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Chapter 1

Introduction
1

This thesis studies the applications of contract theory in credit market along two dimensions: the

first part provides two explanations of one of the most widely used dynamic incentive schemes:

“progressive lending” with and without the possibility of ‘graduating’ to a high productive

activity and the second part examines the effects of competition among Microfinance Institutions

(MFIs hereafter) on informal moneylenders and borrowers.

All the three chapters address the problem of ex post moral hazard in that the borrowers are

strategic and do not repay whenever they have incentives to do so, in a context where repayment

rate is very high. The following table shows high repayment rate in Microfinance industry:

Percentage of Percentage of Portfolio

Regions Total Borrowers Gross Loan Portfolio at Risk> 30 Days

(GLP) (PAR)

Africa 5% 9% 10.60%

East Asia and the Pacific (EAP) 1% 16% 3.40%

Eastern Europe and Central Asia (ECA) 3% 11% 10.00%

Latin America and the Carribean (LAC) 19% 42% 5.40%

Middle East and North Africa (MENA) 2% 1% 3.60%

South Asia 57% 20% 2.60%

“Portfolio at Risk (PAR)”: is one of the indicators of repayment rate. Portfolio at Risk [xx] days is defined as the value

of all loans outstanding that have one or more installments of principal past due more than [xx] days. This includes

the entire unpaid principal balance, including both the past due and future installments, but not accrued interest. It

also includes loans that have been restructured or rescheduled.

“Gross Loan Portfolio (GLP)”: All outstanding principals due for all outstanding client loans. This includes current,

delinquent, and renegotiated loans, but not loans that have been written off.

Source MIX (2017): Global Outreach and Financial Performance Benchmark Report 2015.

1The first chapter of my thesis is a part of a bigger project on which I am working with Dilip Mookherjee
(Boston University). This project was started when I was visiting Boston University, I thank the World Bank
for the fellowship and the Institute for Economic Development (IED), Boston University for hosting me. The
second and third chapters are joint works with my thesis supervisor Prabal Roy Chowdhury.

2
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(a) Africa

(b) East Asia and the Pacific (EAP)

(c) Eastern Europe and Central Asia (ECA)

(d) Latin America and the Carribean (LAC)

(e) Middle East and North Africa (MENA)

(f) South Asia

Figure 1.1: Portfolio at Risk (PAR) Source MIX (2017)

All the three chapters of this thesis try to explain this incidence of high repayment where legal



Part I 4

enforcement of contracts is not possible, so repayment solely depends on dynamic incentives.

The objective of this thesis is to study the dynamics of credit contracts, in three different

frameworks, which ensure that the strategic borrowers always repay.

1.1 Part I

As documented in Morduch (1999), Armendàriz and Morduch (2000, 2005) among others dy-

namic incentives especially that in the form of progressive lending: increasing loan size over

time contingent on successful repayment is one of the most widely used instruments, by the

MFIs, to ensure repayment. The following table shows the same:

Number of Gross Loan Financial Number of Gross Loan

Country Active Borrowers Portfolio Service Active Borrowers Portfolio Progressive
′000 (GLP)(USD)m Provider (FSP) ′000 (GLP)(USD)m Lending?

Bandhan - 2,352.66 Yes

Janalakshmi 5,888.75 1,973.48 Yes

India 38,097.6 11,640.8 Bharat Financial (SKS) 5,323.06 1,413.30 Yes

Share 3,740.00 251.68 Yes

SKDRDP 3,612.43 754.60

Grameen Bank 7,180.00 1,294.65 Yes

ASA 6,207.69 1,533.97 Yes

Bangladesh 23,977.7 5,753.7 BRAC 5,356.52 1,768.61

BURO Bangladesh 917.46 311.61 Yes

TMSS 736.98 188.95 Yes

VBSP 6,863.04 6,434.69 Yes

CEP 288.49 108.28 Yes

Vietnam 7,533.9 7,351.9 Coopbank 111.93 726.19

TYM 97.42 45.45 Yes

MOM 40.17 7.26

Top three countries and top five MFIs from each of them by the number of active borrowers, except Bandhan as number of

active borrowers is not available in MIX Market data, however it is well known that this the largest MFI in India (Gross Loan Portfolio

is the maximum).

Source MIX (2017): Global Outreach and Financial Performance Benchmark Report 2015 and respective websites.

Progressive lending can potentially incentivise a borrower to repay, as repayment of a small

amount enables her to get a higher amount of loan subsequently. As a result, it allows the

borrowers to increase the scale of production and consumption over time which conforms to

the empirical findings. Banerjee et al. (2015a) find in their six country study - “each study

finds at least some evidence, on some margin, that expanded access to credit increases business

activity.” However Bulow and Rogoff (1989b) and more generally Rosenthal (1991) have shown

that only increasing loan amount is not sufficient to incentivise a strategic borrower to repay.

A strategic borrower would default at the time when present discounted value of future debt is

the maximum. As documented above, however default on MFI loan is rare.

The objective of this part is to provide theoretical explanations of two empirical observations:

very high repayment rate and progressive lending, in the following two contexts

1. Infinite horizon, discrete time framework where an agent has strong preference for con-

sumption smoothing (captured through concave utility function - a natural assumption

in the context of MFI borrowers a large majority of which are poor) and also has access

to a technology which enables her to transfer wealth from one period to another, even at

autarky.
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2. Infinite horizon, continuous time framework where a borrower graduates to a more produc-

tive sector/activity at an endogenous finite date. We assume that a poor agent (wealth is

below a certain threshold) does not have access to any technology to transfer wealth from

one period to another or in other words capital depriciates completely within a period.

This is a plausible assumption since poor people have very limited access to any kind of

savings technology (see for example Collins et al. (2009), Rutherford (2009) or Dupas and

Robinson (2013a)).

In both the contexts we assume that the lender provides access to superior technologies (or

marketing opportunities) which generate higher rates of returns and show that in such contexts

welfare (and wealth) improving contracts do exist, and characterize the dynamics of optimal

contracts.23

1.1.1 Chapter 2: Dynamics of ‘Bundled’ Aid-Debt Contracts: Progressive

Lending

In this essay, in an infinite horizon discrete time framework, we consider an agent who has

a strong preference for consumption smoothing (concave utility function) and has access to a

neoclassical production technology along with savings technology. Her objective is to maximize

present discounted value of lifetime utility and her future discount factor is assumed to be equal

to the inverse of the rate of interest on savings. So, this is a standard Ramsey problem where

the agent maintains her wealth if that is above a certain threshold otherwise her consumption

and investment increase over time ultimately converging to the respective thresholds.

Now a lender can costlessly provide access to a neoclassical production technology which is

more productive than the autarky technology, along with the savings technology. The lender

is assumed to be benevolent and wants to maximize the agent’s present discounted value of

lifetime utility without making any loss.

Technology access in the absence of any loans would result in growing investment financed

by own savings, ultimately converging to the efficient level (as represented by the standard

Ramsey model). Technology assistance by itself would also help raise the borrower’s welfare

and generate the same long run outcome. Bundling it with credit enables borrower’s financing

costs to be lowered and thereby generates additional welfare improvements.

We assume that the lender has unlimited access to external finance at a constant cost equal

to the borrower’s discount rate. In the absence of any moral hazard, efficient investment can be

sustained at every date, combined with perfect consumption smoothing. With moral hazard, the

first-best allocation cannot be sustained if the borrower’s initial wealth falls below a threshold.

We characterize the optimal contracts in this case. We show that the dynamics are quali-

tatively similar to the case where investments are self-financed: there is under-investment, but

investments grow and eventually converge to the efficient level. In parallel, the agent’s net

2See Thomas and Worrall (1994) for a similar approach. Examples of such bundling abound — e.g. in
sovereign debt where default is punished by termination of access to lender markets and technology, or MFIs
that provide borrowers access to technology and marketing channels conditional on not defaulting.

3A paper in similar spirit but in a different context is by Anderson et al. (2009). They show that in the
absence of external (social) sanctioning ROSCAs are never sustainable, even if the defecting member is excluded
from all future roscas.
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wealth (value of production less inherited debt) and consumption grow and converge to station-

ary levels which correspond to the threshold where the moral hazard problem disappears. Loan

sizes also grow; hence the optimal policy is characterized by ‘progressive lending’ policies of the

sort commonly observed in lender-borrower relationship.

1.1.2 Chapter 3: Progressive Lending with Graduation

In the next essay, we provide an explanation of progressive lending where there is a possibility

of graduation. We assume that when an agent’s wealth becomes more than a certain threshold

(say S̄), her economic opportunity increases, in particular she gets access to a formal sector

technology. We assume that it is not possible to bundle technology beyond this threshold.

For example, S̄ is the set up cost for a shop or a formal enterprise. This huge set up cost

creates a nonconvexity in the technology. An MFI can improve it’s client’s payoff by providing

credit along with access to informal sector technology and savings technology. When an agent

starts her own shop which is more productive than the informal sector technology, bundling of

access to technology becomes redundant.

Given Bulow and Rogoff (1989b), Rosenthal (1991), this implies providing credit to an agent

whose wealth is more than S̄ is not incentive compatible. We consider an agent who is poor,

in particular her endowment is assumed to be zero. The job of the benevolent MFI is to help

the borrower to accumulate S̄ so that she can start investing in the formal sector technology.

When an agent moves to the formal sector, we say that she has graduated. Suppose present

discounted value of lifetime utility from graduation is V (gross of S̄).

In the first best scenario, the lender would have given S̄ at the very first period so that

the borrower can graduate immediately, again due to ex post moral hazard problem that is

not incentive compatible. So, the lender provides small amounts of loans and access to the

low productive informal sector technology and the borrower invests that loan amount in that

technology.

At each period, at the time of repayment, the borrower has to save a part of her net return

with the lender. It is this savings with the lender which allows the borrower to graduate. On

successful repayment of all the loans at a prespecified date, the lender gives back the borrower her

entire savings with him. The lender designs the contract in such a way that by that prespecified

date, the borrower’s savings becomes at least S̄ so that after termination of the contract, she can

use that savings to graduate. In case the borrower defaults, the lender terminates the contract,

withdraws her access to the low productive technology and confiscates her savings. So, in case

of default she not only loses her savings with the lender but also the opportunity to graduate

using that savings.

As their relationship matures, her savings with the lender increases and the remaining

time till the prespecified date at which she graduates decreases, hence her present discounted

value from repayment increases. This increases the maximum loan amount which is incentive

compatible, so optimum loan size increases over time (more formally, optimum loan size weakly

increases over time, it remains constant when the loan reaches the effiecient amount). Hence,

the second essay of this thesis shows how savings and the provision of graduation using that

savings give rise to progressive lending at optimum.
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1.2 Part II

1.2.1 Chapter 4: How Does Competition among MFIs affect Moneylenders

and Borrowers?

The objective of this chapter is to understand the effects of MFI competition on MFI and

informal moneylender loan size, moneylender interest rate, moneylender’s profit and borrowers’

welfare. We assume that the MFIs are more benevolent than the moneylender, and take an

extreme case where the MFIs are benevolent and the moneylender is profit maximizer. The

moneylender has informational advantage, due to thick interaction with the borrowers. We

capture this in our model in the following way: the project which is funded by the MFIs

loans becomes successful only with probability p, which is strictly less than one. While the

moneylender can perfectly observe the return of the project, the MFI cannot.

We address the problem of ex post moral hazard in that the borrower is strategic and does

not repay whenever she has incetive to do so. We moreover assume that the MFIs must break

even ex post in every period. So, the MFIs design contracts such that the borrower has to always

repay their loans, in case of success on her own and in case of failure by taking bridge-loans from

the moneylender. If the borrower does not repay a particular MFI loan, that MFI terminates

the credit contract. The MFIs do not share information among themselves, so default on one

MFI loan does not affect relationships with the other MFIs.

As it turns out, the incentive of the moneylender who has all the information and provides

the bridge-loans in case of failure, plays an important role. Though an MFI does not provide

any contract to the moneylender directly but it knows the moneylender’s strategic reponses to

its contracts, so the MFI has to incorporate those while designing the contract.

We solve for symmetric, stationary equilibria when there is one MFI in a village and also

when there are n(> 1) MFIs in a village. Then we compare the optimum outcomes under the

two scenarios. We find that the aggregate loan amount received by a particular borrower is

higher when there is only one MFI vis-a-vis when there are n MFIs, in fact aggregate loan

amount decreases with the number of MFIs in a village. Similarly, moneylender’s loan amount

decreases with the number of MFIs, however moneylender’s interest rate is increasing in the

number of MFIs. This is quite intuitive in that as the number of MFIs increases, loss from

default on one MFI loan decreases, as there are n− 1 more MFIs from which the borrower can

get loans (and hence the moneylender can provide bridge-loans for those). So, the maximum

loan amount which the moneylender allows the borrower to repay decreases with the number

of MFIs, since the MFIs know this strategy of the moneylender, they in turn provide lower

amount of loan. Finally, we compare the borrower’s welfare in both the scenarios and find that

the borrower’s welfare decreases as the number of MFIs in a particular village increases whereas

moneylender’s profit increases.

1.3 Plan of the Thesis

The thesis is organized as follows: Next I provide a brief survey of related literature. Then,

two essays of Part I providing two explanations or progressive lending are presented in chapter

2 and chapter 3. The third essay studying the effects of competition among MFIs is presented
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in the second part of the thesis which consists of one chapter - chapter 4. Finally chapter 5

concludes.

1.4 Related Literature

1.4.1 Part I

Recall, Part I provides two explanations of progressive lending in a framework where legal

enforcement is not possible. Also all loans are individual liability. In this common framework,

we study the dynamics of credit contracts in two different contexts:

In Chapter 2, the borrower has access to a technology to transfer wealth from one period

to another and has a strong preference for consumption (concave utility function),

In Chapter 3, poor borrowers do not have access to any technology on her own and there

is a possibility of graduation. We study the dynamics of credit contracts in a continuous

time, infinite horizon framework with an endogenous finite end date where the borrower’s

utility function is assumed to be linear.

This part is related to different strands of literature. Like in sovereign debt models con-

tractual enforcement of repayment is weak and hence default can only be prevented through

dynamic incentives and threat of termination of relationships.

One of the very first papers is by Eaton and Gersovitz (1981). In their model the country

loses access to future loans in case of default. This threat ensures repayment. The key assump-

tion being the sovereign cannot even save in case of default. Bulow and Rogoff (1989b) show

that this threat of losing access to future loan is not enough to ensure repayment, if the country

can save at the same interest rate as that on the loan. The country, in that case, can simply

save up the amount to be repaid and enjoy higher welfare.

Rosenthal (1991) generalizes this result with a simple one sector growth model where the

borrower has access to a deterministic, neoclassical production technology return to which

exceeds the rate of return on the world credit market, at least initially and it is assumed that

the sovereign’s wealth cannot be seized. He shows that when the sovereign’s future discount

factor is not more than the inverse of the rate of return in the credit market, threat of losing

future access to credit market4 cannot deter the sovereign from defaulting. More precisely, this

impossibility result holds irrespective of its endowment when the future discount factor is less

than the inverse of the rate of return in the credit market and when the discount factor is exactly

equal to that, the impossibility result holds when the agent’s endowment is below the return

from the steady state investment in the neoclassical production technology. The intuition is

very simple - when future discount factor is less than the inverse of the rate of return from

savings, at steady state the sovereign invests only in the production technology and does not

save, even if it can. So, the threat of losing access to savings cannot deter the sovereign from

defaulting. On the other hand, when future discount factor is exactly equal to the inverse of

the rate of return from savings, the sovereign saves only when its endowment is higher than the

return from the steady state investment in the production technology.

4That is it can neither save nor borrow.
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In both the essays of Part I, borrower’s future discount factor is assumed to be equal to the

inverse of the rate of return from savings. We show that bundling access to superior technology

with credit, with or without the possibility of graduation, ensures repayment, even when the

borrowers are poor.5

A paper in similar spirit is by Cole and Kehoe (1997). They show that reputation spillovers

support debt. They argue that countries are involved in many different types of relationships

and assume that when a country breaks trust of one of those relationships that adversely affects

other trust relationships. So even when the country does not get directly affected from default

may get adversely affected from that spillover effect. In that case the country would repay if

the loss in lifetime utility is higher than the short term gain from default. In particular they

added a labor relationship to the debt model where country’s project return is dependent on

workers it hires. He assumes that the workers stop working not only when the country breaks

its contracts with them, but even if it does not repay. Due to this assumption they find that

when the country’s future discount factor is not very low, the country repays to avoid this loss

in project return via workers’ spillover strategy. However, unlike us they do not characterize

the optimum contract.

Thomas and Worrall (1994) study self-enforcing credit contracts between a risk neutral host

country and a transnational corporation where none of them can commit. They assume that

“transnational corporation is providing not only capital but also technology and expertise not

otherwise available to the host country”. Albuquerque and Hopenhayn (2004) build on their

framework with a firm and a bank where the bank can committ but the firm cannot. They allow

for a more general outside option than Thomas and Worrall (1994) and do not assume that this

investment opportunity is specific of those two parties but allow for strict bankruptcy law in that

the lender can liquidate the firm whenever he wants to do so. Optimum investments in both the

models increase over time and since the borrower is risk neutral she starts getting any dividends

or tranfers only when the investment reaches the steady state amount. In Albuquerque and

Hopenhayn (2004) there is an initial setup cost which is funded by a long term debt and short

term loans are provided as working capital. So in this case, the borrower starts getting dividends

only after the investment reaches efficient amount and also the long term debt has been repaid.

In chapter 2, the borrower’s utility function is concave and contrary to Thomas and Worrall

(1994) assumption that capital deprciates completely within a period, the borrower has access

to a neoclassical production technology which is inferior to the technology provided by the

lender along with savings technology. So outside option takes a very different form.

In chapter 3 the borrower is risk neutral and like Albuquerque and Hopenhayn (2004) an

initial setup cost is required for a high productive technology to which the borrower has access

on her own and liquidation is not possible, so if the borrower at all starts investing in this

technology she would never repay. So the benevolent lender provides access to another less

productive technology to which the borrower does not have access on her own and which does

not require any initial investment. The job of the benevolent lender is to help the borrower to

accumulate the initial set up cost.

5A paper in similar spirit but in a different context is by Anderson et al. (2009). They show that in the
absence of external (social) sanctioning ROSCAs are never sustainable, even if the defecting member is excluded
from all future ROSCAs.
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In a very general setup Ray (2002) studies the optimum time path of “efficient-self-enforcing”

(ESE) aggreements between a principal (lender in our case) and an agent (borrower), where

principal can commit and the agent cannot. He shows that irrespective of bargaining power of

the individuals, all ESE aggreements takes the same form in the long run: “there exists a finite

date such that the agent’s best self-enforcing sequence is followed thereafter”. He considers the

question of allocation of surplus between lender and borrower over time, an issue we abstract

from by assuming that the surplus goes to the borrower.

Ghosh and Ray (2016) generate increasing loans over time owing to adverse selection reasons

where default on early loans reveal the types of borrowers, so by the structure of the framework

defaults arise on equilibrium path.

Though dynamic incentives especially that in the form of progressive lending is one of

the most widely used institutions to ensure repayment in the microfinance industry (Morduch

(1999), Armendàriz and Morduch (2005)), there are very few papers which address this. One

of the very first paper to address this is by Armendàriz and Morduch (2000). They consider a

simple two period model and show that how repayment incentive of the first period increases

as loan amount in the second period increases. However, since this is a two period model, the

borrower defaults at the second period with certainty and knowing that the lender has to set

interest rate of the first period accordingly. Egli (2004) and Shapiro (2015) both unearth some

limitations of the dynamic incentives involved in progressive lending. Egli (2004) develops a two

period model with two types of borrowers - honest, and strategic. He shows that progressive

lending may be counter-productive, in that strategic borrowers may be tempted to repay in the

first period, so as to access larger loans later on. Shapiro (2015) examines a framework with

uncertainty over borrower discount rates. He shows that even in the efficient equilibrium almost

all borrowers default. Note that both the papers involve default along the equilibrium path.

However, in reality microfinance schemes appear to involve little or no default.

Other kinds of dynamic incentives in microfinance, among others, have been studied by

Aniket (2014), Roy Chowdhury (2005, 2007) (sequential lending), Jain and Mansuri (2003),

Fischer and Ghatak (2016) Chowdhury et al. (2014) (immediate and frequent repayment).

Tedeschi (2006) examines environments where default may be both strategic as well as non-

strategic, and argues that in such cases borrower utility would be higher if default was not

punished by cutting off access to loans for ever.

The most popular institution used by the MFIs to incentivise the borrowers to repay are

group lending with and without joint liability. For a survey see Ghatak and Guinnane (1999)

and Armendàriz and Morduch (2005). However, de Quidt et al. (2016) empirically show that

there is a decline in joint liability. All the three essays of this thesis are in the context of

individual lending.

Finally in chapter 3 the borrower saves her entire net return with the MFI which helps us her

to graduate. While there are some empirical papers which address saving among poor people:

Dupas and Robinson (2013b), Dupas and Robinson (2013a), Collins et al. (2009), Baland et al.

(2011), Atkinson et al. (2013), Ashraf et al. (2010), Roodman (2009), Rutherford (2009)

There are a very few theoretical papers to explain this. Aniket (2011) analyzes endogenous

group formation with two members, where one individual borrows from the MFI and the other

one saves with the MFI. In contrast, this paper addresses individual lending, with the focus
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being on explaining progressive lending, as well simultaneous borrowing and saving. Basu (2016)

analyzes a model with present biased preferences which addresses the puzzle of simultaneous

borrowing and saving. Bernheim et al. (2015) and Banerjee and Mullainathan (2010) explain

the empirical finding that poor people act as if they are myopic and save much less. In contrast,

we explain simultaneous borrowing and saving in a framework with time consistent borrowers.

1.4.2 Part II

As stated above this part studies the effects of competition among MFIs on moneylender and

borrowers - along the loan amount and interest rate as well as welfare of the borrowers and the

moneylender.

To start with we briefly review the empirical literature. McIntosh et al. (2005), Vogelgesang

(2003), Marconi and Mosley (2005) find evidence for double-dipping. Using Ugandan data

McIntosh et al. (2005) examined the effect of competition on loan size and found no effect.

Zeller et al. (2001) and McKernan et al. (2005) suggest that households in Bangladesh that

borrow from MFIs often borrow from informal lenders as well. Furthermore, Mallick (2012)

finds that moneylender interest rates are higher in the villages where higher percentage of

households borrows from MFIs.

The theoretical literature studying competition among lenders includes among others, Hoff

and Stiglitz (1997), Conning et al. (2003), McIntosh and Wydick (2005), de Janvry et al. (2010),

de Quidt et al. (2016), Ghosh and Ray (2016), Ghosh et al. (2000), Guha and Roy Chowdhury

(2013), Shapiro (2015).

In three different frameworks Hoff and Stiglitz (1997) study the effect of subsidised for-

mal credit on moneylender interest rate where they assume “exclusivity”: “each borrower is a

customer of only one moneylender”. Unlike their model we do not study strategic interaction

between the MFIs as we study only symmetric contracts, but we study strategic interaction

between the MFIs and the moneylender.

Conning et al. (2003) address adverse selection and moral hazard problem where client

maximizing lenders offer either “One For All contract” or “Screening Contract”. They do not

address the issue of double dipping which is central to our framework. Also unlike our model,

there is no strategic interaction among the lenders as they assume that one lender (BancoSol)

was traditionally there in the market and the other lender (Caja Los Andes) enters as a Stack-

elberg follower. Further they predict that competition lowers welfare of the poorest borrowers

since increase in competition decreases the capacity to cross-subsidize. In our model also bor-

rower’s welfare decreases with increase in competition among MFIs, however that happens due

to decrease in the optimum loan size.

This possibility of decrease in poor borrowers’ welfare due to decrease in cross-subsidization

is also predicted by McIntosh and Wydick (2005). They also predict that competition increases

average debt of some (most impatient) borrowers and decreases expected equilibrium repayment

rate among all borrowers. Our model predicts that the average debt of a representative borrower

decreases which is supported by the empirical finding of Chowdhury et al. (2017) and as shown

above repayment rate in microfinance industry is universally very high.

The objective of de Quidt et al. (2016) paper is to capture the effect of competition among
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MFIs on individual and joint liability. In their main model, they capture competition among

MFIs by an increase in the borrower’s outside option. They do not allow for double dipping.

Ghosh and Ray (2016) address competition among lenders, however, they assume “exclusiv-

ity” - a borrower, at a time, takes loan from only one lender. The production function, in their

framework, is assumed to be deterministic, so no bridge-loan is required. Due to their assump-

tion a certain proportion of borrowers are myopic and hence, always default, there is default

along the equilibrium path. In our model, all borrowers are strategic and repay whenever they

have incentive to do so, so the contracts are designed in such a way that there is no default

along the equilibrium path.

Like us Guha and Roy Chowdhury (2013) allow for double dipping in a model where lenders

are motivated and borrowers are subject to ex ante moral hazard. One of their main findings

is that default rate necessarily increases with increase in competition. Double dipping, in their

model, is inefficient in that taking loan only for productive investment is efficient. They assume

that an agent can take two units of loans and she can invest only one unit in the project and

also maximum amount she can consume using loan money is one. So in their framework double

dipping gives rise to inefficiency and default along the equilibrium path. However, as we have

documented default rate in microfinance industry is low.

Shapiro (2015) also allow for double dipping and find that initial loan amount in double

dipping is lower than that in single dipping. Unlike us, they do not study the interaction

between the moneylender and MFIs though.6

Another important aspect of our model is that we explicitly study the interaction between

the informal moneylender and the MFIs. Perhaps the first paper to study this is by Jain and

Mansuri (2003). Similar to their model, at the heart of the symbiotic relationship between the

MFIs and the moneylender is the latter’s informational advantages about the borrower’s project

return. However unlike their model, there is no problem of project choice as by assumption there

is only one risky project in which the borrower can invest using MFI loan. Further they assume

that moneylenders are perfectly competitive whereas in our framework there is one strategic

moneylender, or if there are more than one moneylenders in a village following Mookherjee

and Motta (2016) we assume they collude and behave strategically, given the informational

advantage of the moneylender which is a plausible assumption.

In Mookherjee and Motta (2016) borrowers differ in two aspects: risk type and landholding,

however in our model all borrowers are similar. Also they do not study the effects of competition

among MFIs on the moneylender. One of the important findings of their model is that the

moneylender’s interest rate increases with the entry of MFI, we also find that as the number

of MFIs increases moneylender’s interest rate increases. Gine (2011), Madestam (2014), Bose

(1998) among others address interaction between informal and formal moneylenders.

6This issue of multiple lending is related to a broader literature on non-exclusive contracts viz. Kahn and
Mookherjee (1998).
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Chapter 2

Dynamics of ‘Bundled’ Aid-Debt

Contracts: Progressive Lending

2.1 Introduction

The objective of this chapter is to provide a theoretical explanation of these two empirical obser-

vations: progressive lending and very high repayment rate, in a context where borrower’s utility

function is concave (a natural assumption in the context of MFI borrowers a large majority of

which are poor).

To the best of our knowledge, this is the first paper to explain progressive lending and

negligible default rates in a context with concave utility function.

We address the Bulow-Rogoff-Rosenthal problem by assuming the lender bundles the loan

with access to a superior technology (or marketing opportunity) which generates higher rates of

return.1 Examples of such bundling abound — eg in sovereign debt where default is punished

by termination of access to lender markets and technology, or MFIs that provide borrowers

access to technology and marketing channels conditional on not defaulting. In such a context,

we show it is possible for benevolent lenders to design lending policies that raise borrower

welfares without inducing any defaults on the equilibrium path. We characterize the dynamics

of optimal contracts, and show they involve progressive lending for borrowers whose assets fall

below an endogenous threshold and stationary loans for those above the threshold. For poor

borrowers below the threshold, loans, production and consumption grow over time. In the long

run these converge to the stationary levels associated with borrowers starting at the threshold.

Hence long run outcomes are not affected by progressive lending, i.e., are the same as under

self-financing (coupled with access to the superior technology).

In particular, we consider a setting, without any uncertainty, where in autarky an agent,

potential borrower, has access to a technology represented by a neoclassical production function

and savings technology; marginal return from the production function is higher than that from

the savings technology, initially. Also, to abstract from time trends created only from time

preference, we assume that the agent’s future discount factor is equal to the inverse of the

rate of interest on savings. So, this a standrad Ramsey problem where a rich agent maintains

1See Thomas and Worrall (1994) for a similar approach but where borrowers have linear utility and there is
no capital accumulation.
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her wealth and poor agent’s consumption and investment increase over time and ultimately

converge to the steady state levels.

The lender provides access to a superior technology, represented by a neoclassical production

function, which is more productive than the autarky technology. So even if the lender provides

only access to this technology, the agent’s welfare would increase as that would decrease in-

vestment cost. But providing loan over and above that access to the technology would further

increase the borrower’s welfare. In case of default the lender withdraws access to this superior

technology and it is due to this loss the strategic borrower chooses to repay. We characterize

optimal contracts in this case and as stated above, find that equilibrium outcomes depend on

the borrower’s endowment. For a poor borrower, in the short run loan size increases over time

before converging to the stationary level. Also, there is zero default along the equilibrium path.

