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Chapter 1

Introduction

Collective decision making is an important social issue, since it depends on individual

preferences that are not publicly observable. Therefore, the question is, whether it

is possible to elicit the private information available to individuals and then how to

extract the private information in various strategic environment; “Mechanism design”

deals with these questions.

The difference between game theory and mechanism design is that, the former tries

to predict the outcome of a strategic environment in some “equilibrium” but the latter

tries to design or restrict the environment in such a way that the desired objective

is attained, that is, the equilibrium outcome of that designed environment coincides

with the objective of the designer. Note that, the message provided by the interacting

agents may be quite abstract in nature but due to the famous“revelation principle” we

restrict our attention to direct mechanism only.

In general, mechanism may or may not involve monetary payment to incentivize

agents to reveal their private information. The voting environment is an example

where monetary payment is not involved while designing a mechanism. A celebrated

result in this environment is due to Gibbard (1973) and Satterthwaite (1975) where they

show that the only unanimous and strategy-proof voting rule is dictatorial if there are

at least three candidates or alternatives and the domain of preference is unrestricted.

But if the domain of preference is quasi-linear then designing a mechanism involving

money leads to positive outcome particularly in case of dominant strategy implemen-
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tation. A few popular results in quasi-linear utility environment are due to Vickrey

(1961), Clarke (1971) and Groves (1973) where the main course of discussion is the

harmony of outcome efficient allocation along with dominant strategy implementa-

tion. Substantial part of this thesis deviates from outcome efficient allocation and re-

sorts to other notions of allocation. While the essay in Chapter 2 finds the implication

of Rawls’ allocation, the essays in Chapter 3 and Chapter 4 deal with budget balanced

affine cost minimizer rules and egalitarian allocation rules respectively. The notion of

implementation used in all the three essays of this thesis is mainly strategy-proofness

or dominant strategy incentive compatibility.

All the essays in this thesis are restricted to “sequencing” problem. There are vast

amount of mechanism design literatures that address many important issues in this

framework. Starting with Dolan (1978) this literature got enriched with the contribu-

tion of Suijs (1996), Mitra (2001), Mitra (2002), Hain and Mitra (2004) and many others.

The general features of a sequencing problem are as follows: (1) There are n agents and

a single server, (2) the server can provide services of non-identical processing length

but can process only one particular service at a time. (3) Jobs may not be identical

across agents, so their processing time may differ; we assume the processing time is

common knowledge. (4) Waiting for the service is costly, monetary transfers are given

to the agent to compensate them. (5) Agents have quasi-linear preferences over the

positions in queue and monetary transfers. A real life example of a sequencing prob-

lem was given by Suijs (1996). He considered a large firm that has several divisions

that need to have service facility provided by the maintenance and repairing unit of

the firm. Since the maintenance and repairing unit can only serve one division at a

time, when a number of divisions ask for service, each division has to incur a down-

time cost. In order to minimize the total downtime cost, the firm has to use a true

cost revelation mechanism since costs are private information to the corresponding

units. Apart from the above example, we can have situations like a diagnostic center,

installed with a machine (due to shortage of space) that can provide multiple services

but can serve one agent at a time, where a certain number of enlisted patients visit for
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diagnosis or it can be software installation problem to PCs of a set of agents. All these

examples capture the structure of sequencing problem.

Our structure of analysis is different from that of Dolan (1978) since the set of agents

considered by Dolan is dynamic in nature; we follow the structure of Suijs (1996). We

assume continuous time sequencing problem where the waiting cost perceived by the

participating agent is linear in type (mostly) as well as in time. This assumption is,

in fact, very crucial since linear time cost is necessary as well as sufficient for budget-

balance 1 (see Suijs (1996), Mitra (2002)). With the quasi-linear utility function, partic-

ipating agent’s utility comprises of waiting cost in the queue and monetary transfer

(may be received or paid by the agent). We will go into the details of the framework

but at the very outset the results that we have in this thesis are the following.

In the second chapter of the thesis, we identify the just sequencing rule that

serves the agents in a non-increasing order of their waiting costs and prove that

it is a Rawlsian rule. Further, with a particular kind of tie-breaking rule, we show

that just sequencing rule weakly lexi-max cost dominates the outcome efficient

sequencing rule. We also characterize the mechanism (ICJ mechanism) that im-

plements the just sequencing rule. The other properties that we identify are the

following: (1) just rule can be implemented with budget balanced transfers. (2)

the generalized ICJ mechanism that ex-post implement the just sequencing rule

and the budget balanced generalized ICJ mechanism.

In third chapter, we have shown that the rules, for which any agent’s job comple-

tion time is non-increasing in his/her own waiting cost, are implementable. We

call such rules NI sequencing rules. We prove that any affine cost minimizer se-

quencing rule is an NI sequencing rule but the converse is not true. For two agent

sequencing problems, we identify the complete class of NI sequencing rules that

are implementable with balanced transfers. For sequencing problems with more

than two agents, we identify a sufficient class of NI sequencing rules that are

1This result is in contrast with impossibility of budget-balance in case of pure public good prob-
lem (see Green and Laffont (1979)) where the nature of externality is severe compared to sequencing
problem.
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implementable with balanced transfers.

In the last chapter, we study strategy-proofness with each of the two fairness

notions: egalitarian equivalence and identical preference lower bound. With a

natural restriction on the reference bundle (specially the reference position in

the bundle), we identify the complete class of mechanisms satisfying strategy-

proofness, egalitarian equivalence and outcome efficiency. If we add either fea-

sibility(or budget-balance) or weak group strategy-proofness then we get impos-

sibility. Finally, for two agents, we characterize the entire class of mechanisms

satisfying strategy-proofness, outcome efficiency and identical preference lower

bound. For more than two agents, we provide an interesting sufficient class of

mechanisms.

We briefly describe all the three essays in the thesis.

1.1 Incentives and justice for sequencing problems

Outcome efficiency in sequencing rule minimizes the aggregate job completion cost of

agents. The algorithm to enforce outcome efficiency is to order the agents according

to the decreasing values of their urgency index, that is, the ratio of agents waiting

cost and processing time (see Smith (1956)), and allocate agents the queue position

according to that order. Also, if the domain of private information (the type domain)

is convex then outcome efficiency can be implemented in dominant strategies if and

only if it is a VCG mechanism (see Vickrey (1961), Clarke (1971), Groves (1973)).

We deviate from outcome efficiency and focus on Rawlsian allocation based on

John Rawls’ principle (see Rawls (2009)) of distributive justice. It identifies the max-

imum agent specific job completion cost for each order of serving and picks up the

order that minimizes the maximum cost. We Provide an algorithm to identify a rawl-

sian allocation and name this algorithm as just sequencing rule.

We then compare the outcome efficient rule and just sequencing rule in terms of

completion cost vector and find that the just sequencing rule weakly lexi-max cost
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dominates outcome efficient sequencing rule. Clearly, just and outcome efficient se-

quencing rule has different objectives, hence we also provide the bound of relative

efficiency loss.

Thereafter, we focus on the implementation issues of just sequencing rule by iden-

tifying the mechanism that implements just sequencing rule and call it ICJ mechanism.

We further identify that subclass of ICJ mechanism that is budget balanced and com-

pare ICJ and VCG mechanism in terms of utility vector but get ambiguous result even

in the case of budget-balance.

We conclude this chapter with a nice property of just sequencing rule, that is, in

case of multidimensional private information just sequencing rule can be ex-post im-

plemented. But outcome efficiency lacks this property.

1.2 Balanced implementability of sequencing rules

What is the most general class of sequencing rule that can be implemented in domi-

nant strategy? We begin our second chapter with this question. Although the answer

lies in the existing literature on implementation (see Milgrom (2004), Myerson (1985),

Bikhchandani et al. (2006)), we clarify the result in context of sequencing problem.

We identify such rules (NI sequencing rules) and find the explicit transfer form that

implements NI sequencing rule.

In the quasi-linear framework, Roberts’(Roberts (1979)) affine maximizer theorem

holds in a multidimensional type space (unrestricted) for a finite set of agents with at

least three alternatives. The appropriate transformation of affine maximizer allocation

is the affine cost minimizer sequencing rule. We prove that any affine cost minimizer

sequencing rule is an NI sequencing rule but the converse is not true.

In this chapter, our main focus is on implementability of NI sequencing rule with

budget-balance. We completely identify the class of non-constant NI sequencing rule

that are implementable with budget-balance when there are two agents. For more than

two agents we identify a sufficient class of NI sequencing rule that are implementable

with budget-balance. This class of NI sequencing rule is composed of a subset of
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non-affine cost minimizer and subset of affine cost minimizer allocation rule. We call

that family of non affine cost minimizer allocation rule as group priority based cost

minimizer (GPCM) sequencing rule.

1.3 Incentive and normative analysis on sequencing

problems

Egalitarian equivalence, introduced by Pazner and Schmeidler (1978), is a normative

concept that deals with equity, . The idea behind it, is the existence of a reference bun-

dle containing reference position (in other words reference waiting time) and reference

transfer such that such that every individuals are indifferent between his original bun-

dle and the reference bundle.

We use this concept and focus on the compatibility issue of egalitarian equivalence

with VCG mechanism. Our findings are more or less similar to that of Chun et al.

(2014). The egalitarian equivalent allocation or the reference bundle is composed of

reference position and reference transfer. While Chun et al. (2014) assumed the ref-

erence position can only take a few specific values, we generalize this idea; that is ,

the reference position is reference waiting time in our case and can take any positive

value. With this change, we provide sufficient condition to achieve VCG mechanisms

with egalitarian equivalence.

Apparently, we can achieve egalitarian equivalent VCG with various reference

waiting cost functions that are non-constant. But they does not carry much sense in

context of sequencing problems. For sequencing problems, it turns out to be more

meaningful to consider only the last position as reference position, hence our refer-

ence time is now a specific constant value. We identify the class of egalitarian equiva-

lent VCG mechanism with the above mentioned restriction. Also under this particular

assumption we find that, feasibility is not possible along with VCG and egalitarian

equivalent mechanism; as a result budget-balance is also impossible in this setup.

Next we focus on another normative criterion namely identical preference lower
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bound (IPLB), introduced by Moulin (1990), based on the idea that an agent’s welfare

is at least as that of consuming his/her equal share of resources. With the reference

position fixed in the same way as described earlier, in case of two agents, we com-

pletely characterize the class of VCG mechanisms that satisfy egalitarian equivalence

along with IPLB. For more than two agents, we identify the sufficient condition for

implementing VCG mechanism with egalitarian equivalence and IPLB.
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Chapter 2

Incentives and justice for sequencing

problems

2.1 Introduction

In this chapter1 we address the mechanism design issue for the sequencing problem

in which agents have quasi-linear preferences. The setting comprises of a finite set of

agents each of whom has one job to process using one facility. The facility can only

handle one job at a time. No job can be interrupted once it starts processing. Each job

is characterized by processing time and waiting cost. The latter represents the agent’s

disutility for waiting one unit of time. There is a well established literature in this

direction (seeVan Den Brink et al. (2007), Dolan (1978), Duives et al. (2015), Hain and

Mitra (2004), Mitra (2002), Moulin (2007) and Suijs (1996)).

A well-known and well studied concept is the outcome efficient sequencing rule

that minimizes the aggregate job completion cost of the agents. Outcome efficiency,

as pointed out by Smith (1956), requires that the jobs of the agents are processed in

the non-increasing order of their urgency index. The urgency index of any agent is

the ratio of his waiting cost and his processing time. It is well-known that, as long

as preferences are “smoothly connected” (see Holmström (1979)), outcome efficient

1The similar version of this chapter is published in Economic Theory.
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rules can be implemented in dominant strategies if and only if the mechanism is a

Vickrey-Clarke-Groves (VCG) mechanism (see Clarke (1971), Groves (1973) and Vick-

rey (1961)). For the sequencing problem, outcome efficiency was analyzed by Dolan

(1978), Mitra (2002) and Suijs (1996).

The main contribution of this chapter is to address the implementability issue of

the Rawlsian sequencing rule. The Rawlsian sequencing rule is based on John Rawls’

principle of distributive justice (see Rawls (2009)). From a planner’s mechanism de-

sign perspective it is reasonable to think that the planner wants to devise a sequencing

rule which is just by following Rawlsian difference principle (or maxi-min criterion)

that requires that inequality across the agents is justified if it is beneficial for the least

well off agent. Using this difference principle we define the Rawlsian sequencing rule.

The Rawlsian sequencing rule first identifies the maximum agent specific job comple-

tion cost for each order of serving and then picks that order which minimizes this max-

imum agent specific job completion cost. We show that a sequencing rule for which

agents are served in the non-increasing order of their waiting costs is a Rawlsian se-

quencing rule. We refer to this rule as the just sequencing rule.

There is a large literature on social welfare rankings of society’s income that ap-

plies this Rawlsian difference principle (see Barbarà and Jackson (1988), d’Aspremont

and Gevers (1977), Hammond (1976) and Moulin (1991) and Sen (2014)). The lexi-min

and the family of kth-rank dictator social orderings are all based on the Rawlsian dif-

ference principle and its extensions. Specifically, the kth-rank dictator social orderings

for k = 1 is the Rawlsian difference principle and it requires that, between two income

vectors x and y for a society, income vector x dominates y if the minimum element

in x is greater than the minimum element in y. The lexi-min social ordering is the

lexicographic extension of the 1st-rank dictator social ordering. Between two income

vectors x and y for a society, x lexi-min dominates y if either the minimum element

in x is greater than the minimum element in y or the minimum elements in x and y

are equal but the second minimum element of x is greater than the second minimum

element in y and so on. By taking appropriate tie-breaking rule and by taking comple-
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tion cost vector of the agents, we show that the just sequencing rule weakly lexi-max

cost dominates the outcome efficient sequencing rule, that is, for any profile of wait-

ing cost vectors, either the maximum cost under the just sequencing rule is less than

the maximum cost under the outcome efficient sequencing rule or the maximum cost

under both rules are identical but the second highest cost under the just sequencing

rule is less than the second highest cost under the outcome efficient sequencing rule

and so on. Clearly, when we select the just sequencing rule there is an efficiency loss

since for any profile, the aggregate cost under the just sequencing rule is no less than

the aggregate cost under the outcome efficient rule. By looking at a notion of relative

efficiency loss we show that the efficiency loss is bounded by (n− 1) where n is the

total number of agents.

The just sequencing rule is an algorithm to achieve the Rawlsian objective of mini-

mizing the maximum job completion cost. Typically, it is hard to find algorithms that

achieve such min-max objectives. For example, consider the task allocation problem

studied by Nisan and Ronen (2001) in the algorithmic mechanism design literature.

The objective in Nisan and Ronen (2001) is to minimize the make-span of independent

tasks on unrelated parallel machine (that is, to minimize the maximum completion

time of all jobs assigned on all machines). However, this objective is NP-hard and

hence the focus of Nisan and Ronen (2001) is to analyze schemes that are closely re-

lated to the make-span objective and can be achieved in polynomial time.2

We show that if agents have quasi-linear preferences and if the agents have private

information about their respective waiting costs, then the just rule is implementable

in dominant strategies. We also identify all mechanisms that implement the just se-

quencing rule. We call such mechanisms the incentive compatible just mechanisms

or the ICJ mechanisms for short. Our result on implementation of the just sequenc-

ing rule shows compatibility of incentives and justice. In the mechanism design lit-

erature without transfers where preferences of the agents are defined using distance

from the bliss points, Chichilnisky and Heal (1997) argued that Rawlsian rules are

2See Theorem 5.9. in Nisan and Ronen (2001)
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“locally dictatorial” and hence implementable. However, in the mechanism design lit-

erature with transfers, this compatibility of incentives and justice is indeed rare. Con-

clusions of Deb et al. (2014) and Lavi et al. (2003) show that the Rawlsian allocation

is incompatible with implementability in dominant strategies. A paper that shows

this compatibility between incentives and justice is by Velez (2011) for the (house) al-

location problems. Velez (2011) showed that the Generalized Money Rawlsian Fair

solutions implements the no envy solution in Nash and Strong Nash equilibria. Thus,

in Velez (2011), incentive compatibility is achieved in the Nash sense and not in dom-

inant strategies sense like ours. In the algorithmic mechanism design literature, the

task allocation problem in Nisan and Ronen (2001) also addresses the issue of truth-

ful implementation in dominant strategies for schemes that are closely related to the

make-span objective. However, the task allocation problem in Nisan and Ronen (2001)

is significantly different from ours since in their problem, the machines have private

information while in our problem agents (jobs) have private information.3

Consider the sequencing problem where the processing times of the agents is iden-

tical. Such situations are referred to as the queueing problem. Queueing problems

have been analyzed extensively from both normative and strategic viewpoints (see

Chun (2006), Chun et al. (2014), Hashimoto and Saitoh (2012), Kayı and Ramaekers

(2010), Maniquet (2003), Mitra (2001), Mitra and Mutuswami (2011) and Mukherjee

(2013)). For the queueing problem, the outcome efficient sequencing rule implies that

the rule is also the just sequencing rule. However, for sequencing problems with non-

identical processing time across agents, outcome efficient sequencing rule is differ-

ent from the just sequencing rule and hence such sequencing problems bring out the

trade-off between outcome efficient sequencing rule and the just sequencing rule. For

sequencing problems that are not queueing problem, we have established that under

complete information, the just sequencing rule lexi-max cost dominates the outcome

efficient sequencing rule for an appropriate choice of tie breaking rules. However, we

demonstrate that such unambiguous conclusion is not true in terms of lexi-min utility

3In our problem we have a single machine, implying that the make-span time is fixed throughout.
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domination under asymmetric information when we compare the family of ICJ mech-

anisms with the family of VCG mechanisms.

The importance of finding balanced VCG mechanisms to implement outcome ef-

ficiency for canonical allocation problems was highlighted by Zhou (2007). However,

for many economic environments implementing outcome efficiency with balanced

transfers is difficult to achieve (see Hurwicz (1975), Hurwicz and Walker (1990) and

Walker (1980)). For sequencing problem, it is known that we can have budget bal-

anced (or first best) implementation with the outcome efficient sequencing rule (see

Mitra (2002) and Suijs (1996)). We show that we can also find ICJ mechanisms that im-

plement the just sequencing rule with balanced transfers and identify the set of all such

balanced ICJ mechanisms. Again, for the queueing problem, the set of all balanced ICJ

mechanisms coincide with the set of all balanced VCG mechanisms. The literature

on balanced VCG mechanisms for the queueing problem includes the contributions

of Chun et al. (2015), Kayı and Ramaekers (2010) and Mitra (2001). For the task allo-

cation, problem Nisan and Ronen (2001) studies dominant strategy mechanisms with

transfers satisfying a limited-budget restriction.4 So Nisan and Ronen (2001) do not

achieve budget balancedness for their task allocation problem.

The just sequencing rule is independent of the processing time of the agents. As

a result, if we have a two-dimensional incentive problem, where waiting cost and

processing time are private information, ex-post implementability of the just sequenc-

ing rule is possible. If processing times are private information, we have mechanism

design problem under interdependent valuation, as the processing time generates in-

terdependence across agents. Hence, the correct notion of implementation is ex-post

implementation. Specifically, we show that the just sequencing rule is ex-post imple-

mentable by making some minor ‘modification’ in the ICJ mechanisms. Moreover,

given the earlier results on implementability of the just sequencing rule with bal-

anced ICJ mechanisms, it follows that ex-post implementability with balanced trans-

fers is also a possibility. Jehiel et al. (2006) proved that the only deterministic social

4See Theorem 5.5 in Nisan and Ronen (2001) .
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choice functions that are ex-post implementable in generic mechanism design frame-

works with multidimensional signals and interdependent valuations are those rules

for which the same alternative is chosen irrespective of agents’ signals, that is, the

outcome should be independent of the interdependent signals.

In sequencing with two-dimensional incentive problem, one dimension is waiting

cost which is the private value and the other dimension is processing time that gener-

ates interdependence in terms of cost of completion time. The just sequencing rule is

non-trivial in terms of the waiting cost or private value dimension and is independent

of the interdependence inducing processing time (like the independence of the inter-

dependent signal required by Jehiel et al. (2006) for ex-post implementability) and

hence, the just sequencing rule is a non-trivial rule which is ex-post implementable.

Moreover, for the outcome efficient sequencing rule, the profile contingent order is de-

pendent on the processing time and hence it is not ex-post implementable under this

two-dimensional incentive problem.5

This chapter is organized as follows. In Section 2, we provide the framework of the

sequencing problems. In Section 3, we introduce and analyze the just sequencing rule

and compare it with the outcome efficient sequencing rule. In Section 4, we address

the implementability of the just sequencing rule. Section 5 deals with properties of the

just sequencing rule. This is followed by the concluding section.

2.2 The framework

Consider a finite set of agents N = {1, 2, . . . , n} in need of a facility that can be used

sequentially. Using this facility, the agents want to process their jobs. The job process-

ing time can be different for different agents. Specifically, for each agent i ∈ N, the job

processing time is given by si > 0. Let R++ be the positive orthant of the real line R

and let θiSi measure the cost of job completion for agent i ∈ N where Si ∈ R++ is the

5Ex-post implementability literature includes contributions of Bergemann and Morris (2008),
Bikhchandani (2006), Chung and Ely (2002), Jehiel et al. (2006), Jehiel and Moldovanu (2001), and,
Fieseler et al. (2003). For the sequencing problem with private information only in processing time,
incentive issues were addressed by Hain and Mitra (2004) and Moulin (2007).
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job completion time for this agent and θi ∈ Θ := R++ denotes his constant per-period

waiting cost. Due to the sequential nature of providing the service, the job completion

time Si for agent i depends not only on his own processing time si but also on the

processing time of the agents who precede him in the order of service. By means of

an order σ = (σ1, . . . ,σn) on N, one can describe the positions of each agent in the

order. Specifically, σi = k indicates that agent i has the k-th position in the order. Let

Σ(N) be the set of n! possible orders on N. We define Pi(σ) = { j ∈ N \ {i} | σ j < σi}

to be the predecessor set of i in the order σ , that is, set of agents served before agent

i in the order σ . Similarly, P′i (σ) = { j ∈ N \ {i} | σ j > σi} denotes the successor

set of i in the order σ , that is, set of agents served after agent i in the order σ . Let

s = (s1, . . . , sn) ∈ S := Rn
++ denote the vector of processing time of the agents. Given

a vector s = (s1, . . . , sn) ∈ S and an order σ ∈ Σ(N), the cost of job completion for

agent i ∈ N is θiSi(σ), where the job completion time is Si(σ) = ∑ j∈Pi(σ)
s j + si. In the

sum Si(σ) = ∑ j∈Pi(σ)
s j + si, if Pi(θ) = ∅, then we are assuming that ∑ j∈Pi(σ)

s j = 0.

In general, we use the following convention on the summation operator: for any set

Y = {X1, . . . , XK} and any M ⊆ Y, ∑ j∈M X j = 0 if M = ∅. The agents have quasi-

linear utility of the form vi(σ , τi; mi = (θi, si); s−i) = −θiSi(σ)+τi whereσ is the order,

τi ∈ R is the transfer that he receives and the parameters of the model are agents own

parameter mi = (θi, si) that consists of the waiting cost θi and the processing time si,

and, more importantly, the processing time of the other agents that determines agent

i’s job completion time Si(σ). Specifically, given a commonly known job processing

time vector s = (s1, . . . , sn) ∈ S and an orderσ ∈ Σ(N), the utility of agent i, with just

the waiting cost parameter θi, reduces to

vi(σ , τi; mi = (θi, si); s−i) := Ui(σ , τi;θi) = −θiSi(σ) + τi = −θi(si + ∑
j∈Pi(σ)

s j) + τi.

If we assume that both waiting cost and processing time are private information,

then we have a general sequencing problem Ω = (N, Θn, S) where N is the set of agents

Θn is the domain of waiting cost of all agents assumed to be equal to Rn
++ and S is the

domain of processing time of all agents assumed to be equal to Rn
++. In this context we
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associate the utility function vi(.) for each i ∈ N. If the processing time vector s ∈ S

is given and waiting cost is private information, then we have a sequencing problem

Ω(s) = (N, Θn, s) and in that case the utility function reduces to Ui(.) (from vi(.))

for each i ∈ N. Except for Subsection 2.5.2, we will deal with Ω(s). Hence our first

objective is to design direct revelation mechanisms for any given Ω(s).

For any set X, let |X| denote the cardinality of X. A typical profile of waiting costs

is denoted by θ = (θ1, . . . ,θn) ∈ Θn, and, for any i ∈ N, θ−i ∈ Θ|N\{i}| denotes the

profile (θ1 . . .θi−1,θi+1, . . .θn) which is obtained from the profile θ by eliminating i’s

waiting cost. For a given sequencing problem Ω(s), a (direct revelation) mechanism

is (σ , τ) that consists of a sequencing rule σ and a transfer rule τ . A sequencing rule

is a function σ : Θn → Σ(N) that specifies for each profile θ ∈ Θn a unique order

σ(θ) = (σ1(θ), . . . ,σn(θ)) ∈ Σ(N).6 A transfer rule is a function τ : Θn → Rn that

specifies for each profile θ ∈ Θn a transfer vector τ(θ) = (τi(θ), . . . , τn(θ)) ∈ Rn.

Specifically, given any sequencing problem Ω(s) and given any mechanism (σ , τ), if

(θ′i ,θ−i) is the announced profile when the true waiting cost of i is θi, then utility of i

is Ui(σ(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θi) = −θiSi(σ(θ

′
i ,θ−i) + τi(θ

′
i ,θ−i).

DEFINITION 2.1 A mechanism (σ , τ) implements the sequencing rule σ in dominant

strategies if the transfer rule τ : Θn → Rn is such that for any i ∈ N, any θi,θ′i ∈ Θ and

any θ−i ∈ Θ|N\{i}|,

Ui(σ(θ), τi(θ);θi) ≥ Ui(σ(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θi). (2.1)

Implementation of a rule σ via a mechanism (σ , τ) requires that the transfer rule τ is

such that truthful reporting for any agent weakly dominates false reporting irrespec-

tive of other agents’ report.

6The sequencing rule is a function and not a correspondence. Hence, we will require tie-breaking
rule to reduce a correspondence to a function. For reasons to be clarified later, we will use different tie
breaking rules for different sequencing rules.
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2.2.1 The outcome efficient sequencing rule

DEFINITION 2.2 A sequencing rule σ∗ is outcome efficient if for any profile θ ∈ Θn,

σ∗(θ) ∈ argminσ∈Σ(N) ∑i∈N θiSi(σ).

For each profile the outcome efficient sequencing rule selects an order that minimizes

the aggregate cost of completion time. Define µi := θi/si as the urgency index of agent

i which is the ratio of his waiting cost and his processing time. From Smith (1956) we

know that for any sequencing problem Ω(s) a sequencing rule σ∗ is outcome efficient

if and only if for any profileθ, the selected orderσ∗(θ) satisfies condition (OE): For any

i, j ∈ N, θi/si ≥ θ j/s j ⇔ σ∗i (θ) ≤ σ∗j (θ). Therefore, outcome efficient sequencing rule

requires that the agents are ordered in the non-increasing order of their urgency index.

From (OE) it is clear that if θi/si ≥ θ j/s j, then Si(σ
∗(θ)) ≤ S j(σ

∗(θ)). Consider the

outcome efficient sequencing ruleσ∗. For outcome efficiency we will use the following

tie-breaking rule.

TB(OE): There is a linear order≤oe on N and ifθi/si = θ j/s j and i ≤oe j, then i ∈ Pj(σ).

It is well-known that VCG mechanisms are the only mechanisms that implement

σ∗ (see Holmström (1979)).

DEFINITION 2.3 For the outcome efficient sequencing rule σ∗, a mechanism (σ∗, τ) is

a VCG mechanism if the transfer rule is such that for all θ ∈ Θn and all i ∈ N,

τ∗i (θ) = hi(θ−i)− si ∑
j∈P′i (σ

∗(θ))

θ j, (2.2)

where the function hi : Θ|N\{i}| → R is arbitrary.

Given a sequencing problem Ω(s), for any profile θ ∈ Θn and any i ∈ N and any

j ∈ N \ {i}, let θ jsi be the pivotal cost of agent i on agent j. We call this the pivotal cost

because θ jsi is the incremental cost that agent j has to incur if agent i precedes agent

j in any order. The VCG transfer in condition (2.2) specifies that for any i ∈ N and

any θ−i ∈ ΘN\{i}, if θi is such that agent i is served last in the outcome efficient order

σ∗(θi,θ−i), that is, if P′i (σ
∗(θi,θ−i)) = ∅, then τ∗i (θi,θ−i) = hi(θ−i). If, however, θ′i is
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such that agent i is not served last in the orderσ∗(θ′i ,θ−i), that is, if P′i (σ
∗(θ′i ,θ−i) 6= ∅,

then agent i’s transfer τ∗i (θ
′
i ,θ−i) not only has hi(θ−i) but he also has to pay the sum

of the pivotal cost that agent i incurs on his followers in the order σ∗(θ′i ,θ−i) (that is,

the waiting cost of all the agent(s) served after him times his own processing time).

The VCG transfer τ∗i (θ) (in condition (2.2)) for which the agent specific constant

functions hi(.) are always zero for all agents gives us the pivotal mechanism for im-

plementing the outcome efficient order σ∗. The first work that identified the pivotal

mechanism for any sequencing problem is by Dolan (1978). It must be pointed out

that the specification (2.2) of the VCG transfers is the pivotal based representation of

the VCG transfers and is not its standard representation. We show that an appropri-

ate transformation of the standard VCG transfers gives us (2.2). The standard way of

specifying the VCG transfers is that for all θ and for all i ∈ N,

τ∗i (θ) = − ∑
j∈N\{i}

S j(σ
∗(θ))θ j + gi(θ−i).7 (2.3)

Consider the outcome efficient orderσ∗(θ) for the profile θ ∈ Θn and suppose that

agent i leaves. We define the “induced” order σ∗(θ−i) (of length |N \ {i}|) for the

agents in N \ {i} as follows:

σ∗j (θ−i) =

 σ∗j (θ)− 1 if j ∈ P′i (σ
∗(θ)),

σ∗j (θ) if j ∈ Pi(σ
∗(θ)).

