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Abstract

Inverse problems, where in a broad sense the task is to learn from the noisy response

about some unknown function, usually represented as the argument of some known

functional form, has received wide attention in the general scientific disciplines. However,

apart from the class of traditional inverse problems, there exists another class of inverse

problems, which qualify as more authentic class of inverse problems, but unfortunately

did not receive as much attention.

In a nutshell, the other class of inverse problems can be described as the problem

of predicting the covariates corresponding to given responses and the rest of the data.

Since the model is built for the responses conditional on the covariates, the inverse

nature of the prediction problem is evident. Our motivating example in this regard arises

in palaeoclimate reconstruction, where the model is built for the multivariate species

composition conditional on climate; however, it is of interest to predict past climate

given the modern species and climate data and the fossil species data. In the Bayesian

context, it is natural to consider a prior for covariate prediction.

In this thesis, we bring to attention such a class of inverse problems, which we refer to

as ‘inverse regression problems’ to distinguish them from the traditional inverse problems,

which are typically special cases of the former, as we point out. Development of the

Bayesian inverse regression setup is the goal of this thesis. We particularly focus on

Bayesian model adequacy test and Bayesian model and variable selection in the inverse

contexts, proposing new approaches and illuminating their asymptotic properties.

Towards Bayesian model adequacy, we adopt and extend the inverse reference distri-

bution approach of Bhattacharya (2013), proving the convergence properties. Along the

way, out of necessity, we develop asymptotic theories for Bayesian covariate consistency



iv

and posterior convergence theories of unknown functions modeled by suitable stochastic

processes embedded in normal, double-exponential, binary and Poisson distributions

that include rates of convergence and misspecifications.

In the realm of inverse model and variable selection, we first develop an asymptotic

theory for Bayes factors in the general setup, and then introduce pseudo-Bayes factors

for model selection, showing that the asymptotic properties of the two approaches are in

agreement, while the latter is more useful from several theoretical and computational

perspectives. Along with the inverse regression setup we also develop the forward

regression context, where the aim is to predict new responses given known covariate

values, and illustrate the suitability, differences and advantages of the approaches, with

various theoretical examples and simulation experiments. We further propose and

develop a novel Bayesian multiple testing procedure for model and variable selection

in the inverse regression setup, also exploring its elegant asymptotic properties. Our

simulation studies demonstrate that this approach outperforms Bayes and pseudo-Bayes

factors with respect to inverse model and variable selection.

As an interesting application encompassing most of our developments, we attempt

to evaluate if the future world is likely to experience the terrifying global warming

projection that has perturbed the scientists and policymakers the world over. Showing

that the question falls within the purview of inverse regression problems, we propose

a novel nonparametric model for climate dynamics based on Gaussian processes and

exploit our inverse regression methodologies to conclude that there is no real threat to

the world as far as global warming is concerned.
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1
Introduction

The task in traditional inverse problems is to learn about unknown functions from noisy

observations, where the unknown function is typically represented as an argument of

some known functional. This paradigm fits a large class of real examples covering various

scientific disciplines, and hence, has been able to attract wide attention. Somewhat

paradoxically, although such a class of problems seem to be clearly of statistical nature,

the statistical literature is not as rich with respect to such inverse problems compared

to the other scientific literatures. More unfortunately, there exists another class of

statistical problems which, according to us, qualify as bona fide inverse problems, yet

the statistical literature is almost oblivious of such existence.

For us, the motivating example for the latter class of inverse problems arises in

quantitative palaeoclimate reconstruction where ‘modern data’ consisting of multivariate

counts of species are available along with the observed climate values. Also available are

fossil assemblages of the same species, but deposited in lake sediments for past thousands

1
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of years. This is the fossil species data. However, the past climates corresponding to

the fossil species data are unknown, and it is of interest to predict the past climates

given the modern data and the fossil species data. Roughly, the species composition are

regarded as functions of climate variables, since in general ecological terms, variations

in climate drives variations in species, but not vice versa. However, since the interest

lies in prediction of climate variables, the inverse nature of the problem is clear. The

past climates, which must be regarded as random variables, may also be interpreted as

unobserved covariates. It is thus natural to put a prior probability distribution on the

unobserved covariates. From the nature of the problem, its difference with the traditional

inverse problems is evident. Further examples are provided in Section 1.1.1.