So in a nutshell, the contribution of this chapter is to provide a theoretical explanation of

the most widely used dynamic incentive viz. progressive lending in a framework where default

is rare and the borrowers have strong preferences for consumption smoothing.

2.2 Framework

2.2.1 Payoffs and Technology

Consider an agent with endowment w, in an infinite horizon discrete time framework. Her

current payoff is given by u(c) where c denotes consumption. We assume u(· ) to be time-

stationary, continuous, strictly increasing, concave and satisfy Inada conditions: u
′

(0) = ∞ and

u
′

(∞) = 0. The agent’s objective is to maximize present discounted value of her lifetime utility:
∞
∑

t=0

δtu(ct); where δ is her future discount factor.

We assume that an agent has access to (i) a neoclassical production technology g(· ) which is

strictly increasing, strictly concave and satisfies the Inada conditions: g′(0) = ∞ and g′(∞) = 0

and (ii) a savings technology, net interest being r. To abstract from time trends created only

from time preference, we make the following assumption

Assumption 2.1. δ =
1

1 + r
.

Given this, the agent has to decide how much to invest in which technology, accordingly we

define kAδ : the maximum amount of investment such that the marginal return from investing in

g(· ) is higher than that from investing in the savings technology. Formally.

Definition 2.1. kAδ solves max
k
δg(k) − k.

So, autarky technology φ(· ) takes the following form:



Framework 16

Return

Investment (k)

φ(k) =







g(k) if k ≤ kAδ

g(kAδ ) + (1 + r)(k − kAδ ) otherwise.

(1+ r)k

g(k)

kAδ

φ(k)

Hence at autarky, the problem of the agent with endowment w is to

Maximize
{kτ+1}∞τ=0

u
(

w − k1
)

+

∞
∑

τ=1

δτu
(

φ(kτ )− kτ+1

)

Subject to,

k1 ≤ w and ∀τ ≥ 1 kτ+1 ≤ φ(kτ ).

We denote the soultion to this problem by VA(w).

A lender seeks to raise welfare of the agent by providing loans bundled with access to a

superior technology represented by a neoclassical production function (f(· )) which satisfies

the following assumptions f(· ) is strictly increasing, strictly concave and satisfies the Inada

conditions: f
′

(0) = ∞ and f
′

(∞) = 0. and f(k) > g(k) ∀k, f
′

(k) ≥ g′(k) ∀k and ∀k ≤ κ

f
′

(k) > g′(k), where κ is very large.

Similar to autarky, given this f(· ), g(· ) and savings technology, it has to be decided how

much to invest in which technology. First, there should be any investment in the savings

technology only when the marginal return to the savings technology is higher than that to

f(· ) technology as well as to g(· ) technology. Second, given Inada conditions, in particiular

lim
k→0

f
′

(k) = 0 = lim
k→0

g
′

(k), for any amount of investment, it is efficient to invest in both the

technologies.

So, first we consider given any investment k, how to optimally allocate that between f(· ) and

g(· ) technologies. This requires investing x(k) in f(· ) and k − x(k) in g(· ), so that f
′

(x(k)) =

g
′

(k − x(k)). The resulting production is y(k) = f(x(k)) + g(k − x(k)). It has a marginal

product y
′

(k) = g
′

(k − x(k)), which is decreasing in k since 1 − x
′

(k) > 0. So, this function

is strictly increasing, strictly concave, satisfies Inada conditions and dominates both f(· ) and

g(· ). Further, is decreasing

Given this, we define kδ, which is the maximum amount of investment such that the marginal

return from investing in y(· ) is higher than that from investing in the savings technology.

Formally.

Definition 2.2. kδ solves argmax δy(k)− k.
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So the effective“transformation” technology (ψ(k)) is given by

ψ(k) =







y(k) when k ≤ kδ

y(kδ) + (1 + r)(k − kδ) otherwise.

Finally, observe y
′

(kδ) = 1

⇒ g
′

(kδ − x(kδ)) = g
′

(kAδ )

⇒ kδ = kAδ + x(kδ); where x(kδ) is given by f
′

(x(kδ)) = g
′

(kδ − x(kδ)) = 1.

2.2.2 Contracts and Timeline

We assume that the lender can commit and the borrower cannot, in that she defaults on debt

whenever she has incentive to do so. The lender provides a contract ξ ≡ 〈{p}, {k}〉 where

p ≡ {p0, p1, p2, ...} and k ≡ {k1, k2, ...} denote net transfer and investment of each period

respectively. Specifically, pt denotes net transfer at t from the lender to the borrower and kt

denotes investment of t− 1th period. Net interest rate on loan is assumed to be r.

When pt < 0 the borrower has to decide whether to repay or not, if she does not repay2

the lender terminates the contract and withdraws her access to f(· ) technology. The borrower,

then optimally chooses the amount to be consumed and invested. We do not allow for any

renegotiation. The timeline of this game is as follows.

Timeline: If the agent accepts the contract, having there been no default till date, at any

t ≥ 1 the following things happen:

t

Return from
investment

ψ(kt) is realized

pt ≥ 0

pt < 0

Repay

Default

Invests kt+1 Contract
moves to the
next period

Contract
Terminated

Receives
pt Invests kt+1

Contract
moves to the
next period

2.2.3 Analysis of the Optimum Contract

First, given our observation that kAδ < kδ note that when y(kt) ≥ g(kAδ ) the agent would

maintain her wealth after deviation with y(kt). So in this case, she would invest kAδ in g(· )

2Observe, partial repayment is not allowed in that even if the agent repays partially, the lender terminates
the contract, so the borrower either repays the full amount or does not repay at all.
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technology and δ[y(kt)− g(k
A
δ )] in the savings technology, so that her wealth in the next period

becomes g(kAδ ) + (1 + r)δ[y(kt)− g(kAδ )] = y(kt). Hence,

When y(kt) ≥ g(kAδ ) VA(y(kt)) ≡
u
(

(1− δ)y(kt) + δg(kAδ )− kAδ
)

1− δ
.

Finally observe that VA(w) is increasing in w.

Given this deviation payoff, the problem of the lender is to

Maximize
〈{pt}∞t=0,{kt+1}∞t=0〉

[

u(w + p0 − k1) +

∞
∑

t=1

δtu
(

y(kt) + pt − kt+1

)

]

Subject to

Feasibility: w + p0 − k1 ≥ 0 and ∀t ≥ 1, y(kt)− pt − kt+1 ≥ 0

Sustainability: p0 +

∞
∑

t=1

δtpt ≤ 0

DIC: Vt ≡
∞
∑

τ=t

δτ−tu
(

y(kτ ) + pτ − kτ+1

)

≥ VA
(

y(kt)
)

∀t ≥ 1. (2.2.1)

Sustainability or break even condition ensures that the lender does not make any loss. DIC

or dynamic incentive compatibility condition ensures that at any period t, the borrower does

not have any incentive to default. Or in other words, the borrower’s present discounted value

of lifetime utility from repayment is (weakly) higher than that from default at any t ≥ 1.

Feasibility condition ensures that the borrower’s consumption at any period is non negative.

We ignore this condition as it is implied by the Inada condition in particular u
′

(0) = ∞. Given

sustainability and DIC constraints the lender chooses net transfer and amount of investment at

each period in order to maximize the borrower’s present discounted value of lifetime utility.

We denote the maximum value of the above problem by V (w). It is evident that V is strictly

increasing, since there is always the option of consuming the incremental wealth immediately

which does not disturb any incentive constraints.

Note also at the outset that since p0 does not enter any incentive constraint, sustainability

condition always binds.

2.2.4 First-best Contracts

Consider the optimal contract when all the incentive constraints are dropped. It involves full

consumption smoothing (via choice of transfers pt) and efficient investment kt = kδ. The

constant consumption c∗(w) is obtained by the requirement that the present value of con-

sumption
c∗

1− δ
equals the present value of production minus investment, plus enodowment

w − kδ +
δ

1− δ
[y(kδ)− kδ ], so

c∗(w) = (1− δ)w + δy(kδ)− kδ (1st Best Consumption)
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The borrower then attains welfare V ∗(w) =
u(c∗(w))

1− δ
.

As the first best contract is stationary, all the incentive constraints collapse to a single

constraint c∗(w) ≥ (1 − δ)y(kδ) + δg(kAδ ) − kAδ , which reduces to the borrowers endowment

exceeding a threshold w∗:

w∗ ≡ y(kδ)−
δ
(

y(kδ)− g(kAδ )
)

−
(

kδ − kAδ
)

1− δ
(Wealth Threshold)

Note that the incentive problem arises only for intermediate ranges of the discount factor.

If δ approaches 1, the first best can be sustained for any initial w, as the threshold w∗ goes to

minus infinity. While if δ approaches zero, the threshold approaches zero (as in this case, the

efficient investment approaches zero), and the demand for loans vanishes.

When w ≥ w∗, it follows the first-best contract is incentive compatible from the very first

period, and V (w) = V ∗(w). And V (w) < V ∗(w) whenever w < w∗.

2.2.5 Second-best Contracts for Poor Borrowers

First-best is implementable whenever the agent’s wealth is at least w∗, so now we focus on

poor borrowers, for whom w < w∗ and characterize features of the optimal contract. Let

ct = y(kt) + pt − kt+1 and c0 = w + p0 − k1 denote cosumption at date t ≥ 0.

Lemma 2.1. ct ≥ ct−1 for all t.

Proof. Suppose otherwise, and ct < ct−1 for some t. Lower pt−1 slightly, and raise pt corre-

spondingly to keep pt−1+ δpt unchanged. This smooths consumption, raising Vl for every l ≤ t,

while leaving it unchanged for every l > t. Hence all incentive constraints are preserved, while

raising V (w) = V0. �

To make further progress we use the recursive formulation of the problem: l0 = p0, pt =

lt −
lt−1

δ
, t ≥ 1. In this notation, the problem of the lender becomes

Maximize
〈{lt}∞t=0,{kt+1}∞t=0

[

u(w + l0 − k1) +

∞
∑

t=1

δtu
(

y(kt)−
lt−1

δ
+ lt − kt+1

)

]

Subject to

DIC: Vt ≡
∞
∑

τ=t

δτ−tu
(

y(kτ )−
lτ−1

δ
+ lτ − kτ+1

)

≥ VA
(

y(kt)
)

∀t ≥ 1. (2.2.2)

Now observe that starting from any date t, the effect of past history is summarized in the

single state variable wt ≡ y(kt) −
lt−1

δ
, the borrower’s net wealth which is the value of cur-

rent production less inherited debt. So the contracting problem has the following recursive

representation.

Lemma 2.2. The maximum attainable welfare V (w) for a borrower with initial wealth w must

satisfy

V (w) = max
l,k

[u(w + l − k) + δV (y(k)−
l

δ
)] subject to: V (y(k) −

l

δ
) ≥ VA

(

y(k)
)

(2.2.3)
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Proof. Let {lt, kt+1}t≥0 be an optimal contract. The following conditions are necessary for

optimality: (a) given l0, k1, the continuation contract {lt, kt+1}t≥1 must be optimal for the bor-

rower starting with w1 = y(k1)−
l0
δ
(a problem in which constraints ICt, t ≥ 2 are incorporated),

and (b) the initial loan and investment size l0, k1 satisfy condition (2.2.3) (a problem in which

IC1 is incorporated). �

We denote target wealth by Ω(l, k) ≡ y(k)−
l

δ
. Then condition (2.2.3) can be restated as:

V (w) = max
l,k

[u(w + l − k) + δV (Ω(l, k)] subject to: V (Ω(l, k)) ≥ VA(y(k)) (2.2.4)

This problem can be broken into two stages.

At the first stage, given any ‘target’ wealth Ω for the next date, select (l, k) to minimize

the net investment cost, i.e, the sacrifice of current consumption k − l, subject to the incen-

tive constraint V (Ω(l, k)) ≥ VA(g(k)). Let the resulting minimized cost be denoted by C(Ω).

Formally,

C(Ω) = min
l,k

(k − l) subject to: y(k)−
l

δ
= Ω and V (Ω) ≥ VA(y(k)) (2.2.5)

Then at the second stage, select the optimal target wealth Ω(w) for the next date, given current

wealth w. We summarize this as follows.

Lemma 2.3. The maximum attainable welfare V (w) for a borrower with initial wealth w must

satisfy

V (w) = max
Ω

[u(w − C(Ω)) + δV (Ω)] (2.2.6)

Since V is strictly increasing, a higher target wealth is always valuable. The borrower must

trade off a higher target wealth against the current cost. Nevertheless, the concavity of u implies

the following.

Lemma 2.4. Ω(w) is nondecreasing.

Proof. If this is false, there exist w1 < w2 with Ω1 ≡ Ω(w1) > Ω(w2) ≡ Ω2. Then V (Ω1) >

V (Ω2) and

u(w2 −C(Ω2))− u(w2 − C(Ω1)) ≥ δ[V (Ω1)− V (Ω2)] > 0 (2.2.7)

which implies C(Ω1) > C(Ω2). On the other hand,

δ[V (Ω1)− V (Ω2)] ≥ u(w1 −C(Ω2))− u(w1 − C(Ω1)) (2.2.8)

which implies

u(w2 − C(Ω2))− u(w2 − C(Ω1)) ≥ u(w1 − C(Ω2))− u(w1 − C(Ω1)) (2.2.9)

This contradicts the concavity of u. �
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Let us now focus on the first stage cost minimization problem. Given target wealth Ω and

capital choice k, the associated current loan must be l(Ω, k) = δy(k) − δΩ. Hence we can

simplify (2.2.5) and reduce it to choice of investment alone as follows:

C(Ω) = δΩ +min
k

(k − δy(k)) subject to: V (Ω) ≥ VA(y(k)) (2.2.10)

So when Ω ≥ w∗, the agent invests kδ from the very first period and hence C(Ω) in that case

becomes δΩ− [δy(kδ)− kδ].

While if Ω < w∗, the DIC constraint binds and in particular

V (Ω) = VA
(

y(k)
)

(2.2.11)

so the resulting investment size is k(Ω) = y−1
(

V −1
A (V (Ω))

)

. Since V (Ω) < V (w∗) = VA
(

y(kδ)
)

,

and VA, V and y are increasing, hence when Ω < w∗ there will be underinvestment: k(Ω) < kδ.

It is summarized in the following lemma.

Lemma 2.5. For target wealths Ω smaller than w∗, investment k(Ω) is smaller than the efficient

level kδ, and equal to the efficient level otherwise.

So given target wealth optimum investment is uniquely determined:

k ≡







kδ if Ω ≥ w∗

y−1
(

V −1
A (V (Ω))

)

otherwise

Further whenever the agent’s current wealth w is at least w∗, every period she gets δ[y(kδ)−

w] as loan and repays y(kδ)−w, observe that this means when the borrower’s wealth is higher

than y(kδ) she saves δ[y(kδ) − w] with the lender. Finally at this parametric condition target

wealth and the optimum consumption are constant at w and c∗(w) (determined according to

(1st Best Consumption) ) respectively.

Hence now we turn to the case where initial wealth is below the threshold w∗. In the next

two lemmas we show that the wealth is monotonically increasing and converges to w∗, but the

limit wealth w∗ cannot be reached in finite time from any initial wealth w < w∗.

Lemma 2.6. If w < w∗, the sequence of net wealths wt is nondecreasing and converges to the

first best threshold w∗; the corresponding investment sequence kt is nondecreasing and converges

to kδ, and consumption ct is nondecreasing and converging to c∗(w∗).

Proof. Suppose not and wt is decreasing: there is some w < w∗ such that Ω(w) < w. Then

combining with Lemma 2.4, it follows that wealth is nonincreasing over time, so at every date

it is smaller than w, and converges to some limit w∞ < w. The corresponding sequence of

investments will then be nonincreasing, all strictly smaller than kδ and converging to some

k∞ < kδ. At the same time, we have already established that consumption is nondecreasing,

hence converging to some c∞. Observe that there can be two cases: k∞ ≤ kAδ and k∞ > kAδ .

Observe, IC will be satisfied only if c∞ ≥ cA∞ where cA∞ = g(kAδ ) − kAδ in the first case and

cA∞ = (1− δ)y(k∞) + δg(kAδ )− kAδ in the second case.



Framework 22

Now consider a small increase in investment kT+1 at some date T ≥ 1. Let St denote the

surplus on ICt, i.e., St ≡ Vt − VA(y(kt)). The effect on continuation payoffs and incentive

surpluses at different dates are as follows. There is no effect on any of these at any date after

T + 1, so we focus on effects for t ≤ T + 1.

∂ST+1

∂kT+1
= [u′(cT+1)− u′(cAT+1)]y

′

(kT+1) ≥ 0 (2.2.12)

ICT+1 will not be jeopardized if the inequality is true. We argue that it is true in both the

cases, that is when k∞ ≤ kAδ as well as when k∞ > kAδ . First, if ICT+1 does not bind that

is true trivially. Now, if ICT+1 binds, observe cT+1 ≤ cAT+1 because both cT+1 and cAT+1 are

non-decreasing and c∞ ≥ cA∞. Given, this observation u
′

(cT+1) ≥ u
′

(cAT+1) follows from the

concavity of u(· ).

Next

∂VT
∂kT+1

=
∂ST
∂kT+1

= u′(cT+1)δy
′

(kT+1)− u′(cT ) (2.2.13)

As T → ∞, this converges to u′(c∞)[δf ′(k∞)− 1] which is strictly positive. Hence for all T

sufficiently large, expression (2.2.13) is strictly positive. The same is true at all earlier dates.

Hence the variation is feasible and welfare improving, so the contract cannot be optimal.

Now we show that wt convergers to the first-best Wealth Threshold w∗, kt is nondecreasing

and converges to kδ and ct converges to c
∗(w∗).

Since the wealth sequence is nondecreasing the investment sequence is also nondecreasing

(since it is an increasing function of the target wealth). So both converge to limits w∞, k∞

respectively.

If k∞ < kδ we will get a contradiction (using the same argument as above). Hence kt

converges to kδ .

If w∞ < w∗, the corresponding limit of investment k∞ < kδ, which has been ruled out

above. Hence w∞ ≥ w∗. Since Ω(w∗) = w∗, Lemma 2.4 implies that Ω(w) ≤ w∗ for any

w < w∗. Hence w∞ ≤ w∗, and it follows that w∞ = w∗. The corresponding sequence of

consumption must therefore converge to c∗(w∗). �

Next we show that when w < w∗, target wealth is strictly increasing in current wealth,

however it can never reach the first-best Wealth Threshold w∗ within a finite time.

Lemma 2.7. w < w∗ implies w < Ω(w) < w∗.

Proof. First we show that Ω(w) < w∗. We have already seen that since Ω(· ) is nonde-

creasing, we have Ω(w) ≤ Ω(w∗) = w∗. Suppose the claim is false and there exists w < w∗

such that Ω(w) = w∗. In an optimal contract starting from w0 = w, we must then achieve

the first-best allocation from date 1 onwards, with ct = c∗(w∗) = (1 − δ)y(kδ) + δg(kAδ ) −

kAδ , kt = kδ . The borrower’s welfare is then u(w + p0 − kδ) +
δu((1 − δ)y(kδ) + δg(kAδ )− kAδ )

1− δ
.

Now budget balance implies p0 =
δ[δy(kδ)− δg(kAδ ) + kAδ − kδ]

1− δ
(since the borrower repays

δy(kδ) − δg(kAδ ) + kAδ − kδ at every date t ≥ 1 onwards). Hence date 0 consumption

c0 = w +
δ2(y(kδ)− g(kAδ ))− (kδ − δkAδ )

1− δ
< (1− δ)y(kδ) + δg(kAδ )− kAδ , as w < w∗.
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Now consider a variation on this contract where the production level continues to

be stationary (denoted k such that k ∈ (kAδ , kδ)). The loan at date 0 is modified to
δ[δy(k) − k − δg(kAδ ) + kAδ ]

1− δ
, while future per period repayments are modified to δy(k) −

k − δg(kAδ ) + kAδ . Welfare in this contract is u(w +
δ2(y(kδ)− g(kAδ ))− (kδ − δkAδ )

1− δ
) +

δu((1 − δ)y(k) + δg(kAδ )− kAδ )

1− δ
. Incentive compatibility are maintained and so is budget bal-

ance. The first order effect of a slight reduction in k below kδ equals u′(c0)− u′(c∗(w∗)) which

is strictly positive since c0 < c∗(w∗). Hence a small reduction in k will improve welfare, and we

obtain a contradiction.

Next, to show that Ω(w) > w for any w < w∗, note that otherwise there is some w < w∗ for

which Ω(w) = w. Then starting with initial wealth of w, wealth will remain stationary. This

contradicts Lemma 2.6 since wt must converge to w∗. �

Finally we show that when w < w∗ optimum loan size increases over time.

Lemma 2.8. Starting with any w < w∗, the borrower obtains a loan l(w) which is strictly

positive and strictly increasing. Hence loan size lt = l(wt) rises over time, eventually converging

to
δ
[

δ
(

y(kδ)− g(kAδ )
)

−
(

kδ − kAδ
)

]

1− δ
.

Proof. Let n(w) denote date 1 output y(k(w)), where k(w) is the investment at date 0 with

wealth w. As we have observed l(w) = δ[n(w)−Ω(w)] and since w < w∗ V (Ω(w)) = VA(n(w)).

We establish the lemma using the following two properties

i) V (w) > VA(w)

Observe, y(k) > g(k) ∀k, so even if the lender does not provide any loan borrower’s

welfare would be higher than that from autarky where she has access to f(· ), (g(· ))

and the savings technology: V (w)|without loan > VA(w). Now, the lender is benevolent

so V (w) ≥ V (w)|without loan (since the lender can simply not provide any loan). Hence

V (w) ≥ V (w)|without loan > VA(w).

ii) V
′

(Ω(w)) > V
′

A(n(w)) since w < w∗ k < kδ. So we consider two cases

a) k ∈ [kAδ , kδ)

Observe here VA(n(w)) ≡
u
(

(1− δ)n(w) + δg(kAδ )− kAδ
)

1− δ
and V

′

A(n(w)) = u
′(

(1 −

δ)n(w) + δg(kAδ )− kAδ
)

.

Now, V
′

(Ω(w)) ≥ u′(c0(Ω(w)) where ct(w) denotes date t consumption starting with

wealth w (as the borrower always has the option of immediately consuming any

incremental wealth). Next, note that c0(Ω(w)) < (1 − δ)n(w) + δg(kAδ ) − kAδ , since

V (Ω(w)) ≡ u(c0(Ω(w))) +

∞
∑

t=1

δtu(ct(Ω(w))) = VA(n(w)), c0(Ω(w)) ≤ ct(Ω(w)) for

all t ≥ 1 with strict inequality for some t as the optimal consumption sequence

starting with wealth Ω(w) is not stationary (this in turn follows from noting that

if consumption were stationary then Vt would be stationary, while we have shown

above that kt is strictly increasing, so ICt could not bind at every date t). Hence

u′(c0(Ω(w))) > u′((1− δ)n(w)+ δg(kAδ )−k
A
δ ) = V

′

A(n(w)), so V
′

(Ω(w)) > V
′

A(n(w)).
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b) k < kAδ

Recall V (Ω(w)) = VA(n(w)), we also know that on-contract consumption converges

to c∗(w∗) and post-deviation consumption converges to g(kAδ ) − kAδ and in both

the cases consumption is (weakly) increasing over time, which implies that after a

finite point of time on-contract consumption becomes higher than that from post-

deviation. So to have V (Ω(w)) = VA(n(w)), c0(Ω(w)) < cA0 (n(w)) where c0(Ω(w))

and cA0 (n(w)) are defined as above: ct(w) and c
A
0 (n(w)) denote on-contract and post-

deviation consumption starting with wealth w at date t, respectively. So we have

V
′

(Ω(w)) ≥ u′(c0(Ω(w)) > u′(cA0 (n(w))) = V
′

A(n(w))

where the first inequality is coming from the fact we discussed above, second in-

equality is coming from the discussion above: c0(Ω(w)) < cA0 (n(w)), finally, the last

equality is coming from Envelope theorem.

Claim (i) now implies that l(w) = δ[n(w) − Ω(w)] > 0 since VA(n(w)) = V (Ω(w)) >

VA(Ω(w)). Moreover, V
′

A(n(w))x
′(w) = V

′

(Ω(w))Ω
′

(w) so (ii) implies x′(w) > Ω
′

(w). Therefore

l
′

(w) = δ[x′(w)−Ω
′

(w)] > 0. lt must converge to l(w∗) ≡
δ
[

δ
(

y(kδ)− g(kAδ )
)

−
(

kδ − kAδ
)

]

1− δ
. �

Proposition 2.1. When the agent’s endowment w ≥ w∗

i) Net wealth remains constant at w

ii) The agent invests kδ at every t ≥ 0

iii) ∀t ≥ 0 she receives δ[y(kδ)− w] from the lender

and ∀t ≥ 1 she repays y(kδ)− w

iv) at each t ≥ 0 she consumes c∗(w) ≡ (1− δ)w + δy(kδ)− kδ.

When the agent’s endowment w < w∗

i) Net wealth increases over time and converges to w∗ but the limit amount w∗ is not

reached within a finite time

ii) Investment is uniquely determined as a function of next period’s target wealth:

k(w) ≡ y−1
(

V L−1

A (V (Ω))
)

. Hence investment is increasing over time and converges

to k(w∗) ≡ kδ

iii) The borrower obtains a loan l(w) which is strictly positive and strictly increasing,

that is optimal contract features progressive lending. Hence loan size lt = l(wt) rises

over time, eventually converging to

δ
[

δ
(

y(kδ)− g(kAδ )
)

−
(

kδ − kAδ
)

]

1− δ
iv) Consumption is nondecreasing and converges to c∗(w∗).

2.3 Conclusion

We address Bulow-Rogoff-Rosenthal problem and show that bundling access to superior tech-

nology with credit ensures repayment. We, then, characterize the optimum loan scheme where
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the borrower has concave utility function. We find that when endowment of the borrower

falls below a certain threshold loan size, consumption, investment increase over time. So, this

chapter provides an explanation of progressive lending commonly observed in dynamic credit

relationships.



Chapter 3

Progressive Lending with

Graduation

3.1 Introduction

This chapter provides another explanation of progressive lending in a framework where gradu-

ation to a high productive activity is possible. For simplicity we assume that the poor agents

do not have access to any technology to transfer wealth from one period to another or capital

depriciates completely within a period. Their utility functions are assumed to be linear.

We study the problem of a benevolent lender in an infinite horizon, continuous time frame-

work with an endogenously determined finite date at which the borrower graduates. The lender

provides credit along with access to a deterministic, informal production technology and sav-

ings technology. The borrower invests the loan and return is realized instantaneously, then

she decides whether to repay or default. In case of default the lender terminates the contract,

withdraws access to the technology and confiscates her entires savings with him till date. In

case the borrower repays always, the contract gets terminated at an endogenously determined

finite date, at that instance the borrower gets back her entire savings (along with interest) from

the lender which enables her to graduate. So in case of default the borrower loses her savings as

well her opportunity to graduate. Hence, her loss from default increases over time which gives

us our central result - loan size (weakly) increases over time.

Later we consider a general case where the borrower has access to a savings technology

(return to which is equal to that of the savings technology provided by the lender) and also, in

case of default, the lender can confiscate only a part of the borrower’s savings with him. We

find that the qualitatively all the results hold.

The rest of the chapter is organized as follows: Next we analyse the benchmark case, then

we consider a more general case where the borrower has access to a savings technology on her

own and also the lender cannot confiscate her entire savings in case of default. In the section

following that, we compare the optimum outcomes of these two cases. Finally we conclude.

26
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3.2 Benchmark Case

3.2.1 Payoff, Technologies and Graduation

We study a dynamic relationship between a poor borrower who is subject to an ex post moral

hazard problem and a benevolent MFI that operates under a zero profit condition. The borrower

has access to a nonconvex technology 〈V, S̄〉 where S̄(> 0) is the required fixed initial investment,

and V is the present discounted value of lifetime utility from investing in that technology (gross

of S̄). Her endowment is zero, so she cannot start the project on her own. The MFI could

provide adequate credit to start the project, but once the borrower starts investing in 〈V, S̄〉

technology, it is not possible to incentivise her to repay.1

Apart from zero endowment, the borrower also has limited access to technology: In this

benchmark case, when her wealth is less than S̄ she does not have access to any technology.

The MFI can provide access to a savings and a deterministic neoclassical technology f(· ).

This technology f(· ) does not require any minimum initial investment and satisfies the usual

assumptions:

Assumption 3.1. f(0) = 0, f ′(· ) > 0, f ′′(· ) < 0, lim
k→0

f ′(k) = ∞ and lim
k→∞

f ′(k) = 0.

Now let the efficient scale of investment ke solve argmax
k

[f(k)−k]. Turning to the MFI-savings

technology, given the zero profit condition of the MFI, the interest rate on savings is equal to

the real rate of interest. Let r denote the real rate of interest and both the agents (the borrower

and the MFI) discount the future at the rate r.

We also assume that the borrower’s technology 〈V, S̄〉 is more productive – the net gain from

investing in that technology exceeds the present discounted net payoff from running the f(· )

technology at its efficient level.

