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Chapter 1 

Introduction 

 

1.1. Overview 

This thesis offers a comparison of the ideas of theorized bargaining with actual bargaining 

behavior in a laboratory (chapter 2), a field (chapter 3), and a market (chapter 4). Each 

chapter is motivated with real life examples. The second chapter, for instance, in a controlled 

laboratory environment, seeks to answer a broad range of questions like if consumers of a 

product could stand to gain out of a mere announcement of a maximum retail price (MRP), or 

if labor unions can gain from the mere existence of a minimum wage law, even when none is 

binding.  Similarly, the third chapter is on a field experiment that focuses on considerations 

that may prevent dictators (agents with complete bargaining power) from settling on their 

most preferred allocation. The final chapter analyzes the role of an arbitrator in the settlement 

of bargaining outcomes and analyzes the requirements of the same to conclude that they are 

consistent with the fairness considerations in the spirit of Rabin (1993). The rest of this 

chapter provides a broad overview of each that follows. 

 

1.2. A laboratory experiment: Set contraction and bargaining outcomes 

The second chapter titled ‘Set Contraction and Bargaining Outcomes: A Laboratory 

Experiment’, is on an experiment designed to test for the axiom of the Independence of 

Irrelevant Alternatives(IIA) in the context of cooperative bargaining game theory, originally 

formalized by Nash (1950). The only previous experiment due to Nydegger and Owen (1975) 
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that addresses the above question, does so in a restrictive setting involving symmetric agents 

(that is, with equal bargaining power), and establishes that the IIA axiom holds, that is, the 

introduction of contraction does not alter bargaining outcomes. Chapter 2 adds to the existing 

body of literature by reporting the results of a laboratory experiment that extends the test for 

the validity of the IIA axiom even in asymmetric settings – that is, when the bargaining power 

of one of the agents is different from (higher or lower than) that of the other.  We look at an 

experiment where these two agents are involved in negotiating on how to split a given 

amount of money.  

We look at an experiment with four treatments. In the first treatment, we ask two individuals 

(from a given homogenous population, and are therefore symmetric) to split Rs. 600 among 

themselves under the condition that they must agree on a split (since otherwise each would 

receive nothing, i.e. the disagreement payoff is zero for each). We find that each settles on 

50% of the amount (i.e. Rs. 300 each). We call this the equal outcome. In a second treatment, 

we instruct the subjects to split Rs. 600 among themselves, subject to the requirement that 

one of the randomly chosen individuals should not get over Rs. 360 (i.e. 60% of the total 

amount, thereby introducing a contraction in the set of outcomes available to him/her, such 

that the original 50%-50% split is still an available choice). The disagreement payoff remains 

zero for each. We again find that both individuals agree on Rs. 300 each, leading us to 

conclude that merely contracting the feasible set of available alternatives will not generate an 

unequal outcome (where one individual gets more than the other). These two treatments 

together, replicate the Nydegger and Owen (1975) experiment mentioned earlier and confirm 

the validity of the IIA axiom. Since both the agents come from the same homogenous 

population, we count them as symmetric (specifically in terms of their bargaining power). In 

the next two treatments we introduce asymmetry in the bargaining powers of the two agents 

using what we call ‘status effects’. 
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Now we introduce a third treatment where one of the two individuals from the same 

population is made to believe that he/she has a higher status than the other (say, because he 

has scored higher in a test), and make sure that each individual is informed of his standing 

(higher or lower status) relative to the other. Thus, now our individuals are ‘asymmetric’. We 

immediately find a significant departure from the 50%-50% split in favor of the superior 

individual. In order to generate even more asymmetry, in the fourth treatment, we impose the 

requirement that the ‘low-status’ individual (who has scored lower in the test) would not get 

to keep over Rs. 360 (thereby introducing exactly the same contraction in the second 

treatment), and find that the agreed split shifts even more (significantly) in favor of the 

superior individual. We now conclude that contraction of the feasible set matters, but only 

when both the individuals involved in bargaining are not symmetric. 

We go further and establish that the effect of contraction is stronger precisely when the 

degree of asymmetry between the individuals (captured in the absolute rank differences) is 

higher (and consequently, there is no contraction effect when there is no asymmetry, i.e. 

when the agents are symmetric), thereby unifying the results of the effects of contraction 

under both agent symmetry and asymmetry. 

The results imply that a mere introduction of a minimum wage law or a maximum retail price 

(each of which makes for a contraction) may significantly alter bargaining outcomes, even if 

none is binding. 

 

1.3. A field experiment: Dictator games in the field 

In the third chapter titled ‘Dictator Games in the Field: The Private Moral Calculus of 

Economic Agents, we address the recently growing concern over what we can conclusively 

learn from dictator games, given the multitude of (laboratory and field) outcomes associated 
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with them. We argue that dictator games are useful, for they are good predictors of actual 

market behavior. Even more interestingly, we find that the offers that dictators choose to 

make to the recipients can be predicted by their real-life transaction behavior. Any participant 

in a dictator game frequently sees it as just a game, and not as a naturally occurring strategic 

interaction. We suitably modify a dictator game to draw parallels (from observations inside 

the lab) in the extra-lab world. Our subjects (three-wheeler taxi cab drivers in New Delhi) are 

put in a position of a proposer of a dictator game (by actors), without the knowledge that they 

are a part of an experiment. Our purpose is to focus on the private moral calculus of the auto 

drivers when they are faced with the dilemma of choosing between opportunism and 

compliance to existing social norms (anchored in a regulated fare), and we show that while a 

substantial proportion of drivers show a preference for the dictatorial outcome (signifying 

opportunism), social norms also play a strong role. 

Specifically, we use actors (who pretend to be commuters) who ‘hire’ drivers of auto 

rickshaws (three-wheeler taxis) from a (pre-selected) point of origin, to a (again pre-selected) 

destination point. Instead of bargaining on the fare before travelling (which is how 

transaction prices are almost always determined in this market), our actors make an explicit 

revelation of their maximum willingness to pay (Rs. 150.00) which exceeds the legal fare 

(Rs. 50.00) for the given distance (5 kilometers), and then ask the auto driver for his quote 

(and accept the same without questioning or making any subsequent counter offer). Thus, the 

auto driver is in the position of a dictator, who must decide what fraction of the 

surplus(equivalent to the difference (Rs. 100.00) between the commuter’s maximum 

willingness to pay, and the legal fare), each gets. 

We continue to find a double-peaked distribution of offers (as is common with dictator 

games) with the first (and the higher) peak at the most selfish outcome (i.e. when the driver 

charges Rs. 150.00, corresponding to keeping the entire pie in a laboratory dictator game), 
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with a frequency of close to 40% – just over Engel’s meta-study of individuals who have ever 

played the dictator game (over 36%). We also find a second (and the lower) peak 

corresponding to an amount slightly over the legal fare suggesting that there is a significant 

proportion of auto drivers who stick to social norms (the legal fares are not adhered to by 

most auto drivers who typically choose to negotiate with commuters to settle on an amount 

over the legal fare).  

What is interesting in our approach is that for all auto drivers, we also look at prices they 

charge their customers either immediately before (first treatment) or immediately after 

(second treatment) they play the dictator game. From these two treatments, we conclude that 

the driver’s choice of outcome in a dictator game can predict, and in turn, be predicted by 

how he handles his daily market transactions. Thus, the tensions of opportunism versus 

compliance to social norms in the auto drivers’ private moral calculus ubiquitously show up 

in both the dictator games and the regular transactions. Opportunists who settle for the 

dictatorial solution are often the ones who overcharge their customers significantly more than 

other auto drivers who stick to the social norms even when they play the dictator game. The 

predictive capacity of dictator games has so far been conclusively established from one 

setting (in the laboratory) to another (in the field), due to Stoop, 2014. We go beyond that to 

show that dictator game behavior also demonstrate predictive power for situations that 

intrinsically have nothing to do with dictator games. 

Agent bargaining power is often a key determinant of the final outcome of any negotiation 

process. While both chapters 2 and 3 focus on how individuals themselves choose to play a 

game, for most of the literature on bargaining theory, the equilibrium outcomes can be 

interpreted as that outcome which would emerge were an impartial arbitrator were to step in 

to resolve the negotiating agents’ problems. For instance, the axioms associated with any 



6 

 

bargaining outcome, therefore, can be thought of as reflective of a social planner’s 

preferences. This is the theme, to which we turn in Chapter 4. 

 

1.4. A market study: Testing for fairness in regulation 

The last chapter titled ‘Testing for Fairness in Regulation: Application to the Delhi 

Transportation Market is in the field of empirical industrial organization. 1 The word 

‘impartial’ in ‘impartial arbitrator’ hints on a social planner who displays a strong preference 

for fairness. The purpose of this paper is to examine if the legal fares imposed by the 

regulatory authorities can be counted as ‘fair’ (to both commuters and auto drivers). In the 

seminal paper titled ‘Incorporating Fairness into Game Theory and Economics’, Rabin (1993) 

presents the idea of ‘Fairness Equilibria’ based on the following three stylized facts: 

1. People are willing to sacrifice their own material well-being to help those who are 

being kind. 

2. People are willing to sacrifice their own material well-being to punish those who are 

being unkind. 

3. Both motivations 1 and 2 above have a greater effect as the material cost of 

sacrificing becomes smaller. 

In his formalization, Rabin therefore, models payoffs not just over players’ actions, but also 

their beliefs. Thus, whether an action is preferred to an alternative action depends upon: 

a. The direct material payoff 

                                                        
1
This paper is now published in the Journal of Development Studies as: Banerjee, S. (2015). Testing for fairness 

in regulation: Application to the Delhi transportation market. Journal of Development Studies, 51(4): 464-483. 
doi: 10.1080/00220388.2014.963566. 
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b. The belief about whether rival players are being harmful or helpful 

c. Whether chosen action helps or hurts rival players. 

We use data collected by a non-governmental organization (NGO) called Prabodh for a study 

(called ‘Third Wheel’) not originally meant for the purposes of this paper. The data was 

collected in two waves (the first in March 2007 and the second in March 2008). The data on 

observed prices and costs of travel, and some transaction specific details (such as vehicle 

ownership, and proximity to a metro station) are used to back out commuters’ maximum 

willingness to pay (for travel) using different allocation rules of cooperative bargaining. To 

explain this process in a simple Nash (1950) bargaining framework, if the cost of travel c for 

a given distance, is Rs. 10.00 and the observed price p for the travel is Rs. 50.00, then the 

maximum willingness to pay of the customer W should be Rs. 90.00, since this given value of 

p maximizes the product of the auto driver’s material payoff (p – c), and the commuter’s 

material payoff (W – p) from the transaction as per the requirement of the Nash solution.2 We 

then, as a second step, treat these values for maximum willingness to pay W, as data, and use 

the data on the costs of travel c, to work out Rabin’s fair prices p = f(W, c), i.e. the fairness 

prices are well-defined functions of W and c. The exact workings of the maximum and 

minimum chargeable prices (each being a function of W and c) consistent with Rabin’s 

fairness requirements, are shown in the appendix to Chapter 4. We then compare these 

fairness prices with actual revised legal fares proposed by regulation, and observe that the 

fares proposed, interestingly lie in the range of prices consistent with Rabin’s fairness 

considerations. 

                                                        
2
 The first order condition gives us p = (W + c)/2, so that we can solve for unobserved W in terms of observed p 

and c as W = 2p – c. We repeat this process to work out W for different bargaining solutions (Kalai-
Smorodinsky, 1975, etc.) based on their axiomatic requirements. 
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It is interesting, that regulatory authorities, who have no a priori knowledge of Rabin’s, 

(1993) fairness considerations (associated with a very specific utility function that 

internalizes the above considerations), have always proposed legal fares in the auto-rickshaw 

(three wheeler) market in New Delhi that satisfy them. Regulated fares are often ignored by 

auto rickshaw-drivers and customers. They bargain on prices among themselves. To ensure 

that the legal fares are adhered to by auto drivers, the regulatory authorities occasionally 

announce increases in legal fares. These newly announced fare hikes are effective enough to 

ensure the prevalence of legal uniform (non-negotiated) prices for a limited period of time, 

after which auto drivers again resort to bargaining over these new fares (i.e. at even higher 

prices), till the fares are revised again. I suggest that the two of the most recent hikes have 

satisfied Rabin’s fairness considerations. We are aware of no previous study that evaluates a 

regulatory intervention on the grounds of fairness. 

This brings up the possibility that social planners do have fairness considerations that 

mutually benefit all the concerned agents.  

 

1.5. Summary 

To sum up, this thesis looks at agent behaviour in the laboratory, in the field, and in the 

market. Firstly, we impose a requirement in the laboratory (Chapter 2) that mimics a 

regulatory environment (similar to the introduction of a maximum retail price, or a legal fare 

subject to which an economic transaction must take place), and study individual behaviour 

subject to our (imposed) requirements. We then study the effect of real-life regulation on the 

behaviour of economic agents in the field. While the effect of regulation is seen in the field 

(that is, we see that many auto drivers stick to social norms anchored in the legal fare in 
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Chapter 3), we explicitly study and evaluate the nature of regulation itself in the market 

against the backdrop of fairness considerations in Chapter 4. 

In a nutshell, this thesis looks at bargaining from several dimensions which are listed below: 

1. Cooperative (Chapters 2 and 4) versus non-cooperative (Chapter 3) game theory 

2. In a laboratory (Chapter 2), a field (Chapter 3), and in market data (Chapter 4) 

3. Individual decisions (Chapters 2 and 3) versus the social planner’s preferences (Chapter 4). 

4. With moderate and complete bargaining power possessed by agents. 

From the above exercise, we learn that bargaining outcomes are empirically determined by 

bargaining power (at least in the form of statuses), both with and without contraction. Since, 

the regulated legal fare in the auto rickshaw market is an example of such contraction, we see 

our agents’ behaviour influenced by it (and more so because of the implicit status 

differences). We also learn that regulation can be affected by considerations of fairness. 

Finally, further research can be devoted to more general forms of contraction of the feasible 

set (which has direct applications on regulatory pricing). We focus on only horizontal forms 

of contraction and find significant effects on bargaining outcomes. I also feel that dictator and 

ultimatum games need to be contextualised and taken to the field more often. Finally, 

regulatory practices could be evaluated, not only in terms of economic criteria such as 

performance, profits, and welfare etc., but also from psychological standpoints of fairness, 

trust, and reciprocity etc.    
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Chapter 2 

Set Contraction and Bargaining Outcomes: A Laboratory 

Experiment 

 

2.1. Introduction 

 

Whether a mere introduction of a minimum wage law affects the bargaining position of 

laborers, is often a question of primary importance in developing countries. The introduction 

of a legal fare on three-wheeler (auto-rickshaw) services in India, has witnessed negotiations 

between individual customers and three-wheeler drivers who eventually settle on fares that 

are significantly higher than those prescribed by regulation. Another interesting question that 

relates to the above examples is, if consumers stand to gain out of a mere introduction of a 

maximum retail price (MRP) on a product ... even if the said MRPs significantly exceed the 

prices that would occur under bargaining. As it turns out, all the examples above can be 

understood as bargaining problems subject to contractions of the feasible set. It is also worth 

noting that the two parties involved in each example (e.g. consumers and sellers) need not be 

symmetric (say, because of 'status gaps' owing to different backgrounds and so on) in the 

sense that each negotiating party may possess a different bargaining power than the other. 

Indeed, real-life bargaining happens more often than not among agents with asymmetric 

bargaining power. These asymmetries may arise due to differences in agents’ backgrounds, 

possession of knowledge, and access to outside options etc. We introduce asymmetries in our 

setting in the form of status gaps.  
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In this paper we revisit the validity of Nash's (1950) axiom of independence of irrelevant 

alternatives (IIA hereafter) with the introduction of asymmetries in the context of his 

bargaining solution. This axiom can be explained as follows: the equilibrium outcome of the 

bargaining problem for a given feasible set (of outcomes) will also be the equilibrium 

outcome of the bargaining problem for any subset of that original feasible set, provided that 

such a subset has the initial outcome as one of its elements. The Nash solution was 

subsequently criticized (Raiffa (1953), Yu (1973), Kalai and Smorodinsky (1975), and Perles 

and Maschler (1981)) because of this axiom. The criticism, as Thomson (1994) puts it, was 

that, “the crucial axiom on which Nash had based his characterization requires that the 

solution outcome be unaffected by certain contractions of the feasible set, corresponding to 

the elimination of some of the options initially available ... but this independence is often not 

fully justified”.3 

This axiom, however, witnessed its first experimental validity when Nydegger and Owen 

(1975), found evidence against the Kalai-Smorodinsky (KS) solution (where contraction 

matters) in favor of the Nash solution in their controlled experimental set up. There was, 

however, one concern which related to the random selection of the individual in the 

advantageous position against his counterpart (due to the contraction). As Hoffman et al. 

(1994) point out, "randomization may not be neutral, since it can be interpreted by subjects as 

an attempt by the experimenter to treat them fairly ... thus experimenters may unwittingly 

induce 'fairness'. A subject may feel that, since the experimenter is being fair to them, they 

should be fair to each other." They could explain why first movers in ultimatum games 

offered significantly more to their counterparts than non-cooperative game theory would 

suggest. Hence, because of randomization, the axiom was only validated under symmetric 

                                                        
3
 For more detailed discussions on axiomatic approaches to bargaining theory, see Moulin (1988, 2003) and 

Roth (1979, 1985). 
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bargaining4 in the Nydegger and Owen (1975) framework. The goal of this paper is to check 

if their results would survive in an asymmetric setting, so we borrow ideas from ultimatum 

games.5 

In the ultimatum game experiment of Hoffman et al. (1994), the roles of sender and receiver 

were assigned randomly in the control group, and in the treatment group, the right to be the 

first mover was earned by scoring high on a general knowledge quiz (rights were reinforced 

by the instructions as being earned). To that effect, the role of the trivia test was to eradicate 

potential interpretation of fairness by the subjects that arises from randomization. The modal 

offer observed in the treatment group was significantly less than that made in the control 

group.6 We borrow this idea to address the concern above by replacing randomization by a 

trivia test to generate self-regarding behavior and extend the research of Nydegger and Owen 

(1975) to test for contraction effects under asymmetric bargaining7 - an open question so far. 

The central motivation of this experiment is thus, to test contraction effects under asymmetry, 

when the experiment does not oblige the subjects to be fair.8 

 

2.2. The formulation 

 

In the discussion that follows on the (theoretical) effects of contraction, the Kalai-

Smorodinsky (KS hereafter) solution is used only as a representative example of allocation 

rules that violate the IIA axiom, many of which have been mentioned in the previous 

                                                        
4
 This should not be confused with the axiom of symmetry in the context of cooperative bargaining. Here, by 

'symmetry' we only mean that the individuals involved in bargaining are identical in every respect. 
5
 For more examples see the discussions in Bardsley, et al. (2009); Chaudhuri (2009); Smith, (2008); Henrich 

and Henrich (2007); and Camerer (2003), Chakravarty et al. (2011) and the papers cited therein. 
6
 Cardenas and Carpenter (2008), for example, also point out that the perception of how deserving recipients are, 

could be a strong predictor of altruism. Ball et al. (2001) interprets this (significant) effect of test performance as 
a 'status effect'. 
7
 This means that one of the individuals has a 'status' advantage. 

8
 For more literature on bargaining with fairness considerations, see Birkeland and Tungodden (2014), Bruyn 

and Bolton (2008), Burrows and Loomes (1994), and Buchan et al. (2004). The 50%-50% outcome may also be 
seen as a focal point (see Crawford et al. (2008)). 
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(introductory) section. While the KS solution itself is not central to the main theme (that is, 

the effects of contraction), of this paper, it will be useful for the understanding of how set 

contractions may alter bargaining outcomes (contrary to the Nash solution).9 Throughout the 

discussion, we assume that the agents involved in bargaining gain nothing when there is a 

disagreement (that is, the disagreement payoff is zero for each agent). In general, 

disagreement payoffs may play an important role in the determination of bargaining 

outcomes (see Anbarci and Feltovich, 2013). 

2.2.1. Symmetric bargaining in the absence of contraction 

Two individuals X and Y (both from the same homogenous population10) get to share a pie of 

size z. Their respective shares are x and y (both non-negative), so that x + y = z.  

Figure 2.1: The feasible set

u(x) = ux

u(1)

u(1)

u(y) = uy

u(0) = 0
 

We normalize z to be equal to unity so that x and y may be interpreted as the percentages 

(proportions/fractions) of the pie that X and Y (respectively) get, from which they derive 

                                                        
9

 Only the intuitions behind the Nash and the Kalai-Smorodinsky solutions have been employed in the 

subsections that follow. I thank Prof. Ariel Rubinstein for helping me finalize this entire section to appeal to a 
wider audience.  
10

 Hence X and Y are symmetric by our definition. 
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utilities v(x) and v(y).11 Figure 2.1 shows the feasible set (following a normalizing utility 

transformation u, explained in Appendix 2D). While, both the Nash and the KS solutions are 

formally presented in Appendix 2D, for now, for the non-specialist, it suffices to say that the 

(symmetric) KS solution requires that X and Y share the pie in proportion to the maximum 

each can get if the absence of the other.12 Similarly, the (symmetric) Nash solution requires 

that X and Y share the pie such that the product of their utilities is maximized. The axioms of 

symmetry and efficiency together, in the Nash and the Kalai-Smorodinsky bargaining 

framework, are sufficient to guarantee that X and Y get 50% each (of the pie). This is verified 

in Appendix 2D. 

 

2.2.2. Asymmetric bargaining in the absence of contraction 

Coming to the case of asymmetric individuals, let X now, be the individual with a measurably 

higher bargaining power β (> 0) over individual Y.13 Both the Nash and the KS solutions 

suggest that X will get a higher (than 50%) share.  

To provide an intuition here, for the (asymmetric) Nash solution, we maximize the product of 

the utility of agent Y and that of agent X after raising the latter to the power of (1 + β); and 

for the KS solution, we ‘pretend’ that agent X would be entitled to (1 + β) times the utility 

that she would otherwise get in the absence of agent Y (before deciding on the final 

proportion in which both the agents finally share the pie). The asymmetric KS solution is 

explained in Figure 2.2. The derivations are trivial and have been deferred to Appendix 2D. 

                                                        
11

 That the functional form of v, of the utility of the individual X is identical to that of Y, is consistent with X and 
Y being from a homogeneous population (and therefore X and Y are ‘symmetric’). 
12

 An alternate description for the KS solution would be: X and Y share the pie in proportion to what each can 

get if he/she were himself/herself a dictator (see the discussion on dictatorial solutions in Thomson 1994).  
13

 While there is no immediate interpretation of β, it suffices, for now, to say that for any allocation rule, the 

bargaining power β is a determinant of the (positive) quantity by which x exceeds y. 
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Figure 2.2: The asymmetric Kalai-Smorodinsky solution

u(x) = ux

u(1)

u(1)

u(y) = uy

u(0) = 0 (1+β)u(1)

Ideal point

[(1+β)u(1), u(1)] 

Kalai-Smorodinsky

Solution•

•

 

 

2.2.3. Symmetric bargaining in the presence of contraction 

Now, we assume that X and Y share the pie subject to the requirement that X gets at least α 

(<1) fraction of the total pie size. This puts a cap on individual Y's utility. We have a 

truncation of the feasible set which is shown in Figure 2.3. For α ≤ 1/2, the (symmetric) Nash 

bargaining solution remains the same as before (since contraction does not matter). The KS 

solution, however, suggests a higher share for individual X (contraction matters), and has 

been derived in Appendix 2D. 

For example, if we want individuals X and Y to split $1 amongst themselves (with v(x) = x), 

subject to the constraint that Y gets to keep no more than 50 cents (so that α = 0.5), then the 

Nash solution will still predict a split where each individual gets 50 cents, but the KS solution 

will predict a split where X gets to keep two-thirds and Y one-third of the pie (the axiom of 

independence of irrelevant alternatives has been violated since the truncated set now still has 

the point (0.5, 0.5) as its element, but the final outcome is different). 
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Figure 2.3: The feasible set with contraction

u(x) = ux

u(1)

u(1)

u(y) = uy

u(0) = 0

u(1 – α)

u(α)
 

 

2.2.4. Asymmetric bargaining in the presence of contraction 

Theoretically, asymmetry in the Nash bargaining model accompanied by a contraction of the 

feasible set leads to the same solution in the asymmetric Nash framework without contraction 

(since contraction does not matter in the Nash setting). The KS solution, however shifts 

further in favor of individual X (details in Appendix 2D). Now we will summarize the results 

of a previous study. 

Nydegger and Owen (1975) had a control group of pairs of individuals that were required to 

split $1 amongst themselves over face-to-face negotiations. In the treatment group, one of the 

randomly assigned individuals was to get at least 40 cents (i.e. α = 0.4) subject to which both 

the individuals negotiated. On observing that all the pairs of individuals in both the treatment 

and the control groups, had chosen on an equal split of 50 cents each, the study did not reject 

Nash's axiom of independence of irrelevant alternatives (in the symmetric case). The very 

process of randomly selecting the individual in the treatment group, who gets to keep at least 

40% of the split, however, may have induced both the individuals to be fair to each other 
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(since at the first place, each individual has an equal chance of capitalizing on the constraint), 

which may have led to the observed equal splits. The aim of our experiment is to eradicate 

the effects of randomization that induce fairness by replacing randomization by a test and 

thereby introducing asymmetry in the setting. 

 

2.3. Key features of the experimental design 

 

The subject pool consisted of undergraduate and MBA students at institutions in New Delhi. 

Each individual was randomly assigned to either the control group, or one of three treatment 

groups. Subjects were grouped into pairs in each treatment. Each individual received a show-

up fee of Rs. 125. In addition, they retained the part of Rs. 600 that was negotiated with their 

respective partners under relevant treatment conditions. In each treatment, if a pair did not 

agree on any split of Rs. 600, each individual got nothing (i.e. the disagreement payoff was 

zero), otherwise they took away the amounts as negotiated. The key features of the 

experiment are anonymity (to generate asymmetry) and dialogue (a key element of any 

negotiation process). 

The control group in this experiment receives the symmetric bargaining treatment of 

Nydegger and Owen (1975). In one of the treatments, the feasible set of bargaining outcomes, 

is restricted or contracted by stipulating that a randomly chosen individual of a bargaining 

pair must at least receive a payoff greater than a minimum. The minimum is so chosen that 

the contracted set includes all the bargaining outcomes observed in the control group (without 

the contraction of the feasible set). This treatment is called random contraction. Nydegger 

and Owen showed that such a random contraction did not alter the bargaining outcome thus 

validating the axiom of independence of irrelevant alternatives. 
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As mentioned before, the goal of the experiment is to test for the axiom of independence of 

irrelevant alternatives in asymmetric bargaining. The challenge was to generate asymmetry 

among otherwise similar individuals. To achieve that, subjects were given a test. While the 

test was administered to all the treatment groups to ensure uniformity, it was immaterial to 

the control group and to the random contraction treatment. In the `rank bargaining' treatment, 

individuals were informed about their ranks in the test. Although the ranks were randomly 

assigned, subjects were told that they were assigned on the basis of their performances in the 

test.14 Higher ranked subjects were matched with lower ranked subjects for the bargaining 

experiment. Subjects had full knowledge of their own ranks and the ranks of the subjects they 

were paired with. In a variant of this treatment, called the `rank contraction', the feasible set 

was contracted. The stipulation that governed the contraction was that the higher ranked 

individual of a bargaining pair must at least receive a payoff greater than a minimum. Once 

again, the minimum payoff guaranteed to the higher ranked subject (in the event of 

agreement) was so chosen that the contracted set included all the bargaining outcomes of the 

rank bargaining treatment. The details of all the treatments are summarized in Table 2.1.  

Overall, 130 subjects (69 males and 61 females) participated in the experiment. 58 subjects 

were from the FORE School of Management, and the remaining 72 were from the University 

of Delhi (44 from St. Stephen’s college and 28 from Hansraj College). 

 

 

 

                                                        
14

 This (fortunately mild) form of deception is very important for our experiment. Although the results from 

pilot studies (available on request), that in fact, do assign ranks based on the subjects’ actual test performances, 
are qualitatively very similar to those that we report in this paper, one would raise immediate concerns with 
such pilot analyses. This is because, although the assignment to this treatment group would still remain 
exogenous, the experimental effect itself will be correlated with unobserved subject ability – that is, we will not 
be sure of the smarter subjects get higher shares simply because they are smarter, or because of the treatment 
effect (in this case, status effect), or both. In order to make our form of (the already mild) deception even milder, 
nowhere do we explicitly suggest (or impose) that the higher ranked subjects, should in fact, receive more than 
their lower-ranked counterparts (see DeMartino and McCloskey, 2016). I thank my adviser for this idea. Ball at 
al. (2001) employ a similar strategy. 
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Table 2.1: Summary of the treatments 

 

Control  

Group 

Rank 
Bargaining 

Random 
Contraction 

Rank 
Contraction 

Test Yes Yes Yes Yes 

 
 

  
Asymmetry/Rank No Yes No Yes 

 
 

  
Contraction No No Yes Yes 

 
 

  
Feasible Set Figure 1 Figure 1 Figure 3 Figure 3 

  
 

  
Zero Disagreement Yes Yes Yes Yes 

 

 

2.4. The experiment 

 

The Baseline Treatment (Control Group, T0): This baseline treatment replicates the standard 

Nash-bargaining protocol. Subjects were randomly paired. In each pair, the subjects were 

given a set of instructions (shown in the appendix) to split Rs. 600 among themselves. 

Negotiation happened over Skype, and a maximum of ten minutes were allotted to both the 

candidates in each pair to arrive at an agreement.15 The negotiated outcomes in this treatment 

were then observed before introducing others to make sure that each outcome in this 

treatment was also an element in the feasible sets of all the other treatments that followed. 

Based on the Nydegger and Owen (1975) experiment and the existing theory on symmetric 

bargaining, one might expect the highest frequency of equal splits (i.e. Rs. 300 each) in this 

treatment. The control group was assigned a sample size of ten pairs. In the Appendix, it is 

                                                        
15 Candidates were not allowed to disclose their names/identity in the chat conversations (which were saved) 
violating which, entailed a penalty of the full amount earned (including the show-up fees) for both the 
individuals in the pair. This ensured anonymity. The login names used for this treatment were Candidate.001, 
Candidate.002 and so on. The sufficiency of ten minutes was observed from the pilot studies. 
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shown that such a sample size has reasonable power for testing the null hypothesis of equal 

split. In this treatment, we observe that nine out of ten pairs settle on the 50%-50% split. 

