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Chapter 1

Introduction and Main Results

1.1 Background

Economic agents are exposed to a variety of risks. These risks can generally

be categorized into either idiosyncratic individual specific risks or aggregate

risks faced jointly by a group of individuals co-inhabiting in villages, com-

munities or countries. Since exposure to both kinds of risks can be welfare

reducing, economists for a long time have been interested in studying the role

of various formal and informal risk pooling mechanisms in mitigating agents’

exposure to these shocks. The possibility of risk pooling within communities

or countries arises from the idea that idiosyncratic risks across individuals,

communities or countries are unlikely to be perfectly correlated. Hence, trade

across agents can facilitate risk sharing. This holds true in a theoretical model

of risk averse agents with stochastic endowments, where the first best allo-

cation amounts to individual consumption being perfectly correlated with

aggregate shocks and entirely independent of their own endowments. This is

1
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the main prediction of the risk sharing hypothesis. Chapter 2 of this disserta-

tion uses this risk sharing hypothesis, popular in development economics and

international macroeconomics literature to evaluate the allocative efficiency of

global food markets.

Risk sharing mechanisms fail if shocks are experienced across agents

or communities. Such shocks are correlated and survive pooling and ag-

gregation. It is well known that exposure to correlated shocks under credit

constraints can translate into poverty traps. This understanding has led to the

emergence of formal insurance markets and insurance products specifically

designed to insure farmers in developing countries from most common form

of aggregate shocks i.e., rainfall shocks. Chapter 3 of this dissertation therefore

looks at the design risk in rainfall based index insurance contracts in India

and studies its implications for optimal demand for rainfall insurance.

Although exposure to shocks is welfare reducing, the welfare impacts

of a correlated shock may not be homogeneous. A good example of common

shocks having heterogeneous welfare impacts across population groups is

the food price shocks experienced recently in 2007 and then again in 2011.

This idea of price changes having heterogeneous impacts across individuals

was explored empirically in Deaton (1989) who proposed that a net food

consumer household will experience welfare losses from high food prices but

a net food producer will gain. The final chapter of this dissertation uses this

insight from Deaton’s net benefit approach to econometrically identify the

income and consumption effects of food price shocks on the dietary diversity

of households in India.

Another dimension shared between chapters 2 and 3 of this disser-

tation is related to the nature of aggregate and idiosyncratic shocks. Con-
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ceptually, idiosyncratic shocks will cancel out with aggregation when these

are linearly additive. In such a scenario, there is a possibility of insurance

through arbitrage. The second chapter, therefore, evaluates the contributions

of this arbitrage in risk sharing within the global food markets. This chapter

considers consumption variability as the dependent variable and hence directs

attention to the variable that matters in economic models. But what if the

idiosyncratic shocks are multiplicative rather than additive and are spatially

correlated? Such shocks will survive aggregation with the consequence that

these will be experienced widely. This will manifest into ’tail dependence’ in

the joint distribution of risks. Under tail dependence, extreme shocks show

greater association than moderate shocks. The third chapter of this disserta-

tion builds on this idea and tests for tail dependence in joint distribution of

rainfall and yields in India. The chapter uses state of the art techniques to

estimate copulas of these joint distributions which are then embedded into

simulations of a conceptual model of a farmer’s demand for insurance. The

final chapter directs attention toward the welfare effects of aggregate shocks.

More specifically, it directs attention toward heterogeneity in welfare effects of

food price shocks. In this chapter we use a unique identification strategy that

exploits the natural suitability endowments of a region to separate the income

effect and consumption effect of food price shocks on household welfare.

The next three sections provide an overview of the three essays in

this dissertation. The following chapters describe in detail the motivation,

methodology and main findings.
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1.2 International Risk Sharing for Food Staples

The sharp surge in global food prices in the years 2006-08 has led to concerns

about the functioning of global food markets. Rising food prices and high

volatility, as witnessed in 2008, pose a threat to food security of the poor

especially in developing countries as they spend a significant part of their

income on food (Ivanic and Martin, 2008; Ivanic et al., 2012; Ivanic and Martin,

2014).

In general, global food production is more stable than the regional

or national production, and thus free trade should be able to achieve greater

stability in prices and consumption. In the words of Gilbert (2011), "If supply

(harvest) shocks are largely uncorrelated across countries, governments can

import when they need to do so without, on average paying high prices".

The caveat introduced by Gilbert acknowledges that the contribution of trade

would depend on the correlation of production shocks across countries.

Although the literature assigns risk sharing to be the primary con-

tribution of international trade to food security, this has not been tested or

quantified in the literature. The primary objective of this chapter is to examine

the performance of world markets for grains (maize, rice and wheat) in a

risk sharing framework. The chapter is related to the optimal risk-sharing

hypotheses that have been formulated and tested in finance, macro-economics

and in development economics. In this literature, the risk sharing hypothesis

has been formulated in the context of one composite good (for instance, house-

hold income or country GDP). We extend it to the case where endowments

are multi-good (specifically, food and non-food) and are stochastic.
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This chapter adopts the predictions of efficient risk sharing hypoth-

esis as a benchmark. A necessary condition for efficient risk sharing is that

consumption growth rates should be perfectly correlated with aggregate

shocks and independent of domestic production growth rates. We find that

the efficient risk sharing hypothesis is rejected for the global food markets.

However, the global wheat market is closest to the efficient risk sharing al-

location. On average, trade and stocks jointly provide insurance against

production shocks to the extent of 87% in case of wheat, followed by rice (66%)

and maize (57%). However, the contribution of trade here is dominant. Of

the insurance that is achieved, trade is responsible for more than 80% of it, in

each of the three markets. Further, by allowing the degree of risk sharing to

vary by low income, lower middle income, upper middle income and high

income country groups we find that the degree of risk sharing is positively

associated with income levels of countries.

1.3 Basis Risk in Index Insurance: Lower Tail De-

pendence and the Demand for Weather Insur-

ance

Agriculture and agriculture-based livelihoods in developing countries are

highly prone to weather shocks. There is substantial evidence that rural house-

holds in high risk environment stick to low return subsistence agriculture

and cope with a correlated shock by liquidating productive assets to maintain

consumption thus remain trapped in poverty (Rosenzweig and Binswanger,

1993; Carter and Barrett, 2006; Dercon and Christiaensen, 2011).
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Even though farmers in developing countries are typically poor

and even though they bear the burden of volatile income streams, formal

insurance products have had limited success (Mobarak and Rosenzweig,

2013). The difficulties of administering first best insurance programs tailored

to production histories of individual farmers have led to index insurance

products where payouts are triggered by an index such as rainfall, temperature

or local average yields. Premium setting is relatively easier because past data

on indices of weather and average yield are more readily available than

on individual production histories. As individual farmers have little or no

influence on payouts, index-based insurance products are also less likely to

fail due to asymmetry in information between the insurer and the insured.

Despite the promise of index insurance, the record is mixed. In particular,

the uptake of index insurance is poor, especially when it is not subsidized

(Binswanger-Mkhize, 2012; Jensen and Barrett, 2017; Jensen et al., 2016).

This chapter examines how rainfall insurance contracts in India can

be designed to reduce basis risk. Our approach exploits the idea that the joint

distribution of rainfall and output might be characterized by tail dependence.

This means that the associations between yield losses and index losses are

stronger for large deviations than for small deviations. The major implication

is that the value (to farmers) of index-based insurance relative to actuarial cost

is highest for insurance against extreme or catastrophic losses (of the index)

than for insurance against all losses. In simpler words, basis risk is least for

large deviations of the index. The goal of this chapter is to test this hypothesis.

The chapter estimates tail dependence in the joint distribution of weather (i.e.,

rainfall) and yields using a district level data set for all India for 9 major crops.

Using maximum likelihood methods, we estimate a number of copulas from

the parametric families of elliptical copulas and the Archimedean copulas. The
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best-fit copulas are joined to a conceptual model of an insurance purchaser.

The simulation of the copulas allows us to estimate the optimal insurance

cover for a variety of insurance contracts that vary according to the index

threshold value that triggers payout. These results are compared to those

obtained from a copula without tail dependence (the Gaussian copula).

We find that station level rainfall in India do exhibit tail-dependence

and the joint distribution of district level crop yields for nine major crops and

rainfall index also exhibit tail-dependence. This implies that the associations

between yield losses and index losses are stronger for large deviations than

for small deviations. Alternatively, the basis risk is least for large deviations

of the index. This is also confirmed by simulations that show that value

to a risk averse farmer of index-based insurance relative to actuarial cost is

highest for insurance against extreme or catastrophic losses (of the index)

than for insurance against all losses. Because of tail-dependence, the demand

for commercially priced rainfall insurance is more likely to be positive when

coverage is restricted to extreme losses.

1.4 The Welfare Impacts of High Food Prices: Re-

source Endowments and Spill-Over Effects

Several studies, using Deaton’s (1989) net benefit approach, have predicted

that rising food prices would lead to worsening of poverty in the developing

world (Ivanic and Martin, 2008; De Hoyos and Medvedev, 2011; Ivanic et al.,

2012). But these predictions of rising food prices increasing global poverty

have not fully realized. It is argued that the net benefit approach provides

good approximations of welfare losses when price changes are marginal but
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may lead to misleading conclusions when food price changes are large and

sustained, as has been observed during the global food price crisis.

A few studies have used reduced form regressions of household

welfare on food prices to directly estimate such impacts. However, these

studies have ignored the heterogeneity in welfare impacts of high food prices

and also lack a formal identification strategy that accounts for unobservables

that simultaneously influence household welfare and food price changes.

An exception is the study by Tandon (2015) that identifies welfare

impacts of food prices in India based on a difference-in-difference strategy.

Tandon’s identification strategy relies on one of the main insights from net

benefit approach that households’ exposure to food price shocks is propor-

tional to its budget share. But exposure to food price changes also depend on

their production structure.

This chapter empirically examines the impact of high food prices

on household welfare in India. Our main contribution is to econometrically

incorporate both kinds of exposure, consumption and production, and to

disentangle the consumption and income effect of food price changes on

household welfare. We construct a district level panel of dietary diversity,

defined as the share of calories from rice and wheat in total calories, and

staple food price index constructed as a weighted average of state specific rice

and wheat retail prices. Our identification strategy exploits the exogenous

cross sectional variation in the natural suitability for food cultivation, based on

crop suitability indices from the Food and Agricultural Organization (FAO)’s

Global Agro-Ecological Zones (GAEZ) database, to separate rural households

into net food consumers and producers thereby separating the total effect into

consumption and income effects. Finally, to identify how households engaged
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in different sectors of the local economy within food producing regions are

affected by change in food prices, these consumption and income effects are

estimated for subsamples of households based on their primary occupation.

We find a robust negative consumption effect of high food prices

on households’ welfare and dietary diversity. But this effect is found to be

smaller for rural households residing in districts suitable for food cultivation.

Therefore, the welfare effects of high food prices vary spatially with the

natural suitability of food cultivation with regions highly suitable for food

cultivation experiencing lower welfare losses from high food prices. The

welfare enhancing income effects are strongest for the laborer and cultivator

households and almost completely offset their negative consumption effects.

Interestingly, the income effects are also present for households not directly

engaged in cultivation and agricultural activities within the food suitable

rural regions. This provides for a direct evidence of the spill-over effects

and induced general equilibrium responses of high food prices on the local

economy.



Chapter 2

International Risk Sharing for Food

Staples

2.1 Introduction

World production of food staples is very stable. The standard deviation of

world production shocks (measured as the difference in log values of produc-

tion over successive time periods) is 0.03 for rice, 0.06 for wheat and 0.10 for

maize. On the other hand, production at a country level is highly variable.

Figure 2.1 compares the standard deviation of global shocks with the standard

deviation of individual country output (averaged over 100 countries). Despite

the country level instability, individual countries should be able to achieve

stability in consumption of about the same order as that of world production,

whether through ex-ante mechanisms or ex-post trade. Indeed, the stability

of world food aggregates has frequently led economists to advocate interna-

tional trade as an effective mechanism for price and, therefore, consumption

10
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stabilization.
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Figure 2.1: Production Variability of Rice, Wheat and Maize: 1961-2013

Notes: Authors’ estimates based on United States Department of Agriculture’s
(USDA) database. Country specific standard deviation is calculated for
countries with at least 20 years of data on production and consumption hence
we are left with 91, 78 and 109 countries for rice, wheat and maize respectively.

Figure 2.2 adds the variability of individual country consumption

to the global and individual country production variability plotted in Figure

2.1. It can be seen that while, on average, individual country staple food

consumption variability is lower than production variability, it is, however,

many magnitudes higher than the global variability in food production. Figure

2.2 suggests, that while there is some consumption smoothing, global food

markets fall well short of the risk sharing ideal.

Figure 2.2 also points to heterogeneity across commodities. Despite,

higher production variability, wheat markets seem to achieve greater risk

sharing than the other staples. Figure 2.3 illustrates heterogeneity across

another dimension i.e., income. The gap between consumption variability

and domestic production variability is much more pronounced for OECD

countries than for countries in Sub-Saharan Africa. It is only in the case of

wheat that the African countries display substantial consumption smoothing.
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Figure 2.2: Production and Consumption Variability of Rice, Wheat and Maize:
1961-2013

Notes: Authors’ estimates based on United States Department of Agriculture’s
(USDA) database. Country specific standard deviation is calculated for
countries with at least 20 years of data on production and consumption hence
we are left with 91, 78 and 109 countries for rice, wheat and maize respectively.

Figures 2.2 and 2.3 are the motivation for this chapter. First, it

formally tests for risk sharing in the markets for maize, rice and wheat.

Second, the chapter estimates the extent of risk sharing and the contribution

of trade and storage to it. The analysis is conducted separately for each of the

staples to allow for heterogeneity across markets. Third, the chapter examines

whether consumption smoothing is different for rich and poor countries.

Finally, we show the robustness of our results to macroeconomic shocks like

price and income shocks, exchange rate fluctuations, membership to World

Trade Organization and other regional trade blocks.

Maize, rice and wheat account for 50 per cent of dietary energy

supply and 20-25 per cent of total expenditures for people in the bottom

quintile of the income distribution (Dawe et al., 2015). Arguably, variability

in this component of consumption is expensive for the poor. It is, natural

therefore, to examine risk sharing in the markets for these staples.
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Figure 2.3: Production and Consumption Variability between OECD and
Sub-Saharan Africa: 1961-2013

Notes: Authors’ estimates based on United States Department of Agriculture’s
(USDA) database. Country specific standard deviation is calculated for
countries with at least 20 years of data on production and consumption. The
sample of countries for calculating consumption and production variability in
rice, wheat and maize are 5, 11, 10 for OECD and 28, 14 and 36 for Sub-Saharan
Africa respectively.

There is a large literature on the functioning of world markets for

the basic staples. Two components of literature are particularly relevant to

this chapter. The first strand examines the transmission of prices from global

markets to domestic markets. Typically, the finding is that the transmission

is imperfect because of trade barriers. In the second and related literature,

trade barriers are seen as instances of ’market insulating’ behavior. Countries

use trade policies to insulate their domestic markets from price volatility in

the global market. During price spikes, use of trade-restrictive policies is

common, and when all countries attempt to insulate their domestic markets

simultaneously, these render global food markets extremely thin and can

magnify volatility in global food prices.

The contribution of this chapter to the food markets literature is sev-
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eral fold. First, although a lack of risk sharing is implicit in past literature, this

is the first work to study and quantify it. Second, the focus on consumption

variability directs attention to the variable that matters in economic models.

Thin world markets and imperfect price transmission make it awkward to

study price variability. Third, the chapter provides a common metric to assess

the relative performance of the markets for maize, rice and wheat. Fourth,

the methodology allows us to address the consumption smoothing of poor

countries vis-á-vis the rich countries.

Our study is also related to consumption risk sharing that has been

analyzed for macro aggregates (regions, countries). A principal difference is

that the macro literature considers consumption aggregates in value terms

while it is both natural and feasible to measure food consumption and pro-

duction in physical units. In that sense, the application in this chapter is

tethered more closely to the theory of risk sharing than the macro literature.

As the preliminary evidence (for instance, Figure 2.3) suggests heterogeneity

in risk sharing, the formal empirics pay a great deal of attention to unobserved

heterogeneity in the coefficients of idiosyncratic and aggregate shocks.

2.2 Literature

Trade and storage are two principal means by which countries have sought to

align unstable output with the need to smooth consumption. However, public

stocks are considered to be a costly option, as they tie up scarce resources, are

vulnerable to deterioration, corruption and theft; and may crowd out private

sector from holding food stocks (Gilbert, 2011). Knudsen and Nash (1990),

from a review of experiences on domestic price stabilization programs across
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the world, concluded that stabilization schemes should "avoid handling the

commodity when possible".

On the other hand, several studies have indicated that in comparison

to public stocks holdings, international trade is an economical means of

stabilizing food supplies (Valdes, 1981; Krishna et al., 1983; Jha and Srinivasan,

1999; Srinivasan and Jha, 2001; Dorosh, 2001). The idea that trade can stabilize

consumption has long been recognized in the literature. Timmer (2008) argued

for a move away from national food security stocks towards food security via

trade and production based on comparative advantage.

In general, global food production is more stable than the regional

or national production, and thus free trade should be able to achieve greater

stability in prices and consumption. In the words of Gilbert (2011), "If supply

(harvest) shocks are largely uncorrelated across countries, governments can

import when they need to do so without, on average paying high prices".

The caveat introduced by Gilbert acknowledges that the contribution of trade

would depend on the correlation of production shocks across countries.

The recommendation that trade (along with targeted safety nets)

ought to be a principal component of food security policy is part of the policy

paradigm advocated by economists (Gouel, 2013). In practice, many countries

have rejected the paradigm. Studies have found the transmission of world

price shocks to domestic prices to be generally limited (Baquedano and Liefert,

2014; Ceballos et al., 2017; Dawe et al., 2015; De Janvry and Sadoulet, 2010;

Gilbert, 2011; Minot, 2011; Mundlak and Larson, 1992; Robles et al., 2010).

A possible explanation is suggested by a parallel literature, according

to which, countries use trade policies to insulate their domestic markets from
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price volatility in the global market. During price spikes, countries attempt to

maximize their share of the global market. Exporting countries restrict exports

while importing countries drop tariffs. The opposite happens when there

are surpluses. When all countries attempt to insulate their domestic markets

simultaneously, these render global food markets extremely thin and can

magnify volatility in global food prices (Abbott, 2011; Martin and Anderson,

2011; Giordani et al., 2016; Gilbert and Morgan, 2010; Mitra and Josling, 2009;

Headey, 2011; Slayton, 2009). A typical instance that has been cited widely is

the behavior of rice markets during 2007/08. It is believed that government

actions of panic buying (by importers) and export prohibitions (by exporters)

contributed to the price spikes (Dawe and Slayton, 2011; Timmer, 2008; Wright,

2011). The unreliability in world food markets, when needed most, would lead

to serious doubts on their efficiency in providing insurance against adverse

production shocks.

Although the literature assigns risk sharing to be the primary con-

tribution of international trade to food security, this has not been tested or

quantified in the literature. This is the point of departure for this chapter.

The chapter explicitly formulates the risk sharing hypothesis and takes it to

data examining the contribution of trade and storage. While the literature

documents low price transmission and market insulating behavior, Figure 2.2

shows that countries do achieve some consumption smoothing relative to the

variability in their production. How much of it is because of trade? Or is it

because of storage? These are the questions that can be asked within a risk

sharing framework.

It should also be noted that relative to the literature, this chapter

shifts the focus from prices to quantities. 1 The explicit formulation of a risk
1Jha et al. (2016) is an exception. That paper also looks at consumption variability and how
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sharing hypothesis directs attention to how staple food consumption reacts

to country specific and aggregate production shocks. Since it is consumption

that is the direct determinant of welfare, these questions permit a direct link

between production shocks and welfare.