Technically, given a data set y that depends upon covariates x, having a probability

distribution f(y|x, θ) where θ is the model parameter, we call the problem ‘forward’

if it is of interest to predict ỹ for given x̃. This is the conventional and much-studied

statistical paradigm, from both classical and Bayesian perspectives.

On the other hand, we refer to the problem as ‘inverse’ if the goal is to predict the

corresponding unknown x̃ given a new observed ỹ and the rest of the data. The literature

on such inverse problems is very scarce, in spite of abundance of examples in the inverse

problem paradigm. In fact, with respect to predicting unknown covariates from the

responses, mostly inverse linear regression, particularly in the classical set-up, has been

considered in the literature. The paucity of the literature on inverse problems in the

above sense already calls for significant literature development in the subject area. In

this regard, in Section 1.3 we shall point out some areas of inverse problems that seek

thorough development, which we shall focus on for the theoretical and methodological

aspects of this thesis.

To distinguish the traditional inverse problems from the covariate-prediction perspec-

tive, we use the phrase ‘inverse regression’ to refer to the latter.

In what follows, we first briefly survey the available literature on inverse regression
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in Section 1.1. In Section 1.2 we explore the relationships between traditional forward

problems, traditional inverse problems and inverse regression problems and argue that

only inverse regression qualifies as bona fide inverse problems and include the traditional

inverse problems as special cases in the sense that the underlying model may involve

unknown functions, which need to be learned about, apart from predicting the unknown

covariates. In Section 1.3, we touch upon the development-seeking areas of inverse

regression problems.

1.1 A brief survey of inverse regression

We first provide some examples of inverse regression, several of which are based on

Avenhaus et al. (1980).

1.1.1 Further examples of inverse regression

Example 1: Measurement of nuclear materials

Measurement of the amount of nuclear materials such as plutonium by direct chemical

means is an extremely difficult exercise. This motivates model-based methods. For

instance, there are physical laws relating heat production or the number of neutrons

emitted (the dependent response variable y) to the amount of material present, the

latter being the independent variable x. But any measurement instrument based on the

physical laws first needs to be calibrated. In other words, the unknown parameters of the

model needs to be learned, using known inputs and outputs. However, the independent

variables are usually subject to measurement errors, motivating a statistical model.

Thus, conditionally on x and parameter(s) θ, y ∼ P (·|x, θ), where P (·|x, θ) denotes some

appropriate probability model. Given yn and xn, and some specific ỹ, the corresponding

x̃ needs to be predicted.
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Example 2: Estimation of family incomes

Suppose that it is of interest to estimate the family incomes in a certain city through

public opinion poll. Most of the population, however, will be unwilling to provide reliable

answers to the questionnaires. One way to extract relatively reliable figures is to consider

some dependent variable, say, housing expenses (y), which is supposed to strongly depend

on family income (x); see Muth (1960), and such that the population is less reluctant

to divulge the correct figures related to y. From past survey data on xn and yn, and

using current data from families who may provide reliable answers related to both x and

y, a statistical model may be built, using which the unknown family incomes may be

predicted, given their household incomes.

Example 3: Missing variables

In regression problems where some of the covariate values xi are missing, they may be

estimated from the remaining data and the model. In this context, Press and Scott

(1975) considered a simple linear regression problem in a Bayesian framework. Under

special assumptions about the error and prior distributions, they showed that an optimal

procedure for estimating the linear parameters is to first estimate the missing xi from

an inverse regression based only on the complete data pairs.

