X') are available. Y and X refer
to the consumption of milk (volume) and total expenditure per month,
respectively, of an individual in a population P. Y' and X! refervto
the same variates in a different population P'. The problem is to
compare the patterns of relationship of the consumption of milk with
the total expenditure in the two populations.

The problem Jjust stated can be expressed in symbols as follows:

We wish to test whether or not

~87=-



88

A(x) = At(x) forall x... ... (1)
where

A(x) = B(Y | X = x) (2)

A (x) = B(Y' | X' = x) (3)

This is the sort of regression problem‘We,shall_be concerned with in
this chapter., The classical method of»approachihg this problem consists
in agsuming that the regression functions A(x) and A'(x) are of a
certain algebraic form; completely determined except for a finite
number of ‘'parameters'; say, & polynomial, 2 trignometric series or

the like. The problem of testing the equality of the regression func-
tions then reduces to the prooiem of testing the equality of these
parameters, The difficulty with these methods is that the assumption
.of algebraic model for the two regression functions is too great an
over simplification of the actual situations. Further, it is very.
difficult to test whether any particular model fits in a given practi-
cal set up., We will describe in this section two methods, fixed inter-
val analysis and fractile analysis, which do not involve the assump-
tions of the usual regression models, In both these methods we cqmpare
the two regressions functions intervalwise instead of pointwise, where
the intervals.are largely at our choice.

In fixed interval analysis we fix to start with g fixed

intervals
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(ao’ al]’(al’ az‘],""(ag_l,‘a’gt‘ s » (4)
by means of the (g+1) constants

By Bps weer B, (5)

satisfying
-oo=ao<a'l<...(ag_l<ag=+oo (6)

We then define the regression .@a, b) of Y on X in an interval

(ay b1 by the relation

(@, b) = B(Y la<X<b) (M)

Iet

—

i(ai-l, ai) = ‘yi', i = l’ e e g e (8)

The quantities 3)-; are defined in the same way for the random variable

(Y'y, X'). 1In fixed interval analysis we test the hypothesis that
-]

5; = ¥ A (9)
(e (el
where
— — ~i [ —1 . i-}-a/
)):()/,3--71/2) ) 2’*’(})17“"3 j) .ie (10)

It is obvious that such & hypothesis becomes meaningful only when the
_intervals (ao,__al'},...., (ag.-,_l’ ag] of (4) are chosen carefully. For
instapnce, in our illustrative example, let the populations P an‘d Pt
correspond to two constituent states of the Indian Union at the same
point in time, Several comparable social strata can be defined in the
two populations by a suitable choice of the intervals of (4). Such

strata might correspond to-expenditures classified as !'lower class',
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tlower middle class', etc, In this case the hypothesis (9) is mean-
ingful and fixed interval analysis is appropriate to the situation.
Tt should be noted that the use of a large number of strata
-/

would mean that the hypothesis 5‘ = 2{ is practically equivalent to

the hypothesis A(x) = At(x).
The practical details of the method are as follows, We estimate

——

the quantities \;) and ;)7 ,suitably and test for their difference, Iet
(yl, Xl), eer (3 Xn) (11)
and
(¥1s xi), cor (4o ), (12)
be two independent samples S and S' from the populations P and
P! respectively. Let n, be the number of observations of the samples
S with x-components in “the interval (a'i.-l’ ai], i=1, oo. g
Let
x-ri = Z¥p /ni,, i=1, ... g (13)
SERERTEH
where thé summation igs made over all yI'_S' for which xx"s lie in
(ai_l', ai]. We calculate ;‘]!'_’, i=1, ... g ®n a similar way trom the
sample S'. The vectors ,Y-, and i! are estimates of ?and? ,. We
define several measureé of divergence between the sample estimates for

the two regressions,

! cee (14
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D1
N}
it Mo

(v, -9)° (25)

i=1

F

F =B E-T) ... (16)

where B is some positive definite matrix. Iarge va@lues of these
statistics will form the corresponding rejection region for testing
the hypothesis in (9) Tt is an importantproblem to determine the
distributions -of these statistics, atleast in large samples, and set
up significance points for these statistics.

We now proceed to remark that there are memy problems where
fixed interval analysis becomes conceptually meaningless or partially
s0. As an example let us suppose that in our practical example, the
populations P and P! correspond to two different states having
different ourrencies. After setting up interval limits to the total
social groups in one population, we may find it very difficult
expenditure reflecting different fto demarcate comparable limits in the
currency of the second population. The official exchange rate cannot
be used here since it does not reflect the actual purchasing power of
the two currencies., The real exchange rate that does this is not
easily available. We have thus presented a typical case of the general
gsituation where X -and X' are not comparable and where fixed interval
anaglysis is not useful.

In the above example we can safely assume that the total expen-

diture is a monotonic function of the socio-economic level of an indivi-

dual. Thus, though the total expenditures in the two countries are not
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directly comparable they are monotonically related., Groupings based on
the ranks of X and ‘X' will be comparable in a meaningtul way,
Professor P. C. Mehalanobis made use of this fact in proposing a new
method called fractile analysis for such situations.