The canonical model of risk sharing predicts that when it is optimal,

consumption of the economic unit (individual, household or country) varies

only with the economic outcome of the aggregate of the economic units (vil-

lage, district, the world) and is uncorrelated with the economic outcome of

the economic unit (Townsend, 1987). Even though such a prediction is the out-

come of a complete markets model without transactions costs or information

failures, real world institutions including transfers between households or

between governments, may approximate formal insurance markets (Townsend,

1994). A large literature has tested this prediction using household data and

using country level data seeking to know how the data deviates from the

complete markets benchmark.

This chapter is most closely related to the literature on international

consumption risk sharing that has sought to examine whether national aggre-

gate consumption is fully insured against national risks. Most papers find

that consumption risk sharing even within the developed countries falls well

short of the optimal benchmark (Canova and Ravn, 1996; Crucini, 1999; Lewis,

1996).

This literature has been extended in several ways. Kose et al. (2009)

apply the risk sharing framework to a large group of developed and develop-

ing countries to contrast risk sharing across these groups and to examine the

effects of financial globalization. Other studies have examined intra-national

that is affected by domestic and foreign production shocks. However, the paper’s estimation
and results do not occur within a well-defined risk sharing framework.
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risk sharing (between states or provinces) or national risk sharing within

monetary unions (Asdrubali et al., 1996; Asdrubali and Kim, 2008; Crucini

and Hess, 2000; Sørensen and Yosha, 1998).

This chapter extends the risk sharing framework to food staple

markets. Unlike the literature which considers risk sharing in a compos-

ite commodity (e.g., GDP or household consumption), the staples here can

be aggregated in physical units whether for consumption or for production

shocks. While that is the advantage of considering individual commodities,

the empirical challenge is to address the non-separability in preferences across

commodities that naturally arise when endowments are multi-good. In ad-

dition, these preferences may vary across countries. These complications

may lead to unobserved heterogeneity in the impact of both aggregate and

idiosyncratic shocks. Besides addressing these challenges, the chapter also

investigates how heterogeneity in risk sharing relates to observable character-

istics such as country per capita income.

2.3 Theoretical Framework

We assume that there is a representative consumer in each country with

preferences defined over the two staple food commodities, x and y and a

non-food commodity z. 2 The representative consumer’s utility function

is additively separable between the food commodities and the non-food

commodities and is given as below.

Ui = ui(xi, yi) + vi(zi) (2.1)

2The extension to three food staples is trivial and is avoided here to simplify exposition.
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where, ui(.) and vi(.) are strictly increasing, concave and twice differ-

entiable functions. Each consumer i is endowed with wx
ist , wy

ist and wz
ist units

of the three goods in state st of time period t, where each state occurs with

a probability πt
s and ∑st πst = 1. Following the literature, we consider the

optimal risk sharing problem as social planner maximizing weighted sum of

expected utilities of individuals subject to the aggregate resource constraints.

The expected lifetime utility function of agent i is expressed as

E(U)
li f etime
i =

∞

∑
t=1

ρt
i ∑

st

πst [ui(xist , yist) + vi(zist)] (2.2)

where ρi ∈ (0, 1) is the discount factor for agent i. Ex ante efficiency

requires that the allocation of resources across states is efficient such that no

state-contingent exchange can improve both agents’ expected utilities. The ex

ante efficient risk sharing allocation is the solution of the following program.

Max
N

∑
i=1

ωiE(U)
li f etime
i (2.3)

where, ωi is the weight of consumer i in the planner’s problem with

0 < ωi < 1 and ∑N
i=1 ωi = 1. Subject to aggregate resource constraints.

N

∑
i=1

xist =
N

∑
i=1

wx
ist = Xst , ∀st (2.4)

N

∑
i=1

yist =
N

∑
i=1

wy
ist = Yst , ∀st (2.5)

N

∑
i=1

zist =
N

∑
i=1

wz
ist = Zst , ∀st (2.6)
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Consider first the case where the food sub-utility function ui(xi, yi) is

additively separable in its arguments. The first order conditions of the social

planner’s problem, with respect to the food commodities are

ρt
i ωiu

′
i(xist) = µx

st (2.7)

ρt
i ωiu

′
i(yist) = µ

y
st (2.8)

where µ
j
st is the Lagrange multiplier of the aggregate resource con-

straint of the food commodity j(j = x, y) divided by the probability of state st.

Notice that each of the first order conditions is independent of the aggregate

resource constraint of the other commodity. Therefore, the optimal allocations

of, say, food staple x can be analyzed independently of the optimal allocations

of food staple y.

The above first order conditions imply that the (discounted) product

of the weight, ωi, and marginal utility of individual i with respect to a food

staple j is independent of the individual consumer’s endowment of j. An

individual’s optimal allocation for consumption of commodity j depends

only on the aggregate endowment of that commodity. Whenever two states

of nature s and s′ have the same level of aggregate resources, then for each

agent i consumption in state s must be the same as in state s′. For example, if

ui(xit) = −x−ai
it and ui(yit) = −y−bi

it , where ai, bi > 0 and the subscript st for

state is replaced with t for time, then the necessary condition for optimal risk

allocation can be expressed as
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ln

(
xit

xit−1

)
=

( 1
(ai+1)

1
N ∑N

i=1
1

(ai+1)

)
1
N

N

∑
i=1

ln

(
xit

xit−1

)
(2.9)

ln

(
yit

yit−1

)
=

( 1
(bi+1)

1
N ∑N

i=1
1

(bi+1)

)
1
N

N

∑
i=1

ln

(
yit

yit−1

)
(2.10)

This implication that individual consumption does not depend on

individual endowments but only on aggregate endowment forms the basis of

the commonly used tests of risk sharing.

But what if the food sub-utility function is non-separable across the

two food staples? Then it is easy to see that consumption allocations of x and

y would not be independent of each other. It turns out that allocation of a

good depends not only on aggregate endowments of the same good but also

of the other good. However, it continues to be true that allocations do not

depend on individual endowments of either good. These results are derived

and presented in the appendix to this chapter (A).

2.4 Data, Descriptive Statistics and Correlations

To test the risk sharing hypothesis we primarily rely on the ‘Production, Supply

and Distribution’ database of the United States Department of Agriculture’s

Foreign Agriculture Service (FAS). The data-set provides country level time

series (1961-2013) of production, consumption, stocks and trade of major

agricultural commodities (https://apps.fas.usda.gov/psdonline). This enables

us to construct large unbalanced panels. The FAS database reports data for

agricultural marketing years. We convert marketing years into calender years

based on the starting date of the marketing year. Our analysis focuses on

https://apps.fas.usda.gov/psdonline


22 CHAPTER 2. INTERNATIONAL RISK SHARING FOR FOOD STAPLES

three important staple food commodities, viz., wheat, rice and maize. The

consumption aggregate that we use in our analysis is reported as domestic

consumption in the FAS database and is equivalent to domestic supply, i.e.,

production left after net exports and change in stocks.

As a robustness check, this chapter also uses a second data set on

country level production and consumption that comes from the Food and Agri-

culture Organization (FAO) of the United Nations (http://www.fao.org/faostat).

The aggregates of consumption and production are converted into

their per capita equivalents using the population figures from the World

Bank’s World Development Indicators (WDI) database. Further the data are

log transformed and then first differenced to get year-on-year growth rates.

Table 2.1: Volatility in Production and Consumption: Domestic and World
Aggregates

Average country World Average share of exports
standard deviation standard deviation exports in

c y c y world production

Rice 0.22 0.24 0.02 0.03 4.93

Wheat 0.18 0.33 0.02 0.06 20.09

Maize 0.26 0.30 0.03 0.10 13.47

Overall 0.22 0.29 0.03 0.06 12.83

Notes: Authors’ estimates based on United States Department of Agriculture’s (USDA) database.
c and y denote per capita consumption and production growth. Time period is 1961-2013.
Country specific standard deviation is calculated for countries with at least 20 years of data on
production and consumption. Number of countries used are 91, 78 and 109 for rice, wheat and
maize respectively.

Table 2.1 presents the standard deviation in consumption and produc-

tion magnitudes. Global production is least variable for rice and most variable

for wheat. The last column of table 2.1 that shows average world trade of

the three commodities (wheat, rice and maize) as proportion of the world

production gives us the extent to which this potential of trade is actually

utilized. In terms of total trade volume, wheat has been the most traded

commodity with about 20% of the production being traded, followed by corn

http://www.fao.org/faostat
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(14%) and rice (5%). This suggests that consumption risk sharing would also

be greatest for wheat markets.
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Figure 2.4: Trends in World Exports as a Share of World Production (%):
1961-2013.

Figure 2.4 plots the trends in trade of rice, wheat and corn as pro-

portion of their respective outputs. Volume of rice trade was almost stagnant

until the 1990s but started showing significant rising trend afterwards. The

reason for this rising export-output ratio was the export liberalization in India

in 1993 and the rise of Vietnam as a major rice exporter (Jha et al., 2016). There

is much variation in the volume of trade in the case of wheat but there is no

visible trend. Maize trade increased in 1970s and peaked in 1980 after which

it has shown a declining trend.

2.4.1 Correlations

As a step towards testing the predictions of efficient risk sharing hypothesis,

first we examine the correlation of growth in domestic consumption with the

growth in domestic production and with the growth in world consumption

each of rice, wheat and maize. Figure 2.5 summarizes these correlations. The
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solid lines show the trend in median decadal moving average correlations

of domestic and world consumption growth and the dashed lines show the

trend in correlations of domestic consumption with domestic production. The

estimated correlation coefficients between domestic consumption and world

consumption are well below unity while domestic consumption is found to

be highly correlated with domestic production for the entire period. This

indicates a low degree of consumption smoothing across countries. Further,

there is no clear trend in correlations of domestic consumption with world

consumption but the correlation of domestic consumption with domestic pro-

duction for all the commodities declines overtime, suggesting an improvement

in the degree of consumption smoothing. The gap between the two lines is

particularly large for rice and maize suggesting these markets perform worse

in terms of risk sharing.
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Figure 2.5: Median 10 Year Rolling Correlations: 1961-2013

Further we estimate these correlations by income levels of the coun-

tries. Following the World Bank classification, we consider the four groups
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of low income, lower middle income, upper middle income and high income

countries. Figure 2.6 displays these results for low income, lower middle

income, upper middle income and high income countries. There is consider-

able heterogeneity, between markets and between the high and low income

countries, in the estimated correlations. For all the commodities, the correla-

tion between domestic consumption and domestic production (dashed line) is

higher for low income countries compared to the high income countries. For

maize, the difference is stark between low and high income countries indi-

cating that low-income countries are unable to insure domestic consumption

against domestic production shocks.

2.5 Tests of Risk Sharing

2.5.1 Benchmark Specification

Based on the theoretical framework, tests of risk sharing regress growth rate

of per capita country consumption on an aggregate shock and growth of per

capita country production. The basic regression specification is as below

cit = αi + µt + γyit + εit (2.11)

where c and y denote the growth rates of per capita consumption

and production respectively for country i at time t, αi is a dummy variable for

country i and µt is a time dummy that measures aggregate shock. Under full

risk sharing, after controlling for aggregate shocks, consumption should be

independent of idiosyncratic shocks, thus the optimal risk sharing hypothesis
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is γ = 0.

Rejection of the hypothesis implies that agents are not able to fully

insure themselves from idiosyncratic supply shocks, hence consumption will

be correlated with production. In that case (1− γ) can be interpreted as

a measure of the degree of insurance or risk sharing achieved (Asdrubali

et al., 1996; Crucini, 1999; Crucini and Hess, 2000). Several studies (Asdrubali

et al., 1996; Lewis, 1996; Sørensen and Yosha, 1998; Sørensen et al., 2007; Kose

et al., 2009) have conducted test of risk sharing based on a version of the

specification in equation (2.11). The idea is that time dummies will remove

the common component in both the consumption and production growth

and therefore γ can be interpreted as the effect of idiosyncratic production

growth on idiosyncratic consumption growth. Thus, a two way fixed effects

specification provides a simple way to control for unobserved heterogeneity

at country level and common time effects for all countries.

Non-stationarity of the variables in equation (2.11) may lead to spuri-

ous estimates of slope coefficient. To test for stationarity in the time series of

these variables, we conduct panel unit root tests, and the results are reported

in appendix A (table A.1). It can be seen that while the variables are non-

stationary in levels, the null of unit roots are rejected for log first differences.

In all the regressions reported in this chapter, variables are transformed to

log first differences. We also test for serial correlation and heteroscedasticity

in the errors of our basic fixed effects specification (equation 2.11). The F

statistic for test of serial correlation and the χ2 statistic for heteroscedasticity

are significant at 1% level indicating the presence of both serial correlation and

heteroscedasticity (appendix A table A.2). To take care of these we estimate

country-clustered standard errors.
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Table 2.2: Test of Risk Sharing: Benchmark Specification

(1) (2) (3) (4)

Dependent variable: per capita consumption growth

(a) Rice
yit 0.335*** 0.335*** 0.335*** 0.331***

(0.036) (0.036) (0.036) (0.036)
c̄t 0.747***

(0.129)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 4382 4382 4382 4382

R2
0.155 0.16 0.174 0.169

(b) Wheat
yit 0.126*** 0.127*** 0.123*** 0.124***

(0.021) (0.021) (0.022) (0.021)
c̄t 0.738***

(0.136)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 3475 3475 3475 3475

R2
0.05 0.057 0.091 0.08

(c) Maize
yit 0.432*** 0.431*** 0.430*** 0.426***

(0.047) (0.048) (0.048) (0.048)
c̄t 0.520***

(0.114)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 5002 5002 5002 5002

R2
0.26 0.268 0.279 0.276

Notes: Bar over variables denote cross sectional averages. Figures in parenthesis
are standard errors robust to heteroscedasticity and within-country serial
correlation. ***, ** and * indicate statistical significance at the 1%, 5% and 10%
levels, respectively.
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The first column of Table 2.2 is a regression of the consumption

growth rate on growth rate of domestic output (yit) without the controls of

country and time dummies for each of the three food staples. The second

column adds the country dummies while the third column (the preferred

specification) includes time dummies as well. The results are robust across

specifications. The fourth column omits time dummies and instead adds

the growth rate of global consumption as a control for aggregate shocks.

The estimates are robust to this specification as well. Conceptually, the time

dummy provides greater control for aggregate shocks. As noted earlier, if

the utility function is not additively separable across the commodities, the

aggregate shock is a vector of shocks to aggregate consumption of all the

commodities in the utility function. The time dummy provides a control

without requiring the researcher to take a view on the structure of the utility

function.

The estimates of γ (the coefficient of yit) are significantly different

from zero for rice, wheat and maize, and therefore, the optimal risk sharing

hypothesis is rejected. These results reinforce our earlier observation that

commodity markets seem unable to completely insulate domestic consump-

tion from idiosyncratic production shocks. The regression results reinforce

our observation that none of the commodity market is able to achieve full

insulation from idiosyncratic supply shocks. Comparing the degree of risk

sharing across food markets (Table 2.2), we find that wheat market performs

the best, providing 87% insurance against domestic production shocks. This

is followed by rice (66%) and maize (57%) markets.
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2.5.2 Adding Controls and Trends

We test the robustness of our results in table 2.2 from additional controls

such as shocks to per capita gross domestic product at constants prices (GDP),

fluctuations in the national GDP deflator, fluctuations in the nominal exchange

rate and an indicator variable for when the country joined World Trade

Organization (WTO). These results are presented in specifications 1 to 5 in

table 2.3. The additional control variables are statistically insignificant and

don’t influence the coefficient of per capita production growth (yit). We also

test for linear trends in the slope coefficient by interacting yit by a linear trend

in equation 2.11. The coefficient on the interaction term (specification 6, table

2.3) is statistically significant and negative for rice and wheat indicating that

risk sharing in rice and wheat markets has improved overtime.

2.5.3 Heterogeneity in the Slope Coefficients

Equation (2.11) assumes that coefficients of the individual production shock

and that of the aggregate production shock are the same across the cross-

sectional units. Although risk sharing tests typically model the slope param-

eter, i.e., the coefficient of the country production shock as homogeneous,

the theoretical framework that gives rise to equation (2.11) imposes no such

restriction. Suppose, in fact, the slope parameter is heterogeneous. A more

general version of equation (2.11) is

cit = αi + µt + γiyit + εit (2.12)

where γi = γ + ηit such that ηit is a mean zero random variable.
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Table 2.3: Robustness to Additional Controls and Trends in Risk Sharing

(1) (2) (3) (4) (5) (6)
Dependent variable: per capita consumption growth

(a) Rice
yit 0.312*** 0.312*** 0.312*** 0.312*** 0.311*** 0.484***

(0.040) (0.040) (0.040) (0.040) (0.040) (0.063)
GDP shocks 0.085 0.086 0.085 0.079

(0.075) (0.075) (0.074) (0.070)
Inflation shocks 0.000 0.001 -0.002

(0.008) (0.013) (0.012)
Exchange rate shocks -0.001 0.001

(0.012) (0.011)
WTO 0.007

(0.004)
yit × T -0.005**

(0.002)
N 3644 3644 3644 3644 3644 4382

R2
0.157 0.157 0.157 0.157 0.141 0.182

(b) Wheat
yit 0.091*** 0.091*** 0.092*** 0.091*** 0.093*** 0.216***

(0.018) (0.019) (0.019) (0.019) (0.018) (0.043)
GDP shocks -0.014 -0.008 -0.010 -0.017

(0.170) (0.177) (0.178) (0.164)
Inflation shocks 0.006 0.009 0.002

(0.011) (0.013) (0.013)
Exchange rate shocks -0.003 -0.002

(0.007) (0.008)
WTO 0.003

(0.005)
yit × T -0.003***

(0.001)
N 2735 2735 2735 2735 2735 3475

R2
0.083 0.083 0.083 0.083 0.041 0.097

(c) Maize
yit 0.409*** 0.407*** 0.407*** 0.407*** 0.407*** 0.437***

(0.051) (0.051) (0.051) (0.051) (0.051) (0.080)
GDP shocks 0.167 0.162 0.158 0.168

(0.125) (0.130) (0.129) (0.125)
Inflation shocks -0.006 -0.001 -0.001

(0.013) (0.020) (0.022)
Exchange rate shocks -0.005 -0.007

(0.010) (0.011)
WTO 0.001

(0.006)
yit × T -0.0002

(0.002)
N 4145 4145 4145 4145 4145 5002

R2
0.274 0.275 0.275 0.275 0.263 0.279

Notes: All specifications include country fixed effects and time dummies. T denoted linear time trend.
Bar over variables denote cross sectional averages. Figures in parenthesis are standard errors robust to
heteroscedasticity and within-country serial correlation. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.
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Substituting for γi, we get

cit = αi + µt + γyit + (ηityit + εit) (2.13)

A fixed effects estimation of (2.13) is inconsistent whenever the devi-

ation ηit is correlated with the sample variance of yit (Wooldridge, 2003). A

consistent estimator is the mean group estimator (Pesaran and Smith, 1995). It

is obtained by estimating (2.12) for each country. The average of the estimated

slope coefficients in the individual country regressions is the estimate of the

average effect, γ. The first row of Table 2.4 displays the mean group estimates

of γ for the three food staple markets. Notice that allowing for heterogeneity

increases the magnitude of the estimates and, therefore, lowers the risk sharing

performance of these markets.

2.5.4 Heterogeneity in Aggregate Shocks

If time effects, which capture aggregate shocks, are heterogeneous across

countries then the two-way specification in (2.11) could lead to biased estimates

of the degree of risk sharing. Heterogeneity can arise for a number of reasons.