Example 4: Bioassay

It is usual to investigate the effects of substances (y) given in several dosages on organisms

(x) using bioassay methods. In this context it may be of interest to determine the dosage

necessary to obtain some interesting effect, making inverse regression relevant (see, for

example, Rasch et al. (1973)).
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Example 5: Learning the Milky Way

The modelling of the Milky Way galaxy is an integral step in the study of galactic

dynamics; this is because knowledge of model parameters that define the Milky Way

directly influences our understanding of the evolution of our galaxy. Since the nature

of the Galaxy’s phase space, in the neighbourhood of the Sun, is affected by distinct

Milky Way features, measurements of phase space coordinates of individual stars that

live in this neighbourhood of the Sun, will bear information about the influence of such

features. Then, inversion of such measurements can help us learn the parameters that

describe such Milky Way features. In this regard, learning about the location of the Sun

with respect to the center of the galaxy, given the two-component velocities of the stars

in the vicinity of the Sun, is an important problem. For k such stars, Chakrabarty et al.

(2015) model the k× 2-dimensional velocity matrix V as a function of the galactocentric

location (S) of the Sun, denoted by V = ξ(S). For a given observed value V ∗ of V , it is

then of interest to obtain the corresponding S∗. Since ξ is unknown, Chakrabarty et al.

(2015) model ξ as a matrix-variate Gaussian process, and consider the Bayesian approach

to learning about S∗, given data {(Si,V i) : i = 1, . . . , n} simulated from established

astrophysical models, and the observed velocity matrix V ∗.

We now provide a brief overview of of the methods of inverse linear regression, which

is the most popular among inverse regression problems. Our discussion is generally based

on Hoadley (1970) and Avenhaus et al. (1980).

1.1.2 Inverse linear regression

Let us consider the following simple linear regression model: for i = 1, . . . , n,

yi = α+ βxi + σεi, (1.1.1)

where εi
iid∼ N(0, 1).
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For simplicity, let us consider a single unknown x̃, associated with a further set of m

responses {ỹ1, . . . , ỹm}, related by

ỹi = α+ βx̃+ τ ε̃i, (1.1.2)

for i = 1, . . . ,m, where ε̃i
iid∼ N(0, 1) and are independent of the εi’s associated with

(1.1.1).

The interest in the above problem is inference regarding the unknown x. Based on

(1.1.1), first least squares estimates of α and β are obtained as

β̂ =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
; (1.1.3)

α̂ = ȳ − β̂x̄, (1.1.4)

where ȳ =
∑n

i=1 yi/n and ȳ =
∑n

i=1 xi/n. Then, letting ¯̃y =
∑n

i=1 ỹi/n, a ‘classical’

estimator of x is given by

x̂C =
¯̃y − α̂
β̂

, (1.1.5)

which is also the maximum likelihood estimator for the likelihood associated with (1.1.1)

and (1.1.2), assuming known σ and τ . However,

E
[
(x̂C − x)2 |α, β, σ, τ, x

]
=∞, (1.1.6)

which prompted Krutchkoff (1967) to propose the following ‘inverse’ estimator:

x̂I = γ̂ + δ̂ ¯̃y, (1.1.7)
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where

δ̂ =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(yi − ȳ)2
; (1.1.8)

γ̂ = x̄− δ̂ȳ, (1.1.9)

are the least squares estimators of the slope and intercept when the xi are regressed on

the yi. It can be shown that the mean square error of this inverse estimator is finite.

However, Williams (1969) showed that if σ2 = τ2 and if the sign of β is known, then

the unique unbiased estimator of x has infinite variance. Williams advocated the use of

confidence limits instead of point estimators.