We describe this method after defining some quantities, Let

v 1 2 -1 .
e th - quantiless (or frac-
819 By9000s eg_l be the -g-_th, Eth’ g—-—g quantiless (or fr

tiles) of the distribution of - X. Iet @ = = oo eg =4 0, Ipt
8L, 61, ... eé 1’ Gé be ‘the ‘corresponding quantiles for the distri-

bution of X'. Let

¥ = V(8 1 6;) i=1, ... 8 P (17)
;) =
Vg = Ue!_q 8f) i=1, ... g ces (18)
We see that the intervals (8., 6,), (8;; 8,) «e. (eg_l, eg)_ of X

represent the lowest 100/g percent 'section, the second lowest

100/g percent sestion ... ... the highest 100/g percent
sec’tion,v respectively, of population P. A similar interpretation can
be given for the intervals (96’ ei), (ei,-eé),_... (eé_l, eé) of X!

in the second population P'!'. ~Thus these intervals are comparable in 2
very important sense, although the X wvalues are different. The method

of fractile analysis consists in testing the hypothesis

.as 1
¥ =y o

where
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/ ; /
)),())”,..','vg) ? 3‘).:()),)-':'.)'?)" (20)

The practical method adopted is as follows, let S and S'. be
the samples from the populations P and P' respectively, as in (11),
(12). Rearrange the observations in the sample S so that the =x's

are in the increasing order of magnitude thus

Tay *) ey @) Gpy X@) oo @D
with

x(l)_<_.x(_2) £ e £ x,(n) I (22)

The notation adopted here being symmetric in x and y may
be a bit confusing. Ve remtrk that we will never havée to order the
y's so that (x(r), y(r)) will always rcpresent the observation

whose x = component has the rth pank. Tet n = m.g Where

m and g are integers. W define the quantities

. = y i = P e s 2
E (i-1)m % r < in Ty ot e =)

Quantities v{, i=1, «.., g are defiped in a similar way from S'
/

vectors v and v! - are estimates of W and ¥ ., Suitable measurss

~ L o -
of divergence are then defined. Professor P.C.Mahalanobig defined one
such measure called separation, as follows., Plot the ordinates
v'l, v2, eony vg corresponding to the equidistantvpoints 1,2, vae e
Join the successive points by straight lines; the curve C thus

ohtained is called the fractile graph of.S. The _f‘ractile graph C' of
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St is obtained in & similar way and drewn on the same paper and to
the same scale. The area A between these two graphs, and the ordinates
at:- 1 and g called the separation, is a meagure of divergence between

the two sample regressions. The algebraic expression for A ‘is

g=l 4 1
A=Z[-é-lvi-vivl+§-l
i=l -

- 1
Vil Via !
I(v.=v!)(v, =vi
T AN RV ey l+ivvl+ﬁ e (34)
i+ ERRE TR S R ]
0 if ab >0
Where a(a, b) ‘= ’o‘oo oo e (25)
1 o if abv (€0
Some other measures of divergence which have been considered are
- 6
- . - ] -
])—iz',llv:.L ?i l, .o (26)
g€ 2
A = 2 (vi - v:{) [ s e Y (27)
i=1

r=”(v-v')B (v =v')ry ... (28)

where B is sofne positive definite matrix, Iarge values of these
statistics form the corresponding critical regions for testing the
hypothesis in (19). We repeat the rcmerk made earlier, that at least
the large sample distributions of these statistics should be deter-
mineu'before uSing these measures for testing purposes. Till now only

descriptive methods are available for the methods of fixed interval
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analysis and fractile analysis; for examples see Mehalanobis (1960),
Das (1960), Das and Sharma (1960).

We find the requisite limiting distributions in section 6.3 and
these can now be used in practice.

let us add a few points bringing out the special character of
the method of fractile analysis in comparison with the method of fixed
interval analysis. For applying the method of fixed interval analysis
the random variables X and X' must be directly comparable and some
intervals resembling strata should be .f.orm_ed. We then compare the
Iegirevssion‘ in these intervals, The method of fractile analysis is
applicable to the more-difficult situation where X- and X' ‘are not
directly comparable .but -are monotonically related t6 2 ommon charac-
ter that X and X' are supposed to measure. This, then. is: the gene-
ral set up where fractile analysis can be used, Such situations hawe
been encountered in Econometrics, Psychometry, Demography etc., and :
fracti lev analysis has been applied, though, as yet only in a descrip-
tiﬁefway;vaSee Mahalanobis (1960), Das .(1960), Das and Sharma (1960),
Som »(1:960). Fractile analysis is now being utilised in -the‘ Hational
Sample Survey .of India on a large scale.