(2.4)

In words, σ∗(θ−i) is the order formed by removing agent i and moving all agents

behind him up by one position. Given the same tie-breaking rule for the economy

with N \ {i} agents, it is easy to see that if σ∗(θ) is outcome efficient for the profile

θ, then σ∗(θ−i) is also outcome efficient in N \ {i} for the profile θ−i. Without loss of

generality, we can write for all θ and all i ∈ N, (A) gi(θ−i) = ∑ j∈N\{i} S j(σ
∗(θ−i))θ j +

hi(θ−i). By substituting (A) in (2.3) we get

7See Mitra (2002) and Suijs (1996).
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τ∗i (θ) = − ∑
j∈N\{i}

[S j(σ
∗(θ))− S j(σ

∗(θ−i))]θ j + hi(θ−i). (2.5)

If for a profile θ ∈ Θn, the outcome efficient order is σ∗(θ) and agent i leaves, then the

order σ∗(θ−i) is such that if j ∈ Pi(σ
∗(θ)), then j’s completion time remains unaltered

and if k ∈ P′i (σ
∗(θ)), then k’s completion time reduces by si. Hence

S j(σ
∗(θ))− S j(σ

∗(θ−i)) =

 si if j ∈ P′i (σ
∗(θ)),

0 if j ∈ Pi(σ
∗(θ)).

(2.6)

By substituting condition (2.6) in the transformed VCG transfer (2.5) and then simpli-

fying it we get the VCG transfer (2.2).8

2.3 The just sequencing rule

DEFINITION 2.4 A sequencing rule σ ′ is Rawlsian if for each θ ∈ Θn, σ ′(θ) ∈

min
σ∈Σ(N)

max
j∈N

S j(σ)θ j.

Given any profile θ ∈ Θn, for each order σ ∈ Σ(N), let M(σ) = θ jS j(σ) ≥ θkSk(σ)

for all k ∈ N, that is, for the given profile θ and given the order σ , M(σ) is the max-

imum value of the cost of completion time among all agents in N. The Rawlsian

sequencing rule picks that order σ ′ ∈ Σ(N) for which M(σ ′) is minimum, that is

M(σ ′) ≤ M(σ) for all σ ∈ Σ(N).

EXAMPLE 2.1 Consider the sequencing problem Ω(s) such that N = {1, 2, 3} and s =

(s1 = 1, s2 = 2, s3 = 3). Let the waiting cost vector be θ = (θ1 = 100,θ2 = 5,θ3 = 3).

For θ, outcome efficiency uniquely picks the order σ1 = (σ1 = 1,σ2 = 2,σ3 = 3) since

µ1 > µ2 > µ3. However, the Rawlsian selection is not unique. For profile θ we have

the following: M(σ1 = (σ1 = 1,σ2 = 2,σ3 = 3)) = θ1s1 = 100, M(σ2 = (σ1 = 1,σ2 =

3,σ3 = 2)) = θ1s1 = 100, M(σ3 = (σ1 = 2,σ2 = 1,σ3 = 3)) = θ1(s2 + s1) = 300,

8A similar argument for the pivotal based representation of VCG transfers (like condition (2.2)) for
the queueing problem can be found in Chun et al. (2014).
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M(σ4 = (σ1 = 2,σ2 = 3,σ3 = 1)) = θ1(s3 + s1) = 400, M(σ5 = (σ1 = 3,σ2 =

1,σ3 = 2)) = θ1(s2 + s3 + s1) = 600, and M(σ6 = (σ1 = 3,σ2 = 2,σ3 = 1)) =

θ1(s3 + s2 + s1) = 600. Therefore, for the profile θ, the Rawlsian rule can either pick

σ1 or σ2 implying that the Rawlsian rule does not guarantee state contingent unique

order selection. Note that the order σ1 also has the property that it serves the agents

in the decreasing (hence non-increasing) order of their waiting cost, that is given θ1 >

θ2 > θ3, agent 1 is served first followed by agent 2 and then by agent 3.

Let the waiting cost vector be θ′ = (θ′1 = 10,θ2 = 5,θ3 = 3). For profile θ′ we

have the following: M(σ1 = (σ1 = 1,σ2 = 2,σ3 = 3)) = θ3(s1 + s2 + s3) = 18,

M(σ2 = (σ1 = 1,σ2 = 3,σ3 = 2)) = θ2(s1 + s3 + s2) = 30, M(σ3 = (σ1 = 2,σ2 =

1,σ3 = 3)) = θ′1(s2 + s1) = 30, M(σ4 = (σ1 = 2,σ2 = 3,σ3 = 1)) = θ′1(s3 + s1) = 40,

M(σ5 = (σ1 = 3,σ2 = 1,σ3 = 2)) = θ′1(s2 + s3 + s1) = 60, and M(σ6 = (σ1 =

3,σ2 = 2,σ3 = 1)) = θ′1(s3 + s2 + s1) = 60. For the profile θ′, M(σ1) < M(σk) for all

k ∈ {2, . . . , 6} and hence any Rawlsian rule uniquely picks σ1.

The above example suggests that we can have profiles for which more than one order

is Rawlsian. It also seems likely that serving the agents in the non-increasing order of

their waiting costs is always Rawlsian. In the next theorem we show that this is indeed

the case.

DEFINITION 2.5 A sequencing rule σ̃ is called the just sequencing rule if for each pro-

file θ ∈ Θn, the chosen order σ̃(θ) satisfies the following property: for any i, j ∈ N

such that θi ≥ θ j, σ̃i(θ) ≤ σ̃ j(θ).

We use the following tie-breaking rule for the just sequencing rule σ̃ .

TB(J): There is a linear order ≤r on N such that if θi = θ j and either θi/si > θ j/s j or

θi/si = θ j/s j and i ≤r j, then i ∈ Pj(σ).

THEOREM 2.1 For any Ω(s), the just sequencing rule σ̃ is Rawlsian.

Proof: To prove that the just sequencing rule σ̃ is Rawlsian, consider any profileθ ∈ Θn

and the just order σ̃(θ). Consider that agent i ∈ N for whom the cost of completion
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time θiSi(σ̃(θ)) = θi(∑ j∈Pi(σ̃(θ))
s j + si) is maximum under σ̃(θ), that is M(σ̃(θ)) =

θiSi(σ̃(θ)).9 Define O := Pi(σ̃(θ)) ∪ {i} as the set that includes the set of predecessors

of i under the order σ̃(θ) and that also includes agent i. From the definition of just

sequencing rule, θ j ≥ θi for all j ∈ O. Consider any other order σ ∈ Σ(N) \ {σ̃(θ)}.

For this order σ , there is one agent in O who will be served last under σ relative to

the other members of O, that is, there exists an agent j ∈ O such that σ j > σk for all

k ∈ O \ { j}. This means that O ⊆ Pj(σ) ∪ { j}, and hence, S j(σ) ≥ Si(σ̃(θ)), that

is, the completion time of agent j under the order σ is not less than the completion

time of agent i under the order σ̃(θ). Therefore, the maximum cost of completion time

M(σ) under σ is at least as large as the maximum cost of completion time M(σ̃(θ)) =

θiSi(σ̃(θ)) under σ̃(θ) since M(σ) ≥ θ jS j(σ) ≥ θ jSi(σ̃(θ)) ≥ θiSi(σ̃(θ)) = M(σ̃(θ)).

Since the selection of σ was arbitrary, the result follows. �

REMARK 2.1 Consider any sequencing problem Ω(s∗) with s∗ = (s∗1 , . . . , s∗n) ∈ S and

s∗1 = . . . = s∗n so that we have the queueing problem. Then the outcome efficient

sequencing rule implies the just sequencing rule and hence a Rawlsian sequencing

rule. For the queueing problem Ω(s∗), for any profile θ ∈ Θn, the order of the urgency

indexes and that of the waiting costs are identical and hence this implication.

2.3.1 Lexi-max domination and a bound on the efficiency loss

Consider any sequencing problem Ω(s). For any profile θ ∈ Θn and any order σ ∈

Σ(N), let C(σ) = (C1(σ), . . . , Cn(σ)) ∈ Rn
++ be the agent specific completion cost

vector so that Ci(σ) = θiSi(σ) for all i ∈ N. For any σ ∈ Σ(N) and C(σ), define

C∗(σ) = (C∗1(σ), . . . , C∗n(σ)) as the reordering of C(σ) such that C∗1(σ) ≥ . . . ≥ C∗n(σ).

DEFINITION 2.6 Consider any sequencing problem Ω(s) and let σ ′ and σ ′′ be two

sequencing rules. We say that the sequencing rule σ ′ weakly lexi-max dominates the

sequencing rule σ ′′ if for each θ ∈ Θn, either C∗1(σ
′(θ)) < C∗1(σ

′′(θ)), or there ex-

ists a k ∈ {2, . . . , n} such that C∗r (σ ′(θ)) = C∗r (σ ′′(θ)) for all r = 1, . . . , k − 1, and,

C∗k (σ
′(θ)) < C∗k (σ

′′(θ)), or the vector C∗(σ ′(θ)) = C∗(σ ′′(θ)).

9If there are more than one agent for whom the cost is the maximum, pick any one of them arbitrarily.
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From the definitions of outcome efficient and just sequencing rules, it is clear that

for any θ ∈ Θn, C∗1(σ̃(θ)) ≤ C∗1(σ
∗(θ)) and ∑

n
r=1 C∗r (σ∗(θ)) ≤ ∑

n
r=1 C∗r (σ̃(θ)).

THEOREM 2.2 If the linear orders on N for the tie-breaking rules TB(OE) and TB(J)

are identical, then the just sequencing rule σ̃ weakly lexi-max dominates the outcome

efficient sequencing rule σ∗.

Proof: From Theorem 2.1, it follows that for any θ ∈ ΘN, C∗1(σ̃(θ)) ≤ C∗1(σ) for any

σ ∈ Σ(N). Hence, for any θ ∈ ΘN, C∗1(σ̃(θ)) ≤ C∗1(σ
∗(θ)). Consider any θ ∈ Θn and

let i(1) < i(2) < . . . < i(n) be the ordering of the agent set N induced by C∗(σ̃(θ)),

that is, θi(r)Si(r)(σ̃(θ)) ≥ θi(r+1)Si(r+1)(σ̃(θ)) for all r = 1, . . . , n− 1 so that C∗r (σ̃(θ)) =

θi(r)Si(r)(σ̃(θ)) for all r = 1, . . . , n.

Step 1: If for some θ ∈ Θn and some q = 1, . . . , n, C∗r (σ̃(θ)) = C∗r (σ∗(θ)) for all

r = 1, . . . , q, then Pi(r)(σ̃(θ)) = Pi(r)(σ
∗(θ)) for all r = 1, . . . , q.

Proof of Step 1: We prove this step by applying induction on q. First we prove that Step

1 is true for q = 1, that is, we show that if for some θ ∈ Θn, C∗1(σ̃(θ)) = C∗1(σ
∗(θ)),

then Pi(1)(σ̃(θ)) = Pi(1)(σ
∗(θ)).

We first show that if for some θ ∈ Θn, C∗1(σ̃(θ)) = θi(1)Si(1)(σ̃(θ)), C∗1(σ̃(θ)) =

C∗1(σ
∗(θ)) and k ∈ P′i(1)(σ̃(θ)), then k ∈ P′i(1)(σ

∗(θ)). Assume to the contrary that

there exists k ∈ P′i(1)(σ̃(θ)) such that k ∈ Pi(1)(σ
∗(θ)). Define T := Pi(1)(σ̃(θ)) ∪ {i(1)}

and consider j ∈ T such that S j(σ
∗(θ)) = maxr∈T{Sr(σ∗(θ))}. Clearly, S j(σ

∗(θ)) >

Si(1)(σ̃(θ)) since k ∈ Pi(1)(σ
∗(θ)) implies that T ∪ {k} ⊆ Pj(σ

∗(θ)) ∪ { j}. Moreover,

either j = i(1), or j 6= i(1) and j ∈ Pi(1)(σ̃(θ)), and in either case, θ j ≥ θi(1). Therefore,

C∗1(σ̃(θ)) = θi(1)Si(1)(σ̃(θ)) < θ jS j(σ
∗(θ)) which contradicts C∗1(σ̃(θ)) = C∗1(σ

∗(θ)).

Hence, if k ∈ P′i(1)(σ̃(θ)), then k ∈ P′i(1)(σ
∗(θ)). To complete this proof, we show

that if k ∈ Pi(1)(σ̃(θ)), then k ∈ Pi(1)(σ
∗(θ)). If there exists k ∈ Pi(1)(σ̃(θ)) such that

k ∈ P′i(1)(σ
∗(θ)), then consider j ∈ T = Pi(1)(σ̃(θ)) ∪ {i(1)} such that S j(σ

∗(θ)) =

maxr∈T{Sr(σ∗(θ))} so that j ∈ P′i(1)(σ
∗(θ)), S j(σ

∗(θ)) ≥ Sk(σ
∗(θ)) and the equal-

ity holds only if j = k. Clearly, j 6= i(1) (since j ∈ Pi(1)(σ̃(θ)) ∩ P′i(1)(σ
∗(θ))),

θ j ≥ θi(1) (since j ∈ Pi(1)(σ̃(θ))) and S j(σ
∗(θ)) ≥ Si(1)(σ̃(θ)). Hence, θ jS j(σ

∗(θ)) ≥

22



θi(1)Si(1)(σ̃(θ)). If θ j > θi(1), then C∗1(σ̃(θ)) = θi(1)Si(1)(σ̃(θ)) < θ jS j(σ
∗(θ)),

which contradicts C∗1(σ̃(θ)) = C∗1(σ
∗(θ)). If (A) θ j = θi(1), then, given TB(J) and

j ∈ Pi(1)(σ̃(θ)), either (B) θ j/s j > θi(1)/si(1), or (C) θ j/s j = θi(1)/si(1) and j <r i(1). If

(B) holds, that is, if θ j/s j > θi(1)/si(1), then we have a contradiction to j ∈ P′i(1)(σ
∗(θ)).

If (C) holds, that is, ifθ j/s j = θi(1)/si(1) and j <r i(1), then, given that the linear orders

on N for the tie-breaking rules TB(OE) and TB(J) are identical, we have a contradiction

to j ∈ P′i(1)(σ
∗(θ)) since, given j <r i(1), we must also have j <oe i(1). Hence, we

have established that if k ∈ Pi(1)(σ̃(θ)), then k ∈ Pi(1)(σ
∗(θ)).

Assume that Step 1 is true for q = 1, . . . , m − 1. We then show that if Step 1 is

true for q = m, that is, if C∗r (σ̃(θ)) = C∗r (σ∗(θ)) and Pi(r)(σ̃(θ)) = Pi(r)(σ
∗(θ)) for all

r = 1, . . . , m− 1, then C∗m(σ̃(θ)) = C∗m(σ∗(θ)) implies Pi(m)(σ̃(θ)) = Pi(m)(σ
∗(θ)).

Let C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)) = C∗m(σ∗(θ)). Given Pi(r)(σ̃(θ)) = Pi(r)(σ
∗(θ))

for all r = 1, . . . , m− 1, consider the set of agents A(m− 1) = {i(1), . . . , i(m− 1)} for

whom the completion time is identical for both σ̃(θ) and σ∗(θ). Let i(a) ∈ A(m− 1)

be such that i(m) 6∈ Pi(a)(σ̃(θ)), and there does not exists j ∈ A(m− 1) \ {i(a)} such

that i(m) 6∈ Pj(σ̃(θ)) and |Pj(σ̃(θ))| > |Pi(a)(σ̃(θ))|. Therefore, Pi(a)(σ̃(θ)) has the

highest cardinality in comparison to the predecessor sets associated with the agents

in A(m − 1) that do not include i(m). Similarly, let i(b) ∈ A(m − 1) be such that

i(m) 6∈ P′i(b)(σ̃(θ)) and there does not exists j ∈ A(m − 1) \ {i(b)} such that i(m) 6∈

P′j(σ̃(θ)) and |P′j(σ̃(θ))| > |P′i(b)(σ̃(θ))|. Thus, P′i(b)(σ̃(θ)) has the highest cardinality

in comparison to the successor sets associated with the agents in A(m− 1) that do not

include i(m). Note that if i(a) does not exist, then i(b) exists, and, if i(b) does not exist,

then i(a) exists. Define S∗ := T1 ∩ T2 ⊂ N, where

T1 =

 N \ [Pi(a)(σ̃(θ)) ∪ {i(a)} if i(a) exists

N if i(a) does not exist,

and

T2 =

 N \ [P′i(b)(σ̃(θ)) ∪ {i(b)} if i(b) exists

N if i(b) does not exist.
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Observe that S∗ is always nonempty since i(m) ∈ S∗. Moreover, S∗ 6= N since ei-

ther T1 6= N or T2 6= N. Given Pi(r)(σ̃(θ)) = Pi(r)(σ
∗(θ)) for all r = 1, . . . , m − 1,

if |S∗| = 1, then Pi(m)(σ̃(θ)) = Pi(m)(σ
∗(θ)) and the proof is complete. Assume that

|S∗| > 1. We first show that if k ∈ P′i(m)(σ̃(θ)), then k ∈ P′i(m)(σ
∗(θ)). Suppose to

the contrary that there exists k ∈ P′i(m)(σ̃(θ)) such that k ∈ Pi(m)(σ
∗(θ)). Observe

that k ∈ P′i(m)(σ̃(θ)) implies k 6∈ Pi(a)(σ̃(θ)) ∪ {i(a)} = Pi(a)(σ
∗(θ)) ∪ {i(a)} and

k ∈ Pi(m)(σ
∗(θ)) implies k 6∈ P′i(b)(σ

∗(θ))∪ {i(b)} = P′i(b)(σ̃(θ))∪ {i(b)}. In case either

i(a) or i(b) does not exist, the above statements remain vacuously true. Hence, k ∈ S∗.

Consider j ∈ T := Pi(m)(σ̃(θ)) ∪ {i(m)} with S j(σ
∗(θ)) = maxw∈T{Sw(σ∗(θ))}. Note

that j 6∈ N \ S∗ since S j(σ
∗(θ)) > S j′(σ

∗(θ)) for all j′ ∈ Pi(a)(σ
∗(θ)) ∪ {i(a)} and j /∈

P′i(b)(σ̃(θ)) ∪ {i(b)} since {P′i(b)(σ̃(θ)) ∪ {i(b)}} ∩ {Pi(m)(σ̃(θ)) ∪ {i(m)}} = ∅. There-

fore, j ∈ S∗. Note that Si(m)(σ
∗(θ)) > Sk(σ

∗(θ)) since k ∈ Pi(m)(σ
∗(θ)). It is also clear

that S j(σ
∗(θ)) ≥ Si(m)(σ

∗(θ)) > Sk(σ
∗(θ)) implies j ∈ P′k(σ

∗(θ)). Hence, T ∪ {k} ⊆

Pj(σ
∗(θ))∪ { j}. So, S j(σ

∗(θ)) ≥ sk + Si(m)(σ̃(θ)) > Si(m)(σ̃(θ)). Moreover, θ j ≥ θi(m).

Consequently, C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)) < θ jS j(σ
∗(θ)) and j ∈ S∗, which contra-

dicts C∗m(σ̃(θ)) = C∗m(σ∗(θ)). Hence, if k ∈ P′i(m)(σ̃(θ)), then k ∈ P′i(m)(σ
∗(θ)). To

complete the proof, we show that if k ∈ Pi(m)(σ̃(θ)), then k ∈ Pi(m)(σ
∗(θ)). Suppose

to the contrary that there exists k ∈ Pi(m)(σ̃(θ)) such that k ∈ P′i(m)(σ
∗(θ)). Again, if

either i(a) or i(b) does not exist, the statements remain vacuously true. Observe that

k ∈ Pi(m)(σ̃(θ)) implies k 6∈ P′i(b)(σ̃(θ)) ∪ {i(b)} = P′i(b)(σ
∗(θ)) ∪ {i(b)} (if i(b) ex-

ists) and k ∈ P′i(m)(σ
∗(θ)) implies k 6∈ Pi(a)(σ

∗(θ)) ∪ {i(a)} = Pi(a)(σ̃(θ)) ∪ {i(a)}

(if i(a) exists). Hence, k ∈ S∗. Let t ∈ T = Pi(m)(σ̃(θ)) ∪ {i(m)} be such that

St(σ∗(θ)) = maxq∈T{Sq(σ∗(θ))}. So, t /∈ Pi(a)(σ̃(θ)) ∪ {i(a)} (if i(a) exists). Also

t /∈ P′i(b)(σ̃(θ)) ∪ {i(b)} (if i(b) exists) since {P′i(b)(σ̃(θ)) ∪ {i(b)}} ∩ {Pi(m)(σ̃(θ)) ∪

{i(m)}} = ∅. Thus, t ∈ S∗. Observe that St(σ∗(θ)) ≥ Sk(σ
∗(θ)) > Si(m)(σ

∗(θ)),

which implies t ∈ P′i(m)(σ
∗(θ)). Moreover, θt ≥ θi(m) since t ∈ Pi(m)(σ̃(θ)). Also note

that St(σ∗(θ)) ≥ Si(m)(σ̃(θ)). Hence, θtSt(σ∗(θ)) ≥ θi(m)Si(m)(σ̃(θ)). If θt > θi(m),

then C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)) < θtSt(σ∗(θ)) and t ∈ S∗ which contradicts

C∗m(σ̃(θ)) = C∗m(σ∗(θ)). If (A) θt = θi(m), then given TE(J) and t ∈ Pi(m)(σ̃(θ)), ei-
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ther (B) θt/st > θi(m)/si(m), or (B) θt/st = θi(m)/si(m) and t <r i(m). If (B) holds,

that is, θt/st > θi(m)/si(m), then we have a contradiction to t ∈ P′i(m)(σ
∗(θ)). If (C)

holds, that is, θt/st = θi(m)/si(m) and t <r i(m), then, given that the linear orders on

N for the tie-breaking rules TB(OE) and TB(J) are identical, we have a contradiction to

t ∈ P′i(m)(σ
∗(θ)) since, given t <r i(m) we must also have t <oe i(m). Consequently,

we have established that if k ∈ Pi(m)(σ̃(θ)), then k ∈ Pi(m)(σ
∗(θ)).

Step 2: If for some θ ∈ Θn and some m = 1, . . . , n, C∗r (σ̃(θ)) = C∗r (σ∗(θ)) for all

r = 1, . . . , m− 1, then C∗m(σ̃(θ)) ≤ C∗m(σ∗(θ)).

Proof of Step 2: Suppose that for some θ ∈ Θn and some m = 1, . . . , n, C∗r (σ̃(θ)) =

C∗r (σ∗(θ)) for all r = 1, . . . , m − 1. Then, from Step 1, Pi(r)(σ̃(θ)) = Pi(r)(σ
∗(θ))

for all r = 1, . . . , m − 1. Let C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)). As in the proof

of Step 1, consider the set of agents A(m − 1) = {i(1), . . . , i(m − 1)} such that

C∗r (σ̃(θ)) = θi(r)Si(r)(σ̃(θ)) = θi(r)Si(r)(σ
∗(θ)) for all r = 1, . . . , m − 1, and con-

sider the set S∗ = T1 ∩ T2. If |S∗| = 1, then Pi(m)(σ̃(θ)) = Pi(m)(σ
∗(θ)) and

C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)) = θi(m)Si(m)(σ
∗(θ)) = C∗m(σ∗(θ)), and the proof is

complete. Assume that |S∗| > 1. Define T′ = Pi(m)(σ̃(θ)) ∪ {i(m)}. Consider

t ∈ T′ such that St(σ∗(θ)) = maxp∈T′{Sp(σ∗(θ))}. Note that either t = i(m), or

t 6= i(m) and t ∈ Pi(m)(σ̃(θ)) ∩ P′i(m)(σ
∗(θ)). Hence, in either case, θt ≥ θi(m),

and St(σ∗(θ)) ≥ Si(m)(σ̃(θ)) so that θtSt(σ∗(θ)) ≥ θi(m)Si(m)(σ̃(θ)). Moreover,

t ∈ S∗ since t 6∈ Pi(a)(σ̃(θ)) ∪ {i(a)} = Pi(a)(σ
∗(θ)) ∪ {i(a)} (if i(a) exists) and since

t 6∈ P′i(b)(σ̃(θ)) ∪ {i(b)} = P′i(b)(σ
∗(θ)) ∪ {i(b)} (if i(b) exists). Given C∗r (σ̃(θ)) =

C∗r (σ∗(θ)) for all r = 1, . . . , m − 1, C∗m(σ̃(θ)) = θi(m)Si(m)(σ̃(θ)) ≤ θtSt(σ∗(θ)) and

t 6∈ A(m− 1), it follows that C∗m(σ̃(θ)) ≤ C∗m(σ∗(θ)). This proves Step 2.

We get the result by applying Step 1 and Step 2. From Theorem 2.1, it follows

that for any θ ∈ ΘN, C∗1(σ̃(θ)) ≤ C∗1(σ
∗(θ)). If C∗1(σ̃(θ)) < C∗1(σ

∗(θ)), then the

just sequencing rule σ̃ lexi-max dominates the outcome efficient sequencing rule

σ∗. If C∗1(σ̃(θ)) = C∗1(σ
∗(θ)), then by Step 2, C∗2(σ̃(θ)) ≤ C∗2(σ

∗(θ)). Again, if

C∗1(σ̃(θ)) = C∗1(σ
∗(θ)) and C∗2(σ̃(θ)) < C∗2(σ

∗(θ)), then the just sequencing rule σ̃

lexi-max dominates the outcome efficient sequencing ruleσ∗. If C∗1(σ̃(θ)) = C∗1(σ
∗(θ))
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and C∗2(σ̃(θ)) = C∗2(σ
∗(θ)), then, by Step 2, C∗3(σ̃(θ)) ≤ C∗3(σ

∗(θ)). Continuing this

way the result follows. Note that if C∗r (σ̃(θ)) = C∗r (σ∗(θ)) for all r = 1, . . . , n− 1, then,

by Step 2, C∗n(σ̃(θ)) ≤ C∗n(σ∗(θ)). But, given ∑
n
r=1 C∗r (σ∗(θ)) ≤ ∑

n
r=1 C∗r (σ̃(θ)), we get

C∗n(σ̃(θ)) = C∗n(σ∗(θ)). �

The importance of the tie-breaking rule TB(J) is transparent from the next example.

EXAMPLE 2.2 Consider Ω(s1, s2) such that s1 > s2. Assume that the tie-breaking

rule TB(J′) for σ̃ is simply 1 ≤r′ 2, that is, if θ1 = θ2, then S1(σ̃(θ)) = s1 and

S2(σ̃(θ)) = s1 + s2. It is easy to see TB(J′) is different from TB(J). Consider the

profile θ′ = (θ′1,θ′2) such that θ′1 = θ′2 and, given s1 > s2, θ′2/s2 > θ′1/s1. Us-

ing this tie-breaking rule for σ̃ we get S1(σ̃(θ
′)) = s1 and S2(σ̃(θ

′)) = s1 + s2

and, by outcome efficiency, S1(σ
∗(θ′)) = s1 + s2 and S2(σ

∗(θ′)) = s2. Note that

C∗1(σ̃(θ
′)) = θ′2(s1 + s2) = θ′1(s1 + s2) = C∗1(σ

∗(θ′)) and C∗2(σ̃(θ
′)) = θ′1s1 > θ′2s2 =

C∗2(σ
∗(θ′)). Therefore, with TB(J′), for θ′, the outcome efficient rule lexi-max domi-

nates the just sequencing rule. Moreover, Step 1 of Proposition 2.2 also fails to hold

since P1(σ̃(θ
′)) = {2} 6= P1(σ

∗(θ′)) = ∅. Observe that if instead we use tie-breaking

rule TB(J), then σ̃(θ′) = σ∗(θ′) and then C∗1(σ̃(θ
′)) = C∗1(σ

∗(θ′)) = θ′1(s1 + s2),

C∗2(σ̃(θ
′)) = C∗2(σ

∗(θ′)) = θ′2s2 and Step 1 also holds.

Is there a meaningful bound for the ‘efficiency loss’ that we may incur under the just

sequencing rule? For any sequencing problem Ω(s), consider the just sequencing rule

σ̃ and the outcome efficient sequencing rule σ∗. For any θ ∈ Θn, define

ELn(θ) =

 ∑
j∈N

θ jS j(σ̃(θ))− ∑
j∈N

θ jS j(σ
∗(θ))

∑
j∈N

θ jS j(σ∗(θ))

 .

ELn(θ) is a measure of relative efficiency loss since, given any θ ∈ Θn, the numerator

of ELn(θ) is the aggregate cost difference between the just sequencing rule and the

outcome efficient sequencing rule and the denominator of ELn(θ) is the aggregate cost

under the outcome efficient sequencing rule.