Hoadley (1970) derive confidence limits setting σ = τ and assuming without loss

of generality that
∑n

i=1 xi = 0. Under these assumptions, the maximum likelihood

estimators of σ2 with xn and yn only, ỹn = (ỹ1, . . . , ỹn)T only, and with the entire

available data set are, respectively,

σ̂2
1 =

1

n− 2

n∑
i=1

(
yi − α̂− β̂xi

)2
; (1.1.10)

σ̂2
2 =

1

m− 1

n∑
i=1

(ỹi − ¯̃y)
2

; (1.1.11)

σ̂2 =
1

n− 2 +m− 1

[
(n− 2)σ2

1 + (m− 1)σ2
2

]
. (1.1.12)

Now consider the F -statistic F = nβ̂2

σ̂2 for testing the hypothesis β = 0. Note that under

the null hypothesis this statistic has the F distribution with 1 and n + m degrees of

freedom. For m = 1,

β̂ (x̂C − x)

√
n

σ2(n+ 1 + x2)

has a t distribution with n− 2 degrees of freedom. Letting Fα;1,ν denote the upper α

point of the F distribution with 1 and ν degrees of freedom, a confidence set S can be
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derived as follows:

S =


{x : xL ≤ x ≤ xU} if F > Fα;1,n−2;

{x : x ≤ xL} ∪ {x ≥ xU} if n+1
n+1+x̂2

C
Fα;1,n−2 ≤ F < Fα;1,n−2;

(−∞,∞) if F < n+1
n+1+x̂2

C
Fα;1,n−2,

(1.1.13)

where xL and xU are given by

Fx̂C
F − Fα;1,n−1

±
{
Fα;1,n−2

[
(n+ 1) (F − Fα;1,n−2) + Fx̂2

C

]} 1
2

F − Fα;1,n−2
.

Hence, if F < n+1
n+1+x̂2

C
Fα;1,n−2, then the associated confidence interval is S = (−∞,∞),

which is of course useless.

Hoadley (1970) present a Bayesian analysis of this problem, presented below in the

form of the following two theorems.

Theorem 1 (Hoadley (1970)) Assume that σ = τ , and let x be independent of

(α, β, σ2) a priori. With any prior π(x) on x and the prior

π(α, β, σ2) ∝ 1

σ2

on (α, β, σ2), the posterior density of x given by

π(x|yn,xn, ỹn) ∝ π(x)L(x),

where

L(x) =

(
1 + n

m + x2
)m+n−3

2[
1 + n

m +Rx̂2
C +

(
F

m+n−3 + 1
)

(x−Rx̂C)2
]m+n−2

2

,

where

R =
F

F +m+ n− 3
.
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For m = 1, Hoadley (1970) present the following result characterizing the inverse

estimator x̂I :

Theorem 2 (Hoadley (1970)) Consider the following informative prior on x:

x = tn−3
n+ 1

n− 3
,

where tν denotes the t distribution with ν degrees of freedom. Then the posterior

distribution of x given yn, xn and ỹn has the same distribution as

x̂I + tn−2

√
n+ 1 +

x̂2
I
R

F + n− 2
.

In particular, it follows from Theorem 2 that the posterior mean of x is x̂I when m = 1.

In other words, the inverse estimator x̂I is Bayes with respect to the squared error loss

and a particular informative prior distribution for x.

Since the goal of Hoadley (1970) was to provide a theoretical justification of the

inverse estimator, he had to choose a somewhat unusual prior so that it leads to x̂I as the

posterior mean. In general it is not necessary to confine ourselves to any specific prior

for Bayesian analysis of inverse regression. It is also clear that the Bayesian framework

is appropriate for any inverse regression problem, not just linear inverse regression;

indeed, the palaeoclimate reconstruction problem (Haslett et al. (2006)) and the Milky