Assumption 3.2. V − S̄ >
1

r
[f(ke)− ke].2

When a borrower starts investing in this nonconvex, more productive technology 〈V, S̄〉 we

say that she has graduated. The first-best thus involves providing S̄ amount of loan at the very

beginning so that she can graduate immediately. But as discussed above, that is not achievable

– the borrower would default and the MFI would make a loss with certainty. The problem of

the MFI thus is to design a dynamic self-enforcing scheme such that the borrower’s lifetime

utility is maximised and she chooses to repay always.

3.2.2 Contracts and Timeline

We consider an infinite horizon, continuous time framework, where t ∈ [0,∞). At t = 0, the

MFI announces a contract 〈{αt}
TM

t=0, {kt}
TM

t=0, TM 〉, where TM is the “successful” termination

date of this contract3 and kt and αt, respectively, denote the loan amount and the part of net

1First, the MFI does not have any control over 〈V, S̄〉 technology. Second, once the borrower’s wealth becomes
no less than S̄ she gets access to a storage technology as well. Hence it is not possible to incentivise her to repay.
This is a direct consequence of Bulow and Rogoff (1989b) and Rosenthal (1991).

2Observe,
1

r
[f(ke)− k

e] =

∫ ∞

0

e
−rt[f(ke)− k

e]dt.

3A contract gets terminated in two ways – in case of default and in case the borrower always repays at this
prespecified date TM . To differentiate the latter from the former, when the contract gets terminated in the latter
way, we say that it has been terminated “successfully”.
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return which the borrower saves4 with the MFI, at any instance t, where 0 ≤ t ≤ TM . So, at

any instance t, the borrower not only repays the amount kt, but also saves a part αt of her net

return, i.e. αt(f(kt) − kt), with the MFI. We shall consider αt such that 0 ≤ αt ≤ 1. Given

limited liability αt cannot be higher than 1, this condition actually implies that dissaving is not

allowed.5

The borrower either accepts or rejects this contract, with the game ending in case she rejects.

If she accepts then the continuation game at any instance t, where 0 ≤ t ≤ TM , is as follows:

Stage 1: The MFI lends kt, the borrower invests that amount in the f(· ) technology which yields

an instantaneous output of f(kt).

Stage 2: The borrower then decides whether to repay, or not:

(i) In case of repayment, she repays kt, deposits a part αt of her net return αt[f(kt)−kt]

with the MFI, consumes the rest instantaneously, and the game continues.

(ii) In case of default, she obtains her current gross income f(kt), that is we assume that

the amount yielded cannot be seized. The MFI, however, terminates the contract,

so that the borrower does not get any more loan from that instance onwards and

withdraws her access to both f(· ) and the savings technology. Moreover, the MFI

confiscates her entire savings with it till date.

Finally, at the successful termination of the contract TM , the borrower gets back her entire

savings with the MFI till date, along with interest. If that amount is no less than S̄ then she

graduates immediately. Otherwise, given that she does not have access to any technology to

transfer wealth from one instance to another she has to consume the entire amount immediately.

We solve for the subgame perfect Nash equilibrium (SPNE) of this game.

3.2.3 Analysis: Optimal Loan Scheme

Let us start with a brief overview of the results and the intuition behind them. Since graduation

is welfare improving (Assumption 3.2), the benevolent MFI enables the borrower to graduate.

In fact, due to the same reason its objective is to minimise the time required to graduate. In

order to do that it (a) successfully terminates the contract and returns the borrower’s savings as

soon as that becomes S̄ and (b) designs the contract such that the time required to accumulate

S̄ is the minimum, given that the borrower has incentive to repay. This in turn implies that

the objective of the MFI is to maximise the instantaneous savings. Therefore, the MFI lends

the efficient amount ke whenever that is incentive compatible otherwise the maximum amount

which is that. The borrower on the other hand saves the entire net return. The last result is

due to our assumptions of linear utility function and that discount factor is equal to the rate

of interest on savings. Due to these assumptions the borrower is indifferent between consuming

4Observe, the alternative interpretation of savings could be “advance repayment”, that is the MFI towards
the end is in debt. So like in Ray (2002), there is frontloading pain (small loan, high interest) and backloading
rewards (large loans, low interest). Rutherford (2009) and Roodman (2009) indeed point out “as a matter of
money flow, the service differ only in when the large sums are paid out.” From the notational standpoint we
follow Rutherford (2009) “saving up ahead of a pay-out, and borrowing ahead of repayment”.

5The assumption that αt ≥ 0 is without loss of generality as at the optimum αt takes the maximum value
possible which is 1 (Lemma 3.2).
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an amount now, and saving and consuming that amount (along with interest) later, but she is

strictly better off as the time required to graduate decreases.6

For ease of exposition, we make the following assumption which ensures that the borrower

cannot graduate in case of default.7

Assumption 3.3. S̄ > f(ke).

Now, there can be two cases – at the optimum the borrower may or may not graduate.

In the former case, the problem of the MFI is to select a scheme 〈{αt}
TM

t=0, {kt}
TM

t=0, TM 〉 which

maximises the borrower’s lifetime utility, subject to (i) the graduation condition (GC hereafter)

which ensures that, by the end of the scheme, the accumulated savings exceeds S̄ and (ii) the

dynamic incentive compatibility constraints (DICs hereafter) which ensure that the borrower

does not have any incentive to default at any instance t, where 0 ≤ t ≤ TM .

Maximise
〈αt,{kt}

TM
t=0 ,TM 〉

∫ TM

0
e−rt(1− αt)[f(kt)− kt]dt+ e−rTM

[

∫ TM

0
er(TM−t)αt[f(kt)− kt]dt− S̄ + V

]

Subject to: GC:

∫ TM

0
er(TM−t)αt[f(kt)− kt]dt ≥ S̄,

DIC:

∫ TM

t

e−r(t
′
−t)(1− αt

′ )[f(kt′ )− kt′ ]dt
′

+ e−r(TM−t)

[

∫ TM

0
er(TM−t

′
)αt

′ [f(kt′ )− kt′ ]dt
′

− S̄ + V

]

≥ f(kt), ∀t ≤ TM .

Let us briefly explain these two constraints. The left hand side of the GC is the total savings

till TM , which needs to be at least S̄, so that the borrower can graduate at TM . On the other

hand, the DIC states that at any t ≤ TM the borrower’s present discounted value of lifetime

utility from repayment is higher than that from default. The borrower’s present discounted

value of lifetime utility from repayment, i.e. the left hand side of the DIC has two components:

the first term denotes the present discounted value of her utility from consumption till the T th
M

instant (evaluated at t) and the second term denotes the present discounted (again evaluated

at t) value of her utility at the T th
M instant when she gets back her entire savings (along with

interest) and graduates, V − S̄ being the net gain from graduation. Finally, the right hand

side of the DIC is the borrower’s utility at t from default, i.e. her instantaneous return f(kt).

Observe, due to our assumption 3.3 and the fact that the borrower does not have access to any

storage technology, she cannot graduate in case of default. Thus her present discounted value

of lifetime utility from default at t is her utility from consumption.

6We conjecture that qualitatively all the results go through even if we assume strictly concave utility function,
we discuss that briefly in Remark 3.2.

7We relax this assumption in the general case (section 3.3) and in Remark 3.1 we briefly discuss what happens
if we relax this assumption in this benchmark case.
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Similarly, in case the borrower does not graduate, the problem of the MFI is to

Maximise
〈αt,{kt}

TM
t=0 ,TM 〉

∫ TM

0
e−rt(1− αt)[f(kt)− kt]dt+ e−rTM

∫ TM

0
er(TM−t)αt[f(kt)− kt]dt

Subject to:

DIC:

∫ TM

t

e−r(t
′
−t)(1− αt

′ )[f(kt′ )− kt′ ]dt
′

+ e−r(TM−t)

∫ TM

0
er(TM−t

′
)αt

′ [f(kt′ )− kt′ ]dt
′

≥ f(kt),

∀t ≤ TM .

In our first proposition we show that at the optimum the borrower always graduates. This

is a direct consequence of our assumption 3.2 – graduation is welfare improving. The borrower’s

lifetime utility increases as she graduates, so the MFI, being benevolent, designs the optimum

contract in such a way that the borrower can graduate. We prove the result by contradiction,

we start with an optimum contract where the borrower does not graduate and show that given

Assumptions 3.1, 3.2 and 3.3, it is possible to construct another DIC contract where the borrower

graduates and her present discounted value of lifetime utility is higher. So, the original contract

cannot have been optimum. For the rest of the paper, we restrict ourselves to the class of

contracts where kt and αt are continuous in t. All the proofs can be found in Appendix A.

Proposition 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. At the optimum the borrower always

graduates.

In fact in the next lemma we show that at the optimum the borrower graduates as soon as

possible, i.e. she graduates as soon as her savings becomes S̄. This is because graduation is

welfare improving (Assumption 3.2) and beyond S̄, V is independent of the wealth with which

the borrower graduates.

Lemma 3.1. Let Assumptions 3.1, 3.2 and 3.3 hold. Optimally, the contract is terminated as

soon as the borrower accumulates enough savings to graduate i.e. start the 〈V, S̄〉 technology:

so the graduation constraint GC binds at the optimum.

Given Proposition 3.1 and Lemma 3.1, the problem of the MFI can be expressed as follows:

Maximise
〈{αt}

TM
t=0 ,{kt}

TM
t=0 ,TM 〉

∫ TM

0
e−rt(1− αt)[f(kt)− kt]dt+ e−rTMV

Subject to GC:

∫ TM

0
er(TM−t)αt[f(kt)− kt]dt = S̄, (3.2.1)

DIC:

∫ TM

t

e−r(t
′
−t)(1− αt

′ )[f(kt′ )− kt′ ]dt
′

+ e−r(TM−t)V ≥ f(kt), ∀t ≤ TM .

(3.2.2)

Let the optimum scheme be denoted by 〈{α∗
t }

T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉, where T ∗

M is the time re-

quired to save S̄ under this scheme, i.e.

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

∗
t )− k∗t ]dt = S̄.
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Before proceeding further let us introduce the following technical definition.

Definition 3.1. Given a scheme 〈{αt}
TM

t=0, {kt}
TM

t=0, TM 〉, let kIt(〈{αt}
TM

t=0, {kt}
TM

t=0, TM 〉) denote

the maximum loan amount at t, such that DIC at t holds.8

In the next lemma we identify the optimum loan amount and the part of net return to be

saved at any instance t, where 0 ≤ t ≤ T ∗
M . We find that the MFI optimally chooses a contract

such that the borrower’s instantaneous savings is the maximum. It involves maximizing the

instantaneous net return f(kt)− kt, given DIC, and setting αt as high as possible.

Lemma 3.2. Let Assumptions 3.1, 3.2 and 3.3 hold. The MFI chooses the optimal scheme

〈{α∗
t }

T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉 such that the instantaneous savings α∗

t [f(k
∗
t )− k∗t ] is the maximum:

(a) It lends the efficient amount whenever that is DIC, otherwise it lends the maximum amount

which is DIC; formally k∗t = min{kIt, k
e} for all t,

(b) The borrower saves her entire net return with the MFI, formally α∗
t = 1 for all t.

This is quite intuitive. First, given our assumptions that the discounting rate of the borrower

and the interest rate on savings both equal r, and that her utility function is linear, she is

indifferent between consuming an amount now, and saving and consuming that amount (along

with interest) later. Second, given Assumption 3.2 and Lemma 3.1, her utility increases as the

time required to save S̄ decreases. These imply that the objective of the MFI is to maximise

the instantaneous savings αt[f(kt)− kt] which involves kt = ke and αt = 1. So at the optimum,

the MFI lends ke whenever that is incentive compatible, otherwise, it lends kIt and sets αt = 1.

The only potential problem we need to address here is that this increase in instantaneous

savings, especially setting αt = 1 may affect the DICs adversely. If it does so, then this lemma

is not so obvious, but fortunately, that is not the case. This is again because of the fact that

borrower is indifferent between consuming an amount now, and saving and consuming that

amount later. In fact, observe an increase in the instantaneous savings relaxes the DICs.

We summarise the above discussion in the following proposition which gives us the MFI’s

optimum contract in this benchmark case.

Proposition 3.2. Let Assumptions 3.1, 3.2 and 3.3 hold. The optimal scheme 〈{α∗
t }

T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉

satisfies the following:

(a) The borrower graduates and moreover she graduates as soon as the minimum required

amount S̄ is accumulated,

(b) The MFI lends the efficient amount ke, unless constrained by the incentive condition,

(c) The borrower saves the maximum possible amount with the MFI at all t.

3.2.4 The Time Path of The Optimal Loan Scheme

We next characterise the time path of the optimal loan scheme. We demonstrate that the

optimal loan scheme is (weakly) increasing over time. Further, we find that when the increase

8Observe, kIt is continuous in t.
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in utility from graduation is not too large (defined formally later), the optimal loan amount

initially increases and then remains constant (at the efficient level ke) over time. For ease of

reference, we call such a scheme progressive with a cap. This is of interest given that in reality

(a) almost all the MFIs practise lending that is “progressive with a cap” and (b) Banerjee et al.

(2015a) suggest that the increase in utility from any microfinance scheme is “modestly positive,

but not transformative”. So the prediction of this model conforms with the empirical findings.

We also find that when this increase in utility from graduation is “transformative”, the optimal

loan scheme remains “constant” at the efficient level ke. Again for ease of reference, we call

such a scheme constant. Similarly, a loan scheme which keeps on increasing over time is termed

strictly progressive.

Finally, we say that increase in utility from graduation is “modestly positive” when

f(ke)− ke

rf(ke)
V − S̄ <

f(ke)− ke

r
.

Otherwise, we say that increase in utility from graduation is “transformative”. Now we are in

a position to state the main result of this section:

Proposition 3.3. (The Dynamics of the Optimal Loan Scheme): Let Assumptions 3.1, 3.2 and

3.3 hold.

A. The optimal loan scheme is weakly progressive.

B. The optimal loan scheme is either progressive with a cap or constant:

(i) The optimal loan scheme is “progressive with a cap” if and only if increase in utility

from graduation is “modestly positive”.

(ii) The optimal loan scheme is “constant” if and only if increase in utility from gradu-

ation is “transformative”.

Intuitively, with the passage of time, on the one hand the borrower’s savings increases, so

that the loss from default increases, whereas on the other hand, the graduation date gets closer,

so the present discounted value of lifetime utility from repayment increases. This ensures that

the DICs get relaxed over time. Given Proposition 3.2(b), this implies that the optimal loan

scheme is weakly progressive. So, there can be three cases – the optimal loan scheme is strictly

progressive, progressive with a cap or constant.

When the increase in utility from graduation is transformative, then the present discounted

value of lifetime utility from repayment is very high. This makes the efficient level of investment

ke incentive compatible from the very beginning. Thus in this case the optimum loan scheme is

a constant. Correspondingly, when the increase in utility from graduation is modestly positive, it

is not that attractive. This makes incentive for repayment weak – the efficient amount ke is not

incentive compatible, at least initially. Whether that would at all become incentive compatible

or not depends on the parametric condition. It turns out that when S̄ is not small, formally

when assumption 3.3 is satisfied, the efficient amount ke becomes incentive compatible towards

the end.9 Hence, this gives us the interesting result – when increase in utility from graduation

is modestly positive the optimal loan scheme is “progressive with a cap”.

9In other words, Assumption 3.3 precludes the possibility of optimal loan scheme to be strictly progressive.
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(a) Moderate V: Progressive with a cap

0.0 0.2 0.4 0.6 0.8

0
.1

5
0

.2
5

0
.3

5

f(k)=k^.5, r=.9, S=.36, V=2

t

k
(t

)

(b) Large V: Constant Loan Scheme

Figure 3.1: The Optimal Loan Schemes under Different Parametric Values

Remark 3.1. (Relaxation of Assumption 3.3) Suppose Assumption 3.3 is relaxed and

consider the case where f(ke) ≥ S̄. Recall at the optimum kt ≤ ke. Therefore, at any t ∈ [0, TM ]

there can be two contingencies – f(ke) ≥ f(kt) ≥ S̄ and f(kt) < S̄. This changes the DIC (utility

from default is f(kt) − S̄ + V if f(kt) ≥ S̄ and f(kt) otherwise.) Now observe in the former

case, if the borrower defaults, her present discounted value of lifetime utility would be higher

than that from repayment (recall, in case of repayment she graduates as soon as her savings

becomes S̄). So, she would never repay such a kt. Thus, when S̄ ≤ f(ke) the efficient amount

ke never becomes DIC which implies strict progressivity in the optimal loan scheme – it keeps

on increasing over time without reaching the efficient amount. For ease of exposition, in the

benchmark case we make this assumption and relax it in the next section.

Remark 3.2. (Concave utility function of the borrower) How robust is the analysis if

the utility function of the borrower is strictly concave? Given there is no uncertainty, concavity

in utility function implies that the borrower has a preference for consumption smoothing over

time. We conjecture that the optimal loan scheme would continue to be progressive. We do

not allow for dissaving10 which implies that the borrower saves only when she graduates. In

both the cases an amount which is incentive compatible at some instance remains incentive

compatible in the future as well. Hence the conjecture.

Remark 3.3. (Profit-maximizing MFI) As discussed in the ?? section, Liu and Roth (2017)

show that in their framework a profit-maximizing MFI optimally designs a contract such that

a poor borrower can never graduate. In our framework, whether a borrower would be able to

graduate or not is an open question. Intuitively graduation may or may not happen because

there are two opposing forces in play. On the one hand, as a borrower graduates, the MFI loses

a client. So depending on its outside option, availability of a new borrower for example, the

MFI may choose to not give up a potential source of revenue.11 On the other hand, when a

borrower graduates a higher amount of loan becomes DIC towards the end in comparison to the

case where she never graduates (as present discounted value of lifetime utility from repayment

is higher in the former case). Since the profit of the MFI is increasing in loan amount, the MFI

10It is without loss of generality only when the borrower graduates.
11Also note that even if new borrowers are available, profit from a new borrower can be substantially lower

than that from an old borrower.
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may want her to graduate. If the latter effect dominates then at the optimum the borrower does

graduate, otherwise she does not. Nevertheless, we conjecture that the optimum loan scheme

continues to be progressive. While a complete analysis is beyond the scope of this paper, it

can be shown that this is indeed true. Intuitively, since we do not allow for dissaving12 at the

optimum the MFI takes savings only if the borrower graduates. In both the cases an amount

which is incentive compatible at some instance remains incentive compatible in the future as

well. Hence the conjecture.13

3.3 General Framework: Allowing Another Savings Institution

and A General Confiscation Rule

In this section, we introduce two changes in our basic framework which improve the borrower’s

utility from default: First, the borrower has access to a savings technology on her own – she can

save with a Savings Institution (SI hereafter), at the same instantaneous interest rate provided

by the MFI.14 Second, the MFI cannot confiscate her entire savings with it even in case of

default – it has to return at least γ part of that (along with interest), where γ is exogenously

given and 0 < γ < 1.15 These enable a borrower to graduate even in case of default – she can

save a part of the amount with which she defaults, and graduate using that. Thus incentive

for repayment is harder to satisfy here. The objective is to check whether our central result –

progressivity in loan size, survives or not. Also, we relax Assumption 3.3, that is we allow for

the case where S̄ ≤ f(ke).

3.3.1 Contracts and Timeline

At t = 0, the MFI announces a contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉,16 where like before kst,

αst and TsM denote the loan amount, the part of the net return to be saved with the MFI at

the instance t and the ‘successful’ termination date of the contract, respectively. γ denotes the

part of savings, the borrower gets back from the MFI, in case of default; γ ∈ [γ, 1]. Hence,

in case of default, like before, the MFI terminates the credit contract and withdraws access to

both the production and savings technologies provided by the MFI, but unlike the benchmark

case it returns a part of the her savings with it till date SD
t ≡ γ

∫ t

0
er(t−t

′
)αst

′ [f(kst′ )− kst′ ]dt
′

.

The individual either accepts or rejects the MFI contract, with the game ending in case she

rejects. If she accepts, then in the next stage at t = 0, she chooses
〈{

{σRt }
TsM

t=0 , σ
D
t

}

,
{

TR
B , T

D
B (t)

}〉

,

where σRt denotes the part she wants to save with the SI at any arbitrary t, after repaying and

saving with the MFI (or getting back her savings from the MFI which happens at TsM ), and

σDt denotes the part of f(kst) + SD
t she wants to save with the SI after defaulting at t; where

12This assumption is not without loss of generality here.
13In the section marked For the Referee, we provide an argument for progressivity.
14Perhaps, it is more natural to assume that the interest rate provided by the SI is lower than that provided

by the MFI, but we assume them to be equal as this is a robustness check exercise, and the borrower’s outside
option (weakly) increases with the interest rate provided by the SI.

15In the benchmark case γ = 0.
16To distinguish the notations from the benchmark case, we subscript the variables of this general framework

with ‘s’, where s denotes the fact that in this framework we are allowing for a savings technology other than
MFI.
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0 ≤ t ≤ TsM and 0 ≤ σRt , σ
D
t ≤ 1. Similarly, TR

B denotes the date at which she withdraws

her savings from the SI in case she always repays (and saves), and TD
B (t) denotes the date of

withdrawal of savings from the SI, in case she defaults at t.17

Given the MFI-contract, and the borrower’s strategy, the continuation game at any instance

t, where 0 ≤ t ≤ TsM , is as follows:

Stage 1: The MFI lends kst which the borrower invests in the f(· ) technology and gets f(kst)

instantaneously.

Stage 2: She then decides whether to repay, or not:

(i) In case she decides to repay, she returns kst to the MFI, deposits αst[f(kst) − kst]

with the MFI, and σRt (1− αst)[f(kst)− kst] with the SI, with all deposits attracting

interest at the instantaneous rate r. She consumes the rest instantaneously and the

game continues.

(ii) In case of default the MFI terminates the contract, and withdraws the borrower’s

access to both f(· ) and the MFI-savings technology. She obtains her current gross

income f(kst) and unlike the benchmark case, she also gets back SD
t – a part of her

savings with the MFI till date (along with interest). She, then, saves a part σDt of

f(kst) + SD
t with the SI and consumes the rest instantaneously.

She withdraws her savings from the SI at TD
B (t), if any.

In case of successful termination of the contract at TsM , the borrower gets back her entire

savings along with interest, from the MFI. She saves a part σRTsM
of that return with the SI and

consumes the rest instantaneously. She withdraws her savings from the SI, at TR
B , if any.

Finally, she graduates, if she wishes to and has at least S̄ amount with her.

We now define a term “money in hand” which we will be using repeatedly in the subsequent

analysis. Money in hand at any t denotes the entire amount to which the borrower has access

at t.

• At the time of successful termination of the contract TsM money in hand includes her

entire savings with the MFI as well as that with the SI, formally

∫ TsM

0
er(TsM−t)αst[f(kst)− kst]dt+

∫ TsM

0
er(TsM−t)σRt (1− αst)[f(kst)− kst]dt.

• In case of repayment at t, where t ≤ TsM , money in hand includes the amount she has

after repaying and saving with the MFI at that instance as well as her savings with the

17Observe that we have not considered the case where the borrower withdraws savings from the SI multiple
times. Also we have assumed σ

R

t , σ
D

t ≤ 1, these imply that we have not allowed dissavings in this framework
also. However, due to our assumptions that the utility function is linear and that the future is discounted in the
same way as the interest rate on savings, these are without loss of generality. Furthermore, at this point we are
not imposing that TR

B ≥ TsM or TD

B (t) ≥ t; if TR

B < TsM then {σR

t }TsM

t=T
R

B

= 0 and if TD

B (t) < t then σ
D

t = 0 and

{σR

t
′ }t

t
′
=TD

B
(t)

= 0. Also observe, TR

B and T
D

B (t) are well defined only when she has positive amount of savings

with the SI. Formally, when there exists an interval [t, t̄] ⊆ [0, TsM ] such that [t, t̄] has a positive measure and
the borrower’s savings with the SI is positive for all t ∈ [t, t̄].
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SI till date, formally

(1− αst)[f(kst)− kst] +

∫ t

0
er(t−t

′
)σR

t
′ (1− αst

′ )[f(kst′ )− kst′ ]dt
′

.

• In case of default at t, where t ≤ TsM , money in hand includes gross return f(kst), the

savings she gets back from the MFI i.e. SD
t and her savings with the SI till date, formally

f(kst) + γ

∫ t

0
er(t−t

′
)αst

′ [f(kst′ )− kst′ ]dt
′

+

∫ t

0
er(t−t

′
)σR

t
′ (1− αst

′ )[f(kst′ )− kst′ ]dt
′

.

• Finally at any t after the termination date, money in hand includes her savings with the

SI.

3.3.2 Analysis: The Borrower’s Problem

We begin by solving the borrower’s problem. Given any MFI-contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉,

her objective is to choose her strategy: {Repay, Default} and
〈{

{σRt }
TsM

t=0 , σ
D
t

}

,
{

TR
B , T

D
B (t)

}〉

to maximise her present discounted value of lifetime utility. Given Assumption 3.2, that is

graduation is welfare improving and MFI-contract her objective is to choose her strategy such

that the time required for graduation is minimised. Now it is clear that, she would withdraw her

savings from the SI as soon as money in her hand becomes S̄. More specifically, if money in her

hand at the termination date of the MFI-contract, irrespective of whether that was terminated

successfully or because of default, is no less than S̄, she withdraws her savings from the SI

immediately, otherwise she waits till her savings becomes S̄ and withdraws immediately.

Turning to the choice of optimal {σRt }
TsM

t=0 and σDt , note that it is weakly dominant to

always save as much as possible, as that may decrease the time required for graduation. More

specifically, due to our assumptions of linear utility function and that she discounts future in the

same way as the interest rate on savings, she is indifferent between consuming an amount now,

and saving and consuming that amount (along with interest) later. But she gets strictly better

off if that savings decrease the time required for graduation. Hence, the borrower is weakly

better-off when she saves the maximum amount possible with the SI, she is strictly better off if

that decreases the time required for graduation.

Finally, it may happen that her choice of
〈{

{σRt }
TsM

t=0 , σ
D
t

}

,
{

TR
B , T

D
B (t)

}〉

does not affect the

time of graduation. Then she is indifferent between saving and not saving with the SI. Even if

she saves, the time of withdrawal of her savings from the SI does not affect her present discounted

value of lifetime utility. Given these indifferences, without loss of generality, we assume that

she withdraws her savings from the SI, if any, at the termination date of the MFI-contract and

till then saves the maximum amount possible with the SI. Hence, the next proposition.

Proposition 3.4. Let Assumption 3.2 hold. Given any MFI-contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉,

the borrower chooses
〈{

{σRt }
TsM

t=0 , σ
D
t

}

,
{

TR
B , T

D
B (t)

}〉

such that she can graduate as soon as pos-

sible.

Therefore, the borrower does not consume anything before graduating. Hence, given any

MFI-contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉, the borrower’s present discounted value of lifetime
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utility (evaluated at t = 0) from repayment is

e−rTR
∗

B

[

∫ TsM

0
er(T

R
∗

B
−t)[f(kst)− kst]dt− S̄ + V

]

. (3.3.1)

Similarly, her present discounted value of lifetime utility (evaluated at t = 0) from default

at t, where 0 < t ≤ TsM is

e−rTD
∗

B
(t)

[

er(T
D

∗

B
(t)−t)

[

∫ t

0
er(t−t

′
)
(

1− αst
′

)

[f(kst′ )− kst′ ]dt
′

+

∫ t

0
er(t−t

′
)γαst

′ [f(kst′ )− kst′ ]dt
′

+ f(kst)
]

− S̄ + V

]

,

where the first term i.e.

∫ t

0
er(t−t

′
)
(

1 − αst
′

)

[f(kst′ ) − kst′ ]dt
′

represents the amount she had

already saved with the SI till t and the next two terms i.e.

∫ t

0
er(t−t

′
)γαst

′ [f(kst′ ) − kst′ ]dt
′

+

f(kst) represent the amount which she saves at t. Hence, her present discounted value of lifetime

utility (evaluated at t = 0) if she defaults at t ∈ (0, TsM ] is

e−rTD
∗

B
(t)

[

er(T
D

∗

B
(t)−t)

[

∫ t

0
er(t−t

′
)
(

1− αst
′ (1− γ)

)

[f(kst′ )− kst′ ]dt
′

+ f(kst)
]

− S̄ + V

]

.

(3.3.2)

3.3.3 Analysis: The Optimal Contract

Next, we characterise the optimal contract. Given the optimal strategy of the borrower, the

problem of the MFI is to choose 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉 such that the borrower’s present

discounted value of lifetime utility is maximised and the borrower always repays. As observed

above given Assumption 3.2, the objective of the MFI boils down to minimizing the time required

to graduate, provided that the borrower repays.

The optimal contract in this framework is very similar to that in the benchmark case, we

discuss that as we go along. But an interesting point to note here is that the MFI may choose

to terminate the contract, successfully, before the borrower’s total savings become S̄. Since, the

borrower has access to a savings technology on her own, she would be able to save and graduate

even in that case. However, that would increase the time required to graduate vis-à-vis the case

where the MFI lends till the time of graduation. Hence, the MFI would terminate a contract

before her total savings become S̄ only if lending till the end is not incentive compatible.