PROPOSITION 2.1 For any θ ∈ Θn, ELn(θ) ∈ [0, n− 1).
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Proof: From the definition of the outcome efficient sequencing rule it follows that

for any θ ∈ Θn, ∑ j∈N θ jS j(σ̃(θ)) ≥ ∑ j∈N θ jS j(σ
∗(θ)) implying ELn(θ) ≥ 0. To

prove ELn(θ) < n − 1, we show that for any θ ∈ Θn, n
[
∑ j∈N θ jS j(σ

∗(θ))
]
−

∑ j∈N θ jS j(σ̃(θ)) > 0. Observe that for any θ ∈ Θn, ∑ j∈N θ jS j(σ̃(θ)) =

∑ j∈N θ js j + ∑ j∈N s j

(
∑k∈P′j(σ̃(θ))

θk

)
and n

[
∑ j∈N θ jS j(σ

∗(θ))
]

= n ∑ j∈N θ js j +

n ∑ j∈N s j

(
∑k∈P′j(σ

∗(θ))θk

)
. Therefore, n

[
∑ j∈N θ jS j(σ

∗(θ))
]
−∑ j∈N θ jS j(σ̃(θ)) =

n ∑ j∈N s j

(
∑k∈P′j(σ

∗(θ))θk

)
+ ∑ j∈N s j

[
(n− 1)θ j − ∑k∈P′j(σ̃(θ))

θk

]
> 0. The strict in-

equality holds because the sum ∑ j∈N s j

[
(n− 1)θ j − ∑k∈P′j(σ̃(θ))

θk

]
≥ 0 and the rea-

son is the following. For any j ∈ N, (n − 1)θ j = |Pj(σ̃(θ))|θ j + ∑k∈P′j(σ̃(θ))
θ j and

θ j ≥ θk for all k ∈ P′j(σ̃(θ)) implying that ∑ j∈N s j

[
(n− 1)θ j − ∑k∈P′j(σ̃(θ))

θk

]
=

∑ j∈N s j

[
|Pj(σ̃(θ)|θ j + ∑k∈P′j(σ̃(θ))

(θ j −θk)
]
≥ 0. �

2.4 Implementability of the just sequencing rule

DEFINITION 2.7 For the just sequencing rule σ̃ , a mechanism (σ̃ , τ̃) is an ICJ mechanism

if the transfer rule is such that for all θ ∈ Θn and all i ∈ N,

τ̃i(θ) = h̃i(θ−i)− ∑
j∈P′i (σ̃(θ))

θ js j, (2.7)

where the function h̃i : Θ|N\{i}| → R is arbitrary.

Given a sequencing problem Ω(s), for any profile θ ∈ Θn and any j ∈ N, let θ js j

be the minimum cost of agent j, that is, the cost that agent j would have incurred if

he was served first in any order. Like the VCG transfers (2.2), the ICJ transfers (2.7)

specify that for any i ∈ N and any θ−i ∈ ΘN\{i}, if θi is such that agent i is served

last in the just order σ̃(θi,θ−i), then τ̃i(θi,θ−i) = h̃i(θ−i). If θ′i is such that agent i is

not served last in the order σ̃(θ′i ,θ−i), then agent i’s transfer τ̃i(θ
′
i ,θ−i) not only has

h̃i(θ−i) but he also has to pay the sum of the minimum costs of his followers in the just

order σ̃(θ′i ,θ−i). As long as we are in a sequencing problem Ω(s) where the processing

time of the agents are not identical, there will be some profile θ and some agent j for
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whom the minimum cost θ js j will be different from the pivotal cost θ jsi of i on j for

some i ∈ N \ { j}. Hence the payment amounts in the ICJ transfers are qualitatively

different from the payment amounts under the VCG transfers (2.2) where, recall that,

the payment amount is the sum of the pivotal cost of agent i on all his followers in the

outcome efficient sequencing order. Therefore, it is easy to see that for the queueing

problem Ω(s∗) we have the following: For any agent j ∈ N, any agent i ∈ N \ {i} and

any profile θ, the minimum cost θ js∗j is identical to the pivotal cost θ js∗i since s∗i = s∗j

and, given the same tie-breaking rule, σ∗(θ) = σ̃(θ). Thus, the VCG-mechanisms and

the ICJ mechanisms are identical for the queueing problem Ω(s∗).

THEOREM 2.3 The just sequencing rule σ̃ is implementable if and only if the mecha-

nism (σ̃ , τ) that implements it is an ICJ mechanism.

Proof: Consider the just sequencing rule σ̃ . We first prove that if a mechanism (σ̃ , τ)

implements σ̃ , then it is necessarily the ICJ mechanism. Consider any agent i ∈ N

and fix any profile θ−i ∈ Θ|N\{i}|. Take any θi,θ′i ∈ Θ and apply the inequali-

ties (1) Ui(σ̃(θ), τi(θ);θi) ≥ Ui(σ̃(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θi) and (2) Ui(σ̃(θ), τi(θ);θ′i) ≤

Ui(σ̃(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θ′i). From (1) and (2) we get

[Si(σ̃(θ
′
i ,θi))− Si(σ̃(θ))]θi ≥ τi(θ

′
i ,θ−i)− τi(θ) ≥ [Si(σ̃(θ

′
i ,θi))− Si(σ̃(θ))]θ

′
i . (2.8)

If θi and θ′i are such that σ̃(θ) = σ̃(θ′i ,θ−i), then Si(σ̃(θ
′
i ,θi)) = Si(σ̃(θ)) and in-

equality (2.8) gives τi(θ) = τi(θ
′
i ,θ−i).

Letθ(1) ≥ θ(2) ≥ . . . ≥ θ(n−1) be the non-increasing order of the waiting cost for the

fixed profile θ−i. Consider any pair (θt+1
i ,θt

i ) ∈ [θ(t+1),θ(t)]× [θ(t),θ(t−1)]. Using the

just sequencing rule σ̃ and applying the implementability condition (2.8), if the actual

profile is (θt+1
i ,θ−i) ((θt

i ,θ−i)) and the misreport of agent i is θt
i (θt+1

i ), then

θt+1
i s(t) ≤ τi(θ

t+1
i ,θ−i)− τi(θ

t
i ,θ−i) ≤ θt

i s(t). (2.9)
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Since (2.9) must hold for all (θt+1
i ,θt

i ) ∈ [θ
(t+1)
i ,θ(t)i ]× [θ

(t)
i ,θ(t−1)

i ], it follows that

τi(θ
t+1
i ,θ−i)− τi(θ

t
i ,θ−i) = θ(t)s(t). (2.10)

Condition (2.10) must hold for all t ∈ {1, . . . , n− 1}. By setting τi(θ
n
i ,θ−i) = hi(θ−i)

for any θn
i ∈ (0,θ(n−1)) and then solving condition (2.10) recursively we get the ICJ

transfers (2.7).

For the converse consider any agent i ∈ N and any profile θ−i. Let

θi be the true waiting cost of i and Bi(θ
′
i ;θi) := Ui(σ̃(θ

′
i ,θ−i), τi(θ

′
i ,θ−i);θi) −

Ui(σ̃(θi,θ−i), τi(θi,θ−i);θi) be the benefit of agent i from a misreport θ′i .

(D1) If θ′i > θi and Pi(σ̃(θi,θ−i)) \ Pi(σ̃(θ
′
i ,θ−i)) 6= ∅, then from the just sequencing

rule we get θ j ≥ θi for all j ∈ Pi(σ̃(θi,θ−i)) \ Pi(σ̃(θ
′
i ,θ−i)). Therefore, using any

ICJ transfer we get Bi(θ
′
i ;θi) = ∑ j∈Pi(σ̃(θi ,θ−i))\Pi(σ̃(θ

′
i ,θ−i))

(θi −θ j)s j ≤ 0.

(D2) If θ′i < θi and Pi(σ̃(θ
′
i ,θ−i)) \ Pi(σ̃(θi,θ−i)) 6= ∅, then from the just sequencing

rule we get θ j ≤ θi for all j ∈ Pi(σ̃(θ
′
i ,θ−i)) \ Pi(σ̃(θi,θ−i)). Hence using any ICJ

transfer we get Bi(θ
′
i ;θi) = ∑ j∈Pi(σ̃(θ

′
i ,θ−i))\Pi(σ̃(θi ,θ−i))

(θ j −θi)s j ≤ 0.

(D3) Finally, if θ′i 6= θi and Pi(σ̃(θ
′
i ,θ−i)) = Pi(σ̃(θi,θ−i)), then Bi(θ

′
i ;θi) = 0.

Therefore, cases (D1)-(D3) prove that agent i cannot benefit from any deviation. Since

the selection of agent i was arbitrary, the result follows. �

REMARK 2.2 In this chapter we are interested in implementing the just sequencing

rule. So we apply Rawlsian difference principle on the job completion cost θiSi of

the agents and not on utility/welfare −θiSi + τi of the agents. How to address the

Rawlsian difference principle on welfare of the agents subject to the implementability

constraint in a mechanism design framework like ours is a difficult but very pertinent

open question.
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2.4.1 Lexi-min domination

Consider any sequencing problem Ω(s). For any incentive compatible mechanism

(σ , τ) with sequencing rule σ and transfer rule τ , consider any θ ∈ Θn and define

the vector of utilities as b(σ(θ), τ(θ)) = (U1(σ(θ), τ(θ);θ1), . . . , Un(σ(θ), τ(θ);θn)).

Define b∗(σ(θ), τ(θ)) = (b∗1(σ(θ), τ(θ)), . . . , b∗n(σ(θ), τ(θ))) as the reordering of the

utility vector b(σ(θ), τ(θ)) such that b∗1(σ(θ), τ(θ)) ≤ . . . ≤ b∗n(σ(θ), τ(θ)).

DEFINITION 2.8 Consider any sequencing problem Ω(s) and consider two incen-

tive compatible mechanisms (σ ′, τ ′) and (σ ′′, τ ′′). The incentive compatible mecha-

nism (σ ′, τ ′) weakly lexi-min dominates the incentive compatible mechanism (σ ′′, τ ′′)

if for each θ ∈ Θn, either b∗1(σ
′(θ), τ ′(θ)) > b∗1(σ

′′(θ), τ ′′(θ)), or there exists k ∈

{2, . . . , n} such that b∗r (σ ′(θ), τ ′(θ)) = b∗r (σ ′′(θ), τ ′′(θ)) for all r = 1, . . . , k − 1 and

b∗k(σ
′(θ), τ ′(θ)) > b∗k(σ

′′(θ), τ ′′(θ)), or the vector b∗(σ ′(θ), τ ′(θ)) is identical to the

vector b∗(σ ′′(θ), τ ′′(θ)).

Consider any sequencing problem Ω(s) and, without loss of generality, assume

that s1 ≥ . . . ≥ sn and s1 6= sn.10 The following observations are important in this

context.

1. There exists a VCG mechanism and an ICJ mechanism such that the ICJ mech-

anism weakly lexi-min dominates the VCG mechanism. Consider the VCG mecha-

nism (σ∗, τ∗) with the property that for all θ ∈ Θn and all i ∈ N, h∗i (θ−i) = 0

and consider the ICJ mechanism (σ̃ , τ̃) with the property that for all θ ∈ Θn

and all i ∈ N, h̃i(θ−i) = ∑ j∈N\{i}θ js j. It is easy to verify that for any θ ∈

Θn, Ui(σ̃(θ), τ̃i(θ);θi) = ∑ j∈Pi(σ̃(θ))
s j(θ j − θi) − θisi and Ui(σ

∗(θ), τ∗i (θ);θi) =

−θi ∑ j∈Pi(σ∗(θ)) s j − si ∑ j∈P′i (σ
∗(θ))θ j −θisi. Since θ j ≥ θi for all j ∈ Pi(σ̃(θ)), we

have ∑ j∈Pi(σ̃(θ))
s j(θ j −θi) ≥ 0 implying Ui(σ̃(θ), τ̃i(θ);θi) > Ui(σ

∗(θ), τ∗i (θ);θi)

for all i ∈ N. Hence, the ICJ mechanism (σ̃ , τ̃) weakly lexi-min dominates the

VCG mechanism (σ∗, τ∗).

10If s1 = sn, then we have the queueing problem.
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2. There exists a VCG mechanism and an ICJ mechanism such that the VCG mecha-

nism weakly lexi-min dominates the ICJ mechanism. Consider the VCG mechanism

(σ∗, τ∗) with the property that for all θ ∈ Θn and all i ∈ N, h∗i (θ) = si ∑ j∈N\{i}θ j

and consider the ICJ mechanism (σ̃ , τ̃) with the property that for all θ ∈ Θn and

all i ∈ N, h̃i(θ) = 0. It is quite easy to verify that for any profile θ ∈ Θn,

Ui(σ
∗(θ), τ∗i (θ);θi) = ∑ j∈Pi(σ∗(θ))(θ jsi − θis j) − θisi and Ui(σ̃(θ), τ̃i(θ);θi) =

−θi ∑ j∈Pi(σ̃(θ))
s j − ∑ j∈P′i (σ̃(θ))

θ js j − θisi. Since for all j ∈ Pi(σ
∗(θ)), we have

θ j/s j ≥ θi/si implying θ jsi ≥ θis j, it follows that ∑ j∈Pi(σ∗(θ))(θ jsi −θis j) ≥ 0 and

we have Ui(σ
∗(θ), τ∗i (θ);θi) > Ui(σ̃(θ), τ̃i(θ);θi) for all i ∈ N. Consequently, the

VCG mechanism (σ∗, τ∗) weakly lexi-min dominates the ICJ mechanism (σ̃ , τ̃).

3. For any VCG mechanism and any ICJ mechanism with the property that for all

θ ∈ Θn and all i ∈ N, h∗i (θ−i) = h̃i(θ−i), no such lexi-min domination relation

exists. Fix any VCG mechanism (σ∗, τ∗) and any ICJ mechanism (σ̃ , τ̃) with

the property that for all θ ∈ Θn and all i ∈ N, h∗i (θ−i) = h̃i(θ−i). Consider

any profile θ = (θ1, . . . ,θn) such that θ1/s1 > . . . > θn/sn and θ1 > . . . > θn

so that σ̃(θ) = σ∗(θ) and Si(σ̃(θ)) = Si(σ
∗(θ)) = ∑

i
j=1 s j for all i ∈ N. Ob-

serve that for any i ∈ N, si ≥ s j for all j ∈ P′i (σ̃(θ)) = P′i (σ
∗(θ)) implying that

Ui(σ̃(θ), τ̃i(θ);θi)−Ui(σ
∗(θ), τ∗i (θ);θi) = ∑ j∈P′i (σ̃(θ))

θ j(si − s j) ≥ 0. Given s1 6=

sn, U1(σ̃(θ), τ̃1(θ);θ1)−U1(σ
∗(θ), τ∗1 (θ);θ1) = ∑ j∈N\{1}θ j(s1 − s j) > 0. There-

fore, the VCG mechanism (σ∗, τ∗) cannot lexi-min dominate the ICJ mechanism

(σ̃ , τ̃). Next, consider any profile θ′ = (θ′1, . . . ,θ′n) such that θ′n/sn > . . . > θ′1/s1

andθ′n > . . . > θ′1 so that σ̃(θ′) = σ∗(θ′) and Si(σ̃(θ
′)) = Si(σ

∗(θ′)) = ∑
n
j=i s j for

all i ∈ N. Observe that for any i ∈ N, si ≤ s j for all j ∈ P′i (σ̃(θ
′)) = P′i (σ

∗(θ′))

implying that Ui(σ
∗(θ′), τ∗i (θ

′);θ′i) − Ui(σ̃(θ
′), τ̃i(θ

′);θ′i) = ∑ j∈P′i (σ̃(θ
′))θ

′
j(s j −

si) ≥ 0. Given s1 6= sn, Un(σ∗(θ′), τ∗n(θ′);θ′n) − Un(σ̃(θ′), τ̃n(θ′);θ′n) =

∑ j∈N\{n}θ
′
j(s j − sn) > 0. Thus, it is also true that the ICJ mechanism (σ̃ , τ̃)

cannot lexi-min dominate the VCG mechanism (σ∗, τ∗).
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2.5 Properties of the just sequencing rule

In this section we focus on two nice properties of the just sequencing rule.

2.5.1 Budget balanced implementability of the just sequencing rule

For implementation of outcome efficient allocation rules, Zhou (2007) provided exam-

ples of both public and private good allocation problems for which no budget bal-

ancing VCG mechanisms exists and for which all VCG mechanisms are inferior to

other ‘reasonable’ non-VCG mechanisms. Zhou (2007) concluded that unless one can

find a budget balancing VCG mechanism, one should limit its use. Implementation

of outcome efficient rules with balanced transfers is difficult to get in many economic

environments (see, for example, Hurwicz and Walker (1990) and Walker (1980)). That

implementation of outcome efficiency is possible with balanced transfers for sequenc-

ing and queueing problems was established by Mitra (2001), Mitra (2002) and Suijs

(1996). Mitra and Sen (2010) characterized domains in a heterogeneous objects model

with private values where an outcome efficient rule can be implemented in dominant

strategies with balanced transfers. They show that these domains are non-trivial and

are ‘closely’ related to incentive problems in sequencing and queueing problems stud-

ied in Mitra Mitra (2001), Mitra (2002) and Suijs (1996). We prove that for sequencing

problems, if we replace outcome efficient sequencing rule with the just sequencing

rule, we get implementability with balanced transfers provided there are at least three

agents.

DEFINITION 2.9 A sequencing rule σ is implementable with balanced transfers if the

mechanism (σ , τ) that implements it has a budget balanced transfer, that is, for all

θ ∈ Θn, ∑ j∈N τ j(θ) = 0.

PROPOSITION 2.2 For any sequencing problem Ω(s1, s2) with two agents, implemen-

tation of the just sequencing rule σ̃ with balanced transfers is not possible.

Proof: Fix any processing time vector (s1, s2) and consider the sequencing problem

Ω(s1, s2). To implement the refined sequencing rule it is necessary that the mechanism
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(σ , τ) is an ICJ mechanism (Theorem 2.3). Pick any ICJ mechanism. Consider the

waiting costs θ1,θ′1,θ2,θ′2 such that θ1 > θ′2 > θ′1 > θ2 and θ′1s1 6= θ′2s2. Budget

balance for the profile (θ1,θ2) gives (B1) h̃1(θ2) + h̃2(θ1)−θ2s2 = 0. Budget balance

for (θ1,θ′2) gives (B2) h̃1(θ
′
2) + h̃2(θ1)−θ′2s2 = 0. Budget balance for (θ′1,θ2) gives (B3)

h̃1(θ2) + h̃2(θ
′
1)−θ2s2 = 0. Finally, budget balance for the profile (θ′1,θ′2) gives (B4)

h̃1(θ
′
2) + h̃2(θ

′
1)−θ′1s1 = 0. By adding (B1) and (B4) and subtracting both (B2) and (B3)

from it we get θ′2s2 −θ′1s1 = 0 which contradicts the restriction that θ′1s1 6= θ′2s2. �

DEFINITION 2.10 Consider any Ω(s) with at least three agents. A mechanism (σ̃ , τ̃∗)

is a balanced ICJ mechanism if the transfer rule is such that for all θ ∈ Θn and all i ∈ N,

τ̃∗i (θ) = ∑
j∈Pi(σ̃(θ))

(
σ̃ j(θ)− 1

n− 2

)
θ js j − ∑

j∈P′i (σ̃(θ))

(
n− σ̃ j(θ)

n− 2

)
θ js j + gi(θ−i), (2.11)

where gi : Θ|N\{i}| → R for each i ∈ N is such that for any θ ∈ Θn, ∑i∈N gi(θ−i) = 0.

The balanced ICJ transfer requires that for any profile θ ∈ Θn and given any agent

specific constant transfer gi(θ−i) to agent i, each agent i, in addition, receives as reward

a position specific weighted sum of the minimum cost of all agents served before him

(∑ j∈Pi(σ̃(θ))
[(σ̃ j(θ) − 1)/(n − 2)]θ js j) under the just sequencing order σ̃(θ) (provided

Pi(σ̃(θ)) 6= ∅) and agent i also pays a position specific weighted sum of the minimum

cost of all agents served after him (∑ j∈P′i (σ̃(θ))
[(n− σ̃ j(θ))/(n− 2)]θ js j) under the just

sequencing order σ̃(θ) (provided P′i (σ̃(θ)) 6= ∅). In addition, the balanced ICJ mecha-

nism also requires that selection of the function gi : Θ|N\{i}| → R for each agent i ∈ N

must be such that for any θ ∈ Θn, ∑ j∈N g j(θ− j) = 0.

THEOREM 2.4 Let Ω(s) be a sequencing problem with at least three agents. The just

sequencing rule is implementable with balanced transfers if and only if the mechanism

(σ̃ , τ) that implements it is a balanced ICJ mechanism.

Proof: We know that the just sequencing rule is implementable if and only if the mech-

anism is an ICJ mechanism (Theorem 2.3). Therefore, identifying the complete class of
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mechanisms that implement the just sequencing rule with balanced transfers reduce

to identifying the complete class of balanced ICJ mechanisms.

Let σ̃(θ) be the just order for the profile θ ∈ Θn and agent i leaves. We define the

“induced” order σ̃(θ−i) (of length |N \ {i}|) for the agents in N \ {i} as follows:

σ̃ j(θ−i) =

 σ̃ j(θ)− 1 if j ∈ P′i (σ̃(θ)),

σ̃ j(θ) if j ∈ Pi(σ̃(θ)).
(2.12)

In words, σ̃(θ−i) is the order formed by removing agent i and moving all agents be-

hind him up by one position. Given the same tie-breaking rule for the economy with

N \ {i} agents, it is easy to see that if σ̃(θ) is just order for the profile θ, then σ̃(θ−i) is

also the just order in N \ {i} for the profile θ−i.

Given that the sequencing problem Ω(s) has at least three agents, without loss of

generality, we redefine the ICJ mechanisms by setting for each agent i ∈ N and each

profile θ−i,

h̃i(θ−i) = ∑
j∈N\{i}

(
σ̃ j(θ−i)− 1

n− 2

)
θ js j + gi(θ−i), (2.13)

where gi : Θ|N\{i}| → R is arbitrary. By substituting (2.13) in the ICJ transfer (2.7) we

get the following for any i ∈ N and any θ ∈ Θn.

(A) If P′i (σ̃(θ)) = ∅, then σ̃ j(θ−i) = σ̃ j(θ) for all j ∈ N \ {i} and from (2.7) we get

τ̃i(θ) = h̃i(θ−i) = ∑ j∈N\{i}

(
σ̃ j(θ)−1

n−2

)
θ js j + gi(θ−i).

(B) If Pi(σ̃(θ)) = ∅, then σ̃ j(θ−i) = σ̃ j(θ)− 1 for all j ∈ N \ {i} and from (2.7) we get

τ̃i(θ) = −∑ j∈N\{i}θ js j + h̃i(θ−i) = −∑ j∈N\{i}θ js j + ∑ j∈N\{i}

(
σ̃ j(θ)−2

n−2

)
θ js j +

gi(θ−i) = −∑ j∈N\{i}

(
n−σ̃ j(θ)

n−2

)
θ js j + gi(θ−i).

(C) If P′i (σ̃(θ)) 6= ∅ and Pi(σ̃(θ)) 6= ∅, then σ̃ j(θ−i) = σ̃ j(θ) for all j ∈ Pi(σ̃(θ)) 6= ∅,

σ̃ j(θ−i) = σ̃ j(θ)− 1 for all j ∈ P′i (σ̃(θ)) 6= ∅ and from (2.7) we get

τ̃i(θ) = − ∑
j∈P′i (σ̃(θ))

θ js j + h̃i(θ−i)

= − ∑
j∈P′i (σ̃(θ))

θ js j + ∑
j∈Pi(σ̃(θ))

(
σ̃ j(θ)−1

n−2

)
θ js j + ∑

j∈P′i (σ̃(θ))

(
σ̃ j(θ)−2

n−2

)
θ js j + gi(θ−i)
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= ∑
j∈Pi(σ̃(θ))

(
σ̃ j(θ)−1

n−2

)
θ js j − ∑

j∈P′i (σ̃(θ))

(
n−σ̃ j(θ)

n−2

)
θ js j + gi(θ−i).

Conditions (A)-(C) establish that if the sequencing problem Ω(s) has at least three

agents, then an equivalent representation of the ICJ transfers is that for any i ∈ N and

any θ ∈ Θn,

τ̃ ′i (θ) = ∑
j∈Pi(σ̃(θ))

(
σ̃ j(θ)− 1

n− 2

)
θ js j − ∑

j∈P′i (σ̃(θ))

(
n− σ̃ j(θ)

n− 2

)
θ js j + gi(θ−i), (2.14)

where for each i ∈ N, the function gi : Θ|N\{i}| → R is arbitrary. By taking representa-

tion (2.14) of the ICJ transfers we get for any θ ∈ Θn,

∑
k∈N

τ̃ ′k(θ) = ∑
k∈N

{
∑

j∈Pk(σ̃(θ))

(
σ̃ j(θ)−1

n−2

)
θ js j − ∑

j∈P′k(σ̃(θ))

(
n−σ̃ j(θ)

n−2

)
θ js j

}
+ ∑

k∈N
gk(θ−k)

= ∑
k∈N

∑
j∈Pk(σ̃(θ))

(
σ̃ j(θ)−1

n−2

)
θ js j − ∑

k∈N
∑

j∈P′k(σ̃(θ))

(
n−σ̃ j(θ)

n−2

)
θ js j + ∑

k∈N
gk(θ−k)

= ∑
j∈N

{
|P′j(σ̃ j(θ))|

(
σ̃ j(θ)−1

n−2

)}
θ js j − ∑

j∈N

{
|Pj(σ̃ j(θ))|

(
n−σ̃ j(θ)

n−2

)}
θ js j + ∑

k∈N
gk(θ−k)

= ∑
j∈N

{
(n− σ̃ j(θ))

(
σ̃ j(θ)−1

n−2

)}
θ js j − ∑

j∈N

{
(σ̃ j(θ)− 1)

(
n−σ̃ j(θ)

n−2

)}
θ js j + ∑

k∈N
gk(θ−k)

= ∑
k∈N

gk(θ−k)

Therefore, by taking representation (2.14) of the ICJ transfers, we have proved that

for any θ ∈ Θn, ∑
k∈N

τ̃ ′k(θ) = ∑
k∈N

gk(θ−k). Thus, an ICJ mechanism represented by

(2.14) is budget balanced if and only if (I) for all θ ∈ Θn, ∑
k∈N

gk(θ−k) = 0. From

representation (2.14) of the ICJ transfers and from condition (I), the result follows. �

REMARK 2.3 There are papers that show that for the family of sequencing problems

Ω(s) with three or more agents one can implement the outcome efficient sequencing

rule with balanced VCG mechanisms (see Mitra (2002) and Suijs (1996)). A balanced

VCG mechanism has the following functional form of the transfer: For each θ ∈ Θn
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the transfer vector τ∗(θ) = (τ∗1 (θ), τ
∗
2 (θ), . . . , τ∗n(θ)) is such that for each i ∈ N,

τ∗i (θ) =

 ∑
j∈Pi(σ∗(θ))

θ j

 si −
1

(n− 2) ∑
j 6=i

θ j

 ∑
k∈P′j(σ

∗(θ)),k 6=i}
sk


 .11 (2.15)

From Remark 2.1 it follows that for the queueing problem Ω(s∗), the set of all balanced

ICJ mechanisms coincide with the set of all balanced VCG mechanisms.

In the next example we select a balanced VCG mechanism and a balanced ICJ

mechanism and show that neither lexi-min dominates the other.

EXAMPLE 2.3 Consider the sequencing problem Ω(s) where N = {1, 2, 3}, s =

(s1, s2, s3) is such that s1 ≥ s2 ≥ s3 > 0 and s1 6= s3. Consider the balanced

VCG mechanism (σ∗, τ∗) where τ∗(θ) is given by equation (2.15) and consider bal-

anced ICJ mechanism (σ̃ , τ̃∗) with the transfer given by equation (2.11) of Section

2.5.1 by imposing an added restriction that for all θ ∈ Θ3, g1(θ−1) = −s3(s1 − s3),

g2(θ−2) = 0 and g3(θ−3) = s3(s1 − s3). Consider any m > s1 and let θ = (θ1,θ2,θ3)

be such that θ1 = m(s1 − s3)/s1, θ2 = 2m(s1 − s3)/s2 and θ3 = 3m(s1 − s3)/s3.

This implies θ3 > θ2 > θ1, θ3s3 > θ2s2 > θ1s1 and θ3/s3 > θ2/s2 > θ1/s1.

Hence, by construction, for all i ∈ N, Pi(σ̃(θ)) = Pi(σ
∗(θ)) and one can ver-

ify that U1(σ̃(θ), τ̃∗1 (θ);θ1) > U2(σ̃(θ), τ̃∗2 (θ);θ2) > U3(σ̃(θ), τ̃∗3 (θ);θ3). There-

fore, b∗1(σ̃(θ), τ̃
∗(θ)) = U3(σ̃(θ), τ̃∗3 (θ);θ3). Finally, we get U3(σ̃(θ), τ̃∗3 (θ);θ3) −

U3(σ
∗(θ), τ∗3 (θ);θ3) = θ2(s1 − s2) + s3(s1 − s3) > 0. Hence b∗1(σ̃(θ), τ̃

∗(θ)) =

U3(σ̃(θ), τ̃∗3 (θ);θ3) > U3(σ
∗(θ), τ∗3 (θ);θ3) ≥ b∗1(σ

∗(θ), τ∗(θ)) implying that the bal-

anced VCG mechanism (σ∗, τ∗) cannot lexi-min dominate the balanced ICJ mecha-

nism (σ̃ , τ̃∗). Consider any θ′ = (θ′1,θ′2,θ′3) such θ′1 > θ′2 > θ′3, θ′1s1 > θ′2s2 > θ′3s3 and

θ′1/s1 > θ′2/s2 > θ′3/s3. Hence, by construction, for all i ∈ N, Pi(σ̃(θ
′)) = Pi(σ

∗(θ′))

and one can verify that b∗1(σ
∗(θ′), τ∗(θ′)) = U1(σ

∗(θ′), τ∗3 (θ
′);θ′3). One can also ver-

ify that U1(σ̃(θ
′), τ̃∗1 (θ

′);θ′1) − U1(σ
∗(θ′), τ∗1 (θ

′);θ′1) = θ′2(s3 − s2) − s3(s1 − s3) <

0. Therefore, we have the following: b∗1(σ
∗(θ′), τ∗(θ′)) = U1(σ

∗(θ′), τ∗1 (θ
′);θ′1) >

11See equation (3.1) in Mitra (2002).
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U1(σ̃(θ
′), τ̃∗1 (θ

′);θ′1) ≥ b∗1(σ̃(θ
′), τ̃∗(θ′)). Hence the balanced ICJ mechanism (σ̃ , τ̃∗)

cannot lexi-min dominate the balanced VCG mechanism (σ∗, τ∗).