 

Rank-Based Bargaining Treatment (T1): Subjects were told that they were ranked according 

to their test performances. In reality, the ranks were randomly assigned and the subjects did 

not know this.16 Each member ranked in the top half was randomly paired with a member in 

the bottom half. Subjects in each pair knew their own and each others' ranks prior to 

negotiation (this is how we exogenously imposed asymmetry) which happened over Skype 

with a time limit of ten minutes.17 The feasible set remained just as that of the control group 

(as in Figure 2.1). 19 pairs of subjects were randomly put into this treatment. One could 

expect a departure from the 50% solution predicted in symmetric bargaining if the test (as 

discussed above) has the effect of preventing individuals from behaving in a fair manner (i.e. 

β > 0 in (2D.2) of Appendix 2D, so the higher ranked individual gets a share greater than 

50%).18 In this treatment, we observe that the high-ranked individuals, on an average, got 

close to 59% of the total negotiable amount of Rs. 600. 

Random Contraction Treatment (T2): Subjects were randomly paired. Individuals in each 

pair divided Rs. 600 in any way they wished, but with the additional constraint that one of the 

randomly assigned individuals in each pair received no more than 60% (i.e. Rs. 360, or α = 

0.4) of the total pie size (subject to negotiation agreement). α was chosen so as to ensure that 

each outcome in the control group remained in the (contracted) feasible set of this treatment 

group (as in Figure 2.3). Negotiation happened over Skype with a maximum permissible limit 

                                                        
16

 Ball et al. (2001) employ a similar approach in their paper titled "Status in Markets". 
17

 As before, the negotiation happened over Skype, but this time with rank-defining usernames such as 
Rank.001, Rank.002 etc. 
18

 See Dahl (1957), Frank (1985), Babcock et al. (1996) and Harsanyi (1962a, 1962b, 1966) for discussions on how 

status effects matter in bargaining, resulting in asymmetric outcomes. Bohnet and Zeckhauser (2004) also provide 
evidence for social comparisons. For more recent literature on the role of entitlements, see Bruce and Clark 
(2012), Croson and Johnston (2000), Gächter and Riedl (2005), Gächter and Riedl (2006); and Karagözoğlu 
(2014). Additionally see Erkal et al. (2011), for evidence that high-ranked individuals want to give away less. 
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of ten minutes to reach an agreement.19 All the remaining instructions remained the same as 

in the baseline treatment above. 17 pairs of subjects were randomly put into this treatment. 

This treatment, together with the baseline treatment replicate the Nydegger and Owen 

experiment covering symmetric bargaining. In this treatment one might again expect a high 

frequency of equal splits for issues pointed out by Hoffman et al. (1994) – the very process of 

randomization may induce them to act in a fair manner (as witnessed in the Nydegger and 

Owen experiment). In this treatment, those who were favored by the contraction got, on an 

average, close to 52% of the negotiable amount of Rs. 600. 

Rank-Based Contraction Treatment (T3): This treatment looks at the combined effects of 

contraction and asymmetry. It followed all the other treatments to ensure that the observed 

average outcomes of all the above treatments remained within the feasible set of this 

treatment (as in Figure 2.3). Each member among the top half rankers was randomly paired 

with a member in the bottom half (again, these ranks were assigned randomly). Subjects in 

each pair knew their own and each others' ranks prior to negotiation which happened over 

Skype with a time limit of ten minutes.20 The lower-ranked subjects in each pair could not 

receive more than 60% (i.e. Rs. 360, just like the randomly selected individuals in T2 above) 

of the total Rs. 600 (subject to negotiation agreement). 19 pairs of subjects were randomly 

put into this treatment. The treatment groups 1 and 3 above, extend Nydegger and Owen's 

framework to the asymmetric case. One might expect self-regarding behavior on the part of 

individuals ranked in the top half in this treatment as well (β > 0 in both (2D.2) and (2D.6) of 

Appendix 2D). 

 

 

 
                                                        
19

 The usernames were the same as in the baseline treatment. 
20

 As in the Rank-Based Bargaining Treatment above, the Skype usernames were rank-defining (Rank.001, 

Rank.002etc.). 
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2.5. A discussion 

 

While the Nydegger and Owen framework depended on face-to-face negotiations (see 

Chakravarty et al, 2013 that implement a similar approach), the experimental approach of 

Hoffman et al. (1994) followed a double-blind protocol. Since students come from similar 

backgrounds, it is highly probable that those involved in a given pair would know each other 

or even be friends. This will tend to mitigate the intended effect of the test: to generate self-

regarding behavior and asymmetry. Thus, like the Hoffman et al. (1994) experiment, we 

would like to preserve anonymity in our protocol. However, we also need to maintain the 

crucial feature of any negotiation - dialogue between the individuals, as was the case with the 

Nydegger and Owen experiment. The very idea of making individuals of a given pair chat 

over Skype has the dual effect of preserving anonymity (since those chatting only knew the 

user IDs and were not supposed to disclose their identities) and dialogue (saved in the chat 

history) thereby making our results comparable with those of Nydegger and Owen. 

4

Figure 2.4: A summary of treatments

Control Group 
(T0)

Rank-based 
Bargaining 

Treatment (T1)

Random 
Contraction 

Treatment (T2)

Rank-based 
Contraction 

Treatment (T3)
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In treatment 3 we observe the combined effects of treatments 1 and 2 (Figure 2.4 explains 

how). We account for the possibility that the effect of contraction need not be independent of 

that of asymmetry. We allow for contraction to have different effects under the symmetric 

and asymmetric bargaining conditions. One can think of 'asymmetry-effect' as the movement 

from the control group to T1 (or T2 to T3), and 'contraction-effect' as the movement from the 

control group to T2 (or T1 to T3). 

 

2.6. Empirical strategy 

 

For the treatments involving contraction of the feasible set, we say that individual j (in pair i) 

has a contraction advantage, if the contraction specifies this individual j must receive a 

minimum share (α). Then the following dummy is defined. 

��������	 = � 1, �� � ℎ�� � ����������� ���������−1, �� � �� ������ ���ℎ � ������� �ℎ� ℎ�� � ����������� ���������� 
 
Similarly, for treatments involving rank, we define another dummy as follows. 
 
3��ℎ4��5	 = � 1, �� � ℎ�� � ℎ��ℎ�� ���5 �ℎ�� �ℎ� ������� ℎ� �� ������ ���ℎ−1, �� � ℎ�� � 6���� ���5 ��6����� �� �ℎ� ������� ℎ� �� ������ ���ℎ� 
 

We finally define a variable (RelPos) which summarizes the relative position of any 
subject with his/her pair in terms of rank and contraction. 
 
4�6B��	  = C��������	,    �� � ��6���� �� � ���� �� � �����D��� ����6���� �����������3��ℎ4��5	,   �� � ��6���� �� � ���� �� � �����D��� ����6���� ��EDD���E 0,   �� � ��6���� �� � ���� �� �ℎ� ������6 �����               � 
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In other words, RelPosj is a ternary dummy that takes the value 1 for subjects who are either 

high ranked or with a contraction advantage (or both); –1 for subjects who are either low-

ranked or are paired with individuals with contraction advantage (or both); and 0 for subjects 

in the control group. The regression equation we are interested in is 

 
 Shareij  =   α0 + α1RankBargi•RelPosj + α2RandmContri•RelPosj    

   + α3RankContri•RelPosj +Xijβ  +εij    (2.1)  

where, Shareij represents the share of the jth individual in the ith pair. RelPosj is defined as 

above. α0 is the constant of regression. RankBarg, RandmContr and RankContr, are the 

treatment dummies that respectively represent if the ith pair belongs to treatment groups 1, 2 

or 3. Xij is a vector of other observed covariates (gender of involved individuals, background, 

institution, income etc.) with the coefficient vector β. εij is the random error term.21 Thus, the 

(average) outcome in the control group can be represented by α0; the share of the higher-

ranked individual (on an average) in the rank-based bargaining treatment (T1) is represented 

by α0 + α1; the (average) share of the individual with contraction advantage in the random 

contraction treatment (T2) is represented by α0 + α2; and that of the high-ranked individual 

(also with the contraction advantage) in the rank-based contraction treatment (T3) is 

represented by α0 + α3.
22

 

 

2.6.1. Testable hypotheses 

Testing for asymmetry: We start with the following hypothesis 

                                                        
21

 Note that for α0, to represent the average share of the control group, each variable included in Xij needs to be 
appropriately normalized to have mean zero.  
22 Note that the regression specification in (1) is different from the following specification 
Shareij =  α0 +  α1RankTreatmenti•RelPosj + α2ContrTreatmenti•RelPosj + Xijβ   + εij;  

where RankTreatmenti is a dummy for a treatment involving rank-based bargaining and ContrTreatmenti is a 

dummy for a treatment involving a contraction. In such a specification, the (expected) share of the high-ranked 
individual in the rank-based contraction treatment will be represented by α0 + α1 + α 2. This specification 
therefore, clearly imposes a restriction that rank effects and contraction effects are additive (which may not be 
true). The specification in (1), clearly does not impose this additivity, and is thus, less restrictive. 
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Hypothesis 1:  α1 = 0 

against the alternative that α1 is significantly greater than zero (α1 > 0). The rejection of the 

above hypothesis, means that the average observed outcome in the Rank-bargaining 

treatment deviates from the symmetric (1/2, 1/2) solution in favor of the higher-ranked 

individuals. If the Hypothesis 1 is not rejected, then the rank bargaining treatment does not 

lead to significantly asymmetric outcomes. 

The effect of contraction in the symmetric case: We test the following hypothesis that 

contraction does not matter in the symmetric bargaining setting. 

 

Hypothesis 2: α2 = 0 

against the alternative that α2 > 0. If Hypothesis 2 above, is not rejected, then we infer that 

the introduction of contraction in the baseline treatment does not significantly matter. Recall 

that in the baseline treatment, the individuals were not subject to any contraction or the 

assignment of ranks. Rejecting Hypothesis 2 above, leads to the inference that the axiom of 

independence of irrelevant alternatives is violated significantly. Such a result would be 

inconsistent with the symmetric Nash bargaining solution. 

The effect of contraction in the asymmetric case:  If Hypothesis 1 is rejected in favor of α1 > 

0, then the following hypothesis comes to be of interest. 

 

Hypothesis 3: α1 = α3 

against the alternative that α1 < α3. Hypothesis 3 means that the observed outcomes in 

treatment groups T1 and T3 are statistically identical. Since both the treatments involve 

assignment of ranks (leading to asymmetric bargaining outcomes), the observed differences 

(if any) between their average behaviors can only be attributed to contraction. Thus, if we do 
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not reject the above hypothesis, then we conclude that contraction does not significantly 

matter in the asymmetric case. But if we reject Hypothesis 3, then we conclude that 

contraction matters significantly in the asymmetric case. 

 

2.6.2. Are contraction effects sensitive to the presence (or absence) of bargaining 

asymmetry? 

If both the hypotheses 2 and 3 above are not rejected, then we can infer that the Nash axiom 

of independence of irrelevant alternatives is universally true, thereby extending Nydegger and 

Owen's research to the asymmetric case. If both are rejected, then we can infer that the axiom 

of independence of irrelevant alternatives does not go through at all – this result will be 

contrary to the findings of Nydegger and Owen (and therefore the Nash solution). Not 

rejecting hypothesis 2 and rejecting hypothesis 3 lead us to infer that contraction matters only 

in the asymmetric case. 

 

2.7. Results 

 

2.7.1. Descriptive statistics 

From the rows in Table 2.2a, that report the minimum and the maximum shares of all the 

treatment groups, we learn that all the outcomes observed in the control group belong to the 

feasible sets of the remaining treatments. We also learn that the feasible set of the Rank 

Contraction treatment allows for all the outcomes observed in all the other treatments. Thus, 

we are in a position to test the validity of the IIA axiom for both symmetric and asymmetric 

bargaining. For the purposes of this paper, we are more importantly interested in the figures 

reported in the rows named 'Mean Share (RelPos = 1)' and 'Mean Share (RelPos = -1)' in 

Table 2.2a. 
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Table 2.2a: Descriptive statistics by treatment 

 

Control  

Group 

Rank 
Bargaining 

Random 
Contraction 

Rank 
Contraction 

Observations 20 38 34 38 

 
 

  
Mean Share 0.500 0.500 0.500 0.500 

 
 

  
Standard Deviation 0.027 0.117 0.053 0.176 

 
 

  
Minimum Share 0.417 0.250 0.300 0.125 

  
 

  
Maximum Share 0.583 0.750 0.700 0.875 

  
 

  
Mean Share 
(RelPos = 1) 

n.a. 0.587 0.516 0.636 

  
 

  
Mean Share 

(RelPos  = – 1) 
n.a. 0.413 0.484 0.364 

  
 

  
No. of Males 13 21 19 16 

 

Since the variable RelPos is defined to be zero for observations in the control group, no 

figure is reported under the same. In the Rank-based bargaining treatment (T1), 'Mean Share 

(RelPos = 1)' represents the average share of the high-ranked subject in a given pair. We learn 

that the high-ranked subjects in this treatment received, on an average, about 59% of the pie, 

leaving the remaining 41% (the corresponding figure listed in 'Mean Share (RelPos = -1)' 

under the same treatment) on an average, for their lower-ranked counterparts. Similarly, it is 

seen that subjects with a contraction advantage in the Random contraction treatment (T2), 

received, on an average, 52% of the pie, leaving about 48% for their counterparts without the 

advantage. In the Rank-based contraction treatment (T3), those with high-ranks (and hence 

with the contraction advantage) received, on an average, close to 64% of the pie-size, leaving 

only about 36% for their lower-ranked counterparts. These figures, suggest that while the 
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effect of contraction of the feasible set is insignificant in symmetric bargaining settings, it is 

not insignificant in asymmetric settings.23 

 

Table 2.2b: Share distribution by personal characteristics 

 

No. of 
Observations 

Mean 
Share 

Standard 
Deviation 

Minimum 
Share 

Minimum 
Share 

Female 61 0.504 0.120 0.233 0.767 

 
 

  
 

Male 69 0.496 0.115 0.125 0.875 

 
 

  
 

Business 
Background 

51 0.502 0.095 0.125 0.767 

 
 

  
 

Other Background 79 0.498 0.145 0.167 0.875 

  
 

  
 

Low Income (< Rs. 
2.5 Lakhs) 

19 0.500 0.108 0.250 0.700 

  
 

  
 

High Income (> Rs. 
10.0 Lakhs) 

39 0.507 0.085 0.233 0.767 

  
 

  
 

Post Graduate 
Father 

53 0.517 0.109 0.250 0.875 

  
 

  
 

Post Graduate 
Mother 

46 0.501 0.121 0.167 0.875 

  
 

  
 

Hostel Experience 67 0.513 0.087 0.300 0.833  
 

Table 2.2b displays the average shares received by subjects, based on their personal 

characteristics. Both female and male subjects receive, on an average, very close to 50% of 

the pie-size, suggesting that gender is not a significant determinant of the bargaining 

outcomes. This is contrary to the findings of Sutter et al. (2009); and Castillo et al. (2013), 

                                                        
23

 T-test results for a simple test of means for individuals with RelPos = 1, in the Rank-bargaining treatment 

against those in the Rank-contraction treatment, yield a t-statistic (d.f. = 36) with a value of 1.59 and an 
associated p-value of 0.06, suggesting some evidence of significance. A similar comparison between all the 
observations in the control group, and those with RelPos = 1, in the Random-contraction treatment, shows no 
significant difference (p-value of 0.23, for a t-statistic (d.f. = 35), with a value of 1.22). 



29 

 

among still others. Similarly it did not (significantly) matter if a subject came from a family 

with a background in business (or shop-ownership), although such families are more 

accustomed to negotiation on a daily basis, and could therefore, be thought to possess certain 

negotiation-specific skills to settle on more favorable outcomes. Students who experienced 

hostel lives did not get significantly higher shares than those who did not. Parents’ education 

are not significant determinants of bargaining outcomes either. A regression of observed 

share on family income level suggests that the latter is not a significant determinant of the 

former (p-value is 0.31). The fact that none of the personal or intrinsic characteristics 

discussed above (possibly known by the subjects about each other owing to daily interaction) 

were strong determinants of observed shares, potentially explains the strength of anonymity 

in our experimental setting. 

 

2.7.2. Key findings 

Table 2.3a shows the results of regression equation (2.1). As we will immediately see, these 

results are consistent with the observations made in Table 2.2a. In Column 1, we see that the 

effect of rank-bargaining leads to asymmetric outcome, i.e. we observe a significant 

departure from the 50-50 solution (therefore we reject Hypothesis 1, that rank bargaining 

does not lead to asymmetry).  

The regression estimate suggests that on an average, the high-ranked subject in any pair, 

managed to get a share of close to 59% (over Rs. 350 out of Rs. 600), leaving close to 41% 

for his/her low-ranked counterpart. The second result is that the effect of contraction in 

symmetric bargaining is only marginally significant. The effect of contraction in asymmetric 

bargaining can be understood by testing for the equality of the coefficients of 

RankBargaining*RelPos and RankContraction*RelPos (Hypothesis 3). The regression result 

suggests that the high-ranked subject in a pair gets, on an average, close to 64% of the total 
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pie size (leaving the remaining 36% for his/her low-ranked counterpart) in the Rank-

contraction treatment. This treatment differs from the Rank-bargaining treatment only in the 

allotment of contraction-advantage to the high-ranked individual. Now we formally test 

Hypothesis 3. The F-Statistic for this test is 5.16 (with a p-value of 0.02). We therefore, reject 

Hypothesis 3 and conclude that contraction matters in asymmetric bargaining. 

 

Table 2.3a: The effect of contraction on bargaining outcomes 

Dependent Variable: 

Share 

(1) 

Least Squares 

 

(2) 

Least Squares 

 

(3) 

 Least Squares 

 

RankBargaining*RelPos 0.0868*** 0.0652*** 0.0651*** 

(0.0126) (0.0163) (0.0164) 

RandomContraction*RelPos 0.0162* -0.0108 -0.0109 

(0.0087) (0.0131) (0.0132) 

RankContraction*RelPos 0.1364*** 0.1098*** 0.1101*** 

(0.0178) (0.0175) (0.0177) 

FORE*RelPos 
 

0.0235 0.0232 

  
(0.0160) (0.0162) 

HansRaj*RelPos 
 

0.0676*** 0.0682*** 

  
(0.0204) (0.0208) 

Gender (Male = 1) 
  

0.0022 

   
(0.0133) 

GenderOfOpponent  

(Male = 1)   
-0.0022 

   
(0.0133) 

Constant 0.500*** 0.500*** 0.500*** 

 
(0.0068) (0.0066) (0.0118) 

F (α1 = α3) F(1, 126) = 5.16 F(1, 124) = 5.10 F(1, 122) = 5.01

(P-Value for F-Statistic) (0.0248) (0.0257) (0.0270) 

Observations 130 130 130 

    
R-Squared 0.567 0.605 0.605 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively.  
  b. Robust standard errors reported in parentheses 
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In Column 2, we run the same regression with the introduction of institution dummies,24 and 

in Column 3, we introduce controls for gender.25 In both these specifications, the effects of 

asymmetry remains (we reject Hypothesis 1, since the high-ranked subject of any pair, gets 

on an average, over 56% of the total pie-size, which is significantly higher than what his/her 

low-ranked counterpart gets). The effect of contraction, however, in symmetric bargaining is 

no longer significant (we therefore do not reject Hypothesis 2). The F-Statistics for the test of 

Hypothesis 3 in both the specifications of Columns 2 and 3 (5.10 and 5.01 respectively) 

suggest that the effect of contraction in asymmetric bargaining is significant.26 These results 

verify Nydegger and Owen's conclusion that contraction does not matter in the symmetric 

setting, and demonstrate the invalidity of the IIA axiom in asymmetric bargaining settings. 

We reject Hypotheses 1 and 3 and do not reject Hypotheses 2. 

It should be noted that regression equation (1) above has been estimated, using least squares, 

and includes both sides of the bargaining table in the data-set.27 This violates the assumption 

that the errors are uncorrelated, and therefore the reported standard errors become 

questionable. Thus, the inferences drawn so far, are at best naïve. In order to correctly 

identify the effects, we do fixed-effects regression by differencing the data at the pair level. 

The beauty of the fixed-effects regression is that the treatment dummies do not vanish even 

though any two individuals of a pair, by definition, belong to the same treatment. This is 

                                                        
24

 Note that there is no institution dummy for St. Stephen's College in our specification. This is because, the 
following linear relation always holds:  
RankBargaining•RelPos + RandomContraction•RelPos + RankContraction•RelPos = FORE•RelPos + 
HansRaj•RelPos + Stephens•RelPos. 
25

 Female subjects may behave differently from male subjects. See Dasgupta and Mani (2015), Andreoni and 

Vesterlund (2001), Chaudhuri and Gangadharan (2007) for examples. 
26

 These results persist when we introduce further controls for: education levels attained by the subjects' parents'; 

subjects' home income levels; whether subjects belong to business families; subjects' age; whether subjects lived 
in hostel etc. The introduction of institution dummies only confirms that subjects from different institutions 
reacted to treatments with some variation. Students from Hans Raj College, for instance were perhaps more 
serious about the tests than those from the other institutions. We cannot conclusively say why students from 
Hans Raj College were more sensitive to our interventions. In any given pair, the two subjects belonged to the 
same institution. 
27

 That is, if subjects agree on a 62% and 38% split, we include both 0.62 and 0.38 in the regression. Thus, the 

errors associated with both the subjects in any given pair will be correlated with each other. 
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because of the RelPos variable that assumes different values for the two individuals of any 

given pair. Specifically, for each pair i, if we subtract the share (sil) of the individual without 

the contraction or a rank advantage from that of the individual (sih) with either (or both) of 

those advantages, then the left hand side of the regression equation (1) equals: ∆j
Shareij = sih  

- sil = sih – (1 - sih) = 2sih  - 1.
28  The right hand side equals: α1RankBargi•∆

j
RelPosj + 

α2RandmContri•∆
j
RelPosj + α3RankContri•∆

j
RelPosj + (∆

j
Xij)β  + ∆

j
εij. Now we know that 

∆
j
RelPosj ≡ 2, for every pair in each treatment except in the control group.29 The differenced 

equation (after some algebraic steps) therefore becomes30
 

 

 sih =  0.5 + α1RankBargi + α2RandmContri + α3RankContri + (∆jXij)γ + ui  

           (2.2) 

where, ui = (∆jεij/2), and γ  = (1/2)β. Note that there is no α0 in the above regression equation 

and that the constant of the regression equation equals 0.5. The fixed-effects regression 

equation above, therefore expresses the share of the individual (in excess of 0.5) with a rank 

or a contraction advantage (or both) in terms of which treatment group he/she is a part of. The 

hypotheses of interest remain the same and Table 2.3b presents the results.31  

The results are similar, and for all the specifications, we can conclusively reject Hypotheses 1 

and 3. We do not reject Hypothesis 2. We now have more conclusive evidence that 

                                                        
28

 Putting  ∆j
  before a variable, indicates differencing that variable over the index j for any given pair (that is, 

by holding that pair i fixed).  
29

 This is true since RelPos = 1 for the subject with a higher rank or a contraction advantage, and RelPos = - 1, 

for his/her partner, and we are looking at the difference between the two. 
30

 Direct differencing gives us: 2sih  - 1 = 2α1RankBargi + 2α2RandmContri + 2α3RankContri + (∆jXij)β + ∆jεij. 

On rearranging the terms and dividing this equation throughout by 2, gives us the expression shown. 
31

 I am extremely grateful to Prof. Martin Cripps for this entire discussion on looking beyond least-squares 

regressions. On a closer look, this is one of the rare instances, where using fixed-effects regressions actually 
eradicates problems related to autocorrelation (rather than contributing to them). Random effects regressions 
(that account for autocorrelation) and tobit regressions also produce almost identical results, to those reported in 
this paper (with similar test results, and almost identical coefficient values for the significant variables of this 
paper) and can be made available on request (although neither adds significantly more to the discussion on our 
already established conclusions – we continue to reject Hypotheses 1 and 3, and as before do not reject 
Hypothesis 2). 
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contraction matters only when there is bargaining asymmetry, and not otherwise – but this is 

not the end of the story. 

 

Table 2.3b: The effect of contraction on bargaining outcomes 

Dependent Variable: 

Share 

(1) 

Fixed Effects 

 

(2) 

Fixed Effects 

 

(3) 

 Fixed Effects 

 

RankBargaining*RelPos 0.0868*** 0.0652*** 0.0651*** 

(0.0126) (0.0146) (0.0147) 

RandomContraction*RelPos 0.0162 -0.0108 -0.0109 

(0.0134) (0.0168) (0.0132) 

RankContraction*RelPos 0.1364*** 0.1098*** 0.1101*** 

(0.0126 (0.0166) (0.0168) 

FORE*RelPos 
 

0.0235 0.0232 

  
(0.0167) (0.0169) 

HansRaj*RelPos 
 

0.0676*** 0.0682*** 

  
(0.0197) (0.0200) 

Gender (Male = 1) 
  

0.0022 

   
(0.0135) 

Constant 0.500*** 0.500*** 0.500*** 

 
(0.0068) (0.0066) (0.0118) 

Chi-Squared test for  

(α1 = α3) 
χ

2(1) = 7.68 χ
2(1) = 6.45 χ

2(1) = 6.39 

(P-Value for χ2-Statistic) (0.0056) (0.0111) (0.0114) 

Observations 65 65 65 

    
R-Squared 0.567 0.605 0.605 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively.  
  b. Robust standard errors reported in parentheses 

 

 

2.7.3. The central story 

The regressions reported in Tables 2.3a and 2.3b only suggest that the IIA axiom holds in 

symmetric bargaining settings and not in asymmetric settings. However, so far, no underlying 

mechanism that explains these results has been put forward. Now we turn to this main theme. 

The regressions ignore a crucial aspect of our experimental bargaining framework that relates 
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to the differences in rankings. To check if the absolute ranks or the rank differences matter, 

we define a variable RDi as the (absolute) rank difference between the two subjects in the ith 

pair. The difference in ranks could be thought of as a measure of the degree of asymmetry 

between two individuals in a pair. We therefore, define RDi = 0 for pairs belonging to the 

control group and the Random Contraction treatment group. One would expect close to equal 

splits in pairs with subjects who are very close in rank, and more unequal splits in pairs with 

subjects who are far apart in rank.32  

Table 2.4 tests this intuition. Column 1 reports the regression of subjects' observed shares on 

their individual ranks and Column 2 reports the regression of observed shares on the rank 

differences between the subjects and the individuals they are paired with. While individually 

they are significant determinants of observed shares, the effect of individual ranks goes away 

when we regress observed shares on both (Column 3). 

For the Rank Bargaining treatment, the average rank difference was 6 (with a minimum 

observed rank difference of 1, a maximum of 13, and a standard deviation of 3.5); and for the 

Rank Contraction treatment, the average observed rank difference was 5 (with a minimum 

observed rank difference of 2, a maximum of 13, and a standard deviation of 2.8).  

We learn that the individual ranks do not matter as much as the differences in ranks (between 

the two individuals in any given pair) do in the determination of final shares received by 

individuals. We need to account for the effect of rank differences in our specification.33  

 

 

 

                                                        
32

 See for example Dubey and Geanakoplos (2005). Bohnet and Zeckhauser (2004) also provide evidence for 
social comparisons. Chakravarty and Somanathan (2008) demonstrate that high ranks are linked to high pay. 
33

 Note that in Panels 1 and 3, there are only 76 observations, whereas in Panel 2, there are 130 observations. 

This is because only 76 individuals belonged to the treatments that involved ranks and therefore had individual 
ranks (for the remaining 54, it was missing data). However, rank difference is defined to be zero for those in 
treatments that did not involve ranks (consistent with our definition of symmetry).   



35 

 

Table 2.4: The effect of individual ranks and rank differences 

Dependent Variable: 

Share 

(1) 

Least Squares 

 

(2) 

Least Squares 

 

(3) 

 Least Squares 

 

IndividualRank -0.0224*** 
 

2.42e-11 

(0.0038) 
 

(0.0042) 

RD*RelPos 
 

0.0187*** 0.0187*** 

 
(0.0019) (0.0028) 

Constant 0..640*** 0.500*** 0.500*** 

 
(0.0251) (0.0063) (0.0245) 

Observations 76 130 76 

R-Squared 0.402 0.630 0.671 
Notes:  a.

 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 
significance respectively. b. Robust standard errors reported in parentheses. 

 

In order to account for rank differences in our specification, we modify (2.1) as under 

 Shareij =  α0  

   + α1RankBargi•RelPosj•RDi + α2RandmContri•RelPosj    

   + α3RankContri•RelPosj•RDi  + Xijβ + εij.   (2.3) 

Table 2.5a reports the naïve (least squares) results, and Table 2.5b reports the fixed-effects 

regression results for the above equation (for reasons pointed out in the previous section).34 

Column 1 in each reports the basic results, Column 2 controls for institution dummies and 

Column 3 controls for some personal characteristics. We are interested in the same set of 

hypotheses (1, 2 and 3). After accounting for rank differences, we see that rank-bargaining 

still generates asymmetry (as before, we reject Hypothesis 1 in the specifications of Columns 

1, 2 and 3). We also conclude that contraction does not significantly matter in symmetric 

bargaining. As before, we do not reject Hypothesis 2 for any of the specifications. Further, we 

continue to reject Hypothesis 3, suggesting that contraction does matter when there is 

bargaining asymmetry (with F-Statistics equal to 19.80, 28.39, and 14.98 respectively in 

                                                        
34

 The share of the higher-ranked individual (on an average) in the rank-based bargaining treatment (T1) will be 

represented by α₀ + α₁ if he is only one position ahead of the subject he is paired with. It is α₀ + 2α₁ if he is two 

positions ahead and so on. The idea is exactly the same for the rank-based contraction treatment. The maximum 
observed rank difference for both the treatments (involving ranks) was 13 (the average being 5.63). 
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columns 1, 2 and 3 of Table 2.5b, and negligible p-values for each just like in the reported 

chi-squared tests that follow). 