Note that it is not obvious whether a contract where the MFI lends till the borrower’s total

savings become S̄ is DIC or not, because of the following reason. Lending till the end results

early graduation. But that is true not only when the borrower repays but also when she defaults

– her savings with the MFI increases over time, so the amount she gets back in case of default

also increases over time. So on the one hand, lending till the end improves the incentive to repay.

On the other hand, towards the end of the contract incentives to default also increases. Despite

this trade-off, we argue by contradiction that it is possible to construct a DIC contract where
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the MFI lends till the borrower’s total savings become S̄ so that she graduates immediately after

the successful termination of the contract. This new contract provides her higher utility, hence,

the original contract cannot have been optimum. The formal proof can be found in Appendix

A.

Now given assumption 3.2, since the objective of the MFI is to minimise the time required

for graduation, it terminates the contract as soon the borrower’s total savings become S̄. The

proof is very similar to that of Lemma 3.1, so we skip that. The following lemma characterises

the “successful” termination date.

Lemma 3.3. Suppose Assumptions 3.1 and 3.2 hold. At the optimum, the borrower graduates

as soon as the MFI terminates the contract.

Now we introduce the following observation which argues that, in any DIC contract, the money

in the borrower’s hand, in case of default at any t, where 0 < t < TsM , must be less than S̄.

The reason being – given Proposition 3.4, we know that otherwise, in case of default at such a

t the borrower would graduate immediately, with no less than S̄ amount, whereas, in case of

repayment she graduates at TsM > t with exactly S̄. So, DIC at t will definitely be violated.

Hence, the observation.

Observation 3.1. Let, 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉 be a DIC contract. The money in the

borrower’s hand in case of default at any t, where 0 < t < TsM , must be less than S̄. The money

in her hand in case of default at TsM can be no higher than S̄.

So given Proposition 3.4, DIC at any t, where 0 < t ≤ TsM , boils down to

e−r(TsM−t)V ≥ e−r(TD
∗

B
(t)−t)V.

This further implies that in a DIC contract, in case of default the borrower cannot graduate at

an earlier date than that in case she repays always.

Now like before we introduce the following technical definition.

Definition 3.2. Given a scheme 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉, let ksIt
(

〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉
)

denote the maximum loan amount at t, such that DIC at t holds.

In the next lemma we identify the optimum loan amount kst, the part of net return αst to be

saved with the MFI at any instance t, where 0 ≤ t ≤ T ∗
sM and the part of savings γ the borrower

gets back from the MFI in case of default. We find that the MFI optimally chooses a contract

such that the borrower’s instantaneous savings is the maximum. It involves maximizing the

instantaneous net return f(kst)− kst, setting αst as high as possible and γ as low possible.

Lemma 3.4. Let Assumptions 3.1 and 3.2 hold. The optimal scheme 〈{α∗
st}

T ∗
sM

t=0 , γ
∗, {k∗st}

T ∗
sM

t=0 , T
∗
sM 〉

satisfies the following:

(a) It lends the efficient amount whenever doing so is DIC, otherwise it lends the maximum

amount which is DIC. Formally, k∗st = min{ksIt, k
e} for all t.

(b) The borrower saves her entire net return with the MFI: α∗
st = 1 for all t.
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(c) In case of default, the MFI confiscates the maximum amount of savings: γ∗ = γ.

The intuition behind this result is in a similar vein – given Assumption 3.2 the objective of

the MFI is to minimise the time required to graduate which in turn requires maximising the

instantaneous savings. Thus at the optimum it lends to maximise the net return, given DIC

which implies lending the efficient amount ke whenever that is incentive compatible otherwise

the maximum amount which is that.

Two points to note are as follows – First, given any loan scheme the choice of αst does not

affect the borrower’s savings. This is because, the borrower saves the rest, whatever she has

after repaying and saving with the MFI, with the SI. Moreover, the interest rates provided by

the MFI and SI are equal. But low αst, that is higher savings with the SI affects DIC adversely

– the maximum loan amount which is DIC decreases with decrease in αst. Hence, the optimal

loan amount and correspondingly the instantaneous savings (weakly) decrease with decrease in

αst. Therefore, the MFI chooses αst as high as possible. Given the limited liability condition it

chooses α∗
st = 1.

The second point of interest follows from the same line of argument. The MFI chooses γ as

low as possible because increase in γ means she gets higher amount of savings from the MFI

in case of default. This improves her deviation payoff and that in turn adversely affects DIC.

Hence, the instantaneous savings (weakly) decreases with increase in γ. Therefore the MFI

chooses γ as low as possible: γ∗ = γ.

We summarise the optimal contract in the following proposition.

Proposition 3.5. Let Assumptions 3.1 and 3.2 hold. The optimal scheme 〈{α∗
st}

T ∗
sM

t=0 , γ
∗, {k∗st}

T ∗
sM

t=0 , T
∗
sM 〉

satisfies the following:

(a) The MFI terminates the contract as soon as the borrower’s savings becomes S̄ and she

graduates immediately, that is at T ∗
sM ,

(b) It lends the efficient amount ke, unless constrained by the incentive condition,

(c) In case of repayment, the borrower saves her entire net return with the MFI,

(d) In case of default, the MFI confiscates the borrower’s savings as much as it can.

Observe, the optimum loan contract is unique.

3.3.4 The Time Path of the Optimal Loan Scheme

We next turn to the dynamics of the optimal loan size. Like in the benchmark case, here, we

characterise the time path of the optimal loan scheme. Unlike the benchmark case, the optimal

loan scheme is not always (weakly) progressive, specifically it need not be (weakly) progressive

when γ is very high. We provide a sufficient condition which ensures that DIC gets relaxed over

time and hence the optimal loan amount (weakly) increases over time.

Assumption 3.4. r ≥ γ.

Intuitively, the borrower saves her entire net return with the MFI. Now with marginal

increase in time her savings increase by the rate of interest i.e. r. The time remaining to
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graduate decreases and the borrower’s present discounted value of lifetime utility increases

marginally by the future discount rate which is again r. Due to this, the maximum incentive

compatible loan amount increases by rf(ksIt). But in case of default the borrower also gets

back a part of her savings with the MFI which increases with time. To be precise, with marginal

increase in time the amount she gets back from the MFI marginally increases by γ[f(kst)− kst].

This dampens her incentive to repay. Assumption 3.4 ensures that the DICs get relaxed over

time. Therefore, given this assumption the optimal loan scheme is weakly progressive.

Depending on the value of S̄, there can be three cases – (a) The loan scheme is strictly

increasing, (b) progressive with a cap and (c) constant. Here S̄ plays such a crucial role be-

cause now the borrower can graduate on her own in case of default. Thus when S̄ is “low”,

the efficient loan amount never becomes incentive compatible and the optimal loan scheme is

strictly increasing. Converesly, when S̄ is “large”, the efficient loan amount is always incentive

compatible and hence the optimal loan scheme remains constant at the efficient level through-

out. Finally, when S̄ is “moderate” the optimal loan scheme is progressive with a cap – initially

increases till it reaches the efficient amount and then remains constant at that.

We say that S̄ is “low” when (1−γ)S̄ < f(ke). Similarly we say that it is “moderate” when
f(ke)− ke

rS̄ + f(ke)− ke
S̄ ≤ f(ke) ≤ (1− γ)S̄, and “large” when f(ke) ≤

f(ke)− ke

rS̄ + f(ke)− ke
S̄.

Now we characterise the time path of the optimal loan scheme.

Proposition 3.6. (The Dynamics of the Optimal Loan Scheme): Let, 〈{α∗
st}

T ∗
sM

t=0 , γ
∗, {k∗st}

T ∗
sM

t=0 , T
∗
sM 〉

be the optimal contract and Assumptions 3.1, 3.2 and 3.4 hold.

A. Weakly Progressive: The optimal loan scheme is always weakly progressive.

B. Depending on the value of S̄ the optimal loan would be strictly progressive, progressive

with a cap or constant.

(i) Strictly Progressive: The optimal loan scheme is strictly progressive if and only if S̄

is low,

(ii) Progressive with a cap: The optimal loan scheme is progressive with a cap if and only

if S̄ is moderate,

(iii) Constant: The optimal loan scheme is constant if and only if S̄ is large.

t

kst

ke

k∗
st

Low S̄

t

kst

ke

k∗
st

Large S̄

t

kst

ke

k∗
st

Moderate S̄
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3.4 Comparison Between the Benchmark and the General Case:

Welfare Implication

In this section, we compare the optimal outcomes and the borrower’s welfare in the general case

with those in the benchmark case. The borrower’s outside option is higher in the general case

– she can save on her own and gets back a part of her savings with the MFI in case of default.

Apparently it may seem that it would improve her welfare, but actually it makes her worse off.

The reason is that the MFI is benevolent and the only problem here is that the borrower

is strategic and does not repay whenever she has an incentive to do so. Under this general

framework, her deviation payoff is larger which decreases her incentive to repay. The optimal

loan amount and hence the instantaneous savings must then be (weakly) lower in the general

case. This increases the time required for graduation. Hence, the borrower is weakly worse off

in the general case. She is strictly worse off whenever S̄, the fixed initial investment required to

start the technology 〈V, S̄〉 is not large, ensuring that providing a loan of ke from t = 0 is not

incentive compatible.

Interestingly observe, along the equilibrium path the borrower actually does not save with

the SI or does not default (and hence does not get back any savings from the MFI before the

successful termination date). Hence these extensions only improve her deviation payoff and that

makes her (weakly) worse off.

Proposition 3.7. Let Assumptions 3.1, 3.2, 3.3 and 3.4 hold. The borrower’s present dis-

counted value of lifetime utility is weakly lower in the general case than that in the benchmark

case. It is strictly lower if and only if the investment required to start the technology 〈V, S̄〉 is

not large:

f(ke) >
f(ke)− ke

rS̄ + f(ke)− ke
S̄.

This is not to claim that developmet of savings intitutions should not be encouraged. In fact,

papers like Burgess and Pande (2005), Ashraf et al. (2006b), Dupas and Robinson (2013a,b)

find positive impacts of savings on the poor people. What Proposition 3.7 shows however is

that there can be some unintended consequences of doing so in this scenario.

3.5 Conclusion

Many scholars Armendàriz and Morduch (2005), Roodman (2009) among others argue that

MFIs should provide not only credit but also other financial services like savings, insurance

etc. In fact Rhyne (November 2, 2010) directly links Andhra-crisis to lack of deposit collection.

Many MFIs are broadening their initial focus on microcredit to include the provision of savings

(and other) products (Karlan et al., 2014).

In this paper we develop a theoretical model where the MFI provides not just credit but

also access to other services in particular a savings facility. This savings service coupled with

the credit service help a poor borrower to accumulate a lumpsum amount which enables her to

graduate. Thus we provide one explanation where savings coupled with credit indeed improve

borrower’s utility beyond the level achievable when only credit is provided. We find that the

optimal loan scheme is (weakly) progressive and when the increase in utility from graduation
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is “modestly positive” the optimal loan scheme is progressive with a cap – loan size initially

increases and then remains constant at the efficient level of investment which conforms with

reality.

Appendix A

Proof of Proposition 3.1. We show that given Assumptions 3.1, 3.2 and 3.3, at the optimum

the borrower graduates. We show this by contradiction.

Suppose not and there exists an optimum contract 〈{k∗t }
T ∗
M

t=0, {α
∗
t }

T ∗
M

t=0, T
∗
M 〉18 such that the

borrower does not graduate. So, her present discounted value of lifetime utility is

∫ T ∗
M

0
e−rt(1− α∗

t )[f(k
∗
t )− k∗t ]dt+ e−rT ∗

M

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

∗
t )− k∗t ]dt

And, DIC at any t, where 0 ≤ t ≤ T ∗
M , is

∫ T ∗
M

t

e−r(t
′
−t)(1− α∗

t
′ )[f(k∗

t
′ )− k∗

t
′ ]dt

′

+ e−r(T ∗
M

−t)

∫ T ∗
M

0
er(T

∗
M

−t
′
)α∗

t
′ [f(k∗

t
′ )− k∗

t
′ ]dt

′

≥ f(k∗t ).

Now there can be two cases (a) ∃t̃ ≤ T ∗
M such that

∫ t̃

0
er(t̃−t)[f(k∗t ) − k∗t ]dt ≥ S̄ and (b)

there does not exist any such t̃. We argue that in each of the cases, it is possible to construct

another DIC contract such that the borrower graduates and her lifetime utility is higher, so the

original contract cannot have been optimum.

Case (a) ∃t̃ ≤ T∗
M such that

∫

t̃

0

er(̃t−t)[f(k∗
t)− k∗

t]dt ≥ S̄

Define a new contract 〈{k̂t}
T̂M

t=0, {α̂t}
T̂M

t=0, T̂M 〉 as follows











k̂t = k∗t and α̂t = 1 ∀t ∈ [0, T̂M ]

and T̂M is such that

∫ T̂M

0
er(T̂M−t)[f(k∗t )− k∗t ]dt = S̄.

Observe, by Intermediate Value Theorem such a T̂M exists and T̂M ≤ T ∗
M . Under this new

contract, the borrower graduates at T̂M as that gives her higher utility:

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt− S̄ + V >

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt.

The left hand side is her lifetime utility if she graduates and the right hand side is that from

consuming the amount immediately. We get this inequality because V − S̄ > 0. Now we show

that her present discounted value of lifetime utility under this new contract is higher than

18Here we want to point out that none of the results depend on our restriction αt ≥ 0, i.e. even if we allow for
dissaving all the results go through. This is of particular interest because this restriction implies that in case the
borrower does not graduate i.e. TM = ∞ there will be no savings. But if we allow for dissaving, the MFI may
take deposits even when TM = ∞ and return at certain instances which may relax DIC and improve borrower
welfare. However, this assumption is without loss of generality because even if we allow for dissaving, the MFI
would enable the borrower to graduate as soon as possible and set αt as high as possible. The proof is available
on request.
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that from the original contract. Her present discounted value of lifetime utility under this new

contract is

e−rT̂M

[

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt− S̄ + V

]

>e−rT̂M

[

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt

]

+ e−rT̂M
1

r
[f(ke)− ke]

=e−rT̂M

[

∫ T̂M

0
er(T̂M−t)[f(k∗t )− k∗t ]dt

]

+ e−rT̂M

∫ ∞

0
e−rt[f(ke)− ke]dt

≥

∫ T̂M

0
e−rt[f(k∗t )− k∗t ]dt+

∫ T ∗
M

T̂M

e−rt[f(k∗t )− k∗t ]dt

=

∫ T ∗
M

0
e−rt[f(k∗t )− k∗t ]dt

=

∫ T ∗
M

0
e−rt(1− α∗

t )[f(k
∗
t )− k∗t ]dt+ e−rT ∗

M

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

∗
t )− k∗t ]dt.

where the first inequality is coming from Assumption 3.2 and the second inequality is coming
from the definition of ke.19 The last expression is the borrower’s present discounted value

of lifetime utility under the original contract. Now it is immediate that DICs at all t where

0 ≤ t ≤ T̂M are satisfied. So, the original contract cannot have been optimum.

Case (b) ∄t̃ ≤ T∗
M such that

∫

t̃

0

er(̃t−t)[f(k∗
t)− k∗

t ]dt ≥ S̄

An optimum contract must be non-trivial in that there must exist finite t ≤ T ∗
M such that

k∗t > 0. To construct the new contract, we follow the algorithm below. Consider any finite T

and define t̂ =
{

minimum t ∈ [0, T ]|f(k∗t ) − k∗t ≥ f(k∗
t
′ ) − k∗

t
′ ∀t

′

∈ [0, T ]
}

.20 In other words,

f(k∗
t̂
)− k∗

t̂
> f(k∗t )− k∗t ∀t ∈ [0, t̂) and f(k∗

t̂
)− k∗

t̂
≥ f(k∗t )− k∗t ∀t ∈ [t̂, T ]. Now compute

∫ t̂

0
er(T−t)[f(k∗t )− k∗t ]dt+

∫ T

t̂

er(T−t)[f(k∗
t̂
)− k∗

t̂
]dt.

(A) If that amount is no less than S̄, stop the algorithm and define the new contract as follows:























k̂t = k∗t ∀t ∈ [0, t̂) and k̂t = k∗
t̂

∀t ∈ [t̂, T̂M ]

α̂t = 1 ∀t ∈ [0, T̂M ]

and T̂M is such that

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt = S̄.

(B) If that amount is less than S̄, increase T and follow the same algorithm until we get (A).

Observe, since we consider only non-trivial contracts, that such a T exists follows from the the

Intermediate Value Theorem since,

Limit
T→0

∫ T

0
er(T−t)[f(k̂t)− k̂t]dt = 0 and Limit

T→∞

∫ T

0
er(T−t)[f(k̂t)− k̂t]dt = ∞.

19Recall, ke solves argmax
k

[f(k) − k].

20
kt is continuous in t and [0, T ] is bounded, so from Weierstrass Theorem such a t exists.
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Also observe, since ∄t̃ ≤ T ∗
M such that

∫ t̃

0
er(t̃−t)[f(k∗t )− k∗t ]dt ≥ S̄, t̂ < T̂M .

Mimicing the argument in case (a) it can be shown that under this new contract the borrower

graduates at T̂M . Now we show that her present discounted value of lifetime utility under this

new contract is higher than that from the original contract. Her present discounted value of

lifetime utility under this new contract is

e−rT̂M

[

∫ T̂M

0
er(T̂M−t)[f(k̂t)− k̂t]dt

]

+ e−rT̂M (V − S̄)

>e−rT̂M

[

∫ t̂

0
er(T̂M−t)[f(k̂t)− k̂t]dt+

∫ T̂M

t̂

er(T̂M−t)[f(k̂t)− k̂t]dt

]

+ e−rT̂M

∫ ∞

0
e−rt[f(ke)− ke]dt

≥

∫ t̂

0
e−rt[f(k∗t )− k∗t ]dt+

∫ T̂M

t̂

e−rt[f(k∗t )− k∗t ]dt+

∫ T ∗
M

T̂M

e−rt[f(k∗t )− k∗t ]dt

=

∫ T ∗
M

0
e−rt[f(k∗t )− k∗t ]dt

=

∫ T ∗
M

0
e−rt(1− α∗

t )[f(k
∗
t )− k∗t ]dt+ e−rT ∗

M

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

∗
t )− k∗t ]dt.

where again the first inequality is coming from Assumption 3.2, the second inequality is coming

from the construction and the definition of ke.21 The last expression is the borrower’s present

discounted value of lifetime utility under the original contract. Now it is immediate that DICs

at all t where 0 ≤ t ≤ T̂M are satisfied. So, the original contract cannot have been optimum.�

Proof of Lemma 3.1. Let 〈{αt}
TM

t=0, {kt}
TM

t=0, TM 〉 be an optimum contract, and suppose

to the contrary the accumulated savings at TM exceeds S̄. We construct a new contract

〈{α̂t}
T̂M

t=0, {k̂t}
T̂M

t=0, T̂M 〉 such that both the constraints are satisfied and the borrower’s present

discounted value of lifetime utility is higher under the new scheme, so that the original contract

cannot have been the optimum. The new scheme is as follows:























α̂t = αt ∀t ∈ [0, T̂M ],

k̂t = kt ∀t ∈ [0, T̂M ], and

T̂M = TM −∆, such that ∆ > 0 and

∫ T̂M

0
er(T̂M−t)α̂t[f(k̂t)− k̂t]dt ≥ S̄.

In step 1, we show that the borrower’s present discounted value of lifetime utility is higher under

this new contract and then in step 2, we show that the new contract is DIC.

Step 1. The borrower’s present discounted value of lifetime utility, if she always repays, is

∫ TM

0
e−rt(1− αt)[f(kt)− kt]dt+ e−rTM

[

∫ TM

0
er(TM−t)αt[f(kt)− kt]dt− S̄ + V

]

Due to our assumptions that future is discounted similarly as the interest on savings and that

21By construction, f(k∗
t )− k

∗
t = f(k̂t)− k̂t ∀ t ∈ [0, t̂] and f(k∗

t )− k
∗
t ≤ f(k̂t)− k̂t ∀t ∈ (t̂, T̂M ]. And from the

definition of ke,

∫ ∞

T̂M

e
−rt[f(ke)− k

e]dt ≥

∫
T

∗

M

T̂M

e
−rt[f(k∗

t )− k
∗
t ]dt.
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the borrower’s utility function is linear, observe it can be written as

∫ TM

0
e−rt[f(kt)− kt]dt+ e−rTM

[

V − S̄
]

. (3.5.1)

This is essentially saying that the borrower is indifferent between consuming an amount now,

and saving and consuming that amount (along with interest) later.

Partially differentiating (3.5.1) with respect to TM from the left we get:

e−rTM [f(kTM
)− kTM

]− re−rTM (V − S̄) = −re−rTM

[

V − S̄ −
[f(kTM

)− kTM
]

r

]

< 0,

where the inequality follows since given Assumption 3.2 and the definition of ke

V − S̄ >
f(ke)− ke

r
≥
f(kTM

)− kTM

r
.

Step 2. Finally, we argue that the DICs for the new scheme 〈{α̂t}
T̂M

t=0, {k̂t}
T̂M

t=0, T̂M 〉 hold for all

t ≤ T̂M . Consider some t ≤ T̂M , the L.H.S. of the DIC at t equals

∫ T̂M

t

e−r(t
′
−t)(1− α̂t

′ )[f(k̂t′ )− k̂t′ ]dt
′

+ e−r(T̂M−t)

[

∫ T̂M

0
er(T̂M−t

′
)α̂t

′ [f(k̂t′ )− k̂t′ ]dt
′

− S̄ + V

]

=

∫ T̂M

t

e−r(t
′
−t)(1− αt

′ )[f(kt′ )− kt′ ]dt
′

+ e−r(T̂M−t)

[

∫ T̂M

0
er(T̂M−t

′
)αt

′ [f(kt′ )− kt′ ]dt
′

− S̄ + V

]

>

∫ TM

t

e−r(t
′
−t)(1− αt

′ )[f(kt′ )− kt′ ]dt
′

+ e−r(TM−t)

[

∫ TM

0
er(TM−t

′
)αt

′ [f(kt′ )− kt′ ]dt
′

− S̄ + V

]

≥ f(kt) = f(k̂t)
where the first equality follows from construction, the second inequality follows from the

construction, in particular T̂M < TM , and the argument in Step 1, and the final inequality

follows from the DICs for the original scheme. Hence, the original scheme cannot have been the

optimum. �

Proof of Lemma 3.2. Let 〈{α∗
t }

T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉 be an optimum contract. In Step 1, we

show that k∗t = min{kIt, k
e} for all t, and then in Step 2, we show that α∗

t = 1 for all t, where

0 ≤ t ≤ T ∗
M .

Step 1. k∗
t = min{kIt,k

e} for all t. Observe that k∗t ≤ kIt, ∀t ≤ T ∗
M (otherwise, given the

definition of kIt, DIC at t will be violated). Next, consider the set M = {t ≤ T ∗
M : Either k∗t <

min{kIt, k
e}, or k∗t ∈ (ke, kIt]}. In order to prove this lemma, it is sufficient to show that the

measure of the set M is zero.22 Suppose not. Then ∃M′ and T
′

M < T ∗
M such that (i) M′ ( M,

(ii) t ≤ T
′

M for all t ∈ M′, and (iii) the measure of M′ > 0.

We then construct another scheme 〈{α∗
t }

T ∗
M

t=0, {k
′

t}
T ∗
M

t=0, T
∗
M 〉 such that:

k
′

t =























k∗t , when t /∈ M′ and t ≤ T ∗
M ,

k∗t +min{kIt, k
e}

2
, when t ∈ M′ and k∗t < min{kIt, k

e},

ke + k∗t
2

, when t ∈ M′ and k∗t ∈ (ke, kIt].

22Given our assumption of continuous kt, this ensures that k
∗
t = min{kIt, k

e} for all t.
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Hence by construction ∀t ∈ M′, [f(k
′

t) − k
′

t] > [f(k∗t ) − k∗t ].
23 Further, ∀t ≤ T ∗

M and t /∈ M′,

we have k
′

t = k∗t , and thus [f(k
′

t)− k
′

t] = [f(k∗t )− k∗t ]. Therefore,

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

′

t)− k
′

t]dt >

∫ T ∗
M

0
er(T

∗
M

−t)α∗
t [f(k

∗
t )− k∗t ]dt = S̄,

where the inequality is strict since M′ has a positive measure. Now we check the DICs of the

new contract.

i) DIC at any t /∈ M′ is satisfied because we started with a DIC contract and the continuation

payoff at t under this new contract is no less than that under the original contract whereas the

deviation payoff has not changed.

ii) Consider the change at t where k
′

t =
k∗t +min{kIt, k

e}

2
. The continuation payoff as well

as the deviation payoff at t have increased, but that does not violate DIC because k
′

t ≤ kIt.

iii) Similarly, consider the change at t where k
′

t =
ke + k∗t

2
. The continuation payoff at t has

increased but the deviation payoff at t has decreased. So, DIC at such a t is satisfied.

Next since time is continuous, ∃∆
′

> 0 such that

∫ T ∗
M

−∆
′

0
er(T

∗
M

−∆
′
−t)α∗

t [f(k
′

t)− k
′

t]dt ≥ S̄ and ∆
′

< T ∗
M − T

′

M .

Finally, mimicing the argument of Step 2 of the proof of Lemma 3.1, it can be shown that,

for ∆
′

small enough, DICs are not violated in this new scheme. Thus, for ∆
′

small enough, we

have constructed another scheme 〈{α∗
t }

T ∗
M

−∆
′

t=0 , {k
′

t}
T ∗
M

−∆
′

t=0 , T ∗
M −∆

′

〉 that satisfies the DICs and

the GC, and ends earlier than T ∗
M . Hence, given Lemma 3.1, the scheme 〈{α∗

t }
T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉

cannot have been optimal, which is a contradiction.

Step 2. α∗
t = 1 for all t. The proof is immediate from the argument above. �

Proof of Proposition 3.3. To prove this proposition we introduce the following two lemmas.

Lemma 3.5. Let Assumptions 3.1, 3.2 and 3.3 hold.

(i) The optimal loan scheme is always weakly progressive.

(ii) The optimal loan scheme can never be strictly progressive.

Proof. (i)Note that kIt is strictly increasing over time. This follows since f(kIt) = e−r(T ∗
M

−t)V

∀t ≤ T ∗
M , so differentiating it with respect to t we get re−r(T ∗

M
−t)V > 0. So given Lemma 3.2,

the optimal loan scheme is also strictly increasing over time unless it becomes constant at the

efficient amount ke. Hence, the optimal loan scheme is weakly progressive.

(ii) To prove the claim, we need to show that any progressive loan scheme must be capped

at ke that is ke becomes DIC at some t < T ∗
M . For that it is sufficient to argue that kIT ∗

M
> ke.

This follows since f(kIT ∗
M
) = V 24 and from assumption 3.3 we have f(ke) < S̄.

Hence, the optimum loan scheme can be either progressive with a cap or constant. Next,

we characterise the corresponding parametric conditions. We find that the optimal loan scheme

23Recall ke maximises f(k)− k. Now first consider any t ∈ M′ and k
∗
t < min{kIt, k

e}, f(kt)− kt increases as
we increase kt. Next consider any t ∈ M′ and k

∗
t ∈ (ke

, kIt], f(kt)− kt increases as we decrease kt.
24Recall, kIt denotes the maximum amount of loan which is DIC at t, where 0 ≤ t ≤ TM . Now, DIC at T ∗

M is
V ≥ f(kT∗

M
), hence f(kIT∗

M
) = V
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is “progressive with a cap” if and only if the increase in utility from graduation is modestly

positive. In that event, the efficient level ke cannot be sustained from the very beginning. Thus

the loan amount keeps on increasing till it reaches ke and remains constant thereafter. Finally,

when this increase in utility from graduation is transformative ke becomes DIC from the very

beginning, hence the optimal loan amount remains constant at ke. Hence the following lemma.

Lemma 3.6. Let Assumptions 3.1, 3.2 and 3.3 hold.

(i) The optimal loan scheme is progressive with a cap if and only if the increase in utility

from graduation is not too large:

f(ke)− ke

rS̄ + f(ke)− ke
V < f(ke),

(ii) Otherwise, the optimal loan scheme is constant.

Proof. From the preceding lemma we know that the optimal loan scheme is either progressive

with a cap or constant:

(i) If kI0 < ke then from Lemma 3.2, and the argument in Lemma 3.5, the optimal loan

scheme must be “progressive with a cap”.

(ii) And similarly if kI0 ≥ ke then the optimal loan scheme must be constant at ke.

So we characterise the parametric conditions under which the optimal loan scheme is progressive

with a cap, that is kI0 < ke. We show that

kI0 ≥ ke if and only if
f(ke)− ke

rS̄ + f(ke)− ke
V ≥ f(ke).

• Suppose kI0 ≥ ke: This implies ke is DIC at t = 0. So from Lemma 3.5 we have k∗t = ke

∀t ∈ [0, T ∗
M ]. Then the graduation constraint GC can be written as

∫ T ∗
M

0
er(T

∗
M

−t)[f(ke)−

ke]dt = S̄, which in turn implies that e−rT ∗
MV =

f(ke)− ke

rS̄ + f(ke)− ke
V .