2.5.2 Two-dimensional incentives and the just sequencing rule

If we assume that both waiting cost and the processing time are agent specific private

information, then we have the mechanism design problem for the general sequencing

problem Ω = (N, Θn, S). Specifically, we have an interdependent value situation and

therefore the correct notion is ex-post implementability. The type of any agent i ∈ N

is mi = (θi, si) ∈ Θ×R++ that constitutes of his waiting cost as well as his processing

time. A profile is m = (m1, . . . , mn) ∈ Θn × S . For any i ∈ N, let m−i, denote the

profile (m1, . . . , mi−1, mi+1, . . . , mn) ∈ Θ|N\{i}| × R|N\{i}|++ which is obtained from the

profile m by eliminating i’s type. For the general sequencing problem Ω, a (direct

revelation) mechanism is (σ g, τ) that constitutes of a general sequencing rule σ g and

a transfer rule τ . A general sequencing rule is a function σ g : Θn × S → Σ(N) that

specifies for each profile m ∈ Θn × S , a unique order σ g(m) = (σ
g
1 (m), . . . ,σ g

n(m)) ∈

Σ(N). A transfer rule is a function τ : Θn × S → Rn that specifies for each profile

m ∈ Θn × S a transfer vector τ(m) = (τ1(m), . . . , τn(m)) ∈ Rn. Specifically, for Ω

and given any mechanism (σ g, τ), if m′i is the announced type of agent i when his

true type is mi and m−i is the true profile for agents N \ {i}, then the utility of i is

given by vi(σ
g(m′i, m−i), τi(m′i, m−i); mi; s−i(m−i)) = −θi

(
si + ∑ j∈Pi(σ

g(m′i ,m−i))
s j

)
+

τi(m′i, m−i).

DEFINITION 2.11 A mechanism (σ g, τ) ex-post implements the general sequencing rule

σ g if the transfer rule τ : Θn × S → Rn is such that for any i ∈ N, any mi, m′i and any

true profile m−i,

vi(σ
g(m), τi(m); mi; s−i(m−i)) ≥ vi(σ

g(m′i, m−i), τi(m′i, m−i); mi; s−i(m−i)). (2.16)

Ex-post implementability requires truth-telling is a Nash equilibrium for any agent

and for every true type profile m.
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DEFINITION 2.12 A mechanism (σ g, τ) ex-post implements with balanced transfers the

general sequencing ruleσ g if the transfer rule τ : Θn×S → Rn satisfies ex-post imple-

mentability condition (2.16) and is also budget balanced, that is for all m ∈ Θn × S →

Rn, ∑ j∈N t j(m) = 0.

DEFINITION 2.13 A general sequencing rule σ̃ g is just if for each profile m ∈ Θn × S ,

the chosen order σ̃ g(m) satisfies the following property: for any i, j ∈ N such that

θi ≥ θ j, σ̃
g
i (m) ≤ σ̃

g
j (m).

For any true m = (m1 = (θ1, s1), . . . , mn = (θn, sn)) we say θ is obtained from m

if it is a collection of the first element from m j = (θ j, s j) for each j ∈ N and we say

s is obtained from m if it is a collection of the second element from m j = (θ j, s j) for

each j ∈ N. Similarly, for any i ∈ N and any true m−i = (m1 = (θ1, s1), . . . , mi−1 =

(θi−1, si−1), mi+1 = (θi+1, si+1), . . . , mn = (θn, sn)) we say θ−i is obtained from m−i if

it is a collection of the first element from m j = (θ j, s j) for each j ∈ N \ {i} and we say

s−i is obtained from m−i if it is a collection of the second element from m j = (θ j, s j) for

each j ∈ N \ {i}. For Ω, the just general sequencing rule satisfies the following: For

any m = (m1, . . . , mn) ∈ Θn × S , σ̃ g(m) = σ̃(θ) where θ is obtained from m.

DEFINITION 2.14 For σ̃ g, a mechanism (σ̃ g, τ̃) is a generalized ICJ mechanism if the trans-

fer rule is such that for all m ∈ Θn × S and all i ∈ N,

τ̃
g
i (θi, m−i) = hg

i (m−i)− ∑
j∈P′i (σ̃(θi ,θ−i))

θ js j, (2.17)

where θ−i is obtained from m−i and hg
i : Θ|N\{i}| ×R|N\{i}|++ → R is arbitrary.

PROPOSITION 2.3 The just general sequencing rule σ̃ g is ex-post implementable if and

only if the mechanism (σ̃ g, τ) that implements it is a generalized ICJ mechanism.

Proof: We only prove that if the just general sequencing rule σ̃ g is ex-post imple-

mentable via a mechanism (σ̃ g, τ), then the mechanism is a generalized ICJ mecha-

nism. The other part is easy and hence omitted.
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Consider any i ∈ N and fix any true type m−i for all agents other than

i. For any true type mi = (θi, si) of i and any misreport m′i = (θ′i , s′i)

by i, ex-post implementability of σ̃ g requires vi(σ̃
g(m), τi(m); mi; s−i(m−i)) ≥

vi(σ̃
g(m′i, m−i), τi(m′i, m−i); mi; s−i(m−i)) which is the same as requiring

vi(σ̃(θi,θ−i), τi(mi, m−i); mi; s−i(m−i)) ≥ vi(σ̃(θ
′
i ,θ−i), τi(m′i, m−i); mi, s−i(m−i)).

(2.18)

Moreover, given the true type m−i of all agents and given any pair of types (m′i =

(θ′i , s′i), m′′i = (θ′i , s′′i )) for i with the property the waiting cost is identical in m′i and m′′i ,

σ̃ g(m′i, m−i) = σ̃(θ′i ,θi) = σ̃ g(m′′i , m−i) since just sequencing rule ignores the process-

ing time. Hence, using ex-post implementability, we get the following inequalities:

(I1) −θ′i(s′i + ∑
j∈Pi(σ̃(θ

′
i ,θ−i))

s j) + τi(m′i, m−i) ≥ −θ′i(s′i + ∑
j∈Pi(σ̃(θ

′
i ,θ−i))

s j) + τi(m′′i , m−i).

(I2) −θ′i(s′′i + ∑
j∈Pi(σ̃(θ

′
i ,θ−i))

s j) + τi(m′i, m−i) ≤ −θ′i(s′′i + ∑
j∈Pi(σ̃(θ

′
i ,θ−i))

s j) + τi(m′′i , m−i).

Condition (I1) gives τi(m′i, m−i) ≥ τi(m′′i , m−i) and (I2) gives τi(m′i, m−i) ≤

τi(m′′i , m−i). Therefore, τi(m′i, m−i) = τi(m′′i , m−i). Hence, we have

τi(m′i, m−i) = τi(m′′i , m−i) := τi(θ
′
i , m−i). (2.19)

Using (2.19) in (2.18) we get

vi(σ̃(θi,θ−i), τi(θi, m−i); mi; s−i(m−i)) ≥ vi(σ̃(θ
′
i ,θ−i), τi(θ

′
i , m−i); mi, s−i(m−i)).

(2.20)

If the true type m−i of agents in the set N \ {i} is known, then the processing time

of these agents s−i obtained from m−i is also known and θ−i obtained from m−i is

also known. Therefore, the re-ordering (θ(1), . . . ,θ(n−1)) of θ−i such that θ(1) ≥ . . . ≥

θ(n−1), is also known. Moreover, the calculation of the transfer for agent i is indepen-

dent of the processing time of agent i. Therefore, from inequality (2.20) we get that for
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any given si > 0, the following inequality must be true.

Ui(σ̃(θi,θ−i), τi(θi, m−i);θi) ≥ Ui(σ̃(θ
′
i ,θ−i), τi(θ

′
i , m−i);θi). (2.21)

Note that if inequality (2.21) holds for some given si > 0 and for all θi ∈ Θ, then for

any other s′i > 0 with the same transfer, inequality (2.21) holds for any θi ∈ Θ since si

(either actual or misreported) does not enter the calculation of the transfer τi(θi, m−i).

The true processing time si only enters in the calculation of the completion time Si(σ̃).

Inequality (2.21) is similar to inequality (3.1) provided τi(θi,θ−i) of inequality (3.1)

is replaced by τi(θi, m−i) in (2.21) where θ−i is the waiting cost vector obtained from

m−i. Moreover, the just sequencing rule is same for both m−i and θ−i when θ−i is

obtained from m−i. Therefore, for any true m−i, true θ−i obtained from m−i and

any θi,θ′i ∈ Θ, we must have (B) τi(θi,θ−i) − τi(θ
′
i ,θ−i) = τi(θi, m−i) − τi(θ

′
i , m−i).

From (B) it follows that for any θi ∈ Θ, any true m−i and θ−i obtained from m−i, (C)

τi(θi, m−i)− τi(θi,θ−i) := gi(m−i). Recall that implementability of the just sequencing

rule σ̃ requires that the transfer must be an ICJ transfer, that is for anyθ−i, and anyθi ∈

Θ, the transfer τi(θi,θ−i) in (C) must be equal to the ICJ transfer τ̃i(θi,θ−i) given by

(2.7). Hence, from (C) we get (D) τi(θi, m−i) = hi(θ−i) + gi(m−i)− ∑ j∈P′i (σ̃(θi ,θ−i))
θ js j,

where the functions hi : Θ|N\{i}| → R and gi : Θ|N\{i}| ×R|N\{i}|++ → R are arbitrary.

Without loss of generality, if we set hi(θ−i) + gi(m−i) = hg
i (m−i) in (D), then we get

τi(θi, m−i) := τ̃
g
i (θi, m−i) and the result follows. �

Ex-post implementability with balanced transfers is not possible with two agents

is a natural extension of the arguments in Proposition 2.2. By applying arguments

similar to that in Theorem 2.4, it is easy to see that the general just sequencing rule σ̃ g

is ex-post implementable with balanced transfers.

DEFINITION 2.15 Consider the general sequencing problem Ω with at least three

agents. For σ̃ g, a mechanism (σ̃ g, τ̃ g∗) is a balanced generalized ICJ mechanism if the
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transfer rule is such that for all m ∈ Θn × S and all i ∈ N,

τ̃
g∗
i (θi, m−i) = ∑

j∈Pi(σ̃(θi ,θ−i))

A j(θ)θ js j − ∑
j∈P′i (σ̃(θi ,θ−i))

B j(θ)θ js j + gg
i (m−i), (2.22)

where θ−i is obtained from the message m−i, A j(θ) := (σ̃ j(θi,θ−i) − 1)/(n − 2),

B j(θ) := (n − σ̃ j(θi,θ−i))/(n − 2) and for any i ∈ N, gg
i : Θ|N\{i}| × R|N\{i}|++ → R

is such that for any m ∈ Θn × S , ∑i∈N gg
i (m−i) = 0.

PROPOSITION 2.4 Let Ω be the general sequencing problem with at least three agents.

The general just sequencing rule σ̃ g is ex-post implementable with balanced transfers

if and only if the mechanism (σ̃ g, τ) that implements it is a balanced generalized ICJ

mechanism.

2.6 Conclusion

The just sequencing rule is a simple algorithm to obtain justice in terms of Rawlsian

difference principle. An attractive feature of the just sequencing rule is that it weakly

lexi-max dominates the outcome efficient sequencing rule in spite of the fact that it can

lead to efficiency loss since the aggregate completion cost under the just sequencing

rule is no less than that under the outcome efficient sequencing rule. When the pro-

cessing time of the agents are non-identical, this efficiency loss is positive for profiles

where the order under the just sequencing rule is different from that of the outcome

efficient sequencing rule. However, the relative efficiency loss is bounded by (n− 1).

One can summarize the properties of the just sequencing rule from a mechanism de-

sign perspective as follows.

(C1) Like the outcome efficient sequencing rule, the just sequencing rule is imple-

mentable with balanced transfers. However, the lexi-min comparison of ICJ

mechanisms and VCG mechanisms are ambiguous. We can find ICJ mechanism

and VCG mechanism such that the ICJ mechanism lexi-min dominates the VCG

mechanism and can find ICJ mechanism and VCG mechanism such that the VCG
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mechanism lexi-min dominates the ICJ mechanism. We can also find ICJ and

VCG (balanced ICJ and balanced VCG) mechanism pairs such that no such lexi-

min domination exists.

(C2) Unlike the outcome efficient sequencing rule, even when both waiting cost and

processing time are private information, the just sequencing rule is ex-post

implementable with balanced transfers. Therefore, two-dimensional incentive

problem does not matter for the just sequencing rule since the agents do not ben-

efit by misreporting their processing time as this information is not required to

specify the order of using the facility under the just sequencing rule.
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Chapter 3

Balanced implementability of

sequencing rules

3.1 Introduction

In this chapter we address the problem of balanced implementability in sequencing

problems. In a sequencing problem we have a finite set of agents each of whom has

one job to process using one facility. The facility can only handle one job at a time.

Once the processing of a job starts, it cannot be interrupted. Each job is character-

ized by processing time and waiting cost. The waiting cost represents the agent’s dis-

utility for waiting one unit of time. There is a fair amount of literature on sequencing

problems (see De and Mitra (2016), Dolan (1978), Duives et al. (2015)). Assuming that

processing time of the agents are common knowledge and waiting costs are private in-

formation, we identify the complete class of sequencing rules that are implementable

in dominant strategies. Any rule1 for which any agent’s job completion time is non-

increasing in his own waiting cost is implementable in dominant strategies. We call

such rules NI rules. These results follow from the existing literature on implementa-

tion (Bikhchandani et al. (2006), Rochet (1987) and Rockafellar (2015)). For any given

NI rule, we also identify all direct mechanisms that implement it. We refer to such

1Since this is a context of sequencing problems, whenever we use the term ‘rule’ (as we have done
quite often in this section) we explicitly mean ‘sequencing rule’.
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mechanisms as “Cut off" based mechanisms. Such “Cut off" based mechanisms are

present in the existing literature (see Milgrom (2004) and Myerson (1985)). Similar

“Cut off" based mechanisms were also derived for scheduling problems with multiple

machines and varying speed by Mishra and Mitra (2010) and for multi-dimensional

dichotomous domains by Mishra and Roy (2013).

A classic result in mechanism design in quasi-linear framework is the Roberts’

affine maximizer theorem (see Roberts (1979)) for multidimensional type spaces with

finite set of alternatives. Roberts (1979) showed that if there are at least three alter-

natives and the type space is unrestricted, then every onto implementable allocation

rule is an affine maximizer. There are many papers that analyze the affine maximizer

allocation rules for different allocation problems (see Carbajal et al. (2013), Dobzinski

and Nisan (2009), Lavi et al. (2009), Marchant and Mishra (2015), Mishra and Quadir

(2014), Mishra and Sen (2012) and Nath and Sen (2015)).

Sequencing problems deal with agents’ cost and hence the appropriate trans-

formed concept of affine maximizer allocation rule is the affine cost minimizer rule.

In any affine cost minimizer rule, the objective is to select that order of servicing the

agents (from the set of all possible orders of servicing or from some subset of it) so

as to minimize the sum of an order-specific number and the weighted sum of completion

time of the agents2. This order-specific numbers are captured by a function κ which

maps from the set (or subset) of orders to the real line and we call them theκ-functions.

All the agent-specific weights are non-negative real numbers. We prove that any affine

cost minimizer sequencing rule (whether onto or not onto) is an NI rule but the con-

verse is not true. Specifically, for any sequencing problem with a given number of

agents, we provide an example of NI rule that is not an affine cost minimizer.3 That

under different domain restrictions we can have implementable rules that are different

from affine maximizers was also pointed out by Carbajal et al. (2013), Marchant and

Mishra (2015) and Mishra and Quadir (2014).

2The term ‘completion time’ denotes job completion time
3Roberts (1979) result uses affine maximizers that are onto. Hence our result shows that class of affine

cost minimizer rules, which is a generalization of Roberts (1979)’s class of affine maximizer allocation
rules, is a strict subset of the class of NI rules.
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The main contribution in this chapter is to identify NI sequencing problems that

are implementable with balanced transfers. For the sequencing problem, imple-

menting any NI rule with balanced transfer simply ensures that the resulting utility

allocation is Pareto indifferent to the utility under the rule in the absence of private

information and with zero monetary transfers. For many economic environments,

implementing outcome efficiency with balanced transfers is not possible (see Hurwicz

(1975), Hurwicz and Walker (1990) and Walker (1980)). However, for sequencing

problems with more than two agents, it is possible to implement the outcome efficient

rule with balanced transfers (see Mitra (2002) and Suijs (1996)) and it is also possible

to implement the just sequencing rule (in the Rawlsian sense) with balanced transfers

(see De and Mitra (2016)).

Our work establishes that there are many NI sequencing rules having real life sig-

nificance, other than the outcome efficient sequencing rule and the just sequencing

rule, that are implementable with balanced transfers. One obvious type of NI rules

that are implementable with balanced transfers are the constant rules like the short-

est processing time sequencing rule (where the shortest jobs are handled first) and the

longest processing time sequencing rule (where the longer jobs are often very impor-

tant and are selected first). Specifically, for sequencing problems with two agents we

identify the complete class of non-constant NI rules that are implementable with bal-

anced transfers. Specifically we show that there are exactly two types of NI rules that

are implementable with balanced transfers. The first type consists of onto affine cost

minimizers (that includes neither the outcome efficient sequencing rule nor the just se-

quencing rule) and the second type are NI rules that are not affine cost minimizers. For

sequencing problems with more than two agents we identify a sufficient family of NI

rules that are implementable with balanced transfers. This sufficient family of NI rules

include a subset of affine cost minimizer rules with constant κ-functions (normalized

to zero) and also includes a subset of NI rules that are not affine cost minimizers. We

refer to this family of rules as group priority based cost minimizer (GP-CM) sequencing
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rules. These rules are defined by imposing all types of priority based partition on the

set of agents. This family includes the following types of rules.

1. The family of GP-CM sequencing rules includes priority based partition where

all elements of the partition are singletons so that all constant rules are included.

2. The GP-CM sequencing rules also includes grand coalition as a partition and

hence includes all affine cost minimizer rules for which the agent-specific

weights are positive and the κ-functions are constant (and the value of the con-

stant is normalized to zero). Hence the outcome efficient sequencing rule (see

Mitra (2002) and Suijs (1996)) and the just sequencing rule (in the Rawlsian sense)

(see De and Mitra (2016)) are also members of this family of GP-CM sequencing

rules.

3. There are sequencing situations where we have a well-defined priority across

the set of agents. In an academic institute, faculty members may be given pri-

ority over students in using computers (or printers or photocopiers). A simi-

lar situation rises for emergency related treatment of patients where priority in

treatment needs to be given based on the degree of emergency of the patients’

diseases. When the number of agents to be served is known, all such situations

are captured under GP-CM sequencing rules.

4. The non-affine cost minimizers NI rules included in the family of GP-CM se-

quencing rules are a generalization of the affine cost minimizer rules included

in this family of GP-CM sequencing rules. This generalization is done replacing

any subset of agents’ waiting cost with a non-linear function of the waiting cost

which is increasing and onto.

The chapter is organized as follows. In Section 3.2, we introduce the framework. In

Section 3.3, we address the implementability issue. In Section 3.4, we obtained results

on implementability with balanced transfers. This is followed by an appendix where

we provide the proofs of our results.

46



3.2 The framework

Consider a finite set of agents N = {1, 2, . . . , n} in need of a facility that can be used

sequentially. Using this facility, the agents want to process their jobs. The job pro-

cessing time can be different for different agents. Specifically, for each agent i ∈ N,

the job processing time is given by si > 0. Let θiSi measure the cost of job com-

pletion for agent i ∈ N where Si ∈ R++ is the completion time for this agent and

θi ∈ Θ := R++ denotes his constant per-period waiting cost. Due to the sequential

nature of providing the service, the completion time Si for agent i depends not only

on his own processing time si but also on the processing time of the agents who pre-

cede him in the order of service. By means of an order σ = (σ1, . . . ,σn) on N, one

can describe the positions of each agent in the order. Specifically, σi = k indicates

that agent i has the k-th position in the order. Let Σ(N) be the set of n! possible or-

ders on N. We define Pi(σ) = { j ∈ N \ {i} | σ j < σi} to be the predecessor set of

i in the order σ , that is, set of agents served before agent i in the order σ . Similarly,

P′i (σ) = { j ∈ N \ {i} | σ j > σi} denotes the successor set of i in the orderσ , that is, set

of agents served after agent i in the order σ . Let s = (s1, . . . , sn) ∈ S := Rn
++ denote

the vector of processing time of the agents. Given a vector s = (s1, . . . , sn) ∈ S and

an order σ ∈ Σ(N), the cost of job completion for agent i ∈ N is θiSi(σ), where the

completion time is S j(σ) = ∑ j∈Pi(σ)
s j + si. The agents have quasi-linear utility of the

form Ui(σ , τi;θi); s−i) = −θiSi(σ) + τi where σ is the order, τi ∈ R is the transfer that

he receives and the parameter of the model θi that constitutes of the waiting cost θi. If

the processing time vector s ∈ S is given and waiting cost is private information, then

we have a sequencing problem Ωs
N = (Θn, s).

A typical profile of waiting costs is denoted by θ = (θ1, . . . ,θn) ∈ Θn. For any

i ∈ N, let θ−i, denote the profile (θ1 . . .θi−1,θi+1, . . .θn) ∈ Θ|N\{i}| which is obtained

from the profile θ by eliminating i’s waiting cost where for any set X, |X| denotes the

cardinality of X. For a given sequencing problem Ωs
N, a (direct revelation) mechanism

is (σ , τ) that constitutes of a sequencing rule σ and a transfer rule τ . A sequencing rule

is a function σ : Θn → Σ(N) that specifies for each profile θ ∈ Θn a unique order
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σ(θ) = (σ1(θ), . . . ,σn(θ)) ∈ Σ(N). Because the sequencing rule is a function (and

not a correspondence) we will require tie-breaking rule to reduce a correspondence

to a function which, unless explicitly discussed, is assumed to be fixed. We use the

following tie-breaking rule. We take the linear order 1 � 2 � . . . � n on the set of

agents N. For any sequencing ruleσ and any profile θ ∈ Θn with a tie between agents

i, j ∈ N, we pick the orderσ(θ) withσi(θ) < σ j(θ) if and only if i � j. A transfer rule is

a function τ : Θn → Rn that specifies for each profile θ ∈ Θn a transfer vector τ(θ) =

(τi(θ), . . . , τn(θ)) ∈ Rn. Specifically, given any sequencing problem Ωs
N and given any

mechanism (σ , τ), if (θ′i ,θ−i) is the announced profile when the true waiting cost of i

is θi, then utility of i is Ui(σ(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θi) = −θiSi(σ(θ

′
i ,θ−i)) + τi(θ

′
i ,θ−i).

3.3 Implementability criterion for sequencing rules

DEFINITION 3.1 A mechanism (σ , τ) is strategy-proof if the transfer rule τ : Θn → Rn

is such that for any i ∈ N, any θi,θ′i ∈ Θ and any θ−i ∈ Θ|N\{i}|,

Ui(σ(θ), τi(θ);θi) ≥ Ui(σ(θ
′
i ,θ−i), τi(θ

′
i ,θ−i);θi). (3.1)

When the mechanism is strategy-proof then it can implement the allocation rule in

true sense. In other words, implementation of a ruleσ via a mechanism (σ , τ) requires

that the transfer rule τ is such that truthful reporting for any agent weakly dominates

false report irrespective of other agents’ report.

DEFINITION 3.2 A sequencing rule σ is non-increasing (or NI) if for any i ∈ N and any

θ−i ∈ Θ|N\{i}|, the chosen order σ(θi,θ−i) for each θi ∈ Θ is such that the completion

time Si(σ(θi,θ−i)) is non-increasing in θi.

PROPOSITION 3.1 A sequencing rule σ is implementable if and only if it is an NI se-

quencing rule.

The proof is obvious from the existing literature and hence omitted. In particular,

non-increasingness is the weak monotonicity (or two-cycle monotonicity) for the se-
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quencing problems. From Bikhchandani et al. (2006) we know that, for any determin-

istic rule (like the sequencing rules we have for Ωs
N), weak monotonicity is necessary

and sufficient for implementation in dominant strategies. Let NI(Ωs
N) denote the set

of all NI sequencing rules. In the next proposition we derive the complete class of

mechanisms that implement any NI sequencing rule.

Given a processing time vector s ∈ S and the sequencing problem Ωs
N, consider

an agent i ∈ N. Depending on his waiting cost θi ∈ Θ, agent i can face a maximum of

2n−1 (specifically, ∑
n−1
j=0 (n−1

j )) different completion times. But the number of different

completion time that any agent i actually faces depends on the profile θ−i ∈ Θ|N\{i}|

and, more importantly, on the underlying sequencing rule whose implementation is

under consideration. So depending on the sequencing rule and the profile θ−i, the

agent can face a single completion time (like in the constant sequencing rule) or more

than one completion time (like in any outcome efficient sequencing rule).

Consider any σ ∈ NI(Ωs
N) and any i ∈ N. Fix a profile θ−i and let us assume

that the number of different completion time that agent i faces, as θi varies over Θ,

is T. Given that σ is NI, this means that either T = 1 or T ≥ 2 and there exists a

waiting cost cut off vector (θ(0)i ,θ(1)i , . . . ,θ(T−1)
i ,θ(T)i ) where 0 := θ

(T)
i < θ

(T−1)
i < . . . <

θ
(2)
i < θ

(1)
i < θ

(0)
i := ∞ such that for any t ∈ {1, . . . , T}, Si(σ(θ

t
i ,θ−i)) := S̄(t,θ−i)

for all θt
i ∈ (θ

(t)
i ,θ(t−1)

i ). Define Dt(θ−i) := S̄(t + 1,θ−i) − S̄(t,θ−i) and Dt(θ−i) :=

S̄(t + 1,θ−i)− Si(σ(θ
(t)
i ,θ−i)) for any t ∈ {1, . . . , T − 1}. Observe that the difference

in the definitions of Dt(θ−i) and Dt(θ−i) lies in the second term. While for the Dt(θ−i)

case, S̄(t,θ−i) is the completion time of agent i when his waiting cost is any number

θt
i that lies in the open interval (θ(t)i ,θ(t−1)

i ) and for the Dt(θ−i) case, Si(σ(θ
(t)
i ,θ−i)) is

the completion time of agent i when his waiting cost is exactly θ
(t)
i which is a cut off

point. Depending on the tie-breaking rule, the numbers S̄(t,θ−i) and Si(σ(θ
(t)
i ,θ−i))

may or may not be different and hence for completeness of the analysis, the distinction

between Dt(θ−i) and Dt(θ−i) is necessary.

DEFINITION 3.3 Consider any σ ∈ NI(Ωs
N) and a mechanism (σ , τ) with trans-

fer rule τ : Θn → Rn. The mechanism is “Cut off" based if the transfer rule τ
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is obtained from the following procedure. For each i ∈ N, we first select any

function hi : Θ|N\{i}| → R and then, given any θ−i ∈ Θ|N\{i}|, we consider the

waiting cost cut off vector (θ
(0)
i ,θ(1)i (θ−i), . . . ,θ(T−1)

i (θ−i),θ
(T)
i ) where 0 := θ

(T)
i <

θ
(T−1)
i (θ−i) < . . . < θ

(2)
i (θ−i) < θ

(1)
i (θ−i) < θ

(0)
i := ∞. Given the selected function

hi : Θ|N\{i}| → R, for any profile θ−i of all but agent i and the associated cut off vector

(θ
(0)
i ,θ(1)i (θ−i), . . . ,θ(T−1)

i (θ−i),θ
(T)
i ), the transfer of agent i is the following:

(PI1) For any θi ∈ Θ \ {θ(1)i (θ−i), . . . ,θ(T−1)
i (θ−i)}, τi(θi,θ−i) = hi(θ−i) − Ii(θi,θ−i)

where

Ii(θi,θ−i) =


0 if θi ∈ (θ

(T)
i ,θ(T−1)

i (θ−i)),
T−1
∑

r=t
θ
(r)
i (θ−i)Dr(θ−i) if θi ∈ (θ

(t)
i (θ−i),θ

(t−1)
i (θ−i)), t = {1, . . . , T− 1} & T ≥ 2.

(3.2)

(PI2) For T ≥ 2, any t ∈ {1, . . . , T − 1} and cut off point θ(t)i (θ−i), τi(θ
(t)
i (θ−i),θ−i) =

hi(θ−i) − Ii(θ
(t)
i (θ−i),θ−i) where the incentive payment Ii(θ

(t)
i (θ−i),θ−i) =

Ii(θ
t
i ,θ−i)−θ

(t)
i (θ−i)Dt(θ−i) +θ

(t)
i (θ−i)Dt(θ−i) and θt

i ∈ (θ
(t)
i (θ−i),θ

(t−1)
i (θ−i)).