 

Table 2.5a: The effect of contraction accounting for rank differences 

Dependent Variable: 

Share 

(1) 

Least Squares 

 

(2) 

Least Squares 

 

(3) 

 Least Squares 

 

RankBargaining*RelPos*RD 0.0128*** 0.0171*** 0.0166*** 

(0.0018) (0.0024) (0.0024) 

RandomContraction*RelPos 0.0162* 0.0196 0.0164 

(0.0087) (0.0136) (0.0138) 

RankContraction*RelPos*RD 0.0270*** 0.0363*** 0.0340*** 

(0.0018) (0.0018) (0.0033) 

SessionTiming*RelPos 
 

-0.0179*** -0.0175*** 

  
(0.0039) (0.0039) 

FORE*RelPos 
 

0.0427*** 0.0433*** 

  
(0.0151) (0.0159) 

HansRaj*RelPos 
 

0.1206*** 0.1219*** 

  
(0.0193) (0.0191) 

Stephens*RelPos 
 

0.0204 0.0242 

  
(0.0230) (0.0231) 

Gender (Male = 1) 
  

0.0019 

   
(0.0087) 

GenderOfOpponent  

(Male = 1)   
-0.0019 

   
(0.0087) 

RankBargaining*RelPos*ARD 
  

0.0008 

   
(0.0013) 

RankContraction*RelPos*ARD 
  

-0.0024 

   
(0.0028) 

Constant 0.500*** 0.500*** 0.500*** 

 
(0.0055) (0.0041) (0.0088) 

F (α1 = α3) 
F(1, 126) = 

31.22 
F(1, 124) = 

68.22 
F(1, 122) = 

28.59 

(P-Value for F-Statistic) (0.0000) (0.0000) (0.0000) 

Observations 130 130 130 

R-Squared 0.723 0.846 0.848 
Notes:  a.

 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 
significance respectively. b. Robust standard errors reported in parentheses. 
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In fact, the effect of contraction seems to interact with the degree of asymmetry (which we 

capture in our rank-differences – putting RDi equal to zero, takes us back to the zero 

asymmetry condition, where contraction does not matter). We conclude that Nydegger and 

Owen (1975) established the validity of the axiom of independence of irrelevant alternatives 

in a restricted setup involving no asymmetry. The axiom fails to hold when there are 

bargaining asymmetries, in the sense that contraction begins to matter. Clearly, from the 

results of Column 3, we see that when there is no contraction advantage, then the high-ranked 

individual is expected to get 51.7% of the total pie if he is only one position ahead of his low-

ranked partner; he is expected to get 53.3% of the total pie if he is two positions ahead of his 

low-ranked partner; he is expected to get 55.0% when he is three ranks ahead and so on. The 

corresponding figures for the high-ranked subject when there is contraction advantage are 

53.4%, 56.8% and 60.2% and so on. These simulations for a complete set of observed rank 

differences are presented in Figure 2.5a (and in Figure 2.5b, along with 95% confidence 

intervals). For any given rank difference, the vertical distance between the two lines 

represents the effect of contraction. We see that the effect of contraction grows with greater 

degrees of asymmetry (i.e. higher rank differences). 

An interesting observation is that, subjects who had to wait for their bargaining session 

towards the end (since the order in which we ran the treatments was important), tended to 

gravitate toward more equal splits. This effect has been captured by the significantly negative 

coefficient of the variable SessionTiming*RelPos in columns 2 and 3. The experimental lab 

could only accommodate a limited number of students at one go. The variable SessionTiming 

takes the value 1 for all the subject-pairs who were the first to be made to bargain in the 

experimental lab; it takes the value 2 for all subject-pairs who bargained after the previous set 

of subject-pairs and so on. There is a concern that, due to the not-so-large sample size, 

observed ranks could be possibly correlated with unobserved ability. This may cause our 
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results to be biased. To account for the possibility of a bias, the math-tests were graded to 

assign actual ranks to subjects who took the test based on their actual performance. Figure 

2.6 shows that there is no significant correlation between the assigned and the actual ranks. 

Expected payoff of the high-ranked individual

Rank Difference With the Low-Ranked Opponent

Figure 2.5a: A simulation

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12

Rank Based 
Bargaining

Rank Based 
Contraction

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12

Rank Based Bargaining

Rank Based Contraction

95% Confidence Intervals

95% Confidence Intervals
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Figure 2.5b: A simulation

 

The variable ARDi (Column 3) stands for the actual rank difference between the subjects in 

the ith pair. This variable can be thought of as a measure of smartness (and therefore an 
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individual characteristic). One may reason that the generally smarter individuals would tend 

to get better deals out of their bargaining (simply because they are smarter). The fact that the 

interaction of the treatment dummies with ARDi has no significant impact on the final shares 

leads us to infer that the status effects that generate the asymmetries are in fact, pure status 

effects (actual ranks were not determining final shares).35 The fact that observed shares are 

not being determined by actual ranks supports our valid randomization, thereby making our 

results robust. 

0
5

1
0

1
5

2
0

0 5 10 15 20
ActualRank

95% CI Fitted values

Rank

Assigned Rank

Actual Rank

AssignedRank = 5.915 + 0.056ActualRank

(Std. Error) (0.873) (0.118)

R-Squared 0.003

Figure 2.6: Relation between actual rank and assigned rank

 

Overall, the reported test results display remarkable levels of significance, and all regression 

models presented in Tables 2.5a and 2.5b (accounting for rank differences), perform 

significantly better than those reported in Tables 2.3a and 2.3b (with much higher values of 

R-squared). The high values of R-squared are reflective of the level control in the 

                                                        
35

 Making individuals bargain, based on the disclosure of actual ranks could have given us biased results since 

actual ranks are correlated with unobserved factors such as ability etc. 
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experimental setting.36 Both the models in Tables 3 (a and b) and 5 (a and b) convey the same 

message about the effects of contraction in symmetric and asymmetric settings. 

 

Table 2.5b: The effect of contraction accounting for rank differences 

Dependent Variable: 

Share 

(1) 

Fixed Effects 

 

(2) 

Fixed Effects 

 

(3) 

 Fixed Effects 

 

RankBargaining*RelPos*RD 0.0128*** 0.0171*** 0.0166*** 

(0.0021) (0.0029) (0.0031) 

RandomContraction*RelPos 0.0162 0.0196 0.0164 

(0.0152) (0.0208) (0.0216) 

RankContraction*RelPos*RD 0.0270*** 0.0363*** 0.0340*** 

(0.0024) (0.0038) (0.0051) 

SessionTiming*RelPos 
 

-0.0179*** -0.0175*** 

  
(0.0056) (0.0058) 

FORE*RelPos 
 

0.0427* 0.0433*** 

  
(0.0248) (0.0254) 

HansRaj*RelPos 
 

0.1206*** 0.1219*** 

  
(0.0295) (0.0302) 

Stephens*RelPos 
 

0.0204 0.0242 

  
(0.0352) (0.0362) 

Gender (Male = 1) 
  

0.0037 

   
(0.0184) 

RankBargaining*RelPos*ARD 
  

0.0008 

   
(0.0016) 

RankContraction*RelPos*ARD 
  

-0.0024 

   
(0.0035) 

Constant 0.500*** 0.500*** 0.498*** 

 
(0.0078) (0.0060) (0.0115) 

F (α1 = α3) F(1, 62) = 19.80 F(1, 58) = 28.39 F(1, 55) = 14.98

(P-Value for F-Statistic) (0.0000) (0.0000) (0.0003) 

Chi-Squared test for  

(α1 = α3) 
χ

2(1) = 40.24 χ
2(1) = 59.72 χ

2(1) = 32.15 

(P-Value for χ2-Statistic) (0.0000) (0.0000) (0.0000) 

Observations 65 65 65 

R-Squared 0.723 0.846 0.848 
Notes:  a.

 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 
significance respectively.  

  b. Robust standard errors reported in parentheses  

                                                        
36 As before, random effects and tobit regressions that report almost identical results for these specifications 
(similar coefficient values for the significant variables and final test results) can be made available on request. 
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2.8. Conclusion 

 

We have established that contraction, on its own, has no effect on the bargaining outcome. 

The effect of contraction, however, emerges with the introduction of asymmetry, and 

increases with rising degrees of asymmetry. The results established may be relevant to the 

ideas behind MRPs since they can be thought of as contraction in some cases ... and should 

therefore matter because consumers and sellers are not necessarily symmetric. The legal fare 

in the auto-rickshaw market in India could also be thought of as such a contraction. In 

general, such contractions matter because buyers and sellers are not regarded similar in status 

(i.e. asymmetries remain). Therefore, from our conclusions, it can be argued that laborers 

could stand to gain in negotiating wages with firms when they are backed with a minimum 

wage law (see Comay et al. (1974) for other examples). It must be noted that this paper looks 

at the effects of only horizontal contractions under asymmetric conditions. There could, in 

general, be other types of contraction, the effects of which have not been analyzed in this 

paper. Such contractions may respond differently to different degrees of asymmetry. 

Alongside this thought for future research, one could even think of taking this experiment to 

the field with appropriate contextualization (a well-defined MRP, a ceiling or a floor etc.).  

Finally, one may speculate that the choice of such subjects may affect behavioral results (we 

address this issue by studying bargaining in the market in Chapters 3 and 4). The possibility 

that Indian students could be inherently more rank sensitive compared to their western 

counterparts (because of the caste system), may well lead us to the inference that any 

bargaining process involving status effects may lead to asymmetric outcomes only in India. 

This speculation however, can be easily subject to questioning from the findings of Ball et al 

(2001) where status differences led to significantly asymmetric bargaining outcomes in favor 

of the high-status individuals, although the subjects were students of western universities. 
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Nevertheless, the possibility that Indians take ranks seriously makes our experimental setting 

ideal to study bargaining outcomes in the backdrop of status effects.      

To sum up, no asymmetry implies no contraction effect, and the higher the degree of 

asymmetry, the higher would be the contraction effect. The results of the Nydegger and 

Owen (1975) experiment are subsumed in the results that we report, although with the exact 

opposite conclusion on the effect of contraction. So far, no theoretical bargaining solution 

predicts the results we report. An immediate area of theoretical research, therefore, could be 

towards finding a set of axioms to construct an allocation rule that could possibly explain the 

observations made in the lab. While, a complete axiomatization accounting for all possible 

types of contraction may, at the moment, be very difficult, any theoretical construct allowing 

for the interaction of some forms of contraction with asymmetry effects could be seen as a 

potential value addition to the existing literature.  
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Appendices to Chapter 2 

Appendix 2A: A Thought Experiment 

 

Name: 

 

Group: 

 

Gender: 

 

Please read carefully and answer the questions that follow (you have TEN minutes) 

Suppose you were a judge required to split a prize money totalling Rs. 600 among two 

individuals A and B who took the test you have just taken. You are given information about 

the performances of A and B in the test. How would you split Rs. 600 if 

 

A's rank in the test is 4 and B's rank in the test is 16? 

 

A gets Rs.                    /-  B gets Rs.                   /- 

 

A's rank in the test is 7 and B's rank in the test is 9? 

 

A gets Rs.                    /-  B gets Rs.                   /- 
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Appendix 2B: Test Details 

 

A Test of Puzzles 

 

Instructions: You have 25 minutes to complete this test. There are 10 questions. 

 

Each question (marked 1, 2, 3, etc.) is immediately followed by four options (marked a, b, c, 

and d). Only one of the options correctly answers the associated question. Your task is to 

mark a tick on what you believe to be the correct answer and maximize your score. Each 

correct entry carries one point. There is no negative marking. You may begin. All the best. 

 

Name: 

 

Gender (M/F): 

 

Course: 

 

Please leave the following spaces blank. 
 

 

Time: 
 

 

Score: 
 

 

Experimental Reference ID: 
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1. A three-man jury has two members, each of whom independently has a 60% chance of 

making the correct decision and a third juror who flips a coin for each decision (majority 

rules). A one man jury has a 60% chance of making the correct decision. Which of the 

following is true? 

 a. The three-man jury is better than the one-man jury 

 b. The one-man jury is better than the three-man jury 

 c. Both of them are equally good 

 d. There is no conclusive answer 

Answer the following two questions (2 and 3) based on the following information. 

Jack is captured by a tribe. Whether or not he gets to live is decided by the tribe members 

based on the outcome of the following exercise. There are 50 black and 50 white balls, which 

Jack must distribute between two identical and opaque boxes (that the tribe provides to him) 

in any way he wishes, but with the requirement that each ball must be put into one of the two 

boxes. The tribe then secretly allocates the balls among the two boxes as instructed by Jack 

and closes them before putting them in front of him. Jack gets to randomly pick a box before 

they blindfold him and make him draw a ball from it. If the ball is white, he survives, 

otherwise they execute him. Answer the following two questions. 

2. Jack's maximum probability of survival is 

 a. 1/2 

 b. 74/99 

 c. 3/4 

 d. 71/100 

3. If Jack were offered five boxes instead of just two above, then his maximum probability of 

survival will 

 a. definitely increase 
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 b. definitely decrease 

 c. remain the same 

 d. well ... cannot say 

4. In how many ways can four guards Mr. A, Mr. B, Mr. C and Mr. D be placed at the four 

gates (North, South, East and West gates) of a circular adventure park? 

 a. 24 

 b. 6 

 c. 2 

 d. 1 

5. A truel is similar to a duel, except that there are three participants rather than two. One 

morning Mr. Black, Mr. Grey, and Mr. White decide to resolve a conflict by truelling with 

pistols until only one of them survives. Mr. Black is the worst shot, hitting his target on 

average only one time in three. Mr. Grey is a better shot hitting his target two times out of 

three. Mr. White is the best shot hitting his target every time. To make the truel fairer, Mr. 

Black is allowed to shoot first, followed by Mr. Grey (if he is still alive), followed by Mr. 

White (if he is still alive) and round again (and again) until only one of them survives. Where 

should Mr. Black aim his first shot? 

 a. He should aim at Mr. White 

 b. He should aim at Mr. Grey 

 c. He should shoot himself 

 d. He should shoot in the air 

6. To encourage Bob's promising tennis career, his father offers him a prize if he wins (at 

least) two tennis sets in a row in a three-set series to be played with his father and a club 

champion alternately: father-champion-father or champion-father-champion, according to 
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Bob's choice. The champion is a better player than Bob's father. Which series should Bob 

choose (assume that the outcome of each game in a given series in independent of another)? 

 a. father-champion-father 

 b. champion-father-champion 

 c. He will be indifferent between the two 

 d. There is no definite answer 

7. If p is a prime number (other than 2 and 5) less than 10, then 1/p recurs after ________ 

 a. p – 1 decimal places 

 b. p + 1 decimal places 

 c. a factor of p – 1 decimal places 

 d. a multiple of p – 1 decimal places 

8. The sum of two numbers is 15. The sum of their reciprocals is 3/10. The numbers are 

 a. 50 and -35 

 b. 5 and 10 

 c. 6 and 9 

 d. 3 and 12 

9. Which of the following numbers lies between a perfect square and a perfect cube? 

 a. 5 

 b. 17 

 c. 26 

 d. 65 

10. There are three women on the platform of a train station. The train that they are waiting 

for has five coaches. In how many ways can they board the train such that no two women are 

together in the same coach? 

 a. 30 ways 
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 b. 5³ ways 

 c. 60 ways 

 d. 3⁵ ways 
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Appendix 2C: Working of Sample Size for the Control Group 

 

Let the ith pair of shares be (HIJ , HKJ ), where HIJ  + HKJ  = 1. Since |HIJ  – 0.5| = |HKJ  – 0.5|, we can 

define, without loss of generality Zi = |HIJ  – 0.5|. Then let L̅ = 
NOP .  .  .  P NQR  (where n is the 

number of observed pairs). L̅ measures the average deviation of the negotiated shares from 

the equal division solution (0.5, 0.5). Suppose that the population mean of this variable is μ₀. 

Now, consider the test of the null hypothesis that μ₀ = 0 (i.e. the equal division solution is the 

population mean). The question is: what would be the minimum sample that is required for 

such a test to have reasonable power against an alternative hypothesis that the population 

mean is μ₁ > 0? We consider the alternative hypothesis to be μ₁ = 0.02. It is clear that the 

sample size that has reasonable power for this alternative hypothesis would also have at least 

that much power for any μ₁ > 0.02. We do not make any assumption(s) on the distribution of 

Zi (and therefore L̅) under the null or the alternate hypothesis. 

 

Let α be the size of the type-I error. Let c be a non-negative constant such that P(L̅ – μ₀ > c| μ 

= μ₀) ≤ α. In other words, the null is rejected whenever L̅ > μ₀ + c. To determine c as a 

function of α and n, we note the following inequalities (the first one of which is P(L U≤ μ₀ + c) 

≥ P(μ₀ – c ≤ L̅ ≤ μ₀ + c) ≥ P(μ₀  – c < L U < μ₀+c)). 

 

 P(L U≤ μ₀ + c)  ≥ P(μ₀  – c < L U < μ₀+c); {∵ LHS spans more values} 

 P(μ₀ – c < L U < μ₀+c) = P(|L̅ – μ₀| < c) ≥ 1 – 
XYZR[Z ; {∵ Chebyshev's inequality} 

    We combine the two inequalities above as follows 

 P(L U≤ μ₀ + c)  ≥ 1 – 
XYZR[Z 

⇒ P(L U  – μ₀ > c|μ = μ₀) ≤ 
XYZR[Z 
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⇒ P(Type I error) ≤ 
XYZR[Z = α 

⇒ c = 
XY√^R          (2C.1) 

Thus, the probability of a Type-I error does not exceed α when c = 
XY√^R. Now we turn to Type 

II error (which should not exceed β). 

 P(Type II error) = P(L U < μ₀ + c|μ = μ₁) 

Now μ₀ = 0, and we substitute for c from (A3.1), we get 

 P(Type II error) =P(L U  < 
XY√^R|μ=μ₁) 

    Note that for any k, we know from Chebyshev's inequality that 

 P(μ₁ – k < L U  < μ₁ + k|μ = μ₁) ≥ 1 – 
XYZR_Z 

    We now take k = μ₁ –  
XY√^R in the above inequality to get 

 P(
XY√^R < L U <  2b₁ – 

XY√^R |b =  b₁) ≥ 1 – 
XYZR_Z     (2C.2)  

But 

 P(L U≥ 
XY√^R |μ = μ₁) ≥ P(

XY√^R <  L U < 2b₁ – 
XY√^R |b =  b₁); {∵ LHS spans more values}   

           (2C.3) 

The LHS above spans more values since: 

P(L U≥ 
XY√^R |μ = μ₁) ≥ P(L U > 

XY√^R |μ = μ₁) ≥ P(
XY√^R <  L U < 2b₁ – 

XY√^R |b =  b₁)     

On combining the inequalities (2C.2) and (2C.3), we get 

 P(L U≥ 
XY√^R |μ = μ₁) ≥ 1 – 

XYZR_Z 

⇒ 1 – P(L U≥ 
XY√^R |μ = μ₁) ≤ 1 – (1 – 

XYZR_Z) = 
XYZR_Z 

⇒ P(L U < 
XY√^R |μ = μ₁) ≤  

XYZR_Z 

⇒ P(Type II error) ≤  
XYZR_Z = β       (2C.4) 
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Thus, the probability of a Type II error does not exceed β when 
XYZR_Z = β. Substituting for k = 

μ₁ – 
XY√^R, we get 

 β = 
XYZR(c₁ – eY√fg)Z          (2C.5)  

⇒ n = 
XYZ(c₁ – c₀)Z h I√i + IklmK

       (2C.6) 

In this expression, we fix the probabilities of Type - I error (α) and Type - II error (β) to be 

0.05 and 0.10 respectively. We take μ₁ = 0.02. The only limitation is that we do not know the 

value of no. To estimate no , we use a pilot study that had 14 subjects (7 pairs) in the control 

group. In this sample, nop = 0.0075592. Using this value gives us n* = 8.33  ≈ 9 pairs (18 

subjects). Note that c equals 0.01 for this value of n. In other words, with just 18 subjects, we 

can be 95% confident that the average outcome is the 50%-50% split (and not a 51%-49% 

split). 
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Appendix 2D: Derivations of the Bargaining Solutions 

The axioms of symmetry and efficiency together, in the Nash and the Kalai-Smorodinsky 

bargaining framework, are sufficient to guarantee that X and Y get 50% each (of the pie). To 

verify this with a specific example, in what follows, we assume that X and Y have utilities 

v(x) and v(y), with v ≧ 0, v′ > 0 and, v′′ < 0.37 Finally, I make a transformation u = v – v(0), 

so that u(0) = 0. I assume a zero disagreement-payoff vector. The feasible set of interest is 

shown in the shaded region of Figure 1. 

     

The symmetric Nash solution: This solution can be formulated as follows (ignoring the non-

negativity constraint) 

 Maximize: u(x)u(y) 

 Subject to:  x + y = 1 

which is the same as the following problem 

 Maximize: ln[u(x)u(y)] = lnu(x) + lnu(1 – x) 

which involves taking a monotonic transformation of the objective function and feeding the 

constraint into the same. The first order condition of the above problem is 

 
rs(t)r(t)  = 

rs(Iut)r(Iut)          (2D.1) 

    Now, if we define w(x) = lnvrs(t)r(t) w = lnu′(x) – lnu(x). Then 

 w′(x) = 
rss(t)rs(t)  –  rs(t)r(t)   < 0 

Thus, w (and hence ew) is monotonic for x > 0. Now (2D.1) can be written as ew(x) = ew(1 -  x), 

and from the monotonicity of ew, we get x = 1– x. This gives us x = y = 1/2 as our unique 

(symmetric) Nash Bargaining solution. 

                                                        
37

 The functional form of X’s utility is identical to that of Y’s. This captures the feature that X and Y come from a 

homogenous population.  
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The symmetric Kalai-Smorodinsky solution: For ease of notation, we write u(x) = a, and u(y) 

= b, to transform the (x,y)-plane to the (a,b)-plane. The boundary x + y = 1 is therefore, 

transformed to u-1(a) + u-1(b) = 1. The coordinates of the maximal point on this plane are 

given by (u(1) ,u(1)). The equation of the line joining the disagreement payoff (u(0),u(0)) = 

(0,0) and the maximal point is given by 

 
yuzr(I)uz  = 

{uzr(I)uz  ⇒ u(x) = u(y) 

feeding the constraint (y = 1 – x) into which gives us u(x) = u(1 – x), or x = y = 1/2 (from the 

monotonicity of u) as our Kalai-Smorodinsky solution. 

To summarize, for a symmetric game (i.e. with homogenous individuals) involving the 

division of a given pie size (say $1) in the absence of any (favourable) contraction, theory 

(Nash, Kalai-Smorodinsky and others) predicts an equal split i.e. both the individuals X and 

Y, get to keep 50 cents each. 

The asymmetric Nash solution: For individual X with a higher bargaining power β, this 

allocation rule (that puts more weight on agent X's utility), is formulated as follows (ignoring 

the non-negativity constraint) 

 Maximize: u(x)(1+β}u(y) 

 Subject to:  x + y = 1 

The first order condition of the above problem is 

 (1+β) rs(t)r(t)  = 
rs(Iut)r(Iut)      

    Now, defining w(x) as before, the above condition can be written as (1+β)ew(x) = ew(1-x). 

Since (1+β) > 1, it follows that ew(x) < ew(1-x), or w(x) < w(1 – x). Finally with w′ < 0, we 

conclude that x > 1 – x, or x > 1/2. In other words, the person with a higher bargaining power 

gets the higher share. 

The asymmetric Kalai-Smorodinsky solution: Here, agent X's higher bargaining power (β) is 

captured in a different way. This solution concept is explained in Figure 2. Transforming the 
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(x,y)-plane to the (a,b)-plane and using the equation of the line joining the disagreement 

payoff and the maximal/ideal point given by 

 
yuz(IP|)r(I)uz  = 

{uzr(I)uz  ⇒ u(x) = (1+β)u(y) 

leads us to conclude that u(x) > u(y), or x > y (from the monotonicity of u). Feeding the 

constraint (y = 1 – x) into which gives us x > 1 – x, or x > 1/2. Again, the person with a 

higher bargaining power gets the higher share. 

In the specific case where u(x) = x, it is well known that both the Nash and the Kalai-

Smorodinsky solutions will be given by38 

 argmaxxx
1+β(1 – x) = 

IP|KP|        (2D.2) 

Both the solutions predict the same asymmetric outcome in the presence of asymmetric 

bargaining power. This is a more general solution to the bargaining problem, since if β = 0 

(in (2D.2)), then we get back the symmetric solution. 

The symmetric Kalai-Smorodinsky solution with contraction: There is a cap on individual Y′s 

utility equivalent to u(1 – α). The coordinates of the maximal point on the (a,b)-plane (see 

Figure 2.3) are given by (u(1),u(1 – α)). The equation of the line that intersects this point with 

the disagreement payoff is given by 

 
yuzr(I)uz  = 

{uzr}I – ^~ u z  ⇒ �(�)�(�) = 
�(I)�(I – ^) >1;  {∵ 1>1 – α and u′ > 0} 

which gives us u(x) > u(y) or x > y. Finally, using the constraint y = 1 – x gives us x > 1/2. 

That the solution is unique is verified from the expression above (using the constraint) which 

translates to 

 
r(t)r(�) =  r(t)r(Iu t) = 

�(I)�(I – ^)     (2D.3)  

 

    Now, we define w(x) = ln[u(x)/u(1 – x)] = lnu(x) – lnu(1 – x). 

                                                        
38 Note that β > 0 ⇒ β > (β/2) ⇒ 1+β > 1+(β/2) ⇒ IP|IP(|/K) >1 ⇒ IK v IP|IP(|/K)w >1/2 ⇒ IP|KP| >1/2. 
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 w′(x) =  rs(t)r(t)  + 
rs(Iu t)r(Iu t)   > 0 

so that w is monotonic for x > 0 and (2D.3) can be written as e
w(x) 

= u(1)/u(1-α). The 

uniqueness of x is immediately verified from the monotonicity of w. It is interesting that the 

Kalai-Smorodinsky solution is insensitive to power transformations under contraction. To 

explain this point, let α be a fixed parameter and u be such that u(x) = xγ so that the basic 

assumptions i.e. u ≧ 0, u′ > 0, u′′ < 0, and, u(0) = 0 hold.39 

A well-known property that 
�(�)�(�) = u(x/y) is satisfied. Thus, (2D.3) can be written as 

 
�(�)�(Iu �) = uv II – ^w 

which leads us to the unique solution x = 1/(2 – α) given the monotonicity of u, for this 

general class of utility functions including u(x) = x, in which case, the Nash solution is given 

as 

 Nash: H�  = �0.5;   ��� 0 ≤  � < 0.5�;   ��� 0.5 ≤  � ≤ 1�   (2D.4) 

The Kalai-Smorodinsky solution (written below) is, therefore, different from Nash when 

there is feasible set contraction 

 Kalai-Smorodinsky: xKS = 
I(K u ̂ ); ∀ α ∈ [0,1]     (2D.5) 

 

Asymmetric Bargaining in the Presence of Contraction: The Nash solution, with u(x) = x 

remains as in (2D.2) but the Kalai-Smorodinsky solution changes. Specifically, with u(x) = x, 

it changes to 

 xKS = 
IPl(KPlu^).          (2D.6) 

 

                                                        
39

 Of course, this will require the additional assumption that 0 < γ < 1. 
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Note again that in the absence of asymmetry (β = 0), the Kalai-Smorodinsky solution above 

is identical to the one involving only contraction. While we show the effects of asymmetric 

entitlements in this section and demonstrate the experimental ability of the same to affect 

final allocations, it is interesting to note that even asymmetric liabilities have been 

experimentally shown to affect allocations (see Abbink et al, 2014). 
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Appendix 2E: Experimental Instructions 
 

 

 

GENERAL INSTRUCTIONS 

 

Hello and welcome to this experiment. You will receive a sum total of Rs. 125 as a show-

up fee of this experiment. This is the minimum amount you will get (provided you stick 

to the rules of this experiment). In today’s session you have to bargain over a sum of Rs. 

600 with individuals you will be paired with. Any amount you earn here will be additional 

earnings. For purposes of confidentiality you will be identified only by your ID (identity) 

numbers which will be provided to you. 

 

You will be given a form that requests your consent for participating in the experiment. You 

will have to sign it and return it to us. The amount that is due to you will be filled in after the 

experiment when we can determine your winnings. 

 

Please raise your hands if you have any questions, otherwise we are ready to move on to the 

main part of the experiment. 

 

You will now be divided into different groups.  

 

Please come one by one to the computer screen and hit enter; and give your names.   

 

(We run the command on R for each student to hit enter and record their names in the 

reference sheet) 
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Stay in this room (i.e. if the output is 0 or 2) 

 

Go to the next room (if the output is 1 or 3; the research assistants guide them to the room(s)) 
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INSTRUCTIONS TO THE BASELINE TREATMENT GROUP 

 

Instructions in the waiting room before the test: 

1. Please read the instructions carefully and fill in your details 

2. Your goal is to direct all your efforts towards scoring as high as possible 

3. Do you have any questions? 

4. You may begin now. 

 

(Test begins) 

 

(Test is over and answer scripts are collected) 

 

Instructions in the waiting room after the test: 

 

1. Each candidate in this group will now be randomly paired with another candidate in 

this room. 

2. You will move to the experimental lab in groups of six (three pairs per session) 

3. Once just outside the experimental lab, you will be called in one by one by your 

names and seated on your allotted workstations 

4. On your workstations, you will get to know your Candidate ID number and the related 

Skype Username. 

5. You will have to (text) chat in English on Skype with the individual you have been 

paired with to decide on how to split Rs. 600 between yourselves. 

6. You will have only ten minutes to complete this conversation. 
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7. Should you disagree or not reach an agreement in ten minutes, you will be given 

nothing but the show-up fee; otherwise, you will be given your share in Rs. 600, as 

negotiated, plus, the show-up fee. 

8. You will be asked to report your negotiated amounts and some other details about 

yourself in the pages that appear after your chat conversation. 

9. Do you have any questions? 

10. More instructions will be given to you once in the lab.  

 

Instructions in the lab: 

 

Candidates are taken through the presentation and the following instructions are given: 

 

1. Do not disclose your identities. Any implicit or explicit attempt to do so will lead to 

the immediate cancellation of both the show-up fee and the negotiated amount. 

Remember your chat histories are saved by us.  

2. Do not misreport your negotiated amounts in the pages that appear after the chat 

conversation. Any attempt to do so will lead to the immediate cancellation of both the 

show-up fee and the negotiated amount. 

3. Please remember that your responses are confidential and the raw data collected from 

this experiment will not be given to anyone outside this project.  