Now observe, f(kI0) = e−rT ∗
MV . Hence, kI0 ≥ ke implies

f(ke)− ke

rS̄ + f(ke)− ke
V ≥ f(ke).

• Similarly f(ke) ≤
f(ke)− ke

rS̄ + f(ke)− ke
V implies kI0 ≥ ke. Hence, the lemma.

Hence, the proposition. �

Proofs of the General Framework.

Proof of Proposition 3.4. For this we need the following two lemmas. The first one char-

acterises
〈

TR
B , T

D
B (t)

〉

the time of withdrawal of savings from the SI in case of repayment and

default at t, where 0 ≤ t ≤ TsM . The second lemma characterises
〈

{σRt }
TsM

t=0 , σ
D
t

〉

where σRt de-

notes the part she wants to save with the SI at any arbitrary t, after repaying and saving with

the MFI (or getting back her savings from the MFI which happens at TsM ), and σDt denotes

the part of f(kst) + SD
t she wants to save with the SI after defaulting at t; where 0 ≤ t ≤ TsM

and 0 ≤ σRt , σ
D
t ≤ 1.
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Lemma 3.7. Let Assumption 3.2 hold. Given any MFI-contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉

1. Suppose the borrower always repays, the optimum TR∗

B satisfies the following:

i) When money in her hand at the termination date of the contract TsM is at least S̄,

she withdraws her savings from the SI at that termination date, that is TR∗

B = TsM

ii) When money in her hand at TsM is less than S̄, she chooses TR∗

B in such a way that

at TR∗

B her savings with the SI becomes exactly equal to S̄.

2. Suppose the borrower defaults at some t, where 0 ≤ t ≤ TsM , the optimum TD∗

B (t) satisfies

the following:

i) When money in her hand at the termination date of the contract t is at least S̄, she

withdraws her savings from the SI at that termination date, that is TD∗

B (t) = t

ii) When money in her hand at t is less than S̄, she chooses TD∗

B (t) in such a way that

at TD∗

B (t) her savings with the SI becomes exactly equal to S̄.

Proof. This proof follows from the facts that graduation is welfare improving so the borrower

wants to graduate as soon as possible and that she is indifferent between consuming an amount

now, and saving and consuming that amount (along with interest) in future. Fomally, we show

this in three steps.

Step 1. We show that the borrower prefers to save and graduate over consuming that

amount. Denote the money in the borrower’s hand at the termination date T , irrespective

of whether the contract was terminated successfully or due to default, by M and the time of

graduation by τ, where τ ≥ T. If she does not graduate her present discounted value of lifetime

utility at T is M . If she graduates at τ her present discounted value of lifetime utility at T is

e−r(τ−T )
[

er(τ−T )M + (V − S̄)
]

.

Given Assumption 3.2, V − S̄ > 0 hence her utility is higher when she graduates.

Step 2. We show that her welfare increases as the time of graduation decreases. For that,

we show that the borrower’s present discounted value of lifetime utility is decreasing in τ.

Differentiating present discounted value of the borrower’s lifetime utility at T from graduation

with respect to τ we get −re−r(τ−T )(V − S̄) < 0. Therefore, she optimally chooses the time of

withdrawal of her savings from the SI as soon as that becomes S̄.

Step 3. We show that when her savings with the SI is not required to graduate, time of

withdrawal of her savings from the SI does not affect her utility. Given our assumptions that

the borrower’s utility function is linear and that the future is discounted in the same way as

the interest rate this is immediate. Recall without loss of generality, we assume that in such

cases the borrower chooses the termination date of the contract as the time of withdrawal of

her savings from the SI. From these three steps the lemma is immediate.

Lemma 3.8. Given an MFI-contract 〈{αst}
TsM

t=0 , γ, {kst}
TsM

t=0 , TsM 〉, the borrower saves as much

as she can with the SI, in case of repayment as well as in case of default:

1. σD
∗

t = 1 for all t, where 0 ≤ t ≤ TsM ,
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2. σR
∗

t = 1 for all t, where 0 ≤ t ≤ TsM .

Proof. 1. For that we fix the borrower’s strategy in case of repayment at 〈σRt , T
R
B 〉 and

from Lemma 3.7 we know that TD∗

B (t) satisfies the following:

i) TD∗

B (t) = t when the amount with which she defaults is at least S̄

ii) Otherwise TD∗

B (t) is such that

er(T
D

B
(t)−t)

[

σDt

[

f(kst) + γ

∫ t

0
er(t−t

′
)αst

′ [f(kst′ )− kst′ ]dt
′
]

+

∫ t

0
er(t−t

′
)σR

t
′ (1− αst

′ )[f(kst′ )− kst′ ]dt
′

]

= S̄.

In (i) she graduates immediately, using the amount she gets from the lender, this is same

as saying that she saves the entire amount with the SI and withdraws immediately. To

keep the notation similar we say that in this case σD
∗

t = 1.

Now for (ii) – as argued above, a borrower is indifferent between consuming an amount

now, and saving and consuming that amount later (along with interest). However, increase

in σDt decreases TD∗

B (t) which implies that the borrower graduates at an earlier date.

Hence, her present discounted value of lifetime utility increases with increase in σDt . Given

limited liability σD
∗

t = 1.

2. Now we show that σR
∗

t = 1 for all t ∈ [0, tsM ]. Observe that following repayment, at any

t < TsM there can be two cases: The borrower defaults at some τ ∈ (t, TsM ] or she repays

at all t ≤ TsM . So we consider both the cases.

(i) Suppose the borrower defaults at some τ ∈ (t, TsM ]. Recall, the borrower’s optimum

strategy in case of default at τ is given by σD
∗

τ = 1 and TD∗

B (τ) as characterised

in Lemma 3.7. Now as observed above, the borrower’s present discounted value

of lifetime utility is decreasing in TD∗

B (τ). Next given a contract, the borrower’s

savings with the SI (weakly) increases as σRt increases and that (weakly) decreases

TD∗

B (τ). So given limited liability constraint, the measure of the set ΩD is zero; where

ΩD = {t ≤ τ : σR
∗

t < 1}.

(ii) The borrower repays at all t ≤ TsM . From Lemma 3.4 and the argument made above

it is obvious that the measure of the set ΩR is zero; where ΩR = {t ≤ TsM : σR
∗

t < 1}.

Hence, the lemma.

Hence, the proposition. �

Proof of Lemma 3.3. To prove this lemma we need to show that at the optimum, (a) the MFI

provides loans at all instances till the borrower graduates i.e. she graduates at the successful

termination date of the contract T ∗
sM and (b) the graduation constraint binds. We prove (a)

and skip (b) as that is very similar to the proof of Lemma 3.1.

(a) Suppose not, the optimal contract be 〈{α∗
st}

T ∗
sM

t=0 , γ
∗, {k∗st}

T ∗
sM

t=0 , T
∗
sM 〉 and the borrower grad-

uate at some T = TR∗

B > T ∗
sM .We construct another DIC contract 〈{α̂st}

T̂sM

t=0 , γ̂, {k̂st}
T̂sM

t=0 , T̂sM 〉
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such that the borrower’s present discounted value of lifetime utility is higher under this

new contract. So the original contract cannot have been optimum. The new contract

〈{α̂st}
T̂sM

t=0 , γ̂, {k̂st}
T̂sM

t=0 , T̂sM 〉 is as follows



































T̂sM = T ∗
sM +∆ where ∆ is such that

∫ T̂sM

0
er(T̂sM−t)[f(k̂st)− k̂st]dt < S̄

k̂st = k∗st ∀t ∈ [0, T ∗
sM ] and k̂st = k∗sT ∗

sM

∀t ∈ (T ∗
sM , T̂sM ]

α̂st = α∗
st ∀t ∈ [0, T ∗

sM ] and α̂st = α∗
sT ∗

sM

∀t ∈ (T ∗
sM , T̂sM ]

γ̂ = γ∗.

We first show that this new contract provides higher utility. Recall, given the borrower’s

optimum strategy she graduates at T̂R∗

B where it is given by

∫ T̂sM

0
er(T̂

R
∗

B
−t)[f(k̂st) −

k̂st]dt = S̄

So, she is better off under this new scheme as she graduates at an earlier date. But

she becomes better off even when she defaults at some t ∈ (T ∗
sM , T̂sM ], so it may not

be obvious that DICs at all t ∈ (T ∗
sM , T̂sM ] are satisfied. However, we show that DICs

at all t ∈ [0, T̂sM ] are satisfied which implies that the original scheme cannot have been

optimum.

DICs of the new contract at any t ∈ [0, T ∗
sM ] are satisfied because we started with a DIC

contract and under this new scheme at any t ∈ [0, T ∗
sM ], the present discounted value of

lifetime utility from repayment has increased whereas that from default has not changed.

Now we argue that DIC at any t̃ ∈ (T ∗
sM , T̂sM ] is also satisfied. For that it is sufficient to

show that the borrower’s total savings till that t̃ is higher than the money in her hand in

case of default.25 So we want to show that

∫ t̃

0
er(t̃−t)[f(k̂st)− k̂st]dt+ f(k̂st̃)− k̂st̃ ≥

∫ t̃

0
er(t̃−t)[1− α̂st(1− γ̂)][f(k̂st)− k̂st]dt+ f(k̂st̃)

26

⇒

∫ T ∗
sM

0
er(t̃−t)α∗

st(1− γ∗)[f(k∗st)− k∗st]dt+

∫ t̃

T ∗
sM

er(t̃−t)α∗
st(1− γ∗)[f(k∗st)− k∗st]dt ≥ k∗sT ∗

sM

.

(3.5.2)

where the second expression follows from the construction. We establish this from the dynamic

incentive compatibility constraint, of the original contract, at T ∗
sM which implies money in hand

at T ∗
sM in case of repayment must be no less than that in case of default. Otherwise given the

borrower’s strategy she would graduate at an earlier date27 in case of default which will violate

25It is sufficient because in case of default the borrower has that money in hand only, to graduate – she saves
that amount with the SI and graduates as soon as that becomes S̄. Now in case of repayment she also gets loan
till T̂sM . Hence the amount which helps her to graduate not only includes savings till that instance, but also the
net return at each instance in future.

26Recall money in hand in case of default at t̃ is

f(k̂st̃) +

∫
t̃

0

e
r(t̃−t)

γ̂α̂st[f(k̂st)− k̂st]dt+

∫
t̃

0

e
r(t̃−t)(1− α̂st)[f(k̂st)− k̂st]dt.

27That is TR
∗

B < T
D

∗

B (T ∗
sM ).
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DIC at T ∗
sM . So, we have

∫ T ∗
sM

0
er(T

∗
sM

−t)[f(k∗st)− k∗st]dt+ f(k∗sT ∗
sM

)− k∗sT ∗
sM

≥

∫ T ∗
sM

0
er(T

∗
sM

−t)[1− α∗
st(1− γ∗)][f(k∗st)− k∗st]dt+ f(k∗sT ∗

sM

)

⇒

∫ T ∗
sM

0
er(T

∗
sM

−t)α∗
st(1− γ∗)[f(k∗st)− k∗st]dt ≥ k∗sT ∗

sM

.

Now expression (3.5.2) is immediate as t̃ > T ∗
sM and

∫ t̃

T ∗
sM

er(t̃−t)α∗
st(1− γ∗)[f(k∗st)− k∗st]dt > 0.

(b) The problem of the MFI thus becomes

Maximise
〈{αst}

TsM
t=0 ,γ,{kst}

TsM
t=0 ,TsM 〉

e−rTsM

[

∫ TsM

0
er(TsM−t)[f(kst)− kst]dt− S̄ + V

]

Subject to: GCR :

∫ TsM

0
er(TsM−t)[f(kst)− kst]dt ≥ S̄,

DIC: ∀t ≤ TsM ; e−r(TsM−t)
[

∫ TsM

0
er(TsM−t

′
)[f(kst′ )− kst′ ]dt

′

− S̄ + V
]

≥ e−r(TD
∗

B
(t)−t)

[

er(T
D

∗

B
(t)−t)

[

∫ t

0
er(t−t

′
)
(

1− αst
′ (1− γ)

)

[f(kst′ )− kst′ ]dt
′

+ f(kst)
]

− S̄ + V

]

.

We want to show that GCR binds. The proof is similar to that of Lemma 3.1, so we skip it

here. �

Proof of Observation 3.1. Suppose not. Then ∃t ∈ [0, TsM ), such that money in the

borrower’s hand in case she defaults at t is no less than S̄, that is,

∫ t

0
er(t−t

′
)
(

1 − αst
′ (1 −

γ)
)

[f(kst′ ) − kst′ ]dt
′

+ f(kst) ≥ S̄. Given Lemma 3.4, in case of default she immediately

graduates and her utility is

∫ t

0
er(t−t

′
)
(

1− αst
′ (1− γ)

)

[f(kst′ )− kst′ ]dt
′

+ f(kst)− S̄ + V

which is higher than e−r(TsM−t)V – present discounted value of lifetime utility from repayment.

Hence, DIC at t cannot be satisfied.

Following the same argument, we get that the money in her hand in case of default at TsM

can be no higher than S̄. �

Proof of Proposition 3.6. A. From Lemma 3.4 we know k∗st = min{ksIt, k
e}, so all we need

to show is that, given assumption 3.4, ksIt is (weakly) increasing in t, where 0 ≤ t < T ∗
sM . Now,

given observation 3.1 and the borrower’s strategy identified in Proposition 3.4, we can write the
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following:

er(T
D

∗

B
(t)−t)

[

∫ t

0
er(t−t

′
)γ[f(k∗

st
′ )− k∗

st
′ ]dt

′

+ f(k∗st)
]

= S̄

⇒ e−r(TD
∗

B
−t) =

1

S̄

[

∫ t

0
er(t−t

′
)γ[f(k∗

st
′ )− k∗

st
′ ]dt

′

+ f(k∗st)
]

So, DIC at any t ∈ [0, T ∗
sM ) can be written as

e−r(T ∗
sM

−t)V ≥
1

S̄

[

∫ t

0
er(t−t

′
)γ[f(k∗

st
′ )− k∗

st
′ ]dt

′

+ f(k∗st)
]

V

From this we can write for any t ∈ [0, T ∗
sM )

f(ksIt) = S̄e−r(T ∗
sM

−t) −

∫ t

0
er(t−t

′
)γ[f(k∗

st
′ )− k∗

st
′ ]dt

′

(3.5.3)

So, to prove that the optimum loan scheme is weakly progressive it is sufficient to show that

the R.H.S of (3.5.3) is increasing in t. Differentiating (3.5.3) with respect to t we get

rS̄e−r(T ∗
sM

−t) − r

∫ t

0
er(t−t

′
)γ[f(k∗

st
′ )− k∗

st
′ ]dt

′

− γ[f(k∗st)− k∗st]

= rf(ksIt)− γ[f(k∗st)− k∗st] > 0.

where the inequality is coming from Assumption 3.4 and k∗st = min{ksIt, k
e}.

B. This implies that the optimal loan scheme is either constant or progressive which may or

may not be capped.

(i) Given Lemma 3.4 and part A of this proposition, a loan scheme is “strictly progressive” if

and only the efficient loan amount is not incentive compatible even at T ∗
sM i.e. ksIT ∗

sM
< ke.

Now, observe f(ksIT ∗
sM

) = (1− γ)S̄. Hence the loan scheme is “strictly progressive” if and

only

(1 − γ)S̄ < f(ke).

This implies that the loan scheme is either “progressive with a cap” or “constant” over

time if and only (1− γ)S̄ ≥ f(ke). Mimicing the steps used in the Proof of 3.3, it can be

shown that

(ii) The optimal loan scheme is “constant” if and only if f(ke) ≤
f(ke)− ke

rS̄ + f(ke)− ke
S̄.

(iii) It is “progressive with a cap” if and only if
f(ke)− ke

rS̄ + f(ke)− ke
S̄ ≤ f(ke) ≤ (1− γ)S̄. �

Proof of Proposition 3.7. To prove this proposition we first introduce the following obser-

vation.

Observation 3.2. The necessary and sufficient condition for the constant scheme, in the gen-

eral case is implied by that in the benchmark case.

Proof. The necessary and sufficient condition for ke to be DIC from the very first instance, in
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the benchmark case, is f(ke) <
f(ke)− ke

rS̄ + f(ke)− ke
V whereas that in the general case is given by

f(ke) ≤
f(ke)− ke

rS̄ + f(ke)− ke
S̄. Since V > S̄, this observation is immediate.

Recall, we say that the investment required to start the technology 〈V, S̄〉 is not large when

f(ke) >
f(ke)− ke

rS̄ + f(ke)− ke
S̄.

Now we prove the proposition in three steps. In the first step, we show that at any t, where

0 ≤ t ≤ T ∗
M , the optimal loan amount is weakly lower in the general case in comparison to that

in the benchmark case. It is strictly lower if and only if S̄ is not large. The next two steps are

obvious. In the second step we show that the time required to graduate is weakly higher in the

general case, it is strictly higher if and only if S̄ is not large. Finally in the third step, we show

that the borrower’s present discounted value of lifetime utility is weakly lower in the general

case than that in the benchmark case. It is strictly lower if and only if S̄ is not large.

Step 1. Since the deviation payoff is higher in the general case where the borrower gets back a

part of her savings with the MFI till date, and can graduate by saving that amount with the

SI, the amount which is DIC in the general case is also DIC in the benchmark case.

Now, the optimum loan amount is the minimum of the efficient amount and the maximum

amount which is DIC, so when ke is not DIC in the benchmark case it is not DIC in the general

case as well, so in that case, the optimum loan amount is higher in the benchmark case than

that in the general case.

Also, when the efficient amount is DIC in the benchmark case but not in the general case,

the optimum loan amount is higher in the former case.

The optimum loan amounts are equal only in those instances where ke is DIC in the general

case. So, the optimal loan schemes under these two cases are identical when ke is DIC at t = 0

in the general case. Recall, that happens if and only if f(ke) ≤
f(ke)− ke

rS̄ + f(ke)− ke
S̄. Therefore,

the optimal loan amount at any t, where 0 ≤ t ≤ T ∗
M , is weakly lower in the general case in

comparison to that in the benchmark case.

Step 2. This proof follows from the preceding step.

Step 3. Since the time required to graduate is weakly lower in the benchmark case than that in

the general case and the borrower’s present discounted value of lifetime utility increases with a

decrease in the time required to graduate, the result is immediate. �

Appendix B

Here we provide some evidence that support various modelling assumptions made in the paper.

A. Outreach. “In FY 2015, 1033 institutions reported an outreach of 116.6 million borrowers

who have access to credit products, corresponding to a gross loan portfolio of USD 92.4

billion... and 98.4 million depositors and account for USD 58.9 billion of deposits”. In

Table 3.1 we provide some more details. Source: MIX (2017).

B. Near Perfect Repayment Rate in Microfinance. Table 3.2 shows that repayment
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rates are very high. Portfolio at Risk (PAR) is one of the indicators of repayment rate.

Low PAR indicates high repayment rate. Source: MIX (2017).

C. Progressive Lending with a Cap. Almost all the MFIs practise progressive lending.

Many of those MFIs set caps as well – loan size cannot increase beyond that. Here we

provide some examples from India, Bangladesh and Vietnam – top three countries by

number of active borrowers. Table 3.3 shows that all the top five MFIs (by number of

active borrowers) of India practise “progressive lending with a cap”. Table 3.4 shows that

all the top five MFIs (by number of active borrowers) of Bangladeh practise “progressive

lending with a cap”. Vietnam is the third largest country by active borrowers and Vietnam

Bank of Social Policies is the largest MFI. In their website it is not mentioned whether

they practise progressive lending or not, but each of the products offered by them has a

cap. Table 3.5 documents that.

D. Savings. We then discuss deposit collection in various parts of the World.

South Asia. Due to regulation, deposit collection in India is low. In fact, Kline and

Sadhu (2015) point out “No microfinance institution registered as an NBFC, currently

accepts deposits because regulation requires that institutions must obtain an investment

grade rating, which no microfinance institution has obtained.” In table 3.6 we document

the savings products offered by SEWA Bank, the largest Indian MFI (by number of

depositors).28 In table 3.7 savings products offered by the top five MFIs in Bangladesh

are documented.

LAC is covered in table 3.8. Colombia, Peru and Bolivia are top three countries by number

of depositors in Latin America and Carribean (LAC).

EAP, Africa and ECA are covered in table 3.9. Philippines, Indonesia and Vietnam are

top three countries by the number of depositors in East Asia and the Pacific (EAP).

Nigeria and Mongolia are top countries by the number of depositors in Africa and Eastern

Europe and Central Asia (ECA) respectively.

28We do not consider Bandhan here, as it has become a bank now and in the website it is not mentioned which
savings products are for poor people.
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A. Global Outreach

Table 3.1: Global Outreach: Borrower-Depositor Source MIX (2017)

Number of Percentage of Number of Percentage of Deposits Percentage of
Regions Active Borrowers Total Borrowers Depositors Number of USD Total

′000 ′000 Depositors m Deposits

Africa 5,778.2 5% 17,928.0 18% 9,212.1 16%
EAP 16,257.5 14% 16,117.9 16% 7,687.2 13%
ECA 3,082.6 3% 5,091.0 5% 7,664.3 13%
LAC 22,495.3 19% 23,708.6 24% 27,293.1 46%

MENA 2,148.4 2% 465.1 0% 251.0 0%
South Asia 66,929.3 57% 35,109.2 36% 6,885.8 12%

Grand Total 116,691.3 100% 98,419.8 100% 58,993.6 100%

B. Near Perfect Repayment Rate in Microfinance – Evidence

Table 3.2: Near Perfect Repayment Rate in Microfinance – Evidence
Percentage of Percentage of Portfolio

Regions Total Borrowers Gross Loan Portfolio at Risk> 30 Days

(GLP)† (PAR)‡

Africa 5% 9% 10.60%
East Asia and the Pacific (EAP) 1% 16% 3.40%

Eastern Europe and Central Asia (ECA) 3% 11% 10.00%
Latin America and the Carribean (LAC) 19% 42% 5.40%
Middle East and North Africa (MENA) 2% 1% 3.60%

South Asia 57% 20% 2.60%
†“Gross Loan Portfolio (GLP)”: All outstanding principals due for all outstanding client loans. This includes current,
delinquent, and renegotiated loans, but not loans that have been written off.
‡“Portfolio at Risk (PAR)”: is one of the indicators of repayment rate. PAR [xx] days is defined as the value of all
loans outstanding that have one or more installments of principal past due more than [xx] days.
Source: MIX (2017): Global Outreach and Financial Performance Benchmark Report 2015.
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C. Progressive Lending with a Cap – Evidence

Table 3.3: India – The Largest Country by Number of Active Borrowers

MFI
No. of Active
Borrowers

’000

Gross Loan
Portfolio
(GLP) m

Description

Product
Name

Progressive
Lending?

Maximum
Loan Amount

INR

Reference/url
(accessed on 8th May, 2018)∗

Bandhan – 2,596.22
Suchana Yes 25,000

https://www.bandhanbank.

com/Microloans.aspx
Srishti Yes 1,00,000

Jana Small
Finance

(Formerly known
as Janalakshmi)

5,888.75 1,974.73

Small Batch Loans
Yes 50,000 http://www.janalakshmi.c

om/products-services/loa

ns-for-individuals
∗(Accessed in January, 2018
before it became a Bank.)

Jana Kisan Loan Yes 1,00,000

Bharat Financial
Inclusion Limited

(Formerly known as
SKS Microfinance

Limited)

5,323.06 1,413.30

Income Generation Loans
(IGL) – Aarambh

Yes 29,565

http://www.bfil.co.in/ou

r-products/

Mid-Term Loans
(MTL) – Vriddhi

Yes 15,010

Long Term Loans
(LTL) Yes 49,785

Share 3,740.00 251.68
General Loans Yes 60,000 http://www.sharemicrofin

.com/products.htmlMicro Enterprise Loans Yes 2,50,000

Shree Kshethra
Dharmasthala
Rural Devt.

Project (SKDRDP)

3,013.18 986.55
Pragathi
Nidhi

Programme
Yes

50,000
(collateralized
thereafter)

Rao (2005)
and https://skdrdpindia.org/

programmes/microfinance/

India: No. of active borrowers 43,153,000 and gross loan portfolio 14,901m. Top 5 MFIs from India by the no. of active borrowers, except Bandhan as number of active borrowers is not
available in MIX Market data, however it is well known that this is the largest MFI in India (Gross Loan Portfolio is the maximum). Source MIX (2017).

https://www.bandhanbank.com/Microloans.aspx
https://www.bandhanbank.com/Microloans.aspx
http://www.janalakshmi.com/products-services/loans-for-individuals
http://www.janalakshmi.com/products-services/loans-for-individuals
http://www.janalakshmi.com/products-services/loans-for-individuals
http://www.bfil.co.in/our-products/
http://www.bfil.co.in/our-products/
http://www.sharemicrofin.com/products.html
http://www.sharemicrofin.com/products.html
https://skdrdpindia.org/programmes/microfinance/
https://skdrdpindia.org/programmes/microfinance/
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Table 3.4: Bangladesh – The Second Largest Country by Number of Active Borrowers

MFI
No. of Active
Borrowers

’000

Gross Loan
Portfolio
(GLP) m

Description

Product Name
Progressive
Lending?

Maximum
Loan Amount

Reference/url
(accessed on

8th May, 2018)

Grameen 7,290.00 1,498.47 Basic Loan Yes

No
(but an individual

gets a loan
as long as she is

below poverty line)

http://www.grameen.com/w

p-content/uploads/bsk-pd

f-manager/GB-2015_33.pdf

https://grameenfoundatio

n.org/sites/default/file

s/books/GrameenGuideline

s.pdf

ASA 6,794.85 1,919.02
Primary Loan

Yes

Constant at the max. when
the economic potential is large.

BDT 99,000 http://www.asa.org.bd/lo

an-products/

Special Loan Otherwise increasing. BDT 10,00,000

BRAC 5,356.52 1,768.61
Microloans (DABI) Yes USD 2,500 http://www.brac.net/imag

es/factsheet/MF_Briefing

_Doc_English.pdf

Small enterprise
loans (PROGOTI)

Yes USD 13,000

Agriculture Loan Yes USD 1,500

BURO
Microfinance
Program

996.22 406.58 Micro-Enterprise Loan
Yes BDT 300,000 https://www.burobd.org/m

icrofinance-loan-product

.php?id=11
Agriculture Loan

Yes BDT 50,000

Thengamara
Mohila
Sabuj
Sangha
(TMSS)

739.80 231.92

Loan for Enterprise
Advancement and

Development (LEAD)
Yes BDT 10,00,000

http://tmss-bd.org/loan-

for-enterprise-advanceme

nt-and-development-lead

Rural Micro Credit
(Jagaron)

Not Mentioned
http://tmss-bd.org/annua

l-report-2016

Ultra Poor Program
(Buniad)

Micro Enterprise
SME Program (Agroshar)

Bangladesh: No. of active borrowers 25,671,000 and gross loan portfolio 7,206m. Top 5 MFIs from Bangladesh by the no. of active borrowers. Source MIX (2017).

http://www.grameen.com/wp-content/uploads/bsk-pdf-manager/GB-2015_33.pdf
http://www.grameen.com/wp-content/uploads/bsk-pdf-manager/GB-2015_33.pdf
http://www.grameen.com/wp-content/uploads/bsk-pdf-manager/GB-2015_33.pdf
https://grameenfoundation.org/sites/default/files/books/GrameenGuidelines.pdf
https://grameenfoundation.org/sites/default/files/books/GrameenGuidelines.pdf
https://grameenfoundation.org/sites/default/files/books/GrameenGuidelines.pdf
https://grameenfoundation.org/sites/default/files/books/GrameenGuidelines.pdf
http://www.asa.org.bd/loan-products/
http://www.asa.org.bd/loan-products/
http://www.brac.net/images/factsheet/MF_Briefing_Doc_English.pdf
http://www.brac.net/images/factsheet/MF_Briefing_Doc_English.pdf
http://www.brac.net/images/factsheet/MF_Briefing_Doc_English.pdf
https://www.burobd.org/microfinance-loan-product.php?id=11
https://www.burobd.org/microfinance-loan-product.php?id=11
https://www.burobd.org/microfinance-loan-product.php?id=11
http://tmss-bd.org/loan-for-enterprise-advancement-and-development-lead
http://tmss-bd.org/loan-for-enterprise-advancement-and-development-lead
http://tmss-bd.org/loan-for-enterprise-advancement-and-development-lead
http://tmss-bd.org/annual-report-2016
http://tmss-bd.org/annual-report-2016
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Table 3.5: Vietnam – The Third Largest Country by Number of Active Borrowers

Vietnam Bank of Social Policies (VBSP)

Product Name
Maximum

Loan Amount
Progressive
Lending?