Definition 3.3 specifies the following. For each agent i and each pro-

file θ−i of waiting costs of all but agent i, we get a set of cut off points

(θ
(0)
i ,θ(1)i (θ−i), . . . ,θ(T−1)

i (θ−i),θ
(T)
i ) for agent i that depends on the specific NI se-

quencing rule. The transfers associated with “Cut off" based mechanism requires that

each agent i gets an agent-specific constant hi(θ−i) that depends on the waiting cost

of all other agents and, if agents i’s waiting cost θi is greater than the smallest non-

zero cut off value θ
(T−1)
i (θ−i), agent i also has to make an incentive payment Ii(θi,θ−i)

that depends of the set of cut off values that are less than the waiting costs of agent

i. For each such cut off value θ
(r)
i (θ−i), agent i pays θ(r)i (θ−i)Dr(θ−i) which is the cut

off value times the absolute difference between the completion time of agent i below

and above this cut off value. If agent i’s waiting cost coincides with a cut off point

then, ceteris paribus, his incentive payment needs to be adjusted by changing the dif-

ference in completion time term Dr(θ−i) to the difference in completion time below

and at the cut off point Dr(θ−i) only for the highest cut off value less than the waiting

cost of agent i. Whenever the dependence of the cut off points of agent i for any given
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θ−i is clear, we will write the cut off vector as (θ
(0)
i ,θ(1)i , . . . ,θ(T−1)

i ,θ(T)i ) instead of

(θ
(0)
i ,θ(1)i (θ−i), . . . ,θ(T−1)

i (θ−i),θ
(T)
i ).

PROPOSITION 3.2 Any σ ∈ NI(Ωs
N) is implementable via a mechanism (σ , τ) if and

only if the mechanism is “Cut off" based.

The proof is again obvious from the existing literature and hence omitted. Specif-

ically, such “Cut off" based mechanisms is just a manifestation of the usual integral

form of incentive compatible transfers derived in Myerson (1985) and is referred to as

Holmström’s Lemma in Milgrom (2004). Such “Cut off" based mechanisms for multi-

dimensional dichotomous preferences was derived by Mishra and Roy (2013). For

scheduling problems, such “Cut off" based mechanisms were derived by Mishra and

Mitra (2010).

There are many natural examples of NI sequencing rules.

DEFINITION 3.4 A sequencing rule σ̄ is a constant sequencing rule if there is a fixed order

σ̄ ∈ Σ(N) such that the agents are always served in this fixed order σ̄ , that is, for any

θ ∈ Θn, σ(θ) = σ̄ .

There are many priority rules that are constant sequencing rules. For the constant

sequencing rule with σ̄ as the state independent order, for each i ∈ N and for any

given θ−i ∈ Θ|N\{i}|, the completion time of agent i is fixed at Si(σ̄) = si + ∑ j∈Pi(σ̄)
s j

for allθi ∈ Θ implying non-increasingness inθi. Hence it satisfies NI. Two other NI se-

quencing rules from the existing literature on sequencing problems are the following.

DEFINITION 3.5 A sequencing rule σ∗ is outcome efficient if for any profile θ ∈ Θn,

σ∗(θ) ∈ argminσ∈Σ(N) ∑i∈N θiSi(σ).

For each profile the outcome efficient sequencing rule selects an order to minimize

the aggregate cost of completion time. Define ui := θi/si as the urgency index of agent

i which is the ratio of his waiting cost and his processing time. From Smith (1956) we

know that for any sequencing problem Ωs
N a sequencing ruleσ∗ is outcome efficient if

and only if the following condition holds.
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(OE) For any profile θ ∈ Θn, the selected orderσ∗(θ) satisfies the following condition:

for any i, j ∈ N, θi/si ≥ θ j/s j ⇔ σ∗i (θ) ≤ σ∗j (θ).

Clearly, outcome efficient sequencing rule σ∗ is NI. Outcome efficiency and incen-

tives has been extensively analyzed in the sequencing literature (see Mitra (2002),Suijs

(1996) and De and Mitra (2016)).

DEFINITION 3.6 A sequencing rule σ̃ is just if for each profileθ ∈ Θn, the chosen order

σ̃(θ) satisfies the following property: for any i, j ∈ N such that θi ≥ θ j, σ̃i(θ) ≤ σ̃ j(θ).4

Just sequencing rule was analyzed in De and Mitra (2016). Clearly, the just se-

quencing rule σ̃ is NI. The constant sequencing rule, the outcome efficient sequencing

rule and the just sequencing rule are all affine cost minimizer sequencing rules.

DEFINITION 3.7 A sequencing rule σw,κ : Θn → Σ(N) is an affine cost minimizer

(ACM) if for each θ ∈ Θn, σw,κ(θ) ∈ arg minσ∈Σ′(N)

{
κ(σ) + ∑ j∈N w jθ jS j(σ)

}
, where

Σ′(N) ⊆ Σ(N), w j ≥ 0 for all j ∈ N and κ : Σ′(N)→ R.

The next two examples are NI sequencing rules that are not ACM.

EXAMPLE 3.1 Consider any sequencing problem Ωs
N with |N| = 2. Define the se-

quencing rule σV such that, given any two positive numbers a1 and a2, it satis-

fies the following: For any profile θ = (θ1,θ2) such that θ1 < a1 and θ2 > a2,

σV(θ) = (σV
1 (θ) = 2,σV

2 (θ) = 1). For all other profiles θ′ = (θ′1,θ′2) such that ei-

ther θ′1 ≥ a1 or θ′2 ≤ a2, σV(θ′) = (σV
1 (θ′) = 1,σV

2 (θ′) = 2).

One can easily verify that σV is NI. If θ′′2 ≤ a2, then for any θ1 ∈ Θ, σV
1 (θ1,θ′′2 ) =

1 and hence S1(σ
V(θ1,θ2)) = s1 is non-increasing in θ1 for any given θ2 ≥ a2. If

θ′2 > a2, then for any θ1 ∈ (0, a1), σV
1 (θ1,θ′2) = 2 and agent 1’s completion time is

S1(σ
V(θ1,θ′2)) = s2 + s1 and for any θ′1 ≥ a1, σV

1 (θ′1,θ′2) = 1 and agent 1’s completion

time is S1(σ
V(θ′1,θ′2)) = s1. Hence, we have non-increasingness of completion time

S1(σ
V(θ1,θ′2)) in θ1 for any given θ′2 > a2. Similarly, if we fix θ′′1 ≥ a1, then for any

4Given the tie-breaking rule, for any profile θ ∈ Θn, both the selections σ̃(θ) for the just sequencing
rule and σ∗(θ) for the outcome efficient sequencing rule satisfy profile contingent uniqueness.
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θ2 ∈ Θ, σV
2 (θ′′1 ,θ2) = 2 and hence S2(σ

V(θ′′1 ,θ2)) = s1 + s2 is non-increasing in θ2 for

any given θ′′1 ≥ a1. If θ1 < a1, then for any θ2 ∈ (0, a2], σV
2 (θ1,θ2) = 2 and agent 2’s

completion time is S2(σ
V(θ1,θ2)) = s2 + s1. For anyθ′2 > a1,σV

2 (θ1,θ′2) = 1 and agent

2’s completion time is S2(σ
V(θ1,θ′2)) = s2. Hence S2(σ

V(θ1,θ2)) is non-increasing in

θ2 for any given θ1 < a1. That σV is not an ACM sequencing rule will follow from

Proposition3.3.

“Cut off" based mechanisms: Consider the sequencing problem Ωs
N with |N| = 2

and consider the sequencing rule σV . If we fix θ′′2 ≤ a2, then for any θ1 ∈ Θ,

σV(θ1,θ′′2 ) = (σV
1 (θ1,θ′′2 ) = 1,σV

2 (θ1,θ′′2 ) = 2). In that case the “Cut off" based

transfer gives τV
1 (θ1,θ′′2 ) = h1(θ

′′
2 ) for all θ1 ∈ Θ since, given θ′′2 , the cut off point

for agent 1 is θ
(1)
1 = θ

(T)
1 = 0. Therefore, given any θ′′2 ≤ a2, the incentive pay-

ment of agent 1 is IV
1 (θ1,θ′′2 ) = 0 for all θ1 ∈ Θ. If we fix θ′2 > a2, then for any

θ1 ∈ (0, a1), σV(θ1,θ′2) = (σV
1 (θ1,θ′2) = 2,σV

2 (θ1,θ′2) = 1) and for any θ′1 ≥ a1,

σV(θ′1,θ′2) = (σV
1 (θ′1,θ′2) = 1,σV

2 (θ′1,θ′2) = 2). Hence, given θ′2, the cut off point for

agent 1 is θ(1)1 = θ
(T−1)
1 = a1. Therefore, given any θ′2 > a2, the incentive payment of

agent 1 is

IV
1 (θ1,θ′2) =

 0 if θ1 ∈ (0, a1),

a1s2 if θ1 ≥ a1.

The “Cut off" based transfer for agent 1 is τV
1 (θ1,θ′2) = h1(θ

′
2) for all θ1 ∈ (0, a1) and

τV
1 (θ′1,θ′2) = h1(θ

′
2)− a1s2 for all θ′1 ≥ a1.

If we fix θ′′1 ≥ a1, then for any θ2 ∈ Θ, σV(θ′′1 ,θ2) = (σV
1 (θ′′1 ,θ2) = 1,σV

2 (θ′′1 ,θ2) =

2). In that case the “Cut off" based transfer gives τV
2 (θ′′1 ,θ2) = h2(θ

′′
1 ) for all θ2 ∈ Θ

since, given θ′′1 , the cut off point for agent 2 is θ(1)2 = θ
(T)
2 = 0. Therefore, given any

θ′′1 ≥ a1, the incentive payment of agent 2 is IV
2 (θ

′′
1 ,θ′′2 ) = 0 for all θ2 ∈ Θ. If we fix

θ1 < a1, then for any θ2 ∈ (0, a2], σV(θ1,θ2) = (σV
1 (θ1,θ2) = 1,σV

2 (θ1,θ2) = 2) and

for any θ′2 > a2, σV(θ1,θ′2) = (σV
1 (θ1,θ′2) = 2,σV

2 (θ1,θ′2) = 1). Hence, given θ1 < a1,

the cut off point for agent 2 is θ(1)2 = θ
(T−1)
2 = a2. Therefore, given any θ1 < a1, the

incentive payment of agent 2 is
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IV
2 (θ1, θ̃2) =

 0 if θ̃2 ∈ (0, a2],

a2s1 if θ̃2 > a2.

The “Cut off" based transfer for agent 2 is τV
2 (θ1,θ2) = h2(θ1) for all θ2 ∈ (0, a2] and

τV
2 (θ1,θ′2) = h2(θ1)− a2s1 for all θ′2 > a2. Therefore, from all these cases, the “Cut off"

based transfer of the two agents is the following: For any profile θ ∈ Θ2,

τV
1 (θ) =

 h1(θ2) if θ2 > a2 and θ1 ∈ (0, a1),

h1(θ2)− a1s2 otherwise.
(3.3)

τV
2 (θ) =

 h2(θ1)− a2s1 if θ2 > a2 and θ1 ∈ (0, a1),

h2(θ1) otherwise.
(3.4)

EXAMPLE 3.2 Consider any sequencing problem Ωs
N with |N| ≥ 3. Define the se-

quencing rule σNA that satisfies the following properties:

1. For any profile such that the urgency index of agent 1 is no smaller than the

smallest urgency index of all other agents, agent 1 is served first and all other

agents are served, after agent 1 completes his jobs, in the non-increasing or-

der of their urgency indexes. Formally, let θ be a profile such that θ1/s1 ≥

min j∈N\{1}(θ j/s j). Then σNA(θ) specifies that 1 = σNA
1 (θ) < σNA

j (θ) for any

j ∈ N \ {1}, and, for any j, k ∈ N \ {1}, σNA
j (θ) ≤ σNA

j (θ) if and only if

(θ j/s j) ≥ (θk/sk).

2. For any profile such that the urgency index of agent 1 is smaller than the smallest

urgency index of all other agents, agent 1 is served last and all other agents are

served, before agent 1, according to the non-increasing order of their urgency

indexes. Formally, let θ′ be a profile such that θ′1/s1 < min j∈N\{1}(θ
′
j/s j). Then

σNA(θ′) specifies that n = σNA
1 (θ′) > σNA

j (θ′) for any j ∈ N \ {1}, and, for any

j, k ∈ N \ {1}, σNA
j (θ′) ≤ σNA

k (θ′) if and only if (θ′j/s j) ≥ (θ′k/sk).

It is quite easy to see that the sequencing rule σNA satisfies NI. That σNA is not an

affine cost minimizer will follow from Proposition 3.3.
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“Cut off" based mechanisms: Consider the sequencing problem Ωs
N with |N| ≥ 3 and

consider the sequencing rule σNA. To determine the transfer of agent 1, consider any

profile θ−i ∈ Θ|N\{1}| and find the minimum urgency index for the agents N \ {1},

that is, find mink∈N\{1}(θk/sk). If θ1 < s1 mink∈N\{1}(θk/sk), then σNA
1 (θ1,θ−1) = n

and agent 1’s transfer is h1(θ−1). If θ′1 ≥ s1 mink∈N\{1}(θk/sk), then σNA
1 (θ′1,θ−1) = 1

and agent 1 gets h1(θ−1) and his payment is s1 mink∈N\{1}(θk/sk)[S1(σ
NA(θ1,θ−1))−

S1(σ
NA(θ′1,θ−1))]. Therefore, agent 1’s cut off point given the profile θ−1 is θT−1

1 =

s1 mink∈N\{1}(θk/sk) and his incentive payment is the following:

INA
1 (θ) =


0 if P′1(σ

NA(θ)) = ∅,

s1

{
min

k∈N\{1}

(
θk
sk

)}
∑

j∈N\{1}
s j otherwise.

Hence for agent 1, the “Cut off" based transfer for any profile θ ∈ Θn is the following:

τNA
1 (θ) =


h1(θ−1) if P′1(σ

NA(θ)) = ∅,

h1(θ−1)− s1

{
min

k∈N\{1}

(
θk
sk

)}
∑

j∈N\{1}
s j otherwise.

(3.5)

For any agent i ∈ N \ {1}, consider any profile θ−i ∈ Θ|N\{i}|. We can have two

possibilities-(a) (θ1/s1) ≥ mink∈N\{1,i}(θk/sk) and (b) (θ1/s1) < mink∈N\{1,i}(θk/sk).

If possibility (a) holds, then σNA
1 (θi,θ−i) = 1 for all θi ∈ Θ. Assume that the or-

der of the urgency indexes for the N \ {1, i} agents is u(1) ≥ . . . ≥ u(n−2), then due

to sequencing rule σNA, we have the following: As θi increases from any positive

number θn
i ∈ (0, siu(n−2)) to any positive number θ2

i > siu(1), the completion time

Si(σ
NA(θi,θ−i)) weakly decreases from Si(σ

NA(θn
i ,θ−i)) = s1 + si + ∑ j∈N\{1,i} s j to

Si(σ
NA(θ2

i ,θ−i)) = s1 + si. The cut off points where agent i’s Si changes are the dis-

tinct numbers from the set (u(1), . . . , u(n−2)). Assume that there T− 1 distinct urgency

indexes in (u(1), . . . , u(n−2)), that is, uµ(1) > . . . > uµ(T−1). The difference in transfer

between any θr+1
i ∈ (siuµ(r+1), siuµ(r)) and θr

i ∈ (siuµ(r), siuµ(r−1)) is

τNA
i (θr+1

i ,θ−i)− τNA
i (θr

i ,θ−i) = siu(r)[Si(σ
NA(θr+1

i ,θ−i))− Si(σ
NA(θr

i ,θ−i))].
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If possibility (b) holds, then if θ′i ≤ si(θ1/s1), then σNA
i (θi,θ−i) = n and agent i

has a transfer of hi(θ−i). However, σNA
1 (θi,θ−i) = n for all θi > si(θ1/s1). Assume

that the order of the urgency indexes for the N \ {1, i} agents is u(1) ≥ . . . ≥ u(n−2),

then due to sequencing rule σNA, we have the following: As θi increases from any

positive number θn−1
i ∈ (si(θ1/ss), siu(n−2)) to any positive number θ1

i > siu(1), the

completion time Si(σ
NA(θi,θ−i)) weakly decreases from Si(σ

NA(θn−1
i ,θ−i)) = si +

∑ j∈N\{1,i} s j to Si(σ
NA(θ1

i ,θ−i)) = si. The cut off points where agent i’s Si changes are

the distinct numbers from the set (u(1), . . . , u(n−2)). The remaining argument is similar

to possibility (a).

From possibilities (a) and (b) we get that the incentive payment of any i ∈ N \ {1}

is the following:

INA
i (θ) =


0 if P′i (σ

NA(θ)) = ∅,

si ∑
j∈P′i (σ

NA(θ))
θ j otherwise.

Therefore, the “Cut off" based transfer for any i ∈ N \ {1} and any profile θ ∈ Θn is

the following:

τNA
i (θ) =


hi(θ−i) if P′i (σ

NA(θ)) = ∅,

hi(θ−i)− si ∑
j∈P′i (σ

NA(θ))
θ j otherwise.

(3.6)

Let ACM(Ωs
N) denote the set of all affine cost minimizer sequencing rules for any

given sequencing problem Ωs
N.

PROPOSITION 3.3 For any Ωs
N, ACM(Ωs

N) ⊆ NI(Ωs
N) and ACM(Ωs

N) 6= NI(Ωs
N).

3.4 Balanced implementability

DEFINITION 3.8 A sequencing rule σ is implementable with balanced transfers if there

exists a mechanism (σ , τ) that implements it with budget balancing transfers where

budget balancing transfers require that for all θ ∈ Θn, ∑ j∈N τ j(θ) = 0.
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Implementing a sequencing rule with balanced transfers simply means information

extraction is done costlessly. That is, if any sequencing rule is implementable with bal-

anced transfer, then, for any given profile θ, the utility of the agents are such that nei-

ther it is Pareto dominated nor it Pareto dominates the utility allocation of the agents

under the same profile θ when there is complete information with no monetary trans-

fers.

Consider any σ ∈ NI(Ωs
N) and any “Cut off" based mechanism (σ , τ). For any

θ ∈ Θn, the “Cut off" based transfer for any i ∈ N is τi(θ) = hi(θ−i) − Ii(θ) where

hi(θ−i) is the agent-specific number that depends on the profile θ−i of all but i and

Ii(θ) is his incentive payment. Define I(θ) := ∑i∈N Ii(θ) as the aggregate incentive

payment for the profile θ ∈ Θn. Any NI sequencing rule σ is implementable with

balanced transfers if and only if there exists a “Cut off" based mechanism (σ , τ) with

given functions hi : Θ|N\{i}| → R for all i ∈ N such that for any profile θ ∈ Θn,

∑i∈N τi(θ) = I(θ) − ∑i∈N hi(θ−i) = 0 ⇔ I(θ) = ∑i∈N hi(θ−i). Therefore any σ ∈

NI(Ωs
N) is implementable with balanced transfer if and only if for any θ ∈ Θn,

I(θ) = ∑
i∈N

hi(θ−i). (3.7)

Thus for budget balance we require that the profile contingent aggregate incentive

payment is (n− 1) type separable.

REMARK 3.1

1. Any constant sequencing rule σ̄ satisfies condition (3.7). In particular, for any

profile θ ∈ Θn, the incentive payment of any i ∈ N is Ii(θ) = 0. Hence for any

profile θ ∈ Θn, I(θ) = ∑i∈N Ii(θ) = 0 and condition (3.7) holds. For any constant

sequencing rule σ̄ , the “Cut off" based transfer specifies that for any θ ∈ Θn,

τi(θ) = hi(θ−i) for all i ∈ N. By setting the transfer (hi(θ−i)) of all agents at zero

we can achieve implementability with balanced transfers.

2. Let σw,κ ∈ ACM(Ωs
N) with the property that there exists j ∈ N such that w j =

0. For this σw,κ, the following property holds: For any θ− j ∈ Θ|N\{ j} and any
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θ j,θ′j ∈ Θ, σw,κ(θ j,θ− j) = σw,κ(θ′j,θ− j). Hence the incentive payment of agent

j is I j(θ) = 0 for all θ ∈ Θn and for any i ∈ N \ { j}, the incentive payment

is independent of θ j so that Ii(θ) := Ki(θ− j) for any θ ∈ ΘN. Therefore, for

any θ ∈ Θn, I(θ) = ∑i∈N Ii(θ) = ∑i∈N\{ j} Ki(θ− j) := K(θ− j) and condition

(3.7) holds. If we take the ‘cut off’ based transfer such that for any θ ∈ Θn,

h j(θ− j) = K(θ− j) and hi(θ−i) = 0 for all i ∈ N \ { j}, then we get budget balance.

An implication of budget balanced VCG mechanism for outcome efficient alloca-

tion rules was provided by Walker (1980) which is better known as the Cubical Ar-

ray Lemma. For any NI sequencing rule σ with “Cut off" based mechanisms we get

something similar in terms of aggregate incentive payment which is stated in the next

proposition. Before stating the next proposition we introduce some more notations.

For any pair of profiles θ = (θ1,θ2, . . . ,θn),θ′ = (θ′1,θ′2, . . . ,θ′n) ∈ Θn and any S ⊆ N,

let θ(S) = (θ1(S),θ2(S) . . . ,θn(S)) ∈ Θn be a profile such that

θ j(S) =

 θ j if j 6∈ S,

θ′j if j ∈ S.
(3.8)

Observe that θ(S = ∅) = θ, θ(S = {i}) = (θ′i ,θ−i), θ(S = {i, j}) = (θ′i ,θ
′
j,θ−i− j)

and so on, θ(S = N \ {i}) = (θi,θ′−i) and θ(S = N) = θ′.

LEMMA 3.1 For any σ ∈ NI(Ωs
N), we can find a “Cut off" based mechanism (σ , τ)

that implements σ with balanced transfers only if for all pairs of profiles θ,θ′ ∈ Θn,

∑
S⊆N

(−1)|S| I(θ(S)) = 0. (3.9)

Condition (3.9) in Lemma 3.1 states that the weighted aggregate incentive payment

must add up to zero while moving from profile θ to any other profile θ′ by allow-

ing for all possible group deviations. The weights are all (−1) for groups with odd

number of agents and are 1 for groups with even number of agents. The proof of

Lemma 3.1 is similar to the proof of the Cubical Array Lemma due to Walker (1980)

and hence a formal proof is not provided. For N = {1, 2} implementation of any NI
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sequencing rule σ with balanced transfer requires that condition (3.7) holds, that is

for all θ = (θ1,θ2) ∈ Θ2, (a) I(θ1,θ2) = h1(θ2) + h2(θ1). Using (a) it follows that for

any θ,θ′ ∈ Θ2, ∑S⊆N(−1)|S| I(θ(S)) = I(θ1,θ2) − I(θ′1,θ2) − I(θ1,θ′2) + I(θ′1,θ′2) =

[h1(θ2) + h2(θ1)] − [h1(θ2) + h2(θ
′
1)] − [h1(θ

′
2) + h2(θ1)] + [h1(θ

′
2) + h2(θ

′
1)] = 0.

Lemma 3.1 is a generalization of this idea.

The next remark shows how Lemma 3.1 can help us identify necessary restrictions

for implementability of any sequencing rule with balanced transfers.

REMARK 3.2

1. For any NI sequencing rule σV of Example 3.1, Lemma 3.1 puts a restriction

on the vector a = (a1, a2). Specifically, for any pair of profiles θ = (θ1 =

a1 + δ1,θ2 = a2 + δ2) and θ′ = (θ′1 = a1 − δ1,θ′2 = a2 − δ2) with δ1 ∈ (0, a1),

δ2 ∈ (0, a2), condition (3.9) requires that ∑S⊆N(−1)|S| IV(θ(S)) = IV(θ1,θ2) −

IV(θ′1,θ2)− IV(θ1,θ′2) + IV(θ′1,θ′2) = a1s2 − a2s1 − 0 + 0 = a1s2 − a2s1 = 0 im-

plying that for anyσV to be implementable with balanced transfer it is necessary

that a1s2 = a2s1. Therefore, from Lemma 3.1 it follows that for a sequencing

problem Ω
(s1 ,s2)
{1,2} with two agents, any sequencing rule σV of Example 3.1, satis-

fying the added restriction that a1s2 6= a2s1, is not implementable with balanced

transfers.

2. For the NI sequencing rule σNA of Example 3.2, Lemma 3.1 fails to hold. For

any two profiles θ = (θ1, . . . ,θn),θ′ = (θ′1, . . . ,θ′n) ∈ Θn such that θ1/s1 > . . . >

θn/sn > θ′1/s1 > . . . > θ′n/sn, one can verify that ∑S⊆N(−1)|S| INA(θ(S)) =

s1

(
∑ j∈N\{i} s j

)
[(θ′1/s1) − (θn/sn)] < 0 and we have a violation of condition

(3.9) of Lemma 3.1. Therefore, the NI sequencing rule σNA is not implementable

with balanced transfers.

3.4.1 Case 1: Two agents

Consider any two agent sequencing problem Ω
(s1 ,s2)
{1,2} and consider any sequencing rule

σ . Recall that in Remark 3.1 we have already established that a constant sequencing
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rule is implementable with balanced transfers. In this sub-section we concentrate only

on non-constant NI sequencing rules. For any i ∈ {1, 2}, let Ai(σ) = {θ ∈ Θ2 |

σi(θ) = 1} be the set of profiles such that agent i is first in the order. Clearly, for any

two agent sequencing rule σ , A1(σ) ∪ A2(σ) = Θ2. If the sequencing rule σ̄ is such

that A1(σ̄) = Θ2, then it is the constant sequencing rule with the fixed order σ̄ = (σ̄1 =

1, σ̄2 = 2). If σ∗ is a sequencing rule such that A1(σ
∗) = {θ ∈ Θ2 | θ1/s1 ≥ θ2/s2},

then it is the outcome efficient sequencing rule. If σ̃ is a sequencing rule such that

A1(σ̃) = {θ ∈ Θ2 | θ1 ≥ θ2}, then it is the just sequencing rule. For any i ∈ {1, 2}, an

obvious consequence of any NI sequencing rule σ is the following:

(ni): If θ ∈ Ai(σ), then Qi(θ) = {θ′ = (θ′1,θ′2) ∈ Θ2 | θ′i ≥ θi & θ′j ≤ θ j} ⊆ Ai(σ).

Moreover, Q′i(θ) = {θ′ = (θ′1,θ′2) ∈ Θ2 | θ′i > θi & θ′j < θ j} ⊆ Ai(σ) since Q′i(θ) ⊂

Qi(θ).

Consider any NI sequencing rule σ and consider any pair θ,θ′ ∈ Θ2 such that

θ′i > θi for i ∈ {1, 2} and define X0 = θ, X1 = (θ′1,θ2), X2 = (θ1,θ′2) and X12 = θ′.

Given (ni), for any i, j ∈ {1, 2} with i 6= j, it is not possible to have the following: (a)

X0, X12 ∈ Ai(σ) and Xi, X j ∈ A j(σ), (b) X0, Xi ∈ A j(σ) and X j, X12 ∈ Ai(σ) and (c)

X0, Xi, X12 ∈ A j(σ) and X j ∈ Ai(σ).

LEMMA 3.2 If a non-constant σ ∈ NI(Ω(s1 ,s2){1,2}) is implementable with balanced

transfers, then, for any i, j ∈ {1, 2} with i 6= j and any pair θ,θ′ ∈ Θ2 such that

θ′1 > θ1, θ′2 > θ1, X0 = θ, X1 = (θ′1,θ2), X2 = (θ1,θ′2) and X12 = θ′, the following

conditions must hold.

(B1) If X0, Xi, X12 ∈ Ai(σ) and X j ∈ A j(σ), then the cut off point of agent i for θ′j

and the cut off point of agent j for θi have the following relation: θ(1)i (θ′j)s j =

θ
(1)
j (θi)si.

(B2) If X0, Xi ∈ Ai(σ) and X j, X12 ∈ A j(σ), then the cut off points of agent j forθi and

θ′i are equal, that is, θ(1)j (θi) = θ
(1)
j (θ′i).

DEFINITION 3.9 Let Ω(s1 ,s2)
{1,2} be a two-agent sequencing problem. A sequencing rule

σTx is a two agent balancing (TAB) sequencing rule if there exists an agent k ∈ {1, 2}
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such that any one of the following conditions hold.

(T1) There exists ak > 0 such that al = (aksl)/sk > 0 and either Ak(σ
T1a) = {θ ∈ Θ2 |

either θk ≥ ak or θl ≤ al} or Ak(σ
T1b) = {θ ∈ Θ2 | either θk > ak or θl < al} (see

Figure 1 where we have (T1a) and (T1b) for k = 1).

(T2) There exists a real number ak > 0 such that either Ak(σ
T2a) = {θ ∈ Θ2 | θk ≥ ak}

or Ak(σ
T2b) = {θ ∈ Θ2 | θk > ak} (See Figure 2 where we have (T2a) and (T2b)

for k = 1).

(T3) There exists ak > 0 such that al = (aksl)/sk > 0 and either Ak(σ
T3a) = {θ ∈ Θ2 |

either θk ≥ ak or θl < al} or Ak(σ
T3b) = {θ ∈ Θ2 | either θk > ak or θl ≤ al} (see

Figure 3 where we have (T3a) and (T3b) for k = 1).

y2

y1O

(T1a)

P ∈ A1(σ
T1a)

a2

a1

θ

tan(θ) = s2
s1

y2

y1O

(T1b)

P ∈ A2(σ
T1b)

a2

a1

θ

Figure 1: (T1)

y2

y1O

(T2a)

P ∈ A1(σ
T2a)

a1

Figure 2: (T2)

y2

y1O

(T2b)

P ∈ A2(σ
T2b)

a1

61



y2

y1O

(T3a)

P ∈ A1(σ
a1 ,3)

a2

a1

θ

tan(θ) = s2
s1

, a2 := (a1s2)/s1

y2

y1O

(T3b)

P ∈ A1(σ
a1 ,4)

a2

a1

θ

Figure 3: (T3)

Any ACM sequencing rule σw,κ such that w1 > 0, w2 = 0 and κ(σ1 = 1,σ2 = 2) >

κ(σ1 = 2,σ2 = 1) is a sequencing rule σT2a given in (T2) with k = 1. A sequencing

rule σT1a given in (T1) is the special case of any NI sequencing rule σV of Example 3.1

with the added restriction that a2s1 = a1s2. Therefore, as established in the proof of

Proposition 3.3, any sequencing rule defined in (T1) is not an ACM sequencing rule.