4. Do you have any questions?  

5. You may begin now. 

 

Once the total amount is displayed on the candidates’ screens, we make them fill up, and 

sign the receipts, and pay them accordingly.   
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INSTRUCTIONS TO THE RANK BARGAINING TREATMENT GROUP (T1) 

 

Instructions in the waiting room before the test: 

1. Please read the instructions carefully and fill in your details 

2. Your goal is to direct all your efforts towards scoring as high as possible 

3. Do you have any questions? 

4. You may begin now. 

  

 (Test begins) 

 

Instructions in the waiting room after the test and before the thought experiment: 

(Test is over and answer scripts are collected) 

 

1. Your tests will now be evaluated. 

2. You will all now do a thought experiment which you have ten minutes to complete. 

 

Instructions in the waiting room after the thought experiment: 

1. Your tests have now been evaluated. 

2. Based on your test performances, you have all been ranked. 

3. Each individual in the top half will be randomly paired with an individual in the 

bottom half.  

(instructions 4-12 below are the same as 2-10 in the baseline treatment above)  

4. You will move to the experimental lab in groups of six (three pairs per session) 

5. Once just outside the experimental lab, you will be called in one by one by your 

names and seated on your allotted workstations 
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6. On your workstations, you will get to know your Rank ID number and the related 

Skype Username. 

7. You will have to chat in English on Skype with the individual you have been paired 

with to decide on how to split Rs. 600 between yourselves. 

8. You will have only ten minutes to complete this conversation. 

9. Should you disagree or not reach an agreement in ten minutes, you will be given 

nothing but the show-up fee; otherwise, you will be given your share in Rs. 600, as 

negotiated, plus, the show-up fee. 

10. You will be asked to report your negotiated amounts and some other details about 

yourself in the pages that appear after your chat conversation. 

11. Do you have any questions? 

12. More details will be given to you once in the lab. 

 

Instructions in the lab: 

 

Candidates are taken through the presentation and the following instructions are given: 

1. Do not disclose your identities. Any implicit or explicit attempt to do so will lead to 

the immediate cancellation of both the show-up fee and the negotiated amount. 

Remember your chat histories are saved by us.  

2. Do not misreport your negotiated amounts in the pages that appear after the chat 

conversation. Any attempt to do so will lead to the immediate cancellation of both the 

show-up fee and the negotiated amount. 

3. Please remember that your responses are confidential and the raw data collected from 

this experiment will not be given to anyone outside this project.  

4. Do you have any questions? 
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5. You may begin now. 

 

Once the total amount is displayed on the candidates’ screens, we make them fill up, and 

sign the receipts, and pay them accordingly. 
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INSTRUCTIONS TO THE RANDOM CONTRACTION TREATMENT GROUP (T2, 

Room: 22) 

 

Instructions in the waiting room before the test: 

(these are same as the instructions in the baseline treatment) 

 

Instructions in the waiting room after the test: 

(these are same as the instructions in the baseline treatment)  

 

Instructions in the lab: 

Candidates are taken through the presentation and the following instructions are given: 

1. In each pair, one of the randomly selected individuals will be awarded a star. The 

subject he/she (i.e. the starred individual) is paired with cannot get more than 60% 

(i.e. Rs. 360) of the total Rs. 600. The starred individual can get any amount provided 

there is agreement (we remind Point No. 7 in the instructions after the test - this is the 

same for the control group). 

(We then discuss two examples)40 

2. If you have a star on your workstation, then you are the starred subject in your pair. 

Otherwise, your partner is the starred subject in your pair. 

3. Do not disclose your identities. Any implicit or explicit attempt to do so will lead to 

the immediate cancellation of both the show-up fee and the negotiated amount. 

Remember your chat histories are saved by us.  

                                                        
40

 Let us discuss a few examples to make this clear. Are the following splits acceptable? 

 Rs. 200 for the starred individual and Rs. 400 for his/her partner? 

 Rs. 400 for the starred individual and Rs. 200 for his/her partner? 
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4. Do not misreport your negotiated amounts in the pages that appear after the chat 

conversation. Any attempt to do so will lead to the immediate cancellation of both the 

show-up fee and the negotiated amount. 

5. Please remember that your responses are confidential and the raw data collected from 

this experiment will not be given to anyone outside this project.  

6. Do you have any questions?  

7. You may begin now. 

 

Once the total amount is displayed on the candidates’ screens, we make them fill up, and 

sign the receipts, and pay them accordingly. 
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INSTRUCTIONS TO THE RANK CONTRACTION TREATMENT GROUP (T3, 

Room: 23) 

 

Instructions in the waiting room before the test: 

(these are same as the instructions in the rank bargaining treatment above) 

 

Instructions in the waiting room after the test: 

(these are same as the instructions in the rank bargaining treatment above)  

 

Instructions in the lab: 

Candidates are taken through the presentation and the following instructions are given: 

 

1. In each pair, the higher-ranked individual will be awarded a star. The subject 

he/she (i.e. the starred individual) is paired with cannot get more than 60% (i.e. Rs. 

360) of the total Rs. 600. The starred individual can get any amount provided there is 

agreement (we remind Point No. 7 in the instructions after the test - this is the same 

for the control group). 

(We then discuss two examples)41 

2. If you have a star on your workstation, then you are the starred subject in your pair. 

Otherwise, your partner is the starred subject in your pair. 

3. Do not disclose your identities. Any implicit or explicit attempt to do so will lead to 

the immediate cancellation of both the show-up fee and the negotiated amount. 

Remember your chat histories are saved by us.  

                                                        
41

 Let us discuss a few examples to make this clear. Are the following splits acceptable? 

 Rs. 200 for the starred individual and Rs. 400 for his/her partner? 

 Rs. 400 for the starred individual and Rs. 200 for his/her partner? 
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4. Do not misreport your negotiated amounts in the pages that appear after the chat 

conversation. Any attempt to do so will lead to the immediate cancellation of both the 

show-up fee and the negotiated amount. 

5. Please remember that your responses are confidential and the raw data collected from 

this experiment will not be given to anyone outside this project.  

6. Do you have any questions?  

7. You may begin now. 

 

Once the total amount is displayed on the candidates’ screens, we make them fill up, and 

sign the receipts, and pay them accordingly. 
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Appendix 2F: Personal Characteristics by Treatment 

Table: 2F.1. Distribution of personal characteristics by treatment 

 

Control  

Group 

Rank 
Bargaining 

Random 
Contraction 

Rank 
Contraction 

Observations 20 38 34 38 

 
 

  
No. of Males 13 21 19 16 

 
 

  
Average Age 21.3 20.2 20.9 21.1 

 
 

  
Business Family 9 11 11 20 

  
 

  
Hostlers 11 13 24 19 

  
 

  
Postgraduate Father 9 14 16 14 

  
 

  
Postgraduate Mother 6 11 11 18 

  
 

  
Low Income Family 

< INR 2,50,000 
2 5 7 5 

High Income Family 
> INR 10,00,000 

7 10 10 12 
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Chapter 3 

Dictator Games in the Field: The Private Moral Calculus of 

Economic Agents* 

 

3.1. Introduction 

Three-wheeler taxis are common in many parts of the developing world.  In India, they are 

popularly known as `auto-rickshaws’ or simply `autos’.  This paper reports on the outcome of 

a dictator game with the drivers of these autos in the city of New Delhi.  Four key features 

characterize our experiment.   

First, the game qualifies as a natural field experiment in the taxonomy of experiments 

proposed by Harrison and List (2004). The auto drivers were unaware that they were 

participating in an experiment.1 Second, unlike previous dictator game field experiments, the 

dictator game in our experiment was embedded in routine economic transactions. Subjects 

were presented with an opportunity to appropriate a large surplus from a regular commercial 

transaction. Third, as auto drivers confront the choice between opportunism and pro-social 

behavior in their daily normal course of work, the experiment offers the prospect of capturing 

well-considered decisions of experienced subjects. Fourth, the experiment affords the 

opportunity of asking whether dictator game choices are correlated with fares charged in 

regular transactions. In other words, the experiment asks whether the proclivity for 

opportunism demonstrated in dictator games predicts similar proclivity in real-world 

                                                        
* This research is joint work with my thesis supervisor Prof. Bharat Ramaswami. 
1
 We collected data using undergraduate students of the University of Delhi who ‘acted’ as commuters. 
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transactions (and vice-versa).  We are not aware of any other study whose design allows such 

a question to be posed.  

Although auto fares are regulated in the major cities of India, autos have a reputation for 

charging above metered fares. On the Internet and in social media, many articles bemoan 

`greedy’ auto drivers.2 In May 2013, after increasing the metered fares, the state transport 

minister in Delhi issued a warning that they “will take action against those auto-drivers who 

refuse to ply by the metre”.3 Just a few months later, a different strategy was employed. In 

February 2014, the Chief Minister of Delhi administered an oath to 10,000 taxi drivers that 

they would not overcharge passengers.4 In April 2015, the state transport minister in Mumbai 

went on record to say “Based on the number of complaints I get from people, auto drivers are 

the ones who loot the people most…” (Rao, 2015). There are also articles that record a 

counter-narrative about how difficult economic circumstances, corrupt police and insensitive 

regulation make it very difficult for auto drivers to comply with metered fares.5 Implicit in all 

these reports is the shared consensus that enforcement of metered fares is spotty and uneven. 

The experiment was conducted with the help of over a dozen actors who posed as passengers.  

In the dictator game, the actor told the subject that s/he wished to travel from point A to point 

B and was willing to pay up to Rupees 150.00 which was, on average, about three times the 

metered fare.  The subject was then asked to state the fare that he would charge. Although the 

interactions were face to face, the taxis were hired off the street and so the dealings were 

impersonal just as in any typical taxi transaction. 

                                                        
2

See Phys.Org (2011); and Singh (2013). Alongside these, the following link provides more insights: 

http://www.indiamike.com/india/polls-f79/which-city-has-the-worst-autorickshaw-drivers-t21965/. 
3
See NDTV (2013), the link to which is: http://www.ndtv.com/delhi-news/delhi-auto-drivers-to-face-action-

for-overcharging-warns-government-521366. 
4
 See Hindustan Times (2014). The link is: http://www.hindustantimes.com/delhi/swear-on-your-kids-you-

won-t-overcharge-kejriwal/story-ANCdo2YcyMSoZqwaNYNsXO.html. 
5
 See Mohan and Roy (2003); Robinson (2007); Harding (2013); and Vij (2010). Alatas et al. (2009), similarly 

report that Indonesian public servants blame low government salaries for unjust practices (corruption). Thus, 
underdevelopment can create ‘occasions for corruption’ (Bose, 2012). 
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Previous work has highlighted that the willingness of dictators to share with recipients need 

not be due to altruism alone but could also be because of social norms that dictate fairness 

(Bardsley, 2008; Camerer and Thaler, 1995; Dana et al, 2006; Bose et al, 2014). The devotion 

to fairness is, however, contextual and therefore malleable (Franzen and Pointner, 2012; 

Hoffman et al 1994; Hoffman et al 1996; Levitt and List, 2007). Games in which the dictator 

perceived a greater right over the windfall gain saw smaller payouts to recipients. The 

payouts are also sensitive to social framing and whether the experimenter and the recipient 

know the choices of the subjects.6 Hoffman et al, 1994 conclude that dictator game sharing 

“may be due not to a taste for “fairness” (other-regarding preferences), but rather to a social 

concern for what others may think, and for being held in high regard by others.” More recent 

work including Andreoni and Bernheim (2009), and Krupka and Weber (2013) model 

dictator game outcomes as a trade-off between self-interest and compliance with social 

norms. Eckel and Grossman (1996) point out that while altruism cannot be expected from 

games with anonymous agents, charitable behavior can be induced if subjects know that the 

recipient is a worthy organization.7 

In our experiment setting, however, it would be hard to argue that altruism or the concern to 

appear fair (i.e., `social image’ in the words of Andreoni and Bernheim, 2009) are primary 

factors in determining any departures from opportunism. Altruism cannot be expected 

                                                        
6
Dreber et al, 2012 report that there are no social framing effects in dictator game experiments. 

7
Field experiments on charitable giving include studies by DellaVigna et al, 2012 who demonstrate the roles of 

altruism and social pressures in the decisions involving donations. Similar studies by Andreoni and Bernheim, 
2009; Dana et al, 2006; and Dana et al, 2007 suggest that subjects only want to seem fair rather than be fair. 
Reinstein and Riener (2012) find mixed evidence of “reputation-seeking” and Croson and Shang (2008), report 
that individual donations are determined by the information on donations by other members of a society or a 
group. Charness and Cheung (2013) establish that ‘charity amounts suggested’ influence donations made in a 
restaurant. Tipping decisions can be understood from the research of Ruffle (1998), where it is concluded (in a 
dictator game setting) that allocators (dictators), reward skillful recipients and marginally punish those who are 
unskillful. Parrett (2006) reports that tipping behavior is observed primarily due to reciprocity and guilt 
aversion, and that the size of the tip increases in table size. Among other field studies that look at recipient 
attributes, Jacob et al. (2010) and Solnick and Schweitzer (1999), provide useful insights. Ironically though, 
tipping in principle is considered as only a reward for the perceived quality of the service provided (Azar, 2004). 
Additionally see Azar et al (2013) and Conlin et al (2003). 
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because the transactions are impersonal and nothing marks out the actors as specially 

deserving.8 Furthermore, when this seemingly clueless customer offers to pay three times the 

metered fare, the auto drivers are unlikely to perceive a social cost (in terms of disapproval 

from the passenger) of deviating from the metered fare.  Therefore, social image concerns are 

also likely to be weak as well. 

The metered fare and the governmental attempts to enforce it either by threatening 

punishment or by moral suasion may have anchored social norms for at least some of the auto 

drivers. It is, therefore, possible that such subjects experience a private cost in terms of their 

own self-image by departing from the metered fare.  If this is so, subjects that are reluctant to 

be opportunists in the dictator game may well exhibit similar reluctance in regular 

transactions. The experiment design allows this to be probed by a second transaction with the 

same subject auto driver.  In one treatment, a second actor hires the same auto in the reverse 

direction (for the same route).  This actor informs that subject that s/he would like to travel 

from point B to point A and asks the auto driver to state his fare. The difference from the 

dictator game is that the actor does not state his or her maximum willingness to pay. In 

another treatment, this regular transaction precedes the dictator game. 

Stoop (2014) and Winking and Mizer (2013) are two studies that have employed the dictator 

game as a natural field experiment. The interest in these studies was to examine whether the 

lab findings extrapolate to field settings. While Stoop’s (2014) experiment confirms lab 

studies in terms of demonstrating considerable pro-social behavior, Winking and Mizer 

(2013) do not find this.  Unlike these studies, our field experiment is embedded in the normal 

work transactions of subjects. Second, as mentioned earlier, while the context of our 

experiment does not allow us to examine altruism, social image and other signaling motives 

                                                        
8 If anything, the actors visibly belong to a class with higher economic status (as do most other passengers as 
well) than the auto drivers.   
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for pro-social behavior, it does uncover the tension between opportunism and compliance to a 

social norm that is in place because of regulation (metered fares). This trade-off will have 

larger relevance if dictator game behavior predicts and is predicted by real world transactions. 

The ability to demonstrate this correlation is a key feature of our experiment design. Our 

study of sharing motives can be related to the research of Ligon and Schechter (2012). 

 

3.2. The auto-rickshaw market 

Autos are three-wheeler taxicabs intrinsic to the public transport mechanism in India, 

alongside public buses, four-wheeler taxi cabs, and local metro railways. Public buses and 

metro railways are cheaper modes of travel than autos. Autos however, offer the 

conveniences of personal comfort in terms of space, speed, and carrying luggage. Further, 

autos are compact and can therefore, easily be driven on narrow lanes not accessible to cars 

and buses.   

Auto drivers in Delhi largely come from low income family groups and maintain families of, 

on an average, five to eight members (Mohan and Roy, 2003). Not many can afford to buy 

auto rickshaws and thus (80% of them) take them on rent (of over Rs. 250.00 per day, 

amounting to over 40% of their daily earnings) on a daily basis from their actual owners (see 

Harding, 2010; additionally see Kurosaki et al (2012) that reports that these daily rents are 

common for even cycle rickshaw pullers). There are over 74,000 licensed autos on Delhi 

roads.9  Acquiring a license is a painstaking enough process that auto drivers are forced to 

engage the services of middlemen that effectively increases the cost of obtaining a license 

(Mohan and Roy, 2003). Consumers are supposed to pay a regulated fare, which depends on 

                                                        
9

The official link to the directory of all the auto rickshaw license holders in New Delhi is: 

http://www.delhi.gov.in/wps/wcm/connect/288f5b8047095074932eff7d994b04ce/Passenger%2BPermit%2BRe
port.pdf?MOD=AJPERES&lmod=1808150906. 
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the distance travelled, luggage and time of the day (night fares are higher). The current fare 

structure is Rs. 25.00, as a down payment applicable for the first two kilometers and Rs. 8.00 

for every subsequent kilometer travelled.10 Compared with four wheeled sedan taxis, autos 

are cheaper. For instance, for a distance of 20 kilometers, the regulated auto fare amounts to 

Rs. 169.00, but for four-wheeler taxis, the fare for the same distance amounts to at least Rs. 

250.00 (and can go up to at least Rs. 450.00 depending on the service provider chosen). The 

regulated legal fare is displayed on a taximeter (meter, hereafter) attached to the autos. The 

meter also shows the distance travelled and is supposed to be reset individually for every 

customer. 

The Delhi police maintains websites and hotlines for commuters to register complaints about 

overcharging, refusal to take fares and misbehavior.11 The primary power of the police is that 

it can issue traffic fines (Rs. 90 for the first offence and Rs. 290 subsequently).  At the time of 

the experiment, the police also had the power of impounding vehicles till the fines are paid.  

However, subsequently, these actions were reserved for `major’ offences.12 The difficulties of 

prosecution have led governments to consider other means of protecting consumers.13 Many 

cities, including Delhi, offer the facility of pre-paid fares at railway and bus stations and at 

airports where passengers are particularly vulnerable.14 

 

3.3. The experiment 

Twenty-three pairs of origin and destination spots (interchangeably called A and B for our 

purposes) were used for this research. Points A and B are chosen such that they are similar 

                                                        
10

An additional Rs. 10.00 applies for every unit of luggage carried by the commuter(s). 
11 The official websites to register such complaints are: https://delhitrafficpolice.nic.in/complaint-against-tsr/, 
and http://www.complaintboard.in/complaints-reviews/autorickshaw-l190475.html.  
12 These include the lack of proper documents such as driver’s license, auto permits and fitness certificate.   
13 The difficulties include the possibility that stringent powers could lead to harassment and demand from bribes 
by the police (see Bose, 2004 for a related discussion on the fact that bribes are often elicited in LDCs). This 
was the reason why the power to seize auto vehicles for `minor’ offences was taken away from the police. 
14 The police staffs these pre-paid booths and passengers pay in advance for travel to specified destinations.   
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and comparably busy (such as both metro-rail stations, both colleges, both shopping malls) 

and approximately five kilometers apart. For this distance, the legal fare is approximately 

Rupees 50. Table 3.1 lists all the routes, the distances and the legal fares.  The locations of 

these routes are mapped in Figure 3.1. The two treatments of our experiment are described 

below. 

Dictator-First Treatment: The dictator game is played before a regular transaction is 

observed. 

Regular-First Treatment: A regular transaction is observed before the dictator game is 

played. 

In both the treatments, one of the actors ‘hires’ an auto from A to B, and another actor of the 

same gender stationed at B, ‘hires’ the same auto back to A. Thus, each auto driver belongs to 

exactly one of the treatments above and provides us with two prices – one under the dictator 

game, and the other as a regular transaction. In relation to our experiment, these treatments 

(as we will learn later) will help us understand the role of intrinsic characteristics (inherently 

opportunistic or legally compliant) of our agents in the choices that they make. 

Male and female undergraduate students (our ‘actors’) from the University of Delhi acted as 

‘customers’ for auto drivers, trained with two dialogues in Hindi – one for the dictator game 

and the other for the regular transaction. In a dictator-first treatment, an auto is hired at point 

A and the dialogue for the dictator game translates to “I want to go to place B. I can pay up to 

Rs. 150. How much will you take?” Thus, the total surplus (over the legal fare) to be 

distributed between the auto driver and the customer is (approximately) Rs. 100. The auto 

driver’s response (quote) to this question is discreetly (audio) recorded (along with the 

dialogue) by our actor, alongside other details (in a notebook, without the driver noticing) 

pertaining to that transaction, such as the time of the day, the day of the week, origin and 
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destination points among still others, as the actor boards the auto. The driver’s quote is 

always accepted and the travel commences.  The auto driver’s decision corresponds to a 

dictator game with taking options (Bardsley 2008; List, 2007). 

 

Table 3.1: List of places of origin and destination 

Sl. 

No. 

Origin 

(a) 

Destination 

(b) 

Legal Fare 

(Rs.) 

Distance 

(Kilometers) 

     
1. INA Metro Station Moolchand Metro Station 48.20 4.9 

2. Janak Puri Metro Station Rajori Garden Metro 
Station 

46.60 4.7 

3. Lajpat Nagar Bus Stop AIIMS Bus Stop 51.40 5.3 
4. N Block Market (GK I) Malviya Nagar Market 49.80 5.1 

5. Katwaria Sarai Yusuf Sarai 49.80 5.1 
6. BerSarai PVR Anupam 51.40 5.3 
7. NSP Rithala 61.00 6.5 

8. Jhandewalan Metro 
Station 

Shadipur Metro Station 47.40 4.8 

9. IP Roop Nagar 45.80 4.6 
10. Venkateshwara Safdarjung Enclave 61.80 6.6 

11. Safdarjung Tomb 
(Tourist Spot) 

Railway Museum (Tourist 
Spot) 

52.20 5.4 

12. GTB Nagar St. Stephen’s 49.00 5.0 
13. Green Park KatwariaSarai 44.20 4.4 
14. Race Course Mandi House 49.00 5.0 
15. Kamla Nagar Batra Cinema 47.40 4.8 
16. Mother’s International 

School 
GK II (Apeejay Education 

Society) 
51.40 5.3 

17. Moolchand Metro 
Station 

Hauz Khas Metro Station 43.40 4.3 

18. Nehru Place Defence Colony Market 52.20 5.4 
19. Kohinoor (GK II) Ansal Plaza 54.60 5.7 
20. Hans Raj College Satyawati College 45.00 4.5 
21. Adhchini Crossing AIIMS Crossing 44.20 4.4 

22. Connaught Place Karol Bagh 43.40 4.3 
23. Vishwavidalaya Metro 

Station 
Adarsh Nagar Metro 

Station 
57.00 6.0 

Notes:  a.These locations were shortlisted using Google Maps. The exact spots at these locations were chosen 

so that the coordination between the actors at A and B was convenient enough to ensure that the auto drivers 

were not ‘lost’ to another customer. To avoid suspicion (by coordinating over the phone while driven by, and in 

the presence of an auto driver), these exact spots were surveyed and chosen beforehand to ease coordination. For 

instance, A would ensure that he (she) stopped the auto close enough to where B was standing, and yet 

sufficiently far enough from any other customer to maximize the chances that B (and not any other customer) 

would hire the auto next. The distances reported above, therefore, are slightly different from those that Google 

Maps would produce (specifically within a deviation/difference of half a kilometer). 
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Figure 3.1: The choice of locations 

 

   

When this auto reaches place B, it is hired by another actor (of the same gender) for another 

transaction that we call the regular transaction.  This time the dialogue translates to “I want to 

go to place A. How much will you take?” The auto driver’s response (quote) to this question 
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is again discreetly (audio) recorded (along with the dialogue) by our actor, alongside other 

details (again in a small notebook, without the driver noticing) pertaining to that transaction 

such as the time of the day, the day of the week, origin and destination points among still 

others, as the actor boards the auto.15 The auto driver’s quote is always accepted and the trip 

completed.  However, as the auto driver may have anticipated a counter-offer by our actor, 

the fare in this regular transaction may be properly regarded as the driver’s initial offer in a 

bargaining game. 

The dialogues for the Regular-First treatment are the same.  The only difference is that the 

regular transaction precedes the dictator game.   

These locations A and B were shortlisted using Google Maps. The exact spots at these 

locations were chosen so that the coordination between the actors at A and B was convenient 

enough to ensure that the auto drivers were not ‘lost’ to another customer. To avoid suspicion 

(by coordinating over the phone while driven by, and in the presence of an auto driver), these 

exact spots were surveyed and chosen beforehand to ease coordination. For instance, the 

actor travelling from A would ensure that he (she) stopped the auto close enough to where the 

other actor at B waited, and yet sufficiently far enough from any other customer to maximize 

the chances that the actor at B (and not any other customer) would hire the auto next.16 

Further, for the purposes of effective coordination, each actor in the first transaction of each 

treatment, sent a text message (while travelling) to the actor waiting at the destination, with 

the vehicle number of the auto he/she hired in order to ease the task (for the actor at the 

destination) of looking for the right auto to hire (back to the place of origin). Tracking vehicle 

                                                        
15

The actors put on earphones connected to their mobile devices, pretending to listen to music.  
16

It will become evident in the next section (from a few differences in the sample sizes across different quotes 

under each treatment) that we have, in fact, lost some data due to this reason. The most stated reason (on the part 
of the auto driver) for disagreeing to take the customer (second actor), back to the place of origin, was that the 
drivers intended to head elsewhere (and not the actor’s chosen destination). 
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numbers also ensured that no auto rickshaw/driver was hired more than once in our 

experiment. 

 

3.4. Opportunism and compliance 

Following the literature on individual interest and social norms (Andreoni and Bernheim, 

2009; Dreber et al, 2013; Krupka and Weber, 2013), we suppose that auto drivers have a 

utility function that includes within it a concern for compliance with metered fares.  The 

utility from a particular transaction takes the following form: 

�J = �J (�) − �J(�)��H{0, (� − D)}    (3.1) 

where,  f is the fare received, m is the metered fare, γ is a parameter that indicates how 

strongly the auto driver is concerned with complying with the metered fare, s is a state of the 

world that includes the previous history of all transactions and i indexes the auto driver. As 

argued earlier, transactions are impersonal and so auto drivers are unlikely to be concerned 

with their social image. The γ (> 0) parameter is best interpreted as the costs of non-

compliance from the private moral calculus of the auto driver. 

From (3.1) it is immediate that auto drivers with a higher γ will be constrained in their choice 

of fares in the dictator game. They are less opportunistic and will therefore charge lower fares 

in the dictator transaction.  

As for the effect of γ on regular transactions, recall that the fare in these transactions is the 

initial offer by the auto driver in a bargaining game.  Suppose the auto driver believes that 

there are two types of passengers: informed and uninformed.  The informed passenger’s 

maximum willingness to pay (WTP) is less than the WTP of the uninformed passenger. Also 
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assume that while the driver knows the maximum willingness to pay of either passenger type 

he does not know the type of passenger who is hiring him. 

Now suppose the bargaining game is as follows. If the passenger is uninformed, the driver’s 

initial offer is accepted or rejected (depending on the passenger’s WTP) and the game ends.  

If the passenger is informed, the offer is accepted (if the initial offer < WTP) or the customer 

makes a counter-offer (if the initial offer > WTP).  The driver accepts or rejects this offer, 

depending on his reservation value, and the game ends.  The driver knows the structure of 

this game. It can be seen that in this simple game, that if non-compliance costs are absent, it 

will always be optimal for the driver to pitch the initial offer to be the WTP of the 

uninformed customer. The presence of non-compliance costs will drag down the initial offer. 

Furthermore, the higher is γ, lower will be the initial offer. 

This model will, therefore, predict that fares in dictator transactions and fares in regular 

transactions will be correlated with each other because of their correlation with a common 

factor: γ. If dictator game quotes and regular fares are uncorrelated, then that may not 

necessarily invalidate (3.1). This could be the outcome if auto drivers perceive the probability 

of uninformed passenger types to be negligible and therefore pitch their initial offers to be 

close to the willingness to pay of informed customers. Unlike in the literature, (3.1) allows 

the non-compliance costs to be dependent on the state of the world including the history of 

their own transactions. This is because the dictator transaction in the regular-first treatment 

follows, within a short interval, a regular transaction on the same route while a dictator 

transaction in the dictator-first treatment has no prior treatment from us.  Similarly, the 

regular transaction in the dictator-first treatment follows, within a short interval, a dictator 

transaction on the same route while a regular transaction in the regular-first treatment has no 
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prior treatment from us. If history does not matter, neither the dictator fares nor the regular 

fares would vary across treatments. 

 

3.5. Descriptive statistics 

The experiment was conducted over two waves, the first of which happened in July 2014, and 

the second, in March 2015. Data was collected between 8:00AM and 11:30AM on all days of 

the week. In the first wave, only the Dictator-First treatment was done.  As mentioned 

earlier, actor X travelled from point A to point B with a dictator game transaction.  Actor Y 

hired the same auto from point B to point A for a regular transaction.  For a particular auto, 

actors X and Y were chosen to be of the same gender to avoid biases stemming from gender 

specific responses. Actor X returned to point A by randomly selecting another auto using the 

dialogues for a regular transaction. We call this the control transaction. Notice that it is 

initiated at about the same time and for the same route as the regular transaction. We did the 

control to see if the dictator treatment contaminated the responses in the regular transaction. 

Table 3.2a displays the descriptive statistics from this wave. In this wave, 150 auto drivers 

received the dictator-first treatment and we have information on their dictator and regular 

transactions (one less for the latter as we ‘lost’ this driver to another customer).  Another 150 

auto drivers served as control transactions. 

 

 

 

 

Table 3.2a: Details of the first wave 

Dictator-First Treatment 

Transaction Observations 
Mean 
Offer 

Standard 
Deviation 

Dictator 
Game 150 95.1200 45.7281 

Regular 149 63.9463 17.2379 

Control 150 59.1933 11.8767 
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In the second wave, both treatments were done. The dictator-first treatment proceeded as 

above. The control transaction from point B to A became the first transaction of the regular-

first treatment. At point A, the auto of the control transaction was hired to go back to point B 

with a dictator game transaction. Notice that while the regular transactions of the regular-first 

treatment are the control transactions of the dictator-first treatment, there are no controls for 

the regular-first treatment. In particular, regular transactions of the dictator-first treatment 

cannot serve as controls even if they are at the same time and on the same route because the 

behavior of auto drivers could have been affected by the dictator transactions. The only way 

to have controls for the regular transactions of regular-first treatment would have been to 

have stand-alone controls just as it was done in the first wave. However, controls are 

unnecessary in this case because the regular transactions of the regular-first treatment are 

uncontaminated by any prior treatment.  