3everal modifications of the method of fractile analysis can be
made. After ranking the individuals ‘we..can take groups with varying
prqp_ortions instead of equal pro,bort_ions. Thus a group aiready formed

may be split up into several sub-groups for & more detailed analysis
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of the regression in that group. This has Yeen employed in
Mehalanobis (1960). For calculating the sample estimate of Z s the
median, mode or some other suitable characteristic can be takeh
instead of the mean. These may be easier to compute in practice.
This has been stated in Mahalanobis (1958a)., We can thus go on

multiplying the number of modifications we could make,

In practice, it happens that frequently we take several and
independent sub-samples Sl" Cevey Sk from a population P instead
of just one sample, These are called interpenetrating sub-samvles
and their usefulness in a large number of situations has been recog-
nised, . See Mahallanobis (1946), Yates (1949), ehoah (1949), Ilahiri
(1954), (1957). 1If interpenetrating sub-samples are taken from both

the populations P and P! we can get measures, D, D, and D,

2

divergence, from the samples measuring the divergence between the

1 y of

combined samples of P and .P', within the sub-samples of P and

within the sub-samples of P!, respectively. Thus D would be the
Where.aas D; and Dy would be the within divergences,

betwsen divergence / These terminologies are analogous to those in .

analysis of vaeriance problems and are self-explanatory. Suggestive as

they are they permit us-to develoo some tests of at least a descriptive

nature. See.Mahalanobis (1958a), (1960).

Finally We add that the quantities calculated in’ the methods of

fixed interval analysis and fractile analysis can be suitably modified
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to estimate relative concentration curves and relative concentration
ratios, The utility of these is well known, See for example, Davis
(1941), Roy, Chakravarti and igha (1959), Iyengar (1960).

We now.give a brief description of the method of obtaining the

concentration curve etc., The following symbols will be used:

.V-i = nl ;1 + n2 .‘-72 + s + ni ;i; i = l, esa g (2 9)
VO = O, Vg -V L o cow (30)
ai =.\}i /\7; i = O, 1, essy & ese eve (31)
§i= (n1+n2+ ...+ni)/n; i=1, eeuy & (32)
PO = 0 ° o .o o o0 (33)
Vi=(v1+ ...+vi); i=1, ey & (34)
Vo = O, Vg =V o v s * 90 * e > (35)
qi =Vi /Vg; i= O, l) ress & ses s (36)
Pi = i/g; is= O’ seey & "o 0.0 (37)

When the method of fixed interval analysis is used an estimate
of the relative concentration curve of Y on X is obtained by plot-

ting the points

(50’ io), -({51! al)y o ( 5 s ag) _ oo (38)

g
and joining successive points by straight lines. The relative conceén-

tration ratio is estimates by
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el |
1]
<f=

[z ni;i(ﬁi—l"r ﬁl)] -1 ... (39)

Yhen the method of fractile analysis ig used.an estimate of-the
relative concentration curve of . 'Y on X is obtained by plotting the
points

(bgr 0)s (Pys 9p)s wev (Pgr @) <o (40)
and joining successive points by straight lines. The relative concen-

tration ratio is estimated by

e Zivi--ﬁ’l (41)

6.2. Notation, definitions etec.

In this section we develop the notations etc., vto be used in
sections 6.3, 6.4 and 6.5, Since we are developing the theories of
fixed interval analysis and fractile analysis side by side and since
they are similar to one another in many respects, the notations employed
will also be similar., Whenever possible we will distinguish the
quentities involved in fixed interval analysis by a bar .

Tet (Y, X) be a random variable on the Buclidean plane with

- distribution function G(y, x). The distribution function of X will
be denoted by F(x).

Let (yy> %) (¥, xz), voe (e X)) e (42)

be 2 sample § “of n independent observations on (Y, X). Let us

arrange the observations according to the increasing order of magnitude



of -the x!', thuss
8

Ny Xy ) x vos Ny “ee )
(Y(l)s (1))9 (Y(z)’ (2))’ (Y(n)’ X(n)) (43)
The fixed interval method of analysis involves stratifying the

population into g strata, Let these strata bé formed by the prede-

termined constants 2y 83 '.,..'ag satisfying

'°°=ao<al<"‘<ag-l<ag=+°° (44)
These constants introduce g strata in the domain of (Y, X) as f
follows: The rth stratum (r =1, ... g) contains all (y, x) with

ar,-l <x< a.. We define

m, = F(ar) - F(ar_l); i=1, «ouy g (45)
throughout the discussion on fixed -interval analysis we shall assume
‘that

m,>0, Tr=1, ..y g ‘e (46)
Let us define the means, variances and covariances - of Y and X

(these are assumed to exist throughout this discussion) in these g

Q.0 *‘t‘r=cov (Y, X l;ar_l <X$ar); T=1, eoey g

strata
ﬁr = EB(X | a1 <¥X<Lal)s .)‘J;z--E(Y ta, , <Xga)) :
Foe vty <X T T Ay <X Sa) fena)
|

rr
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Let nl, Ny eeey ng be the number of observations in the *sample

th
S in the 15%, 2

y seey & - sStratum, respectively, introduced by the
constants in (44)., We shall denote the proportion of observations in

these strata by P1s» Pos ...pg, i.e.

pi =n1/n; i=1, es ey g o (48)
The means, variances and covariances the sample S in these strata

are dedined as follows:

- _ oo E < . :
b T Z axr/ni’vi o <ayr/ni |
LB % L8y 18 Fp S8y |
|
-2 ‘ 2 -2 42
87 = 5 (x, =) /n; 8= % (yr-evl) /n:.L I (49
ai-l< Xy £ 8 ai-l< *p <8y :
T, 8, t, = > (xr - ui)(yr - vi)/ni; i=1y veer g J

_ai-l <“"X‘r L ai' |

In the theorems of the next section will be interested in the limiting {

distribution of the following. statistics.