For instance, as consumption patterns differ across countries, a global supply

shock in rice matters more to some countries than others. Heterogeneity

could also arise if countries differ in the extent to which the food staples are

substitutes to one another.

Because a country is the cross-sectional unit in our panel, a model

with country-time fixed effects is not estimable. We use Pesaran (2006) com-

mon correlated effects framework to model the unobserved heterogeneity in
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aggregate shocks. In such a framework, we would rewrite equation (2.11) as

cit = αi + γiyit + λiµt + εit (2.14)

where µt, the aggregate shock is the unobserved common factor with

heterogeneous effects. Averaging across the cross-section units, we get

1
N

N

∑
i=1

cj
it =

1
N

N

∑
i=1

αi +
1
N

N

∑
i=1

γiyit +
1
N

µt

N

∑
i=1

λi +
1
N

N

∑
i=1

εit (2.15)

The γi’s follow a random coefficient model. Let γi = γ + vit where

vit is a mean zero random variable that is distributed independently of yit.

Then the above equation becomes

c̄t = ᾱ + γȳt + µtλ̄ + ε̄t +
1
N

N

∑
i=1

yitvit (2.16)

where the variables headed by a bar are the cross-sectional averages.

For large N, the averages converge to the population magnitudes. In particular,

the last two terms vanish. Hence the aggregate shock µt can be consistently

estimated by a linear combination of the country fixed effect and the cross-

sectional averages of country consumption and output. Pesaran uses this

insight to show that the slope coefficients γi can be consistently estimated by

a regression of the form for each of the countries

cit = αi + γiyit + δi c̄t + ζiȳt + εit (2.17)
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Pesaran shows that the average of the estimates of γi is a consistent

estimator of γ and is called the common correlated effect mean group estimator

(CCEMG). It is easy to see that slope homogeneity is a special case and the

consistency results apply here as well. The CCEMG estimates are displayed

in Table 2.4. In terms of magnitude, these are comparable to the mean group

estimates. Pareto optimal risk sharing is rejected in all the three food staples.

The extent of risk sharing is much greater in wheat markets compared to rice

or maize.

2.5.5 Clustered Aggregate Shocks

A possible explanation for the failure of full risk sharing could be that the

world is divided into trading blocs and alliances. As a result, the relevant risk

sharing group (and therefore, the relevant aggregate shock) is not the entire

world but the group to which the country belongs. If the group membership

is well known, then a version of (2.11) with fixed effects for the group would

be the appropriate estimation strategy. But while one may guess and construct

such group membership, errors in classification would undermine confidence

in the estimates. Bonhomme and Manresa (2015) provide an approach to

allow for unobserved group membership. Their group fixed effects (GFE)

estimator allows for clustered time patterns of unobserved heterogeneity

that are common within groups of countries. Rather than adhoc assignment

of units to groups, the group-specific time patterns and individual group

membership are left unrestricted, and are estimated from the data. In this

framework, equation (2.11) becomes

cit = αi + µgit + γyit + εit (2.18)
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where µgit is a time fixed effect specific to countries belonging to

group i. For given values of the parameters, minimizing a least squares

sum of residuals over all possible groupings of the countries leads to a

group assignment that is a function of the given parameters. The group

fixed estimator searches over the parameter space to minimize a least squares

criterion given the group assignment function from the first step. The estimator

is consistent for large N (cross-sectional units) and large T (time units). The

number of groups is fixed beforehand and chosen by the researcher.
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Figure 2.7: Risk Sharing and Endogenous Group Membership: Estimates of γ
from Group Fixed Effects Estimator

We vary the number of groups from 2 to 7. Figure 2.7 shows the GFE

estimates to be robust across these specifications. The last row of Table 2.4

reports the GFE estimates when we assume the number of groups to be five.

As can be seen, the estimates are close to the estimates from the benchmark

specification. Allowing for clustered aggregate shocks does not change the

narrative of incomplete risk sharing and how it varies across food staples.
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Table 2.4: Some Additional Models: Heterogeneity in Slope Coefficient and
Aggregate Shocks

(1) (2) (3)

Rice Wheat Maize
Dependent variable: per capita consumption growth rate

Mean group (MG) estimator 0.426*** 0.144*** 0.555***
(0.032) (0.018) (0.035)

Common correlated effects mean group (CCEMG) estimator 0.429*** 0.145*** 0.553***
(0.032) (0.017) (0.035)

Group fixed effects (GFE) estimator 0.364*** 0.136*** 0.453***
(0.039) (0.036) (0.042)

Notes: Table shows the estimates of coefficient on per capita production growth rate. Figures in parenthesis
are standard errors robust to heteroscedasticity and within-country serial correlation. Number of groups in the
group fixed effect estimator is five. Standard errors for group fixed effects (GFE) estimator are bootstrapped
with 100 replications. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

2.6 Heterogeneity in Risk Sharing by Income

The previous section found that the average extent of risk sharing is robust to

unobserved heterogeneity in the parameters of equation (2.11). An observed

source of heterogeneity could be country income. The heterogeneity in corre-

lation trends across country-groups based on their income levels (Figure 2.6)

suggests that the degree of risk sharing is heterogeneous across countries and

that it varies over time. To evaluate the relationship between the degree of risk

sharing and the income level we allow γ to vary across income groups of coun-

tries (INCg) with country-group specific linear time trend. Mathematically,

this can be expressed as:

γ = δ1 +
4

∑
g=2

δg INCg + θ1t +
4

∑
g=2

θgt× INCg (2.19)

where INCg is dummy variable for each income group g, and t is

the linear time trend. The results are presented in Table 2.5. The degree of

risk sharing is the lowest (γ highest) for low income countries (base category)

and increases with income. For example, rice consumption in low income
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countries is insured only against 25% of the shocks to production whereas

high income countries domestic consumption is insured to the extent of 75% of

the shocks to production (Table 2.5 column 1). A similar situation is observed

in the case of maize. The difference in the degree of risk sharing between low

income and the high income countries for both rice and maize is statistically

significant.

Table 2.5: Heterogeneity in Risk Sharing by Income

(1) (2) (3)

Rice Wheat Maize
Dependent variable: per capita consumption growth rate

yit 0.742*** 0.312*** 0.795***
(0.0800) (0.116) (0.125)

yit× Lower middle income -0.300** 0.0189 0.0778

(0.135) (0.153) (0.158)
yit× Upper middle income -0.406*** -0.169 -0.528***

(0.126) (0.121) (0.150)
yit× High income -0.480*** -0.142 -0.555***

(0.160) (0.146) (0.162)
yit × T -0.00928*** -0.00580** -0.000696

(0.00302) (0.00253) (0.00275)
yit × T× Lower middle income 0.00322 0.000802 -0.0104***

(0.00469) (0.00349) (0.00394)
yit × T× Upper middle income 0.00893* 0.00493* -0.000115

(0.00468) (0.00277) (0.00341)
yit × T× High income 0.00559 0.00117 -0.00419

(0.00450) (0.00336) (0.00520)
N 4382 3475 5002

R2
0.169 0.0673 0.337

Notes: Base category is low income countries. T denotes linear time trend. Country
groups are low income, lower middle income, upper middle income and high income
countries and are based on the classification followed by the World Bank. All speci-
fications include country fixed effects and year dummies. Figures in parenthesis are
standard errors robust to heteroscedasticity and within-country serial correlation. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

The difference in the extent of risk sharing can also be seen graphi-

cally in Figure 2.8 which displays the marginal impacts of the idiosyncratic

production shock on consumption growth rates for the different country

groups. These marginal impacts are evaluated at 1987 - the mid-point of the

period 1961 to 2013. The other notable result from Table 2.5 is that γi declines

and risk sharing improves for low income countries with respect to wheat and

rice but not for maize.
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Figure 2.8: Risk Sharing Improves with Income

2.7 Contribution of Trade and Storage

In principle, international trade in the staple foods could achieve the risk

sharing ideal (Gouel, 2016). However, because of trade impediments, either

because of tariffs or other trade policies or because of trade costs, economies

may not be completely open. In this case, inter-year storage could also con-

tribute to risk sharing (Gouel, 2013). In this section, we adapt the framework

of Asdrubali et al. (1996) to quantify the contribution of trade and stocks to

risk sharing. Consider the following identity,

Yit =
Yit

YNX
it
×

YNX
it
Sit
× Sit (2.20)

where Yit and Sit are the per capita production and supply in country

i at time period t respectively. YNX
it is defined as the production left after net

exports. Then the domestic supply will be equal to the sum of production

left after trade and change in stocks. If we assume that domestic supply (S)
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equals consumption (C) then the variance in per capita production can be

decomposed as. 3

Var(yit) = Cov(yit, yit − yNX
it ) + Cov(yit, yNX

it − cit) + Cov(yit, cit) (2.21)

where yit = ∆lnYit, yNX
it = ∆LnYNX

it and cit = ∆LnCit. Dividing by

the variance of yit we get

1 =
Cov(yit, yit − yNX

it )

Var(yit)
+

Cov(yit, yNX
it − cit)

Var(yit)
+

Cov(yit, cit)

Var(yit)
(2.22)

1 = γT + γS + γ (2.23)

1− γ = γT + γS (2.24)

Under full risk sharing, after controlling for aggregate shocks, con-

sumption should be independent of idiosyncratic production shocks, i.e.,

γ = 0. It can be seen from the above that (1− γ) is the proportion of con-

sumption variability that is insured. Hence (1− γ) can be interpreted as

a measure of the degree of insurance or risk sharing. The above identity

decomposes the degree of risk sharing (1− γ) into risk sharing due to trade

γT and change in stocks γS. Clearly γT and γS can be computed as slope

3Detailed derivation is presented in appendix A section A.3.
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coefficients of an appropriate regressions.

To quantify the contributions of trade, changes in stocks and the

residual, we estimate the following regressions.

yit − yNX
it = αT

i + µt + γTyit + εT
it (2.25)

yNX
it − cit = αS

i + µt + γSyit + εS
it (2.26)

cit = αi + µt + γyit + εit (2.27)

The results are displayed in Table 2.6. Column 3 of Table 2.6 is

the same as column 3 of Table 2.2 because equation (2.27) is the benchmark

specification that was already reported in Table 2.2. From columns (1) and (2),

it is clear that trade is the principal contributor to risk sharing for all of the

three commodities. Of the risk sharing that is achieved (i.e., (1− γ)), trade is

responsible for 82% of it in the case of rice and wheat and 86% in the case of

maize.

Table 2.6: Estimates of Contribution of Trade and Storage in Risk Sharing

(1) (2) (3)

Contribution of trade Contribution of storage Residual
Dependent variable: per capita consumption growth rate

Rice 0.542*** 0.124*** 0.335***
(0.046) (0.031) (0.036)

Wheat 0.714*** 0.163*** 0.123***
(0.044) (0.038) (0.022)

Maize 0.493*** 0.077*** 0.430***
(0.053) (0.018) (0.048)

Notes: Table shows the estimates of coefficient on per capita production growth rate. All
specifications include country fixed effects and year dummies. Figures in parenthesis are
standard errors robust to heteroscedasticity and within-country serial correlation. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

The absolute contribution of trade to smoothing domestic production

shocks is higher in the case of wheat (71%) than rice (54%) and maize (49%).

This is expected, as wheat is one of the most traded food commodities in the
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global food market. Also distortions in global food market are lower for wheat

than for rice. In the case of maize, trade could insure domestic consumption

against 49% of the fluctuation in its domestic production, an estimate closer to

that for rice. This is contrary to our expectation as the total volume of maize

exports far exceeds that for rice. A possible explanation for this could be the

difference in types/varieties of maize being traded in the international market.

Dawe et al. (2015) while studying price behavior of staple food commodities

in low- and middle-income countries find that domestic maize prices are more

volatile than the prices of rice and wheat because of the thin global market

for white maize which is primarily used for human consumption more so in

sub Saharan Africa. Maize is a staple food crop in sub Saharan Africa and

accounts for 30− 50% of the total household consumption expenditure.

2.8 Robustness Check

As a robustness check we reproduce table 2.2 using the consumption and

production data from FAO. The results of the sensitivity analysis are reported

in table 2.7. Although the complete risk sharing hypothesis is rejected with

the FAO data, the estimated γ (coefficient of yit) is smaller in magnitude.

2.9 Conclusions

Greater stability in the growth of global food production as compared to that in

the national or regional production theoretically implies tremendous potential

for trade to share risk across countries. However, this idea of risk sharing has

not been formally tested in the world food markets. In this chapter, we try to
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Table 2.7: Robustness Check Using FAO Data

(1) (2) (3) (4)
Dependent variable: per capita consumption growth

(a) Rice
yit 0.215*** 0.214*** 0.213*** 0.211***

(0.027) (0.028) (0.027) (0.027)
c̄it 0.583***

(0.159)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 5070 5070 5070 5070

R2
0.099 0.107 0.117 0.112

(b) Wheat
yit 0.073*** 0.073*** 0.072*** 0.073***

(0.014) (0.014) (0.014) (0.014)
c̄it 0.637***

(0.122)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 4805 4805 4805 4805

R2
0.023 0.037 0.053 0.045

(c) Maize
yit 0.225*** 0.225*** 0.227*** 0.224***

(0.036) (0.036) (0.037) (0.036)
c̄it 0.675***

(0.120)
Country dummies No Yes Yes Yes
Time dummies No No Yes No
N 6394 6394 6394 6394

R2
0.101 0.114 0.125 0.122

Notes: Bar over variables denote cross sectional averages. Figures in parenthesis
are standard errors robust to heteroscedasticity and within-country serial
correlation. ***, ** and * indicate statistical significance at the 1%, 5% and 10%
levels, respectively.
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fill this gap in literature using efficient risk sharing hypothesis as a benchmark

to look at the potential of trade in insulating domestic consumption against

domestic production shocks, and its importance in relation to domestic food

stocks.

For observers of world food markets, the rejection of the efficient

risk sharing hypothesis is probably not surprising. Similarly, the superior

performance of the wheat market in providing insurance is also possibly an

expected finding. However, the finding that the maize market performs just as

poorly as the rice market is unexpected. Both these markets are characterized

by horizontal and vertical differentiation of varieties (which in turn, is a

reflection of imperfect substitutability) and that possibly limits the ability of

the market to provide insurance. Another noteworthy finding is the dominant

role of trade in providing insurance for all of the markets. Countries have

been following the prescription of economists that trade is, in most cases, a

cheaper way of stabilizing consumption than storage.

While global governance would have to be concerned by the limited

risk sharing achieved by maize and rice markets, there is also an additional

concern that such risk sharing is even lower for poorer countries. In the case

of rice, for example, low-income countries are able to achieve only 25% of

full insurance relative to 75% attained by high-income countries. A similar

situation is observed in the case of maize. Improving the insurance for poor

countries would be vital to achieve food security. This chapter provides the

grounds for such a discussion.



Chapter 3

Basis Risk in Index Insurance: Lower

Tail Dependence and the Demand

for Weather Insurance

3.1 Introduction

Agriculture and agriculture-based livelihoods in developing countries are

highly prone to weather shocks. Although there exist various informal mecha-

nisms in rural communities that allow farmers to pool their idiosyncratic risks,

such insurance is often partial and, moreover, provide limited insurance to

individual households when risks are correlated and widespread. 1 Extreme

climate events such as droughts, floods and heat waves which affect farm-

ing communities in a region simultaneously are instances of correlated and

widespread risks. There is substantial evidence that rural households in high

1The literature on risk sharing in communities is large. Overviews include Bardhan and
Udry (1999), Fafchamps (2003), Morduch (1999, 2005), Townsend (1994).

44
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risk environment stick to low return subsistence agriculture and cope with a

correlated shock by liquidating productive assets to maintain consumption

thus remain trapped in poverty (Rosenzweig and Binswanger, 1993; Carter

and Barrett, 2006; Dercon and Christiaensen, 2011).

Even though farmers in developing countries are typically poor

and even though they bear the burden of volatile income streams, formal

insurance products have had limited success (Mobarak and Rosenzweig,

2013). The difficulties of administering first best insurance programs tailored

to production histories of individual farmers have led to index insurance

products where payouts are triggered by an index such as rainfall, temperature

or local average yields. Premium setting is relatively easier because past data

on indices of weather and average yield are more readily available than

on individual production histories. As individual farmers have little or no

influence on payouts, index-based insurance products are also less likely to

fail due to asymmetry in information between the insurer and the insured.

Despite the promise of index insurance, the record is mixed. In particular,

the uptake of index insurance is poor, especially when it is not subsidized

(Binswanger-Mkhize, 2012; Jensen and Barrett, 2017; Jensen et al., 2016).

The literature has highlighted many reasons for the low uptake.

These include the unfamiliarity among farmers with formal insurance, the

lack of trust in the insurance provider and the difficulties of communication

resulting in poor understanding of the insurance product. Poor farmers also

face liquidity constraints and insurance demand is highly sensitive to price

(Cole et al., 2013, 2014; Giné et al., 2008).

However, even if the above factors were absent, research has high-

lighted the fundamental constraint of basis risk which occurs because of
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imperfect correlation between the index and farmer losses. If the association is

weak, then index insurance might not be reliable (Morsink et al., 2016; Elabed

et al., 2013). Research has shown, both theoretically and empirically, that basis

risk reduces the demand for insurance (Clarke, 2016; Elabed and Carter, 2015;

Giné et al., 2008; Hill et al., 2016). The importance of acknowledging basis

risk is stressed in a recent study that states "Discerning the magnitude and

distribution of basis risk should be of utmost importance for organizations

promoting index insurance products, lest they inadvertently peddle lottery

tickets under an insurance label" (Jensen et al., 2016).

Index insurance products are, at best, designed to offer protection

against aggregate or covariate risks (Miranda, 1991; Ramaswami and Roe, 2004;

Carter et al., 2014). The lack of a perfect association between the index and

losses at the farmer level can, therefore, arise either because the index is not

accurate or the idiosyncratic losses are substantial. While previous work has

established the sensitivity of insurance demand and farmer welfare to basis

risk, there has not been much work on contract design that reduces basis risk.

Chantarat et al. (2013) described an index based livestock insurance where

the contract was based on a regression of historic mortality rates on an index

of vegetative cover and therefore, was designed to minimize basis risk. In a

similar vein, this chapter examines how rainfall insurance contracts in India

can be designed to reduce basis risk. However, we do not use regression-based

methods because a least squares fit is based on the idea of linear correlation.

Our approach exploits the idea that the joint distribution of rainfall and output

might be characterized by tail dependence. This means that the associations

between yield losses and index losses are stronger for large deviations than

for small deviations. The major implication is that the value (to farmers) of

index-based insurance relative to actuarial cost is highest for insurance against
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extreme or catastrophic losses (of the index) than for insurance against all

losses. Or in simpler words, basis risk is least for large deviations of the index.

The goal of this chapter is to test this hypothesis.

The contribution of this chapter is two-fold. First, it adds to the

slender work on how contracts can be designed to lower basis risk. Second,

it uses general measures of association (rather than the linear concept of

correlation) to characterize the dependence between the index and crop losses.

Previous work has recognized that lower tail dependence characterizes the

joint distribution of spatial yields (Du et al., 2017; Goodwin, 2014; Good-

win and Hungerford, 2015) and also the joint distribution of spatial rainfall

(Aghakouchak et al., 2010). The chapter argues that these two facts imply

that the joint distribution of rainfall and yields will also exhibit lower tail

dependence. Testing this hypothesis and examining its implications for the

design of insurance is the contribution of this chapter.

The chapter estimates the tail dependence in the joint distribution

of weather (i.e., rainfall) and yields using a district level data set for all India

for 9 major crops. Using maximum likelihood methods, the chapter estimates

a number of copulas from the parametric families of elliptical copulas and

the Archimedean copulas. The best-fit copulas are joined to a conceptual

model of an insurance purchaser. The simulation of the copulas allows us to

estimate the optimal insurance cover for a variety of insurance contracts that

vary according to the index threshold value that triggers payout. These results

are compared to those obtained from a copula without tail dependence (the

Gaussian copula).