 

 

 

 

 

 

 

 

 

Table 3.2b contains the descriptive statistics from the second wave.  In this wave, 287 auto 

drives received the dictator first treatment and we therefore have information on their dictator 

and regular transactions (minus two for the regular transactions because of reasons mentioned 

before).  Another 287 auto drivers served as controls. However, since these auto drivers were 

 

Table 3.2b: Details of the second wave 

Dictator First treatment 

Transaction Observations 
Mean 
Offer 

Standard 
Deviation 

Dictator Game 287 112.3303 45.3848 

Regular 285 71.2386 22.2587 

Control 287 64.4007 15.5872 

Regular First treatment 

Dictator Game 283 101.2085 45.5082 

Regular 287 64.4007 15.5872 

Control N/A N/A N/A 
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subsequently hired for a dictator transactions, the controls are the regular transactions in the 

regular-first transaction. In a very small number of cases, auto drivers declined to be hired for 

a second time presumably because they did not wish to return to the point of origin.  

However, it can be seen from Tables 3.2a and 3.2b, that such attrition is negligible. 

Waves 1 and 2 are merged in Table 3.3. Overall, we have 720 observations on dictator 

transactions of which 437 are from dictator-first treatment and the remainder from regular-

first treatment. The number of observations on regular transactions is almost identical; the 

difference is because of attrition in the second transaction of the treatment. The average 

distance travelled per trip was 5.04 kilometers, and the metered legal fare for these 

observations averaged Rs. 49.29. 

Table 3.3: Dictator game and regular offers by experiment type 

 

Experiment Type 

 

Dictator-

First (DF) 

Treatment 

 

Regular-First 

(RF)Treatment 

 

Combined 

N (Dictator) 437 283 720 

  
 

Mean Offer in Dictator 
Game 

106.4229 101.2085 104.3733 

  
 

N (Regular) 434 287 721 

  
 

Mean Regular Offer 68.7350 64.4007 67.0097 

  
 

   
 

 

3.6. Experiment findings 

3.6.1. Dictator game transactions 

Our variant of a dictator game is different from the rest in the literature, where dictators are 

known to receive their endowment exogenously from the experimenters (even if they have to 
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earn the same), and are instructed to make an offer to their partners. In our variant, it is the 

partners who make the dictators’ endowment available for the latter to choose how much 

they would want to keep. Thus, our dictator game is akin to a taking game in the laboratory, 

where the endowment is earned by the subject who is not the dictator (see Cardenas and 

Carpenter, 2008).  

The literature on dictator games has observed two peaks in the distribution of transfers: 

Engel’s (2011) meta-study of over 100 dictator games shows that, on average, 36.11% of 

subjects give nothing while about 16.74% of subjects share about 50% of the surplus. In 

order to make our analysis comparable with the existing literature, we look at the distribution 

of the ‘fraction of surplus’ over the legal fare that is retained by the auto driver. This is 

calculated as shown below (Figure 3.2 shows this distribution). 

Subject’s share of surplus = 
������’� �r��� – ���y� �y�����y� �r� �r�  = 

������’� �r��� – ���y� �y��I¡z – ���y� �y��  (3.2)   

 

Note: While there are 720 dictator game quotes, we do not have the exact legal fares for three transactions 
because of slightly different routes taken by the auto drivers. 
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Figure 3.2: Distribution of surplus retained by dictators
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We immediately notice that there is a positive frequency for some values greater than one, 

which corresponds to quotes above Rs. 150.00. Our actors accepted these fares as well and 

completed the trips. 

Like the literature, Figure 3.2 also exhibits a double-peaked distribution with the higher mode 

(with a frequency of 38.63%) at the value one, which corresponds to ‘consuming the entire 

pie’ (i.e. charging exactly Rs. 150.00), or giving nothing in the lab dictator game. Including 

those subjects who charged more than Rs. 150, we find that close to 43% settled for amounts 

that corresponded to consuming the entire pie or more, if possible. Compared to the finding 

in Engel’s meta-analysis (that about 36% of lab subjects give nothing to the recipient), it 

appears that our subject pool of auto drivers is more opportunistic. However, we also observe 

a second peak (with a frequency of 26.78%) at the value 0.20, which corresponds to auto 

drivers keeping only 20% of the pie, and giving away the remaining 80% to the recipient. 

Since dictators in the lab rarely give away over 50% of the pie size, this finding suggests that 

our subject pool is less opportunistic which is possibly due to the strength of social norms 

anchored in the legal fare. Thus, charging the legal fare acts as a reference point akin to 

giving everything away (taking nothing from the recipient) in a laboratory dictator (taking) 

game. This finding is similar to List (2007) and Bardsley (2008) that observe higher shares 

resting with the dictators of the dictator game(s) compared with those of the taking game(s). 

The sense of an implicit entitlement of the endowment resting with the subject who is not the 

dictator prevents the dictators from keeping too much of the pie. Cardenas and Carpenter 

(2008) also conclude that giving is positively determined by a perception of how deserving 

the recipient is. Our design observes this psychological effect of the perception of 

entitlements. The fact that the dictators may mentally overcome such psychological 

considerations because they are earning at least, a part of the endowment by offering a well-

defined service, makes our setting all the more interesting. As many as 7.5% stick to the legal 
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fare (corresponding to giving everything away to the recipient in the dictator game) compared 

to the average of 5.4% for a similar response in Engel’s meta-study. These results broadly 

point to the heterogeneity in subject responses. In terms of equation (3.1), it would seem that 

the trade-off between opportunism and bearing the costs of non-compliance (summarized by 

the parameter γ) is felt differently by different auto drivers.  The average percentage of 

surplus retained by subjects in the sample is 55% (with standard error of 1.7).  The giving 

rate of 45% is substantially higher than the average offer of 28.35% reported in Engel’s meta-

analysis. While the average is comparable to the 50-50 split commonly observed in games 

with audience effects (Andreoni and Bernheim, 2009), it is not the modal value and is simply 

the outcome of behavior extremes of opportunism and pro-social behavior.   

We now come to the predictors of dictator game offers.  Table 3.4 compares the dictator 

game fares between the dictator-first and regular-first treatments.  The fare in the Dictator-

First treatment is, on average, higher than in the Regular-First by about five Rupees.  The 

difference is significant at the 1% level. The dictator fare in the Regular-First treatment is 

influenced by the prior regular transaction. The Regular-First dictator has just travelled the 

exact same route (albeit in the opposite direction) and he knows for sure the distance and the 

legal fare. The Dictator-First treatment does not receive this mental cue. 

The table also shows a significant difference (by about eight Rupees) between the fares 

charged to male actors and the fares charged to female actors.  This cannot be explained by 

an assessment that women have lower willingness to pay or by a preference for carrying 

female passengers (all auto drivers are males) because the maximum willingness to pay is the 

same for male and female actors and auto drivers know that the passenger would not decline 

the ride as long as the fare is less than Rs. 150.  
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Table 3.4: T-test of dictator game prices by experiment type and gender 

 

Experiment 
Type 

 

Dictator 
Game 

N 

(1) 

 

Dictator  

Game 

Mean 

(2) 

 

Gender 
Type 

 

Dictator 
Game 

N 

(3) 

 

Dictator 
Game 

Mean 

(4) 

Dictator-First 

(DF) Treatment 

437 106.4229 Male 233 109.8927 

 
(2.2091)  

 
(2.8689) 

Regular-First 

(RF)Treatment 

283 101.2085 Female 487 101.7326 

 
(2.7052)  

 
(2.1194) 

Combined 720 104.3733  720 104.3733 

 
(1.7127)  

 
(1.7127) 

Difference 
 

5.2144  
 

8.1601 

 
(3.5035)  

 
(3.6506) 

P Value against 

DF > RF; M>F  
0.0686 

 

 
0.0129 

T Statistic 

(d.f.)  

1.4883 

(718) 

 

 

2.2352 

(718) 

   
 

 
 

 

The effect of treatment and gender on dictator fares suggests that non-compliance costs are 

contextual and depend on the state of the world. Our findings relate with that of Castillo et al 

(2013), that concludes that women commuters get better deals due to statistical 

discrimination. This is explored further in Tables 3.5a and 3.5b where dictator game offers 

are regressed on the experiment type, gender, distance, month of experiment, and week day 

dummies. The difference between the tables is that in Table 3.5a, the dependent variable is 

dictator fares while in Table 3.5b the dependent variable is the share of surplus retained by 

the auto driver. 

The results are similar in both tables. The regressions confirm that dictator fares and the 

proportion of surplus retained by the subject are higher if the passenger is male and if the 

treatment is Dictator-First. The regressions also show that dictator fares are higher for longer 

distances and for the experiment conducted in the second wave.  The latter result suggests 
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that opportunism, in the calculations of auto drivers, has greater justification for greater effort 

and for uncompensated inflation.17 

Table 3.5a: Predictors of dictator game offers 

Dependent 
Variable: 

Dictator Prices 

Full Sample 

Least Squares 

(1) 

Full Sample 

Least Squares 

(2) 

Full Sample 

 Least Squares 

(3) 

Gender  

(Male = 1) 

7.9291** 9.5339*** 9.6265*** 

(3.5852) (3.5904) (3.6164) 

Regular-First -6.3785* -11.1331*** -11.1759*** 

(3.5045) (3.7784) (3.7638) 

Distance 11.8592*** 9.2266*** 11.3397*** 

(3.2605) (3.3571) (3.4297) 

Second Wave 
 

15.2858*** 14.7815*** 

  
(4.7259) (4.7625) 

Sunday 
  

-1.6870 

   
(5.6980) 

Monday 
  

4.5710 

   
(6.4667) 

Tuesday 
  

-11.5336 

   
(5.9677) 

Thursday 
  

-8.3324 

   
(6.6130) 

Friday 
  

-8.7683 

   
(6.4897) 

Saturday 
  

-6.2015 

   
(5.9411) 

Constant 44.6682*** 47.1292*** 41.4161** 

 
(16.3557) (16.4095) (16.6590) 

R-Squared 0.0287 0.0425 0.0540 

   
P Value for 

Joint Significance 
0.0002 0.0000 0.0000 

N 717 717 717 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses 

                                                        
17

The average year on year inflation, for the period between the two waves (July 2014 to March 2015) was 

6.12% (Source: Economic Political Weekly Database for Consumer Price Index of Industrial Workers for All 
India, 2015).  
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Table 3.5b: Predictors of surpluses retained by dictators 

Dependent 
Variable: 

Surplus 

Full Sample 

Least Squares 

(1) 

Full Sample 

Least Squares 

(2) 

Full Sample 

 Least Squares 

(3) 

Gender  

(Male = 1) 

0.0762** 0.0917*** 0.0926*** 

(0.0357) (0.0357) (0.0361) 

Regular-First -0.0620* -0.1080*** -0.1084*** 

(0.0350) (0.0379) (0.0377) 

Distance 0.0851** 0.0596* 0.0807** 

(0.0339) (0.0349) (0.0357) 

Second Wave 
 

0.1481*** 0.1432*** 

  
(0.0464) (0.0468) 

Sunday 
  

-0.0130 

   
(0.0564) 

Monday 
  

0.0456 

   
(0.0632) 

Tuesday 
  

-0.1150 

   
(0.0592) 

Thursday 
  

-0.0841 

   
(0.0664) 

Friday 
  

-0.0812 

   
(0.0642) 

Saturday 
  

-0.0576 

   
(0.0587) 

Constant 0.1206 0.1445 0.0854 

 
(0.1688) (0.1696) (0.1721) 

R-Squared 0.0196 0.0327 0.0444 

   
P Value for 

Joint Significance 
0.0053 0.0001 0.0000 

N 717 717 717 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses 

 

The last result provides support for the view that overcharging is, in part, due to difficult 

economic circumstances (Harding, 2010; Mohan and Roy, 2003). 
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3.6.2. Regular transactions 

Figure 3.3 shows the distribution of regular offers as a percentage markup over legal fares for 

both the treatments combined. We see that only 10.02% of the drivers choose to stick to the 

legal fare or even less (the latter is usually the cause of the auto drivers’ willingness to give 

up some amount in the absence of change), and 89.98% of the drivers quote an amount that is 

the legal fare plus a positive mark-up, thereby confirming that overcharging is a fact of life. 

About 28.83% of the drivers tend to make an initial quote that equals a mark-up of 10% to 

20% over the legal fare. 

The regular transaction fares in the Dictator-First treatment can be compared with their 

control transaction fares (which in wave 2 are nothing but the regular transaction fares of the 

Regular-First treatment).  A pair-wise t-test for the equality of the means of regular fares and 

the control prices for all the 434 observations in the Dictator-First treatment yields a t 

statistic value of 5.3 associated with a negligible p-value.  It would, therefore, seem that the 

experience of a dictator game transaction immediately before a regular transaction tends to 
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Figure 3.3: Distribution of regular fares as a mark-up over the legal fare
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significantly increase (by Rs. 6.15) the average offer of the latter (Rs. 68.74) compared with 

that of the control prices (Rs. 62.59).  

To confirm this, we ran a regression of regular transaction quotes on the same set of controls.  

The results are reported in Tables 3.6a (where the dependent variable is regular transaction 

quotes) and 3.6b (where dependent variable is the percentage markup of the regular fare over 

the legal fare). Regular transaction fares and its markup over the regular fare are lower in 

Regular-First transactions. Gender and the second wave dummy have qualitatively the same 

impacts as in dictator transactions; however, their significance is weaker.  Distance has a 

positive and strongly significant impact on regular transaction fares but the effect is negative 

on the percentage markup over the legal fare.  

Compared to the dictator transaction results, the interpretation of these findings is not 

straightforward.  In dictator game transactions, the maximum willingness to pay is known 

and held constant at Rupees 150. Hence the correlation of the independent variables with 

dictator transaction fares could be attributed to the effect of these variables on the parameter 

γ . 

In regular fare transactions, on the other hand, the independent variables could vary both with 

the γ parameter as well as auto driver’s perception of the passenger’s willingness to pay as 

well and it is not possible to disentangle these effects. Thus, the higher regular transaction 

fares in the Dictator-First treatment could be because the prior dictator transaction stokes 

opportunism but it is just as likely that it leads the subjects to revise the willingness to pay of 

the passengers. A similar story could be told for the other controls as well. 
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Table 3.6a: Predictors of regular offers 

Dependent 
Variable: 

Regular Prices 

Full Sample 

Least Squares 

(1) 

Full Sample 

Least Squares 

(2) 

Full Sample 

 Least Squares 

(3) 

Gender  

(Male = 1) 

1.8752 2.3954 2.4839 

(1.5223) (1.5119) (1.5502) 

Regular-First -5.3069*** -6.8482*** -6.8310*** 

(1.3677) (1.5798) (1.5601) 

Distance 7.8061*** 6.9669*** 7.4638*** 

(1.4071) (1.4666) (1.5141) 

Second Wave 
 

4.9540** 4.8918** 

  
(1.9953) (2.0290) 

Sunday 
  

-3.4421 

   
(2.3255) 

Monday 
  

2.3254 

   
(2.8176) 

Tuesday 
  

-8.5878 

   
(2.3479) 

Thursday 
  

-0.1560 

   
(2.9005) 

Friday 
  

-5.5372 

   
(2.4663) 

Saturday 
  

-3.3394 

   
(2.6497) 

Constant 29.2703*** 29.9962*** 30.8671*** 

 
(6.9381) (6.9802) (7.2298) 

R-Squared 0.0627 0.0710 0.0930 

   
P Value for 

Joint Significance 
0.0000 0.0000 0.0000 

N 718 718 718 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses 
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Table 3.6b: Predictors of mark-up over the legal fare 

Dependent 
Variable: 

Regular Mark-ups 

Full Sample 

Least Squares 

(1) 

Full Sample 

Least Squares 

(2) 

Full Sample 

 Least Squares 

(3) 

Gender  

(Male = 1) 

0.0463 0.0568* 0.0584* 

(0.0306) (0.0304) (0.0311) 

Regular-First -0.1089*** -0.1400*** -0.1397*** 

(0.0273) (0.0316) (0.0313) 

Distance -0.0516** -0.0686** -0.0582** 

(0.0262) (0.0276) (0.0284) 

Second Wave 
 

0.1000** 0.0988** 

  
(0.0411) (0.0417) 

Sunday 
  

-0.0785 

   
(0.0478) 

Monday 
  

-0.0595 

   
(0.0577) 

Tuesday 
  

-0.1745 

   
(0.0482) 

Thursday 
  

-0.0143 

   
(0.0578) 

Friday 
  

-0.1193 

   
(0.0512) 

Saturday 
  

-0.0744 

   
(0.0544) 

Constant 0.6522*** 0.6668*** 0.6895*** 

 
(0.1314) (0.1323) (0.1378) 

R-Squared 0.0320 0.0407 0.0628 

   
P Value for 

Joint Significance 
0.0000 0.0000 0.0000 

N 718 718 718 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses 

 

 

 



94 

 

3.6.3. Correlation between dictator and regular transaction fares 

Consider the Regular-First treatment. Could the regular transaction fares predict the dictator 

fares in the subsequent transaction? Figure 3.4a shows the scatter of regular and associated 

dictator transactions and a linear plot between the two. The suggestive relation in the figure is 

probed further by a regression of the dictator fare (the second transaction) on the regular 

transaction fare (the prior transaction) as well as other controls. The results are in Tables 3.7a.  

Table 3.7b has the regressions for the case when dictator and regular transactions are in logs.   

We see that regular prices are significant predictors of dictator game quotes. A 10% increase 

in dictator game fares is associated with a 4% increase in regular transaction fares. Figure 

3.4b is the prediction from a semi-parametric regression of dictator transaction fares on 

regular fares (controls other than regular fares enter the function linearly).  This demonstrates 

the positive association between these fares and, therefore, how an auto driver behaves in a 

dictator game can be predicted by how he behaves in a regular transaction. 
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Table 3.7a: Predicting dictator game offers in the Regular-First Treatment 

Dependent 
Variable: 

Dictator Prices 

Sample: 
Regular-First 

Least Squares 

(1) 

Sample: 
Regular-First 

Least Squares 

(2) 

Sample: 
Regular-First 

 Least Squares 

(3) 

Regular Offer 0.4593*** 0.4415** 0.4378** 

(0.1766) (0.1834) (0.1808) 

Distance 12.5058*** 12.5590*** 15.5052*** 

(4.8503) (4.8671) (5.0363) 

Gender  

(Male = 1) 
 

15.1060*** 16.0334*** 

 
(5.8149) (5.7530) 

Sunday 
  

6.4293 

   
(8.5941) 

Monday 
  

21.7770 

   
(9.9382) 

Tuesday 
  

-6.9274 

   
(9.2804) 

Thursday 
  

-2.5750 

   
(10.1478) 

Friday 
  

7.9551 

   
(10.6340) 

Saturday 
  

-0.1286 

   
(9.2821) 

Constant 7.6691 4.1687 -13.7620 

 
(25.3652) (25.5457) (25.7652) 

R-Squared 0.0607 0.0834 0.1135 

   
P Value for 

Joint Significance 
0.0002 0.0001 0.0002 

N 283 283 283 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses. 

 

  



96 

 

Table 3.7b: Predicting dictator game offers in the Regular-First Treatment 

Dependent 
Variable: 

Log(Dictator 
Prices) 

Sample: 
Regular-First 

Least Squares 

(1) 

Sample: 
Regular-First 

Least Squares 

(2) 

Sample: 
Regular-First 

 Least Squares 

(3) 

Log(Regular Offer) 0.4174*** 0.4050*** 0.3958*** 

(0 .1290) (0.1307) (0.1292) 

Distance 0.1316*** 0.1322*** 0.1643*** 

(0.0502) (0.0503) (0.0522) 

Gender  

(Male = 1) 
 

0.1557** 0.1639*** 

 
(0.0613) (0.0606) 

Sunday 
  

0.0758 

   
(0.0904) 

Monday 
  

0.2318 

   
(0.1058) 

Tuesday 
  

-0.0767 

   
(0.1005) 

Thursday 
  

-0.0292 

   
(0.1039) 

Friday 
  

0.0838 

   
(0.1140) 

Saturday 
  

-0.0154 

   
(0.0947) 

Constant 2.1066*** 2.1101*** 1.9533*** 

 
(0.5432) (0.5527) (0.5469) 

R-Squared 0.0793 0.1012 0.1338 

   
P Value for 

Joint Significance 
0.0000 0.0000 0.0002 

N 283 283 283 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses. 
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Figure 3.4b: Dictator game offers can be predicted by regular

transactions (semi-parametric plot)
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Is this true of the reverse as well? Can the dictator game behavior in the Dictator-First 

treatment predict behavior in regular transactions? The scatter plot in Figure 3.5a suggests 

that this could well be the case. 

Table 3.8a: Predicting regular price offers in the Dictator-First Treatment 

Dependent 
Variable: 

‘Regular’ Prices 

Sample: 
Dictator-First 

Least Squares 

(1) 

Sample: 
Dictator-First 

Least Squares 

(2) 

Sample: 
Dictator-First 

 Least Squares 

(3) 

Dictator Game 

Offer 

0.1648*** 0.1607*** 0.1577*** 

(0.0213) (0.0218) (0.0218) 

Distance 6.2466*** 5.5130** 5.5861** 

(1.9972) (2.1969) (2.2032) 

Gender  

(Male = 1) 

1.7276 2.1842 2.2702 

(1.9158) (1.9204) (1.9386) 

Second Wave 
 

2.6922 2.7491 

  
(2.0275) (2.0686) 

Sunday 
  

-0.9176 

   
(3.2343) 

Monday 
  

0.4508 

   
(3.8477) 

Tuesday 
  

-6.2633 

   
(3.1488) 

Thursday 
  

3.4662 

   
(3.7869) 

Friday 
  

-2.7991 

   
(3.3556) 

Saturday 
  

-1.0388 

   
(3.4707) 

Constant 19.5792* 21.7425** 22.7689** 

 
(10.3329) (10.8757) (11.2802) 

R-Squared 0.1703 0.1734 0.1900 

   
P Value for 

Joint Significance 
0.0000 0.0000 0.0000 

N 431 431 431 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses. 
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Table 3.8b: Predicting regular price offers in the Dictator-First Treatment 

Dependent 
Variable: 

Log(‘Regular’ 
Prices) 

Sample: 
Dictator-First 

Least Squares 

(1) 

Sample: 
Dictator-First 

Least Squares 

(2) 

Sample: 
Dictator-First 

 Least Squares 

(3) 

Log(Dictator Game 

Offer) 

0.2162*** 0.2107*** 0.2073*** 

(0.0243) (0.0250) (0.0251) 

Distance 0.0829*** 0.0740*** 0.0746*** 

(0.0252) (0.0275) (0.0275) 

Gender  

(Male = 1) 

0.0273 0.0329 0.0336 

(0.0240) (0.0243) (0.0244) 

Second Wave 
 

0.0328 0.0336 

  
(0.0264) (0.0269) 

Sunday 
  

-0.0133 

   
(0.0405) 

Monday 
  

-0.0050 

   
(0.0472) 

Tuesday 
  

-0.0808 

   
(0.0407) 

Thursday 
  

0.0404 

   
(0.0458) 

Friday 
  

-0.0392 

   
(0.0416) 

Saturday 
  

-0.0212 

   
(0.0432) 

Constant 2.7847*** 2.8301*** 2.8601*** 

 
(0.1647) (0.1754) (0.1805) 

R-Squared 0.1896 0.1924 0.2081 

   

P Value for 
Joint Significance 

0.0000 0.0000 0.0000 

N 431 431 431 
Notes:  a.***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively. The regression results remain unchanged with the inclusion of 
location dummies. 

  b. Robust standard errors reported in parentheses. 

To confirm this, we regress the regular transaction fares of the Dictator-First on the 

associated dictator fares and controls. The results are in Tables 3.8a and 3.8b (where fare 

variables are in logs). We see that the dictator transactions predict regular fares as well. In 

other words, an auto driver’s regular transactional habits can be predicted remarkably well by 
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his responses in the dictator games. This is also shown by the graph (Figure 3.5b) of the 

predicted regular transaction fare from a semi-parametric regression where all controls other 

than the dictator fare of the preceding transaction enter linearly. 

The correlation between dictator and regular transactions (controlling for gender, distance, 

and wave) is consistent with the model in equation (3.1): that individuals trade-off between 

opportunism and compliance to metered fares.  Thus those with higher values of the 

parameter γ choose lower dictator and lower regular transaction fares. It is possible that, in 

the Dictator-First treatment, the higher regular fares follow higher dictator fares because the 

more opportunistic individuals are also more likely to revise upwards the passenger’s 

willingness to pay. Such an effect, however, cannot explain why higher dictator fares (where 

willingness to pay is known and fixed) follow higher regular fares in the Regular-First 

treatment.   

 

3.7. Conclusion 

This paper has reported on a field dictator game experiment with auto taxi drivers of New 

Delhi. The paper uses the dictator game setting to uncover the tension between opportunism 

and compliance to metered fares. This follows recent literature that posits utility functions as 

a sum of sub-utilities deriving from self-interest and from compliance to a social norm (the 

understanding of the latter being a particularly important issue (Guala and Mittone, 2010). It 

may be noted that while a disclosure of the maximum willingness to pay is a relatively rare 

event, auto drivers do, on a regular basis, meet customers who are clueless about the details 

of a transaction. Field experiments sometimes do have a cost of contextualization equivalent 

to making the experiment itself a rare event. For example, how likely is someone to receive a 

sealed cash envelope when the intended recipient is in fact, someone else (see Stoop, 2014)?  
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A testable implication of this model is that opportunism (or pro-social behavior) in dictator 

games would be correlated with opportunism (or pro-social behavior) in real-world 

transactions. The paper demonstrates this correlation in a natural experiment. Although the 

law requires fares to be metered, there is widespread acknowledgement that this is not always 

observed. Nonetheless, our findings show, that a desire to be compliant constrains 

opportunism. Indeed, the opportunism of taxi drivers in the dictator game is less than the 

average opportunism in lab dictator games as summarized by Engel (2011). To be sure, the 

law is not fully effective.  However, neither is it completely ineffective.  

The second significant finding of our experiment is that the costs of opportunism are 

contingent. The literature has emphasized some factors such as social framing and social 

control. Our experiment is in a field setting and therefore there is no variation in social 

framing. Social control is unimportant because transactions are impersonal as one would 

expect in taxi hiring in a large city. The costs of opportunism, if at all, stem from the 

subject’s own private costs of non-compliance and possibly the subject’s perceptions of the 

risks from overcharging (in terms of trouble with police). In this experiment, the willingness 

to depart from metered fares varies systematically with gender of passenger, distance 

travelled, uncompensated inflation and the type of experiment. Depending on the values of 

these variables, subjects are willing to persuade themselves to be opportunistic. 

This research can also be seen as an addition to the literature on experiments in developing 

countries (see Ado and Kurosaki, 2014; Henrich et al, 2006; Henrich et al, 2001), and, by 

extension, the literature that draws a comparison of subject behavior between developing and 

developed countries. For instance, Cardenas and Carpenter (2008), and Henrich and Henrich 

(2007) do a comparison of results in Carpenter et al. (2005); Ashraf et al. (2006); Holm and Danielson 

(2005); Ensminger (2000); Gowdy et al. (2003); and Henrich et al. (2006) among others.  An 

interesting extension of this study would be that of gender effects in a location where there 
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are female cab drivers as well (see Eckel and Grossman, 1998 for gender effects in dictator 

games; see Friesen and Gangadharan, 2012 for gender differences in dishonesty; and see 

Dasgupta, 2011, that interestingly establishes that female dictators are more sensitive to 

variations in entitlement processes). Finally, we connect our research to literature that 

connects behavior in a game to that in the real world (see Charness and Fehr, 2015; Fehr and 

Leibbrandt, 2011; Liu, 2013; and Karlan, 2005). 

Lastly, we would like to point out that Auto-drivers could be opportunistic even in the 

Regular transactions. In the Dictator transactions though, the maximum willingness to pay is 

a reference point for opportunism which is therefore, more socially acceptable in this 

scenario. The costs of deviating from the legal fare on moral grounds in the Regular 

transaction should exceed that in the Dictator transaction. It should be noted that the legal 

implications of over-charging are the same in both transactions. Thus, the moral costs of non-

compliance may vary across transactions. This may be worth exploring in future research 

since the transactions allow for a difference in morality or fairness cost, keeping legal 

compliance costs the same.  
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Chapter 4 

Testing for Fairness in Regulation: Application to the Delhi 

Transportation Market* 

 

4.1. Introduction 

When a regulatory authority steps in to take a decision on any issue raised by two or more 

conflicting groups of individuals, fairness considerations often crop up. For instance, if the 

government decides that construction workers in New Delhi deserve a minimum of just over 

Rupees (Rs.) 200 per day, for all the labour they supply, such a decision is often a result of 

recommendations of task forces or working groups who address several questions which 

revolve around fairness considerations. Questions like – “will it be fair to offer just Rs. 200 to 

an average labourer who runs a family of six under the present inflationary conditions?” are 

often addressed. Assessing the existence of (implicit) fairness considerations in (observed) 

regulatory decisions involve value judgments and renders their econometric testing an open 

question.1 

This paper evaluates real-life transactions in the auto rickshaw (auto hereafter) market 

characterised by regulated prices that are hardly taken seriously. Auto drivers and customers 

choose instead to bargain on the prices among themselves. This is possibly because auto 

drivers do not perceive regulated prices as ‘fair’ and costumers, on recognizing this, are 

                                                        
*This paper is now published in the Journal of Development Studies as: Banerjee, S. (2015). Testing for fairness 

in regulation: Application to the Delhi transportation market. Journal of Development Studies, 51(4): 464-483. 
doi: 10.1080/00220388.2014.963566. 
1
 We are aware of no previous study that examines regulatory interventions on the grounds of fairness. 
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willing to pay higher than legally prescribed rates without complaining, thus adding to 

enforcement related problems. The idea of ‘fairness’ itself, is open to subjective 

interpretation. I formalise the same using Rabin’s, 1993 approach. I examine the historically 

observed regulatory fare hikes in this market and conclude that they are consistent with 

(theoretical) fairness prices that would prevail if each auto driver had some market power but 

valued fairness considerations held by customers. Since the nature of bargaining remains 

unobserved (I do not know what axioms actually characterise the real life negotiations and 

thus make no assumption on the same), I do a robustness check with different models of 

cooperative bargaining to conclusively establish the results. The interested reader could look 

into (experimental) evidence on the validity of such axioms (Nydegger and Owen, 1975).2 

Finally, I make a case for metro rail (metro hereafter) network extension as a direct substitute 

for autos (among other forms of transportation) for increased compliance with legally 

announced fares. While I am not aware of any previous study aimed at empirically evaluating 

regulatory decisions on the grounds of fairness, this work adds to the contributions of 

Chaudhuri and Gangadharan, 2007; and Kahneman et al, 1986, among others that largely 

study the nature of fairness considerations in games of trust and those in varied market 

situations.3 This work also relates to the works of Uchida, 2006; Andreoni and Vesterlund, 

2001; and Comay et al, 1974 among others that focus on the significant determinants of 

bargaining. The point that focuses on the effects of (metro) railway construction can be 

closely related to the works of Banister and Berechman, 2001; and Blum et al, 1997. 