E(0) = A, - A5 () =/AG, - V)5
- cee (50)
Ciw) =/nlp; = m)s i=1,...,¢

"

E ) - (B, ... B 3 - (e o o
K@) - (5w, o B N G2

'In problems commected with fractile analysis we shall assume the

follawings
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The distribution function G(y, x) admits of a density {
function g(y, x) which is continuous and which does not vanish. II G2)
The density function of F(x) will te denoted by f(x),

In the fractile methed of analysis the population is to be divi-
ded into a previously assigned number, g, of strata thus, ILet Qi be
defined by

F(8,) = Vg im1, eeuy g-1 (53)

eo=-°°, Qg=+00 s see (54)

Then the rth stratum is defined as.the region of all points (ys x)
with.

gr-l < X\_(_ Gr,- r = 1, ssey ge
The means, variances and covariances (’chese are assumed to exist
throughout this discussion) in these strata are defined by

By = B(x | Orap <X & er); Y= B(Y Opy <X L Qi'); :

- yx 1o . <X<9')'-TL=-V(YIG <x<e); |

T ‘ -1 = Srl? M r-l 3% = "r’? | (55)
|

Qror'(‘.'.,= cov (Y, X 16, 1 <XX er); r=1 eees 80|

We also require the regression function

B(Y | X =x) = A(x) (56)
A(ei) =Nsi=1, «ury gl (57)
AO = O, 7\g= O ese o (58)
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The corresponding quantities are defined from the sample §,

It is assumed that n = m.g Wwhere m is an integer.

u, = Z X, \/ m3
"t ({-Dm < r < im (r)/ "
v, = )2 Yoo/ m; ;
ot i-l)m < r  im (r)
(3-Lm <= < 69
?a X -e,.zm;t.2= 2 -v.?'m;I
E (i-1)m <Zr <im C@yes) /mi (i-1)m < T ¢ im(y(r) D/ :
|
ris, b, = 7 (x(r)-ui)(y(r) - vi)/m; i=1ly0ee, 8o f

(r=1)n < r £ im

In the next section we will be interested in the limiting dis-

tribution of the following statistics.

Ei(m) -y, - 0)5 d= Lo g
_ (60)

) =vaty -¥)s 1-1 e

';;(n) =\/§(X(im+1) -8); i=1, ..'., g-1 (61)

é(n) = ( § @) ... £,a(n)),;. Q,(n) = (’7"(n), 7)}(11));

g(n) = (;,‘(n), Z(n)). (62)
. ?w
In the following sections we shall have occasion to consider
another random variable (Y', x') constituting a population Pt, The
constants for this population will bé obtained by adding a 'mark to
those of P. In the same way the statistics from & sample with some
suffix will be obtained by adding that suffix to the statistics of

the sample §S.
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6.3, Limit distributions

In this section we state without proof some results concerning

the limiting distributions of the statistics entering (51) and (62).

The proofs of all these theorems can be found in Sethuraman (1961a),

The results concerning the statistics entering fractile graphical

analysis can be found in Sethuraman (1961).

Theorem 6.1,

Let condition (45) hold.

As

n -» oo, the sequence

of random variables ( i (n), :l(n), E (n)) converges to a random vari=--

able (E ‘3 %) with a multivariate normal distribution with mean
YR -

vector 0O and variance covariance matrix

|
A AT,
Er\'li it o |y g (63)
0 | o Iz g
- T ‘ v ‘ 0y
where Y = diag.* (Ol, ceny 52) a... .. (64)
_ S
T = diag. ('-r,, ’c’-? Yy .. .. (65)
E = dia. (91 l’t’, y s , §g5g’7.’g ), - (66)
T\ = diag.(nl,.'.., ng) .o e (67)
nl(l - “1)1“1(1 - n:z) nl(l - 7))
. nl(l n2)>n2(l nz) nz(l - 7) . (68)

. o > - S S o T g = S A - i o

eee O
bl 0
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Corollary .2 The distribution of ';): is multivariate normal
with mean vector O and variance covafiance matrix where
A=7T (69)
Theorem 6.3, Let condition (52) hold. As .m.~>c (i.e.
n ~> ) the sequence of random variables ( é (n), :Q‘ (n) E (n))
converges Weakly to a random variable (§ 72*2 ) with a multivariate

normal distribution.