A preview of the findings is as follows. We find that station level

rainfall in India do exhibit tail dependence and the joint distribution of district
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level crop yields for nine major crops and rainfall index also exhibit tail

dependence. This implies that the associations between yield losses and index

losses are stronger for large deviations than for small deviations. Or that the

basis risk is least for large deviations of the index. This is also confirmed

by simulations that show that value to a risk averse farmer of index-based

insurance relative to actuarial cost is highest for insurance against extreme or

catastrophic losses (of the index) than for insurance against all losses. Because

of tail dependence, the demand for commercially priced rainfall insurance is

more likely to be positive when coverage is restricted to extreme losses.

3.2 Relation to Literature

There is no universally accepted definition of basis risk. However, it is

commonly understood to arise from the imperfect association between farm

level losses and the index that triggers insurance payments. As a result, losses

that are actually incurred may not always be compensated by insurance. A

particularly stark case is when the farmer suffers a loss but receives no payout.

Clarke (2016) refers to the probability of such an event as basis risk. Higher

is this probability, greater is the basis risk. In these states of high marginal

utility, not only does the farmer not receive indemnities but actually suffers

cash outflow to pay premiums. For this reason, a risk averse farmer would not

want to buy ’too much’ of insurance. Higher basis risk reduces the demand

for insurance.

A simple model is useful to clarify basis risk and to understand the

contribution of this chapter. An index insurance is offered to farmers in a

region R (village, cooperative, or other units of aggregation). Consider the
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following model of yield risk. 2

yir = µiRηiR (3.1)

where µiR is the expected yield of producer i in region R and ηiR is a

unit mean random variable capturing the risks of farming. ηiR is a product of

two independent unit mean shocks - an aggregate or covariate shock θR that

affects all farmers in the region and an idiosyncratic shock eiR that affects only

producer i and is given by

ηiR = eiRθR (3.2)

Assuming each producer’s share of land in the region is wiR, the area

yield for the region R is

y = θR ∑
(i∈R)

wiRµiReiR (3.3)

Let µR = ∑i wiRµiR denote the expected area yield. Then the area

yield can be approximated as 3

y = θRµR (3.4)

Therefore, in this model, the aggregate shock θR is completely cap-

2The model is drawn from Ramaswami and Roe (2004).
3∑(i∈R) wiRµiReiR = ∑(i∈R) wiR(µiR − µR)(eiR − ē) + µR ēR where ēR = ∑i wiReiR. The first

term is approximately zero (independence of idiosyncratic shocks from expected yield) and
in the second term the average idiosyncratic shock is approximately equal to its mean, i.e., 1.
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tured by area yield. Finally, insurance payouts z to every insured farmer in

the region R is a function of the value of an index xR. While the exact function

is unimportant here, a typical insurance contract is of the form

zR = max{α(xm − xR), 0} (3.5)

where xm and α are positive parameters of the contract. xm is a

deductible. If xm is high, the insurance covers small and large losses. If it is

low, the insurance provides only catastrophic cover.

With reference to this model, basis risk can be quantified in various

ways. A simple approach is to examine the correlation between farm yield

yiR and insurance payments zR or the index xR. As this assumes, basis risk

is constant for all values for the index, this chapter will consider general

dependence structures that incorporate non-linear association. In particular,

it may be important to consider the association between yield and the index

when the index losses are large. Morsink et al. (2016) propose two measures

of the reliability of index insurance. The first metric is the probability of

not receiving an insurance payout in the event of a catastrophic loss. The

second measure is the ratio of expected payout to premium in the event of a

catastrophic loss. This chapter considers a further nuance: what is the basis

risk (or the reliability of index insurance) for different values of the deductible?

In particular, is the basis risk appreciably lower for a low xm?

The literature has distinguished between two sources of basis risk

(Jensen et al., 2016; Morsink et al., 2016). First, if the index is poorly chosen,

then aggregate shocks might not be sufficiently sensitive to the index. This

has been called insured peril basis risk (Morsink et al., 2016) or design risk
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(Jensen et al., 2016). In the model described above, area yield is a sufficient

statistic for the aggregate shock. However, computation of area yield involves

crop cutting experiments or other means of assessing average yield. The

greater administrative costs might lead insurance companies to choose an

easily measurable weather parameter such as rainfall to approximate the

aggregate shock. The problem is that average yield may depend on rainfall as

well as other factors such as hailstorms, or pests that affect the entire region.

We can write

yR = f (IR, νR) (3.6)

where IR is an index of rainfall and νR stands in for all other factors

that affect average yield. The absence of a perfect association between rainfall

and average yield constitutes the design risk in this model.

Clarke et al. (2012) analyze this source of basis risk in 270 weather

insurance contracts in a state of India. They estimate that there is a one-in-three

chance of not receiving insurance payout in the event of a total production

loss (of area average yield). In a follow-up analysis, Clarke (2016) argued that,

if the contracts were priced commercially (i.e., unsubsidized), the basis risk in

them was so great as to reduce optimal demand to zero.

The model described above assumed that all producers in the region

R face the same aggregate shock. However, even within a small region, rainfall

may not occur uniformly. On the other hand, the index of rainfall is computed

from one point in the region. Another source of design risk is, therefore,

the imperfect association between rainfall at the farm location and rainfall at

the weather station. Previous research has measured such design risk by the



52 CHAPTER 3. BASIS RISK IN INDEX INSURANCE

distance from the farm to the weather station (that measures the index). This

has been shown to reduce insurance demand (Mobarak and Rosenzweig, 2013;

Hill et al., 2016).

Even if the index accurately captures aggregate shocks, a second

source of basis risk comes from the fact that the aggregate shock is only one

component of loss. In particular, individual specific shocks not captured by

the index could also lead to a weak association between the losses in the index

and individual farm output losses. Such basis risk has been called production

smoothing basis risk (Morsink et al., 2016). Ramaswami and Roe (2004)

showed that if individual and aggregate shocks interact multiplicatively (as in

above model), then even if index insurance insures aggregate shocks perfectly

(i.e., no design risk), the presence of uninsured individual specific risks could

reduce the demand for index insurance. 4 Empirically, Jensen et al. (2016),

using a unique household level panel, analyze the different sources of basis

risk for an index based livestock contract offered in Northern Kenya. They

find that the livestock contract did reduce household exposure to aggregate

risk, principally, droughts. On average, risk exposure to covariate shocks

dropped by about 63%. The failure to reach 100% reflects the design errors in

the contract. While the contract was not designed to reduce idiosyncratic risk,

such risks were large. Even at the smallest levels of aggregation, idiosyncratic

risk accounted for about two-thirds of all risk. Reducing design risk by

choosing a better index cannot help in dealing with idiosyncratic risk. The

policy imperative would be to keep the aggregation (i.e, region R) as small as

possible to minimize idiosyncratic risk.

4This is true for all risk averse individuals with convex marginal utility. If individual and
aggregate shocks interact additively as in Miranda (1991), then idiosyncratic shocks have no
consequence for insurance decision although they do matter to utility (Ramaswami and Roe,
2004).
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The fact that index insurance can at best deal with aggregate risk

suggests that traditional mechanisms of informal insurance would continue

to be important in dealing with idiosyncratic risk. If informal networks

provide substantial insurance, it would ameliorate the basis risk in index

insurance because of idiosyncratic risk and therefore increase the uptake of

index insurance. This hypothesis was tested and confirmed by Mobarak and

Rosenzweig (2012) and Dercon et al. (2014).

This chapter is about reducing the design error component of ba-

sis risk in rainfall insurance contracts. By considering general dependence

structures, the chapter opens the door to the possibility that basis risk might

vary according to the magnitude of the loss in the index. This possibility is

empirically explored by estimating copulas of the distribution of rainfall and

yields. While the analysis covers 9 crops across 311 districts from 1966 to

2011, it is limited by the aggregation at the district level. For this reason, the

chapter cannot throw light on the basis risk due to uninsured idiosyncratic

risk.5 What the research does is to examine the basis risk that arises by using

a weather index (rainfall) to measure aggregate or covariate risk. Related

papers that share this objective include Clarke (2016), Clarke et al. (2012) and

Morsink et al. (2016).

While this literature provides methods to characterize basis risk, this

chapter advances the research by a formal examination of tail dependence

and its implications for redesigning contracts to reduce basis risk. A small

literature has begun to explore copula based characterizations of joint distribu-

tions to explore the spatial correlations of yield and the implications of pricing

premiums (Du et al., 2017; Goodwin, 2014; Goodwin and Hungerford, 2015).

5This is a limitation shared with much of the literature (e.g., Clarke, 2016) because of the
absence of farm level panel data.
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The chapter extends the application of these methods to a characterization of

basis risk in rainfall insurance contracts.

3.3 Background Evidence: Tail Dependence in Rain-

fall

In the model described in the last section, area average yield was the correct

index for local aggregate shocks. More generally, we can let

yiR = µiRηiR (3.7)

where the composite risk is some unspecified function of idiosyn-

cratic and aggregate shock. In other words,

ηiR = g(eiR, θR) (3.8)

The average yield is

y = ∑
(i∈R)

wiRµiRηiR (3.9)

Once again denoting the expected area yield µR ≡ ∑i wiRµiR, we can

decompose the right hand side of above as
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∑
(i∈R)

wiRµiRηiR = ∑
(i∈R)

wiR(µiR − µR)(ηiR − η̄R) + µRη̄R (3.10)

where η̄R = ∑i wiRηiR. If the yield risks are independent of mean

yield, the first term is approximately zero. Hence we can approximate area

average yield as

y = µR ∑
(i∈R)

wiRg(eiR, θR) (3.11)

In this more general model, it is no longer sufficient to represent

aggregate shocks by average yield. It also depends on the entire distribution

of idiosyncratic shocks.

In either model, in so far as rainfall is only one component of ag-

gregate shocks, a rainfall insurance contract would suffer from design basis

risk. Ideally, this should be investigated by examining the association between

area average yields and the rainfall index that is computed from a weather

station within the region. Because of data considerations, we estimate the

tail dependence and the copulas of joint distributions of area average yields

and area average rainfall.6 However, this is not a major limitation because tail

dependence in the joint distribution of these averages implies tail dependence

in the joint distribution of area average yield and a rainfall index.

The reason is as follows. From other parts of the world, it has been

found that rainfalls within a region are not only strongly correlated but, in

6Clark’s (2016) computations of basis risk in weather insurance products from a state in
India is also based on associations of area average yield and area average rainfall.
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fact, are characterized by tail dependence (e.g., Aghakouchak et al., 2010).

Thus, an association of large deviations of area average yield with large

deviations of area average rainfall automatically translates to an association of

large deviations of area average yield with large deviations of a rainfall index

derived from a location within that area.

To confirm the key fact of tail dependence in the distribution of

rainfall in India, we use rainfall data from 137 weather stations of the Indian

Meteorological Department. The complete data series is available from 1966

to 2007. Rainfall is highly seasonal, and bulk of it is received during June to

October. To make rainfall series comparable across stations and months, we

standardize rainfall by months.

Figure 3.1a shows scatter plot of pair wise linear and rank correlations

between all the possible combinations of rainfall stations as a function of the

distance between them. The right panel of the figure shows the best fit

curve to the rainfall station pair correlations. These clearly show that the

joint association between rainfalls at two stations is inversely related to the

distance between them. Interestingly the curve for rank correlation is above

the curve for linear correlation when two stations are close to each other. But,

the difference between the two narrows down as the distance between the

stations increases. This is an indication of tail dependence in rainfall as rank

correlation is better suited at capturing nonlinear relationships between the

variables.7

Correlation is a global measure of association whereas we are in-

terested in the association between random variables when they are at their

extremes. To study the behavior of joint distribution of rainfalls at extremes

7Goodwin (2001) reports a similar finding for spatial correlations between yields.
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Figure 3.1: Dependence in Pairwise Station Rainfalls
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we create a dataset of all possible combinations of rainfall station pairs. Using

this, for each station pair, we generate a new dataset of lower and upper tail

dependence coefficients.8

We use a nonparametric estimator of tail dependence (Frahm et al.,

2005; Patton, 2013). The estimator is given as:

λ̂U = 2− log(1− 2(1− q) + T−1 ∑T
t=1 1{G(Y) ≤ 1− q, F(X) ≤ 1− q})
log(1− q)

, q ≈ 0

(3.12)

λ̂U = 2− log(T−1 ∑T
t=1 1{G(Y) ≤ 1− q, F(X) ≤ 1− q})

log(1− q)
, q ≈ 0 (3.13)

The tail dependence statistic looks at a specific portion of tail in the

joint distribution. Therefore, a threshold q needs to be specified for estimation.

This choice of q involves trade off in terms of bias in the estimate and its

8Tail dependence coefficients quantify the degree of dependence in the lower left quadrant
or upper right quadrant of a bivariate distribution. Let X and Y be the continuous random
variables with distribution functions F and G, respectively. Then, the lower tail dependence
coefficient, λL, is the probability that one variable takes an extremely low value, given that
the other variable also takes an extremely low value. Similarly, the upper tail dependence
coefficient, λU , is the probability that one variable takes an extremely high value, given that
the other variable also takes an extremely high value. Mathematically, these can be expressed
as:

λL = lim
q−→0

P(G(Y) ≤ q | F(X) ≤ q)

λU = lim
q−→1

P(G(Y) > q | F(X) > q)

where both λL, λU ∈ (0, 1]. For a set of random variables to be tail-dependent the limits of the
conditional probabilities in above equations should be non-zero. Tail dependence coefficients
are better measures than linear correlation as they provide more detailed information on
the joint dependence structure of random variables (Patton, 2013). Since a bivariate normal
distribution does not exhibit tail dependence, the presence of tail dependence in data goes
against the assumption of joint normality.
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variance. For small (large) values of q the variance is large (small) and the

bias is small (large). Note that the smaller the value of threshold q the more

extreme deviations the tail dependence statistic will capture.

Figure 3.1b shows the best fitted curves for the lower and upper

tail dependence statistic for pair-wise rainfalls as a function of the distance

between the stations. The tail dependence declines with distance, but the

rate of decline is slower for lower values of q. We model this behavior

econometrically in the following way.

λij = β1Ln(Distance)ij + β2q + β3Ln(Distance)ij × q + αi + τj + εij (3.14)

where λij the estimated tail dependence coefficient between rainfalls

measured at two stations i and j, Ln(Distance)ij is the distance in kilometers

between the two stations and q is the threshold chosen for the tail dependence

statistic. The interaction coefficient captures the interplay between distance

and extreme events. Table 3.1 shows the estimated coefficients from the

regressions. The coefficient of the interaction term is negative and statistically

significant. Since lower values of q correspond to more extreme deviations

in rainfall the analysis reveals that extreme deviations in rainfall are more

widespread as compared to moderate deviations. Hence, extreme rainfall

shocks will survive spatial aggregation in comparison to moderate shocks. If

yield across farms are dependent on local rainfall, then it will also inherit the

tail dependence property. The implication of this finding is that an extreme

rainfall anomaly will lead to spatially correlated crop losses.

As a robustness check, we also test for tail dependence between
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Table 3.1: Extreme Events, Tail Dependence and Distance

(a) Weather station data (b) Gridded data

Upper λ̂L Lower λ̂U Upper λ̂L Lower λ̂U

log(Distance) -0.06*** -0.06*** -0.10*** -0.09***
(0.004) (0.003) (0.003) (0.002)

q 2.49*** 2.32*** 3.96*** 3.89***
(0.240) (0.205) (0.094) (0.062)

log(Distance)× q -0.31*** -0.29*** -0.50*** -0.49***
(0.035) (0.030) (0.013) (0.008)

Constant 0.53*** 0.50*** 0.81*** 0.65***
(0.027) (0.021) (0.023) (0.016)

Observations 55896 55896 381276 381276

Adjusted R2
0.48 0.47 0.67 0.68

Notes: The dependent variable are the estimated nonparametric tail dependence
coefficients. The tail dependence statistic varies between 0 and 1. The regressions
include station (grid point) fixed effects. Figure in parenthesis are standard errors
clustered at rainfall station level. Panel (a) shows results from the data on actual
rainfalls measured at 137 weather stations spread all over India. Panel (b) shows
results from the Indian meteorology department’s high resolution gridded rainfall
data based on rainfall records from 6995 rain gauge stations in India. ***, ** and *
indicate statistical significance at the 1%, 5% and 10% levels, respectively.

the station-level rainfall by fitting different copula models on station-pairs

with distance less than or equal 2000 kilometers. The appendix B.1 provides

details of how bivariate distributions are modeled by a copula. The chapter

considers the commonly used parametric families of elliptical copulas and

the Archimedean copulas. Their statistical properties are also summarized in

the appendix B.1. The copula is estimated by standard methods. Marginal

distributions are estimated non-parametrically and substituted in the copula.

The dependence parameters are estimated in the second step. These details

are also provided in the appendix B.1.

The Students t copula is the best fit for almost half of the station-pairs,

followed by Plackett and rotated Clayton copula (table 3.2a). The Students

t copula exhibits both upper and lower tail dependence. This indicates that

rainfall in general exhibits a stronger association in case of both extremely low

and extremely high deviations from the normal. The mean values of the tail

dependence coefficients based on the copula parameter for all the station-pairs
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Table 3.2: Dependence in Pairwise Station Rainfalls

(a) Copula Fitted to Pairwise Rainfalls

Copula model Station pairs Percent

Gaussian 354 4.43

Clayton 437 5.46

Rotated Clayton 950 11.88

Plackett 1204 15.05

Frank 318 3.98

Gumbel 188 2.35

Rotated Gumbel 698 8.73

Student’s t 3849 48.12

Total 7998 100

(b) Estimated Tail Dependence based on Fitted Copula and Distance

Distance between pair of stations in kilometers

Copula 2-479 498-776 777-1033 1033-1287 1287-1572 1573-1999

Rotated Clayton 0.183 0.019 0.01 0.009 0.006 0.003

(0.236) (0.039) (0.02) (0.025) (0.019) (0.013)
Rotated Gumbel 0.284 0.209 0.163 0.146 0.133 0.129

Lower (0.09) (0.06) (0.043) (0.032) (0.02) (0.019)
Student’s t 0.573 0.523 0.503 0.493 0.49 0.482

(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)
Total 0.353 0.336 0.292 0.237 0.194 0.172

(0.274) (0.238) (0.238) (0.236) (0.231) (0.226)

Rotated Clayton 0.126 0.064 0.026 0.017 0.006 0.003

(0.094) (0.058) (0.04) (0.031) (0.014) (0.008)
Rotated Gumbel 0.294 0.185 0.149 0.149 0.133 0.122

Upper (0.091) (0.054) (0.032) (0.037) (0.014) -
Student’s t 0.573 0.523 0.503 0.493 0.49 0.482

(0.051) (0.034) (0.031) (0.026) (0.026) (0.024)
Total 0.348 0.324 0.28 0.228 0.185 0.165

(0.276) (0.247) (0.247) (0.241) (0.235) (0.229)
Note: Standard deviation in parenthesis.
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are presented in table 3.2b and show a declining strength of association when

the distance between two stations increases. This is similar to the pattern

observed in the non-parametric tail dependence coefficients.

3.4 The Joint Distribution of Average Area Yields

and Average Area Rainfall

We now turn to the association between average area yield and average

area rainfall. District yields are collected from the district database of the

International Crops Research Institute for the Semi-Arid Tropics ICRISAT

(http://vdsa.icrisat.ac.in/vdsa-database.htm) that is compiled from various

official sources. To maintain consistency and comparability of time series

across districts, data of the bifurcated districts is returned to the parent district

based on the district boundaries in 1966.