Way problem (Chakrabarty et al. (2015)) are examples of very highly non-linear inverse

regression problems.
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1.2 Relation between traditional forward problems, tradi-

tional inverse problems and inverse regression prob-

lems

The similarities and dissimilarities between inverse problems and the more traditional

forward problems are usually not clearly explained in the literature, and often “ill-posed”

is the term used to loosely characterize inverse problems. We point out that these two

problems may have the same goal or different goal, while both consider the same model

given the data. We first elucidate using the traditional case of deterministic differential

equations, that the goals of the two problems may be the same. Consider a dynamical

system
dxt
dt

= G(t, xt, θ), (1.2.1)

where G is a known function and θ is a parameter. In the forward problem the goal

is to obtain the solution xt ≡ xt(θ), given θ and the initial conditions, whereas, in

the inverse problem, the aim is to obtain θ given the solution process xt. Realistically,

the differential equation would be perturbed by noise, and so, one observes the data

y = (y1, . . . , yT )T , where

yt = xt(θ) + εt, (1.2.2)

for noise variables εt having some suitable independent and identical (iid) error distribu-

tion q, which we assume to be known for simplicity of illustration. A typical method

of estimating θ, employed by the scientific community, is the method of calibration,

where the solution of (1.2.1) would be obtained for each θ-value on a proposed grid of

plausible values, and a set ỹ(θ) = (ỹ1(θ), . . . , ỹT (θ))T is generated from the model (1.2.2)

for every such θ after simulating, for i = 1, . . . , T , ε̃t
iid∼ q; then forming ỹt(θ) = xt(θ) + ε̃t,

and finally reporting that value θ in the grid as an estimate of the true values for

which ‖y − ỹ(θ)‖ is minimized, given some distance measure ‖ · ‖; maximization of the
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correlation between y and ỹ(θ) is also considered. In other words, the calibration method

makes use of the forward technique to estimate the desired quantities of the model. On

the other hand, the inverse problem paradigm attempts to directly estimate θ from the

observed data y usually by minimizing some discrepancy measure between y and x(θ),

where x(θ) = (x1(θ), . . . , xT (θ))T . Hence, from this perspective the goals of both forward

and inverse approaches are the same, that is, estimation of θ. However, the forward

approach is well-posed, whereas, the inverse approach is often ill-posed. To clarify, note

that within a grid, there always exists some θ̂ that minimizes ‖y − ỹ(θ)‖ among all

the grid-values. In this sense the forward problem may be thought of as well-posed.

However, direct minimization of the discrepancy between y and x(θ) with respect to θ

is usually difficult and for high-dimensional θ, the solution to the minimization problem

is usually not unique, and small perturbations of the data causes large changes in the

possible set of solutions, so that the inverse approach is usually ill-posed. Of course, if

the minimization is sought over a set of grid values of θ only, then the inverse problem

becomes well-posed.

From the statistical perspective, the unknown parameter θ of the model needs to be

learned, in either the classical or the Bayesian way, and hence, in this sense there is

no real distinction between forward and inverse problems. Indeed, statistically, since

the data are modeled conditionally on the parameters, all problems where learning the

model parameter given the data is the goal, are inverse problems. We remark that the

literature usually considers learning unknown functions from the data in the realm of

inverse problems, but a function is nothing but an infinite-dimensional parameter, which

consititutes a very common learning problem in statistics.

We now explain when forward and inverse problems can differ in their aims, and

are significantly different even from the statistical perspective. In this regard, consider

Example 1 of Chapter 1.1.1, namely, the palaeoclimate reconstruction problem. Recall

that the inverse nature of the problem is associated with prediction of the fossil climate
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values, given the pollen assemblages. The forward problem would result, if given the

fossil climate values (if known), the fossil pollen abundances (if unknown), were to be

predicted.

Note that the class of inverse regression problems includes the class of traditional

inverse problems. The Milky Way problem (Example 5 of Chapter 1.1.1) is an example

where learning the unknown, matrix-variate function ξ (inverse problem) was required,

even though learning about S, the galactocentric location of the sun (inverse regression

problem) was the primary goal. The Bayesian approach allowed learning both S and ξ

simultaneously and coherently.