THEOREM 3.1 A non-constantσ ∈ NI(Ω(s1 ,s2)
{1,2} ) is implementable with balanced trans-

fers if and only if it is a TAB sequencing rule σTx.

Therefore, a consequence of Theorem 3.1 is that any ACM sequencing rule σw,κ

such that the agent-specific weights w1 and w2 are both positive are not implementable

with balanced transfers. Hence the outcome efficient sequencing rule σ∗ and the just

sequencing rule σ̃ are not implementable with balanced transfers.

3.4.2 Case 2: More than two agents

For any sequencing problem Ωs
N with more than two agents it is difficult to identify the

complete class of NI sequencing rules that are implementable with balanced transfers.

Consider any sequencing problem Ωs
N with three or more agents. In Remark 3.1

we have argued that any ACM sequencing ruleσw,κ with the property that there exists

i ∈ N such that wi = 0 is implementable with balanced transfers. What can we say

about implementability with balanced transfers for any ACM sequencing rule σw,κ

with the property that for all i ∈ N, wi > 0? We identify an ACM sequencing ruleσw,κ
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with the properties that for all i ∈ N, wi > 0 and κ function is not a constant function,

that cannot be implemented with balanced transfers.

EXAMPLE 3.3 Consider any sequencing problem Ω
(s1 ,s2 ,s3)
{1,2,3} with three agents. Consider

the ACM sequencing rule σw,κ such that w1 = w2 = w3 = 1 > 0 and

κ(σ) =

 κ̄ > 0 if σ1 = (σ1
1 = 1,σ1

2 = 2,σ1
3 = 3),

0 if σ ∈ Σ({1, 2, 3}) \ {σ1}.
(3.10)

Given the selection of the κ(σ) function it may so happen that agent 1 has the highest

urgency index, agent 2 has the second highest urgency index and agent 3 has the low-

est urgency index and yet the order (σ1 = 2,σ2 = 1,σ3 = 3) is less costly compared

to the order (σ1 = 1,σ2 = 2,σ3 = 3) simply because we have an added cost of κ̄ > 0

associated with selecting the order (σ1 = 1,σ2 = 2,σ3 = 3). This aspect can be used

to demonstrate that it is impossible to implement this sequencing rule with balanced

transfers.

Consider any two profiles θ = (θ1,θ2,θ3),θ′ = (θ′1,θ′2,θ′3) ∈ Θ3 such that θ3/s3 >

θ2/s2 > θ1/s1 > θ′2/s2 > θ′3/s3 > θ′1/s1, θ1s2 −θ′2s1 = κ̄/2 and θ′3 = κ̄/s2. We provide

the chosen order and the incentive payment of the three agents for the eight possible

profiles.

(a) σw,κ(θ1,θ2,θ3) = (σ1 = 3,σ2 = 2,σ3 = 1), I1(θ1,θ2,θ3) = 0, I2(θ1,θ2,θ3) = s2θ1

and I3(θ1,θ2,θ3) = s3(θ2 +θ1).

(b) σw,κ(θ′1,θ2,θ3) = (σ1 = 3,σ2 = 2,σ3 = 1), I1(θ
′
1,θ2,θ3) = 0, I2(θ

′
1,θ2,θ3) = s2θ

′
1

and I3(θ
′
1,θ2,θ3) = s3(θ2 +θ′1).

(c) σw,κ(θ1,θ′2,θ3) = (σ1 = 2,σ2 = 3,σ3 = 1), I1(θ1,θ′2,θ3) = s1θ
′
2, I2(θ1,θ′2,θ3) = 0

and I3(θ1,θ′2,θ3) = s3(θ1 +θ′2).

(d) σw,κ(θ1,θ2,θ′3) = (σ1 = 2,σ2 = 1,σ3 = 3), I1(θ1,θ2,θ′3) = s1θ
′
3, I2(θ1,θ2,θ′3) =

s2(θ1 +θ′3) and I3(θ1,θ2,θ′3) = 0.
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(e) σw,κ(θ′1,θ′2,θ3) = (σ1 = 3,σ2 = 2,σ3 = 1), I1(θ
′
1,θ′2,θ3) = 0, I2(θ

′
1,θ′2,θ3) = s2θ

′
1

and I3(θ
′
1,θ′2,θ3) = s3(θ

′
2 +θ′1).

(f) The profile (θ1,θ′2,θ′3) shows how we cannot rely only on the urgency index

when κ-function is not a constant function. In particular, we have θ1/s1 > θ′2/s2

and yet agent 1 is served after agent 2 simply because the cost of selecting the

order (σ1 = 1,σ2 = 2,σ3 = 3) less the cost of selecting the order (σ1 = 2,σ2 =

1,σ3 = 3) equals κ̄ +θ′2s1 −θ1s2 = κ̄ − κ̄/2 = κ̄/2 > 0. Hence, σw,κ(θ1,θ′2,θ′3) =

(σ1 = 2,σ2 = 1,σ3 = 3). Further, the relevant cut off point for agent 1 is

θ
(2)
1 = (s1θ

′
3)/s3 and hence his incentive payment is I1(θ1,θ′2,θ′3) = s1θ

′
3. The

relevant cut off points for agent 2 are θ
(1)
2 = (θ1s2 − κ̄)/s1 and θ

(2)
2 = (s2θ

′
3)/s3.

Specifically, given (θ1,θ′3), θ
(1)
2 is that waiting cost of agent 2 for which the

cost of selecting the order (σ1 = 1,σ2 = 2,σ3 = 3) less the cost of selecting

the order (σ1 = 2,σ2 = 1,σ3 = 3) equals zero. Hence his incentive pay-

ment is I2(θ1,θ′2,θ′3) = s2(θ1 + θ′3) − κ̄. Finally, since agent 3 is served last,

I3(θ1,θ′2,θ′3) = 0.

(g) σw,κ(θ′1,θ2,θ′3) = (σ1 = 3,σ2 = 1,σ3 = 2), I1(θ
′
1,θ2,θ′3) = 0, I2(θ

′
1,θ2,θ′3) =

s2(θ
′
3 +θ′1) and I3(θ

′
1,θ2,θ′3) = s3θ

′
1.

(h) σw,κ(θ′1,θ′2,θ′3) = (σ1 = 3,σ2 = 1,σ3 = 2), I1(θ
′
1,θ′2,θ′3) = 0, I2(θ

′
1,θ′2,θ′3) =

s2(θ
′
3 +θ′1) and I3(θ

′
1,θ′2,θ′3) = s3θ

′
1.

Taking the left hand side of condition (3.9) of Lemma 3.1 and then simplifying it using

(a)-(h) above we get

∑
S⊆N

(−1)|S| I(θ(S)) = θ′3s2 + (θ1s2 −θ′2s1 − κ̄) = κ̄ +

(
κ̄

2
− κ̄

)
=

κ̄

2
6= 0. (3.11)

Condition (3.11) is a violation of condition (3.9) in Lemma 3.1. Hence the ACM se-

quencing rule σw,κ with w1 = w2 = w3 = 1 > 0 and the κ(σ) function given by

condition (3.10) is not implementable with balanced transfers.

Given that the agent-specific weights are all positive, Example 3.3 shows that it
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is difficult to check the prospect of implementability with balanced transfers for any

ACM sequencing rule with the property that the κ-function is not a constant. Keeping

this difficulty in mind, we identify a sufficient family of NI sequencing rules that are

implementable with balanced transfers.

Consider any sequencing problem Ωs
N with more than two agents and let ΠN be

the set of all possible priority partitions of the agents where the order of representing

the partition is important in terms of priority. For example, if π(N) = (π1, π2, . . . , πK)

is any priority partition, then group π1 is given priority over group π2 and so on. Let

π(N) = (π1, . . . , πK) ∈ ΠN be any priority partition of the set of agents. The set of

π(N) induced orders is

Σ(π(N)) =

 {σ ∈ Σ(N) | ∀k ∈ {1, . . . , K− 1},σi < σ j, ∀i ∈ πk, ∀ j ∈ πk+1} if K ≥ 2,

Σ(N) if K = 1.
(3.12)

Therefore, the set of priority partition π(N) induced orders Σ(π(N)) are those

orders where agents in π1 are always served first, agents in π2 are always served

after agents in π1 but before agents in π3 (if any) and so on. If K = 1 so that

π(N) = (π1 = πK = {N}), then Σ(π(N)) = Σ(N) which is the set of all possi-

ble ordering on the set of agents N. For example, for Π{1,2,3}, there are four types

of priority partitions. These are π c = (π1 = {i}, π2 = { j}, π3 = {k}), π21 =

(π1 = {i, j}, π2 = {k}), π12 = (π1 = {i}, π12
2 = { j, k}) and π̄ = (π1 = {1, 2, 3})

where i 6= j 6= k 6= i. For π c, Σ(π c) = {(σi = 1,σ j = 2,σk = 3)}, for π21,

Σ(π21) = {{(σi = 1,σ j = 2,σk = 3)} ∪ {(σi = 2,σ j = 1,σk = 3)}}, for π12,

Σ(π12) = {{(σi = 1,σ j = 2,σk = 3)} ∪ {(σi = 1,σ j = 3,σk = 2)}} and finally for π̄ ,

we have the set of all possible orders on the set of agents, that is, Σ(π̄) = Σ({1, 2, 3}).

DEFINITION 3.10 Consider any priority partition π(N) ∈ ΠN and let f = { f1, . . . , fn}

be a set of agent-specific increasing and one-to-one functions f j : Θ → R+. The se-

quencing rule σπ(N), f : Θn → Σ(N) satisfies group priority based cost minimization (GP-

CM) if for each θ ∈ Θn, σπ(N), f (θ) ∈ arg minσ∈Σ(π(N)) ∑ j∈N f j(θ j)S j(σ).
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By appropriately modifying the arguments used to prove that an ACM sequencing

rule is NI in Proposition 3.3, one can easily show that any GP-CM sequencing rule

σπ(N), f is NI. The following observations are important for our understanding of GP-

CM sequencing rules.

1. For any π(N) ∈ ΠN, any GP-CM sequencing rule σπ(N), f with the property that

there exists an agent j ∈ N such that f j(.) is non-linear is an NI sequencing rule

which is not an ACM.

2. For any π(N) ∈ ΠN, the GP-CM sequencing rule σπ(N), f where f j(.) is linear for

all j ∈ N is an ACM sequencing rule. Specifically, any ACM sequencing rule

σw,κ such that w j > 0 for all j ∈ N and κ(σ) = 0 for all σ ∈ Σ′(N) and there

exists a priority partition π(N) ∈ ΠN such that Σ′(N) = Σ(π(N)) is a GP-CM

sequencing rule.

3. The GP-CM sequencing rule is not onto for any π(N) = (π1, . . . , πK) ∈ ΠN

such that K ≥ 2 since, in that case, Σ(N) \ Σ(π(N)) 6= ∅ and any order σ ∈

Σ(N) \ Σ(π(N)) is never chosen.

4. For π(N) ∈ ΠN such that K = 1 so that the π(N) = (π1 = πK = {N}) is the

grand coalition, Σ(π(N)) = Σ(N) and any such GP-CM σπ(N), f is onto.

5. A GP-CM sequencing rule σπ(N), f is a constant sequencing rule if π(N) =

(π1, . . . , πK) is such that K = n.

6. A GP-CM sequencing ruleσπ(N), f gives the outcome efficient sequencing ruleσ∗

if π(N) = ({N}) and f j(θ j) = θ j for all j ∈ N.

7. A GP-CM sequencing rule σπ(N), f gives the just sequencing rule σ̃ if π(N) =

({N}) and f j(θ j) = (1/∏k∈N\{ j} sk)θ j for all j ∈ N.

REMARK 3.3 For any GP-CM sequencing rule σπ(N), f with the priority partition

π(N) ∈ ΠN, modified urgency index f j(θ j)/s j is used to determine the profile con-

tingent order of serving the agents. Specifically, like Smith’s (see Smith (1956)) rule

66



for outcome efficient sequencing rule σ∗, for any GP-CM σπ(N), f , the selected order

σπ(N), f (θ) satisfies the following condition.

(GP-CM) For any i, j ∈ πk ∈ π(N),

( fi(θi)/si) ≥ ( f j(θ j)/s j)⇔ σ
π(N), f
i (θ) ≤ σ

π(N), f
j (θ).

Given the tie-breaking rule, this profile contingent selection σπ(N), f (θ) is unique.

DEFINITION 3.11 For any GP-CM sequencing rule σπ(N), f with priority partition

π(N) ∈ ΠN, a mechanism (σπ(N), f , τπ(N), f ) is a GP-CM “Cut off" based mechanism if

the transfer rule is such that for any θ ∈ Θn and any i ∈ πk ∈ π(N),

τ
π(N), f
i (θ) =


Gi(θ−i) if P′i (σ

π(N), f (θ)) ∩ πk = ∅,

Gi(θ−i)− ∑

j∈P′i (σ
π(N), f (θ))∩πk

s j f−1
i

(
si f j(θ j)

s j

)
if P′i (σ

π(N), f (θ)) ∩ πk 6= ∅.
(3.13)

where the function Gi : Θ|N\{i}| → R is arbitrary.

It is obvious that the incentive payment of any agent i ∈ πk ∈ π(N) under the

GP-CM-“Cut off" based mechanism is the following:

Iπ(N), f
i (θ) =


0 if P′i (σ

π(N), f (θ)) ∩ πk = ∅,

∑

j∈P′i (σ
π(N), f (θ))∩πk

s j f−1
i

(
si f j(θ j)

s j

)
if P′i (σ

π(N), f (θ)) ∩ πk 6= ∅.

The GP-CM-“Cut off" based transfers (3.13) specifies that for any i ∈ πk ∈ π(N)

and any θ−i ∈ ΘN\{i}, ifθi is such that agent i is served last among the members of the

group πk in which he belongs for the order σπ(N), f (θi,θ−i), then τ
π(N), f
i (θi,θ−i) =

Gi(θ−i). This part of the transfer is like the “Cut off" based transfer for the case

where agent i’s type is smaller than the smallest cut off point θ(T−1)
i (see Proposi-

tion 3.2). If, however, θ′i is such that agent i is not served last among the members of

his group πk under the order σπ(N), f (θ′i ,θ−i), that is, if P′i (σ
π(N), f (θ′i ,θ−i)) ∩ πk 6= ∅,

then agent i’s transfer τ
π(N), f
i (θ′i ,θ−i) not only has Gi(θ−i) but he also has to make

an incentive payment Ii(θ
′
i ,θ−i). His incentive payment amount is the sum of cost

that agent i inflicts on the followers from the members of his group πk under the or-

der σπ(N), f (θ′i ,θ−i). This part of the incentive solving payment is nothing but the
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cost term ∑
T−1
r=t θ

(r)
i Dr(θ−i) in the transfer under the “Cut off" based mechanism (see

Proposition 3.2). In particular, given any i ∈ πk ∈ π(N) and given any θ−i ∈ Θ|N\{i}|,

the cut off points where the order of agent i changes are set of distinct elements from

the collection { f−1
i (si f j(θ j)/s j)} j∈πk\{i} and the absolute cost difference of agent i be-

low and above any cut off point f−1
i (si f j(θ j)/s j) is given by D j(θ−i) = s j. Hence

for each j ∈ P′i (σ
π(N), f (θ)) ∩ πk, the payment of i is

[
f−1
i (si f j(θ j)/s j)

]
D j(θ−i) =

f−1
i (si f j(θ j)/s j)(s j).

THEOREM 3.2 Consider any sequencing problem Ωs
N with more than two agents. For

any priority partition π(N) = (π1, . . . , πK) ∈ ΠN and for any given set of functions

f = { f1, . . . , fn} that are increasing and onto, the GP-CM sequencing rule σπ(N), f is

implementable with balanced transfers.

Till now we have obtained the following.

1. Any ACM sequencing rule σw,κ such that there exists an agent j ∈ N such that

w j = 0 is implementable with balanced transfers (see Remark 3.1).

2. Example 3.3 demonstrates the existence of an ACM sequencing rule σw,κ such

that wi > 0 for all i ∈ N and κ-function is not a constant function which is not

implementable with balanced transfers.

3. Any ACM sequencing rule σw,κ such that wi > 0 for all i ∈ N and κ(σ) = 0

for all σ ∈ Σ′(N) and there exists a priority partition π(N) ∈ ΠN such that

Σ′(N) = Σ(π(N)) is a GP-CM sequencing rule and hence, by Theorem 3.2,

is implementable with balanced transfers. Moreover, since the grand coalition

π(N) = (π1 = {N}) is also included in the set of priority partitions, any onto

ACM sequencing rule σw,κ such that wi > 0 for all i ∈ N and κ(σ) = 0 for all

σ ∈ Σ(N) is implementable with balanced transfers.

4. The non-affine cost minimizers NI sequencing rules included in GP-CM sequenc-

ing rules are a generalization of the affine cost minimizer sequencing rules where

agents’ waiting cost are replaced with a non-linear function of the waiting cost
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which is increasing and onto. Theorem 3.2 shows that all these rules are also

implementable with balanced transfers.

What can we say about any ACM sequencing rule σw,κ such that (a) κ-function is a

constant function, (b) wi > 0 for all i ∈ N, and, yet, (c) it does not belong to the class of

GP-CM sequencing rules? It is difficult to give a general answer and we provide one

example of such an ACM sequencing rule which is not implementable with balanced

transfers.

EXAMPLE 3.4 Consider any sequencing problem Ω
(s1 ,s2 ,s3)
{1,2,3} with three agents. Consider

the ACM sequencing rule σw,κ such that w1 = w2 = w3 = 1 > 0, κ(σ) = 0 for

all σ ∈ Σ′({1, 2, 3}) and Σ′({1, 2, 3}) = {σ = (σ1,σ2,σ3) ∈ Σ({1, 2, 3}) | σ1 6= 2}.

From the discussion about the priority partitions Π{1,2,3} for the three agent case, that

appears before the definition of GP-CM sequencing rules, it is easy to see that there

does not exists a priority partition π ∈ Π{1,2,3} such that Σ′({1, 2, 3}) = Σ(π({1, 2, 3})

and hence this ACM sequencing rule is not in the family of GP-CM sequencing rules.

Consider any two profiles θ = (θ1,θ2,θ3),θ′ = (θ′1,θ′2,θ′3) ∈ Θ3 such that θ′1 = s1,

θ′3 = 2s3, θ3 = 3s3, θ′2 = 3s2, θ2 = 4s2, θ1 = As1 and A is any number in the open

interval (2 + a, min{2 + 2a, 3}) where a = s2/(s2 + s3) ∈ (0, 1). Observe that θ2/s2 =

4 > θ′2/s2 = θ3/s3 = 3 > θ1/s1 = A > θ′3/s3 = 2 > θ′1/s1 = 1. Given the tie-breaking

rule, we provide the chosen order and the incentive payments under the eight possible

profiles.

(a) σw,κ(θ1,θ2,θ3) = (σ1 = 3,σ2 = 1,σ3 = 2) and I1(θ1,θ2,θ3) = 0. The relevant

cut off points for agent 2 are θ(2)2 = (θ1(s2 + s3)−θ3s1)/s1 and θ
(1)
2 = (s2θ3)/s3.

Specifically, given (θ1,θ3), θ
(2)
2 is that waiting cost of agent 2 for which the cost

of selecting the order (σ1 = 3,σ2 = 2,σ3 = 1) less the cost of selecting the

order (σ1 = 1,σ2 = 3,σ3 = 2) equals zero. Hence his incentive payment is

I2(θ1,θ2,θ3) = θ1(s2 + s3)− θ3s1 + s2θ3. The relevant cut off point for agent 3

is θ
(2)
3 = (θ1(s2 + s3) − θ2s1)/s1 and, given (θ1,θ2), θ

(2)
3 is that waiting cost of

agent 3 for which the cost of selecting the order (σ1 = 3,σ2 = 1,σ3 = 2) less

the cost of selecting the order (σ1 = 1,σ2 = 2,σ3 = 3) equals zero. Hence his
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incentive payment is I3(θ1,θ2,θ3) = θ1(s2 + s3)−θ2s1. Therefore, I(θ1,θ2,θ3) =

∑i∈{1,2,3} Ii(θ1,θ2,θ3) = 2θ1(s2 + s3)− (θ2 +θ3)s1 +θ3s2.

(b) σw,κ(θ′1,θ2,θ3) = (σ1 = 3,σ2 = 1,σ3 = 2) and, like case (a), the aggregate

incentive payment is I(θ′1,θ2,θ3) = 2θ′1(s2 + s3)− (θ2 +θ3)s1 +θ3s2.

(c) σw,κ(θ1,θ′2,θ3) = (σ1 = 3,σ2 = 1,σ3 = 2) and the aggregate incentive payment

is I(θ1,θ′2,θ3) = 2θ1(s2 + s3)− (θ′2 +θ3)s1 +θ3s2.

(d) σw,κ(θ1,θ2,θ′3) = (σ1 = 3,σ2 = 1,σ3 = 2) and the aggregate incentive payment

is I(θ1,θ2,θ′3) = 2θ1(s2 + s3)− (θ2 +θ′3)s1 +θ′3s2.

(e) σw,κ(θ′1,θ′2,θ3) = (σ1 = 3,σ2 = 1,σ3 = 2) and the aggregate incentive payment

is I(θ′1,θ′2,θ3) = 2θ′1(s2 + s3)− (θ′2 +θ3)s1 +θ3s2.

(f) σw,κ(θ1,θ′2,θ′3) = (σ1 = 1,σ2 = 2,σ3 = 3) and I3(θ1,θ′2,θ′3) = 0. The only cut off

point for agent 1 is θ(1)1 = ((θ′2 +θ′3)s1)/(s2 + s3) and, given (θ′2,θ′3), θ
(1)
1 is that

waiting cost of agent 1 for which the cost of selecting the order (σ1 = 3,σ2 =

1,σ3 = 2) less the cost of selecting the order (σ1 = 1,σ2 = 2,σ3 = 3) equals zero.

Hence I1(θ1,θ′2,θ′3) = (θ′2 +θ′3)s1. The relevant cut off point for agent 2 is θ(2)2 =

(s2θ
′
3)/s3 and I2(θ1,θ′2,θ′3) = θ′3s2. Hence, I(θ1,θ′2,θ′3) = ∑i∈{1,2,3} Ii(θ1,θ′2,θ′3) =

(θ′2 +θ′3)s1 +θ′3s2.

(g) σw,κ(θ′1,θ2,θ′3) = (σ1 = 3,σ2 = 1,σ3 = 2) and the aggregate incentive payment

is I(θ′1,θ2,θ′3) = 2θ′1(s2 + s3)− (θ2 +θ′3)s1 +θ′3s2.

(h) σw,κ(θ′1,θ′2,θ′3) = (σ1 = 3,σ2 = 1,σ3 = 2) and I(θ′1,θ′2,θ′3) = 2θ′1(s2 + s3) −

(θ′2 +θ′3)s1 +θ′3s2.

Taking the left hand side of condition (3.9) of Lemma 3.1 and then simplifying it using

(a)-(h) above we get

∑
S⊆N

(−1)|S| I(θ(S)) = (s1 + s2)[s2 + 2((s2 + s3)− As1)]. (3.14)
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For condition (3.9) in Lemma 3.1 to hold, for any A ∈ (2 + a, min{2 + 2a, 3}) we must

have that condition (3.14) must be equal to zero. This is not possible since the right

hand side of condition (3.14) changes for different selections of A from the interval (2+

a, min{2+ 2a, 3}). In particular, if (3.14) is equal to zero for some selection a ∈ A, then

(3.14) is not equal to zero for any selection a +ε ∈ A with ε > 0. That we can always

select two distinct numbers from the interval A is immediate. If min{2 + 2a, 3} = 2 +

2a, then select a1 = 2 + ((3a)/2) and a1 +ε = 2 + ((7a)/4). Note that a1, a1 +ε ∈ A

and ε = a/4 > 0. If min{2 + 2a, 3} = 3, then select b1 = (5/2) + (a/2) and b1 +ε′ =

(8/3) + (a/3). Note that b1, b1 + ε′ ∈ A and ε′ = (1/6)(1− a) > 0. Therefore, this

ACM sequencing rule σw,κ is not implementable with balanced transfers.

Finally, there are NI sequencing rules, different both from GP-CM sequencing rules

and from sequencing rules of Remark 3.1, that are implementable with balanced

transfers. For example, consider any σ such that for each agent j ∈ N \ {1, 2},

σ j(θ) = k ∈ {3, . . . , n} is fixed for all θ and for agents 1 and 2 we follow conditions

specified by (T1a) for the TAB sequencing rules (ignoring the waiting costs of all other

agents) to obtain their order. Clearly, this rule is implementable with balanced trans-

fers by setting the transfer of all j ∈ N \ {1, 2} at zero, ceteris paribus. Hence, GP-CM

sequencing rules and sequencing rules of Remark 3.1, taken together, is not necessary

for implementability with balanced transfers.

REMARK 3.4 Our initial analysis (Section 3.3) shows that results on implementabil-

ity of sequencing rules are consequences of results from a set of important papers

from the dominant strategy mechanism design literature. However, this analysis is

only a precursor to our main non-trivial contribution on balanced implementability.

While we identify the entire class of balanced implementable sequencing rules with

two agents, for sequencing problems with three or more agents we identify a natu-

ral class of priority based sequencing rules, that we face in our day to day life, that

are implementable with balanced transfers. Therefore, in the presence of monetary

transfers, our analysis concludes that many real-life priority based rules that can be

implemented in a costless way as the transfers to implement such rules only requires
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intra-agent transfers (without inflicting any loss in society’s resources). Needless to

say costless implementability is an important aspect of a planner’s mechanism prob-

lem under incomplete information though, in general, it is difficult to achieve. In that

sense ours is a positive contribution to the literature on balanced implementability.

3.5 Conclusion

For sequencing problems with three or more agents we identify a natural class of prior-

ity based sequencing rules, that we face in our day to day life, that are implementable

with balanced transfers (Section 3.4.2). We admit that it is hard to identify the complete

class of rules that are implementable with balanced transfers and is an open question.

Using the necessary condition of balanced implementability (Lemma 3.1), we identify

the entire class of balanced implementable sequencing rules with two agents (Section

3.4.1). Therefore, in the presence of monetary transfers, our analysis concludes that

many real-life priority based rules can be implemented in a costless way as the trans-

fers to implement such rules only requires intra-agent transfers (without inflicting any

gain or loss in society’s resources). Needless to say costless implementability is an

important aspect of a planner’s mechanism problem under incomplete information

though, in general, it is difficult to achieve (see Hurwicz and Walker (1990), Walker

(1980) and Yenmez (2015)). In that sense ours is a positive contribution to the litera-

ture on balanced implementability.

In this paper we have assumed that the benefit derived from getting the service

is sufficiently high for all agents so that participation (or individual rationality) con-

straints are not binding. Specifically, we have implicitly assumed that Ūi(σ , τi;θi) =

vi − θiSi(σ) + τi where vi is large enough to ensure that Ūi(σ , τi;θi) ≥ 0 under all

the relevant sequencing rules and their associated “Cut off" based transfers. Hence,

the benefit vi that each agent i derives from getting the service never featured in our

analysis and we could limit our attention to preferences of the form Ui(σ , τi;θi) =

−θiSi(σ) + τi. Implicit here is our assumption that Ūi(σ , τi;θi) ≥ 0 is all that matters,

that is, the outside option of each agent is zero utility. There may be other better ways
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of addressing individual rationality in this context with better profile contingent out-

side options. How to address this issue of individual rationality for the sequencing

problem is another important direction for future research.

3.6 Appendix

Proof of Proposition 3.3: Consider any affine maximizer sequencing rule σw,κ. Let

T ⊂ N be such that w j = 0 for all j ∈ T. Since, by affine maximization, for any profile

θ, σw,κ
i (θ) < σw,κ

j (θ) for any j ∈ T and any i ∈ N \ T and since the tie-breaking rule

fixes the order of service across agents in T, it follows that for any j ∈ T, any θ− j,

S j(σ(θ j,θ− j)) is a constant for all θ j ∈ Θ. Hence for any agent j ∈ T, the completion

time is fixed for all profiles that implies non-increasingness. Consider any agent i with

wi > 0, any profileθ−i ∈ Θ|N\{i}|, anyθ′i > θi such thatσ(θi,θ−i) := σ ,σ(θ′i ,θ−i) := σ ′

and σ 6= σ ′. Using affine maximization we have the following:

(I) wiθiSi(σ) + ∑ j∈N\{i} w jθ jS j(σ) + κ(σ) ≤ wiθiSi(σ
′) + ∑ j∈N\{i} w jθ jS j(σ

′) +

κ(σ ′), and

(II) wiθ
′
i Si(σ) + ∑ j∈N\{i} w jθ jS j(σ) + κ(σ) ≥ wiθ

′
i Si(σ

′) + ∑ j∈N\{i} w jθ jS j(σ
′) +

κ(σ ′).

From (I) and (II) we get

(III) wiθi[Si(σ)− Si(σ
′)] + ∑ j∈N\{i} w jθ j[S j(σ)− S j(σ

′)] ≤ κ(σ ′)−κ(σ), and

(IV) wiθ
′
i [Si(σ)− Si(σ

′)] + ∑ j∈N\{i} w jθ j[S j(σ)− S j(σ
′)] ≥ κ(σ ′)−κ(σ).

Using (III) and (IV) it easily follows that wi(θ
′
i −θi)[Si(σ)− S j(σ

′)] ≥ 0. Given θ′i > θi

and wi > 0, it follows that Si(σ
′) = Si(σ(θ

′
i ,θ−i)) ≤ Si(σ(θi,θ−i)) = Si(σ) and we

have non-increasingness.