To offer an introductory note to the organisation of our paper, let us think of two periods 1 

and 2, each divided into sub-periods (a) and (b). Then the auto-market story can be 

summarised as follows. 

                                                        
2
 See Moulin, 1988; Roth, 1979; and Thomson, 1994 for more detailed discussions. 

3 More work on fairness is cited in Chaudhuri, 2009, and Moulin, 2003. 
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Period 1(a): Drivers charge price P(1a) > L(1a), the prevailing legal fare. 

Regulation hikes (to prevent bargaining) the legal fare to L(1b) > L(1a). 

Period 1(b): Drivers go by the legal fare L(1b) throughout this sub-period. 

Period 2(a): Drivers charge price P(2a) > L(2a) = L(1b), the prevailing legal fare. 

Regulation hikes (again, to prevent bargaining) the legal fare to L(2b) > L (2a). 

Period 2(b): Drivers go by the legal fare L(2b) throughout this sub-period. 

Using prices P(1a), which are related to L(1a) above, I use different bargaining rules to infer 

valuations W(1a). Using information on W(1a), I work out Rabin’s ‘fair prices’ ZU(1a) and 

ZL(1a), which are respectively the upper and lower bounds for all prices comprising fairness 

equilibria. I argue that the next regulatory hike L(1b), which is not considered in calculating 

W(1a), (and hence the fair prices) above, remarkably lies in the Rabin’s range of fair prices – 

or more specifically, that ZU(1a) > L(1b) > ZL(1a). Similarly, I do the same exercise for 

Period 2 and argue that ZU(2a) > L(2b) > ZL(2a). In other words, the regulatory authority 

does raise fares, but only (and always) subject to fairness considerations held by the 

customers (in the immediate or a recent past). 

 

4.2. The auto-rickshaw market 

The market for autos (three wheelers) services in Delhi, India, presents itself as a prominent 

case of regulation failure. Auto drivers are supposed to charge consumers based on regulated 

fare, which depends on the distance travelled, luggage and time of the day (night rates are 

higher than day rates). This fare is displayed on a taximeter (meter, hereafter) attached to the 

autos. The meter also shows the distance travelled and is supposed to be reset individually for 
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every customer, since different customers have different starting points and destinations and 

accordingly travel different lengths of distance, they therefore, must pay different fares. 

These meters, however, are hardly used by auto drivers and instead, the resultant fares paid 

by customers are pre-negotiated or bargained with these auto drivers before any journey. 

While customers prefer travelling by the meter, they generally give in to the auto drivers’ 

desire for a mark-up over the publicly known legal fare. It is this mark-up (and hence, 

effectively the total price) that the customers and drivers bargain over. 

In a nutshell, although there exists a regulated legal fare, we observe bargaining in this 

market. The customers’ preference to travel on a pre-negotiated basis, over filing complaints 

signals their belief that legal fare rates are perhaps not ‘fair’ to auto drivers (in fact, whatever 

little evidence there is of such complaints, only confirms the fact of poor enforcement). It is 

interesting that although there are over 55,000 autos4 on Delhi roads everyday auto drivers 

hardly compete for customers. They are in fact, known to charge two customers differently 

for exactly the same journey5  – a given customer may also end up paying different amounts 

for the same journey on two different days because (say) on one of the days he may have to 

reach the given destination urgently.6,7 The evidence given by Kahneman et al., 1986 that 

highlights a strong preference for equity, even if it is costly in terms of personal material 

utility, suggests that customers may be willing to pay higher, but uniform amounts rather than 

different amounts even if they could be possibly lower.8 

                                                        
4 This is a number good enough to qualify for perfect competition. However, the negotiated prices are often a 
mark-up on the legal fare, highlighting that Indians are relatively tolerant to corrupt and unjust practises 
(Cameron et al, 2009). 
5 Same journey refers to the same starting point and the same destination (hence the same distance) and during 
the same time interval of the day. 
6 Comay et al, 1974 argues that one’s bargaining ability can be affected by his or her level of impatience. 
7 Babcock, Wang and Lowenstein, 1996, and Frank, 1985, provide similar examples that highlight this issue of 
comparison broadly. In the words of Bohnet and Zeckhauser, 2004, “prospective employees typically do not 
compare their wage (or wage less reservation price) with the surplus the employer reaps from their employ, but 
rather with the wages of similarly suited employees.” We expect customers to do the same. 
8 Bohnet and Zeckhauser, 2004 show that both social comparison and pie-size information substantially increase 
subsequent offers made by proposers in an ultimatum game – the implicit revelation of willingness to pay by a 
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The caps on the maximum number of operational auto licenses during the last ten years, have 

acted as entry barriers. They have been justified on the grounds of increased road congestion 

owing to the rapidly growing population (and hence private vehicles) in Delhi and the work-

in-progress metro constructions (that prohibited driving on certain areas in Delhi) that added 

to the same for the period of focus in this paper.9,10 We expect peoples’ impatience to be 

strictly increasing and convex in elapsed time (Comay et al, 1974) since congestion is an 

economic bad (additionally see Bose, 1996). 

My (elementary) findings suggest that customers, on an average, paid amounts, as high as, 

close to 20% more than the legally accepted fare. In fact, between August 2007 and August 

2008, auto drivers managed to earn well over Rs. 180.00 crores (approx. $46.31 million) 

more than what they could have legally earned (that is, if they had only travelled by the 

meter).  Auto drivers largely come from low income family groups primarily based in Uttar 

Pradesh and Bihar. Not many can afford to buy auto rickshaws and thus take them on rent on 

a daily basis from their actual owners. Before March 2001, however, most of the autos were 

owner driven. A regulation favouring a cleaner fuel (from motor spirit/petrol to Compressed 

Natural Gas (CNG hereafter) during that time required these owners to spend Rs.30,000 for 

retrofitting of their vehicles with CNG kits. 11  The auto owners could not afford these 

expenses on such short notice. Formal credit markets traditionally did not advance loans to 

the auto drivers. Drivers therefore resorted to private financiers who charged high interest 

                                                                                                                                                                            
customer by agreeing to pay higher than the legal fare generates a subsequent ‘norm’ of higher prices. Rejection 
rates of settling on a transaction, however, also get higher since a higher proportion of offers are now perceived 
to be low (by the drivers), even if they are actually higher than prescribed by existing regulation. 
9 “Despite increase in road length, the average speed of vehicles is expected to drop from the existing 15 
kilometre per hour to 10 kilometres per hour in the national Capital by the end of 2011.” – Rajesh Kumar, 
“Average speed of vehicles to drop to 10 km/hr: Report”, June 7, 2010, The Pinoeer.  
(link: http://www.dailypioneer.com/260874/Average-speed-of-vehicles-to-drop-to-10-km/hr-Report.html) 
10 Having more auto rickshaws operating on Delhi roads could only worsen the problem and possibly even 
increase the time an auto driver spends travelling with a particular customer, which means that more time would 
be lost at earning the same amount from the given customer. More time per customer directly translates to lesser 
number of customers per day, and hence lesser daily earnings. 
11 After vacillating for almost two years, the government went about implementing this decision in a haphazard 
and hasty manner. 
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rates. On the non-payment of debt, the drivers were forced to sell their vehicles to private 

financiers who retrofitted the vehicles with CNG kits. These vehicles were then rented back 

to the original owners at exorbitant daily rents in the range of Rs.200.00-250.00, amounting 

to roughly Rs.7, 000 per month.12 Finally, even as late as in March 2007, although the 

marginal fuel cost of every kilometre travelled (CNG expenses not even exceeding Re. 0.70 

per kilometre travelled even after accounting for waiting time, or travel undertaken in search 

for customers)13 was significantly less than the legally prescribed marginal earnings (Rs. 

3.50), the daily rents they paid to auto owners amounted to over 40% of their total daily 

earnings.14 Regulated fares could not match up with rising costs for long. An upward revision 

of regulated auto-fares was put into effect from June 6, 2007 (details in Section 4.5). This led 

drivers and customers to go by the legal fare for just over six months.  Auto drivers again 

largely resorted to bargaining by 2009, and thus on July 1, 2010, legal fares were raised yet 

again (details in Section 4.5). 

I now classify the possible substitutes to the auto (such as public buses, metro, taxis and cycle 

rickshaws) in terms of distance travelled. 

• Short distances (less than five kilometres): The closest substitutes would be buses and 

cycle rickshaws. Both are cheaper than autos. Autos however, offer more comfort in 

terms of space (not crowded, compared with a bus), speed (faster than cycle 

rickshaws and do not have stoppages as buses do), luggage carrying, and even 

customer image.15 

                                                        
12 These rates persisted till mid 2009. Today drivers pay over Rs. 300.00 daily. 
13 “Project Third Wheel: Deregulation of Intermediate Public Transport of Delhi (2009)”; Prabodh, Delhi based 
Liberal youth group working on Governance and livelihood related Public policy reforms. 
14 This excludes the initial costs that were already covered (both legal and illegal) in order to obtain licenses. 
15 A person travelling by an auto may be considered superior to someone else travelling in a bus. Image really 
matters in North India. 



110 

 

• Medium to long distances (five to twenty kilometres): The closest substitutes would be 

public buses and taxis. Even though buses are less costly, the questions of image, 

space and speed remain. Further, there may even not be a direct bus route from one 

destination to another, in which case a customer may need to switch busses. This is 

quite uncomfortable, and more so when one carries luggage. An auto, on the other 

hand, is flexible with routes.  Finally, compared with taxis, autos are way cheaper. 

Although metro rails are cheaper, faster, maintain customer image and are comfortable 

enough, and thus can be called close substitutes, as of 2009, metros were not developed 

enough to cover even half of Delhi. 

 

4.3. Fairness pricing and bounded rationality 

We adopt Rabin’s, 1993, approach to formalizing ideas of ‘fairness’ in player utilities which 

depends on the “following three stylised facts: 

1. People are willing to sacrifice their own material well-being to help those who are 

 being kind. 

2. People are willing to sacrifice their own material well-being to punish those who are 

 being unkind. 

3. Both motivations 1 and 2 above have a greater effect as the material cost of 

 sacrificing becomes smaller.”  

Payoffs are therefore, defined not just over players’ actions, but also their beliefs. Whether an 

action is preferred to an alternative action depends upon 

a. The direct material payoff 
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b. The belief about whether rival players are being harmful or helpful 

c. Whether chosen action helps or hurts rival players. 

For example, let us suppose that a customer finds an auto driver who is more than willing to 

travel to a destination where there are narrow lanes making it inconvenient and time 

consuming for an auto to get in and out. The customer being aware of the auto driver’s option 

to wait (for not so long) for another customer wanting to travel to a more convenient 

destination (and possibly offering a higher payment) forms a belief that the auto driver is 

being kind to him and accordingly finds satisfaction in paying him higher than the legal fare. 

On the other hand, if an auto driver asks for a very high amount for an extremely convenient 

location, then even if it hurts the customer to say no to him, he would (revenge is sweet). 

Rabin’s utility function has two additively separable components – the direct material payoff 

and a fairness function. I defer the introduction to Rabin’s utility specifications to Appendix 

4A and provide an intuition here. 

We recognise that auto drivers would want to act as dictators (monopolists) in this market. 

Customers would also not want to trade on prices perceived as unfair. Thus, I look at two 

pricing rules that treat the auto driver as a dictator, but also require that he values fairness 

considerations held by even the most difficult customer (whom we will later designate as our 

‘critical customer’). 

4.3.1. Determination of fairness prices 

Let L denote the legal fare for the journey and θ be the mark-up on the same. Let W denote 

the valuation of the customer, and F denote the total fuel cost of the travel. I define ‘desired 

price’ p as a strategy of the auto-driver and ‘reservation price’ r of the customer as follows 

p = (1 + θ)L ;  p ∈ ¢L, ¤¥;  r ∈ ¢L, ¤¥ 



112 

 

The game involves the simultaneous determination of p and r. I defer the derivations to 

Appendix 4A and simply state the pricing rules here. The first rule is in the customer’s 

interest that maximises the utility gained by him from deviating from a ‘no travel’ strategy to 

a ‘travel’ strategy. This is given by  

  ZL = L + ¦2(W – L )(L –F)

[2(W – L ) + 1]
        (4.1) 

Apart from this, Rabin himself proposed a solution given by 

 ZU  = ¨2¤2
 –  2WF +F

2(W – F) +1
©  =  ¤ – 

IK + 
IK ª 1

2(W – F) +1
«  (4.2) 

which is the maximum price chargeable to the customer that is consistent with the notion of 

fairness. We call the former in (4.1), the optimal fairness fare, and the latter in (4.2), the 

maximal fairness fare. Note that both L and F (and even W) above are functions of the 

distance travelled. Therefore, both ZL and ZU, above are functions of distance travelled too. 

Intuitively speaking, we model a customer, who decides between taking and not taking the 

trip for each possible price. Thus, one can define a ‘net benefit curve’ or a ‘differential utility 

curve’ (shown in Appendix 4A) that plots the customer’s utility gain from taking the trip 

(over not taking the trip) for each price. At prices just above the legal fare, the customer gains 

more (Rabin’s) utility by offering higher prices. This is because as per Rabin’s framework, he 

is willing to give up some material utility (cash lost) to the auto driver who is being kind to 

the customer (by agreeing to take the customer for only a limited mark-up over the legal fare 

– this is Rabin’s stylized fact 1). But this kindness has a limit (Rabin’s stylized fact 3), since 

the material cost of rewarding the driver’s kindness eventually increases. Thus, the customer 

prefers to pay an amount that balances the material and the kindness considerations. This is 

the optimal fairness fare – the minimum amount the customer is willing to pay to the driver 
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(at lower prices, the customer’s utility will actually fall in Rabin’s framework, due to stylized 

fact 1, because the kindness considerations dominate the monetary considerations). At prices 

higher than the optimal fairness fare, material considerations dominate kindness 

considerations, thus the customer’s utility (from agreeing to travel) diminishes. At the 

maximal fairness fare, the customer is indifferent between travelling and not travelling (net 

benefit is zero). A customer with fairness considerations does not pay anything over this price 

if he travels (so this is the upper bound on the fairness prices). 

We expect the maximal fairness fare to exceed the optimal fairness fare, and hence reject the 

solutions that imply otherwise (we will see later that defining fairness utilities in a dictatorial 

regime that is by definition, not fair, leads to such problems).16 

Now, although we have data on L and F, we do not have information on W. To calculate the 

fair prices in (4.1) and (4.2), one must have information on all the three. In the two sections 

that follow, I first describe the data, and then discuss the process of estimating W.  

 

4.4. Data 

4.4.1. NGO data 

Customers have heterogeneous payoffs (and hence, reservation prices) based on several 

characteristics. Since rental and fuel costs are identical for all drivers, I assume homogeneity 

in their payoff specifications. A study was done by Prabodh (an NGO based in Delhi), for 

purposes not central to this paper. The output was a documentary video of about an hour’s 

                                                        
16 Algebraically there is no reason why maximal fairness fare should always exceed the optimal fairness fare (on 
directly comparing equations (1) and (2) – just by looking at the equations one can possibly say that it may well 
be the other way round for solutions that predict a maximum willingness to pay extremely close to the legal fare. 
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length titled ‘Third Wheel’.17 Data was collected on people who had (active and non-active) 

membership with Prabodh, living in Delhi and have been travelling (frequently or 

infrequently) by autos. These members were not involved with this project in particular. The 

information was collected in two waves, the first of which happened in March 2007 and the 

second happened in March 2008. There was an upward revision in auto fares in between 

(June 2007).  

A total of 126 respondents – 60 men and 66 women in the age group of 21 to 36 years, were 

personally interviewed in each wave. Out of these 126 people from different backgrounds and 

varied personal characteristics, 94 participated in both the waves.18 There were no foreigners.  

 

4.4.2. Information details  

During the interviews, while information on gender, availability of personal vehicle, and 

location of metro stations in the vicinity of residence were easily obtainable, information on 

the frequency of meter travel, and excess paid when not travelling by the meter were difficult 

to get. All respondents were thus asked to take notes for their next ten auto travels from close 

to their places of residence. They were asked to note the number of meter travels (in which 

case they knew the exact legal fare) and the amounts charged when they were not travelling 

by the meter in these ten travels. The excess over the legal fare in the latter case, a priori 

seems very difficult to obtain since, at the first place, if a person does not travel by the meter, 

he will not know what the legal fare should be (let alone the magnitude of the ‘excess’ over 

                                                        
17 A shorter version of this documentary can be accessed through the link 
http://www.youtube.com/watch?v=TVWjuH8p1_Q: the documentary firstly focuses on the troubles faced by the 
general public due to non-compliance with legal fares on the part of the auto drivers – and then suggests that 
auto drivers have to resort to surplus extraction under the existing situation. For the former part, I had informally 
suggested to them that looking into the fraction of times customers manage to travel by the meter would help. 
For this study overall, my contribution was insignificant. 
18 People were asked to report figures for their next ten travels, and did so, on the basis of their auto-travels 
starting from their residence. The metro availability variable (Explained in Table 4.1) therefore remained 
constant for these individuals (0, 1 or 2 throughout the ten observations) for any given wave. 
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the same). Here, three factors had been exploited that led to the accurate collection of data on 

this variable.19 

• First, and most often, when prices are negotiated before any journey, the meter is not 

used, and auto drivers do not care to reset the meter and leave it running. The 

customer can, therefore, read the ‘distance travelled’ displayed on the meter, at the 

start of the journey and compare it with the reading at the end of the journey. The 

exact legal fare is always based on the difference between the two.20 

• This concerns people who take the same route several times (same starting and 

destination points) – travelling even once by the meter lets them know the legal fare 

and draw comparisons with the amounts they end up paying when not travelling by 

the meter. 

• Third (and probably not needed, given the two above), the official website for fare 

calculation gives a fairly accurate idea of the legal fare before one decides to travel.21  

 

The successful generation of data on amounts ‘illegally’ paid by the customers over what is 

required by regulation is the key merit of this dataset that makes it most suited to our purpose. 

It is noteworthy that it would be practically impossible to generate data on ‘illegal’ amounts 

paid over the legal fares were it not for this study undertaken by Prabodh. Table 4.1 

summarizes the information on available variables. 

                                                        
19 This was suggested to all the respondents before they participated. 
20 For instance, if the meter is not reset to zero distance and is left running, any new customer can see the 
distance reading at the start of the journey – suppose this is 11.5 kilometres. Now, if the customer’s destination 
is 5.1 kilometres apart (this is not a priori known to him), the final reading on the meter (after he travels) will be 
16.6 kilometres. The customer can calculate his legal fare based on the difference in these two readings. For 
example, with Rs. 10.00 for the first kilometre and Rs. 4.50 for every subsequent kilometre travelled, the legal 
fare works out to be Rs. 28.45.  
21 The official link when the data was collected was: http://delhigovt.nic.in/autofares/Transport.asp. Now it is 
http://www.taxiautofare.com/. 



116 

 

 

Table 4.1: Description of variables 

Outcome variables 

1. Proportion of Meter Travel 
(ρ) 

Represented as the fraction of times an individual would 
travel by the meter in an auto22 

2. Excess over Legal Fare when 
Not Travelling by Meter (θ) 

Represented as the amount (proportion) an individual will 
end up paying in excess of the legal fare when not 
travelling by the meter  

3. Overall Bargaining Power 
(θac) 

The amount that a customer pays on an average when he 
is legally supposed to pay Re. 1.00 

Explanatory variables (Components of [Xc ⋮ Dc]) 

4. Unempc A dummy taking value 1 if the individual is unemployed 
and 0 otherwise 

5. Metroc The presence of a metro station, coded as 2 if the nearest 
metro station falls within 1 kilometre of residence; 1 if the 
nearest metro station falls within 2 kilometres of 
residence; and 0 otherwise 

6. VecOwnc A dummy taking value 1 if the individual has a vehicle at 
his/her disposal and 0 otherwise 

7. Genderc A dummy taking value 1 if the individual is male and 0 if 
female 

 

Table 4.2: Descriptive statistics 

Variable 2007 

(1) 

2008 

(2) 

1. Total number of respondents 126 126 

2. Number of male respondents (% of total) 60 (47.6%) 60 (47.6%) 

3. Number of unemployed people (% of total) 62 (49.2%) 41 (32.5%) 

4. People living in residences with metro 
stations < 1 km away (% of total) 

10 (0.08%) 15 (11.9%) 

5. People living in residences with metro 
stations < 2 km away (% of total) 

46 (36.5%) 55 (43.6%) 

6. People with vehicle at disposal 32 (25.4%) 53 (42.1%) 

7. Average proportion of meter travel   32.55% 32.47% 

8. Average excess over legal fare when not 
travelling by the meter 

24.09% 23.96% 

9. Average overall excess paid by customers 

(̅ac) 

18.78% 18.39% 

10. Number of women with vehicle at disposal 
(% of total) 

20 (15.9%) 27 (21.42%) 

 

                                                        
22 For example, if a person reported that he managed to travel by the meter six times out of ten, then ρ = 0.6 for 
him. 
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4.4.3. Descriptive statistics 

These have been summarised in Tables 4.2, 4.3 and 4.4. The average proportion of meter 

travel, and the average excess paid over the legal fare largely remained constant during the 

two periods. We immediately see that the meter is not used in about two-thirds of the 

transactions and in such cases, the auto drivers manage to charge a mark-up of about one-

fourth of the legal fare. In tables 4.3 and 4.4, we look at the determinants of both meter travel 

and the mark-up over the legal fare. 

 

Table 4.3: Determinants of meter travel and negotiated fare in 2007 

 

Dependent 
Variable:  

Proportion of  
Meter Travel = ρ 
(Least Squares) 

Dependent 
Variable:  

Proportion of  
Meter Travel = ρ 

(Probit) 

Dependent Variable: 
Excess over Legal Fare 
when Not Travelling by 

Meter = θ  

(Least Squares) 

2007 (1) (2) (3) 

Unemp 0.1150** 1.2003*** -0.0346* 

(0.0470) (0.3335) (0.0188) 

Gender -0.0480 -0.1495 0.0184 

(0.0432) (0.2946) (0.0166) 

VecOwn 0.02391 0.2655 -0.0016 

(0.0514) (0.3162) (0.0213) 

Metro 0.2149*** 0.5809** -0.0741*** 

(0.0385) (0.2483) (0.0152) 

Constant 0.1901*** 0.3314 0.2826*** 

(0.0474) (0.2663) (0.0210) 

R-Squared 0.3300 - 0.2737 

   
Pseudo-R 
Squared 

- 0.1686 - 

   
P Value for 

Joint 
Significance 

0.0000 0.0001 0.0000 

N 126 126 126 
Source:  Prabodh (2009a) 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively 
  b. Robust standard errors reported in parentheses 
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Table 4.4: Determinants of meter travel and negotiated fare in 2008 

 

Dependent 
Variable:  

Proportion of  
Meter Travel = ρ 
(Least Squares) 

Dependent 
Variable:  

Proportion of  
Meter Travel = ρ 

(Probit) 

Dependent Variable: 
Excess over Legal Fare 
when Not Travelling by 

Meter = θ 

(Least Squares) 

2008 (1) (2) (3) 

Unemp 0.0793* 0.5406* 0.0002 

(0.0454) (0.3277) (0.0187) 

Gender -0.0701* -0.2193 0.0178 

(0.0423) (0.2820) (0.0172) 

VecOwn 0.0043 -0.0729 -0.0002 

(0.0459) (0.2742) (0.0186) 

Metro 0.1439*** 0.1875 -0.0585*** 

(0.0309) (0.1837) (0.0132) 

Constant 0.2504*** 0.9725*** 0.2636*** 

(0.0477) (0.2979) (0.0198) 

R-Squared 0.1844 - 0.1654 

   
Pseudo-R 
Squared 

- 0.0402 - 

   
P Value for 

Joint 
Significance 

0.0000 0.2817 0.0005 

N 126 126 126 
Source:  Prabodh (2009a) 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively 

  b. Robust standard errors reported in parentheses 

 

Employment status and metro availability strongly influenced both, excess paid over the legal 

fare when not travelling by the meter and probability of meter travel for both the years. While 

gender does not seem to be an important factor in 2007, women did end up travelling by the 

meter 7% more than men in 2008. Whether or not a vehicle is owned by an individual hardly 

matters in any negotiation.23 Kurosaki (2012) studies metro-effects on cycle rickshaw rents.  

                                                        
23 This will be explained in the notation of what follows. Although our theoretical specification allows for just 
one substitute, I have included both availability of metros nearby and vehicle ownership to ensure robustness in 
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4.5. Empirical strategy 

4.5.1. The framework 

In what follows, I index auto-drivers with the letter a, and customers with the letter c. The 

market is characterised by one time transactions – a given customer will, with high 

probability not meet the same auto driver again. An auto driver a is supposed to charge a 

customer c based on regulated (legal) fare depending on the total distance travelled k (in 

kilometres), displayed on the meter as follows 

L(k)   = sq + t(k – q)        

where, s is the down-payment for the first q kilometres, and t is the amount paid for every 

subsequent kilometre travelled by the customer. Table 4.5 below displays the fare structure 

during the period 2007 to 2010. 

  

Table 4.5: Past revisions in regulated fare 

Period 

Down-payment 

applicability 

‘q’ (kms) 

Down-payment 

‘s’ (Rs.) 

Rate-per-kilometre 

subsequently travelled 

‘t’ (Rs.) 

Before June 2007 First kilometre 8.00 3.50 

June 2007 to July 2010 First kilometre 10.00 4.50 

After July 2010 First two kilometres 19.00 6.50 

 

                                                                                                                                                                            
the regressions. The insignificance of vehicle ownership (VecOwnc) means that its coefficient γv = 0 and hence 
γvVecOwnc = 0, and disagreement, Dc = max{0, γmMetroc} where Metroc represents the existence of a metro 
station nearby. Thus the closest substitute Sc = Metroc and γsSc  =  γmMetroc (meaning that metro is the stronger 
substitute). 



120 

 

We are interested in the period before July 2010. Although fuel costs f per kilometre (f = F/k) 

were very low, even after accounting for waiting/search time (about Rs. 0.60 according to the 

in-house research by Prabodh, 2009a), the daily rents (for a 12 hour period) auto-drivers paid 

to auto owners were very high. Suppose that customer c manages to travel by the meter only 

a fraction ρ times, and pays a mark-up θ over the legal fare in the remaining (1 – ρ) fraction 

of total auto travels. An auto driver’s expected earnings on any given travel with this 

customer is 

Πa = ρ[L(k) – fk] + (1 – ρ)[(1 + θ)L(k) – fk] = [1 + (1 – ρ)θ]L(k) – fk 

Let θac = (1 – ρ)θ be the expected mark-up, so that 

Πa = (1 + θac)L(k) – fk       (4.3) 

where θac
24 is the bargaining solution we observe (on an average) that is the mutually agreed 

upon (average) mark-up over the legal fare L(k). Clearly, auto drivers do not want to travel by 

the meter, since otherwise, θac equals zero. The earnings, by an auto driver from any given 

customer monotonically increases in θac, but only up to a point where the product (1+θac)L(k) 

equals Wc, the customer’s valuation. I now state a few assumptions. 

Assumption 1: I assume that θ (and hence θac) is independent of k for two reasons. First, the 

decision on the final amount a customer pays, (which ultimately comes down to deciding θac) 

is only taken after the distance to be travelled is exogenously given, so it is fixed. Thus θac 

can vary although k is fixed (the customer obviously knows where he wants to go and the 

driver takes that as given). Second, it maintains the possibility that a customer who travels a 

lesser distance than another customer with a given auto driver can actually end up paying 

substantially higher. The only restriction on θac is that it be non-negative.   

                                                        
24 This term is subscripted by ‘ac’ to denote that it is a result of (average) bargaining between both the auto-
driver and the customer. 
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In order to determine fairness prices (4.1) and (4.2), we need information on the legal fare, 

costs and valuation. While there is data available on costs, valuation remains unobserved. I 

make the following assumption based on the works cited in the introduction to add to the 

existing body of research. 

Assumption 2: I take Wc to depend on factors such as one’s gender (from experimental 

evidence, women tend to trust less and hence bargain more than men);25 employment status 

(those unemployed, have a greater incentive to bargain) and so forth. This is summarized in 

Xc. Wc increases in the distance travelled (Table 4.1 presents a summary of the explanatory 

variables). I further assume that the determinants of valuation assume the following form26 

Wc = αk + Xcα + νc        (4.4) 

where αk is a representative constant for a given distance k for every customer. The valuations 

of different customers hover around this representative constant, depending on their 

characteristics summarised by the components of the vector Xc (which does not include the 

constant of regression). α is the vector of parameters and νc is a customer (or a transaction) 

specific error term. 

In order to know the important determinants of valuation in (4.4), we must know which 

components of αααα are significant. We cannot, however, directly estimate αααα since the left hand 

side of (4.4) is unobserved. I use theoretical bargaining solutions as in Thomson, 1994 that 

lead to structural equations from which αααα can be recovered. In what follows, I specifically use 

the Nash, 1950 solution to explain the process of calculating costumer valuation. 