In the palaeoclimate models proposed in Haslett et al. (2006), Bhattacharya (2006)

and Mukhopadhyay and Bhattacharya (2013), although species assemblages are modeled

conditionally on climate variables, the functional relationship between species and climate

are not even approximately known. In all these works, it is of interest to learn about the

functional relationship as well as to predict the unobserved climate values, the latter

being the main aim. Again, the Bayesian approach facilitated appropriate learning of

both the unknown quantities.

Our discussion shows that statistically, there is nothing special about the existing

literature on inverse problems that considers estimation of unknown (perhaps, infinite-

dimensional) parameters, and the only class of problems that can be truly regarded

as inverse problems as distinguished from forward problems are those which consider

prediction of unknown covariates from the dependent response data. It is, however,

important to point out that in our thesis, (asymptotic) posterior learning of the unknown

covariates and its ramifications require (asymptotic) posterior learning of the associated

unknown functions, establishing the connection between inverse regression problems and

traditional inverse problems.
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DEVELOPMENT

1.3 Areas of inverse regression seeking attention for devel-

opment

1.3.1 Consistency of covariates in inverse regression problems

In the above linear inverse regression, notice that if τ > 0, then the variance of the

estimator of x can not tend to zero, even as the data size tends to infinity. This shows

that no estimator of x can be consistent. The same argument applies even to Bayesian

approaches; for any sensible prior on x that does not give point mass to the true value of

x, the posterior of x will not converge to the point mass at the true value of x as the data

size increases indefinitely. The arguments remain valid for any inverse regression problem

where the response variable y probabilistically depends upon the independent variable

x. Not only in inverse regression problems, even in forward regression problems where

the interest is in prediction of y given x, any estimate of y or any posterior predictive

distribution y will be inconsistent.

To give an example of inconsistency in non-linear and non-normal inverse problem,

consider the following set-up: yi
iid∼ Poisson (θxi), for i = 1, . . . , n, where θ > 0 and xi > 0

for each i. Let us consider the prior π(θ) ≡ 1 for all θ > 0. For some i∗ ∈ {1, . . . , n}

let us assume the leave-one-out cross-validation set-up in that we wish to learn x = xi∗

assuming it is unknown, from the rest of the data. Putting the prior π(x) ≡ 1 for x > 0,

the posterior of x is given by (see Bhattacharya and Haslett (2007), Bhattacharya (2013))

π(x|xn\xi,yn) ∝ xyi

(x+
∑

j 6=i xj)
(
∑n
j=1 yj+1)

. (1.3.1)

Figure 1.3.1 displays the posterior of x when i∗ = 10, for increasing sample size. Observe

that the variance of the posterior does not decrease even with sample size as large

as 100, 000, clearly demonstrating inconsistency. Hence, special, innovative priors are

necessary for consistency in such cases.
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Figure 1.3.1: Demonstration of posterior inconsistency in inverse regression problems. The vertical line
denotes the true value.

Recall that the underlying model may involve unknown functions as well, which may

be modeled nonparametrically using appropriate stochastic processes. In such situations,

conceiving of appropriate consistent priors for the unknown covariates may be rendered

a far more difficult problem.

1.3.2 Model adequacy tests in inverse regression problems

Assessment of model adequacy is always fundamental in statistics – this basic realization

has given rise to a huge literature on testing goodness of model fit. However, compared

to the classical literature, the Bayesian literature on model adequacy test is much scarce.

A comprehensive overview of the existing approaches is provided in Vehtari and Ojanen

(2012). Two relatively prominent existing formal and general approaches in this direction

are those of Gelman et al. (1996) and Bayarri and Berger (2000). The former relies on

posterior predictive P -value associated with a discrepancy measure that is a function
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of the data as well as the parameters. The latter criticize this approach on account

of ‘double use of the data’ and come up with two alternative P -values, demonstrating

their advantages over the posterior predictive P -value. Indeed, double use of the data

prevents the posterior predictive P -value to have uniform distribution on [0, 1], while the

P -values of Bayarri and Berger (2000) at least asymptotically has the desired uniform

distribution on [0, 1].