The database covers 15 major crops across 311 districts in 19 states

from the year 1966-67 to 2011-12. India receives 85% of its annual rainfall

during the monsoon months of June to September. A rainfall insurance

contract is meaningful therefore for crops grown during this period. These

are called the kharif season crops (June to October). In the data set, these

crops are Maize, Cotton, Sorghum, Finger millet, Pigeon pea, Soybean, Pearl

millet, Groundnut and Rice. 9 Crop yields typically exhibit significant upward

trends overtime due to technological changes. Yield deviations are estimated

by fitting a linear trend to log yields of each crop of each district.

The high resolution gridded rainfall data from the Indian Meteorolog-

9Maize and groundnut are cultivated around the year.

http://vdsa.icrisat.ac.in/vdsa-database.htm
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ical Department is used to construct total kharif season rainfall as cumulative

rainfall for the months from June to October. The cumulative seasonal rainfall

is transformed to standardized deviations from their long term normals.

Table 3.3 presents coefficients of linear and rank correlation between

yield and rainfall deviations. As expected, both measures show a statistically

significant positive association between yield and rainfall deviations, despite

some difference in their magnitude. Figure 3.2 shows the scatter plot of rainfall

and yield deviations. Figure 3.2a shows scatter plots of yield and rainfall

deviations along with the linear fit.

Table 3.3: Linear and Rank Correlation between Yield and Rainfall Deviations

(1) (2)

Crops Linear correlation Rank correlation

Maize 0.023 0.004

(0.009) (0.01)
Cotton 0.072 0.073

(0.012) (0.015)
Sorghum 0.104 0.109

(0.01) (0.01)
Finger millet 0.107 0.086

(0.014) (0.015)
Pigeonpea 0.145 0.131

(0.009) (0.009)
Soybean 0.169 0.122

(0.018) (0.017)
Pearl millet 0.183 0.183

(0.011) (0.011)
Groundnut 0.177 0.180

(0.01) (0.01)
Rice 0.277 0.267

(0.008) (0.009)
Note: Bootstrapped (200 replications) standard errors in paren-
thesis.

A crude test for the presence of tail dependence in a pair of variables

is to examine the scatterplot of these variables (after transforming to uniform

scores based on the empirical distribution) for clustering at the extremes (Joe,

2014). For different values of q we can also compute conditional quantile

dependence probabilities for the lower (pL) and higher (pU) extremes of the
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(a) Scatter Plot of Yield and Rainfall Deviations

(b) Scatter Plot of Ranks of Yield and Rainfall Deviations

(c) Kernel Density Plots of Ranks of Yield and Rainfall Deviations

Figure 3.2: Joint Distribution of Yield and Rainfall Deviations
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transformed variables as:

pL =
1

Tq

n

∑
(t=1)

1{UYt ≤ q | UXt ≤ q} (3.15)

pU =
1

T(1− q)

n

∑
(t=1)

1{UYt ≤ q | UXt ≤ q} (3.16)

Where UYt and UXt are the scores of Y and X based on their empirical

distribution.

In figures 3.2b and 3.2c we present the scatter and bivariate kernel

density plots of the rank-based empirical marginal distribution of yield and

rainfall deviation. We observe clustering of rank scores (for yield and rainfall

deviations) in the lower-left corner of scatter plots for many of the crops.

Such a clustering corresponds to extreme shortfalls in yield and rainfall, and

implies greater probability of simultaneous occurrence of these events.

The scatter plots of rank-based empirical distributions indicates that

association between yield and rainfall index may not be linear. Therefore, we

test for the presence of tail dependence in their joint distribution using the

conditional quantile dependence probabilities. Figure 3.3 shows estimated

lower tail (panel 3.3a) and upper tail (panel 3.3b) quantile dependence plots;

and the difference between the two (panel 3.3c). For comparison we also

present the quantile dependence from the moments matched bivariate normal

distribution as dashed line in this figure. For all crops the quantile depen-

dence probability at the lower tail of the joint distribution is greater than the

same exhibited by normal distribution. This again is evidence of lower tail

dependence in crop yield and rainfall deviations. The quantile dependence
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plots for the upper tail don’t show any evidence of tail dependence in the

joint distribution of yield and rainfall distribution. We also find strong evi-

dence that the joint distribution of crop yield and rainfall deviations exhibit

asymmetric tail dependence. The difference between the upper and lower

quantile dependence is statistically significant and is greater at lower quantiles

(figure 3.3c). These results clearly reveal that the bivariate normal distribution

is unsuitable to model the joint distribution of yields and rainfalls.

Table 3.4: Log Likelihood from Different Copula Models

Crops Gaussian Clayton Rotated
Clayton

Plackett Frank Gumbel Rotated
Gumbel

Student’s t

Cotton 20.4 33.7 8.3 18.8 18.4 -12.7 16.0 24.3
Finger millet 27.9 51.5 3.2 31.8 31.1 -9.8 43.3 29.9
Groundnut 183.8 254.9 56.6 175.3 171.8 92.0 235.2 196.9
Maize 3.5 31.4 -0.01 3.6 3.5 -138.5 -31.6 11.9
Pearl millet 165.8 224.7 52.7 154.9 152.0 81.2 214.7 173.6
Pigeon pea 124.8 172.6 29.1 123.9 122.9 39.8 151.9 125.8
Rice 548.3 680.9 204.2 544.4 533.5 334.4 665.8 567.6
Sorghum 68.4 125.9 10.8 56.8 55.7 -8.8 104.0 76.9
Soybean 43.6 68.4 7.5 48.5 48.1 14.0 63.2 45.8
Note: Log likelihood values estimated from copula mod-
els.

We use copula functions to capture the asymmetric dependence be-

tween yield and rainfall deviations by fitting copulas to rank-based empirical

marginal distributions of yield and rainfall deviations.10 Based on the log like-

lihood values, the Clayton copula is the best model to describe the dependence

between yield and rainfall deviations (Table 3.4). This is not surprising as Clay-

ton copula exhibits only lower tail dependence and no upper tail dependence.

The worst performing copula models are one with zero lower tail dependence

and allow only upper tail dependence like Gumbel and rotated Clayton. Table

3.5 presents the parameters of the Clayton copula with bootstrapped standard

errors and lower tail dependence based on the fitted copula parameter.

10As mentioned earlier, the procedure used to estimate bivariate copulas is explained in
Appendix B.1.
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Table 3.5: Clayton Copula Model Parameter Estimates

Crops Parameter
Estimates

Standard
errors

Tail
dependence

Cotton 0.107 0.014 0.0015

Finger millet 0.158 0.018 0.0125

Groundnut 0.260 0.013 0.0695

Maize 0.074 0.011 0.0001

Pearl millet 0.271 0.015 0.0776

Pigeon pea 0.201 0.012 0.0319

Rice 0.415 0.014 0.1878

Sorghum 0.176 0.012 0.0195

Soybean 0.246 0.025 0.0597

The estimated copula density for different crops is presented in

Figure 3.4. As expected, all crops show significantly higher density at the

lower tail. This further confirms that the association between yield and rainfall

deviations is stronger at the lower tail. This means when rainfall is abnormally

low, yield losses are widespread. Therefore, the basis risk is low for extreme

shortfall in rainfall.

Figure 3.4: Estimated Copula Density by Crops

As a robustness check, we fit all the selected eight copula models
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to each district that has at least 40 data observations. Based on the log

likelihood values and the AIC criterion, we choose the one that best describes

the dependence. Table 3.6 summarizes the results. For example, in the case

of rice Clayton copula gives best fit for 40 percent of the 274 rice growing

districts. Student’s t copula is the next best. Across all crops about 70% of

the cases are accounted by either the Clayton copula or the Student’s t copula.

These findings clearly indicate nonlinearity in association between weather

and yield risk and have implications for the demand for insurance and thus,

its design.

Table 3.6: Percent Districts with Best Fit Copula

Crops Gaussian Clayton Rotated
Clayton

Plackett Frank Gumbel Rotated
Gumbel

Student’s t Total

Cotton 12 37 10 7 7 3 2 44 122

(9.84) (30.33) (8.2) (5.74) (5.74) (2.46) (1.64) (36.07) (100)
Finger millet 2 28 5 3 5 0 4 24 71

(2.82) (39.44) (7.04) (4.23) (7.04) (0) (5.63) (33.8) (100)
Groundnut 9 77 8 15 8 3 11 57 188

(4.79) (40.96) (4.26) (7.98) (4.26) (1.6) (5.85) (30.32) (100)
Maize 17 68 13 21 8 4 6 113 250

(6.8) (27.2) (5.2) (8.4) (3.2) (1.6) (2.4) (45.2) (100)
Pearl millet 3 78 7 9 6 3 6 45 157

(1.91) (49.68) (4.46) (5.73) (3.82) (1.91) (3.82) (28.66) (100)
Pigeon pea 12 88 21 15 16 6 7 53 218

(5.5) (40.37) (9.63) (6.88) (7.34) (2.75) (3.21) (24.31) (100)
Rice 13 110 10 12 24 8 34 63 274

(4.74) (40.15) (3.65) (4.38) (8.76) (2.92) (12.41) (22.99) (100)
Sorghum 6 73 8 14 8 2 7 80 198

(3.03) (36.87) (4.04) (7.07) (4.04) (1.01) (3.54) (40.4) (100)
Soybean 0 24 2 2 6 0 2 5 41

(0) (58.54) (4.88) (4.88) (14.63) (0) (4.88) (12.2) (100)
Total 74 583 84 98 88 29 79 484 1519

(4.87) (38.38) (5.53) (6.45) (5.79) (1.91) (5.2) (31.86) (100)
Note: Row percentages in parenthesis.
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3.5 Implications for Rainfall Insurance

3.5.1 Basis Risk

Our findings show that the joint density of yield and rainfall exhibit lower

tail dependence, i.e. a stronger association between yield and rainfall when

rainfall is abnormally low. This implies that the basis risk varies across the

joint distribution of yield and index. This opens up the possibility of designing

insurance such that it covers the losses with the least basis risk. Here, we

analyze the implications of these findings for the demand and design of index

insurance.

Assume that a farmer’s yield q is a random variable with distribution

function g(q). The payout from one unit of rainfall based insurance contract

is given by

I = Max{R̂− R, 0} (3.17)

where R is the rainfall index with distribution function h(R) and

R̂ is the rainfall threshold set by the insurance selling agency. Lower is the

threshold, greater is the deductible in the insurance payouts. The contract

trigger’s payouts only if actual rainfall falls below R̂. The implicit assumption

in offering such a contract is that farmers’ yield and the rainfall index are

correlated such that in periods of low rainfall crop yields will also be lower.

The actuarially fair price P of such a contract is just the expectation of I.
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P =
∫ R̂

0
(R̂− R)h(R)dR (3.18)

The net profits of a farmer purchasing a rainfall insurance contract

can be written as

π = q + α(I −mP) (3.19)

where α is the number of insurance units purchased and m is the

mark-up over actuarially fair insurance. We want to find the optimal value of

α that maximizes the expected indirect utility.

Maxαη(α) ≡ Eu(q + α(I −mP)) (3.20)

where u(.) is the utility function of the farmer with u
′
(.) > 0 and

u
′′
(.) < 0.

Starting from no insurance, the increment to expected utility because

of insurance is given by

η
′
(α) |α=0= Eu

′
(q)(I −mP) (3.21)

Or,

η
′
(α) |α=0=

∫∫
u
′
(q)(I −mP)h(R | q)g(q)dRdq (3.22)
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where h(R | q) is the density of rainfall conditional on yield. This

can be rewritten as

η
′
(α) |α=0=

∫
u
′
(q)[

∫
(I −mP)h(R | q)dR]g(q)dq (3.23)

The term inside the square brackets is nothing but E(I | q)− mP.

Hence we have

η
′
(α) |α=0= Eu′(q)(E(I | q)−mP) (3.24)

From the above it can be seen that the insurance demand is zero if

E(I | q) ≤ mP , for all values of q. This result is a restatement of a theorem in

Clarke (2016). Clarke defines

κ(q) =
E(I | q)

mP
=

Expected claim payment over yield distribution
Commercial premium

(3.25)

The ratio basically reflects the average amount a farmer gets back as

claims per dollar paid as commercial premium. He shows that if κ(q) ≤ 1

over the entire yield distribution then α = 0, for a risk-averse individual. In

our model, this result follows from (3.24).

Clarke et al. (2012) use the payout structure of 270 weather based crop

insurance products sold to Indian farmers in one state in one year and combine

it with historical data to simulate payouts over the period 1999-2007. Their

work finds the ratio κ(q) to be almost flat over the entire yield distribution.
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The ratio is below 1 for most values of q and is barely above 1 for very low

levels of q. It follows then that the basis risk in these contracts is so large that

it would be optimal not to purchase them. Morsink et al. (2016) proposed

that the ratio defined in (3.25) should be used as a measure of reliability of

weather insurance contracts and called it the catastrophic performance ratio.

They further suggested that the ratio could be used to "improve the quality of

products, protect consumers, and reduce reputational risk".

We use the catastrophe performance ratio to examine how tail depen-

dence matters to basis risk. A hypothetical rainfall insurance contract of the

form in (3.17) is considered. The payoffs are simulated using 10,000 draws of

rainfall and yield from a Gaussian copula and from a copula exhibiting lower

tail dependence. The correlation between the two variables is held constant

across the two copulas. The comparison of the performance ratio across the

two copulas is, then, revealing about the effect of tail dependence.

The exact procedure is as follows. For both these copulas, the

marginal distribution of yield and rainfall are assumed to be normal with

a mean of 2000 and standard deviation of 300. In the last section, the best

fit copula to the joint distribution of rice yields and rainfall was found to be

the Clayton copula with a parameter of 0.42. The marginal distributions are

combined in a Clayton copula with a parameter of 0.42 to generate 10,000

observations of yield and rainfall. These observations are used to compute the

insurance and payoffs. The linear correlation between rainfall and yield draws

from the Clayton copula is combined with the assumed marginal distributions

to generate another 10,000 observations from a bivariate normal distribution.

Thus, we have two empirical joint distributions such that they share

the same marginal distributions and the same correlation between rainfall
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and yield. The only difference is that yield and rainfall index simulated from

Clayton copula exhibit lower tail dependence, while the other does not.
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Figure 3.5: Expected Claims to Commercial Premium Ratio: All India

Figure 3.5a plots the nonparametrically estimated relationship be-

tween claims to commercial premium ratio and yield from the simulated data,

i.e.

I(q) = E
(

Max{R̂− R, 0}
mP

| q
)

(3.26)

where the insurance contract parameter R̂ is assumed to be one

standard deviation below the mean rainfall and m is assumed to be 1.56

times the actuarially fair premium.11 At this premium level, the catastrophic

performance ratio is below 1 for the rainfall insurance contracts considered

by Clarke et al. (2012). This is not true, however, for the payouts from

rainfall contracts in Figure 3.5a The ratio from the normal distribution and

from Clayton Copula are above 1 for low output levels. There is, however

a substantial divergence between the normal distribution and the Clayton
11Clarke (2016) based on 270 weather based crop insurance products sold to Indian farmers

report’s that a markup greater than 1.56 times the fair premium will lead to no demand for
rainfall insurance.
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copula at these low output levels. The catastrophic performance ratio is

substantially higher for the Clayton copula. Thus, by the measures proposed

by Morsink et al. (2016), accounting for tail dependence markedly reduces

basis risk.

Figure 3.5b plots the Clayton copula based catastrophic performance

ratio for different levels of the deductible. R̂ is chosen to be either the mean,

or 0.5 standard deviation below the mean or 1 standard deviation below the

mean. It can be seen that as the deductible rises (i.e., R̂ falls) so does the basis

risk. Catastrophic insurance carries the least basis risk.

3.5.2 Optimal Insurance

In figures 3.5a and 3.5b, the Clarke condition that is sufficient to ensure zero

insurance demand is not met. (E(I | q)−mP) is above 1 for low realizations

of output but below 1 for high realizations of output. This does not mean that

insurance demand is necessarily positive. That depends on the evaluation of

equation (3.24) which depends on the extent of risk aversion. (3.24) can also

be written as

η
′
(α) |α=0= Cov(u

′
(q), E(I | q))− (m− 1)PEu

′
(q) (3.27)

Risk aversion and the expected shape of the regression E(I | q)

guarantees the first term to be positive. When insurance is actuarially fair,

the second term is zero and it is optimal for farmers to buy some insurance.

When m > 1, the answer would depend on risk aversion and the mark-up

over the fair premium.
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To investigate these issues, we consider data from two districts in

India, Mahabubnagar and Anantapur, that have been heavily researched

for the extent of local risk sharing (e.g., Townsend, 1994). These districts

are characterized by dependence on rainfed agriculture and vulnerability to

droughts. Households in these districts have also been recently surveyed for

their risk aversion using Binswanger type lotteries (Binswanger, 1980; Cole

et al., 2013) and we use those estimates.

Using the procedures in appendix B.1, a best fit copula model is

selected for rice yields and rainfall in each of the two districts. Table 3.7

displays the results. Unlike the exercise that generated figures 3.5a and

3.5b, we do not assume marginal distributions of rainfall and yield to be

normal. Instead, we consider various parametric form and choose the best fit

functional form (Table 3.7).12 Rainfall is log-normal in both districts. Yield

follows a Weibull distribution in Anantapur and follows a gamma distribution

in Mahabubnagar. Plots of estimated parametric distributions against the

observations are presented in appendix B.2.

Table 3.7: Best Fit Parametric Marginal Distributions and Copula Models

Parameter estimates

(a) Fitted marginal distribution of cumulative rainfall
Anantapur Log normal 6.06 0.28

Mahabubnagar Log normal 6.38 0.24

(b) Fitted marginal distribution of de-trended recentered yield
Anantapur Weibull 2961.8 15.0
Mahabubnagar Gamma 126.7 21.3
(c) Copula model of joint distribution
Anantapur Rotated Gumbel 1.187

Mahabubnagar Clayton 1.127

12The distributions that were considered were Gamma, Weibull, log-normal and Gumbel.
All of these are two-parameter distributions and the parameters were estimated by maximum
likelihood procedures. The distribution that maximizes the log likelihood is picked as the
marginal distribution.
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These marginal distributions are combined in the appropriate copula

(as in Table 3.7) to generate 10,000 observations of yield and rainfall. These

observations are used to compute the insurance and payoffs. The linear

correlation between these rainfall and yield draws is combined with the

selected marginal distributions to generate another 10,000 observations from

a Gaussian copula.

Figures 3.6a and 3.6b show the catastrophe performance ratios for

these districts. These pictures are very much like Figures 3.5a and 3.5b. Once

again, basis risk is much lower relative to a Gaussian copula. Further, basis

risk falls with a larger deductible.