                                                        
25 See Chaudhuri and Gangadharan, 2007, and Andreoni and Vesterlund, 2001. Additionally, this equation may 
capture the fact that there could be gender differences in reactions to corrupt and unjust behaviour (see Alatas et 
al. 2009. Women for instance, may be willing to pay less to auto drivers who often loot people. Dasgupta and 
Menon (2011) report that economics majors (male or female) tend to deviate from trustworthiness while sticking 
to trusting actions like others. 
26 This is different from the idea of Karni and Safra, 2002 who look into a ‘hexagon condition’ implying the 
additive seperability of components of utility. We have already used this condition at the stage in the 
construction of Rabin utilities where the material and the moral value components are additively separable.  
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Firstly, we discuss the role of outside options. To ease our formulation, I normalise any given 

auto driver’s disagreement payoff to zero. The customer’s disagreement payoff equation can 

be defined as follows (see footnote 22) 

 Dc = γsSc  = max[γvVecOwnc; γmMetroc] 

Where Metroc denotes the presence of a metro station in a nearby area and VecOwnc denotes 

ownership of a vehicle (as in Table 4.1).27 To offer an explanation, if a person has no 

substitutes available nearby, then both VecOwnc and Metroc are equal to zero – hence his 

disagreement payoff will also be zero. On the other hand, if a customer has both the options, 

then he would settle for that which gives him the higher payoff (on choosing not to transact 

with the auto driver in question). The (material) payoff to the customer is given by the 

difference between his valuation and what he actually ends up paying 

Πc =  Wc – (1 + θac)L(k)        (4.5) 

The payoff specifications in (4.3) and (4.5) justify the idea of treating auto drivers as 

homogenous and customers as heterogeneous.28 

4.5.2. Estimation of valuation using the Nash solution 

Figure 4.1 illustrates the payoff frontier assuming (at the moment just to keep the discussion 

simple), zero disagreement payoffs for both the customer and the auto driver. The vertical 

axis measures the (material) payoff to the customer (Πc) and the horizontal axis measures that 

of the auto driver (Πa). The total surplus (the difference between the valuation of the 

customer and the fuel costs incurred by the auto driver) is to be distributed among them with 

                                                        
27 Sc = VecOwnc if s = v (so that γsSc = γvVecOwnc) and Sc = Metroc if s = m (so that γsSc  =  γmMetroc); the letter 

S denotes substitute. 
28 This is a fairly reasonable assumption, even if one takes into account that there are auto-drivers (very few of 
them) who own their autos and do not take them on a daily rent basis. It is, in fact in their interest to overcharge 
their customers at rates charged by those who do not own autos. Overcharged rates act as ‘focal points’ (Knittel 
and Stango, 2003) for those who drive self-owned autos.  
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the constraint that the auto driver earns a minimum of L(k) from the transaction. Formally, 

the boundary of the utility frontier has the following equation. 

 Πa + Πc = Wc – fk ; Πa ≥ L(k) – fk     (4.6) 

For a given distance, the customer and the auto driver distribute a surplus equivalent to the 

difference between the customer’s maximum willingness to pay and the driver’s fuel costs of 

travel. The driver is guaranteed a minimum legal payoff defined by regulation which also 

puts a cap on the customer’s payoff. 

Figure 4.1: The feasible set.

Πc

Πa

Wc – fk

Wc – L(k)

Lk – fk

45o

 

The Nash bargaining solution can be characterised by the following formulation. 

Maximize: Πa(Πc – Dc) with respect to θac     (4.7) 

Using (4.3) and (4.5) we work out the first order condition of (4.7) above as follows  

 (1 + θac) = 
Wc  – Dc +°k2L(k)  
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Using (4.4) to replace Wc above by αk + Xcα + νc along with the disagreement equation in the 

above expression and rearranging the terms, gives us 

 (1 + θac) = (αk + °k2L(k) )±²³²́β0
 + Xc( αααα2L(k))±²³²́ββββ

 – ( γs2L(k))±²³²́μS
Sc + 

νc2L(k)±³́ηc
    (4.8)29 

This leads us to the following structural equation depicting the average mark-up as a function 

of determinants of valuation and the availability of substitutes. 

 (1 + θac) = β0 + Xcβ + μsSc + ηc      (4.9) 

Note that (4.9) above is estimable, since both the left and the right hand sides are observable. 

After observing βº0, »¼ and μ½s, we invert the explicitly stated relations in (4.8) above to arrive 

at �½k, �½s, and the ¾¿ vector as follows. 

 �½k = 2βº0L(k) – °k ; �½s = –2μ½sL(k) ;  and ¾¿ = (2L(k))»¼  (4.10)   

We finally write customer valuation (using (4.4)) explicitly as a function of distance k. 

 ¤¼ c = �½k + Xc¾¿          (4.11) 

We repeat the above process for the Kalai-Smorodinski, 1975 (KS hereafter); Egalitarian; 

Dictatorial (either player could become a dictator); Raiffa, 1953; Equal Area (EA hereafter); 

and the Yu (1973) solutions. Each gives us a specific functional form of Wc. Clearly, focusing 

only on the Nash solution is not enough for the purposes of this paper since we do not know 

the axioms that actually govern negotiation in this market. In the words of Thomson, 1994, 

for example, “the crucial axiom on which Nash had based his characterization requires that 

the solution outcome be unaffected by certain contractions of the feasible set, corresponding 

to the elimination of some of the options initially available ... but this independence is often 

                                                        
29 Note that α is a vector. The expression (

α

L(k)
) only means that each component of the α vector is getting 

divided by L(k) 
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not fully justified.” The non-binding legal constraint (Πa ≥ L(k) – fk) acts as such a 

contraction, the very existence of which may influence bargaining solutions. So we look at 

theoretical models that explicitly take this into account for robustness in our results.30,31 

Table 4.6: Estimation of structural equations (2007) 

 Type 1:  
Nash-Egalitarian, 

Dictatorial, Raiffa and Yu 
Solutions 

Type 2: 
Kalai-Smorodinski 

Solution 

Type 3:  
Equal Area 

Solution 

2007 (1) (2) (3) 

Unemp 

 

-0.0557* 
(0.0306) 

-0.1268 
 (0.0767) 

-0.1421 
(0.0894) 

Gender 

 

0.0164 
(0.0302) 

0.0494 
(0.0764) 

0.0606 
(0.0892) 

VecOwn 

 

  0.0369 
(0.0352) 

 0.1009 
(0.0866) 

0.1212 
(0.1002) 

Metro 

 

-0.0779** 
(0.0393) 

 -0.2108** 
(0.1023) 

-0.2500** 
(0.1203) 

Constant 
 

1.2396*** 
(0.0325) 

1.7307*** 
(0.0805) 

1.8893*** 
(0.0933) 

R-Squared 0.3334 0.3418  0.3438 

Implied 
RMSE in 

Appendix 4C 

0.2622 (against Type 2) 
0.3085 (against Type 3) 

0.2597  
0.3045 

Implied 
RMSE in 

Appendix 4D 

0.1019 0.1017 
(implied) 

0.0991 
(implied) 

P-value for 
joint 

Significance 

 0.0000 0.0000   0.0000 

N  126  126  126 

Source:  Prabodh (2009a) 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively 
  b. Robust standard errors reported in parentheses 
  c. Unemp*Gender has been dropped because of high multicollinearity with both U and G 

d. Constant (fk/L(k)) is taken at the limiting value of 0.143. Regression coefficients are largely 
insensitive to changes in this constant (for Kalai-Smorodinski and Equal Area solutions) 
e. To ensure robustness in regression results, the regressions shown above account for all 
possible interaction terms among the variables represented by the X vector in Appendices 4C 
and 4D. 

 

                                                        
30 The KS solution for instance points out that the existence of a legal constraint, although non-binding may lead 
to a change in the optimal solution. People may not go by the legal fare but acknowledge its presence and hence 
form their expectations accordingly. 
31 The derivations for other solutions can be made available upon request. 
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Table 4.7: Estimation of structural equations (2008) 

 Type 1:  
Nash-Egalitarian, 

Dictatorial, Raiffa and Yu 
Solutions 

Type 2: 
Kalai-Smorodinski 

Solution 

Type 3:  
Equal Area 

Solution 

2008 (1) (2) (3) 

Unemp 

 

  0.0135 
(0.0352) 

0.0434 
(0.0893) 

0.0546 
(0.1044) 

Gender 

 

0.0168 
(0.0372) 

0.0602 
(0.0935) 

0.0769 
(0.1090) 

VecOwn 

 

0.0171 
(0.0349) 

0.0614 
(0.0870) 

0.0785 
(0.1012) 

Metro 

 

-0.0762*** 
(0.0284) 

-0.2052*** 
(0.0747) 

-0. 2434*** 
(0.0882) 

GenderMetro 

 

0.0514* 
(0.0276) 

0.1420** 
(0.0711) 

0.1699** 
(0.0836) 

Constant 
 

1.2131*** 
(0.0318) 

1.6676*** 
(0.0800) 

1.8175*** 
(0.09323) 

R-Squared 0.2072 0.2243 0.2290 

Implied 
RMSE in 

Appendix 4C 

0.2743 (against Type 2) 
0.3227 (against Type 3) 

0.2724  
0.3193 

Implied 
RMSE in 

Appendix 4D 

0.1066 0.1067 
(implied) 

0.1069 
(implied) 

P-value for 
joint 

Significance 

 0.0000 0.0000   0.0000 

N  126  126  126 

Source:  Prabodh (2009a) 

Notes:  a.
 ***, **, * mark out coefficients that are significant at 1, 5 and 10 percent levels of 

significance respectively 
  b. Robust standard errors reported in parentheses 

c. Constant (fk/L(k)) is taken at the limiting value of 0.133. Regression coefficients are largely 
insensitive to changes in this constant (for Kalai-Smorodinski and Equal Area solutions) 
d. To ensure robustness in regression results, the regressions shown above account for all 
possible interaction terms among the variables represented by the X vector in Appendices 4C 
and 4D. 

 

In general, I arrive at three classes (types) of reduced-form equations (based on the 

transformations of the mark-up - our left-hand-side) that encompass all the above mentioned 

solutions. Specifically, apart from the KS (Type 2, shown in Appendix 4B) and the EA (Type 

3) solutions, all the remaining solutions are structurally indistinguishable from that implied 
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by the Nash solution (Type 1) above (shown in (4.9)). The results of these regressions are 

presented in Tables 4.6 (for 2007) and 4.7 (for 2008). 

We get a distribution of W¼ c functions (of distance travelled) for different individuals based on 

observed characteristics. I thus, formally define the critical customer, as the person whose 

willingness to pay is the least when compared with that of individuals with characteristics 

different from his (or her). Thus the critical customer is the most difficult customer with the 

maximum incentive to bargain. I denote his valuation by ¤[∗
 (= W( ÁÂ∗ )). The prices 

considered as ‘fair’ by the critical customer will suit all the other individuals who (by 

definition) have higher valuations. This is in line with the objective that any new fairness 

pricing rule will not exclude any of the existing customers from the market – or on a less 

ambitious note, the number of customers who exit the market (because their valuation will be 

lower than the newly announced fare) will be a bare minimum. 

 

4.6. Results and discussion 

I now use the regression results (the coefficient signs) to identify the critical customer and 

instead of calculating valuation, I work out his maximum willingness to pay (as a function of 

distance) for each year.32 I then discuss the idea of fair prices based on them. Before we step 

further, it is important to note that the hypothesis of a dictatorship regime where the customer 

is the dictator (say Type 4) can simply be ignored by rejecting the null θac = 0, for both the 

years (θÄac = 0.188 for 2007, and θÄac = 0.184 for 2008). 

 

                                                        
32  Although the existence of metro stations nearby should not affect valuation, it does affect maximum 
willingness to pay. The process of arriving at the willingness to pay function is discussed in footnote 33. I define 
our critical customer accordingly. 
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4.6.1. Maximum willingness to pay and fair prices in 2007 

Based on the regression results in Table 4.6, it is easy to identify that our critical customer is 

an unemployed female citizen (Unemp
*
 = 1; and Gender

*
 = 0) with a metro station nearby 

(Metro* = 2). I use a conservative (10%) significance rule to specify the ¾¿ vector and using 

(4.11) I estimate maximum willingness to pay for the critical customer for different solutions 

and plot the same in Figures 4.2 and 4.3 (for type 1 and types 2 and 3 respectively).33 Legal 

Fare (2007) in the figures refers to the regulatory fares prevalent during March 2007 (the first 

wave), that is before the hike of June 2007. 

Unemployment seems to be a significant variable as far as type 1 solutions are concerned, 

while it is not significant as far as the KS and the EA solutions go (Table 4.6). With the 

evidence we have, those employed paid, on an average, 5.5% more than those unemployed. 

Gender did not seem to be an important determinant of bargaining power. Vehicle ownership 

is not important either. This makes sense, for, while a person is negotiating with an auto 

driver, he does not really think much about the vehicle he has left home. Finally, metro seems 

to play an important role in determining negotiated fares (hence Metro (and not VecOwn) in 

Table 4.1 represents our disagreement point). Those with metros in the vicinity of a kilometre 

paid on an average, over 15% less than those who did not have metro nearby. While Figures 

4.2 and 4.3 represent the maximum willingness to pay of the critical customer, I have 

intentionally presented the overall average observed negotiation for different distances (θÄac = 

0.188 for 2007, but θÄ* = 0.027 for the critical customer in 2007). This is because if the critical 

customer’s maximum willingness to pay is exceeded by the (average) observed transactions 

(in March 2007) then any upward revision in auto fares based on the latter would necessarily 

leave the critical customer out of the market after the hike (in June 2007). 

                                                        
33 Here, keeping in mind that our critical customer is the person who has the maximum incentive to bargain, we 
also put Metro* = 2, and augment it in our valuation function (i.e we use [Xc ⋮ Dc] instead of Xc) and call it the 
willingness to pay function. This willingness to pay function is the one plotted in the diagrams.  
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Figure.4.2: Type 1 Solutions: (a) Nash; (b) Dictatorial; (c) Raiffa (discrete); and (d) Yu

Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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Figure 4.3: Type 2 and 3 Solutions: (a) Kalai-Smorodinski (Type 2); and (b) Equal Area

(Type 3) Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

Legal Fare (2007)

Observed (average) Negotiation

Maximum Willingness to Pay

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

Legal Fare (2007)

Observed (average) Negotiation

Maximum Willingness to Pay

(a) (b)

 



130 

 

Figure 4.4: Type 1 Pricing Rules: (a) Nash; (b) Dictatorial; (c) Raiffa (discrete); and (d)

Yu Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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Figure 4.5: Type 2 and 3 Pricing Rules: (a) Kalai-Smorodinski (Type 2); and (b) Equal

Area (Type 3) Solutions – horizontal axis is measured in kilometres and vertical axis in

Rs.
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Models that predict a maximum willingness to pay very close to (albeit higher than) the legal 

fare, run the risk of a contradiction – that the (current) legal fare might exceed the maximal 

fairness fare, in which case, the very critical customer we have identified from existing data 

should not  have been observed in the market at the first place.34 Even if a solution escapes 

this contradiction (when the maximal fairness fare marginally exceeds the legal fare), it may 

fall into yet another trap – the optimal fairness fare in (4.1) is notably higher than the legal 

fare, and may thus exceed the maximal fairness fare. We reject such solutions (the likely 

candidates are the dictatorial and the Yu solutions). 

We now look into the optimal fairness and the maximal fairness pricing rules and compare 

them with the related revised regulatory fare (the hike in June 2007) which we call as Legal 

Fare (2008) since these fares lasted throughout 2008 (and even 2009 – the next revision was 

in 2010) for each bargaining solution (Figure 4.4 for Type 1 solutions and Figure 4.5 for 

Type 2 and 3 solutions). We see in Figure 4.4 that optimal fairness fares do exceed the 

maximal fairness fares implied by the dictatorial and the Yu solutions. I therefore reject those 

solutions and focus on the Nash, Raiffa, KS and the EA solutions. We arrive at the interesting 

result that although these solutions differ substantially in their prediction of maximum 

willingness to pay, all of them individually generate fairness zones bounded by (4.1) and 

(4.2) such that the newly announced fare hike lies within these zones. 

Testing for fairness: I test the null hypothesis, that the regulatory hike was fair, against the 

alternative that it was not, using the following rule.  

 Accept Null if: Optimal Fairness Fare ≤ Legal Fare (2008) ≤ Maximal Fairness Fare 

 Do Not Accept Otherwise. 

                                                        
34 Remember that the maximal fairness fare here, is that of the critical customer. So if the legal fare exceeds the 
maximum fare that our critical customer feels is fair, then our critical customer would not avail auto services in 
the first place. 
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I infer that the actual legal fare raised by regulation can be deemed ‘fair’ since it lies in the 

region bounded by the optimal and the maximal fairness prices (the fairness zone). The raise 

in the legal fare is closer to the maximal fair pricing rule suggesting a greater weight (68%) is 

put on the needs of the auto drivers (customers would prefer optimal fairness pricing). 

We cannot directly employ the RMSE 35  rule for robustness here since the dependent 

variables are different for all the types (1, 2 and 3) of structural equations. In Appendices 4C 

and 4D, I explain the methods involving appropriate inversions to arrive at comparable 

residuals for the three types. The EA solution that (although very marginally) seems to best 

explain the customer-driver bargaining story gives us some insight on certain aspects of 

negotiation. The customer perhaps thinks in terms of the surplus he would be willing to give 

up rather than his maximum gain from a negotiation. Based on this, the maximal fairness fare 

rule suggests Rs. 10.50 as a down-payment for the first kilometre and Rs. 4.80 for every 

subsequent kilometre travelled. The actual legal fare was raised to Rs. 10.00 for the first 

kilometre and Rs. 4.50 for every subsequent kilometre travelled (Legal Fare 2008). The 

maximal fairness pricing rule implied by the KS solution (Rs. 10.00 for the first kilometre 

and Rs. 4.60 for every successive kilometre) seems to best fit the actual (next) legal fare 

raise.36 

4.6.2. Maximum willingness to pay and fair prices in 2008 

Again, the critical customer is a female with a metro nearby (Table 4.7). The maximum 

willingness to pay is plotted using (4.11) in Figures 4.6 and 4.7 (for type 1, and types 2 and 3 

respectively). Unemployment is no longer significant. Gender and vehicle ownership, 

continue to remain unimportant determinants of negotiated prices, although, females seem to 

                                                        
35 Kadiyali, 1996  for example, in her paper looking into market characteristics as determinants of entry and exit 
in the photographic film industry uses the criterion of the lowest minimised sum of squared errors to identify the 
market regime (among various market structures) in the post entry period. 
36 It suggests an almost 90% weight on the auto-driver’s preferences and only 10% weight on customers’ 
preferences. 
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capitalise on the presence of metros more than males (the interaction term is significant). 

Those with metros in the vicinity of a kilometre paid yet again on an average, over 15% less 

than those who did not have a metro station nearby. The dictatorial and the Yu solutions 

remain problematic for the reasons mentioned before. Figures 4.8 and 4.9 represent the 

maximal and the optimal pricing rules implied by each bargaining regime. None of the types 

significantly explains the customer-driver bargaining story better than the others (Table 4.7 

reports mixed results based on the methods in Appendices 4C and 4D). Using the same 

testing rule as in the previous subsection, one would infer that the fare hike cannot be 

considered fair since it even exceeds the maximal pricing rule for most bargaining solutions 

(Nash and Raiffa are exceptions) suggesting a more than 100% weight (about 142%) put on 

the needs of the auto drivers. There is, however, a caveat that comes with such an inference. 

We need to recognise that while the survey period March 2007 was closer to the next hike 

(three months from then), March 2008 (our next wave) is distant from the next hike (in 2010, 

over two years from then). Rents have risen and so have fuel costs before and during 2010. 

The maximum willingness to pay curve (and hence the fairness pricing curves) may have 

shifted upwards during the two years before the next hike was announced. Thus we may 

actually consider the newly revised prices to be ‘fair’. Current Legal Fare refers to the hike 

announced in July 2010. The EA solution suggests Rs. 19.00 as a down-payment for the first 

two kilometres and Rs. 6.00 for every subsequent kilometre travelled. The actual legal fare 

has been raised to Rs. 19.00 for the first two kilometres and Rs. 6.50 for every subsequent 

kilometre travelled. The additional Rs. 0.50 may very well be attributable to the additional 

changes in rent and fuel costs mentioned previously.  
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Figure 4.6: Type 1 Solutions: (a) Nash; (b) Dictatorial; (c) Raiffa (discrete); and (d) Yu

Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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Figure 4.7: Type 2 and 3 Solutions: (a) Kalai-Smorodinski (Type 2); and (b) Equal Area

(Type 3) Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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Figure 4.8: Type 1 Pricing Rules: (a) Nash; (b) Dictatorial; (c) Raiffa (discrete); and (d)

Yu Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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Figure 4.9: Type 2 and 3 Pricing Rules: (a) Kalai-Smorodinski (Type 2); and (b) Equal Area

(Type 3) Solutions – horizontal axis is measured in kilometres and vertical axis in Rs.
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4.7. Conclusion 

This paper focuses on the possibility that fairness considerations could influence regulatory 

decisions. In the implicit discussion on the determinants of bargaining power, there is some 

evidence that those unemployed, perhaps, tend to haggle more and hence end up with better 

deals. This paper also makes a case for better connectivity enhanced by metro rail 

construction by providing evidence that it acts as a strong substitute to auto rickshaws. The 

effect of metro construction has been significant in bringing down negotiated auto prices 

closer to existing regulated fares. 

I have abstracted away from driver heterogeneity and have capitalised on the theoretical 

setting based on identical material utilities. This is because the unit of observation in the 

available data is the customer. However, the observed behaviour of the drivers in this market 

– that everyone prefers to haggle for a mark-up over the legal fare, is explained and justified 

well by our theoretical setting. The only source of heterogeneity on the customers’ side is 

their individual characteristics. Although this is not a central point, the results may be better 

interpreted with the additional assumption that each customer takes the same route ten times, 

and the excesses he pays over the legal fare when not travelling by the meter is averaged out. 

In general, this may not be true since two different places of destination from the same origin 

(the individual’s residence here) will involve travelling different distances and hence 

different legal fares (and possibly different bargaining positions). Fortunately, as I have 

demonstrated, it is sufficient to deal with data on just the mark-up levels as proportions of the 

legal fare (rather than the absolute values of the mark-ups), for the purposes central to this 

research. While some people did report these figures (on actual distances covered, time of the 

day, destination and so forth) for each travel, information on them remained scanty (since 

they were not required for the original purpose). Some element of heterogeneity in the factors 

mentioned above would have given us more flexibility in terms of modelling individual 
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transactions – more data is obviously better, for it leads to more information (for example, 

data on income level, time of transaction among other details, although such determinants of 

bargaining outcomes were not the key focus areas of this paper). One must, however, 

acknowledge the merit in the available data that, in my belief, overcomes the loss of 

heterogeneity – this is the only data source I am aware of that documents illegal (or more 

aptly, ‘not-legal’) payments to a great degree of accuracy stemming from the information and 

the data collection strategy. 

For future research, the question addressed in this chapter can directly extend to the cycle-

rickshaw market. It will be interesting to address what price, for instance, can be deemed 

‘fair’ for a given distance. It is worth noting that there is no well-defined legal fare and the 

travel distance is not measured automatically for cycle rickshaw pullers (see Hyodo et al 

2011, where GPS details of all services were recorded in a day by cycle rickshaws in Dhaka, 

in order to facilitate research by observing travel distance). So far, all the research on the 

cycle rickshaw markets focuses on the rental payments made by cycle rickshaw pullers to the 

owners of cycle rickshaws (see Kurosaki, 2012; Kurosaki et al, 2012; and Jain and Sood, 

2012). One of the points made in this research, that the negotiated fares are lower near metro 

stations, compared with the finding of Kurosaki (2012), that the gross earnings of cycle 

rickshaw pullers are higher near metro stations suggests that auto taxi services are substitutes 

to metro railways whereas, cycle rickshaws are compliments to them.  
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Appendices to Chapter 4 

Appendix 4A: Derivation of Rabin Fairness Utilities 

 

Introduction to Rabin’s Framework: 

Let ai ∈ Ai be a strategy for player i, and a = {a1, a2}. bi ∈ Ai is player j’s belief about player 

i’s strategy. ci ∈ Ai is player i’s belief about what player j believes about player i’s strategy. A 

strategy a ∈ A is a fairness equilibrium if for i = 1, 2 if 

 ai ∈ ��� D�Hai ∈ Ai Ui (ai, aj, bj, ci) and ai = bi = ci 

We define the following payoffs given that player i plays ai and believes that player j will 

play bj 

 Πj (bj, ai) = player j’s payoff if j plays strategy bj and i plays strategy ai 

 Æ	Ç(bj) = player j’s highest payoff if j plays strategy bj 

 Æ	È(bj) = player j’s lowest Pareto efficient payoff if j plays strategy bj 

 Æ	É(bj) = [Æ	Ç(bj) + Æ	È(bj)]/2 is player j’s equitable payoff 

 Æ	ÊJR(bj) = player j’s worst possible payoff if j plays strategy bj 

Player i’s kindness to player j is given by 

 Fi(ai, bj) =  Πj (bj, ai) – Πj
e
(bj)

Πj
h
(bj) – Πj

min
(bj)  
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Given the above specifications, player i’s belief about how kind player j is being to player i 

when player i believes firstly, that player j plays bj and secondly, that player j believes that 

player i plays ci, is given by 

 ËÌ j(bj, ci) =  Πi (ci, bj) – Πi
e
(ci)

Πi
h
(ci) – Πi

min
(ci)  =  Fj(aj, bi) =  

Πi (bi, aj) – Πi
e
(bi)

Πi
h
(bi) – Πi

min
(bi)  

The latter set of equalities holds in the equilibrium because expectations are correct. 

Utility Function for Player i is given by 

 Ui (ai, bj, ci) = Πi (ai, bj) + ËÌj(bj, ci)[1 + Fi(ai, bj)] 

The idea is simple, if player i feels that player j is being mean to him (that is player j’s 

fairness function is negative) player i would also want to be mean to player j (make his own 

fairness function negative), and vice versa. 
Let L = L(k) for k kilometres. Let f denote the fuel costs per kilometre travelled. Thus F = fk 

We write material payoffs as follows 

  Æc = �¤[∗ - pa, �� pa ≤ rc0, ��ℎ�������       (4A.1) 

 Æa = �pa – °k, �� pa ≤ rc0, ��ℎ�������       (4A.2) 

According to Rabin, there exists a fairness equilibrium zac  = pa  = rc  such that zac ∈
¢L(k) , ¤[∗¥. 
We write the kindness functions as follows. 

i) Kindness function for how the customer treats the driver = Fc(rc ,pa) 

a)  if customer sets rc ≥ pa 
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 Fc(rc,pa) = 
Πa(pa,rc) - Πa

e
(pa) 

Πa
h(pa) - Πa

min(pa)
 = 

pa – °k – (
pa - °k 

2
 + 

pa - °k 

2
) 

pa – °k – (L(k) – °k)
 = 0  (4A.3) 

where, 

 ÆÎÇ(pa) = the auto driver’s highest payoff when he plays strategy pa 

 ÆÎÈ (pa) = the auto driver’s lowest Pareto efficient payoff when he plays strategy pa 

 ÆÎÉ(pa) = the auto driver’s equitable payoff defined as the arithmetic mean of the 

above two expressions 

 ÆÎÊJR(pa) = the auto driver’s worst possible payoff when playing pa 

for zac = pa = rc, 

  Fc(zac) = 0         (4A.4) 

Given pa, the driver always receives a payoff of (pa – fk), regardless of the choice of rc 

(conditional on rc ≥ pa). The customer is being neutral to the driver. 

b) if rc < pa 

 Fc(rc,pa) = 
Πa(pa ,rc) - Πa

e
(pa) 

Πa
h(pa) - Πa

min(pa)
 = 

0 – (
pa - °k 

2
 + 

pa - °k 

2
) 

pa – °k – (L(k) – °k)
 = – 

pa – °k
pa – L(k) < 0 (4A.5) 

ii) Kindness function for how the auto-driver treats the customer = Fa(pa,rc) 

a)  if auto driver sets pa such that rc ≥ pa 

 Fa(pa,rc) = 
Πc(rc,pa) - Πc

e(rc) 

Πc
h(rc) - Πc

min(rc)
 = 

¤�∗– pa – (
¤�∗ - L(k) 

2
 + 

¤�∗ - rc 

2
) 

¤�∗ – L(k) – 0
 = 

L(k) + rc – 2pa K(¤�∗ – L(k))
 

           (4A.6) 
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where, 

Æ[Ç(rc), Æ[È(rc), Æ[É(rc), and Æ[ÊJR(rc) have definitions analogous to that of the auto driver’s 

case discussed above. 

for zac = pa = rc, 

  Fa(zac) = 
L(k) – zac K(¤�∗ – L(k))

        (4A.7)  

b) if rc < pa 

 Fa(pa,rc) = 
Πc(rc,pa) - Πc

e
(rc) 

Πc
h(rc) - Πc

min(rc)
 = 

0 – (
¤�∗ - L(k) 

2
 + 

¤�∗  - rc 

2
) 

¤�∗ – L(k) – 0
 = 

L(k) + rc – 2¤�∗ K(¤�∗ – L(k))
 < 0 

           (4A.8) 

Using all the information above, we now construct the Rabin-utility functions for the 

customer and the auto-driver as follows. 

iii) Customer’s payoff {we will set pa = zac here}37, 

 ÆÏc = Πc + Fa(pa,rc)[1 + Fc(rc,pa)]      (4A.9) 

a) When customer sets rc = zac 

We use (4A.4) and (4A.7) in (4A.9) above to get 

 ÆÏc = ¤[∗ – zac +  
L(k) – zac K(¤�∗ – L(k))

 [1 + 0] 

                                                        
37

 The utility representation apart from capturing the stylised facts, also points out one bit of realism: whenever a 

player is treating the other unkindly, the other individual’s overall utility will be lower than his material payoffs. 
It’s a bitter experience. 
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↔ ÆÏc = ¤[∗ – zac +  
L(k) – zac K(¤�∗ – L(k))

      (4A.10) 

b) When customer sets rc < zac 

We use (4A.5) and (4A.8) in (4A.9) above to get 

 ÆÏc = 0 + ¨L(k) + rc – 2ÐÑ∗ 2(ÐÑ∗ – L(k))
© ¨1 –  pa – °k

pa – L(k)©      

↔ ÆÏc = ¨L(k) + rc – 2ÐÑ∗ 2(ÐÑ∗ – L(k))
© ¨1 –  zac – °k

zac – L(k)© 

↔ ÆÏc = ¨L(k) + rc – 2ÐÑ∗ 2(ÐÑ∗ – L(k))
© ¨°k – L(k)

zac – L(k)© 

↔ ÆÏc =  ¨2ÐÑ∗ – L(k) – rc  2(ÐÑ∗ – L(k))
© ¨L(k) – °k

zac – L(k)©      (4A.11) 

 

Evaluating the ‘Fair’ Price: We calculate the price that maximises the benefit from travelling 

(agreement) over not travelling (disagreement) using Rabin-utilities.  