Bhattacharya (2013) introduced a different approach to Bayesian model assessment in

inverse regression problems. Broadly, the model assessment method of Bhattacharya

(2013) is based on the simple idea that the model fits the data if the posterior distribution

of the random variables corresponding to the covariates capture the observed values

of the covariates. Assuming that the covariates are unobserved, one can predict these

values in terms of the posterior distribution of the random quantities standing for the

(assumed) missing covariates. Bhattacharya (2013) demonstrated that it makes more

sense to consider leave-one-out cross-validation (LOO-CV) of the covariates particularly

when some of the model parameters are given improper prior. From the traditional

statistical perspective, LOO-CV is also a very natural method in model assessment.

Briefly, based on the LOO-CV posteriors of the covariates, some appropriate ‘inverse

reference distribution’ (IRD) is constructed. This IRD can be viewed as a distribution of

some appropriate statistic associated with the unobserved covariates. If the distribution

captures the observed statistic associated with the observed covariates, then the model

is said to fit the data. Otherwise, the model does not fit the data. Bhattacharya (2013)

provided a Bayesian decision theoretic justification of the key idea and show that the

relevant IRD based posterior probability analogue of the aforementioned P -values have

the uniform distribution on [0, 1]. Furthermore, ample simulation studies and successful

applications to several real, palaeoclimate models and data sets reported in Bhattacharya

(2006), Bhattacharya (2013) and Mukhopadhyay and Bhattacharya (2013), vindicate

the practicality and usefulness of the IRD approach.
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It is however, important to establish the asymptotic validity of the test proposed by

Bhattacharya (2013), which is again clearly related to establishment of consistency of

covariates in inverse regression problems discussed in Section 1.3.1.

1.3.3 Model selection in inverse regression problems

Comparison of different inverse models given the same data, or covariate selection in

inverse models, seems to be non-existent in the literature, either classical or Bayesian.

Given the abundance of inverse regression problems, this seems to be somewhat surprising.

Although the IRD approach of Bhattacharya (2013) seems to be useful for evaluating

adequacy of any given inverse Bayesian model, it does not seem to be straightforward to

extend the method to the model selection paradigm. That is, if several models pass the

IRD based model adequacy test, the question of selecting the best model among them

for final inference, remains.

It is hence essential to develop theories and methods for model selection in inverse

problems. Here it is useful to remark that although there exists a plethora of approaches

to model and covariate selection in the forward context, they do not necessarily admit

easy generalization to inverse regression setups. The lack of covariate consistency in

inverse regression setups with general priors also demonstrate that even if new model

and variable selection approaches may be constructed for inverse setups, asymptotic

validation of such approaches is likely to be highly non-trivial.



2
Posterior Convergence of Gaussian and

General Stochastic Process Regression

Under Possible Misspecifications

2.1 Introduction

In statistics, either frequentist or Bayesian, nonparametric regression plays a very

significant role. The frequentist nonparametric literature, however, is substantially larger

than the Bayesian counterpart. Here we cite the books Schimek (2013), Härdle et al.

(2012), Efromovich (2008), Takezawa (2006), Wu and Zhang (2006), Eubank (1999),

Green and Silverman (1993) and Härdle (1990), among a large number of books on

frequentist nonparametric regression. The Bayesian nonparametric literature, which is

relatively young but flourishing in the recent times (see, for example, Ghosal and van

17
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derVaart (2017), Müller et al. (2015), Dey et al. (2012), Hjort et al. (2010), Ghosh and

Ramamoorthi (2003)), offers much broader scope for interesting and innovative research.