Tet

M, =i = m) - (- 1)(@i__v_.l ~u )5 i=2, ... gel

Ml = (91 - u'l)’ Mg =" (g - 1)(93‘-1 - Ug) (70)
My = (g4 )(6; -1, ) (g-4+1)(8; 11, )5 & = 2, ooy g1

o (71).
M o= (g)(8 =~ 1y)s M, = ~(8, 1= B,)
N, = i(N '"Vt) - (1-1)(A\ _=¥)s i =2, ..lg-l

5 ) (12)

Np= (=YD Ny = - (g - 1)(}‘g-1,',)§-)
Nf = (g=1) (A= ¥ )=(e=1+1) (A, 1= M:)5 i =2, ... -1

) (73)

o
n

e D0 ) e Oy )
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Let sz - éMng isi
- %MJ. M, iy
= 0p ¢ TUHD + (8,-u)(8 1W)s =iy i% 1 g (T6)
= Oil-;.%Mlmg 1=.jb=l
- 02+é—MgM2 i=j=g
f\;j= ';-NiN:c; i
= éNJ. Ny 153
- eI L IO L= i e (1)
g 11
= ,2+é-NlN§ i=j=1
=%2§NgN; rrae
E:j = é—MiN§ it
- -;-Ni'Mg PRE!
- 9,0, +~§-M1Ni+(9 “w (A= We)s i=js it L,e  (16)

= 90Ty Ny, i=3=1

(o] . .
= [¢] ) - M 1 = =
Y g(tg g Vg J=8
Corollary 6.4. (E 92')‘ ) has a multivariate normal distribution
. A¥

with mean vector® O and variance eovariance matrix
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Y
TN /3 (77
s

Corollary 6.5. [J) has a multivariate normal distribution with

E

/ .
mean vector O and variance covariance matrix A .
Theorem 6.6, Let S(l\’ vees S(k) be k independent samples,
J
each of size n, on (Y, X). Let S be the pooled sample., Let

( 5(,)(n), ](,,(n)), oo (g®)s Dagln)) ana (§ (n), Y (n)) e

statistics computed from these samples. Let

. K
(Fe FTen=2 T (B Qo) - (79)
- i=k I

let condition(52) hold,
men (§ (@), B @) = (E @, )@) > 0 in prowviiey.

o

The proofs of all these theorems depend heavily on theorems 4.5,,4.6.

6.4, Theoretical applications.

In this section we show that the limiting distributions of
section 6.3 in effect reduce a large sample S from a population P
to just one observation ( y or y) from a multivariate normal distri-
bution. We then derive the limiting distribution of the measures of
divergence D, be, I.:, A, Dy & and | (see secvion 2) used in fixed
interval analysis and in fractile analysis. We indicate the tests
that can be used when several (interpenetrating) samples are available

from each population. The asymptotic distributions of the concentration
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ratios (39) and (41) are shown to be normal.
Let samples S and -3' be drawn from the populations P and
P' respectively, and the method of fixed interval analysis be employed.,
Corollary 6.2 states that v is asymptotically normal with mean
and variance covariance matrix N /n. We write this in symbols as
Fow (Y, MN/m) (79)
Similarly.
-/
Gow (Y, Naoy L (50)
(79) and (80) show that the samples S and §' are now reduced to
the vectors i and i‘ respectively, with asymptotic multivariate
normal distributions.

Iet n, n' => o in such a way that n/n' =>a, 0 < ¢ < oo,

Then
L - -l
Ve Vime MV (Y- Y (/\+c/\)/n) (81)
From (81) we can easily obtain the asymptotic distributions of D, B
and | under the null hypothesis (9) . n A has a limiting distribation

which is the distribution of Br ](3 where ,2(21, cees }(2 are indepen-

dent )(2- ‘with 1 d.f. and-

-t 2 i
zr % %
T, ' NG 1
Blz ( TE1+C—TI-]'-_)’ oo Bg: ( T +C‘ ﬂ:é).
g 1 /3
r. ’t’
For a particular choice of B, nl is equal to n ) [(v -V, ) /( + ]

and has a limiting distribution that is a /\ Wlth g degrees of

freedom. -The limiting distribution of /n D exists but does not have



=108~

a simple algebraic Iorm,
et S(l)’ ceey S(k) be k .independent and equally valid
(interpenetrating) sub~samples of the same size n from the population
_ g1 . s . : .

P. Let S(l)’ e (k?) be k interpenetrating subsamples of size
nt each from Pt If n and n!' are large these two sets of samples
2 ~- *ae v ‘. —' LY —,
can be reduced to. two samples v(l),_. 9 V(k) and V(l)’ V(k')
from multivariate normal distributions with parameters#* ( 7 A/n)
_./ —/
and (¥, /n') respectively.

The problem of fixed interval analysis is to test the hypothesis

——

3\).—.

the problem of simultaneous independent Fisher-Behren tests.

+ Since /\ and A .are diagonal the problem can be viewed as

e

To pose the problem as one in classical multivariate analysis

we .should strengthen hypothesis (9) to the hypothesis

g,g’? A=A ... (82)

Multivariate analysis now yields us two solutions to this problem,

We can use the likelihood ratio criterion

{[kcsr + k's'f_ + kk'c(v - v') 1 /[kos + kst ]} (83)
r-l

Where v - ‘2 vr(g)/k
: k
52 = § (r(J)-v)/k eer (84)

*
the parameters are the mean vector end the variance covariance
matrix, respectively,
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Iarge values of this criterion will form the region of rejection,
The distribution of thiskriterion has been evaluated by Box (1949).