Next we move to an evaluation of equation (3.24). For a constant risk

aversion utility function with parameter γ (3.24) becomes

η
′
(α) |α=0= Eq−γ(E(I | q)−mP) (3.28)

Based on the work of Cole et al. (2013), the risk aversion parameter

is assumed to be 0.57. The above equation can be used to compute the

mark-up over the actuarially fair premium for which insurance demand is

positive. From the results displayed in Figure 3.7, it can be seen that the m

that extinguishes insurance demand is higher for a tail-dependent copula as

compared to a Gaussian copula. This is simply a reflection of the lower basis

risk that comes with lower tail dependence. A second finding of Figure 3.7 is

that the maximum mark-up for which insurance demand is positive is higher

when the deductible is larger. This again is a reflection of the earlier figure

3.6b that showed the basis risk is lowest in contracts with the smallest rainfall

threshold.
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(a) Expected Claims to Premium Ratio with and without Tail Dependence
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(b) Expected Claims to Premium Ratio with Different Trigger Thresholds

Figure 3.6: Expected Claims to Premium Ratio for Two Districts of Andhra
Pradesh



3.5. IMPLICATIONS FOR RAINFALL INSURANCE 79

1.
02

1.
04

1.
06

1.
08

1 SD<mean 0.5 SD<mean Mean 1 SD<mean 0.5 SD<mean Mean

Anantapur Mahabubnagar

Lower tail dependent copula Gaussian copula

M
ar

ku
p 

(m
)

Contract trigger threshold

 

Figure 3.7: Markups at which Demand for Insurance Cover is Zero

For the constant relative risk aversion utility function, the optimal

insurance units can be solved from

η
′
(α) = E(q + α(I −mP))−γ(I −mP) = 0 (3.29)

The payouts and the premium that were simulated to compute the

catastrophe performance ratios can also be used to evaluate (3.29). We continue

to use γ = 0.57. Optimal insurance cover is computed with and without tail

dependent yield and rainfall distribution and for insurance contracts that

vary according to the index threshold value that triggers payout. The results

are displayed in Figure 3.8 where the computations assume m = 1. What is

noteworthy about the results is that the optimal insurance cover is much larger

with a tail dependent copula than with a Gaussian copula. This is consistent

with the lower basis risk with a tail dependent copula.
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Figure 3.8: Optimal Cover for Actuarially Fair Contract under Different
Thresholds

The fact that contracts with the lowest threshold (highest deductible)

have the lowest basis risk and the greatest demand for insurance, does not,

however, mean that farmers necessarily prefer these contracts to all others.

Figure 3.9 evaluates the expected utility for the optimal levels of insurance

for actuarially fair premiums. This shows that the optimal threshold is 0.5

standard deviation below the mean for Anantapur while it is the mean yield for

Mahabubnagar. For the given risk aversion parameter, it is optimal to accept

higher basis risk in exchange for a greater insurance protection. However, if

insurance is actuarially unfair, then as Figure 3.8 showed, it is more likely that

the contracts with the least basis risk are favored by farmers.
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Figure 3.9: Willingness to Pay and Risk Aversion

3.6 Conclusions

Although cost effective and free from moral hazard and adverse selection,

the index based crop insurance products have seen poor uptake because of

imperfect association between index and crop loss that reduces the value of

insurance and therefore its demand.

We find the association between crop yield and rainfall index charac-

terized by the statistical property of ’tail dependence’. This implies that the

associations between yield losses and index are stronger for large deviations

than for small deviations. The most important implication of our findings

is that for farmers the utility of index-based insurance relative to actuarial

cost is more during extreme or catastrophic losses than for insurance against

all losses. The opens up the issue of evaluating the cost effectiveness of an

insurance product that limits itself to compensation against extreme events.

Our findings also generates a need to systematically evaluate the basis risk and

uptake for index insurance products that differ with respect to the contract

threshold.
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The idea behind heavily subsidizing insurance premium is that sub-

sidies are essential for widespread uptake of insurance products. If so, the

question is: What is the best way to provide subsidy? Our analysis shows that

crop losses are widespread during extreme climatic events such as droughts.

This implies that a considerable proportion of farmers would benefit from

a program that covers their risks during an extreme weather event. In other

words, any form of insurance that protects from extreme losses is likely to be

favored by a majority of the farmers. The actuarial cost of such an insurance

scheme will be lower compared to a normal insurance; hence less burden on

government exchequer. Indeed, a policy that completely subsidizes extreme

loss insurance could possibly be revenue neutral relative to an insurance

program that covers crop losses based on rainfall-deficit.

Extreme loss insurance programs are likely to be more useful to local

aggregators of risk such as banks, producer companies, cooperatives, agri-

business firms and local governments. There is a very established protocol

for drought relief expenditures by the government. However, its timeliness

is often questioned because of many layers of permissions required for such

expenditures. On the other hand, an extreme loss insurance program offers

the benefits of drought relief but in a timely manner.

We note that farmers may not purchase insurance for other reasons

as well including poor understanding of the product, credit constraints, low

trust of the insurance seller, and optimism about yields. If these are binding

constraints, then again a reduction in basis risk may not impact the demand

for insurance.

Finally, we wish to point out that tail dependence is unlikely to be

India specific since it flows from the nature of spatial associations of weather.
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Therefore, although our results are based on Indian data, the general lessons

are available for other countries too.



Chapter 4

The Welfare Impacts of High Food

Prices: Resource Endowments and

Spill-Over Effects

4.1 Introduction

Global food prices have risen dramatically in the recent past. As can be seen

from 4.1a, the Food and Agriculture Organization’s (FAO) global food price

index first surged in June 2008 and then again in 2011, and has not reverted

to its previous level. A majority of this surge was driven by equally dramatic

increase in prices of staples i.e., rice and wheat in the international markets.

Figure 4.1b shows trends in real prices of rice and wheat for major

exporters of the two staple food commodities. This increase in the prices of

staples is unprecedented, as in the past, real prices of rice and wheat have

either been declining or remained stable.

84
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Figure 4.1: Trends in International Food Prices: 1990-2015

Notes: The food price index (2002-2004=100) is extracted
from the Food and Agricultural Organization’s database. The
international rice and wheat prices at real 2010$ are from World
Bank, Global Economic Monitor Commodities price database.
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In general, the welfare effects of high food prices would be experi-

enced universally as food is a necessity. The major cause of concern among

the academics and policymakers is that, as the exposure to high food prices is

proportional to its budget share in a households’ consumption expenditure,

the worst affected population groups would be the ones placed at the bottom

of the income distribution. Therefore, rising food prices have become a matter

of serious concern for developing countries, which are home to a majority of

the world’s poor.

Several studies analyzing the impact of high food prices on household

welfare concluded that rising food prices would lead to worsening of poverty

in the developing world (Ivanic and Martin, 2008; De Hoyos and Medvedev,

2011; Ivanic et al., 2012). These studies relied on variants of Deaton’s (1989) net

benefit approach to estimate the impact of food price changes on household

welfare and poverty. In this approach, the welfare effect of food price changes

is approximated as the net income change from a change in food expenditure

and change in earnings from food production.

However, the prediction of rising food prices leading to an increase

in global poverty have not fully realized. It is argued that estimates based on

the net benefit approach provide good approximations of welfare losses when

price changes are marginal, but this approach is not suitable to analyze the

welfare effects of large and sustained price changes as witnessed during the

global food price crisis (De Janvry and Sadoulet, 2009).

There has been a longstanding belief among scholars that the welfare

loss from high food prices will not be uniform across all population groups.

This belief stems from the understanding that in the long run high food prices

can also stimulate demand for labor and increase wages in the agricultural
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sector (Gulati and Narayanan, 2003; Ravallion, 1990; Jacoby, 2016; Headey,

2018; Van Campenhout et al., 2018). Greater income in the hands of farmers

might increase demand for non-traded goods and therefore increase the local

employment and wages. Such effects are welfare enhancing but would be

relevant only for those whose earnings are directly or indirectly related to

activities in the agricultural sector.

The debate around the short- and long-run welfare impacts of high

food prices has led to a few studies re-examining the link between food price

changes and household welfare using reduced form empirical approaches.

While Deaton’s net benefit approach simulates the welfare losses, the reduced

form regression of household welfare on food prices directly estimates it. The

evidence based on reduced form econometric studies using cross-sectional

household level data generally find higher food prices adversely affecting the

household welfare (D’Souza and Jolliffe, 2012; D’souza and Jolliffe, 2013). On

the contrary, Headey (2018) using country-level panel data finds that rising

global food prices between 2005 and 2010 has led to a reduction in global

poverty.

Such contradictory findings are probably a reflection of the fact that

causal identification of the welfare effects of food price changes is challenging.

And this is chiefly on two counts. First, the welfare impacts of food price

changes are highly heterogeneous across population groups and it is diffi-

cult to capture this heterogeneity empirically as it depends on endogenous

household characteristics like budget share of food, production structure and

decision to participate in the labor market (Bellemare et al., 2013). Second,

there is always the possibility of unobserved omitted variables leading to joint

determination of both the price changes and the household welfare outcomes
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(Bellemare, 2015; Bellemare et al., 2018).

Though there is an agreement that high food prices may benefit

some population groups, empirical evidence is scarce. This study aims to

bridge this gap by directly focusing attention on a particular population

group which can gain from high food prices, i.e., the rural food producers.

The measure of welfare we focus on is the dietary diversity defined as the

proportion of calories obtained from starchy staples. As income increases the

ratio of calories from staples decreases. Therefore, lower real incomes due

to high food prices should be associated with higher proportion of calories

from starchy staples. The first contribution of this work is to use a formal

econometric identification strategy to test the commonly-held belief that net

food producing households stand to gain from high food prices. Our second

contribution is to identify labor market impacts of high food prices without

relying on any theoretical formulation of agricultural households. And finally,

to the best of our knowledge, this is the first study that identifies spill-over

effects of price changes on local economy, and thereby gives a flavor of the

general equilibrium effects of a rise in food prices.

Our setting is same as in Tandon (2015) who estimates the causal im-

pact of rising staple food prices on nutritional intakes and dietary diversity of

households in India. Tandon’s identification strategy is based on a difference-

in-difference approach that exploits the cross-sectional heterogeneity in budget

shares of rice and wheat, two staple foods in India, and differential increase

in rice and wheat prices to identify the causal impact of food price changes

on welfare.1 He finds households most exposed to higher food prices have

significantly reduced dietary diversity, investment on labor saving productive

1Tandon’s identification strategy is close to a shift-share design but he defines it as a
difference-in-difference and I follow to his terminology while describing his contribution.
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assets and schooling of children.

Although Tandon’s analysis offers critical insights into the effects

of higher prices on welfare outcomes, his identification strategy is designed

to captures only the consumption effect of food price changes. But, the

households’ exposure to food price changes also depends on their production

structure. Though an increase in price of staple foods will increase the

monetary cost of consumption and consequently reduce welfare, but it would

also lead to an increase in income for food-producing households. This

possibility of welfare gains from high food prices is ignored by Tandon (2015).

The objective of this chapter is therefore to devise an econometric strategy that

can capture both the consumption and production effects of price changes.

The main contribution of this study is to design a formal identification

strategy to disentangle the consumption and income effects of food price

changes on household welfare. To do so, we construct a district-level panel

of dietary diversity, defined as the share of calories from rice and wheat in

the total calories, and staple food price index constructed as weighted average

of state-specific rice and wheat retail prices. The panel structure of the data

allows us to control for time invariant differences and aggregate time trends

that may be correlated with food price changes and household welfare. Our

identification strategy is similar in spirit to Edmonds and Pavcnik (2005)

who estimate the impact of changes in rice price on child labor in Vietnam.

Edmonds and Pavcnik (2005) capture the consumption and income effects

of food price change by allowing the welfare effects of price changes to vary

with households’ rice production status at the baseline. We add a further

innovation to this identification strategy by using spatial variation in natural

suitability endowments to identify the food producing regions. We exploit
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the fact that natural geo-climatic endowments are a major determinant of

the types of crops grown in a particular region, and are exogenous to a

household’s decision problem. This exogenous variation is available in the

form of crop suitability indices from the Food and Agricultural Organization’s

(FAO) Global Agro Ecological Zones (GAEZ) database .

The identification strategy relies on the exogenous cross-sectional

variation in the natural suitability for food cultivation to bifurcate rural house-

holds into net consumers and net producers of food; thus separating the total

effect into consumption and income effect. This is econometrically imple-

mented by interacting the staple food price index with the computed food

suitability variable. The interaction allows the food price elasticity of welfare

to vary with the natural suitability for food production; hence captures the het-

erogeneity attributable to income effect. In the final specification, we consider

a triple interaction between food price index, food suitability and an indicator

variable for rural areas. This strategy compares the difference in food price

elasticity of dietary diversity between food and non-food producing districts

across rural and urban locations. Finally, to identify how households engaged

in different sectors of local economy within the food producing regions are

affected by changes in food prices, the consumption and income effects are

estimated for different household groups based on their primary occupation.

We find a robust negative consumption effect of high food prices

on household welfare and dietary diversity. But this effect is found to be

smaller for rural households in the districts suitable for food production.

Therefore, the welfare effects of high food prices vary spatially with the

natural suitability of food production; with regions highly suitable for food

production experiencing lower welfare losses from high food prices. The
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welfare enhancing income effects are strong for the laborer and cultivator

households and almost offset their negative consumption effects. Interestingly,

the income effects of high food prices are also present for the households

not directly engaged in cultivation and agricultural activities within the food

suitable rural regions. This provides for a direct evidence of the spill-over

effects and induced general equilibrium responses of high food prices on the

local economy.

Rest of the chapter is organized as follows. Next section presents a

review of literature studying the welfare impacts of recent food price shocks.

Section 4.3 provides details about the data sources and construction of vari-

ables. Section 4.4 presents the empirical strategy. Section 4.5 presents the

results and establishes their robustness to a variety of controls and different

specifications. Conclusions are presented in the last section.

4.2 Literature

A modification of Deaton’s (1989) net benefit approach to quantify the welfare

impact of an increase in food prices is given by the following expression:

∆Wi ≈ [(Qi − Ci) + ηLi]∆pF (4.1)

where, ∆Wi is the welfare change as a proportion of total income for

household i , Ci is the share of income spent on food, Qi is the share of income

from food production and sale, η is the wage food price elasticity, Li is the

share of household labor income in total income and ∆pF is the percentage

change in food price. The basis for the argument that high food prices may
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actually benefit some population groups can be examined using equation 4.1.

For a net food producer household, the first term in the above expression is

positive, and hence it gains from an increase in food prices. A net food buyer

household, on the other hand, would experience a welfare loss from such an

increase. A higher share of labor income increases the food price elasticity of

welfare but the degree of change depends on the wage food price elasticity.

Note that, equation 4.1 gives the direct effect of price changes and hence

approximates the change in welfare due to small price changes. The indirect

or substitution effects of high food prices both in terms of consumption and

production are ignored under the assumption that with small price changes

these second order effects are infinitesimal.

Deaton (1989) while studying the impact of rice price changes on

Thai households assumed the labor market responses of high food prices to be

negligible. The induced wage response to high food prices may be marginal

when price changes are small or persist for a short duration. Nevertheless,

with the extent of food price increase witnessed during the recent global food

price surge, the induced wage response may be significant enough to benefit

the rural poor even if they are net food consumers (Gulati and Narayanan,

2003; Ravallion, 1990; Headey, 2018; Van Campenhout et al., 2018; Jacoby,

2016).

Studies looking at the immediate impact of 2007-08 food price crisis

have primarily relied on Deaton’s net benefit approach and have ignored the

second order effects of price changes (see, Wodon and Zaman, 2010). For

example, Ivanic and Martin (2008) use equation 4.1 to simulate the welfare

impacts of 2005-2007 global food price increase for nine low income countries

on the assumption of perfect transmission between global and local prices.
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They find that high global food prices will in general increase poverty both

in rural and urban areas, but the impact would be greater in urban areas.

They also conclude that wage adjustment in unskilled labor markets partially

offsets the welfare reducing effects of high food prices. Similar findings are

also reported by De Hoyos and Medvedev (2011). Improving on their earlier

work Ivanic et al. (2012) use data on country level local food price changes

to estimate their impact on poverty. This modification builds on the criticism

that pass-through rates between global and local prices may vary across

countries because of the differences in domestic policies, market structure and

transportation costs.

Another set of studies has focused on the long run impacts of high

food prices by using the general form of equation 4.1 where both direct and

indirect substitution effects are taken into account. Examples of such studies

are Minot and Dewina (2013) and Robles et al. (2010) who provide long

run estimates either by estimating the cross elasticities or relying on other

studies to parametrize their simulations. Attanasio et al. (2013) estimate a

Quadratic Almost Ideal Demand System (QAIDS) to account for the possible

cross substitution across food commodities due to price increase. The demand

system estimation approach is also adopted by Vu and Glewwe (2011) and

Friedman and Levinsohn (2002) to estimate the welfare effects of high food

prices. Vu and Glewwe (2011) go a step further and allow for differential rate

of increase in consumer and producer prices. Ivanic and Martin (2014) add a

further layer to the general version of the net benefit approach by accounting

for the direct response of output to price changes and the indirect effect

through induced change in wages, and the cross effects of price change on the

amount of labor sold off farm.
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Simulation studies based on Deaton’s approach explicitly accommo-

date the different channels through which price changes influence household

welfare. But they assume other variables like prices of other commodities

and incomes to be constant that can simultaneously affect household welfare.

Further, small errors in estimation of parameters and elasticities can lead to

significant bias in the final estimates of household welfare. The true advantage

of the simulation based approach lies in the ex-ante prediction of welfare

impacts. One such example is the study by Friedman and Levinsohn (2002),

which using cross-sectional household data at the baseline, demonstrates the

utility of this method in predicting the welfare impacts of an increase in food

prices on Indonesian households

An alternative approach is to use reduced form econometric esti-

mation to study the welfare impacts of food price changes. This approach

uses observational data to attribute a change in a welfare indicator to food

price changes. While the simulation approach uses data to estimate few

parameters (e.g., budget shares) necessary to predict the welfare outcome

of a given change in food prices, econometric estimations allow the data to

directly estimate the impact of such changes in food prices. This chapter is

a contribution to the econometric evaluations of the welfare impact of food

prices.

A simple reduced form specification to estimate the welfare impact

of food price increase can be of the following form

Wit = ϕpit + Xitβ + αi + µt + vit (4.2)

where W is the welfare measure of interest which is regressed on
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food price p conditional on a set of controls in vector X, and individual (αi)

and time fixed effects (µt). Adequate controls are important as the dependent

variable might be affected by a variety of shocks that are either common to all

households or specific to an individual household.

The benchmark specification in 4.2 assumes a price effect that is

uniform across all households. However, the objective of analysis is often to

assess the impact of food prices on different population groups. Indeed, the

simulation analysis points to the fact that impacts may be different across

consumers, producers and workers. To allow for such a differential impact,

either equation 4.2 must be estimated separately for different population

groups or just the price effect should be allowed to differ across population

groups.

D’Souza and Jolliffe (2012); D’souza and Jolliffe (2013) estimate a

cross-sectional counterpart of equation 4.2 using nationally representative

household surveys from Afghanistan and find a large decline in real monthly

per capita food consumption and reduction in dietary diversity due to the

increase in prices of staple foods. They find welfare loss to be stronger for

urban households and for households with no access to agricultural land.

Headey (2018), on the other hand, estimates equation 4.2 using country level

panel of poverty rates and finds an inverse relationship between food prices

and poverty. He argues that, as long as agricultural wages in developing

countries are indexed to food prices, rural populations in these countries

would be beneficiaries of higher food prices.

A more refined empirical approach can be to focus on just one dimen-

sion of heterogeneity in equation 4.1. Tandon (2015) designs his identification

strategy such that it focuses on the welfare loss due to the consumption aspect
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of food price changes. He exploits the differential increase in rice and wheat

prices in a difference-in-difference strategy to compare welfare losses of rice

vs. wheat consuming regions in India. His identification strategy is based on

one of the main insights from the net benefit approach that welfare impact

of price change of a particular commodity will be proportional to its share in

household consumption. We draw parallel between this identification strategy

and equation 4.1.

∆WR −∆WW = [(QR − CR) + ηLR]∆pR

− [(QW − CW) + ηLW ]∆pW

(4.3)

where subscript R and W denote the welfare change for rice and

wheat consuming regions. Tandon’s simplification is:

∆WR −∆WW = CR∆pR − CW∆pW (4.4)

If, ∆pR > ∆pW , then rice consuming regions would experience greater

welfare loss than wheat consuming regions. The assumption required for

this simplification is that terms involving food production and labor income

shares are either canceled out with the differencing strategy or accounted

for using control variables. This seems more convincing for urban areas that

are primarily food consumers and hence also independent of the induced

labor market response to high food prices but perhaps an oversimplification in

case of rural areas. Note that a sound difference-in-difference strategy would

also control for other macroeconomic shocks, changing incomes and other

commodity prices, which are held constant in Deaton’s approach.
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This chapter builds on Tandon’s analysis by empirically modeling

household’s exposure to high food prices on consumption and production

sides and considers the welfare impacts of this exposure on producers and

agricultural workers separately.