The customer travels when rc = zac and does not travel when rc < zac. Thus, for him to prefer 

travelling, it must be the case that 

 ÆÏc(rc = zac) ≥ ÆÏc(rc < zac), so we define the following net-benefit function NB(zac) by 

subtracting (4A.11) from (4A.10) 

 NB(zac) = ÆÏc(rc = zac) – ÆÏc(rc < zac) 

 NB(zac) = ¤[∗ – zac +  
L(k) – zac K(¤�∗ – L(k))

 – ¨2ÐÑ∗ – L(k) – rc2(ÐÑ∗ – L(k))
© ¨ L(k) – °k

zac – L(k)© 
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Further, let rc = zac – ε; ε ∈ ¢0,1¥ so that the customer is at the margin, hence being almost 

indifferent between travelling and not travelling. The above expression becomes 

 NB(zac) = ¤[∗ – zac +  
L(k) – zac K(¤�∗ – L(k))

 – ¨2ÐÑ∗ –  L(k) – zac + ε2(ÐÑ∗ – L(k))
© ¨ L(k) – °k

zac – L(k)© 
Taking limits as ε approaches zero and taking derivative of NB(zac) with respect to zac, and 

equating it to zero gives us the following first order condition 

 
ÒNB(zac)Òzac

 = –1 – 
1 K(¤�∗ – L(k)) + ¨2ÐÑ∗ –  L(k) – zac2(ÐÑ∗ – L(k)) © Õ L(k) – °k(zac – L(k))2Ö +  

         
1 K(¤�∗ – L(k)) ª L(k) – °kzac – L(k)« = 0 

On multiplying throughout by 2(¤[∗ – L(k)), we get 

 – 2(¤[∗ – L(k)) – 1 + Õ(2ÐÑ∗ –  L(k) – zac)(L(k) – °k)

(zac – L(k))
2 Ö + ¨L(k) – °k

zac – L(k)© = 0 

On multiplying throughout by (zac – L(k))2, we get 

 ¢– 2(¤[∗ – L(k)) – 1](zac – L(k))2 + (2¤[∗ – L(k)– zac) (L(k) – fk) +   

        (L(k) – fk)(zac – L(k)) = 0 

↔ ¢– 2(¤[∗ – L(k)) – 1](zac – L(k))
2
 + [2(¤[∗ – L(k)) – (zac – L(k))] (L(k) – fk) + 

        (L(k) – fk)(zac – L(k)) = 0 

↔ ¢– 2(¤[∗ – L(k)) – 1](zac – L(k))
2
 + 2(¤[∗ – L(k) ) (L(k) – fk) –    

     (L(k) – fk)(zac – L(k)) + (L(k) – fk)(zac – L(k)) = 0 
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The last two terms on the L.H.S cancel out and we’re left with 

 ¢2(¤[∗ – L(k)) + 1](zac – L(k))
2
 = 2(¤[∗ – L(k) ) (L(k) – fk) 

↔ (zac – L(k))
2
 =  

2(¤�∗ – L(k) ) (L(k) – °k)

[2(¤�∗ – L(k)) + 1]
 

↔ zac = L(k) + ¦2(ÐÑ∗ – L(k)) (L(k) – °k)

[2(ÐÑ∗ – L(k)) + 1]
      (4A.12) 

(4A.12) above is yet another fairness-equilibrium. In Appendix 4E, it is shown that the above 

expression maximizes the net benefit curve. 

2

Optimal Fairness 

Fare

Maximal 

Fairness Fare

F a i r n e s s Z o n e

Differential Utility of the 

Consumer 

Legal Fare

Figure 4A.1: The ‘fair’ fares
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Appendix 4B: Derivation of Equilibrium Conditions for the 

Kalai-Smorodinsky Solution 

 

 

The derivation 

I shall assume a (0, 0) disagreement payoff profile throughout this subsection to keep the 

explanation of derivations of equilibrium (and the related structural equation) simple. The 

regressions account for availability of substitutes. The KS solution sets utility gains from the 

disagreement point proportional to the agents’ most optimistic expectations (see Figure 

4B.1). For each agent, the latter is defined as the highest utility he can attain in the feasible 

set.38  

Figure 4B.1: Kalai-Smorodinsky Solution: This solution is obtained by finding the

maximal point on the feasible set connecting the disagreement point to the ‘ideal’ point

represented by the highest utility levels that either agent can reach in the feasible set as

its coordinates.

Πc

Πa

Wc – fk

Wc – L(k)

L(k) – fk

45o

•

Wc – fk

Ideal point

[(Wc – fk), (Wc – L(k))] 

•
Kalai-Smorodinsky

Solution

 

                                                        
38 This is of course, subject to the constraint that no agent should receive less than his coordinate of the 
disagreement point. 
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The equation of the straight line joining ((Wc - fk), (Wc – L(k))) and (0, 0) is given by  

 Πc = 
Wc – L(k)Wc - °k  ∙ Πa         (4B.1) 

We work out the point of intersection of this line with the utility frontier as follows  

 ¨Wc – L(k)Wc - °k  + 1©∙Πa = Wc – fk 

↔ [(Wc – L(k)) + (Wc – fk)]∙Πa = (Wc – fk)² 

We replace Πa above using (4.3) and rearrange to obtain 

 [(1 + θac)L(k) – fk] = 
(Wc – °k)²¢(Wc – L(k)) + (Wc – °k)¥ 

↔ (1 + θac)L(k) = 
(Wc – °k)² +¢(Wc – L(k)) + (Wc – °k)¥∙°k¢(Wc – L(k)) + (Wc – °k)¥    (4B.2) 

On dividing (4B.2) throughout by L(k) and solving the numerator of RHS, we get 

(1 + θac) = 
1L(k) ∙  WÑZ – °k∙L(k)¢(Wc – L(k)) + (Wc – °k)¥     (4B.3) 

↔ (1 + θac)∙ L(k) ∙[2Wc – fk – L(k)] = ¤[K – fk∙ L(k)  

↔ 2(1 + θac)∙ L(k) ∙Wc – (1 + θac)∙ L(k) ∙ (fk + L(k)) = ¤[K – fk∙ L(k) 

↔ ¤[K – 2(1 + θac)∙ L(k) ∙Wc + L(k) ∙[(1 + θac)(fk + L(k)) – fk] = 0 

↔ ¤[K – 2(1 + θac)∙ L(k) ∙Wc + L(k) ∙[θacfk + (1 + θac)L(k)] = 0 

Adding [(1 + θac)L(k)]
2
 on both sides, we get, 
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 ¤[K – 2(1 + θac)∙ L(k) ∙Wc + [(1 + θac)L(k))]2 + L(k) ∙[θacfk + (1 + θac)L(k)] = [(1 + 

θac)L(k))]2 

↔ [Wc – (1 + θac)L(k)]
2
 = [(1 + θac)L(k))]

2
 – θacfkL(k) – (1 + θac)Ù_K  

↔ [Wc – (1 + θac)L(k)]
2
 = [(1 + θac)

2
 – (1 + θac)]Ù_K  – θacfkL(k)  

↔ [Wc – (1 + θac)L(k)]2 = (Î[K  + θac)Ù_K  – θacfkL(k) 

Taking square root on both sides we get 

 [Wc – (1 + θac)L(k))] = Ú(θac
2

 + θac)Lk
2 – θac°kL(k) 

↔ (1 + θac)L(k) + Ú(θac
2

 + θac)Lk
2 – θac°kL(k) = Wc 

Finally, we divide throughout by L(k) to get the KS equilibrium condition 

(1 + θac) + Úθac(1 + θac) - θac v °kL(k)w = 
WcL(k) 

Using (4.4) in the above expression (and accounting for the disagreement payoff) gives us39 

 (1 + θac) + Úθac(1 + θac) - θac v °kL(k)w  = Xc(
ααααL(k)) – (

γsL(k))Sc + 
νcL(k) (4B.4) 

Let, h(Xc; α) = Xcα 

This leads us to the following structural equation which we call as Type 2. 

 ΩKS(θac)  = (1 + θac) + Úθac(1 + θac) - θac v °kL(k)w = Ycβ + ηc 

where,   

                                                        
39 (

α

L(k)
) simply denotes that each element of α is divided by L(k).   
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ΩKS: R → R is a monotonic transformation such that  

 ΩKS(θac) = (1 + θac) + Úθac(1 + θac) - θac v °kL(k)w.  

Yc = [Xc ⋮Sc] is the partition matrix of the exogenous variables.  

τ
T
 = [α

T
 ⋮ γs] is the partition vector of coefficients. 

g: Rj → Rj is an invertible map such that β = g(τ) = (
1L(k))τ. So that Û½ = g-1(»¼) = L(k)»¼ 

u: R → R is an invertible map such that ηc = u(L(k))∙νc where u(L(k)) = (
1L(k)). 

Let H(Yc;β) = Ycβ. 

Equation (4B.4) above can be explicitly written in relation to the observed coefficients as 

follows. 

 (1 + θac) + Úθac(1 + θac) - θac v °kL(k)w =  Yc( ττττL(k))±³´ββββ
 + 

νcL(k)Ýηc
   (4B.5) 
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Appendix 4C: Evaluation of Comparable Residuals for RMSE 

(with arbitrary errors) 

 

 

For ease of notation, I define  

X = Yc  the partition matrix of independent variables 

B = β  the partition vector of coefficient vectors 

 y = (1 + θac) the outcome variable in Type 1 structural equation 

 Ψ2(y) = Úθac(1 + θac) - θac v °kL(k)w;  Ψ3(y) = Úθac(2 + θac) - 2θac v °kL(k)w  

 Φi(y) = y + Ψi(y) the outcome variable in Type i (i ∈ {2,3}) structural equation  

The three types (1, 2 and 3) can now be written as 

Type 1:  y = XB1 + v1        (4C.1) 

Type i:  Φi(y) = XBi + vi i ∈ {2,3}     (4C.2) 

We note that Φi(y) is a quasi-linear transformation of y, with a non-linear component Ψi(y) 

and is also linear at the limit. Now, 

 v1 = y – E[y|X] = y – XÞ¼1  {from (4C.1)}    (4C.3) 

To provide an intuition, here we ask the question that if we were to predict the values of the 

outcome variables of Type 2 and Type 3 structural equations, using the regression estimates 

of Type 1 equation, will we do a better job. We use the expected values of the dependent 

variable of Type 1 (mark up over the legal fare) equation to obtain the (implied) expected 

values of its quasi linear (and monotonic) transformations (the dependent variables of Type 2 
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and Type 3 structural equations). We then find out the differences between the observed 

transformations (by which we mean transformations Φi(y) of the actually observed mark-ups 

y) and their expected values obtained (directly) from regressions of Type 2 and Type 3 

structural equations and implied (indirectly) by Type 1 structural equation.  Formally, 

From (4C.1) above, 

ß¿ = ÁÞ¼1  

↔ Φi(ß¿) = Φi(XÞ¼1) ; i ∈ {2,3} {the quasi linear transformations are also monotonic} 

The residual implied by Type 1 structural equation comparable with Type i (i ∈  {2,3}) 

structural equation is obtained as follows 

 àáâ  = Φi(yyyy) – Φi(ß¿) = Φi(yyyy) – Φi(XÞ¼1) ;  i ∈ {2, 3}   (4C.4) 

And the residuals obtained by Type i structural equation come directly from (4C.2). 

 vi = Φi(yyyy) – ΦΦΦΦiiii((((yyyy))))ä  = Φi(yyyy) – XÞ¼ i ;  i ∈ {2, 3} 

We then use the residuals obtained to calculate comparable RMSEs. These have been 

reported in Tables 4.6 and 4.7. It should be noted that for the range of values of y we observe, 

the transformation Φi(y) is almost linear. Thus although, ideally in (4C.4), we’d be interested 

in  

 àáâ  = Φi(yyyy) – ΦΦΦΦiiii((((yyyy))))ä  = Φi(yyyy) – ΦΦΦΦiiii((((XBXBXBXB1111))))ä  ;  i ∈ {2, 3}   (4C.5) 

and arrive at estimates of B1 using non-linear estimation (minimizing the sum of squared 

errors in (C.5)). This is where the almost linearity of Φi(y) comes in. Fundamentally, let 

 Φi(y) ≅ τ + λy  ; (λ > 0)       (4C.6) 

From (4C.5), then,  
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  àáâ  = Φi(yyyy) – ΦΦΦΦiiii((((yyyy))))ä   ≅ λ(y – ß¿) 

that is, the B1 that minimises the sum of squared terms above (shown below)  

 ∑ (�I	J )	 2
 = (λ

2
)∑ (E	 − E½	 )	 2      (4C.7) 

where j denotes the summation across the observations. Clearly, (since λ > 0) the B1 that 

minimises (4C.7) is also the one that minimises  

 ∑ (�I	)	 2
 = ∑ (E	 − E½	 )	 2 

which is precisely the B1 that is represented by (4C.3 and 4C.4) that is the one obtained from 

the Nash solution. This exercise is just to show that the non-linear estimates will be deadly 

close to the linear estimates and running a separate non-linear estimation will add no value.  

Finally, the only issue with the approach discussed in this appendix is that we can only draw 

comparisons between Types 2 and 3 individually against Type 1. We cannot compare Type 2 

and Type 3 against each other. So we look into the following appendix where a universal 

comparison can be made. 
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Appendix 4D: Evaluation of Comparable Residuals for RMSE 

(using inverses) 

 

 

Intuitively speaking, here we ask a question opposite to that posed in the previous appendix. 

If we were to predict the mark-up over the legal fare (the dependent variable of Type 1 

equation) using regression estimates of Types 2 and 3, will we do a better job than the 

regression estimates obtained from Type 1 itself? I again point out that Φi( y ) are 

monotonically increasing in y, so we invert the relations to obtain èJuI and calculate residuals 

implied by structural equations of Type 2 and Type 3 that are comparable with that of Type 1. 

Formally, we calculate the following, 

 àâá = y – éâuá(ΦΦΦΦiiii((((yyyy))))ä ) = y – éâuá(XBi) i ∈ {2, 3} 

And we rewrite (4C.3) below 

 v1 = y – E[y|X] = y – XÞ¼1  

We finally calculate comparable RMSEs as before. We observe out that 

 y = èJuI(ti) = 

ti2 – ¢(i – 1)(
°k L(k)) – (i – 2)¥ 

2ti + (i – 3) – (i – 1)(
°k L(k))  i ∈ {2, 3} 

where ti represents the outcome variable of Type i equation (i ∈ {2, 3}). 
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Appendix 4E: Additional Support Material 

 

 

4E.1. NB(zac) is maximized 

We re-write the specifications in the body of this article to evaluate the following inequality. 

For ease of notation, we write L(k) = Lk. 

NB(zac) = ÆÏc(rc = zac) – ÆÏc(rc < zac) > 0 

↔ NB(zac) = ¤[∗ – zac –  
zac – Lk  K(¤�∗ – Lk) – ¨2ÐÑ∗ – Lk – rc2(ÐÑ∗ – Lk) © ¨ Lk – °kzac – Lk© > 0  

On multiplying throughout by 2(¤[∗ – Lk), we get 

 2(¤[∗ – zac)(¤[∗ – Lk) – (zac – Lk) > (2¤[∗ – Lk – rc)¨ Lk – °kzac – Lk© 

On multiplying throughout by (zac – Lk) and defining rc  = zac – ε; ε ∈ ¢0,1¥  so that the 

customer is at the margin, hence being almost indifferent between travelling and not 

travelling, the above expression becomes 

 2(¤[∗ – zac)(¤[∗ – Lk)(zac – Lk) – (zac – Lk)
2
 > (2¤[∗ – Lk – zac + ε) (Lk – fk) 

On taking limits as ε approaches zero, and rearranging terms, we get the following quadratic 

in zac.  

 G(zac) = AëÎ[K  + Bzac + C > 0 
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where,  A = – 2(¤[∗– Lk); B = [2(¤[∗K– Ù_K ) + (Lk – fk)]; and, C = – 2(¤[∗– Lk)[(¤[∗Lk) + (Lk 

– fk)]. We then recognize that A < 0, B > 0 and C < 0 to conclude that G(zac) is concave 

throughout and therefore has a global maximum. This completes the proof. 

 

4E.2. Derivations for other solutions. 

Equilibrium Conditions and Structural Equations  

Let Wc = αk + Xcα + νc        (4.4) 

where αk is a representative constant for a given distance k for every customer and X does not 

include the constant of regression. 

Nash Solution: The Nash Solution is characterised as follows 

Maximize: Πa(Πc – Dc) with respect to θac      

Using (4.3) and (4.5) we work out the first order condition of the problem above as follows  

 (1 + θac) = 
Wc  – Dc +°k2L(k)  

Using (4.4) along with the disagreement equation in the above expression and rearranging the 

terms, gives us 

 (1 + θac) = (αk + °k2L(k) ) + Xc(
αααα2L(k)) – (

γs2L(k))Sc + 
νc2L(k)    (4E.1)40 

This leads us to the following structural equation depicting the average mark-up as a function 

of determinants of valuation and the availability of substitutes (Type 1). 

                                                        
40

 Note that α is a vector. The expression (
α

Lk

) only means that each element of the α vector is getting divided by  

Lk 
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(1 + θac) = β0 + Xcβ + μsSc + ηc      (4E.2) 

Egalitarian Solution: It is characterised as follows 

 Πa = Πc = 
Wc – °k2          (4E.3)                       

Using (4E.3), we get  

 Wc – (1 + θac)L(k) = 
Wc – °k2  

↔ (1 + θac) = 
Wc + °k2L(k)  

This is (structurally) identical to the Nash Solution. 

Dictatorial Solution (customer is the dictator): The maximal point of the customer’s 

coordinate on the payoff frontier is 

 Πc =  Wc – L(k)        (4E.4) 

↔ Wc – (1 + θac)L(k) = Wc – L(k) {using (4.5)} 

This gives us 

 θac = 0          (4E.5) 

Naturally, if the customer were the dictator, he would not pay any mark-up over the legal fare 

to the auto driver. In this case, we do not need a structural equation. One can simply test for 

θac = 0 to validate or invalidate a claim that suggests this dictatorial solution. 

Dictatorial Solution (auto-driver is the dictator): This solution is arrived at the maximal 

point of the auto driver’s coordinate on the utility frontier. 
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 Πa = Wc – fk         (4E.6) 

↔ (1 + θac)L(k) – fk =  Wc – fk {using (4.3)} 

This gives us 

(1 + θac) = 
WcL(k) 

Thus, using (4.4) in the above expression gives us the following structural equation.  

(1 + θac) = ( αkL(k)) + Xc(
ααααL(k)) + 

νcL(k)      (4E.7) 

Clearly, our regression function is (structurally) a Type 1. 

Raiffa Solution (discrete): The following figure explains the solution. 

Figure 4E.1: The (discrete) Raiffa Solution:.We first bisect the line which has its

intercepts as the maximum payoffs that can be derived by the customer and the auto

driver. We call this point of bisection A. From A we draw lines perpendicular to the

axes till they meet the utility frontier. Finally, we bisect the segment of the frontier

bounded by these two perpendiculars to arrive at B – our solution.

Πc

Πa

Wc – fk

Wc – L(k)

L(k) – fk

45o

•
•

Raiffa (discrete) 

Solution
A

B
(Wc – fk)/2

(Wc – L(k))/2
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The process of arriving at point A above and graduating to point B, essentially involves 

finding the midpoint of Æ[ì = vWc – L(k)2 w and Æ[ = vWc – °k2 w. We get 

Æ[í = 
IK ªWc –  °k + L(k)2 «       (4E.8) 

Finally, using (4.5) in the above expression we get, 

Wc – (1 + θac)L(k) = 
IK ªWc –  °k + L(k)2 « 

↔ (1 + θac) = 
Wc2L(k) + 

Iî ª1 +  °kL(k)«   

Using (4.4) in the above expression and rearranging the terms, gives us the following 

structural equation 

 (1 + θac) = v αk2L(k)  + 14 ª1+ °kL(k)«w + Xc(
αααα2L(k)) + 

νc2L(k)    (4E.9) 

This leads us to a regression equation of Type 1. 

Equal-Area Solution: Figure 4E.2. below explains the process of obtaining the solution. 

The equal area condition can be written as follows. 

 (Wc – L(k) – Πc)(L(k) – fk) + 
IK (Πa – L(k) + fk)(Wc – L(k) – Πc)   

 = 
IK Πc (Wc – fk – Πa)        (4E.10) 

Replacing Πa and Πc above by using (4.3) and (4.5), reduces (4E.10) to the following.  

(θacL(k))(L(k) – fk) + 
IK (θacL(k))

2
 = 

IK (Wc – (1 + θac)L(k))
2 
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Figure 4E.2: Equal Area Solution: This solution picks the Pareto optimal point where

the area of the individually rational part of the feasible set above the solution point is

equal to the area to the right of that point (the area of the two shaded portions are

equal).

Πc

Πa

Wc – fk

Wc – L(k)) 

L(k) – fk

45o

•
Equal Area

Solution

 

Finally, dividing throughout by (L(k))2 and rearranging terms, we arrive at 

(1 + θac) + Úθac(2 + θac) - 2θac v °kL(k)w = 
WcL(k) 

Using (4.4) in the above expression as before gives us the following structural equation. 

 (1 + θac) + Úθac(2 + θac) - 2θac v °kL(k)w = ( αkL(k)) + Xc(
ααααL(k)) + 

νcL(k) (4E.11) 

This leads us to the following structural equation depicting a non-linear (and increasing) 

transformation (different from Kalai-Smorodinski) of the average mark-up as a function of 

determinants of maximum willingness to pay. We call this Type 3. 

 (1 + θac) + Úθac(2 + θac) - 2θac v °kL(k)w = β0 + Xcβ + ηc 
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Yu Solution: Figure 4E.3, explains the derivation of the condition implied by the Yu Solution 

that we write below. 

Figure 4E.3: Yu Solution: This solution is obtained by finding that point on the utility

frontier the distance of which from the ideal point is minimum.

Πc

Πa

Wc – fk

Wc – L(k)

L(k) – fk

45o

•

Wc – fk

Ideal point

[(Wc – fk), (Wc – L(k))] 

• Yu Solution

We use the fact that perpendicular distance is the shortest distance. The equation of the line 

with unit slope passing through the ideal point [(Wc – fk), (Wc – L(k))] is given by 

 Πc – (Wc – L(k)) = Πa – (Wc – fk) 

which simplifies to 

 Πc = Πa – (L(k)  – fk) 

We find the intersection point of this line with the utility frontier to get the following 

condition  

 Πa = 
IKWc + 

IKL(k)  – fk          (4E.12) 
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Finally replacing Πa by using (4.3), above and solving for the mark-up, we get 

(1 + θac) = 
Wc2L(k) + 

IK        (4E.13) 

Now, just as before we use (4.4) to arrive at the following structural equation. 

(1 + θac) = v αk2L(k)  + 12w + Xc(
αααα2L(k)) + 

νc2L(k)     (4E.14) 

Which gives us an econometric equation indistinguishable from that of the Nash solution. 

 

4E.3. Estimation of Maximum Willingness to Pay 

The bargaining solutions discussed in the previous section lead to the following three 

different types of structural equations.  

Type 1: (1 + θac) = β0 + Xcβ + μsSc + ηc  

Type 2:  (1 + θac) + Úθac(1 + θac) - θac v°kLkw = β0 + Xcβ + μsSc + ηc 

Type 3: (1 + θac) + Úθac(2 + θac) - 2θac v°kLkw = β0 + Xcβ + μsSc + ηc  

In what follows, I discuss the process of estimating customer valuation for different solutions 

by explicitly stating the relationship between observed coefficients and quantities of interest. 

We start with the Type 1 solutions. 

4E.3.1. Type 1 Solutions 

Nash Solution: We identify the quantities of interest explicitly in relation to the observed 

coefficients in the structural equation (4E.1) below (after writing L(k) = Lk) 
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(1 + θac) = (αk + °k2Lk )±²³²́β0
 + Xc( αααα2Lk)±³́ββββ

 – ( γs2Lk)±³́μS
Sc + 

νc2Lkðηc
      (4E.15) 

We then invert the explicitly stated relations above to arrive at �½k, �½s, and the ¾¿ vector as 

follows (note that running the Type 1 regression will lead us to estimates of β0, μs, and β). 

 �½k = 2βº0Lk – °k ; �½s = –2μ½sLk ;  and ¾¿ = (2Lk)»¼   (4E.16)   

We finally write customer valuation (using (4)) explicitly as a function of distance k (note 

that the egalitarian solution will have the exact same methodology). 

¤¼ c = �½k + Xc¾¿          (4E.17) 

Dictatorial Solution (auto driver is the dictator): We rewrite (4E.7) below and identify the 

quantities of interest explicitly in relation to the observed coefficients. 

(1 + θac) = (αkLk)ñβ0
 + Xc( ααααLk)ñββββ

  – (γsLk)ñμS
Sc + 

νcLkòηc
       

We then, just as before invert the explicitly stated relations above as follows (valuation is 

estimated exactly as in (4E.17) above). 

 �½k = βº0Lk ; �½s = – b̂sÙk ;  and ¾¿ = (Lk)»¼    (4E.18) 

Raiffa (discrete) Solution: We rewrite (4E.9) below and identify the quantities of interest 

explicitly in relation to the observed coefficients. 

(1 + θac)  = v αk2Lk  + 14 ª1+ °kLk«w±²²²²²³²²²²²´β0
 + Xc( αααα2Lk)±³́ββββ

 – ( γs2Lk)±³́μS
Sc + 

νc2Lkðηc
     

We then, just as before invert the explicitly stated relations above as follows (estimation of 

valuation remains the same as in (4E.17)). 
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 �½k = (2βº0 – 12 )Lk – 12 °k; �½s = –2μ½sLk ;  and ¾¿ = (2Lk)»¼  (4E.19) 

Yu Solution: We rewrite (4E.14) below and identify the quantities of interest explicitly in 

relation to the observed coefficients. 

(1 + θac) = v αk2Lk  + 12w±²²³²²́β0
 + Xc( αααα2Lk)±³́ββββ

 – ( γs2Lk)±³́μS
Sc + 

νc2Lkðηc
      

We then, just as before invert the explicitly stated relations above as follows (valuation is 

estimated just as (4E.17). 

 �½k = 2(βº0 – 12 )Lk ; �½s = –2μ½sLk ;  and ¾¿ = (2Lk)»¼   (4E.20) 

Within type 1, we could jointly classify, the Nash-Egalitarian, Raiffa and the Yu solutions as 

the non-dictatorial type, and the dictatorial solution as the dictatorial type. 

 

4E.3.1. Type 2 Solution (Kalai-Smorodinski):  

We identify the quantities of interest explicitly in relation to the observed coefficients (see 

Appendix 4B). 

 (1 + θac) + Úθac(1 + θac) - θac v°kLkw = (αkLk)ñβ0
 + Xc( ααααLk)ñββββ

 – (γsLk)ñμS
Sc + 

νcLkòηc
   

We then, just as before invert the explicitly stated relations above (as we can see from the 

right hand side, the inversion relations are identical to (4E.18); valuation is estimated as in 

(4E.17)). 
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4E.3.3. Type 3 Solution (Equal Area):  

We rewrite (4E.11) below and identify the quantities of interest explicitly in relation to the 

observed coefficients. 

 

 (1 + θac) + Úθac(2 + θac) - 2θac v°kLkw = (αkLk)ñβ0
 + Xc( ααααLk)ñββββ

 – (γsLk)ñμS
Sc + 

νcLkòηc
   

We immediately note that the inversion relations are identical to that of Type 2 above and the 

process of calculating valuation remains the same. Both the type 2 and type 3 solutions are 

non-dictatorial solutions. 

 

4E.4. Specification checks 

I let my regression estimates go through a set of (theoretical and observable) specification 

checks that should hold for the general public before accepting parameter values. For 

example, valuation is increasing in distance k, and the coefficient of Metro is negative 

(Tables 4.6 and 4.7) suggesting a substitution effect that reduces mark-up. Further, for both 

the years, the critical customer’s estimated willingness to pay for distances up to three 

kilometres is very close to the actual metro fares for the same distances – for greater 

distances, the degree of substitutability between autos and metros tends to decline; one may 

have to change between different routes with the metro) thus revealing consistency with 

reality and therefore hinting at low degrees of bias in the predicted parameters for both the 

years. 
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Appendix 4F: Analysis with Confidence Intervals  

 

Figure 4F.1. Maximum willingness to pay in 2007 (Representative Model)  

 

The horizontal axis is measured in kilometres and the vertical axis is measured in INR. Legal 

fare (2007) is shown in the black dashed line. The observed average negotiated share and its 

95% confidence limits are shown by grey dashed lines. The estimated maximum willingness 

to pay for the critical customer and its 95% confidence limits are shown by the solid black 

lines. The conclusions remain the same as discussed in the main text. 
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Figure 4F.2. Pricing rules in 2007 (Representative Model) 

 

The horizontal axis is measured in kilometres and the vertical axis is measured in INR. Legal 

fare (2008) is shown in the black dashed line. The estimated maximal fairness fare and its 

95% confidence limits are shown by the black solid lines. The estimated optimal fairness fare 

and its 95% confidence limits are shown by the solid grey lines. The conclusions remain the 

same as discussed in the main text. 
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Figure 4F.3. Maximum willingness to pay in 2008 (Representative Model)  

 

The horizontal axis is measured in kilometres and the vertical axis is measured in INR. Legal 

fare (2008) is shown in the black dashed line. The observed average negotiated share and its 

95% confidence limits are shown by grey dashed lines. The estimated maximum willingness 

to pay for the critical customer and its 95% confidence limits are shown by the solid black 

lines. The conclusions remain the same as discussed in the main text. 
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Figure 4F.4. Pricing rules in 2008 (Representative Model) 

 

The horizontal axis is measured in kilometres and the vertical axis is measured in INR. Legal 

fare (2010) is shown in the black dashed line. The estimated maximal fairness fare and its 

95% confidence limits are shown by the black solid lines. The estimated optimal fairness fare 

and its 95% confidence limits are shown by the solid grey lines. The conclusions remain the 

same as discussed in the main text. 
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