Reference/url
(accessed on 9th May, 2018)

Poor
Households
Lending

VND 30 million/household

Not
Mentioned

http://eng.vbsp.org.vn/p

oor-households-lending.h

tml
Job

Creation
Enterprises: VND 500,000,000/project.
Households: VND 20,000,000/household

http://eng.vbsp.org.vn/j

ob-creation.html

Overseas
Workers

VND 30,000,000/labor
http://eng.vbsp.org.vn/o

verseas-workers-lending.

html

Business&
Production
Households

in Disadvantaged
Areas

Generally VND 30 million.
In some specific cases,

loan amount can be over
VND 30,000,000

to under
VND 100,000,000

http://eng.vbsp.org.vn/b

usiness-production-house

holds-in-disadvantaged-a

reas.html

Small and
Medium

Enterprises
VND 500,000,000/enterprise

http://eng.vbsp.org.vn/s

mall-and-medium-enterpri

ses.html
Extremely

Disadvantaged
Ethnic Minority

Households

VND 5,000,000

http://eng.vbsp.org.vn/e

xtremely-disadvantaged-e

thnic-minority-household

s.html

Vietnam: No. of active borrowers 7,394,000 and gross loan portfolio 7,937m. VBSP is the largest MFI by the no. of
active borrowers: No. of active borrowers 6,784740 and gross loan portfolio 6,911.69m. VBSP is the largest single
microcredit lender in the world (Haughton and Khandker (2016)).
Source: MIX (2017).

D. Savings

Demand for Savings Service among Poor People and Lack of that

• “The commitment savings account gives you the chance to make a really long-term high-

value swap, suitable for family ambitions like education, marriages and jobs for the young-

sters, land and housing, and more distant anxieties like how to survive after you are too

old and weak to work.” (Rutherford (2009))).

• Poor people save even at a negative interest rate (for example with Jyothi in India (Ruther-

ford (2009))), and with the Susu men in Africa (Besley (1995)).

Deposit Collecting MFIs

• “...(M)any MFIs have become true microbanks, doing both credit and voluntary savings.

Their savings accounts take various forms. Some are completely liquid, allowing deposits

and withdrawals of any amount at any amount, or nearly. Others are time deposits, like

certificates of deposit, which are locked up for agreed periods and pay higher interest in

return. In between there are semi-liquid accounts.... which limit the number, amount, or

both of transactions per month through rules of penalties.” (Roodman (2009) p 261.)

“This counterintuitive combination of saving and borrowing accelerates loan repayment so

that toward the end of a loan cycle, the MFI is actually in debt to its clients” (Roodman

(2009) p 124.)

http://eng.vbsp.org.vn/poor-households-lending.html
http://eng.vbsp.org.vn/poor-households-lending.html
http://eng.vbsp.org.vn/poor-households-lending.html
http://eng.vbsp.org.vn/job-creation.html
http://eng.vbsp.org.vn/job-creation.html
http://eng.vbsp.org.vn/overseas-workers-lending.html
http://eng.vbsp.org.vn/overseas-workers-lending.html
http://eng.vbsp.org.vn/overseas-workers-lending.html
http://eng.vbsp.org.vn/business-production-households-in-disadvantaged-areas.html
http://eng.vbsp.org.vn/business-production-households-in-disadvantaged-areas.html
http://eng.vbsp.org.vn/business-production-households-in-disadvantaged-areas.html
http://eng.vbsp.org.vn/business-production-households-in-disadvantaged-areas.html
http://eng.vbsp.org.vn/small-and-medium-enterprises.html
http://eng.vbsp.org.vn/small-and-medium-enterprises.html
http://eng.vbsp.org.vn/small-and-medium-enterprises.html
http://eng.vbsp.org.vn/extremely-disadvantaged-ethnic-minority-households.html
http://eng.vbsp.org.vn/extremely-disadvantaged-ethnic-minority-households.html
http://eng.vbsp.org.vn/extremely-disadvantaged-ethnic-minority-households.html
http://eng.vbsp.org.vn/extremely-disadvantaged-ethnic-minority-households.html
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• Village Banking Institutions “typically require each village bank member to save. These

forced savings are often a significant percentage of the amount the member has borrowed

from the VBI. For example, forced savings range from 10% to 32% of the amount borrowed

in the four leading Latin American VBIs analyzed in this study. Forced savings serve at

least two major purposes. First, they act as cash collateral... The second purpose ... is to

introduce (the bank members) to the discipline and habit of saving and to the possibilities

that having a sizable savings balance could open up for them. For example, a sizable pool

of savings could be used for emergencies, to pay school fees and other large household

expenditures, to buy tools or machinery, or to start another business” (Westley (2004)).

• “Thus, in effect, the funds serve as a form of partial collateral.” (Morduch (1999)).

• “(C)ollateralizing mandatory savings could offer a win-win solution for both lender and

borrower by providing the MFP” (Microfinance Providers) “with security while at the

same time building the asset base of the client.” (Aslam and Azmat (2012)).

Table 3.6: South Asia: India – Savings Services provided by the Top MFI (by no. of

depositors)

MFI

No. of Depositors

Deposits (USD m)
Product Terms

Reference/url (accessed

on 20th May, 2018)

Shri Mahila Sewa

Sahakari Bank Ltd.

2,00,660

14.08

Regular Savings Product
https://www.sewabank

.com/saving.html

Fixed Deposit
https://www.sewabank.c

om/fixed-deposit.html

Chinta Nivaran Yo-

jana (Worry Riddance

Scheme)

Deposits are made every month up to Five Years. In

any emergency, after one year of joining in the scheme

they can get an overdraft loan.

https://www.sewabank

.com/recurring.html

Kishori Gold Yojana

To encourage member to save money for special oc-

casion. This was aimed at meeting expenses towards

buying gold and gold ornaments during the wedding

of their progeny.
Mangal Prasang Yojana Help members during wedding of their sons and

daughters.
Ghar Fund Yojana

(Housing Fund Scheme)

To enable the member to have a house of their own.

Maturity after 5/10 years

National Pension Scheme https://www.sewabank

.com/pension.html

India: No. of active depositors 374,000 and total deposit USD 329.65m. (We have not considered Bandhan here, as

it has become a Bank now and in the website it is not mentioned which savings products are for the poor people.)

Source: MIX (2017).

https://www.sewabank.com/saving.html
https://www.sewabank.com/saving.html
https://www.sewabank.com/fixed-deposit.html
https://www.sewabank.com/fixed-deposit.html
https://www.sewabank.com/recurring.html
https://www.sewabank.com/recurring.html
https://www.sewabank.com/pension.html
https://www.sewabank.com/pension.html
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Table 3.7: South Asia: Bangladesh – Savings Services provided by the Top Five MFIs

MFI Product Terms
Reference/url

(accessed on 8th May, 2018)

Grameen
Deposits (USD m) 2,604.93

Personal Savings Weekly compulsory savings. Withdrawal at any time is allowed. Alam and Getubig (n.d.),
Rutherford (2010)

Grameen Pension
Scheme (GPS)

For five to ten years. Higher interest rate. Not restricted to retirement
needs: Many younger families see the program as a means to save for medium-
term expenses, such as school fees or weddings in the future for recently born
children.

ASA
No. of Depositors 7,843960
Deposits (USD m) 826.34

Regular Savings:
Clients belonging to Loan
Programs need to deposit
a regular fixed amount.

Min. savings: Tk. 10 per week and Tk. 50 per month for pri-
mary loan; Tk. 50 per week and Tk. 100 per month for special
loan.Members may withdraw from their savings any time maintain-
ing a balance of at least 10% of their loan outstanding.

http://www.asa.org.bd/sa

vings-products/

Voluntary Savings: Excess
of Mandatory/Regular

savings is treated
as voluntary savings.

May deposit any amount above their mandatory weekly savings. Members
may withdraw from their savings anytime maintaining a balance of at
least 10% of their loan outstanding.

Long Term Savings:
Any client can partici-
pate in this product.

Members deposit from Tk. 50 to Tk. 1000. Members can withdraw from
their savings anytime at an interest rate calculated on monthly basis. For
withdrawal before maturity she is given lower rate of return.

Capital Buildup
Savings Fund

Weekly premium is BDT 10 or monthly premium BDT 50.The duration of
CBSF is 400 weeks. For withdrawal before its maturity the borrower is given
interest benefit on deposited amount at a special rate. On death of a borrower
his/her family is given twice the deposited amount as security.

BRAC
No. of Depositors 5,957950
Deposits (USD m) 635.14

General Savings
http://www.brac.net/prog

ram/microfinance/
Safesave Longer-term “commitment savings” account. Deposit regularly for a defined

term of up to ten years and receive higher rates of interest.

BURO
Bangladesh

No. of Depositors 1,449090
Deposits (USD m) 128.14

General Savings
The general savings account is like a current account, where customers can
save or withdraw on demand. https://www.burobd.org/m

icrofinance-savings-prod

uct.php?id=12

Contractual Savings

A way of building up useful lump sums: This savings can be invested or used
for social obligations such as marriages,funeral or childrens education. Higher
interest than general savings. In the contractual savings account clients
agree to regularly deposit a set amount for a set period of time after
which they can withdraw the entire amount plus the interest.

TMSS
No. of Depositors 879600
Deposits (USD m) 73.10

General Savings, Special Savings, Monthly Savings http://tmss-bd.org/annua

l-report-2016

Bangladesh: No. of active depositors 24,353,000 and total deposit USD 4,884m. Source: MIX (2017).

http://www.asa.org.bd/savings-products/
http://www.asa.org.bd/savings-products/
http://www.brac.net/program/microfinance/
http://www.brac.net/program/microfinance/
https://www.burobd.org/microfinance-savings-product.php?id=12
https://www.burobd.org/microfinance-savings-product.php?id=12
https://www.burobd.org/microfinance-savings-product.php?id=12
http://tmss-bd.org/annual-report-2016
http://tmss-bd.org/annual-report-2016


C
o
n
clu

sio
n

61

Table 3.8: Evidence for Savings in Latin America and the Caribbean (LAC)

Country
No. of Depositors
Deposits (USD m)

MFI
No. of Depositors
Deposits (USD m)

Product Terms
Reference/url

(accessed on 9th May, 2018)

Colombia
7,274,000
4,598

Banco Caja
Social

4,655,300
3,352.44

Data not found – –

Peru
5,835,000
9,476

MiBanco
631,770
4,655.30

MiBanco (has) moved strongly into savings Roodman (2009)

Bolivia
3,992,000
6,741

BancoSol
847,660
1,114.13

Liquid Savings Product:
Cuenta de Ahorro

https://translate.googleusercontent.com/translate_c?depth=1&hl=e

n&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://

www.bancosol.com.bo/productos-y-servicios/ahorros/cuentas-de-ah

orro&xid=17259,15700019,15700124,15700149,15700168,15700173,157

00186,15700189,15700201&usg=ALkJrhg1Y7nbNtRsqF0n1UWWp17OjVAokg

Semi-liquid
Savings Product:
Cuenta de Mayor

A minimum balance
has to be maintained.
The maximum number
of withdrawal is 4 per
month.

https://translate.googleusercontent.com/translate_c?depth=1&hl=e

n&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://

www.bancosol.com.bo/productos-y-servicios/ahorros/cuenta-de-aho

rro-mayor&xid=17259,15700019,15700124,15700149,15700168,1570017

3,15700186,15700189,15700201&usg=ALkJrhhJorHTWqzPeD-8_tUdMto06r

nJHw

Fixed Term Deposit:
Deposito A Plazo Fizo

https://translate.googleusercontent.com/translate_c?depth=1&hl=e

n&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://

www.bancosol.com.bo/productos-y-servicios/ahorros/depositos-a-p

lazo-fijo&xid=17259,15700019,15700124,15700149,15700168,1570017

3,15700186,15700189,15700201&usg=ALkJrhhDx-HNwDYl2933OvWISb38AU

HZXw

Sol Seguro: ”(N)icely combines the virtues
of insurance with an incentive to save.”
Some other products include Savings
for children: Solecito (0-12 years) and
SolGeneracion(13-17 years)

https://translate.googleusercontent.com/translate_c?depth=1&hl=e

n&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://

www.bancosol.com.bo/productos-y-servicios/ahorros/solecito-2&xid

=17259,15700019,15700124,15700149,15700168,15700173,15700186,15

700189,15700201&usg=ALkJrhjzlXN1DAVeE2UrGYxgv-RXbg8Chw

https://translate.googleusercontent.com/translate_c?depth=1&hl=e

n&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://

www.bancosol.com.bo/productos-y-servicios/ahorros/sol-generacion

-1-7-2&xid=17259,15700019,15700124,15700149,15700168,15700173,1

5700186,15700189,15700201&usg=ALkJrhh-RLBB7E3bN-AQO2zFi9eIpKEti

Q

https://translate.googleusercontent.com/translate_c?depth=1&hl=en&prev=search&rurl=translate.google.com&sl=es&sp=nmt4&u=https://www.bancosol.com.bo/productos-y-servicios/ahorros/cuentas-de-ahorro&xid=17259,15700019,15700124,15700149,15700168,15700173,15700186,15700189,15700201&usg=ALkJrhg1Y7nbNtRsqF0n1UWWp17OjVAokg
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Table 3.9: Evidence for Savings contd.

Region
Country

No. of Depositors
Deposits (USD m)

MFI
No. of Depositors
Deposits (USD m)

Product Terms
Reference/url

(accessed on 9th May, 2018)

East Asia
and The
Pacific
(EAP)

Philippines
7,244,000

734

ASA
Philippines

1,532,700
135.40

Capital Build-Up (CBU)

CBU is an alternative micro savings ser-
vice for clients designed to promote the
idea of poor families saving for the future
in order to meet family emergencies and
other needs. Withdrawable at any time.

http://asaphil.org/about

/who-we-are/primary-serv

ices.aspx

Locked-in
Capital Build
Up (LCBU)

LCBU is fixed and mandatory, and
serves as a monitoring tool of a
client’s performance and a basis for
determining a clients loan renewal
and any increase in loan amount.
Non-withdrawable although it is
100% refundable.

Indonesia
782000

29

Bank of Rakyat
Indonesia (BRI)

Unit Desa

–
–

“The global goliath of microsavings,
BRI, offers all three” (liquid savings,
locked-up savings and in between).

Roodman (2009)

Vietnam

556000
3,404

Vietnam Bank of
Social Policies (VBSP)

—
2,463.85

Savings Deposit through savings and credit
group (SCG) (An individual gets a loan from
VBSP only if she is a member of SCG and saves)

http://eng.vbsp.org.vn/t

erms-savings-deposits.ht

ml
Demand savings deposit http://eng.vbsp.org.vn/d

emand-savings-deposits.h

tmlTerm savings deposit

Africa

Nigeria
4,240,000
184

Life Above Poverty Or-
ganization (LAPO) Mi-
crofinance Bank

2,631,980
90.97

Offers different savings product including Regular Savings,
Savings Plan Account, Term Deposit Savings, Voluntary Sav-
ings, Individual Savings, Festival Savings, My Pikin Savings

Roodman (2009) and
http://www.lapo-nigeria.

org/

Eastern Europe
and Central
Asia (ECA)

Mongolia
2,987,000
2,404

Khan Bank
2,397,570
2,001.23

Data not found – –

http://asaphil.org/about/who-we-are/primary-services.aspx
http://asaphil.org/about/who-we-are/primary-services.aspx
http://asaphil.org/about/who-we-are/primary-services.aspx
http://eng.vbsp.org.vn/terms-savings-deposits.html
http://eng.vbsp.org.vn/terms-savings-deposits.html
http://eng.vbsp.org.vn/terms-savings-deposits.html
http://eng.vbsp.org.vn/demand-savings-deposits.html
http://eng.vbsp.org.vn/demand-savings-deposits.html
http://eng.vbsp.org.vn/demand-savings-deposits.html
http://www.lapo-nigeria.org/
http://www.lapo-nigeria.org/
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For the Referee

Proof of Remark 3.3. We prove the progressivity of the optimal loan scheme in a restrictive

framework where (a) dissaving is not allowed and (b) the interest rate z charged by the MFI on

loan repayment is time-invariant and exogenously given.29

Let Assumptions 3.1, 3.2 and 3.3 hold and the optimal scheme be 〈{α∗
t }

T ∗
M

t=0, {k
∗
t }

T ∗
M

t=0, T
∗
M 〉.

We want to show that the optimal loan scheme (weakly) increases over time. Note that in this

framework T ∗
M can be ∞ which implies that the borrower never graduates. The profit of the

MFI from this borrower at any t ≤ T ∗
M is (z − 1)kt and that is increasing in kt.

Let us denote the borrower’s present discounted value of lifetime utility from repayment at

any t by Vt, where 0 ≤ t ≤ TM . To show that the optimal loan size is (weakly) progressive

it is sufficient to show that the measure of either [t, t̂] or (t̂, t̄] such that k∗
t
′ > k∗

t
′′ ∀t

′

∈ [t, t̂],

t
′′

∈ (t̂, t̄] and t̄ ≤ T ∗
M is zero. We prove this by contradiction.

Suppose not. Measure of both [t, t̂] and (t̂, t̄] are positive. We construct another DIC contract

such that the profit of the MFI is higher under this new contract, so the new contract cannot

have been optimal. Before that consider DIC at any t
′

∈ [t, t̂]: Vt′ ≥ f(k∗
t
′ ) and similarly DIC

at any t
′′

∈ (t̂, t̄]: Vt′′ ≥ f(k∗
t
′′ ). Now as observed above the profit of the MFI is increasing in

kt, so k
∗
t
′ > k∗

t
′′ and DICs imply V ∗

t
′ > V ∗

t
′′ ∀t

′

and t
′′

, where t
′

∈ [t, t̂] and t
′′

∈ (t̂, t̄] and t̄ ≤ T ∗
M .

The new contract 〈{α̂t}
T̂M

t=0, {k̂t}
T̂M

t=0, T̂M 〉 is as follows:











































k̂t = k∗t and α̂t = α∗
t ∀t ≤ t̂

k̂t = k∗
t̂
and α̂t = α∗

t̂
∀t ∈ (t̂, t̄]

k̂t = k∗
t−t̂

and α̂t = α∗
t−t̂

∀t ∈ (t̄, T̂M ]

T̂M = T ∗
M + [t̄− t̂] if T ∗

M = finite

T̂M = ∞ otherwise.

First observe the profit of the MFI is higher here. Now from the observation above that V ∗
t
′ > V ∗

t
′′

∀t
′

and t
′′

, where t
′

∈ [t, t̂], t
′′

∈ (t̂, t̄] and t̄ ≤ T ∗
M , and the construction it is easy to check that

the new contract is DIC ∀t ≤ T̂M : For that first observe DICs at all t ≤ t̂ are satisfied because

the original contract is DIC and the utility from default at any such t is the same whereas that

from repayment has increased. Second, DICs at any t ∈ (t̂, t̄] is satisfied because the original

contract is DIC at t̂. Finally, DICs at any t ∈ (t̄, T̂M ] is satisfied because the original contract

is DIC at t ∈ (t̂, T ∗
M ]. �

29These two restrictions are with loss of generality. First, not allowing dissaving is with loss of generailty
because in case the borrower does not graduate, this restriction implies that at the optimum there will be no
savings at all. That may impose a serious restriction as we are ruling out the possibility of cycles in the optimum
loan scheme. Second, time-independent, exogenous interest rate is with loss of generailty because this is actually
a choice variable of the MFI, even if we assume that there is an exogenously given upper bound on the interest
rate, the profit-maximizing MFI may optimally choose that to be lower than the upper bound at some instances.
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Chapter 4

How Does Competition among MFIs

affect Moneylenders and Borrowers?

4.1 Introduction

This chapter seeks to understand the consquences of competition among MFIs on the borrowers

and the informal moneylenders. We develop a theoretical model which studies the effects of

increase in the number of the MFIs on the size of the aggregate loan provided by the MFIs,

that provided by the moneylender and the interest rate charged by the moneylender. We also

study the welfare implication of the increase in competition among the MFIs.

The moneylender in our model, like in Jain and Mansuri (2003), provides a bridge-loan to

repay the MFI-loan(s). However in their model bridge-loans are required because of frequent

repayment schedule of the MFIs. In our framework, the bridge-loan is required because the

borrower invests in a risky project, outcome of which is observed by the moneylender but not

by the MFI(s), so in case of project failure the moneylender provides bridge-loan to the poor

borrower which enables her to repay MFI loan(s). In case the borrower does not repay the loan

of a particular MFI, that MFI terminates the contract and renegotiation is not allowed.

We find that the aggregate loan amount provided by the MFIs as well as that provided

by the moneylender decrease and the interest rate charged by the moneylender increases with

the increase in the number of MFIs. The welfare of the borrower decreases and the profit of

the moneylender increases as a consequence of the increase in the competition among MFIs.

These predictions of our theoretical model are supported by empirical findings, in particular an

empirical study conducted by Chowdhury et al. (2017) find similar results.

Intuitively, we get the results above because the MFIs do not share information among

themselves. As a result, with increase in the number of MFIs the threat of termination of

contract by a single MFI becomes less effective. This decreases the maximum amount of loan

which is incentive compatible and hence, the aggregate loan amount provided by the MFIs

decreases. The moneylender, in our framework, only provides bridge-loan, so with increase in

MFI competition size of the loan provided by the moneylender also decreases.

Turning to the intuition behind the welfare implication – we assume that the moneylender is

a profit maximizer and hence he extracts the entire borrower surplus, whenever that is possible.

This implies that the difference in moneylender interest rate, as a result of increase in the
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number of MFIs, is equal to the difference in the proportion of return from total investment

to total investment. Now we assume that the production function in concave which implies

that with a decrease in loan amount viz. investment, the proportion of return to investment

increases. So, the moneylender’s interest rate increases with increase in MFI competition. The

increase in profit due to the increase in interest rate is dominated by the decrease in profit due

to the decrease in loan size. Hence, the moneylender’s profit increases with increase in MFI

competition. The welfare of the borrower decreases with MFI competition because her present

discounted value of lifetime utility is an increasing function of the loan size which decreases

with increase in competition among MFIs.

Finally we find that when the agents (we assume that the moneylender and the borrower

have common discount factor) are very patient, there is over borrowing - this happens because

the objective of the MFI is to increase borrower’s present discounted value of lifetime utility

which is an increasing function of investment till it reaches the efficient amount (without any

risk) and the risk of the project is borne by the moneylender.

The rest of the chapter is organized as follows: Next we describe the basic framework of

the model. Our analysis starts with the case where there is only one MFI and then we allow

for more than one MFIs. In section 4 we compare the optimum outcomes of these two cases.

Finally we conclude.

4.2 The Framework

4.2.1 Payoffs and Technology

Consider an economy with one agent, one moneylender,1 and n MFIs. We analyze the lending

dynamics between these agents in an infinite horizon, discrete time framework. For ease of

exposition, we assume that all the agents are risk neutral, and have the same discount factor δ,

where 0 < δ < 1. The agent has access to a non-deterministic production technology. We also

assume that access to this technology is tied with the MFI contract, that is the agent can invest

in this technology only if she is in a relationship with at least one MFI. An investment of k in

this technology yields f(k) with probability p, (0 < p < 1) and zero with the complementary

probability. The production function f(· ) satisfies the usual assumptions.

Assumption 4.1. f(0) = 0, f
′

(k) > 0, f
′′

(k) < 0, lim
k→∞

f
′

(k) = 0, and lim
k→0

f
′

(k) = ∞.

Given this assumption we define the efficient level of capital as follows

Definition 4.1. The efficient level of capital kE(p) solves pf
′

(k) = 1, given assumption 4.1 it

is unique.

4.2.2 MFIs and the Moneylender

In our framework the main differences between the MFIs and the moneylender are:

1. Benevolence: MFIs are more benevolent than the moneylender, we take an extreme case

where the MFI is benevolent and the moneylender is profit maximizer.

1Like Mookherjee and Motta (2016) we assume that if there are more than one moneylender within a village,
then they collude.
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2. Information: Due to thick interactions, the moneylender has all the information - bor-

rower’s project return, MFI contract, borrower’s repayment decision regarding the MFI

loan and can also enforce repayment perfectly. On the other hand, the MFIs cannot

observe borrower’s project return and other MFI or moneylender’s contract.

3. Cost of Lending: Lending cost of the MFI is lower than that of the moneylender, we

normalise MFI’s lending cost to zero and let that of the moneylender be c, where c > 0.

We assume this because MFIs get subsidised/ cheap funding from outside donors and that

decreases their lending cost.

4. Break even Condition: The MFIs must break even ex post in every period, while the

moneylender only breaks even ex ante. We assume this because the donors who are not

aware of the local situations may impose ex post break even condition.

5. Bridge-loan: Due to this informational advantage, the moneylender may choose to provide

“bridge-loans” to the agent when the project fails. The agent may choose to use this

bridge-loan to repay the MFI loans.

6. Commitment: We assume that the MFIs can commit whereas the borrower defaults on

MFI loan(s) whenever she has incentive to do so.

Due to his informational advantage the moneylender can dictate the borrower about the

number of the MFIs with which she can be in relationships, if at all. The moneylender

chooses this number strategically, in that he let the borrower repay to only those many

number of MFIs for which his present discounted value of lifetime utility is maximized.

We discuss this in details in later section, after stating the framework and assumptions of

our model.

7. Information Sharing: The MFIs do not share any information among themselves.

8. Moneylender has the power to extract any agreed upon surplus from the borrower.

4.2.3 Contracts

Suppose there are n MFIs. A contract of any MFI i, where i ∈ {1, ..., n}, starting from that

period t is given by ξi(t) ≡ 〈ki(t), ri(t)〉. It has two components: ki(t) ≡ {kiτ}
∞
τ=t and r

i(t) ≡

{riτ}
∞
τ=t where k

i
τ and riτ denote the loan amount and the rate of interest respectively, at τ th

period of time. ξi is contingent on the repayment history, the belief about the number of

MFIs from which the borrower takes loans and belief about other MFIs’ and the moneylender’s

contracts. Now due to our assumption of ex post break even condition, MFI i terminates the

ongoing contract whenever the borrower defaults on it’s loan.2 So, only relevant history of

repayment is that of the last period.

For expositional simplicity, we only consider symmetric, stationary contracts.3 The immedi-

ate implication of considering only stationary contracts is that MFI i’s loan amount and interest

2Observe due to ex post break even condition, partial repayment is not allowed in that the MFI terminates
the contract even if the borrower repays a part of the specified amount. Also renegotiation is not allowed.

3Observe we assume that the MFIs can commit and MFI contracts are chosen from the class of stationary
and symmetric contracts. Checking the robustness of the analysis to these assumptions are part of my future
research agenda.
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rate are time independent:

kit = ki and rit = ri ∀i ∈ {1, .., n}.

And similarly implication of considering only symmetric equilbria is that the loan amount and

the interest rate of each MFI are equal: ki =
k

n
where k is the total MFI loan at any period t

and n is the number of MFI and ri = r.

As stated above in our analysis, the role of the moneylender is to provide “bridge-loans”

when the project fails. Since the access to technology f(· ) is assumed to be tied with the MFI

contracts, this relationship between the moneylender and the agent is also tied with the MFI

contracts. In other words, if all the MFIs terminate their contracts, the borrower would not

take any bridge-loan from the moneylender. Now this bridge-loan is over and above any other

ongoing loans (or transactions) between the moneylender and the borrower. So the moneylender

being strategic and profit-maximizer provides bridge-loan contracts if and only if his present

discounted vaule of lifetime utility is (weakly) higher from that (in comparison to that from not

providing any bridge-loan at all).

Formally, the moneylender offers a menu of contracts 〈{R(x),
x

n
(1 + r)k}x∈X〉 where x ∈

X ⊆ X ≡ {0, 1, ..., n} is the number of MFIs whose loans the moneylender wants the borrower

to repay with the bridge-loan and R(x) is the rate of interest in that case. Observe since the

moneylender only provides bridge-loan and partial repayment of any particular MFI loan is not

allowed, he can choose the amount of bridge-loan only by choosing the number of MFIs.

Let us try to understand with an example: Suppose at tth period there are six MFIs, so

X ≡ {0, 1, ..., 6}. Now the moneylender may post any subset of 〈{R(0), 0}; {R(1),
1

6
(1 + r)k};

{R(2),
2

6
(1 + r)k}; {R(3),

3

6
(1 + r)k}; {R(4),

4

6
(1 + r)k}; {R(5),

5

6
(1 + r)k}; {R(6), (1 + r)k}〉

where {R(3),
3

6
(1 + r)k} corresponds to the case where the moneylender provides

3

6
(1 + r)k

amount of bridge loan using which the borrower can repay any three of the six MFI loans and

in case of success in the next period she has to repay (1 +R(3))
3

6
(1 + r)k to the moneylender.

Finally, we assume that the borrower is protected by limited liability. We start our analysis

with one MFI, this not only helps us to understand but also provides us with a benchmark case.

Then we analyse the general case, where there are more than one MFIs. The main objective

of this paper is to compare the equilibrium outcomes of this benchmark case with those of the

general case.

4.3 One MFI

4.3.1 Timeline

Having there been no default till date, the following things happen at any t:

Stage 1: The MFI provides k amount of loan at an interest rate r

Stage 2: The borrower invests k in f(· ) technology and obtains either f(k) with probability p or

zero otherwise.
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Stage 3: The moneylender observes what happened in stages 1 and 2.