Another method is to use the criterion

)5, = 5l (e v 00 - )

Sup S 2 £
l<r<e  [(cksl +.k"s'r),(k' + ke)1*®
The distribution of thisg criterion is the distribution of the absolute
maximum of g independent t-distributions each with k + k' - 2
degrees of freedom. Significance points of this distribution can
easily be obtained from the ‘tables of the t~-distribution.
let samples S and S' be drawn from the populations P and
P! resPecti\fely, and the method of fractile analysis be used.
Corollary 6.5 states that
¥ MY Qf y A /m) (86)
o (¢ Aar) (87)
(86) and (87) show that the samples S and S' are now reduced to
the. vectors x and V! respectively, with asymptotic multivariate
normal distributions.
let n, n' => o in such a way that n/nt =>c, 0 < ¢ < o,
Then

- V' A MN (\?-3{: (/\+ ¢ /\,)/m) (88)

v
vy
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From (88) we can obtain the asymptotic distribution of A, D, A
and T wunder the null hypothesis (19). m A has a limiting distribue
e ey . . . . : 2 2 2
tion which is the distribution of 2 Br )(r where )(1,... )(g are
inde pendent }(2 with 1'd.f. and Bl, e s ﬁg -are the latent roots

I K o e . )
of (/\ el Yo | has a similar limiting distribution. In' parti-

cular

!

F=n(y - x)(A+ oAy - gy (89)
has & limiting distribution that is & A° with g d.f. The limiting
distribution of /m A =nd /m D exist but.do not have simple
algebraic expressions. Crude approximations to the limiting distri-
bution of ,/m A can be made by the use of the following easily

proved inequality

Jé—_s A Je /B (90)

Let 8(1)"""5'(1() (S{l),..., SZk')) be k(k') interpene-
traging subsamples from P(P'). If n(n') is large then V1YoV
(v'('l) Yeeoy vek')) is a sa‘mple trom & multivariate normal distribution
with paremeters (), /\/m)((\g,//\/’m')).

The problém of fractile analysis is to test the hypothesis
1 =3{ ,. To tackle this problem as one in multivariate analysis we

use a restricted hypothesis

/
Yw X ,/\':A ‘e . (91)
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We now have the familiar problem of testing the equality of the
mean when the variance covariance metrix of one multivariate normal
population is a constant multiple of that of the other. ‘The Mehalanobis

D2-statistic will be used. Let
k

RO
K C (o}
%1 © agl.(vi(oc) “v) ) TR e (%2)
8 =F(Sij)
3 = [kes + k's'] /e (93)
Then
S k'g’ g-1, cl;kﬁ'k} @ =Y - ) (94)

is our test criterion. Its distribution is an F distribution with
g and k +k' - g -1 4.fT,

let v ( x') be derived frem S(S'), the sample obtained by
ooling S ee. S St ee. 83 .4). As an application of
P (l)’ (k) (1 (1)’ {k')) . A 19Y
Theorem &,.,§ We can wubstitute v and vt for vo and vo' in

~N ~ ~ o~

(94) without changing th¢ limitins distribution,

In the preceding discussion we assSumed that the interpenetra-
ting samples from each population are of the same size, We can
remove this restriction by simple modifications. The tests mentioned

above require several samples from each populations, and make use of



them only through the rle's or v's . This involves congiderable
labour and waste of information. When only one sample is availlable
from each population we cannot make use of the measures of divergence
by D, €tc., for testing since their limiting distributions involve
unknown constants, In 6,5 wa suggest methods of over-coming this
difficulty.

In section 6,1 we described how concentration curves can be
drawn with the help of the data of fixed interval analysis and frac-
tile analysis, We now give the limiting distributions of the concen-
tration ratio, 8s a direct application of the theorems of section €.}
and a theorem of Cramer (1946) pp. 366.

S o A (7 =)
- SmY Oy g+ )

Let y= — -1 [P (95)
(27 %)
Ei ST e £ Ty - vou . (96)
(|, , +m) y -
i-1 L. Y — =3, i=1,...g (97
(ZWTV,») (anv’f)
-— =) —
2 ):'ni-l+znr))1’ Y
i Y =
— - w— .y. =ei
(an))y) (an){r)'
121y eeey 8 (98)

Then /n ({ - Y ) has'a limiting distribution that is normal with

mean O and variance
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g , 2 -
Ta e+ Rg (99)
a RN
2T iW
Let y Zi% g+ L (100)

=g()’,-l- .o +\§) T8

g(V+Zi+ ) - )/ =d.51=1y.00y &
MR T AR 2 (101)

The /m (C - ¥) has a limiting distribution that is normal with mean
0 and variance
;‘:A g (102)
Though we have not explicitly mentioned, it should be noted
that (46) is assumed when: fixed interval éunal'ysis is employed and

(52) is assumed when fractile analysis is employed, in this section:

6.5. Methods of testing with just one sample.

Among the statistics f , A and T +that can be used to test

the null hypothesis (9) of fixed interval analysis, [ is most

sutted for practical use since its limiting distribution is most
simple., Further l: corresponds to the statistic that is used for
testing simultaneous that several means are zero when all the variances
are known, When the variables concerned are independently normally

distributed this test corresponds tc the Hotelling's T. Thus | secems

to be the best criterion we can use in this situation.
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- T &t
M =206 -7 )Y (v mma )] e (09)