4.3 Data

4.3.1 Dietary Diversity as an Indicator of Household Welfare

The study uses dietary diversity as the main measure of household welfare

as unlike monetary indicators it captures the food and nutrition security of

households (Lele et al., 2016). The dietary diversity is defined as the ratio of

calories from rice and wheat in total calories from all food sources. Starchy

staples such as rice and wheat are the primary source of dietary energy in

India. The rational of using dietary diversity as an indicator of welfare is that

with a reduction in real incomes from higher food prices, households’ would

reduce calories from more nutritious sources to protect their consumption of

primary starchy staple foods. This closely correlates with Bennett’s Law which

states that as real income increases, the proportion of energy from starchy

staples decreases (Bennett, 1941). 2 Also, since the poorest households devote

highest share of their income on staple foods, their food security and welfare

are more sensitive to this measure (Lele et al., 2016). Using nutritional intakes

and dietary diversity as indicators of household welfare has an additional

advantage that it, unlike income or consumption expenditure, does not require

information on price deflators.

2This is more an evidence of Bennett’s law than Engel’s law as Engel’s law talks about
the relationship between share of food expenditure and incomes whereas Bennett’s law is
concerned with the share of staples in total food consumption.
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To construct the outcome variables we use data from four thick

rounds of large scale consumption and expenditure sample surveys of Indian

households conducted in years 1999-2000, 2004-2005, 2009-2010 and 2011-

2012 (55th, 61st, 66th and 68th rounds).3 These surveys, conducted by the

Government of India’s National Sample Survey Organization (NSSO), record

in detail a household’s consumption in quantity and value for a variety of

food and non food items. We use item wise food consumption to convert it

into calorie equivalent, and then calculate the per capita per day calorie intake

from different food groups for each household. The population multipliers

provided by the NSSO are then used as weights to estimate the district level

rural and urban average calorie intake from different food groups.
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Figure 4.2: Trends in Ratio of Calories from Rice and Wheat in Total Calories
Notes: Authors’ estimates based on National Sample Survey Organi-
zations (NSSO) 55th, 61st, 66th and 68th rounds of consumption and
expenditure surveys.

Figure 4.2 shows the trends in ratio of calories from rice and wheat

3A ‘thick’ round of the consumption survey is conducted every five years and is called
so because of the larger sample size in comparison to the consumption surveys conducted
annually.



4.3. DATA 99

in total calories for rural and urban households. Rice and wheat provide more

that half of the dietary energy for households in our sample. The figure also

shows that this measure of welfare is responsive to real income changes. The

rural population consumes more calories from rice and wheat i.e. rural diets

are less diversified possibly because rural households have lower real incomes

than urban. Also dietary diversity shows a declining trend which again can

be attributed to the increase in real incomes.

4.3.2 The Natural Suitability for Food Cultivation

The geo climatic conditions of a region are major determinant of the type of

crops cultivated in that region. Therefore, this chapter relies on the indicators

of natural suitability of a region for rice and wheat cultivation to identify food

producing and supplying regions.

Data on indicators of a particular crop’s suitability based on the geo

climatic conditions are available from the Food and Agriculture Organization

(FAO)’s Global Agro-Ecological Zones (GAEZ) 2002 database. The GAEZ

dataset was designed to assist governments in crop planning based on agro-

nomic models of crops. The GAEZ dataset provides simulated potential yields

and crop suitability indices for a number of crops as grids at a very high

spatial resolution. Since the suitability of a crop is simulated from agronomic

models where the only inputs are average climatic factors and edaphic con-

ditions, these indices are entirely exogenous and uninfluenced by economic

processes. The GAEZ dataset simulates crop suitability for each grid with

different scenarios of irrigation and intensity of input use. For this study

we use crop suitability based on rainfed conditions and low input use and

traditional management practices. More details about the GAEZ dataset can
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be found in Nunn and Qian (2011).

Several studies utilize the exogenous variation in GAEZ simulated

potential yields and suitability indices to devise compelling identification

strategies. For example, Nunn and Qian (2011) use the regional variation

in suitability of potato cultivation and time variation from introduction of

potato to the Old World, to estimate the impact of potatoes on historical

world population and urbanization. Similarly, Bustos et al. (2016) use the

simulated yields from the GAEZ database as instruments to study the effects

of the adoption of new agricultural technologies on structural transformation.

Galor and Özak (2015) use simulated potential yields from GAEZ database to

construct a Caloric Suitability Index and use it to examine the effect of land

productivity on comparative economic development.

The GAEZ dataset provides crop suitability indices in latitude and

longitude grids with cells of approximately 100 square kilometers (see, IIASA,

2012). The index varies from zero to 100 where higher number means better

suitability or vice versa. The gridded food suitability index is generated as a

simple average of suitability index for rice and wheat.

The food suitability grid for India is presented in Figure 4.3. The

food suitability grid and geographical district boundaries are used to estimate

the proportion of area in a district where the suitability index is higher than

the national average. The district level proportion of area suitable for food

cultivation is used in the empirical analysis.

Figure 4.4 shows, the actual area under cultivation and the area

which is naturally suitable for food crops in India. Areas with higher color

intensity correspond to the areas more suitable for and cultivated with rice
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Figure 4.3: Gridded FAO-GAEZ Food Suitability Index
Notes: The food suitability for each grid point is constructed as the
simple average of suitability index for rice and wheat. The gridded crop
suitability indices are available from FAO GAEZ database.

and wheat. Figure 4.4 shows that natural suitability is a major determinant

of a district’s area under food cultivation as there is significant overlap in the

regions which are naturally suitable and actually cultivate food. For example,

the Indo Gangetic plains are highly suitable for food cultivation and also

specialize in its production.

Figure 4.5 shows scatter plot of area under food cultivation in 1999-

2000 and area suitable for food cultivation. There is a strong positive associa-

tion between share of land suitable for food cultivation and actual area under

cultivation. The correlation coefficient between actual and suitable area is 0.70

and is statistically significant at 1% level.
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Figure 4.4: Area Cultivated in 1999-2000 and Area Naturally Suitable for
Cultivation of Food Crops

4.3.3 Food Prices

Data on government administered producer prices and state wise retail prices

of rice and wheat are extracted from the publications of Ministry of Agriculture

and Farmers’ Welfare, Government of India.

Figure 4.6 shows the trends in consumer prices for rice and wheat and

the government administered Minimum Support Prices (MSP). The MSP are

price floors maintained by the Government of India in the domestic markets

primarily for rice and wheat in order to protect domestic producers from price

slumps. With international prices increasing dramatically around 2007 the

Indian government was unable to maintain stable price levels with the result

that both the administered producer prices and the consumer prices of rice

and wheat shot upwards in the domestic market as well.

The food price variable is constructed as a weighted average of

state specific average retail prices of rice and wheat where the weights are
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Figure 4.5: Association between Food Suitability and Food Cultivation in
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Figure 4.6: Trends in Rice and Wheat Prices

district averages of households’ expenditure share of rice and wheat in the

total spent on both. These shares are estimated from 1999-2000 consumption

expenditure survey and are same for all rounds. There is evidence that increase

in rice prices was higher in comparison to wheat in India and therefore rice

consuming households lost more compared to wheat consuming households

(Tandon, 2015). The weighted food price variable captures a district’s exposure

to increasing food price based on the preference for a particular staple. The

exposure is higher for a household residing in a district having stronger

preference for a staple whose relative price increase is higher. Figure 4.7 plots
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Figure 4.7: Weighted Food Price

the average of food price index for different years. It shows that constructed

food price index is capable of capturing the dramatic increase in food prices

between 2004 and 2010.

4.3.4 Summary Statistics

Table 4.1 presents the source and summary statistics for the control variables

used in this analysis. The variables are divided into two groups, (1) variables

for which the information is available for all time periods are the panel

variables, and (2) variables for which the information is available for only

the initial period are the initial conditions. To maintain consistency and

comparability across NSSO survey rounds and other databases we maintain

the district boundaries considered in the International Crops Research Institute

for the Semi-Arid Tropics (ICRISAT)’s Village Dynamics in South Asia (VDSA)

meso-level database (see, ICRISAT, 2015).
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Table 4.1: Summary Statistics

Control variables Source 1999-2000 2004-2005 2009-2010 2011-2012

(a) Panel controls
Standardized total rainfall Indian meteorological department gridded rainfall data 0.16 -0.24 -0.42 0.26

(0.94) (0.74) (0.85) (1.04)
Proportion of population in rural areas ICRISAT VDSA database 0.37 0.37 0.36 0.36

(0.07) (0.07) (0.08) (0.08)
Proportion of literate in total population ICRISAT VDSA database 0.51 0.56 0.61 0.63

(0.13) (0.12) (0.10) (0.09)
Proportion of agricultural laborers in total workers ICRISAT VDSA database 0.27 0.30 0.33 0.34

(0.15) (0.16) (0.17) (0.17)
Proportion of area irrigated of total cropped ICRISAT VDSA database 0.42 0.43 0.46 0.49

(0.28) (0.29) (0.30) (0.31)
Fertilizer use per hectare (kg/ha) ICRISAT VDSA database 94.51 97.35 136.54 138.18

(64.00) (67.66) (89.01) (85.41)
Road density (km/1000 persons) ICRISAT VDSA database 1.97 1.84 2.17 2.24

(1.63) (2.41) (3.10) (3.38)
Proportion of PDS rice and wheat in total consumed NSS consumption and expenditure surveys 0.27 0.35 0.38 0.39

(0.14) (0.14) (0.08) (0.08)
State wise consumer price index Ministry of Labor and Employment 714.75 824.80 1232.76 1479.22

(92.8) (132.26) (173.94) (238.96)
Proportion of households with NREGA job card NSS unemployment and employment surveys 0.00 0.00 0.37 0.39

(b) Initial conditions (0.27) (0.24)

Percent villages with communication facilities Census of India, 2001 0.59

(0.3)
Percent villages with banking facilities Census of India, 2001 0.22

(0.17)
Percent villages with electricity Census of India, 2001 0.90

(0.16)
Note: Figures in parenthesis are standard errors.
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4.4 Empirical Strategy

The benchmark specification is the following

Ydt = ϕLn(PRICE)dt + Xdtβ + αd + µt + εdt (4.5)

where Yit is the share of calories form rice and wheat in total calories

consumed in district d at time t and Ln(PRICE)dt is the food price index.

Vector X contains control variables described in table 4.1. District fixed effects

and time dummies are included to control for district specific time invariant

un-observables and aggregate time trends.

Equation 4.5 ignores the heterogeneity based on consumers and

producers of food. One classification of consumer and producers of food can

be based on rural and urban areas, as most of the agricultural activities are

carried out by the rural population and urban households are primarily food

consumers. Therefore, we estimate equation 4.5 for subsamples of rural and

urban households.

Even within rural regions one would expect the exposure of high

food prices to vary across households based on whether they are net food

producers or consumers. The main identification strategy of this chapter is

designed to incorporate this heterogeneity. In order to identify the net income

effect of food price changes on household welfare, we allow coefficient ϕ

in equation 4.5 to vary across districts with the spatial variation in natural

suitability of food cultivation. We estimate the following equation
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Ydt = δLn(PRICE)dt × FOODd + ηLn(PRICE)dt

+ Xdtγ + αd + µt + εdt

(4.6)

where FOODd is the proportion of area in a district suitable for food

(rice and wheat) cultivation, Ln(PRICE)dt × FOODd is the interaction of food

price index with area suitable for food cultivation and other variables are same

as equation 4.5. The interaction term allows the food price elasticity of dietary

diversity to vary across districts based on their natural suitability for food

cultivation. The identification strategy relies on geo climatic endowments to

identify districts as net food producing. Conditional on control variables in

vector X, the natural suitability for food cultivation is exogenous to the factors

associated with changes in dietary diversity between 1999-2012.

The food suitability endowments exogenously separates districts

into net food consumers and producers, or separates the total effect into

consumption and income effects. Therefore, η captures the consumption effect

and δ captures the income effect.

Urban households will experience pure consumption effect, therefore

our hypothesis is that ηURBAN > 0 and δURBAN = 0 or higher food price will

unambiguously reduce dietary diversity in urban areas irrespective of suitabil-

ity endowments of the districts. On the other hand, for rural households there

will be an additional income effect based on their food suitability endowments.

Hence, for rural regions our hypothesis is that ηRURAL > 0 but δRURAL < 0.

The third specification combines the distinction between rural and

urban regions and food suitability variable in the following manner.
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Ysdt = θ1Ln(PRICE)dt × RURALsdt × FOODd

+ θ2Ln(PRICE)dt × RURALsd

+ θ3Ln(PRICE)dt × FOODd

+ θ4Ln(PRICE)dt

+ θ5RURALsd × FOODd

+ θ6RURALsd

+ Xsdtη + αd + µt + vsdt

(4.7)

where the dependent variable is rural-urban sector specific dietary

diversity. This specification expresses the heterogeneity of price effects be-

tween rural-urban households and food suitable regions as a triple interaction

between food price index, an indicator variable for rural households (RURAL)

and the share of area suitable for food cultivation. The coefficient of interest

in this equation is θ1 which is equivalent to (δRURAL − δURBAN) where δ is

the coefficient on the interaction term in equation 4.6. Therefore, θ1 gives

the differential impact of food price changes for rural households residing in

food suitable districts. Note that if our hypothesis δURBAN = 0 is true then

θ1 = δRURAL.

To assess the labor market effects of food price changes, the analysis is

limited to rural areas. Equation 4.6 is re-specified at the individual household

level as
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Yidt = δLn(PRICE)dt × FOODd + ηLn(PRICE)dt

+ Zidtρ + Xdtγ + αd + µt + εidt

(4.8)

where the dependent variable is the dietary diversity for an indi-

vidual household i, residing in rural region of a district d at time t. Use of

household level data has the advantage that we can now control for household

specific control variables. Vector Z has controls for household characteristics

along with district level controls in vector X. To capture the heterogeneity of

effects across laborer households, cultivator households and other household,

equation 4.8 is estimated for subsamples of rural households based on their

primary occupation types.

4.5 Results

4.5.1 Benchmark Specification

Table 4.2 presents the estimated coefficients from equation 4.5. In panel A,

where we consider log calories from staple foods as the dependent variable,

the coefficient on log food price is statistically insignificant. This suggests that

Indian households’ demand for calories from staple foods is price insensitive.

In comparison, the staple food price elasticity of demand for calories from

foods other than staples is negative and statistically significant (table 4.2 panel

B). Negative and statistically significant food price elasticity is also found for

calories form more nutritious sources like pulses, milk, meat, eggs fruits and

vegetables (panel C). This suggest that Indian households cope with high
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food prices by reducing their consumption of calories from more nutritious

sources in order to maintain their consumption of staple foods such as rice

and wheat. Therefore, food prices would be positively correlated with the

share of calories from staples in total calories. This is indeed the case in panel

D where the dependent variable is the share of calories from staples in total

calories and the coefficient on food price is positive and statistically significant.

These results are robust to addition of controls listed in table 4.2.

Table 4.2: Estimates from Benchmark Specification

A. Log of per capita per day calories from rice and wheat

Ln(PRICE) 0.023 0.021 0.014

(0.029) (0.031) (0.033)
R2

0.731 0.738 0.739

F 207.666 77.607 57.468

B. Log of per capita per day calories from items other than
rice and wheat

Ln(PRICE) -0.144*** -0.145*** -0.151***
(0.051) (0.051) (0.055)

R2
0.679 0.683 0.691

F 122.291 46.887 32.907

C. Log of per capita per day calories from pulses, fruits,
vegetables and animal sources

Ln(PRICE) -0.168*** -0.150*** -0.159***
(0.056) (0.055) (0.058)

R2
0.698 0.706 0.711

F 78.631 30.222 20.928

D. Ratio of calories from rice and wheat in total calories

Ln(PRICE) 0.038*** 0.036*** 0.038***
(0.013) (0.013) (0.014)

R2
0.811 0.820 0.822

F 14.303 18.344 13.618

Panel controls No Yes Yes
Initial conditions*Time No No Yes
Observations 2456 2452 2452

Notes: All specifications include district fixed effects, time dummies and rural region
dummy. Panel and initial conditions are listed in table 4.1. Figures in parenthesis
are robust standard errors clustered at district level. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.

In terms of magnitude, a one per cent increase in the food price is

associated with a 4 percentage point increase in the ratio of calories from staple

cereals to total calories. These findings are similar to D’Souza and Jolliffe
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(2012) who find that rising food prices in Afghanistan led to households

shifting from animal based calorie sources and vegetables toward staple foods.

Tandon (2015) also finds similar results for India.

4.5.2 Rural Urban Heterogeneity in Price Effects

The results presented in the previous section are based on pooled sample

of rural and urban households. In this section we present the estimates of

equation 4.5 for the subsamples of rural and urban households.

Table 4.3: Rural Urban Heterogeneity in Price Effects

(1) (2) (3) (4) (5) (6)

Rural Urban

Dependent variable: ratio of calories from rice and wheat in total calories
Ln(PRICE) 0.034* 0.038** 0.036* 0.043** 0.037** 0.038*

(0.019) (0.017) (0.019) (0.018) (0.018) (0.020)
N 1232 1232 1232 1224 1220 1220

R2
0.914 0.926 0.927 0.842 0.847 0.849

F 7.165 20.141 13.283 18.326 10.554 7.510

Panel controls No Yes Yes No Yes Yes
Initial conditions*Time No No Yes No No Yes
Notes: Specification 1 to 3 are for rural households and specifications 4 to 5 are for urban households. All
specifications include district fixed effects, time dummies and rural region dummy. Panel controls and initial
conditions are listed in table 4.1. Figures in parenthesis are robust standard errors clustered at district level. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 4.3 presents the results from a regression of share of calories

from staples in total calories on log of staple food price index. For both rural

and urban households, the coefficient on food price index is positive and

statistically significant. Hence higher food prices reduce dietary diversity for

both rural and urban households. The comparable price elasticity estimates

across rural and urban households points to the fact that this specification is

unable to identify the income and consumption effects.
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4.5.3 Effects by Food Suitability Endowments

Table 4.4: Heterogeneity of Effects for Rural and Urban Households by Food
Suitability Endowments

(1) (2) (3) (4) (5) (6)

Rural Urban

Dependent variable: ratio of calories from rice and wheat in total calories
Ln(PRICE) 0.067*** 0.059*** 0.058*** 0.041** 0.038* 0.039*

(0.021) (0.019) (0.020) (0.019) (0.020) (0.022)
Ln(PRICE)× FOOD -0.056*** -0.034*** -0.035** 0.004 -0.002 -0.002

(0.012) (0.012) (0.014) (0.010) (0.012) (0.015)
Panel controls No Yes Yes No Yes Yes
Initial conditions*Time No No Yes No No Yes
N 1232 1232 1232 1224 1220 1220

R2
0.918 0.927 0.928 0.843 0.847 0.849

F 18.813 19.145 13.417 14.589 9.907 7.225

Notes: Specification 1 to 3 are for rural households and specifications 4 to 5 are for urban households. All specifications
include district fixed effects and time dummies. Panel controls and initial conditions are listed in table 4.1. Figures in
parenthesis are robust standard errors clustered at district level. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels, respectively.

Table 4.4 presents the estimates of equation 4.6 for rural and urban

subsamples. As hypothesized the estimated coefficient η which captures the

consumption effect of change in food price is positive and statistically signifi-

cant for both rural and urban households. The coefficient δ on interaction term

(Ln(PRICE)× FOOD) is negative and statistically significant for rural house-

holds but is close to zero and statistically insignificant for urban households.