(i) In case the project fails, the moneylender announces a subset of 〈{R(0), 0};

{R(1), (1 + r)k}〉 where {R(0), 0} denotes the case where the moneylender does not

provide any bridge-loan and {R(1), (1+r)k} denotes the case where the moneylender

provides (1 + r)k amount of loan (which is equal to the amount to be repaid to the

MFI) and R(1) is the rate of interest on that. So in case of success in the next

period, the borrower has to repay (1 + R(1))(1 + r)k to the moneylender. Since we

are confining ourselves only to the stationary contracts, the moneylender chooses

R(1) in such a way that in case of success, the borrower can repay MFI loan after

repaying moneylender’s loan, if she is willing to do so.

– If the moneylender’s contract includes {R(1), (1 + r)k}, the borrower decides

whether to take that bridge-loan at all or not. In case she decides to take the

bridge-loan, she makes a binding commitment to repay the moneylender in case

of success in the next period4 and the games moves to the next period. In case she

defaults, the MFI terminates the contract. Observe, irrespective of repayment

decision, agent’s instantaneous utility is zero, in case of project failure.

(ii) In case of project success, the future events depend on the previous period’s project

outcome.

– The project was a failure at t− 1th period: Observe the agent must have taken

the bridge loan otherwise the game wouldn’t have reached tth period. So first

she repays the moneylender (1+R(1))(1+r)k and then decides whether to repay

MFI loan or not.

∗ If she repays the MFI loan, she repays (1+ r)k to the MFI. The game moves

to the next period providing her with f(k) − (1 + R(1))(1 + r)k − (1 + r)k

instantaneous utility.

∗ If she does not repay the MFI loan, the MFI terminates the contract and

the agent’s instantaneous utility becomes f(k)− (1 +R(1))(1 + r)k.

– The project was a success at t− 1th period, the agent decides whether to repay

the MFI loan or not.

∗ In case she repays, the game moves to the next period providing her with

f(k)− (1 + r)k instantaneous utility

∗ In case of default the game is terminated and her instantaneous utility in

that case becomes f(k).

4As mentioned above, due to thick interaction the agent cannot (strategically) default on moneylender loan,
also it is not possible for her to take bridge-loan from the moneylender and not repay the MFI.
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4.3.2 Moneylender’s Problem

Let us first consider the problem where the moneylender chooses R(1) in order to maximize

his present discounted value of lifetime utility. Now given limited liability constraint of the

borrower, the moneylender has to choose R(1) in such a way that, in case of success in the next

period it is feasible for the borrower to repay MFI loan.5 So, the problem of the moneylender

is to

Maximize
R(1)

δp(1 +R(1))(1 + r)k − (1 + c)(1 + r)k

+ δ2p(1− p)(1 +R(1))(1 + r)k − δ(1 − p)(1 + c)(1 + r)k

+ δ3p(1− p)(1 +R(1))(1 + r)k − δ2(1− p)(1 + c)(1 + r)k + ...

Subject to:

RC: f(k)− (1 +R(1))(1 + r)k ≥ (1 + r)k.

First, let us explain the Repayment Constraint (RC) which is an immediate outcome of our

assumption of limited liability. The left hand side of this constraint is the amount the borrower

has after repaying the moneylender: f(k) − (1 + R(1))(1 + r) and the right hand side is the

amount to be repaid to the MFI ((1 + r)k) if the borrower wants to continue the relationship

with the MFI. So, this constraint ensures that the amount the borrower has after repaying the

moneylender is high enough to repay the MFI loan.

Next we explain the moneylender’s objective function while choosing R(1) at any period (say

at tth period). The first two terms correspond to the expected present discounted value from

providing loan at this period: with probability p the project becomes successful at t+1th period

5Observe this is due to the fact that we restrict ourselves to the stationary contracts.
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and the moneylender gets (1+R(1))(1+ r)k− (1+ r)k whereas his cost of providing the bridge-

loan is (1+c)(1+r)k. So his expected present discounted value from providing loan at tth period

is δp(1+R(1))(1+r)k− (1+c)(1+r)k. Similarly the third and fourth terms represent expected

present discounted value from providing bridge-loan at t+1th period: The bridge-loan at t+1th

period is provided when the project fails, probability of which is 1 − p. So the moneylender’s

expected present discounted value from that event is δ(1−p)[δp(1+R(1))(1+r)k−(1+c)(1+r)k].

Likewise we get the following terms.

So the moneylender’s job is to choose R(1) in order to maximize this objective function

given RC. Observe the moneylender’s problem can alternatively written as:

Maximize
R(1)

[

1 +
δ(1 − p)

1− δ

][

δp(1 +R(1))(1 + r)k − (1 + c)(1 + r)k
]

Subject to:

RC: f(k)− (1 +R(1))(1 + r)k ≥ (1 + r)k. (4.3.1)

Lemma 4.1. Let assumption 4.1 hold

1. 1 +R(1)∗ =
f(k)− (1 + r)k

(1 + r)k

2. The moneylender offers {R(1)∗, (1 + r)k} if and only if present discounted value of his

lifetime utility from offering this is (weakly) higher than that from offering {R(0), 0}.

Proof.

1. Moneylender’s objective function (4.3.1) is increasing and the constraint gets tighter with

increase in R(1). So, the moneylender would optimally choose R(1) such that RC binds.

Hence the result.

2. Observe, the moneylender can always offer {R(0), 0} and in our simple stationary equi-

librium R(0) is zero. So, his present discounted value of lifetime utility from offering

{R(0), 0} is zero. So he offers {R(1)∗, (1 + r)k} only if his present discounted value of

lifetime utility from offering this is at least zero. So, he offers {R(1)∗, (1 + r)k} only if

[

1 +
δ(1− p)

1− δ

][

δp[f(k)− (1 + r)k]− (1 + c)(1 + r)k
]

≥ 0

�

4.3.3 MFI’s problem

We next turn to the problem of the MFI. As stated above, the MFI is benevolent in that it

wants to maximize the present discounted value of lifetime utility of the agent subject to ex post

break even condition. The MFI is aware of the fact that the project gets successful only with

probability p, but cannot observe the actual outcome.6 So the MFI has to design a contract

such that both the borrower and the moneylender have incentives to continue the relationship:

6Alternatively, we can say that the MFI can observe the project outcome by incurring huge cost whereas the
moneylender, due to thick interaction, observes the project outcome costlessly.
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In case of failure of the project the moneylender should have incentive to offer {R(1)∗, (1+ r)k}

such that the borrower can repay the MFI loan if she has incentive to do so. On the other hand,

the borrower should also have the incentive to take the bridge-loan to repay the MFI loan. Also

in case of success the borrower should have incentive to repay the MFI loan either after repaying

the moneylender (in case the project was a failure in the previous period) or otherwise. As it

can be seen that the incentive of the moneylender who has all the information and provides the

bridge-loan in case of failure, plays an important role. Though the MFI does not provide any

contract to the moneylender directly but it knows the moneylender’s strategic reponses to its

contracts, so the MFI has to incorporate those while designing the contract. We will come back

to this again after we write down the incentive constraint of the borrower as well as that of the

moneylender.

Let us start with the incentive problem of the borrower: In case of success at any period

t, the borrower must (weakly) prefer to repay the MFI loan and continue the relationship over

defaulting. There can be two cases: the project was a success at t − 1th period and it was a

failure at t−1th period. Suppose the project was a success at t−1th period, then the borrower’s

present discounted value of lifetime utility from repayment is

f(k)− (1 + r)k + δp[f(k)− (1 + r)k] + δ2(1− p)p[f(k)− (1 +R(1))(1 + r)k − (1 + r)k]

+δ2p2[f(k)− (1 + r)k] + ...

where [f(k) − (1 + r)k] is the instantaneous utility from repayment at tth period; in the next

period the project becomes successful with probability p, borrower’s instantaneous utility in that

case is [f(k)− (1 + r)k], so the expected present discounted value of that is δp[f(k)− (1 + r)k]

on the other hand at t + 1th period the project fails with probability 1 − p so the borrower’s

instantaneous utility at t+1th in this case is zero, given all the other incentives she takes a bridge-

loan and repays the MFI loan and with probability p her project becomes a success at t+ 2th

period, in which case her instantaneous utility becomes f(k)−(1+R(1))(1+r)k−(1+r)k, hence,

the expected present discounted value of that is δ2(1− p)p[f(k)− (1+R(1))(1 + r)k− (1+ r)k]

and so on... Now the borrower’s utility from default is f(k). So the incentive compatibility

constraint for repayment when the project becomes successful at tth period and also was a

success at t− 1th period is

f(k)− (1 + r)k + δp[f(k)− (1 + r)k]

+δ2(1− p)p[f(k)− (1 +R(1))(1 + r)k − (1 + r)k] + ... ≥ f(k).

Now consider the case where the project was a failure at t− 1th period (success at tth) period.

The borrower’s present discounted value of lifetime utility from repayment is

f(k)− (1 +R(1))(1 + r)k − (1 + r)k + δp[f(k)− (1 + r)k]

+δ2(1− p)p[f(k)− (1 +R(1))(1 + r)k − (1 + r)k] + ...

where f(k)− (1+R(1))(1+ r)k− (1+ r)k is instantaneous utility at tth period from repayment:

the return of the project is f(k) out of which she repays (1+R(1))(1+ r)k to the moneylender,
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(1+r)k to the MFI and then she consumes the rest. The continuation payoff from t+1th period

is same as the previous case. Now the borrower’s utility from default is f(k)−(1+R(1))(1+r)k.

So the incentive compatibility constraint for repayment when the project becomes successful at

tth period and was a failure at t− 1th period is

f(k)− (1 +R(1))(1 + r)k − (1 + r)k + δp[f(k) − (1 + r)k] + ...

≥f(k)− (1 +R(1))(1 + r)k

Now incorporating moneylender’s strategy given by 1+R(1)∗ =
f(k)− (1 + r)k

(1 + r)k
, observe we

can write the borrower’s incentive compatibility constraint in case of project success, irrespective

of whether the project was successful or not at t− 1th period as

[

δp +
δ2p2

1− δ

]

[f(k)− (1 + r)k] ≥ (1 + r)k. ( ICB
M )

Another incentive constraint of the borrower is that the borrower would (weakly) prefer to take

a bridge-loan over not taking that in case of project failure.

δp[f(k)− (1 +R(1))(1 + r)k − (1 + r)k] + δ2p2[f(k)− (1 + r)k]

δ2(1− p)p[f(k)− (1 +R(1))(1 + r)k − (1 + r)k] + δ3p2[f(k)− (1 + r)k] + ... ≥ 0.

The left hand side of the above constraint denotes the expected present discounted value of

lifetime utility of the borrower in case she takes a bridge-loan from the moneylender (and repays

the MFI loan in case her project fails) whereas the right hand of the same represents that from

deviation. Let us explain the left hand side first. At period t, the borrower’s project return is

zero, she takes bridge-loan (1 + r)k and repays the MFI loan. So her instantaneous utility at t

is zero. Then at t + 1th period, her project becomes successful with probability p, she repays

the moneylender and MFI loans and consumes the rest. So, the expected present discounted

value from this contingency is δp[f(k) − (1 + R(1))(1 + r)k − (1 + r)k] which is the first term

of the LHS of the constraint. Again her utility at t+1th period becomes zero in case of failure,

probability of which is 1−p. Then the second term of the LHS of the constraint corresponds to

the instantaneous utility of the borrower at t+ 2th period when her project becomes successful

at t + 1th as well as t + 2th periods, probability of that event being p2. Hence the expected

present discounted value due to this is δ2p2[f(k)− (1+ r)k]. The third term corresponds to the

instantaneous utility of the borrower at t+2th period when her project fails at t+1th period and

succeeds at t+2th period, probability of that event is (1−p)p. So her expected present discounted

value of lifetime utility due to this event is δ2(1 − p)p[f(k) − (1 + R(1))(1 + r)k − (1 + r)k].

Similarly we get the following terms. Finally the right hand side of the constraint denotes

her continuation payoff from not taking the bridge-loan from the moneylender (and hence not

repaying the MFI loan). Hence this constraints ensures that she takes the bridge-loan from

the moneylender to continue the relationship with the MFI forever. Like before, incorporating

moneylender’s strategy, we can write borrower’s incentive compatibility constraint in case of
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project failure as
δ2p2

1− δ
[f(k)− (1 + r)k] ≥ 0.

Observation 4.1. Incentive compatible constraint for taking a bridge-loan is implied by the

incentive compatible constraint for repayment in case of success of the project

Proof.

f(k)− (1 + r)k ≥
(1 + r)k

δp +
δ2p2

1− δ

> 0.

�

This is quite intuitive in that the borrower’s present discounted value of not taking bridge-

loan in case of project failure is zero, so she takes the bridge-loan whenever continuation payoff

is non-negative. Now in case of success the borrower has to repay (1 + r)k, she repays that

amount only if continuation payoff is higher than (1 + r)k which is positive.

Given this observation we ignore the borrower’s incentive constraint for taking a bridge-loan.

Finally as discussed above the moneylender offers {R(1), (1+ r)k} only if he has incentive to do

so, that is only if his present discounted value of lifetime utility from offering {R(1), (1 + r)k}

is as high as that from offering {R(0), 0}. As discussed above, the incentive compatibility

constraint7 of the moneylender becomes

[

1 +
δ(1 − p)

1− δ

][

δp[f(k)− (1 + r)k]− (1 + c)(1 + r)k
]

≥ 0 ( ICML
M )

Given all these constraints discussed above, the MFI’s objective is to maximize present

discounted value of lifetime utility of the borrower:

p2[f(k)− (1 + r)k] + p(1− p)[f(k)− (1 +R(1))(1 + r)k − (1 + r)k] + δp2[f(k)− (1 + r)k] + ...

where p2[f(k) − (1 + r)k] is the instantaneous utility of the borrower when the project was a

success at t−1 as well as at t, p(1−p)[f(k)−(1+R(1))(1+r)k is the instantaneous utility of the

borrower when the project was a failure at t− 1 and success at t and so on. Incorporating the

moneylender’s strategy given by 1 +R(1)∗ =
f(k)− (1 + r)k

(1 + r)k
, the objective function becomes

p2

1− δ
[f(k)− (1 + r)k].

Hence the problem of the MFI, ignoring incentive compatibility constraint of the borrower in

case the project was a failure at t− 1 and moneylender’s break even constraint, is to

Maximize
〈k,r〉

p2

1− δ
[f(k)− (1 + r)k]

Subject to:

ICB
M :

[

δp +
δ2p2

1− δ

]

[f(k)− (1 + r)k] ≥ (1 + r)k

ICML
M : δp[f(k) − (1 + r)k]− (1 + c)(1 + r)k ≥ 0.

7Observe in one MFI case this is just the moneylender’s breakeven condition.
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Lemma 4.2. ICB
M is implied by ICML

M .

Proof. This is immediate from the observation that

[

δp +
δ2p2

1− δ

]

[f(k)− (1 + r)k] > δp[f(k) − (1 + r)k] ≥ (1 + c)(1 + r)k > (1 + r)k.

�

So, the problem of the MFI becomes

Maximize
〈k,r〉

p2

1− δ
[f(k)− (1 + r)k]

Subject to: ICML
M : δp[f(k)− (1 + r)k]− (1 + c)(1 + r)k ≥ 0.

Observe that ICML
M can be written as

δp

1 + c
≥

(1 + r)k

f(k)− (1 + r)k

Now we introduce a definition, basically this definition specifies the maximum amount of loan

(kIM ) for which the moneylender offers {R(1)∗, (1 + r)k}, if loan amount is increased beyond

kIM , then the moneylender incurs loss from offering the bridge-loan and hence does not offer

any. Formally,

Definition 4.2. Given δ, kIM (δ) is the amount of loan such that a moneylender with discount

factor δ is indifferent between offering {R(1)∗, (1 + r)k} and {R(0), 0}. Hence,

δp

1 + c
=

(1 + r)kIM
f(kIM)− (1 + r)kIM

.

Lemma 4.3. Let assumption 4.1 hold

1. rM = 0

2. kM = min{kE(1), kIM}8.

Proof.

1. It is obvious from the observation that a decrease in r, not only increases the objective

function but also relaxes moneylender’s constraint.

2. Putting rM = 0, ICML
M can be written as

δp

1 + c
≥

k

f(k)− k
.

Observe, the right hand side is increasing in k and the left hand side is constant, so ICML
M

is violated for any k > kIM , given the parameters of the model.

8Recall definition 4.1 k
E(p) solves pf

′

(k) = 1, so f
′

(kE(1)) = 1
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Now the objective function of the MFI is increasing in k till kE(1), so whenever ICML
M is

satisfied at kE(1), that is kIM ≥ kE(1) the MFI lends kE(1). When ICML
M is not satisfied

at kE(1), the MFI lends the highest amount which is incentive compatible, so the MFI

lends kIM in that case. Hence, the result

kM = min{kE(1), kIM}.

�

So, there exists parametric conditions under which the borrower gets more than the efficient

amount of loan, as defined in the definition 4.1. We will discuss the intuition behind this, but

before that let us introduce the following corollary and definition.

Corollary 4.1. The optimum loan amount (weakly) increases with future discount factor.

The immediate corollary of the above lemma is, as δ increases, given other parameters of

the model, kIM increases. Next we introduce a definition:

Definition 4.3. δM is defined as the future discount factor such that ∀δ ≥ δM kM = kE(1).

Formally,

δM ≡ δ =
1 + c

p

kE(1)

f(kE(1))− kE(1)
.

So a borrower gets kE(1), which is higher than the efficient amount when p < 1, when

δ ≥ δM and δM ∈ (0, 1).

Alternatively, there is over-borrowing whenever the common discount factor and probability

of success are high. The intuition behind this result is that the risk of the project is borne by

the moneylender and the MFI which designs the contract cares only about the welfare of the

borrower.

The above discussions can be summarised in the following proposition.

Proposition 4.1. Suppose assumption 4.1 hold. There exists a unique equilibrium where

1. MFI offers 〈{kM , rM}〉 where rM is zero and kM = min{kE(1), kIM}, and kIM is given

by
δp

1 + c
=

kIM
f(kIM )− kIM

2. Moneylender offers 〈{R(1)∗, kM}, {R(0), 0}〉 where 1+R(1)∗ =
f(kM)− kM

kM
and R(1)∗ =

0

3. Borrower takes the bridge-loan, repays the MFI always and moneylender in case of success.

4. When p < 1, δ ≥ δM and δM ∈ (0, 1) there is over-borrowing: the borrower gets more

than the efficient amount kE(p).

4.4 MFI Competition

Now we address the case where there are n MFIs. The MFIs do not share informations among

themselves, however each MFI knows that the borrower gets loans from nMFIs. So the borrower
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does not loses her access to MFI loans even if she defaults on one of the n MFI loans (where

n > 1). Even moneylender needs higher incentive to provide bridge-loan so that the borrower

can repay all the n MFIs instead of x MFIs where x < n.

4.4.1 Timeline

Suppose there have been no default on any MFI loan, till date. So, the borrower gets loans

from all the n MFIs. Since we are confining ourselves to only symmetric, stationary case, each

MFI provides
k

n
amount of loan where k is the total amount of loan.

Stage 1: MFI i provides
k

n
amount of loan at an interest rate r, where i ∈ {1, ..., n}.

Stage 2: The borrower invests k in f(· ) technology and obtains either f(k) with probability p or

zero otherwise.

Stage 3: The moneylender observes what happened in stages 1 and 2.

(i) In case the project fails, the moneylender announces 〈{R(x),
(1 + r)xk

n
}x∈X〉 where

X ⊆ X = {0, 1, ..., n}.

– Next, the borrower observes the menu of the moneylender’s contract and decides

whether to take a bridge loan or not and if there are more than one options

which one to take. She accordingly makes a binding commitment to repay the

moneylender in case of success in the next period.9 The games moves to the next

period with those MFIs whose loans the borrower repays using the bridge loan.

The MFIs whose loans the borrower does not repay terminate their contracts.

Observe, irrespective of repayment decision, agent’s instantaneous utility is zero,

in case of project failure.

So taking the example we discussed, suppose the moneylender announces 〈{R(0), 0};

{R(2),
(1 + r)2k

6
}; {R(5),

(1 + r)5k

6
}〉, and the borrower chooses {R(5),

(1 + r)5k

6
}〉.10

Then she repays any five out of the six MFIs using the bridge loan and the game

moves to the next period with those five MFIs.

(ii) In case of project success, the future event depends on the previous period’s project

outcome.

– The project was a failure at t−1th period: Observe the agent must have taken the

bridge loan {R(n), (1+ r)k} at t− 1th period, otherwise the game wouldn’t have

reached tth period with all the n MFIs. So, the borrower repays (1+R(n))(1+r)k

to the moneylender.

∗ Then decides the number of MFIs whose loans she wants to repay. She then

chooses those many MFIs randomly and repays (1+r)
k

n
to each one of them.

The game moves to the next period with those MFIs providing the borrower

with f(k)− (1 +R(n))(1 + r)k− (1 + r)
x

n
k instantaneous utility, where x is

the number of MFIs whose loans the borrower repaid.
9As mentioned above, due to thick interaction the agent cannot (strategically) default on moneylender loan.

10making a binding commitment to the moneylender that in case of success she will repay (1+R(5))
(1 + r)5k

6
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– In case the project was a success at t−1th period, similarly the agent decides the

number of MFIs whose loans she wants to repay. She then chooses those many

MFIs randomly and repays (1 + r)
k

n
to each one of them. The game moves to

the next period with those MFIs providing the borrower with f(k)− (1 + r)
x

n
k

instantaneous utility, where x is the number of MFIs whose loans the borrower

repays.

t

MFI i provides
k

n
at int. rate r

With prob p
f(k) is realized

With prob 1− p
zero is realized

Moneylender
writes off
past loans
if any

Moneylender
announces

〈{R(x),
(1 + r)xk

n
}x∈X〉

Borrower
Chooses y ∈ X

Repays y
MFI loans

Contracts with
those MFIs
move to the
next period

Repays
ML loan

Chooses
Number of
MFIs whose
loans to
repay

Contracts with
those MFIs
move to the
next period

4.4.2 Moneylender’s Problem

Moneylender, like before, wants to maximize his own present discounted value of lifetime utility

by offering 〈{R(x), x(1 + r)
k

n
}x∈X〉 where X ⊆ X ≡ {0, 1, ..., n}. Observe

k

n
is given, so given

MFI’s contract the moneylender first optimally chooses R(x) for each x ∈ {1, .., n}, then he

compares the present discounted value of his lifetime utility from offering each of those x’s.

After that, he chooses X such that the present discounted value of his lifetime utility from

offering {R(x), x(1 + r)
k

n
} for each x ∈ X are equal and that from offering {R(y), y(1 + r)

k

n
}

where y /∈ X is strictly lower.

If there are more than one such {R(x), x(1+r)
k

n
} that is |X| > 1, then the borrower chooses

one of them to maximize her present discounted value of lifetime utility. Each MFI knows these

and offers
k

n
such that n ∈ X, the borrower accepts {R(n), (1 + r)k} and the borrower’s utility

is maximized.

We first discuss the problem of the moneylender, the problem of the moneylender while

choosing R(x) is to

Maximize
R(x)

δp(1 +R(x))x(1 + r)
k

n
− (1 + c)(1 + r)x(1 + r)

k

n

+ δ2p(1− p)(1 +R(x))x(1 + r)
k

n
− δ(1 − p)(1 + c)x(1 + r)

k

n

+ δ3p(1− p)(1 +R(x))x(1 + r)
k

n
− δ2(1− p)(1 + c)x(1 + r)

k

n
+ ...

Subject to:

RC: f(x
k

n
)− (1 +R(x))x(1 + r)

k

n
≥ x(1 + r)

k

n
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First let us explain the Repayment Constraint (RC) which is an immediate outcome of our

assumptions of limited liability and stationary contract. The left hand side of this constraint is

the amount the borrower has after repaying the moneylender: f(x
k

n
)− (1+R(x))x(1+ r)

k

n
and

the right hand side is the amount to be repaid to the MFI if the borrower wants to continue

the relationship with x number of MFI: x(1+ r)
k

n
. So, this constraint ensures that the amount

the borrower has after repaying the moneylender is high enough to repay x MFI loan.

Now we explain the moneylender’s objective function while choosing R(x) at any period (say

at tth period). The first two terms correspond to the expected present discounted value from

providing loan at this period: with probability p the project becomes successful at t+1th period

and the borrower repays (1 +R(x))x(1 + r)
k

n
whereas the moneylender’s cost of providing the

bridge-loan is (1 + c)x(1 + r)
k

n
. So the moneylender’s expected present discounted value from

providing loan at tth period is δp(1 + R(x))x(1 + r)
k

n
− (1 + c)x(1 + r)

k

n
. Similarly the third

and the fourth terms represent expected present discounted value from providing bridge-loan

at t+ 1th period. The borrower takes the bridge-loan at t+ 1th period when her project fails,

probability of which is 1 − p. So the moneylender’s expected present discounted value from

providing loan at t+1th period is δ(1− p)[δp(1 +R(x))x(1 + r)
k

n
− (1+ c)x(1 + r)

k

n
]. Likewise

we get the following terms.

The moneylender’s job is to choose R(x) in order to maximize this objective function given

RC. Observe that the moneylender’s problem can alternatively written as:

Maximize
R(x)

[

1 +
δ(1 − p)

1− δ

][

δp(1 +R(x))x(1 + r)
k

n
− (1 + c)x(1 + r)

k

n

]

Subject to:

RC: f(x
k

n
)− (1 +R(x))x(1 + r)

k

n
≥ x(1 + r)

k

n
. (4.4.1)

Lemma 4.4. 1. The moneylender chooses R(x)∗ such that

1 +R(x)∗ =
f(x

k

n
)− x(1 + r)

k

n

x(1 + r)
k

n

2. The moneylender optimally chooses X where X ⊆ X ≡ {0, 1, ..., n}, that is at optimum he

offers 〈{R(x)∗, x(1 + r)
k

n
}x∈X∗〉 such that

(i) Present discounted value of lifetime utility from offering {R(x)∗, x(1+r)
k

n
} are equal

for each x ∈ X∗ and

(ii) Present discounted value of lifetime utility from offering {R(y)∗, y(1 + r)
k

n
} where

y /∈ X∗ is strictly lower than that from offering {R(x)∗, x(1 + r)
k

n
} where x ∈ X∗.

Proof.

1. Moneylender’s objective function is increasing and the constraint gets tighter with increase
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in R(x). So, the moneylender would optimally choose R(x) such that RC binds. Hence

the result.

2.(i) Suppose not.

a) ∃x
′

∈ X∗ such that the present discounted values of lifetime utility from offering

{R(x)∗, x(1 + r)
k

n
} are equal ∀x ∈ X∗ \ x

′

and the present discounted value of

lifetime utility from offering {R(x
′

)∗, x
′

(1 + r)
k

n
} is strictly higher than that from

offering {R(x)∗, x(1 + r)
k

n
} for any x ∈ X∗ \ x

′

.

Then observe it is (weakly) utility improving for the moneylender to offer {R(x
′

)∗, x
′

(1+

r)
k

n
} only, it is strictly utility improving when the borrower chooses {R(x)∗, x(1 +

r)
k

n
} where x ∈ X∗ \ x

′

. This is a contradiction.

b) ∃x
′

∈ X∗ such that the present discounted values of lifetime utility from offering

{R(x)∗, x(1 + r)
k

n
} are equal ∀x ∈ X∗ \ x

′

and the present discounted value of

lifetime utility from offering {R(x
′

)∗, x
′

(1 + r)
k

n
} is strictly lower than that from

offering {R(x)∗, x(1 + r)
k

n
} for any x ∈ X∗ \ x

′

.

Then observe it is (weakly) utility improving for the moneylender to offer X∗ \ x
′

, it

is strictly utility improving when the borrower chooses {R(x
′

)∗, x
′

(1 + r)
k

n
}. This is

a contradiction.

2.(ii) Similarly suppose not. ∃y /∈ X∗ such that the present discounted value of lifetime utility

from offering {R(y)∗, y(1 + r)
k

n
} is strictly higher than that from offering {R(x)∗, x(1 +

r)
k

n
} where x ∈ X∗. Then it is strictly utility improving for the moneylender to offer

〈{R(y)∗, y(1 + r)
k

n
}〉.

We assume that when the moneylender is indifferent between two contracts {R(x)∗, x(1+

r)
k

n
} and {R(y)∗, y(1+r)

k

n
}, that is when present discounted lifetime utility from offering

{R(y)∗, y(1 + r)
k

n
} is equal to that from offering {R(x)∗, x(1 + r)

k

n
} where x ∈ X∗, the

moneylender offers {R(y)∗, y(1 + r)
k

n
} as well. Hence the result.

�

4.4.3 MFI’s problem

Let us now consider the problem of the MFI. The objective of the MFI is to maximize the present

discounted value of lifetime utility of the borrower subject to ex post break even constraint. As

discussed above, the project gets successful only with probability p, given limited liability, in case

of failure the borrower cannot repay on her own. So the moneylender has to have incentives to

provide bridge-loans . Now observe since there are n MFIs, moneylender may choose to provide

bridge-loans such that it is only possible to repay a subset of MFIs. Since we have confined
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ourselves to symmetric, stationary environment, in that case the borrower would choose the

subset of MFIs randomly. So, in order to avoid default, each MFI has to design contracts such

that both the borrower and the moneylender have incentives to continue the relationships with

all the n MFIs. The moneylender must have incentive to provide {R(n), k} contract for the

bridge-loan when the borrower’s project fails. And the borrower should also have incentive to

repay all the n MFIs, in case of success on her own and in case of failure by taking bridge-loan

from the moneylender.