] 1
ﬁi n
- -2 — -t
N ©og | %
We note that - and e are consistent for -—-‘-H_' o n{ YRR
i

i=l,..., &, the unknowm constants that enter in T . Let

-2 .2

= - -2, Y 2

C =2y =)/ () . (104)
1 1

We note that l:* can be calculated from § and S' and that its
limiting distribution is a )(2 with g degrees of freedom. The
critical region for testing the null hypothesis of fixed interval
g

analysis will be the region of large values of r

Our applications so far (of the Theorems 6.1, 6.2 etc.) depend
in essence on the fact that in large ssmples we can treat vi,..., Gg
as independently normally distributed variables. This cen be used in
many ways. For instance,:if we have two samples S(l) and »8(2) (pooled,

they form S) from one population P and only one, S', from the second

population. P!, our test criterion would be
- n, t. . PSRN
F -G _;')2/( i(1) b)) T Yi(2) 1;1(2)-4_ i )] (105)
R A | i n, + n, n! b
"i(1) * Pi(2) i

The limiting distribution of this statistic is again ]\2 with
g dlfo'

We have seen in section 6.4.(e.g. in (86)) that

y~m (¥, N\ /) (206)
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Comparing this relation with ( 79) we note an important difference

between fixed interval analysis and fractile andysis. These relations

show that v and v are asymptotically normal with variance covariance
y, I :

matrices /\/n and A\ /m, respectively, /\ is always diagonal, but /\

is not diagonal in general, /\ is diagonal only when }\i = .= >\i-'1

for all i, ‘This does not hold in general, f or instance when }\(x}‘
is strictly monotone,. Thus whereas \71,.... ;g can be cbnside’red to
be independent in large samples, Vir eees Y, are dependent even in
“the limit.

Among the several measures of divergence introduced in section.
6.1, & and" [~ can be used since their .limiting distributions under
the mull hypothesis are of a simple form,

mA = 2, m(v - ’v')z

has a limiting distribution which is the distribution of Z B. }( where
}(1,: chay. }( are independent ohl-squares with 1 d.f. and Bl”' ,B
are the latent roots of /\ + C /\ « This distribution can be appro-~
ximated by [see satberthwaite (1946). For other approximations see

2
Robbins and Pitmen (1949)7] dZ where 7 has a A -distribution with

o« d.f.; 4 and o are given by the relations
2T
d = 2 ﬁi / & Bi (1C7)

- (285 (308)

K
)
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= (v = vt)( T+_ET-1( v - V) (109)
hes a limiting distribution that is’a }KZ ‘with g d4.f, |
These two statistics can not be used in practice unless A-a’nd-/\
are known.. In trying to estimate A from S it natural to use ti'a's
an estimate of /\11 It can be shown from some generalisations of
thg res:ults of Hoeffding (1953) that ti is not even consistent for
/\ i1 in gereral., This unfortunate fact that no simple consistent
estimate of /\ is available from S, is & great.set-back to the cons-
truction of nonparsmetric tests in the method of fractile analysis.
We therefore proceed to construct convenient test procedures whén
(Y, X) is known to follow some special distribution, Iet us assume that
the distribution of (Y, X) is bivariate normal with parameters - ¥, uj
Qh, 62; Q. We now evaluate.the‘-matrix/\ for this distribution. We

note that A does not depend on Y ,.p and 02'. Using (76 ) we find

that-/\ can be written down in the fomm
: o 2 % _
N = 214 9% 2% {130)

where I is the identity matrix and Q is a g x g matrix depending
only on g. It can be easily demonstrated thet the matrix @ is

doubly ’symme tric, i.e .v

Q

1,37 %317 9 gainlgegel T 9 gogel gl (111)
The matrix Q has certain interesting properties (not basic to our

main Work) which are easily derived from the fact that £ > V.= ¥
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the mean of y's. Thus, Q is negative semi-definite, 3, Q'ij = 0
J

for each i, one of the latent roots of @ dis zero and so on,

In table; I, at the end of this chapter, we have given these
matrices Q when g = 2,'2) 4, ..., 10. Since the matrix @ is
doubly symetric, We give anly Q,, for § <3 < g=i+ly
1<igl %—l-] for each g.

We have also tabulated the latent roots (gqy. .. qg) of @ in
table II for g = 2,.3, 4, .,.,10. Actually q, q Wy ete., all
depend on g, 8o that Qs Qigs By 3 ©te., Would be the more appro-

- priate notations for them. We however drop the suffix g Wwhenever we

feel that it will not cause confusion.
A /\ Py
. %
et 7-*and QZ’C’Q'be consistent estimates of 7 and 92’6’2

Ao AN
regpectively, /\ is now consistently estimated by /\ =TI + Qz'ﬁ'q’Q.