To prove the final part we first prove that the NI sequencing rule σV (defined in

Example 3.1) for any two-agent sequencing problem is not an affine cost minimizer.

Suppose, to the contrary, that σV is an affine cost minimizer. Then for any θ′ such
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that θ′1 > a1, the affine cost minimization must give w1θ
′
1s1 + w2θ

′
2(s1 + s2) +κ(σ1 =

(σ1 = 1,σ2 = 2)) ≤ w1θ
′
1(s1 + s2) + w2θ

′
2s2 +κ(σ2 = (σ1 = 2,σ2 = 1)). Therefore,

we must have (I) w2θ
′
2s1 + κ(σ1) ≤ w1θ

′
1s2 + κ(σ2) for any θ′2. However, if w2 > 0,

then this is not possible as by keeping θ′1 fixed and taking θ′2 very large we can always

have a violation of inequality (I). Hence, we must have w2 = 0. But if w2 = 0, then the

sequencing rule σV is independent of the waiting cost of agent 2 which is not the case

(since for any θ1 < a1 the sequencing rule σV depends on whether θ2 is greater than

a2 or not). Hence we have the required contradiction.

To complete the proof we show that for any sequencing problem with three or

more agents, σNA (defined in Example 3.2) is not an affine cost minimizer. Suppose,

to the contrary, that σNA is an affine cost minimizer. Since σNA has the property that

for any i ∈ N, any given θ−i, there exists θ′i > θi such that Si(θ
′
i ,θ−i) < Si(θi,θ−i),

it is necessary that the affine cost minimizer must be such that wi > 0 for all i ∈ N.

Consider the profile θ = (θ1,θ2,θ3, . . . ,θn) such that θ2/s2 > θ1/s1 > θ3/s3 > . . . ≥

θn/sn. Then by σNA, the order selected is σ = (σ1 = 1,σ2 = 2,σ3 = 3, . . . ,σn =

n). Moreover affine cost minimization must rule out the order σ ′ = (σ1 = 3,σ2 =

1,σ3 = 2, . . . ,σn = n) and hence it follows that w1θ1s1 + w2θ2(s1 + s2) + w3θ3(s1 +

s2 + s3) +κ(σ) ≤ w1θ1(s1 + s2 + s3) + w2θ2s2 + w3θ3(s2 + s3) +κ(σ ′). This inequality

implies that w2θ2s1 + w3θ3s1 ≤ w1θ1(s2 + s3) + κ(σ ′) − κ(σ). By selecting a profile

θ′ = (x2,θ−2) such that x2 > θ2 we continue to have x2/s2 > θ1/s1 > θ3/s3 > . . . >

θn/sn and by σNA, the order selected continues to be σ = (σ1 = 1,σ2 = 2,σ3 =

3, . . . ,σn = n). Hence for any x2 > θ2 we must have

w2x2s1 + w3θ3s1 ≤ w1θ1(s2 + s3) +κ(σ ′)−κ(σ). (3.15)

But as x2 increases, the left hand side of inequality (3.15) increases and the right hand

side remains unchanged. Therefore, for a sufficiently large value of x2, inequality

(3.15) fails to hold and hence we have a contradiction to our assumption that σNA is

an affine cost minimizer. �
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Proof of Lemma 3.2:

Proof of (B1): Without loss of generality, let i = 1 and let X0, X1, X12 ∈ A1 and

X2 ∈ A2. From the “Cut off" based mechanism we get I1(X0) = I1(X1) = θ
(1)
1 (θ2)s2,

I2(X0) = I2(X1) = I1(X2) = I2(X12) = 0, I2(X2) = θ
(1)
2 (θ1)s1 and I1(X12) =

θ
(1)
1 (θ′2)s2. By applying condition (3.9) of Lemma 3.1 we get ∑S⊆{1,2} I(θ(S)) =

θ
(1)
2 (θ1)s1 −θ

(1)
1 (θ′2)s2 = 0 and we get (B1) for i = 1.

Proof of (B2): Without loss of generality, let i = 1 and let X0, X1 ∈ A1 and X2, X12 ∈ A2.

From the “Cut off" based mechanism we get I1(X0) = I1(X1) = θ
(1)
1 (θ2)s2, I2(X0) =

I2(X1) = I1(X2) = I1(X12) = 0, I2(X2) = θ
(1)
2 (θ1)s1 and I2(X12) = θ

(1)
2 (θ′1)s1. By ap-

plying condition (3.9) of Lemma 3.1 we get ∑S⊆{1,2} I(θ(S)) = [θ
(1)
2 (θ1)−θ

(1)
2 (θ′1)]s1 =

0 and we get (B2) for i = 1. �

Proof of Theorem 3.1: We first show that any NI sequencing rule which is TAB is

implementable with balanced transfers. If we have the TAB sequencing ruleσTx given

by (T1a) with k = 1, then the “Cut off" based transfer of agents 1 and 2 are given by

(3.3) and (3.4) respectively. If we set h2(θ1) = 0 for all θ1 ∈ Θ and if we set

h1(θ2) =

 0 if θ2 ≤ a2,

a2s1 if θ2 > a2,
(3.16)

then, using a1s2 = a2s1, we get

τ1(θ) = −τ2(θ) =

 0 if either θ1 ≥ a1 or θ2 ≤ a2,

a2s1 if θ1 < a1 and θ2 > a2.
(3.17)

For the TAB sequencing rule (T1b) with k = 1, the argument is similar and hence

omitted. Finally, if we have the TAB sequencing rule σTx given by (T2a) and with

k = 1, then, by Proposition 3.2, we get the following “Cut off" based transfers. For any

θ ∈ Θ2,

τ1(θ) =

 h1(θ2) if θ1 < a1,

h1(θ2)− a1s2 if θ1 ≥ a1,
(3.18)
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and τ2(θ) = h2(θ1). If we set h1(θ2) = 0 for all θ2 ∈ Θ, and if we set

h2(θ1) =

 0 if θ1 < a1,

a1s2 if θ1 ≥ a1,
(3.19)

then we get implementability with balanced transfers. Specifically, we have

τ1(θ) = −τ2(θ) =

 0 if θ1 < a1,

−a1s2 if θ1 ≥ a1.
(3.20)

For the TAB sequencing rule (T2b) with k = 1, the argument is similar and hence

omitted.

If we have the TAB sequencing rule given by (T3a), then with the following transfer

rule we achieve budget-balance since a1s2 = a2s1,

τ1(θ) = −τ2(θ) =

 0 if either θ1 ≥ a1 or θ2 < a2,

a2s1 if θ1 < a1 and θ2 ≥ a2.
(3.21)

If we have the TAB sequencing rule given by (T3b), then with the following transfer

rule we can achieve budget-balance since a1s2 = a2s1,

τ1(θ) = −τ2(θ) =

 0 if either θ1 > a1 or θ2 ≤ a2,

a2s1 if θ1 ≤ a1 and θ2 > a2.
(3.22)

Therefore, we get implementability with balanced transfers for TAB seqeuncing rules

σTx.

We now prove the converse, that is, if a non-constant NI sequencing rule is imple-

mentable with balanced transfers, then it must be a TAB sequencing rule. We prove

this in two steps. Let σ be non-constant NI sequencing rule which is implementable

with balanced transfers and satisfies the following property.

(P1) There exists an i ∈ {1, 2} such that we can find a pairθ,θ′ ∈ Θ2 with the property

thatθ′i > θi and X0, Xi, X12 ∈ Ai(σ) and X j ∈ A j(σ) where X0 = θ, X1 = (θ′1,θ2),

X2 = (θ1,θ′2) and X12 = θ′.
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Step 1: If σ is a non-constant NI sequencing rule that is implementable with balanced

transfers and for which (P1) holds, then σ must be a TAB sequencing rule of the form

(T1).

Proof of Step 1: Suppose we have X0, Xi, X12 ∈ Ai(σ) and X j ∈ A j(σ), for any

i, j ∈ {1, 2} with i 6= j. Without loss of generality, let i = 1, j = 2. Then by Lemma 3.2

(B1), the cut off points θ(1)1 (θ′2) and θ
(1)
2 (θ1) are such that θ(1)1 (θ′2)s2 = θ

(1)
2 (θ1)s1. Since

X0 = θ, X1 = (θ′1,θ2), X12 = (θ′1,θ′2) ∈ A1(σ) we have Q1(θ), Q1(θ
′
1,θ2), Q1(θ

′
1,θ′2) ⊂

A1(σ). Also we have X2 = (θ1,θ′2) ∈ A2(σ) hence Q2(θ1,θ′2) ⊂ A2(σ). Since

θ
(1)
2 (θ1) is the cut off point for agent 2 at θ1, Q′1(F) ⊂ A1(σ) and Q′2(F) ⊂ A2(σ)

where F = (θ1,θ(1)2 (θ1)). Similarly the cut off point for agent 1 at θ′2 is θ
(1)
1 (θ′2).

Let E = (θ
(1)
1 (θ′2),θ

′
2), hence Q′1(E) ⊂ A1(σ) and Q′2(E) ⊂ A2(σ). Take any point

(θP
1 ,θP

2 ) := P ∈ T1(E) := {(θ1,θ2) ∈ Θ2 | θ1 > θ
(1)
1 (θ′2)&θ2 > θ′2} and, if possi-

ble, assume P ∈ A2(σ). As shown in Figure 3, consider the points X0, X′1, X′2, P where

X0, X′1 ∈ A1(σ) and X′2, P ∈ A2(σ). Then by Lemma 3.2 (B2) the cut off points for agent

2 at θ1 and at θP
1 are equal, that is, θ(1)2 (θ1) = θ

(1)
2 (θP

1 ). Given (θP
1 ,θ(1)2 (θ1)) ∈ A1(σ),

θ
(1)
2 (θP

1 ) > θ
(1)
2 (θ1). Hence our assumption that P ∈ A2(σ) is not correct. Therefore,

P ∈ A1(σ) implying that T1(E) ⊂ A1(σ). All these facts are represented in Figure 3,

where the red coloured region denotes subsets of A2(σ) and the blue coloured region

denotes subsets of A1(σ).

In Figure 4, let us consider any B := (θB
1 ,θB

2 ) ∈ S1 = {(θ′′1 ,θ′′2 ) ∈ Θ2 | θ′′1 <

θ1 &θ′′2 < θ2(θ1)}. If possible, assume B ∈ A2(σ). Consider the points B, R, X12, M

such that B, M ∈ A2(σ) and R, X12 ∈ A1(σ). Again, using Lemma 3.2 (B2), the cut

off points for agent 1 for θB
2 and θ′2, are equal, that is, θ(1)1 (θB

2 ) = θ
(1)
1 (θ′2). However,

this is not the case since θ
(1)
1 (θB

2 ) ≤ θ1 and θ
(1)
1 (θ′2) > θ1 so that θ(1)1 (θB

2 ) 6= θ
(1)
1 (θ′2).

So B ∈ A1(σ). Finally, we now show that, for any point r in the rectangle X2ECF (see

Figure 4), r ∈ A2(σ). If possible, assume r ∈ A1(σ). We consider the points X0, T, P, X2

where X0, T ∈ A1(σ) and X2, P ∈ A2(σ). Since we have assumed r ∈ A1(σ), the cut

off point for agent 2 at θr
1, that is, θ(1)2 (θr

1) ≥ θr
2 and the cut off point for agent 2 at θ1 is

θ
(1)
2 (θ1). Since θ(1)2 (θr

1) ≥ θr
2 > θ

(1)
2 (θ1), Lemma 3.2 (B2) is violated. Hence for any r in
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the rectangle X2ECF, r ∈ A2(σ). The final result of all these arguments is depicted in

Figure 5.
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a1 = θ1(θ
′
2)

C = a
a2 = θ2(θ1)

Define a = (a1 = θ
(1)
1 (θ′2), a2 = θ

(1)
2 (θ1)). Figure

5 shows that red coloured region, that is, the open

set Q′2(a) ⊆ A2(σ) and the blue coloured region,

that is, the open set Θ2 \ Q2(a) ⊆ A1(σ). If a ∈

A1(σ), then it can be easily shown that there are

only these possibilities:

A1(σ) = {θ ∈ Θ2 | either θ1 ≥ a1 or θ2 ≤ a2}, A1(σ) = {θ ∈ Θ2 | either θ1 ≥ a1 or θ2 <

a2} or A1(σ) = {θ ∈ Θ2 | either θ1 > a1 or θ2 ≤ a2} which are the TAB sequencing

rule with k = 1. If a ∈ A2(σ), then A1(σ) = {θ ∈ Θ2 | either θ1 > a1 or θ2 < a2}which

is the TAB sequencing rule σT1b. Hence σ is a TAB sequencing rule of the form (T1 or

T3) with k = 1 and l = 2. This proves Step 1. ;

Step 2: If σ is a non-constant NI sequencing rule that is implementable with balanced

transfers and for which (P1) does not hold, then σ must be a TAB sequencing rule of

the form (T2).

Proof of Step 2: Suppose σ is a non-constant NI sequencing rule that is implementable

with balanced transfers and for which (P1) does not hold. Since σ is not a constant

sequencing rule and satisfies NI, there exists i ∈ {1, 2} and a pair θ,θ′ ∈ Θ2 such that

X0, Xi ∈ Ai(σ) and X j, X12 ∈ A j(σ) where j ∈ {1, 2}, j 6= i, X0 = θ, X1 = (θ′1,θ2),
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X2 = (θ1,θ′2), X12 = θ′, θ1 < θ′1 and θ2 < θ′2. Without loss of generality, let i = 1, j = 2

so that X0, X1 ∈ A1(σ) and X2, X12 ∈ A2(σ). Then by Lemma 3.2 (B2), the cut off

points θ
(1)
2 (θ1) and θ

(1)
2 (θ′1) are such that θ(1)2 (θ1) = θ

(1)
2 (θ′1) := θ̄2. Consider any

λ ∈ (0, 1) and the profile pair (θ1(λ),θ2),θ′ ∈ Θ2 where θ1(λ) := λθ1 + (1 − λ)θ′1

and define Xλ
0 = (θ1(λ),θ2), Xλ

1 = (θ′1,θ2), Xλ
2 = (θ1(λ),θ′2), Xλ

12 = θ′. Observe

that Xλ
0 , Xλ

1 ∈ Q1(θ1,θ2) ⊆ A1(σ) and Xλ
2 , Xλ

12 ∈ Q2(θ
′
1,θ′2) ⊆ A2(σ). Hence by

applying Lemma 3.2 (B2) we get the cut off points θ
(1)
2 (θ1(λ)) and θ

(1)
2 (θ′1) are such

that θ(1)2 (θ1(λ)) = θ
(1)
2 (θ′1) = θ̄2 implying that θ(1)2 (θ1(λ)) = θ

(1)
2 (θ1) = θ

(1)
2 (θ′1) = θ̄2

for any λ ∈ (0, 1). Hence by applying non-increasingness of σ we have Q′1(θ1, θ̄2) ⊆

A1(σ) and Q′2(θ
′
1, θ̄2) ⊆ A2(σ). This is depicted in Figure 6.
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a2 = θ̄2

Consider the set S̄2(θ
′
1, θ̄2) = {(θ′′1 ,θ′′2 ) ∈ Θ2 | θ′′1 > θ′1 & θ′′2 > θ̄2} and any point

P ∈ S̄2(θ
′
1, θ̄2). If P ∈ A1(σ), then by selecting the rectangle ABPC (see Figure 6)

we find that A, B, P ∈ A1(σ) and C ∈ A2(σ) which is a violation of the fact that σ

fails to satisfy Property (P1). Hence S̄2(θ
′
1, θ̄2) ⊆ A2(σ). Similarly, consider the set

S̄1(θ1, θ̄2) = {(θ′′1 ,θ′′2 ) ∈ Θ2 | θ′′1 < θ1 & θ′′2 < θ̄2} and any point R ∈ S̄1(θ1, θ̄2). If

R ∈ A2(σ), then by selecting the rectangle RSTV (see Figure 6) we find that R, V, T ∈

A2(σ) and S ∈ A1(σ) which is a violation of the fact that σ fails to satisfy Property

(P1). Hence S̄1(θ1, θ̄2) ⊆ A1(σ). Therefore, we have obtained the following

(t1) Q′1(θ1, θ̄2) ∪ S̄1(θ1, θ̄2) = {(θ′′1 ,θ′′2 ) ∈ Θ2 | θ′′2 < θ̄2} ⊆ A1(σ) and

(t2) Q′2(θ
′
1, θ̄2) ∪ S̄2(θ

′
1, θ̄2) = {(θ′′1 ,θ′′2 ) ∈ Θ2 | θ′′2 > θ̄2} ⊆ A2(σ).

Cases (t1) and (t2) are depicted in Figure 7. By setting θ̄2 = a2, we get {θ ∈ Θ2 | θ2 >

a2} ⊆ A2(σ) (from (t2) above) and Θ2 \ {θ ∈ Θ2 | θ2 ≥ a2} ⊆ A1(σ) (from (t1) above).
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What about points on the cut off line y2 = a2 = θ̄2 that separates the two decision?

Given non-increasingness of σ we have the following possibilities:

(i) All points of the line y2 = a2 are in A2(σ).

(ii) All points of the line y2 = a2 are in A1(σ).

(iii) There exists a θ∗1 > 0 such that all points (θ1, a2) with θ1 < θ∗1 are in A2(σ), all

points (θ′1, a2) with θ′1 > θ∗1 are in A1(σ) and (θ∗1 , a2) belongs to either A1(σ) or

A2(σ).

However, for case (iii), take the pair of profiles θ,θ′ ∈ Θ2 such that 0 < θ1 < θ∗1 < θ′1

and θ2 = a2 < θ′2 and define X0 = θ, X1 = (θ′1,θ2), X2 = (θ1,θ′2), X12 = θ′. Then we

have X0, X2, X12 ∈ A2(σ) and X1 ∈ A1(σ). This violates our initial assumption that σ

fails to satisfy Property (P1). Hence on the cut off line y2 = a2 either case (i) holds or

case (ii) holds. If case (i) holds, then we haveσT2a, and, if case (ii) holds, then we have

σT2b. Hence we have the TAB sequencing rule of the form (T2) with k = 2 and l = 1.

�

Proof of Theorem 3.2: For any partition π(N) = (π1, . . . , πK) ∈ Π such that K ≥ 2

and fix any set of increasing and onto functions f = { f1, . . . , fn} and consider the

GP-CM sequencing rule σπ(N), f . We show that any such GP-CM sequencing rule

σπ(N), f is implementable with balanced transfer by establishing that condition (3.7)

holds, that is the profile contingent aggregate incentive payment is (n− 1) type sep-

arable. For any profile θ ∈ Θn and any πr ∈ π(N), define the function z f (θ; πr) :=

∑ j∈πr Iπ(N), f
j (θ) = ∑ j∈πr sq

(
∑q∈P′j(σ

π(N), f (θ))∩πr

[
f−1

j
(
s j fq(θq)/sq

)])
. It is important

to note that given any profile θ ∈ Θn, for any πr ∈ π(N), the sum of incentive

payments of the group πr ∈ π(N) is z f (θ; πr) and it has the property that it is in-

dependent of the waiting costs of the agents N \ {πr}. Hence for any θ ∈ Θn, for

any πr ∈ π(N), we write z f (θ; πr) := z f (θπr). Consider the GP-CM-“Cut off" based

mechanism with transfer (3.13) and select for any θ ∈ Θn and any i ∈ πk ∈ π(N),

Gi(θ−i) = ∑πr∈π(N)\{πk}[z f (θπr)/(n− |πr|)]. Given this selection of Gi(·) functions we

get
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∑
i∈N

τ
π(N), f
i (θ) = ∑

i∈N
Gi(θ−i)− Iπ(N), f (θ)

= ∑
i∈N

(
∑

πr∈π(N)\{πk}

z f (θπr )

(n−|πr|)

)
− ∑

πk∈π(N)

(
∑

j∈πk

Iπ(N), f
j (θ)

)

= ∑
πk∈π(N)

(
∑

i∈N\{πk}

z f (θπk )

(n−|πk|)

)
− ∑

πk∈π(N)
z f (θπk)

= ∑
πk∈π(N)

[
z f (θπk )

(n−|πk|)

(
∑

i∈N\{πk}
1

)]
− ∑

πk∈π(N)
z f (θπk)

= ∑
πk∈π(N)

[ z f (θπk )

(n−|πk|)
(n− |πk|)

]
− ∑

πk∈π(N)
z f (θπk)

= ∑
πk∈π(N)

z f (θπk)− ∑
πk∈π(N)

z f (θπk) = 0.

Hence, for any given partition π(N) = (π1, . . . , πK) ∈ Π such that K ≥ 2, for

any set of increasing and onto functions f = { f1, . . . , fn}, the GP-CM sequencing rule

σπ(N), f is implementable with balanced transfers.

For the partition π(N) = (π1 = πK = {n}) ∈ Π such that K = 1 and any set

of increasing and onto functions f = { f1, . . . , fn}, consider the GP-CM sequencing

ruleσπ(N), f . We show that any such GP-CM sequencing ruleσπ(N), f is implementable

with balanced transfer by establishing that condition (3.7) holds, that is the profile

contingent aggregate incentive payment is (n− 1) type separable.

Consider σπ(N), f (θ) for the profile θ ∈ Θn and consider agent i. Define Σi(N) =

{σ ∈ Σ(N) | σi = n} as the set of orders in Σ(N) such that agent i is last in the order.

We define the “induced” orderσπ(N), f (θ−i) ∈ arg minσ∈Σi(N) ∑ j∈N f j(θ j)S j(σ). Given

the profile θ ∈ Θn and any agent i, the relation between the order σπ(N), f (θ) and the

induced order σπ(N), f (θ−i) is as follows:

σ
π(N), f
j (θ−i) =

 σ
π(N), f
j (θ)− 1 if j ∈ P′i (σ

π(N), f (θ)),

σ
π(N), f
j (θ) if j ∈ Pi(σ

π(N), f (θ)).
(3.23)

In words, σπ(N), f (θ−i) is generated from the order σπ(N), f (θ) by moving agent i in

the last position and moving all agents behind him up by one position. Consider the

GP-CM-“Cut off" based mechanism with transfer (3.13) and select for any θ ∈ Θn

81



and any i ∈ N, Gi(θ−i) = (1/(n − 2))∑ j∈N\{i} s j

(
∑k∈Pj(σ

π(N), f (θ−i))
X jk(θk)

)
where

X jk(θk) := f−1
k

(
sk f j(θ j)/s j

)
. Given this selection of Gi(.) functions we get

∑
i∈N

τ
π(N), f
i (θ) = ∑

i∈N
Gi(θ−i)− I(θ)

= 1
(n−2) ∑

i∈N
∑

j∈N\{i}
s j

 ∑

k∈Pj(σ
π(N), f (θ−i))

X jk(θk)

− I(θ)

= 1
(n−2) ∑

i∈N

 ∑
k∈N\{i}

s j

 ∑

j∈P′k(σ
π(N), f (θ))

X jk(θk)

− ∑

k∈Pi(σ
π(N), f (θ))

s jXik(θk)

− I(θ)

= 1
(n−2) ∑

i∈N
∑

k∈N\{i}
Ik(θ)− 1

(n−2) ∑
i∈N

(
∑

k∈Pi(σ
π(N), f (θ))

s jXik(θk)

)
− I(θ)

=
(n−1

n−2

)
I(θ)− 1

(n−2) ∑
i∈N

si

(
∑

k∈Pi(σ
π(N), f (θ))

Xik(θk)

)
− I(θ)

=
(n−1

n−2

)
I(θ)− 1

(n−2) I(θ)− I(θ) = 0.

Thus, any GP-CM sequencing rule σπ(N), f which is onto is implementable with

balanced transfers. �
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Chapter 4

Incentive and normative analysis on

sequencing problems

4.1 Introduction

In this chapter, we analyze normative aspects of the sequencing problem. The main

features of a sequencing problem are as follows: (1) there are n agents and a single

server, (2) the server has multi-functional capability but can process one particular job

at a time, that is the server can serve one agent at a time (3) jobs may not be identical

across agents, so their job processing times may differ but are common knowledge. We

assume agents have quasi-linear preferences over positions in queue and monetary

transfers. Many real life phenomenon has this structure. A diagnostic center, installed

with a multi-functional machine (due to space shortage), where a certain number of

enlisted patients visits for diagnosis, software installation problem to PCs of a set of

agents can be real life examples. Many other comparable situations can be found in

Maniquet (2003), Hashimoto and Saitoh (2012), Mukherjee (2013).

In case of sequencing problem, the property, outcome efficiency, is a widely stud-

ied.1. In sequencing or queuing context outcome efficient allocation is the one, for

which aggregate waiting cost is minimum. The seminal works of Vickrey (1961),

1See Suijs (1996), Mitra (2002), Maniquet (2003) in this context
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Clarke (1971), Groves (1973) have shown that outcome efficiency can be harnessed

with stratefyproofness or non-manipulability. Holmström (1979)’s result in context of

sequencing problem implies a mechanism satisfies strategy-proofness and outcome

efficiency if and only if it is a Vickrey-Clarke-Groves (VCG) mechanism 2. We focus on

the compatibility of a fairness axiom, egalitarian equivalence, introduced by Pazner

and Schmeidler (1978) and get a subclass of Vickrey-Clarke-Groves (VCG) mechanism

that satisfies egalitarian equivalence. Chun et al. (2014) has identified similar type

of subclass of Vickrey-Clarke-Groves (VCG) mechanism for queuing problems. Their

main assumption regarding the egalitarian equivalent reference bundle is; the refer-

ence position can only be an element from the set {1, 2, . . . , n}. Hence, the reference

waiting time is similarly restricted in their work. In our work, we have analyzed the

situation where the only restriction on the reference waiting time is, it must be posi-

tive. We also have identified a constant reference waiting time function that, we argue,

is very realistic from the practical point of view in context sequencing problems.

Mitra (2002) has shown among more general and natural class of sequencing prob-

lems, sequencing problems with linear cost structure is the only class for which out-

come efficiency, budget balance and strategy-proofness (known as first best) can be

achieved. Chun et al. (2014) has also attained feasibility along with egalitarian equiv-

alent VCG mechanism in case of queuing problem when the reference position was

the first position of the queue but we get an impossibility result in case of sequencing

problem, that is, no mechanism is efficient, feasible, non-manipulable and egalitarian

equivalent.

Sequencing problem have also been analyzed from the perspective of group ma-

nipulability . In this context we must mention the work of Mitra and Mutuswami

(2011) that shows there does not exist any mechanism that satisfies outcome effi-

ciency and strong group strategy-proofness in a single machine queuing context.

Similarly in sequencing Kayi and Ramaekers (2008) has shown that no rule satis-

fies outcome efficiency and coalitional strategy-proofness. Whereas we show that, no

2See Vickrey (1961), Clarke (1971), Groves (1973)
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mechanism satisfies outcome efficiency, egalitarian equivalence and pair-wise weak

group strategy-proofness which is weaker than group strategy-proofness.

The idea of identical preference lower bound was first introduced by Moulin (1990)

which he termed as egalitarian lower bound. This concept was applied in queuing

problem by Maniquet (2003), Chun (2006) and others. We show that the two fairness

notions identical preference lower bound and egalitarian equivalence are compatible.

In case of two agents we have necessary and sufficient condition but for more than

two agents we have a sufficient condition that ensures the compatibility between two

fairness notions.

This chapter is arranged in the following way. In Section 4.2, we formally introduce

the model and add necessary definitions. In Section 4.3, we state and prove charac-

terization results regarding egalitarian equivalent VCG mechanism. In Section 4.4,

we focus on feasibility and group staretegyproofness issues of egalitarian equivalent

VCG mechanism . In Section 4.5, we analyze the possibility of identical preference

lower bound property of egalitarian equivalent VCG mechanism. In Section 4.6, we

again go back to analyze the compatibility of egalitarian equivalence and VCG mech-

anism when the reference waiting time is a non-constant function of the type profile

of the agents. Lastly, in Section 4.7, we conclude the chapter.

4.2 The Model

We consider the set of agents N = {1, . . . , n} with a single machine. Each individual

has a different kind of work to be executed by the machine. The machine can

process one job at a time. Let ∀i ∈ N, si ∈ <++ where si denotes the processing

time of ith agent and we assume s1 ≥ s2 ≥ . . . ≥ sn−1 ≥ sn without loss of

generality. Each agent is identified with a positive waiting cost θi ∈ <++, the cost

of waiting per unit of time. The profile of waiting costs of the set of all agents is

typically denoted by θ = (θ1, . . . ,θn) ∈ <n
++. For any i ∈ N, θ−i denotes the profile

(θ1 . . .θi−1,θi+1, . . .θn) ∈ <n−1
++ . Also N denotes the set of natural numbers.
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A sequence is an onto function σ : N → {1, . . . , n}. An allocation of n jobs can be

done in many ways. An allocation rule is a mapping σ : <n
++ → Σ(N) that specifies

for each profile θ ∈ <n
++ an allocation (rank) vector σ(θ) ∈ Σ(N). Agent i’s position

is denoted by σi(θ) which is an input of the vector σ(θ). Let Σ(N) denote the set of all

possible sequence of agents in N. Given σ ∈ Σ(N), ∀ ∈ N, Pi(σ) = { j ∈ N|σ j(θ) <

σi(θ)} denotes the set of predecessors of i and similarly P′i (σ) = { j ∈ N|σ j(θ) > σi(θ)}

denotes the set of successors of i. Agent i’s waiting time is denoted by Si(σ(θ)) and

corresponding waiting cost is Si(σ(θ))θi. A transfer rule is a mapping t : <n
++ → <n

that specifies for each profile θ ∈ <n
++ a transfer vector t(θ) = (ti(θ), . . . , tn(θ)) ∈ <n.