This implies that both rural and urban households experience a reduction in

dietary diversity as food price increase. But the income effect of high food

prices, visible in the negative and statistically significant coefficient on the

interaction term for rural regions, mitigates the welfare reducing consumption

effect. The absence of income effects for urban subsample is proof that this

empirical strategy is capable of identifying the income effect of price changes.

Table 4.5 presents the results from triple interaction specification.

Conceptually, the coefficient on triple interaction is just the difference between

the interaction coefficients for rural and urban subsamples in table 4.4. Con-
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Table 4.5: Triple Interaction Specification

(1) (2) (3)

Dependent variable: ratio of calories from rice and wheat in total calories
RURAL -0.130*** -0.124*** -0.124***

(0.029) (0.028) (0.028)
RURAL× FOOD 0.213*** 0.200*** 0.199***

(0.037) (0.037) (0.037)
Ln(PRICE) 0.036** 0.041*** 0.039**

(0.015) (0.015) (0.016)
RURAL× Ln(PRICE) 0.036*** 0.033*** 0.032***

(0.009) (0.009) (0.009)
FOOD× Ln(PRICE) -0.004 -0.014 -0.007

(0.010) (0.010) (0.011)
RURAL× FOOD× Ln(PRICE) -0.045*** -0.041*** -0.041***

(0.012) (0.012) (0.012)
Panel controls No Yes Yes
Initial conditions*Time No No Yes
N 2456 2452 2452

R2
0.835 0.843 0.844

Notes: All specifications include district fixed effects and time dummies. Panel controls and initial conditions
are listed in table 4.1. Figures in parenthesis are robust standard errors clustered at district level. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

sidering specification (3) in table 4.5 as the main specification the estimated

coefficient on the triple interaction term is -0.04. This estimate is equal to the

interaction coefficient from comparable specification (3) in table 4.4. 4 This is

so because the income effect in urban areas in negligible hence the coefficient

on the triple interaction term in table 4.5 is equal to income effects estimated

for rural areas.

4.5.4 Labor Market and Spill-Over Effects

Table 4.6 presents the estimates of equation 4.8 by household types based on

main occupation and income source.

The surprising finding from table 4.6 is that the coefficient on the

interaction term is negative and statistically significant for all household types.

4Increase in consumption of food items sourced from the public distribution system,
differential rise in prices of other commodities, procurement of food grains and households
substitution to cheap source of calories are some variables which might influence the results.
The results have to be interpreted accordingly.
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Table 4.6: Labor Market and Spill-Over Effects

(1) (2) (3) (4) (5)

Non
agricultural
households

Agricultural
laborer
households

Other
laborer
households

Cultivator
Households

Other
households

Dependent variable: ratio of calories from rice and wheat in total calories
Ln(PRICE) 0.043*** 0.083*** 0.074*** 0.046*** 0.039**

(0.014) (0.020) (0.023) (0.016) (0.016)
Ln(PRICE)× FOOD -0.030*** -0.073*** -0.067*** -0.038*** -0.019*

(0.011) (0.018) (0.017) (0.011) (0.010)
N 50242 39590 28948 73701 36646

R2
0.583 0.639 0.518 0.596 0.449

Notes: The household types are based on the major source of the household’s income during the year preceding the survey. Households
under others include regular salaried earners. All specifications include district fixed effects and time dummies. Household controls
include land class dummies based on operated area (marginal if operated area in less than 0.01 hectare, small if it is between 0.01 to
1 hectare, medium if it’s between 1 to 3 hectare, and large if it is greater than 3 hectare). Asset count of durables (radio, TV, bicycles,
electric fan, fridge, air conditioner, cooler, motor cycle, or car). Age of the household head in years. A dummy for sex of the household
head. Dummies for religion of the households (Hinduism, Islam, Christianity, Sikhism, Jainism, Buddhism, Zoroastrianism, and other
religions). Household size. Household caste dummies for scheduled caste, scheduled tribe, and other castes. Dummies for education
of household head (literate with less than primary education; primary education; more than primary but less than secondary; and
secondary or higher education). Proportion of household members below 15 years of age. Proportion of subsidized grains (rice and
wheat form the Public Distribution System) consumed in total. District level panel controls are rainfall deviations, road density, state
specific consumer price indices, and proportion of households with National Rural Employment Guarantee Act (NREGA) job card.
Initial conditions are listed in table 4.1. Figures in parenthesis are robust standard errors clustered at district level. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

This we take as an indication of the spill-over effects, as in the absence of

spill-overs, the income effect of food price changes should have been limited

to cultivator households. For laborer households the income effect can be

attributed to the induced wage responses of food price changes. But the

presence of statistically significant and negative coefficients on the interaction

term for non agricultural and other households is evidence of spill-overs

effects of high food prices on other sectors of the local economy.

4.5.5 Robustness Checks

The main identification strategy in this chapter relies on the use of natural

suitability endowments as exogenous variation. As shown before natural

suitability for food cultivation is highly correlated with actual food production.

Our first concern is that the coefficient δ in equation 4.6 may be capturing the

fact that districts with higher food suitability experience lower price increases

than districts with lower food suitability. We test this empirically by running
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a regression of the following form

Ln(PRICE)dt = ρFOODd × µt + µt + Xdtπ + σd + εdt (4.9)

where we interact the proportion of area suitable for food cultivation

with time dummies. We want to test the hypothesis that ρ = 0. This is to rule

out systematic variation between change in food prices and the crop suitability

variable FOODd. Note that this is similar to a parallel trends check that the

data has to satisfy for a difference-in-difference identification strategy to work.
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Figure 4.8: Parallel Trends in Food Prices

Figure 4.8 presents the simulated price trends from equation based

on 10% area suitable for food cultivation (unsuitable for food cultivation) and

90% area suitable for food cultivation (suitable for food cultivation). Figure 4.8

shows that food prices follow common trends and do not vary systematically

with food suitability status.

The second concern relates to the way in which the dietary diversity
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variable is defined. It is constructed as the ratio of calories from rice and

wheat in total calories. As food becomes expensive, households can substitute

rice and wheat with cheaper coarse cereals 5. Although the substitution effect

will depend on how strongly households prefer rice and wheat in relation to

coarse cereals, it still has the potential to introduce bias in our results. The bias

can be introduced in the following sense; since calories from coarse cereals

is part of the denominator it is possible that we are capturing households

substitution to cheaper cereals rather than diversification of diets. To check

the robustness of the results against this bias we reconstruct the dependent

variable as ratio of calories from rice and wheat in total calories excluding

calories from coarse cereals.

The third exercise is conducted is to check the sensitivity of the results

to the construction procedure of the food suitability variable. We generate the

food suitability index as the maximum of suitability indices of rice and wheat

rather than their average as was done earlier. Using the new food suitability

index we recalculate the proportion of area in a district where the suitability

index is higher than the national average. Finally, we test for the sensitivity of

the results to district specific linear time trends.

Table 4.7 presents the results from the robustness checks based on

the triple interaction specification in equation 4.7. The dependent variable in

specification 1 is the reconstructed dietary diversity variable. In specification

2 we use the new food suitability variable and specification 3 controls for

district specific linear time trends. The coefficients on the triple interaction

for all three specifications are negative and statistically significant. Hence our

results remain unaffected by these robustness tests.

5Coarse cereals include pearl millet, finger millet, Sorghum, barley and maize.
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Table 4.7: Robustness Checks

(1) (2) (3)

RURAL× FOOD× Ln(PRICE) -0.020** -0.046***
(0.010) (0.014)

RURAL× FOOD× Ln(PRICE) -0.022*
(0.011)

District linear time trends No No Yes
N 2452 2452 2456

R2
0.805 0.815 0.815

Notes: Dependent variable in specification 1 is the ratio of calories from rice and wheat in total
calories excluding calories from coarse cereals. Dependent variable in specification 2 and 3 is
the ratio of calories form rice and wheat in total calories. Specification 2 uses an alternative
procedure to calculate the area suitable for food cultivation in a district. All specifications
include district fixed effects and time dummies. Panel controls and initial conditions are listed
in table 4.1. Figures in parenthesis are robust standard errors clustered at district level. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

4.6 Conclusions

Though several studies using Deaton’s (1989) net benefit approach have pre-

dicted that rising food prices would lead to worsening of poverty in the

developing world, these predictions have not fully realized. In this chapter

we take an empirical approach to estimate the welfare impact of food price

shocks. Our primary innovation is to use the spatial variability in the natural

suitability of food cultivation to disentangle the consumption and income

effect of food price changes on household welfare.

We find a statistically significant welfare improving income effect of

high food prices for households located in regions suitable for food cultivation.

The income effects are present for both laborer and cultivator households

and offset the negative consumption effects to a large extent. This finding is

especially important in the light of the trade policy responses of countries

during global food price shocks. Countries often rely on restrictive trade

policy to insulate households from food price shocks on the grounds that

high food prices would hurt the poor. Our results show that laborer and

cultivator households within food producing regions are completely insured
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from food price shocks. Therefore, countries with larger share of population

engaged in food production either as cultivator or as wage laborer will be least

affected by such events. The households most vulnerable to food price shocks

are primarily urban or food importer households. Urban households only

experience increase in consumption expenditures as food price rise without

offsetting increase in income but as long as richer households reside in urban

areas the consumption effect may not be of much consequence to them.

Finally, we also find income effects of high food prices for households

not directly engaged in food cultivation within food producing regions. These

results indicate that different sectors within food producing regions are closely

linked and hence the spill-over effects of high food prices are important.
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Appendix to Chapter 2

A.1 Non-Separable Utility and Test of Risk Shar-

ing

We assume the same setup as in the main text. The only difference is that

now the representative consumer’s utility function is non-separable in the two

goods.

Ui = ui(xi, yi) (A.1)

where, ui(.) is strictly increasing, concave and twice differentiable

function. The social planner’s problem is

Max{(xis,yis)
N
i=1,s∈S}

N

∑
i=1

ωiE(Ui) (A.2)
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Subject to following aggregate resource constraints in each state.

N

∑
i=1

xis =
N

∑
i=1

wx
is = Xis, ∀s ∈ S (A.3)

N

∑
i=1

yis =
N

∑
i=1

wy
is = Yis, ∀s ∈ S (A.4)

Resultant Lagrangian is

L =
N

∑
i=1

ωi ∑
s∈S

πsui(xis, yis) + λx
s (Xs −

N

∑
i=1

xis) + λ
y
s (Ys −

N

∑
i=1

yis) (A.5)

where λx
s and λ

y
s denote the Lagrange multiplier associated with the

resource constraints for good x and y in state s respectively, then the first

order conditions for individual i with respect to good x is

ωi
∂ui(xis, yis)

∂xis
=

λx
s

πs
= µx

s , s ∈ S (A.6)

ωi
∂ui(xis, yis)

∂yis
=

λx
s

πs
= µ

y
s , s ∈ S (A.7)

Total differentiating equations A.6 and A.7 we get

ωi

(
∂2ui(xis, yis)

∂xis∂xis
dxis +

∂2ui(xis, yis)

∂xis∂yis
dyis

)
= dµx

s (A.8)
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ωi

(
∂2ui(xis, yis)

∂yis∂xis
dxis +

∂2ui(xis, yis)

∂yis∂yis
dyis

)
= dµ

y
s (A.9)

Dividing equation A.8 and A.9 by A.6 and A.7 respectively we get

ui,xx

ui,x
dxis +

ui,xy

ui,x
dyis =

dµx
s

µx
s

(A.10)

ui,xy

ui,y
dxis +

ui,yy

ui,y
dyis =

dµ
y
s

µ
y
s

(A.11)

Solving the system of two equations in A.10 and A.11 we can see that

the change in the allocation of a good is associated with the relative change in

the Lagrangian multipliers associated with the aggregate resource constraint

of both goods.

dxis = βx
i

dµx
s

µx
s
+ β

y
i

dµ
y
s

µ
y
s

(A.12)

dyis = δ
y
i

dµx
s

µx
s
+ δ

y
i

dµ
y
s

µ
y
s

(A.13)

where, the parameters are associated with the curvature the utility

functions with respect to different goods.
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A.2 Tests of Unit Root, Serial Correlation and Het-

eroscedasticity

Table A.1: Unit Root Tests

Variables Rice Wheat Maize Rice Wheat Maize

Level First difference

(A) Maddala and Wu (1999) Panel Unit Root test (MW)
log of per capita consumption 122.78 149.06*** 206.98*** 785.86*** 605.97*** 734.69***
log of per capita production 120.84 129.57*** 143.07 761.48*** 576.04*** 693.48***
(B) Pesaran (2007) Panel Unit Root test (CIPS)
log of per capita consumption -0.027 -2.691*** -0.293 -12.835*** -12.572*** -13.781***
log of per capita production 4.511 -2.151** 1.032 -13.836*** -12.176*** -13.230***

Notes: MW test assumes cross-section independence and CIPS test assumes cross-section dependence in the form of a single

unobserved common factor. Null for MW and CIPS tests is that series is I(1). The lag length for the CIPS test is set to T
1
3 = 4.

MW and CIPS test result reported for without trend specification. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively.

Table A.2: Tests of Serial Correlation and Heteroscedasticity

Tests Statistic Probability

Rice
Wooldridge test for null of no serial correlation in panel-data F(1, 94) = 61.15 Prob. > F = 0.0000
Modified Wald test for group-wise heteroskedasticity χ2(95) = 74094.36 Prob > χ2 = 0.0000

Wheat
Wooldridge test for null of no serial correlation in panel-data F(1, 86) = 12.94 Prob. > F = 0.0005
Modified Wald test for group-wise heteroskedasticity χ2(87) = 31647.30 Prob. > χ2 = 0.0000

Maize
Wooldridge test for null of no serial correlation in panel-data F(1, 118) = 9.37 Prob. > F = 0.0027
Modified Wald test for group-wise heteroskedasticity χ2(120) = 5.9e+34 Prob. > χ2 = 0.0000

Note: All tests conducted on a country fixed effects model with time dummies.

A.3 Decomposition of Cross Sectional Production

Variance

Let Yit be the production and Cit be the consumption in country i at time

period t. Define

YNX
it = Yit − NXit (A.14)

where

NXit = Exportsit − Importsit (A.15)
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is net exports. Consumption (domestic supply) will then equal to sum of

production left after trade and change in stocks i.e.,

Cit = YNX
it + ∆Sit (A.16)

Production for country i at time period t can then be expressed as

Yit =
Yit

YNX
it
×

YNX
it
Cit
× Cit (A.17)

Taking logs on both sides

lnYit = (lnYit − lnYNX
it ) + (lnYNX

it − lnCit) + lnCit (A.18)

First differencing

∆lnYit = (∆lnYit − ∆lnYNX
it ) + (∆lnYNX

it − ∆lnCit) + ∆lnCit (A.19)

Multiplying by ∆lnYit on both sides and taking expectations we get the

following decomposition of cross-sectional variance of production:

Var(∆lnYit) = Cov(∆lnYit, ∆lnYit − ∆lnYNX
it )

+ Cov(∆lnYit, ∆lnYNX
it − ∆lnCit)

+ Cov(∆lnYit, ∆lnCit)

(A.20)
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Appendix to Chapter 3

B.1 Copula Estimation

We use copula functions to estimate the joint distribution of yield and rainfall.

The copula function provides a flexible way to bind the univariate marginal

distributions of random variables to form a multivariate distribution and can

accommodate different marginal distributions of the variables (Nelsen (2006);

Trivedi and Zimmer (2007)). A two-dimensional copula can be defined as a

function C(u, v) : [θ, 1]2 −→ [0, 1] such that

F(Y, X) = P[G(Y) ≤ G(y), F(X) ≤ F(x)] (B.1)

F(Y, X) = C(G(Y), F(X); θ) (B.2)

Where θ represents the strength of dependence and G(.) and F(.)

124
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are the marginal distribution functions of Y and X respectively. The joint

probability density function can be expressed as:

c(G(Y), F(X); θ) =
∂C(G(Y), F(X); θ)

∂G(Y)∂F(X)
= C(G(Y), F(X); θ)g(Y) f (X) (B.3)

Sklar (1959) has shown that for a continuous multivariate distribution,

the copula representation holds for a unique copula C. This construction

allows us to estimate separately the marginal distributions and the joint

dependence of the random variables. There are several parametric families of

copula available in the literature. The frequently used ones are the elliptical

copulas and the Archimedean copulas. Note that the nature of dependence

among the random variables will depend on the copula function chosen for

estimation. The statistical properties of the copulas that we use in this paper

are given in table B.1.
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Table B.1: Some Common Copula Models

Copula models Functional forms Dependence Parameter space Lower Upper
parameter tail dependence tail dependence

Gaussian ΦΣ(Φ−1(u), Φ−1(v); ρ) ρ (−1, 1) 0 0
Clayton (u−θ + v−θ − 1)−

1
θ θ (0, ∞) 2−

1
θ 0

Rotated Clayton Same as Clayton with 1− u and 1− v θ (0, ∞) 0 2−
1
θ

Plackett 1+(θ−1)(u+v)−
√

[1+(θ−1)(u+v)]2−4θ(θ−1)uv
2(θ−1) θ (0, ∞) 0 0

Frank −1
θ log

(
1 + (exp−θu −1)(exp−θu −1)

(exp−θ −1)

)
θ (−∞, ∞) 0 0

Gumbel exp
{
− (−loguθ − logvθ)

1
θ

}
θ (1, ∞) 0 2− 2−

1
θ

Rotated Gumbel Same as Gumbel with 1− u and 1− v θ (1, ∞) 2− 2− 1
θ 0

Student’s t tν,Σ(t−1
ν (u), t−1

ν (v); ρ) ρ, ν (−1, 1)× (2, ∞) 2× tν+1

(
−
√
(ν + 1)

√
(1−ρ)√
(1+ρ)

)
2× tν+1

(
−
√
(ν + 1)

√
(1−ρ)√
(1+ρ)

)
Note: Table presents some common parametric copula models with their functional forms, parameter spaces and the expression for tail dependence coefficient implied by the specific copula model.
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We use two-step maximum likelihood procedure to estimate the

copula function wherein the marginals are estimated in the first step, and

the dependence in the second step by substituting the estimated marginal

distributions in the selected copula function (Trivedi and Zimmer (2007)). A

non parametric estimator is used to estimate the univariate marginal distribu-

tion for crop yield deviations and rainfall deviations. This makes the model

semi parametric. Estimation of copula using non parametric distribution does

not affect the asymptotic distribution of the estimated copula dependence

parameter (Chen and Fan (2006)).

A simple maximum likelihood estimator can be used to choose the

best fitting copula and estimate the dependence parameter (Patton (2013)).

Selection of the copula model can be made based on the Akaike or (Schwarz)

Bayesian information criterion (AIC). If all the copulas have equal number of

parameters, then the choice of model based on these criteria is equivalent to

choosing copula with highest log likelihood (Trivedi and Zimmer (2007)). The

log likelihood function of the copula can be written as:

L(θ) =
N

∑
i=1

LnC(ÛXi , ÛYi ; θ) (B.4)

Where ÛXi and ÛYi are the nonparametrically estimated marginal

distributions. Copula parameter can be estimated by maximizing the likeli-

hood function using numerical methods. This procedure gives the "Inference

Functions for Margins" (IFM) estimator as θ is conditional on the model that

is used to transform the raw data (Trivedi and Zimmer (2007); Patton (2013)).

All copula models and tail dependence statistics are estimated using Patton’s

(2013) procedure and MATLAB codes.
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B.2 Estimated Marginal Densities

Figure B.1: De-trended Yield
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Figure B.2: Cumulative Seasonal Rainfall
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