(Q can be got from Table I ‘for some values of g.) Then

/\ /\

= (v -v!)(-—--+--—— (v -v') (112)
will be distributed as a A> with g d.f.
" PN PPN
The latent roots of /\ are given by v Q ’”C'%ql,..., "(t 92’( g'qg

and these are consistent estimates of the latent roots of /\ o Iet
, {
us denote the consistent estimates of the latent roots of /\ +cC /\
A A
(which is got in the same way) by Bys ooy Bg. Then the limiting

b 1 ~2 2 2
distribution of mA -can be approximated by % ByA{ Where )§1,...,)(ér
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are independent chisquares with 1 d.f. We should note that large
values of the statistics m A and ﬁ form the critical region for
testing the muill rypothesis (19) of fractile analysis.

We now suggest two methvds of* estimating ’C?’and -sza'from the
sample S. Let tz and r be the sample variance of y and the
sample correlation coefficiept between y and  x. Then '152 Iand
2% are congistent estimates of T ?'and Qz’flrespectively. These
can now be used as suggested in the preceding paragraph., Since the
sample gize of § Wwill be large it will be time consuming to compute
tz " and r. We now suggest dnother method that will be computationally
easier.,

This method makes use of the sample S ohly through u; 's and

'vi's . Consider

2 1 2 : \
'?2”8'2"1 (z2v) .. (113)
G"Z:é‘-zui..(é-zui‘)z : (114)

3% =§Zuivi-v(‘§-‘2 u; )( -;-Z vl) (115)

We cen easily demonstrate (by showing that the expectations con=
verge and variances tend to zero) that m’%'z n% and nT 5T are

’

congistent for

glpt 1 ,%2 gl 2 1 2 -1 1, o
= + < T, g_g 0"+ 20" 1 ang ﬁé-gfrc +§-90'1'L
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respectively, where

2 2 .
Lo=Te Qe b gt ae vty o oo (116)
Tx'.Q= qg,1+ ess + qg’g » s sa (117)

g
In tables IITI and IV we have given Tng and > p.2 for
1l

gyl
g =24 3 ..,. 10, Meking use of these tables, we can easily

~
obtain consistent estimtes for (¥ "and 92’5"' baged on t, S and

™~
Te
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The following are the (¢ matrices Qg for g =2(1)10, I(Qg)ij
. . . +1 . .
has been given only for j (i ¢ g-j+l, 1 < Jj K [55—], since Q is
doubly  symmetric. (See (11I).)

Table 1.
D .
107 x (G%)ij
3 1 2 3

-31831
31831

(g = 3)

-42954 |
28431 56862
14523

(g = 4)

-49140

25339 -65199

14903 24958
8899

(g = 5)
-53%210

23160 ~69826

14141 21961 ~72205

%77 15028
6231

N

DN N H~'\NNI—' (2

o N et B
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Table I(contd.)

5
107 x (Qg)ij

2602

1 2 3 4 5
i (g = 6)
1 -56149
2 21549 ~72858
3 13389 19854 ~76069
4 9513 14107 19207
5 6987 10361
6 4712
i (g=T1)
1 -~53399
2 20301 -75034
3 12735 18296 ~78601
4 19216 13240 17285 ~719482
5 7023 10089 13172
6 5379 7728
1 3744
i (g = 8)
1 -60194
2 19302 =76689
3 12179 17091 ~80419
4 8907 12500 15866 -81711
5 6913 9701 12314 15509
6 5489 7703 o777
1 4324 6068
8 3081
i (g =9)
1 -61670
2 18477 =76001
3 11702 16127 -81804
4 8617 11875 14769 -83312
5 6761 9317 11588 14202 -837%
6 5466 7532 9368 11482
T 4460 6146 7644
8 2586 4941
9




 ad

10

(g = 10)
-62913
17783
11290
8352
6600
5394
4480
3727
3044

2241
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Table I (contd,)

5
107 x (Q.g)ij

[3®]

-79073
15333
11343
8963

7326
6084
5062
4134

~82902
13891
10976
8971
7451
6199

-84531
13193

10782

8955

-85187

12982
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Table 11

Iatent roots (qg,l"‘ 'qg,g) = q, of the @ matrices: g-2(1)10,

105 X qg
g =2
(00000, -63662)
g=3
(00000, -85294, -57478)

g =4

(00000, =9%249, -80483, =54946)
g=25

(00000, -96323, -17658, -90674, -53621)
£ 6
(00000, =97716, -52822, -94376, -88817,, =75820)
| g=1
(00000, ~96960, ~52293, -98448, -9%89%, -87424, ~74527)
g=18
(00000, ~51920, =98876, ~97989, -86339, =96315, -93020, ~73569)
g=9
(00000, -51644, -99148, -85466, ~98579, -97583, =95767; =92295, ~12628)

g =10

(00000, - 51433, ~98945, -84746, -99332, -98309, =97226, -95297, 91684, ~72239)
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Table ITI

Trace Tr Q, of the Q matrices; g = 2(1) 10.

TR

- Tr
Qg

n.63662
1.42770
2,28678
3,18277
4.10152
5.30550
5.98026
6.93310
7.82212

OV O~IO0VUT bW N

B el

Table IV

g
' 2
The following gives J, My s for g=2(1) 10,
. = Y,

€ 2
€ % qui
2 0.636620
3 2.379689
4 3.442239
5 4,484782
6 5.516166
7 6.540582
- 8 7.560287
9 6.576615
10 9.590464
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