We assume that the utility function of each agent i ∈ N is quasi-liner and is of the form

Ui(σ(θ), ti(θ),θi) = −Si(σ(θ)(θi) + ti(θ), where ti(θ) is the monetary transfer of agent

to i.

DEFINITION 4.1 For all θ ∈ <n
++, a sequence σ ∈ Σ(N) is outcome efficient if σ ∈

E(θ) = argminσ∈Σ(N) ∑
n
i=1 Si(σ)θi.

The implication of outcome efficiency is that agents are ranked according to the non-

increasing order of their relative waiting costs (that is, if θi/si ≥ θ j/s j under a profile

θ, then Si(σ(θ)) ≤ Si(σ(θ))). Moreover, there are profiles for which more than one

rank vector is efficient. For example, in case of queuing problem if all agents have

the same waiting cost, then all rank vectors are efficient. In the context of sequencing

problem, if the profile of waiting cost is (s1, s2, . . . , sn), then all agents have the same

relative waiting cost. Therefore, we have an efficiency correspondence. In this paper,

we choose a particular outcome efficient rule (that is, a single valued selection from

the outcome efficiency correspondence) using a tie breaking rule. For our outcome

efficient rule, we use the following tie breaking rule: if i < j and θi/si = θ j/s j then

Si(σ(θ)) < Si(σ(θ)). This tie breaking rule guarantees that, given a profile θ ∈ <n
++,

the efficient rule selects a single rank vector from Σ(N).

A mechanism is (σ , t) constitutes of an allocation rule σ and a transfer rule t. We

formally define the necessary concepts that we have already introduced in the intro-

duction of this chapter.

86



DEFINITION 4.2 A mechanism(σ , t) is strategy-proof (SP) if for all i ∈ N, for allθi,θ′i ∈

<++ and for all θ−i ∈ <
(n−1)
++ , −Si(σ(θi,θ−i))θi + ti(θi,θ−i) ≥ −Si(σ(θ

′
i ,θ−i))θi +

ti(θ
′
i ,θ−i).

It means, for every agents, reporting the true type weakly dominates reporting false

type. Hence, stragyproofness restricts any kind of unilateral deviation.

DEFINITION 4.3 A mechanism(σ , t) is outcome efficient (OE) if for all announced pro-

file θ ∈ <n
++,σ(θ) ∈ E(θ) = argminσ∈Σ(N) ∑

n
i=1 Si(σ)θi.

The main results of this chapter that we derive in the next section is based on VCG

mechanism that we define next.

DEFINITION 4.4 A mechanism (σ , t) is a VCG mechanism if for all θ,σ(θ) ∈ E(θ), and

the transfers are given by,

∀i ∈ N : ti(θ) = −∑
j 6=i

θ jS j(σ(θ)) + hi(θ−i). (4.1)

When the preferences are quasi-linear and the domain of type is convex then a mech-

anism is OE and SP if and only if it is a VCG mechanism (Holmström (1979)).

DEFINITION 4.5 A mechanism (σ , t) satisfies egalitarian equivalence (EE) if for allθ ∈

<n
++ there exist (S̄(θ), t(θ)) such that for all i ∈ N, −Si(σ(θ))θi + ti(θ) = −S̄(θ)θi +

t̄(θ).

Here (S̄(θ), t̄(θ)) denotes the reference bundle, where S̄(θ) is the reference waiting

time and t̄(θ) is the reference transfer. Egalitarian equivalence was introduced by

Pazner and Schmeidler (1978) and is based on the idea that all individuals should be

placed in a situation which is Pareto-indifferent to a perfectly egalitarian allocation.

In case of sequencing problem (S̄(θ), t̄(θ)) is such a reference bundle, where, if the

agent is placed remains indifferent to the original bundle that he receives under VCG

mechanism.
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DEFINITION 4.6 A mechanism (σ , t) satisfies budget balance (BB) if for all θ ∈

<n
++, ∑

n
i=1 ti(θ) = 0.

DEFINITION 4.7 A mechanism (σ , t) satisfies feasibility (FSB) if for all θ ∈

<n
++, ∑

n
i=1 ti(θ) ≤ 0.

The profile θ and θ′ are S-variants if for all i ∈ N \ S, θi = θ′i .

DEFINITION 4.8 A mechanism (σ , t) is weakly group strategy-proof (WSP) if for all

S-variants θ,θ′ Ui(σ(θ), ti(θ),θi) ≥ Ui(σ(θ
′), ti(θ

′),θi) for at least one i ∈ S.

This implies as long as all the group member are not strictly better off by deviating

from their true profile, such group will not be formed.

DEFINITION 4.9 A mechanism (σ , t) is pair-wise weakly group strategy-proof (PWSP)

if for all S-variants θ,θ′ where |S| = 2, Ui(σ(θ), ti(θ),θi) ≥ Ui(σ(θ
′), ti(θ

′),θi) for at

least one i ∈ S.

This implies pair of agents deviates from their true profile by jointly misreporting

if an only if they are both strictly better off from the situation when they truthfully

reports.

Consider any agent i ∈ N. If the agent i a-priori perceives that he is not different form

any agent j( 6= i) ∈ N (in terms of relative waiting cost) then he will consider every

feasible allocation σ ∈ ∑(N) as a possible outcome. Hence, we need to consider the

a-priori excepted cost perceived by agent i. Consider agent i at position r in the queue.

For any j( 6= i) ∈ N, the waiting time imposed by agent j on agent i is (r − 1)(n −

2)!s j. So in total any agent j( 6= i) ∈ N imposes ∑
n
r=1(r− 1)(n− 2)!s j = n(n− 1)!s j/2

amount of waiting time on agent i. Note that agent i can except all the n! allocations.

Hence, the average waiting cost perceived by agent i, imposed by all the other agents

would be (si + ∑ j 6=i s j/2)θi where θi is the per unit time waiting cost of agent i.

DEFINITION 4.10 A mechanism (σ , t) satisfies identical preference lower bound

(IPLB) if for all θ ∈ <n
++, for all i ∈ N, Ui(σ(θ), ti(θ),θi) ≥ −(si + ∑ j 6=i s j/2)θi.
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This concept was first introduced by Moulin (1990) and is based on the idea that an

agent’s welfare is at least as that of consuming his equal share of resources. In the

context of sequencing problem agents are considered identical as long as their rela-

tive waiting costs are same. That is for all i, j ∈ N, if θi/si = θ j/s j then agents are

considered identical. Identical preference lower bound implies that any agent’s util-

ity should be at least as that of average or expected utility of that agent when he/she

perceives all the other agents as identical to himself.

4.3 Egalitarian equivalent VCG mechanism

In this section, we examine the implication of egalitarian equivalence on a strategy-

proof mechanism that satisfies efficient allocation rule. We will use slightly different

notation to refer an agent. An agent at i-th position in the queue is denoted

as agent (i). So the true waiting cost profile is θ = (θ(1),θ(2), . . . ,θ(n)) is such

that λ(1) ≥ λ(2) ≥ . . . ≥ λ(n) > 0 where ∀i ∈ N, λ(i) = θ(i)/s(i). Hence,

∀θ = (θ(i),θ(−i)) ∈ <n
++, ∀i ∈ N, si 6= s(i).

The crucial fact behind the idea of egalitarian equivalent allocation where every-

one consumes the same “reference bundle" and derives same utility as they get with

the initially allocated bundle. In case of queuing problem, Chun et al. (2014) have

completely characterized EE, SP and OE mechanisms. They restricted the reference

position, that can vary with type profile, on the set {1, 2, . . . , n} as these are the only

positions available in queuing problem with |N| agents. Hence, Chun et al. (2014)

avoided any arbitrary reference waiting time to keep the analysis natural for queuing

context.

Our modification in this context is the following: unlike queuing, in sequencing

problem agents differs in job processing time simply because different agents have dif-

ferent jobs to process. Hence, it is not possible to contemplate all the position {1,2,. . . ,n}

as a potential reference bundle. For example, when N = {1, 2, 3}, if we fix the refer-
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ence position as the second position of the queue then S̄(θ) is perceived differently by

different agents as S̄(θ) ∈ {(s1 + s2), (s1 + s3), (s2 + s3)}. Agent 1 in second position

may face (s1 + s2) or (s1 + s3) as waiting time, agent 2 can face (s1 + s2) or (s2 + s3)

and similarly agent 3 can perceive (s1 + s3) and (s2 + s3) . The only feasible reference

position is the last position as whatever be the allocation and whoever is the agent,

the reference waiting time for the last position is always (s1 + s2 + s3). Hence, to keep

our analysis natural in sequencing context, we will assume the only feasible reference

position is the last position of the queue. Therefore, we will have S̄(θ) = S̄ = ∑
n
i=1 si.

With this precondition== we get the following result:

PROPOSITION 4.1 A mechanism(σ , t) satisfies EE, SP and OE if and only if the ref-

erence bundle for the profile θ ∈ <n
++ (where θ is a non-zero profile) is of the

form (S̄(θ), t̄(θ)) where ∀θ ∈ <++ and t̄(θ) = ∑i∈N{S̄− S(i)(σ(θ))}θ(i) + k̄ when

S̄(θ) = S̄.

Proof: Let us consider an announcement profile θ = (θ(1),θ(2), . . . ,θ(n)) ∈ <n
++.

Therefore, given the OE allocation rule and the tie breaking rule, we can arrange

agents uniquely i.e. σ(i)(θ) = i. Since the domain of preference is quasi-linear and

type spaces for the agents are convex, it follows from Hölmstrom’s result on efficient

and strategy-proof mechanisms that (σ , t) must be a VCG mechanism. This implies

that the transfer is given by

∀i ∈ N : t(i)(θ) = − ∑
j 6=(i)

θ( j)S( j)(σ(θ)) + h(i)(θ−(i)). (4.2)

If we set h(i)(θ−(i)) = ∑ j 6=(i) S( j)θ( j)(σ(θ−(i))) + g(i)(θ−(i)) in equation (4.2) we get

∀i ∈ N : t(i)(θ) = −s(i) ∑
j∈P′

(i)(σ(θ))

θ( j) + g(i)(θ−(i)). (4.3)

As the mechanism (σ , t) satisfies EE, SP and OE the following condition must hold

∀i ∈ N : −θ(i)S(i)(σ(θ)) + t(i)(θ) = −θ(i) S̄ + t̄(θ).
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Where the left side of the above equation is the utility from a VCG mechanism and the

right hand side is the utility from EE requirement.The above expression can alterna-

tively be written as

t̄(θ) = −θ(i)S(i)(σ(θ))− s(i) ∑
j∈P′

(i)(σ(θ))

θ( j) + g(i)(θ−(i) +θ(i) S̄. (4.4)

Putting i = 1 into equation (4.4) we get,

t̄(θ) = −θ(1)S(1)(σ(θ))− s(1) ∑
j∈P′

(1)(σ(θ))

θ( j) + g(1)(θ−(1)) +θ(1) S̄.

Similarly for i = 2 we have,

t̄(θ) = −θ(2)S(2)(σ(θ))− s(2) ∑
j∈P′

(2)(σ(θ))

θ( j) + g(2)(θ−(2)) +θ(2) S̄.

Equating the expressions for t̄(θ) we get, −s(1)θ(1) − s(1)θ(2) + g(1)(θ−(1)) =

−θ(2)(s(1) + s(2)) + (s(1) − s(2))∑ j∈P′
(2)(σ(θ))

θ j + g(2)(θ−(2))− S̄(θ(1) −θ(2)).

Since g(1)(θ−(1)) is independent of θ(1) and g(2)(θ−(2)) is independent of θ(2) we

get g(1)(θ−(1)) = (S̄ − s(2))θ(2) + f(1)(θN\{(1),(2)}) and g(2)(θ−(2)) = (S̄ − s(1))θ(1) +

f(2)(θN\{(1),(2)}). Now comparing the expression for t̄(θ) for i = 1 and i = 3 and using

the expression of g(1)(θ−(1)) we have,

(S̄− s(1))θ(1) + (S̄− s(2))θ(2) + f(1)(θN\{(1),(2)}) = −θ(3)(s(1) + s(2) + s(3)) + s(1)θ(2) +

s(1)θ(3) + (s(1) − s(2))∑ j∈P′
(3)(σ(θ))

θ( j) + g(3)(θ−(3)) + S̄θ(3).

Comparing the expressions on both sides in the similar fashion we get g(1)(θ−(1)) =

(S̄ − s(2))θ(2) + {S̄ − (s(2) + s(3))}θ(3) + f ′(1)(θN\{(1),(2),(3)}) and g(3)(θ−(3)) = (S̄ −

s(1))θ1 + {S̄− (s(1) + s(2))}θ(2) + f(3)(θN\{(1),(2),(3)}).

By using the same argument recursively we get

g(1)(θ−(1)) =
n

∑
j 6=(1)
{S̄− S( j)(σ(θN\{(1)}))}θ( j) + k(1).

In fact (it can easily be shown that) the above expression, holds not only for i = 1 but
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for all i ∈ N;

g(i)(θ−(i)) =
n

∑
j 6=(i)
{S̄− S( j)(σ(θN\{(i)}))}θ( j) + k(i).

Now we further get ∀i, j ∈ N, ki = k j = k̄ by using the above expression of g(i)(θ−(i))

into t̄(θ) in equation (4.4) and equating them. Hence

∀i ∈ N : g(i)(θ−(i)) =
n

∑
j 6=(i)
{S̄− S( j)(σ(θN\{(i)}))}θ( j) + k̄. (4.5)

Using the above expression of gi(θ(−i)) in equation (4.4) we have, t̄(θ) = ∑i∈N{S̄} −

S(i)(σ(θ))}θ(i) + k̄.

Therefore it follows that when S̄(θ) = S̄, a mechanism satisfies EE, SP and OE only if

the reference bundle for the profile θ i.e. (S̄(θ), t(θ)) is of the form t̄(θ) = ∑i∈N{S̄−

Si(σ(θ))}θi + k̄.

Sufficiency is fairly obvious, hence omitted. �

Using the expression of g(i)(θ−(i)) given by equation (4.5), we get the expression of

t(i)(θ) as follows:

t(i)(θ) = ∑
j 6=i
{S̄− S( j)(σ(θ))}θ( j) + k̄. (4.6)

4.4 Feasibility and pair wise weakly group strategy-

proofness

PROPOSITION 4.2 In a sequencing problem no mechanism satisfies OE, SP, EE and

FSB.

Proof: For all i ∈ N and for all θ = (θ(1),θ(2), . . . ,θ(n)) we have t(i)(θ) = ∑ j 6=i{S̄ −

S( j)(σ(θ))}θ( j) + k̄. If FSB holds then for all θ = (θ(1),θ(2), . . . ,θ(n)), ∑i∈N t(i)(θ) ≤ 0.

Therefore, we have the following: ∑i∈N{S(i)(σ(θ)) − S̄}θ(i) ≥ nk̄/(n − 1). If k̄ ≥ 0,

consider the profile θ = (θ(n),θ−(n)) such that for all j 6= n,θ( j) = 1. Since, S̄ =
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∑i∈N s(i) = S(n), we have ∑i∈N{S(i)(σ(θ))− S̄}θ(i) < nk̄/(n− 1). If k̄ < 0, consider the

profile θ = (θ(1),θ−(1)) such that for all j 6= 1,θ( j) = 1 and θ(1) = (1 + 2k̄/(S(1) − S̄)).

Then as S̄ = ∑i∈N s(i) = S(n), we have ∑i∈N{S(i)(σ(θ))− S̄}θ(i) < nk̄/(n− 1).

Hence, FSB is violated. �

REMARK 4.1 The consequence of the above proposition is, in case of sequencing prob-

lem, no mechanism satisfies OE, SP, EE and BB.

PROPOSITION 4.3 Consider a sequencing problem such that |N| > 2. Then no mecha-

nism satisfies OE, PWSP, EE.

Proof: If a mechanism (σ , t) satisfies EE, SP and OE then for all θ ∈ <n
++ the allocation

of an agent i ∈ N is given by (σ(θ), t(i)(θ) = ∑ j 6=i{S̄− S( j)(σ(θ))}θ( j)). Suppose the

true waiting cost profile is θ = (θ(1),θ(2), . . . ,θ(n)) is such that λ(1) > λ(2) > . . . >

λ(n) > 0 where for all i ∈ N, λ(i) = θ(i)/s(i). Consider ∀i ∈ N, θ′(i) = θ(i) +ε1 such

that ε1 = min(s( j)λ( j−1) −θ( j))/2, j ∈ {2, 3, . . . , n}. Let agents (1) and (2) jointly mis-

reports as θ′(1) = θ(1) + ε1 and θ′(2) = θ(2) + ε1. The basic idea is to construct a new

profile , such that, under this new misreported profile relative queue position is unal-

tered. Notice that, under this new profileθ∗ = (θ′(1),θ
′
(2),θ(3),θ(4), . . . ,θ(n)), t(2)(θ∗) >

t(2)(θ) and t(1)(θ∗) > t(1)(θ) since ε1 > 0 by construction. Hence, profitable group de-

viation exists for agents (1) and (2). Therefore, PWSP is impossible along with OE and

EE. �

REMARK 4.2 In a sequencing problem with exactly two agents the class of mechanisms

that satisfy EE, OE and SP is not PWSP. That is, group strategy-proofness is impossible

in is case.

4.5 Identical preference lower bound(IPLB) and egalitar-

ian equivalent VCG mechanism

PROPOSITION 4.4 In case of two agents consider a mechanism that satisfies OE,SP,EE

then it also satisfies IPLB if and only if k̄ ≥ −s(2)θ(1)/2
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Proof: In two-agent case a typical profile is (θ(1),θ(2)) ∈ <2
++. Hence, in the efficient

allocation λ(1) ≥ λ(2), that is, s(2)θ(1) > s(1)θ(2). For sequencing problem with two

agents, the reference waiting time is S̄ = s(1) + s(2).

IPLB is compatible with egalitarian equivalent VCG mechanism if for all i ∈ N and for

all θ = (θ(1),θ(2)) ∈ <2
++, U(i)(S̄, t̄(θ)) ≥ C(i)(θ) or

− S̄θ(i) + ∑
j∈{1,2}

(S̄− S( j))θ( j) ≥ −(s(i) + ∑
j 6=i

s( j)

2
)θ(i). (4.7)

Consider, i = 1. Then following equation (4.7) we have, −{s(1) + s(2)}θ(1) + {(s(1) +

s(2)− s(1)}θ(1)+ {s(1)+ s(2)− s(1)− s(2)}θ(2) ≥ −{s(1)+ s(2)/2}θ(1). Solving the above

equation we get, (i).. k̄ ≥ −s(2)θ(1)/2.

Similarly, for i = 2, following equation (4.7) we have, −{s(1) + s(2)}θ(2) + {(s(1) +

s(2)− s(1)}θ(1)+ {s(1)+ s(2)− s(1)− s(2)}θ(2) ≥ −{s(2)+ s(1)/2}θ(2). Solving the above

equation we get,(ii).. s(2)θ(1) + k̄ ≥ −s(1)θ(2)/2.

Notice that, if (i) holds then (ii) holds trivially. Therefore, condition (i), that is,

k̄ ≥ −s(2)θ(1)/23 is necessary and sufficient condition for IPLB along with egalitarian

equivalent VCG mechanism for two agents. �

PROPOSITION 4.5 Consider a mechanism (σ , t) that satisfies OE, SP, EE if k̄ ≥ 0 then it

satisfies IPLB.

Proof: If a mechanism (σ , t) EE, OE, SP and IPLB then ∀i ∈ N, ∀θ ∈ <n
++ we have,

U(i)(σ(θ))− C(i)(θ) =

 ∑
q∈P′

(i)(σ(θ))

sq − ∑
r∈P(i)(σ(θ))

sr

θ(i) + ∑
j 6=i

(S̄− S( j))θ( j) + k̄ ≥ 0.

(4.8)

Note that, ∑ j 6=i(S̄ − S( j))θ( j) = ∑r∈P(i)(σ(θ))(S̄ − Sr)θr + ∑q∈P′
(i)(σ(θ))

(S̄ − Sq)θq.

Also, ∑r∈P(i)(σ(θ))(S̄ − Sr)θr = s(i) ∑r∈P(i)(σ(θ))θr + ∑r∈P(i)(σ(θ))

(
∑q∈P′

(i)(σ(θ))
sq

)
θr +

3It is the average negative externality that is imposed on the first served agent by the last served
agent.
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∑r∈P(i)(σ(θ))

(
∑
(i)−1
m=r+1 sm

)
θr. But, s(i) ∑r∈P(i)(σ(θ))θr − θr ∑r∈P(i)(σ(θ)) sr ≥ 0, because

agents with higher λ(.) are placed in the earlier positions of the queue (since we have

outcome efficiency of allocation). Therefore,
(

∑q∈P′
(i)(σ(θ))

sq − ∑r∈P(i)(σ(θ)) sr

)
θ(i) +

∑ j 6=i(S̄− S( j))θ( j) > 0. Since k̄ ≥ 0, therefore U(i)(σ(θ))− C(i)(θ) > 0. Hence IPLB

holds. �

4.6 Egalitarian equivalent VCG mechanism revisited

This section is a diversion from the natural condition of sequencing problem. Ideally

there should be an one to one correspondence between reference position and refer-

ence waiting time that had been in the context of queuing problem (See Chun et al.

(2014)). The same is true with sequencing if and only if reference position is the last

position of the queue. But now we assume any positive reference waiting time is pos-

sible. We have already seen that if reference position is assumed to be constant then

egalitarian equivalent VCG mechanism is achievable. Now we ask the following ques-

tion: what if the reference position is explicitly a function of the type profile θ where

θ = (θ1,θ2, . . . ,θn) ∈ <n
++? The answer that we have found is a sufficient one, al-

though not necessary. Our hunch about the necessary condition is that the reference

position function S̄(θ) should be symmetric in nature, that is, ∀θ,θ′ where θ′ is some

permutation of θ we need S̄(θ) = S̄(θ′) for symmetry.

LEMMA 4.1 A mechanism (σ , t) satisfies EE, SP and OE only if ∀i, j(i 6= j) ∈ N, ∀θ ∈

<n
++ : hi(θi)− h j(θ j) = S̄(θ)(θ j −θi).

Proof: The general form of VCG transfer is the followed form equation (4.2) and in

this case is of the following form.

∀i ∈ N : ti(θ) = −∑
j 6=i

θ jS j(σ(θ)) + hi(θ−i). (4.9)
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So a VCG mechanism is egalitarian equivalent if ∀θ ∈ <n
++ the following holds:

∀i ∈ N : −θiSi(σ(θ)) + ti(θ) = −θi S̄(θ) + t̄(θ). (4.10)

Using equations (4.9) and (4.10) we have

−θiSi(σ(θ))−∑
j 6=i

θ jS j(σ(θ)) + hi(θ−i) = −θi S̄(θ) + t̄(θ)

or C(σ(θ)) + hi(θ−i) = −θi S̄(θ) + t̄(θ) (4.11)

where C(σ(θ)) denotes the cost under efficient allocation when the type profile is θ.

For any θ ∈ <n
++ and any i 6= j ∈ N, using equation (4.11) we get

hi(θi)− h j(θ j) = S̄(θ)(θ j −θi). (4.12)

�

PROPOSITION 4.6 If N = {1, 2}, a mechanism (σ , t) satisfies EE, SP and OE only if

S̄(θ) is symmetric.

Proof: Consider, θ = (θ1,θ2) and θ′ = (θ′1,θ′2) where θ′1 = θ2 and θ′2 = θ1. Using

equation (4.12) we get the following: When the type profile is θ = (θ1,θ2)) then

h1(θ2)− h2(θ1) = S̄(θ1,θ2)(θ2 −θ1) ...(I)

and when the type profile is θ′ = (θ′1,θ′2) then

h1(θ1)− h2(θ2) = S̄(θ2,θ1)(θ1 −θ2)...(II)

Since equation (4.12) holds for allθ ∈ <++
2 , from (I) and (II) we have h1(θ2) = h2(θ1) =

h(θ̄) when θ1 = θ2 = θ̄. Hence, the functional form of h1(· ) = h2(· ) = h(· ). Hence,

the equation (4.12), in this case, can be rewritten as h(θ2) − h(θ1) = S̄(θ1,θ2)(θ2 −

θ1)...(1) when θ = (θ1,θ2). If θ′ = (θ′1,θ′2) then h(θ1)− h(θ2) = S̄(θ2,θ1)(θ1 −θ2)...(2).

Form (1) and (2) we have, S̄(θ) = S̄(θ′). Hence, S̄(θ) is symmetric. �
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PROPOSITION 4.7 If ∀θ ∈ <n
++, S̄(θ) = ∑(∏(1≤t≤n)θ

kt
t ) where ∑

n
t=1 kt = m ∈ N and

hi(θ−i) = ∑(∏(t 6=i)θ
k′t
t ) where ∑t 6=i k′t = (m + 1) then a mechanism mechanism (σ , t)

satisfies EE, SP and OE.

Proof: If ∀θ ∈ <n
++, S̄(θ) = ∑(∏(1≤t≤n)θ

kt
t ) where ∑

n
t=1 kt = m ∈ N and

hi(θ−i) = ∑(∏(t 6=i)θ
k′t
t ) where ∑t 6=i k′t = (m + 1) then it can be easily verified

that lemma (4.1) holds. Hence the proposition is proved. �

REMARK 4.3 Consider N = {1, 2}. Assume ∀θ ∈ <2
++, S̄(θ(1),θ(2)) =

∑
m
i=1(θ

(m−i)
(1) θ

(i−1)
(2) ) where m ∈ N. Then with h1(θ−1) = θm

2 and h2(θ−2) = θm
1 we

can achieve egalitarian equivalent VCG mechanism.

Notice that, in particular, a sequencing problem with s1 = s2 = s (=1 assumed in

the literature of queuing) is also a queuing problem . Therefore, unlike Chun et al.

(2014), in this situation S̄(θ1,θ2) can be of the above form that we have just mentioned

and hence not of constant value.

4.7 Conclusion

In this chapter we have analyzed sequencing problem from both incentive and nor-

mative approaches. We have identified unique class of VCG mechanisms that ensures

egalitarian equivalence and we also have shown the possibility result with identical

preference lower bound in that unique class of VCG mechanisms. Sequencing game

imposes a stronger restriction on the possible set of “reference position”, compared

to queuing game and that in turn results into the failure of having a feasible VCG

mechanism along with egalitarian equivalence.

We have found the necessary and sufficient condition for the unique class of egal-

itarian equivalent VCG mechanism to satisfy identical preference lower bound when

the number of participating agents is two, but the necessary condition for the same

when the number of participating agent is more than two remains an open question.
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We, in this chapter, also analyzed a situation where the restriction that sequenc-

ing problem imposes reference position is overlooked, that is, we assume almost no

restriction on reference waiting time (except the fact that it must be positive) and iden-

tify the class of VCG mechanism that is egalitarian equivalent. Although the complete

characterization in this case remains an open problem.

Feasibility which is very crucial from the mechanism designer’s point of view,

might be restored. In the analysis of this chapter we have shown the possibility of non-

constant reference position that is profile dependent, for achieving egalitarian equiva-

lent VCG mechanism. With this change, it would be matter of future research to check

the possibility of feasibility.
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Game Theory, pages 14–23. Springer, 2009.

R. J. Dolan. Incentive mechanisms for priority queuing problems. The Bell Journal of

Economics, pages 421–436, 1978.

J. Duives, B. Heydenreich, D. Mishra, R. Müller, and M. Uetz. On optimal mechanism

design for a sequencing problem. Journal of scheduling, 18(1):45–59, 2015.

K. Fieseler, T. Kittsteiner, and B. Moldovanu. Partnerships, lemons, and efficient trade.

Journal of Economic Theory, 113(2):223–234, 2003.

A. Gibbard. Manipulation of voting schemes: a general result. Econometrica: journal of

the Econometric Society, pages 587–601, 1973.

J. R. Green and J.-J. Laffont. Incentives in public decision making. 1979.

T. Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages

617–631, 1973.

R. Hain and M. Mitra. Simple sequencing problems with interdependent costs. Games

and Economic Behavior, 48(2):271–291, 2004.

100



P. J. Hammond. Equity, arrow’s conditions, and rawls’ difference principle. Economet-

rica: Journal of the Econometric Society, pages 793–804, 1976.

K. Hashimoto and H. Saitoh. Strategy-proof and anonymous rule in queueing prob-

lems: a relationship between equity and efficiency. Social Choice and Welfare, 38(3):

473–480, 2012.

B. Holmström. Groves’ scheme on restricted domains. Econometrica: Journal of the

Econometric Society, pages 1137–1144, 1979.

L. Hurwicz. On the existence of allocation systems whose manipulative nash equilibria

are pareto-optimal. In 3rd World Congress of the Econometric Society, 1975.

L. Hurwicz and M. Walker. On the generic non-optimality of dominant-strategy al-

location mechanisms: A general theorem that includes pure exchange economies.

Econometrica: Journal of the Econometric Society, pages 683–704, 1990.

P. Jehiel and B. Moldovanu. Efficient design with interdependent valuations. Econo-

metrica, 69(5):1237–1259, 2001.

P. Jehiel, M. Meyer-ter Vehn, B. Moldovanu, and W. R. Zame. The limits of ex post

implementation. Econometrica, 74(3):585–610, 2006.

C. Kayi and E. Ramaekers. An impossibility in sequencing problems. Technical report,

Maastricht University, Maastricht Research School of Economics of Technology and

Organization (METEOR), 2008.

Ç. Kayı and E. Ramaekers. Characterizations of pareto-efficient, fair, and strategy-

proof allocation rules in queueing problems. Games and Economic Behavior, 68(1):

220–232, 2010.

R. Lavi, A. M. Alem, and N. Nisan. Towards a characterization of truthful combinato-

rial auctions. In Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE

Symposium on, pages 574–583. IEEE, 2003.

101
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