Let us first consider the incentive of the borrower in case of success at any period t : The

borrower must (weakly) prefer to repay n MFI loans over repaying x MFI loans where x ∈

{0, ..., n− 1}. In the following lemma we show that it is sufficient to consider that the borrower

does not have incentive to deviate and repay n − 1 MFIs instead of n MFIs. Alternatively,

we show that the condition which ensures that the borrower prefers to repay all n MFI loans

over n − 1 MFI loans also ensures that she prefers to repay x MFI loans over x − 1 MFI

loans, where x ∈ {0, ..., n − 1}. Hence recursively, this condition is sufficient to incentivise

the borrower to repay n MFI loans over any x MFI loans. First let us state and explain the

incentive compatibility constraint of the borrower in case of success. The incentive compatibility

constraint of the borrower at any period t when the project becomes successful in both t and

t− 1th period is given by:

f(k)− (1 + r)k + δp[f(k)− (1 + r)k]

+ δ2p2[f(k)− (1 + r)k] + δ2(1− p)p[f(k)− (1 + r)(1 +R(n))k − (1 + r)k] + ...

≥f(k)− x(1 + r)
k

n
+ δp[f(x

k

n
)− x(1 + r)

k

n
]

+ δ2p2[f(x
k

n
)− x(1 + r)

k

n
] + δ2(1− p)p[f(x

k

n
)− x(1 + r)(1 +R(x))

k

n
− x(1 + r)

k

n
] + ...

∀x ∈ {0, ..., n − 1}.

The left hand side of the above incentive compatibility constraint denotes the borrower’s present

discounted value of lifetime utility from repaying all the n MFIs. On the other hand, the right

hand side denotes her present discounted value of lifetime utility from deviation by repaying only

x number of MFIs instead of nMFI where x < n. Now let us explain the incentive compatibility

constraint in more details.

The first two terms of the left hand side of the constraint denote the borrower’s instantaneous

utility after repaying all the n MFI: f(k) is the project return and she repays (1 + r)
k

n
to each

of the n MFIs. Similarly in case of success in the next period, which happens with probability

with p, her instantaneous utility is f(k)− (1 + r)k, so her expected present discounted value of

utility from that is given by δp[f(k) − (1 + r)k]. Again following this event, at t + 2th period

with probability p the agent becomes successful, expected present discounted value from that

contingency is given by δ2p2[f(k)−(1+r)k]. On the other hand, in case her project fails at t+1t

period which happens with probability 1 − p she takes a bridge-loan and repays MFI loans.11

Then in case of success at t+2th period, which happens with probability p, she first repays the

moneylender and then the MFIs. Expected present discounted value from that contingency is

11This is ensured by incentive compatibility constraint in case of failure which we discuss later.
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δ2(1− p)p[f(k)− (1 + r)(1 +R(n))k − (1 + r)k]. Similarly we can get the following terms.

The first two terms of the right hand side of the incentive compatibility constraint denote

the borrower’s instantaneous utility from repaying x number of MFIs: f(k) is the project return

and she repays (1 + r)
k

n
to each of the x MFIs. Since the borrower is repaying only x MFIs

all other n − x MFIs terminate their contracts. So, the borrower gets loans from only those x

MFIs from t+ 1th period. As discussed above for the case of n MFIs, present discounted value

of lifetime utility from continuing the relationship with x MFIs can be interpreted.

The incentive compatibility constraint of the borrower at any period t when the project

becomes successful at tth but was a failure at t− 1th period, is given by:

f(k)− (1 + r)(1 +R(n))k − (1 + r)k + δp[f(k) − (1 + r)k]

+ δ2p2[f(k)− (1 + r)k] + δ2(1− p)p[f(k)− (1 + r)(1 +R(n))k − (1 + r)k] + ...

≥f(k)− (1 + r)(1 +R(n))k − x(1 + r)
k

n
+ δp[f(x

k

n
)− x(1 + r)

k

n
]

+ δ2p2[f(x
k

n
)− x(1 + r)

k

n
] + δ2(1− p)p[f(x

k

n
)− x(1 + r)(1 +R(x))

k

n
− x(1 + r)

k

n
] + ...

∀x ∈ {0, ..., n − 1}.

Observe the difference between this incentive compatibility constraint with the previous one

comes from tth period’s instantaneous utility. This is because the project was a failure at t−1th

period and since the contract has reached tth period with all the n MFIs, the borrower must

have taken {R(n), k} bridge-loan. So after realization of the prject return f(k) she has to repay

(1 + r)(1 + R(n))k to the moneylender, then she decides the number of MFI whose loans she

wants to repay. The left hand side represents the present discounted value of lifetime utility of

the borrower when she repays all the n MFIs and the right hand side represents that when she

decides to repay x number of MFIs. Now the terms of both the sides are immediate from the

previous discussion.

Finally incorporating the moneylender’s strategy

x(1 +R(x)∗)(1 + r)
k

n
= f(x

k

n
)− x(1 + r)

k

n

the incentive compatibility constraints of the borrower at tth period, when the project is suc-

cessful, can be written as: ∀x ∈ {0, ..., n − 1}

[

δp +
δ2p2

1− δ

][

[f(k)− (1 + r)k]− [f(x
k

n
)− x(1 + r)

k

n
]
]

≥ (1 + r)
n− x

n
k.

Now let us turn to the incentive compatibility constraint in case the project fails at tth period.

This constraint ensures that the borrower takes the bridge-loan {R(n), k} and continues the

relationship with all the n MFIs rather than taking any other bridge-loan contract {R(x), x
k

n
}

and continues the relationship with only x MFIs, where x ∈ {0, 1, ..., n − 1}. Observe this also
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captures the scenario where the borrower does not take any bridge-loan at all.

δp
[

f(k)− (1 + r)(1 +R(n))k − (1 + r)k
]

+ δ2p2[f(k)− (1 + r)k]

+ δ2(1− p)p[f(k)− (1 + r)(1 +R(n))k − (1 + r)k] + ...

≥δp
[

f(x
k

n
)− (1 + r)(1 +R(x))k − x(1 + r)

k

n

]

+ δ2p2[f(x
k

n
)− x(1 + r)

k

n
]

+ δ2(1− p)p[f(x
k

n
)− x(1 + r)(1 +R(x))

k

n
− x(1 + r)

k

n
] + ... ∀x ∈ {0, ..., n − 1}.

Given the discussion above, this incentive compatibility constraint is obvious. Like before we

incorporate moneylender’s strategy and rewrite the incentive compatibility constraint for taking

bridge-loan as: ∀x ∈ {0, ..., n − 1}

δ2p2

1− δ

[

[f(k)− (1 + r)k]− [f(x
k

n
)− x(1 + r)

k

n
]
]

≥ 0.

Observation 4.2. Incentive compatibility constraint for repaying n MFIs rather than x MFIs by

taking bridge-loan in case of failure is implied by that in case of success, where x ∈ {0, 1, ..., n−1}.

Proof.

[f(k)− (1 + r)k]− [f(x
k

n
)− x(1 + r)

k

n
] ≥

(1 + r)
n− x

n
k

δp +
δ2p2

1− δ

> 0.

�

So, the only incentive compatibility constraint to induce the borrower to maintain relation-

ship with all the n MFIs is given by ∀x ∈ {0, ..., n − 1}

[

δp+
δ2p2

1− δ

][

[f(k)− (1 + r)k]− [f(
x

n
k)− x(1 + r)

k

n
]
]

≥ (1 + r)
n− x

n
k.

In the next lemma we show that it is sufficient to consider deviation from n to n− 1 MFIs

only.

Lemma 4.5. If the borrower does not have incentive to deviate from n MFIs to n − 1 MFIs,

then she does not also have any incentive to deviate from n to x MFIs where x ∈ {0, 1, ..., n−2}.

Proof. We prove this lemma recursively. We show that the condition which ensures that the

borrower does not have any incentive to deviate from n MFIs to n − 1 MFIs also ensures that

she does not have any incentive to deviate from n − 1 to n − 2 MFIs. Then we show that

this condition also ensures that the borrower does not have any incentive to deviate from any

general x to x− 1 MFIs, given that she did not have that to deviate from x+ 1 to x MFIs. So

the lemma is obvious from the way we show this.
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So we want to show that

[

δp +
δ2p2

1− δ

][

[f(k)− (1 + r)k]− [f(
n− 1

n
k)− (1 + r)

n− 1

n
k]
]

≥(1 + r)
n− (n − 1)

n
k = (1 + r)

1

n
k

⇒
[

δp +
δ2p2

1− δ

][

[f(
n− 1

n
k)− (1 + r)

n− 1

n
k]− [f(

n− 2

n
k)− (1 + r)

n− 2

n
k]
]

≥(1 + r)
n− 1− (n− 2)

n
k = (1 + r)

1

n
k

Observe in order to show this it is sufficient to show that

[f(
n− 1

n
k)− (1 + r)

n− 1

n
k]− [f(

n− 2

n
k)− (1 + r)

n− 2

n
k]

≥[f(k)− (1 + r)k]− [f(
n− 1

n
k)− (1 + r)

n− 1

n
k]

But it is obvious given our assumption that f(· ) is a strict concave function. From this it is

obvious that it can be shown for any general x where x ∈ {1, ..., n − 1}. So we get

f(
1

n
k)− (1 + r)

1

n
k > [f(

2

n
k)− (1 + r)

2

n
k]− [f(

1

n
k)− (1 + r)

1

n
k]

>[f(
3

n
k)− (1 + r)

3

n
k]− [f(

2

n
k)− (1 + r)

2

n
k]

...

>[f(k)− (1 + r)k]− [f(
n− 1

n
k)− (1 + r)

n− 1

n
k] ≥

(1 + r)
1

n
k

δp+
δ2p2

1− δ

.

Now it is obvious that

[f(k)− (1 + r)k]− [f(
x

n
k)− (1 + r)

x

n
k] >

(1 + r)
n− x

n
k

δp +
δ2p2

1− δ

Hence, the lemma. �

So, the only incentive compatible constraint for the borrower an MFI needs to consider is

given by

[f(k)− (1 + r)k]− [f(
n− 1

n
k)− (1 + r)

n− 1

n
k] ≥

(1 + r)
1

n
k

δp +
δ2p2

1− δ

( ICB
c )

Next we turn to the moneylender’s incentive problem: The moneylender must (weakly) prefer to

offer bridge-loan {R(n), k} over any other bridge-loan contract {R(x),
x

n
k} where x ∈ {0, ..., n−
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1}. As discussed above the moneylender offers {R(n), k} only if

δp[f(k)− (1 + r)k]− (1 + c)(1 + r)k

≥ δp[f(
x

n
k)− (1 + r)

x

n
k]− (1 + c)(1 + r)

x

n
k ∀x ∈ {0, 1, ..., n − 1}.

Similar to the case of borrower’s incentive problem, here also we show that it is sufficient to

consider that the moneylender (weakly) prefers to offer {R(n), k} over {R(n− 1),
n− 1

n
k}.

Lemma 4.6. If the moneylender weakly prefers to offer bridge-loan contract {R(n), k} over the

bridge-loan contract {R(n−1),
n− 1

n
k}, then he also prefers to offer {R(n), k} over {R(x),

x

n
k}.

Proof. Can be shown using the arguments of the previous lemma. �

So, the only incentive compatible constraint for the moneylender an MFI needs to consider

is given by

δp
[

[f(k)− (1 + r)k]− [f(
n− 1

n
k)−

n− 1

n
(1 + r)k]

]

≥ (1 + c)(1 + r)
1

n
k. ( ICML

c )

So the problem of an MFI is to

Maximize
〈 k
n
,r〉

p2

1− δ
[f(k)− (1 + r)k]

Subject to:

ICB
c : [f(k)− (1 + r)k]− [f(

n− 1

n
k)− (1 + r)

n− 1

n
k] ≥

(1 + r)
1

n
k

δp +
δ2p2

1− δ

ICML
c : δp

[

[f(k)− (1 + r)k]− [f(
n− 1

n
k)−

n− 1

n
(1 + r)k]

]

≥ (1 + c)(1 + r)
1

n
k.

In the following lemma we show that it is sufficient to consider ICML
c only.

Lemma 4.7. ICML
c implies ICB

c

Proof. Observe ICML
c can be written as

δp

1 + c
≥

(1 + r)k

n
[

f(k)− f(
n− 1

n
k)
]

− (1 + r)k

ICB
c can be written as

(1− δ)δp + δ2p2

1− δ
≥

(1 + r)k

n
[

f(k)− f(
n− 1

n
k)
]

− (1 + r)k

Also observe that
(1 + r)k

n
[

f(k)− f(
n− 1

n
k)
]

− (1 + r)k
is an increasing function of k. So in order

to prove the lemma we show that
(1− δ)δp + δ2p2

1− δ
>

δp

1 + c
, hence any k for which ICML

c is
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satisfied, ICB
c is also satisfied.

(1− δ)δp + δ2p2

1− δ
−

δp

1 + c
=
δ2p2 + c[(1− δ)δp + δ2p2]

(1− δ)(1 + c)
> 0

�

So, the problem of an MFI can be written as

Maximize
〈 k

n
,r〉

p2

1− δ
[f(k)− (1 + r)k]

Subject to:

ICML
c : δp

[

[f(k)− (1 + r)k]− [f(
n− 1

n
k)−

n− 1

n
(1 + r)k]

]

≥ (1 + c)(1 + r)
1

n
k

As observed above ICML
c can be written as

δp

1 + c
≥

(1 + r)k

n
[

f(k)− f(
n− 1

n
k)
]

− (1 + r)k

Like before we define kIc such that the moneylender is indifferent between offering {R(n)∗, (1+

r)k} and {R(n− 1)∗,
n− 1

n
(1 + r)k}. Formally,

Definition 4.4. kIc(δ) is defined as,

δp

1 + c
=

(1 + r)kIc

n
[

f(kIc)− f(
n− 1

n
kIc)

]

− (1 + r)kIc

.

Lemma 4.8. Let assumption 4.1 hold

1. rc = 0

2. kc = min{kE(1), kIc}
12.

Proof. The proof is same as that of lemma 4.3, so we skip it here. �

So, there exists parametric conditions under which the borrower gets more than the efficient

amount of loan, as defined in the definition 4.1. Also like before we introduce the following

definition.

Definition 4.5. δc is defined as the future discount factor such that ∀δ ≥ δc kc = kE(1).

Formally,

δc ≡ δ =
1 + c

p

kE(1)

n
[

f(kE(1)) − f(
n− 1

n
kE(1))

]

− kE(1)
.

So there is over-borrowing when p < 1, δ ≥ δM and δM ∈ (0, 1).

The above discussions can be summarised in the following proposition.

Proposition 4.2. Suppose assumption 4.1 hold. There exists a unique equilibrium where

12Recall definition 4.1 k
E(p) solves pf

′

(k) = 1, so f
′

(kE(1)) = 1
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1. MFI offers 〈{kc, rc}〉 where rc is zero and kc = min{kE(1), kIc}, and kIc is given by
δp

1 + c
=

kIc

n
[

f(kIc)− f(
n− 1

n
kIc)

]

− kIc

2. Moneylender offers 〈{R(n)∗, kc}, {R(n− 1)∗,
n− 1

n
k}〉 where 1+R(n)∗ =

f(kc)− kc

kc
and

1 +R(n− 1)∗ =
f(
n− 1

n
kc)−

n− 1

n
kc

n− 1

n
kc

3. Borrower takes the bridge-loan, repays all the n MFI always and moneylender in case of

success.

4. When p < 1, δ ≥ δc and δc ∈ (0, 1) there is over-borrowing: the borrower gets more than

the efficient amount kE(p).

4.5 Comparison

In this section we compare the scenario where there is one MFI with that where there are n

MFIs, where n > 1. We compare MFI loan amount, moneylender’s interest rate, bridge-loan

amount and finally the welfare of the borrower and the profit of the moneylender between these

two scenario.

4.5.1 MFI Loan Size

As we have observed moneylender’s incentive constraint is stronger than that of the borrower

irrespective of the number of MFIs present in the economy. So we try to understand how

moneylender’s incentive changes as the number of the MFI increases in the economy.

When there are more than one MFIs, the moneylender knows that even if he provides bridge-

loan to repay only x MFIs loans, where x < n, then also the relationship with the MFIs will

not be terminated compeletely, it will be continued with those x MFIs. So alternatively, as

the number of the MFIs increases the moneylender can choose the “amount” of bridge-loan

more finely, by choosing the number of MFIs whose loans to be repaid using the bridge-loan.

Note that due to our assumption that f(· ) is strictly concave and the cost of providing loan

is linear, marginal profit of the moneylender is higher when k is low. Also, the moneylender

incurs cost of lending one period earlier than he gets the benefit from that lending, if any. So

when a moderately motivated13 moneylender has just two options - either provide the entire

amount to be repaid (say k) and continue the relationship or provide nothing which leads to

the termination of the relationship, the moneylender may choose the former. However when

the same moneylender has the option to provide either the entire amount and continue the

relationship with all the n MFIS or provide only a part of that and continue the relationship

with a subset of n MFIs, he may choose the latter. Hence k was incentive compatible with one

MFI but is not incentive compatible when there are n MFIs. So, the MFIs have to decrease the

loan amount to avoid default.

13We formalize “moderately patient” in the following paragraphs.
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Hence we can see that the future discount factor plays an important role which gives us our

next lemma. The minimum patience level required to provide kE(1) amount of bridge-loan is

higher when there are n MFIs vis-a-vis when there is one MFI. Given this lemma, it is evident

that aggregate loan amount in both the markets are equal when future discount factor is higher

than δc.

Lemma 4.9. δc > δM .

Proof.

δc − δM

=
1 + c

p

kE(1)

n
[

f(kE(1))− f(
n− 1

n
kE(1))

]

− kE(1)
−

1 + c

p

kE(1)

f(kE(1)) − kE(1)

=
(1 + c)kE(1)

p

f(kE(1))− kE(1)− nf(kE(1)) + nf(
n− 1

n
kE(1)) + kE(1)

[

n
[

f(kE(1)) − f(
n− 1

n
kE(1))

]

− kE(1)
][

f(kE(1)) − kE(1)
]

=
(1 + c)kE(1)

p

n
[

f(
n− 1

n
kE(1)) −

n− 1

n
f(kE(1))

]

[

n
[

f(kE(1)) − f(
n− 1

n
kE(1))

]

− kE(1)
][

f(kE(1)) − kE(1)
]

>0.

where the last inequality is coming from our assumption that f(· ) is a concave function.

�

Now we compare the optimum loan size when there is one MFI vis-a-vis when there are n

MFIs. In fact the optimum loan size is a monotonice function of the number of the MFIs. In the

next lemma we show that the optimum loan size when there is one MFI is (weakly) higher than

that when there are n MFIs, they are equal when future discount factor is very high namely

δ ≥ δc, otherwise the former is strictly higher.

Lemma 4.10. kM is weakly higher than kc.

1. When δ ∈ [δc, 1] kc = kM = kE(1)

2. When δ < δc kM > kc.

Proof.

1. Recall when δ ≥ δc kc = kE(1) and when δ ≥ δM kM = kE(1).

Now, δc > δM , so when δ ∈ [δc, 1] kc = kM = kE(1).

2. δ < δc :

a) When δ ∈ [δM , δc), kM = kE(1) > kIc(δ) = kc.

b) When δ < δM

kM = kIM (δ) < kE(1) and kc = kIc(δ) < kE(1).
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Let us now compare kIM (δ) with kIc(δ).

Recall
δp

1 + c
=

kIc

n
[

f(kIc)− f(
n− 1

n
kIc)

]

− kIc

.

Now observe that
δp

1 + c
is a constant, whereas

k

n
[

f(k)− f(
n− 1

n
k)
]

− k
is an increasing

function of k and when n > n
′

k

n
[

f(k)− f(
n− 1

n
k)
]

− k
>

k

n′
[

f(k)− f(
n

′
− 1

n
′ k)

]

− k

.

So, kIc(n) must be less than kIc(n
′

) in order to maintain the equality. In particular

kM = kIM = kIc(1) > kIc(n) = kc.

Hence, the result.

�

4.5.2 Moneylender’s Loan Size and Interest Rate

Now we study the effect of the increase in the number of the MFIs on the moneylender’s interest

rate and on the amount of loan. The moneylender only provides bridge-loan in our framework,

so as loan amount is weakly decreasing with the number of the MFIs, so is the bridge-loan.

Let us now compare R(n)∗ and R(1)∗, where n > 1. Since f(· ) is a concave function and

optimum loan amount is (weakly) lower when there are nMFIs in comparison to that when there

is one MFI, so average net product is higher in the former scenario. Now, the moneylender’s

gross interest rate is the average net product which implies that R(n)∗ is higher than R(1)∗.

This result is driven by the fact that the moneylender’s “bargaining power” in the competitive

market is higher, so loan amount is lower which in turn increases the moneylender’s interest

rate. Hence the following lemma.

Lemma 4.11. 1. Bridge-loan is (weakly) lower when there are more than one MFIs.

2. Moneylender’s interest rate is (weakly) higher when there are more than one MFIs.

Proof.

1. This is trivial in that the moneylender provides bridge-loan only to repay MFI loan(s).

Since the aggregate loan amount is (weakly) lower when there are more than one MFIs

than that when there is only one MFI, so is the bridge loan.

2. Recall 1 +R(n)∗ =
f(kc)− kc

kc
and 1 +R(1)∗ =

f(kM )− kc

kM
.

So, R(n)∗−R(1)∗ =
f(kc)

kc
−
f(kM )

kM
≥ 0, where the last inequality is strict when kc < kM

and we get this inequality from our assumption that f(· ) is a strict concave function.14

14Differentiating
f(k)

k
with respect to k we get

f
′

(k)k − f(k)

k2
<)0 since f(· ) is a strict concave function.
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Hence the result.

�

4.5.3 Welfare

Observe, the borrower’s present discounted value of lifetime utility is increaseing in k when

k < kE(1). Now when δ < δc, kc < kM and kM never exceeds kE(1). Hence borrower’s present

discounted value of lifetime utility is (weakly) higher when there is one MFI rather than n

MFIs, strictly higher when δ < δc. On the other hand as it is evident from the above discussion

that moneylender’s present discounted value of lifetime utility is (weakly) higher when there

are more than one MFI than that when there is one MFI. In the following lemma we show this

formally.

Lemma 4.12. 1. The borrower’s present discounted value of lifetime utility is (weakly)

higher when there is one MFI in comparison to that when there are more than one MFIs

in the economy.

2. The moneylender’s present discounted value of lifetime utility is (weakly) lower when there

is one MFI in comparison to that when there are more than one MFIs in the economy.

Proof.

1. Observe the borrower’s present discounted value of lifetime utility is given by
p2

1− δ
[f(k)−

k] which is an increasing function of when k < kE(1). So, when δ ∈ [δc, 1] borrower’s

present discounted value of lifetime utility in both the cases are equal whereas when

δ < δc kc < kM and kM never exceeds kE(1). Hence the result.

2. Here also when δ ∈ [δc, 1] moneylender’s present discounted value of lifetime utility in

both the cases are equal.

Now let us consider the case δ < δc

ML’s PDV of lifetime utility|n MFI −ML’s PDV of lifetime utility|1 MFI

=
[

1 +
δ(1 − p)

1− δ

][

[

δp[f(kc)− kc]− (1 + c)kc
]

−
[

δp[f(kM )− kM ]− (1 + c)kM
]

]

=δp[−δp[f(kM )− kM ]− (1 + c)kM

=δp[f(kIc)− nf(kIc) + nf(
n− 1

n
kIc)]

=δpn
[

f(
n− 1

n
kIc)−

n− 1

n
f(kIc)

]

>0.

where we get the second equality by putting kc = kIc and k
M = kIM and the last inequality

from our assumption that f(· ) is a concave function.

�

Summarizing the above discussion we get the following proposition.
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Proposition 4.3. 1. As the number of the MFI increases aggregate optimum MFI loan size

(weakly) decreases.

2. As the number of the MFI increases moneylender’s loan amount (weakly) decreases.

3. As the number of the MFI increases moneylender’s interest rate (weakly) increases.

4. The borrower’s present discounted value of lifetime utility is (weakly) higher when there is

one MFI in comparison to that when there are more than one MFIs in the economy.

5. The moneylender’s present discounted value of lifetime utility is (weakly) lower when there

is one MFI in comparison to that when there are more than one MFIs in the economy.

4.6 Conclusion

This chapter seeks to provide a theoretical explanation of the empirical findings that as competi-

tion among MFIs increases aggregate MFI loan size, moneylender loan size decrease, borrower’s

welfare decreases whereas moneylender’s profit increases. As stated above, we assume that the

MFIs can commit and MFI contracts are chosen from the class of stationary and symmetric

contracts. Checking the robustness of the analysis to these assumptions are part of my future

research agenda.

This study, hence, contributes to the literature where it is argued that competition among

MFIs not necessarily improve the borrower’s welfare especially when the MFIs are inherently

benevolent.
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Conclusion

This thesis studies the dynamics of credit contracts in a context where neither legal nor social

enforcement of repayment is possible and the borrowers are strategic, however repayment rate

is very high. So, this incidence of high repayment solely depends on the dynamic incentives.

Part I comprises two chapters and provides two explanations of progressive lending in two

different frameworks. First, where the borrower has a preference for consumption smoothing

and has access to a technology to transfer money from one period to another even at autarky.

In the second framework, there is a possibility of graduation which requires a minimum amount

of wealth and the economic opportunity of an agent with endowment below that threshold is

very limited in that capital depriciates completely within a period. The benevolent lender’s job

is to help the borrower to accumulate that minimum wealth which is required to graduate.

Part II comprises one chapter which studies the effects of competition among MFIs on MFI

loan size, informal moneylender loan size, borrower’s and moneylender’s welfare. We find that

the aggregate MFI loan size as well as the moneylender loan size decrease with increase in

the number of MFIs. However, moneylender’s interest rate increases with the increase in the

number of the MFIs. We also find that the borrower’s welfare decreases and the moneylender’s

profit increases with increase in the number of MFIs.

5.1 Future Work

5.1.1 Part I

We plan to extend chapter 2 of this thesis along several dimensions. Since, longrun consumption

and investment are independent of whether credit is provided or not, we want to rank the growth

rate and hence, the present discounted value of lifetime utilities of the agents with different initial

wealth. This is important especially when the lender is credit constrained and this will help us

understand the policy implications. Next, we want to check the robustness of our analysis by

changing the curvature of the utility function as we have used the concavity of utility function

in our analysis.

We would also explore the case where there is nonconvexity in the transformation technology,

this merges chapter 2 with chapter 3. So, alternatively we want to extend the analysis to the

case where there is a possibility of graduation (as defined in chapter 3) and the agent has concave

utility function.

92
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All the analyses have been done assuming that the lender is benevolent, so by definition the

lender’s and the agent’s objectives are alligned (given the lender’s no loss condition). We think

it would be interesting to see how far, qualitatively, these results continue to hold when the

lender is motivated (maximizes the weighted sum of his own profit and the borrower’s utility)

and at extreme is a profit maximizer.

Though relaxing commitment requirement from the lender’s side seems to be an interesting

extension, our conjecture is that all the results go through, as far as the lender is benevolent and

credit constrained (for the first chapter we need the lender to be credit constrained, otherwise he

can simply write off all the past loans at the beginning of any period). This lack of commitment

may alter the results when the lender is a profit maximizer and we plan to address that.

Finally, we want to explore the case where the agent has self-control problem (in the sense

made precise in Gul and Pesendorfer (2001, 2004)). Our conjecture is that non-trivial, sustain-

able, DIC contracts, in this case, do exist,1 even when the lender cannot provide access to any

superior technology, if the time of repayment and the time of investment differ and the time of

consumption lies in between those two stages (as in Duflo et al. (2011)).

5.1.2 Part II

First, as stated in the text: we assume that the MFIs can commit and MFI contracts are chosen

from the class of stationary and symmetric contracts. Checking the robustness of the analysis

to these assumptions are part of my future research agenda.

Second, we want to relax the commitment requirement from the MFI’s side, this is a non-

trivial excercise in that the moneylender provides bridge-loans in case of failure and the borrower

repays him in the next period in case of success. The amount to be repaid to the moneylender

depends on the return from investment which further depends on the loans provided by the

MFIs in the next period.

The analyses we have done so far, assume that the moneylender can charge any interest rate

he wants to. We think this is a valid assumption given his power in a village economy. But it

is interesting to relax this assumption and analyze the optimum contracts and study the effects

of MFI competition when the moneylender is non-strategic and the moneylender loan schedule

is exogenously given.

Finally, it would be very interesting to explore the class of non-stationary contracts, however

that is technically quite challenging and hence we keep that in our very longrun agenda.

1In fact, Gul and Pesendorfer (2004) address the Bulow and Rogoff (1989b) problem and with an example
show the existence.
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