The importance of Gaussian processes in nonparametric statistical modeling, partic-

ularly in the Bayesian context, is undeniable. It is widely used in density estimation

(Lenk (1988), Lenk (1991), Lenk (2003)), nonparametric regression (Rasmussen and

Williams (2006)), spatial data modeling (Cressie (1993), Banerjee et al. (2014)), machine

learning (Rasmussen and Williams (2006)), emulation of computer models (Santner et al.

(2003)), to name a few areas. Although applications of Gaussian processes have received

and continue to receive much attention, in the recent years there seems to be a growing

interest among researchers in the theoretical properties of approaches based on Gaussian

processes. Specifically, investigation of posterior convergence of Gaussian process based

approaches has turned out to be an important undertaking. In this respect, contributions

are made by Choi and Schervish (2007), van der Vaart and van Zanten (2008), van der

Vaart and van Zanten (2009), van der Vaart and van Zanten (2011), Knapik et al. (2011),

Vollmer (2013), Yang et al. (2018), Knapik and Salomond (2018). Choi and Schervish

(2007) address posterior consistency in Gaussian process regression, while the others

also attempt to provide the rates of posterior convergence. However, the rates are so

far computed under the assumption that the error distribution is normal and the error

variance is either known, or if unknown, can be given a prior, but on a compact support

bounded away from zero.

General priors for the regression function or thick-tailed noise distributions seemed

to have received less attention. The asymptotic theory for such frameworks is even

rare, Choi (2009) being an important exception. As much as we are aware of, rates

of convergence are not available for nonparametric regression with general stochastic

process prior on the regression function and thick-tailed noise distributions. Another

important issue which seems to have received less attention in the literature, is the case

of misspecified models. We are not aware of any published asymptotic theory pertaining
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to misspecifications in nonparametric regression, for either Gaussian or non-Gaussian

processes with either normal or non-normal errors.

In this chapter, we consider both Gaussian and general stochastic process regression

under the same setups as Choi and Schervish (2007) and Choi (2009), respectively,

assuming that the covariates may be either random or non-random. For the Gaussian

process setup we consider both normal and double-exponential distribution for the

error, with unknown error variance. In the general context, we assume non-Gaussian

noise with unknown scale parameter supported on the entire positive part of the real

line. Based on the general theory of posterior convergence provided in Shalizi (2009),

we establish posterior convergence theories for both the setups. We allow the case of

misspecified models, that is, if the true regression function and the true error variance

are not even supported by the prior. Our approach also enables us to show that the

relevant posterior probabilities converge at the Kullback-Leibler (KL) divergence rate,

and that the posterior convergence rate with respect to the KL-divergence is just slower

than n−1, n being the number of observations. We further show that even in the case of

misspecification, the posterior predictive distribution can approximate the best possible

predictive distribution adequately, in the sense that the Hellinger distance, as well as

the total variation distance between the two distributions can tend to zero. In Section

2.1.1 we provide a brief overview and intuitive explanation of the main assumptions and

results of Shalizi, which we exploit in this chapter. The details are provided in Section

2.A1. The results of Shalizi are based on seven assumptions, which we refer to as (S1) –

(S7) throughout this thesis.

2.1.1 A briefing of the main results of Shalizi

Let Y n = (Y1, . . . , Yn)T , and let fθ(Y n) and fθ0(Y n) denote the observed and the

true likelihoods respectively, under the given value of the parameter θ and the true

parameter θ0. We assume that θ ∈ Θ, where Θ is the (often infinite-dimensional)
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parameter space. However, we do not assume that θ0 ∈ Θ, thus allowing misspecification.

The key ingredient associated with Shalizi’s approach to proving convergence of the

posterior distribution of θ is to show that the asymptotic equipartition property holds.

To elucidate, let us consider the following likelihood ratio:

Rn(θ) =
fθ(Y n)

fθ0(Y n)
.

Then, to say that for each θ ∈ Θ, the generalized or relative asymptotic equipartition

property holds, we mean

lim
n→∞

1

n
logRn(θ) = −h(θ), (2.1.1)

almost surely, where h(θ) is the KL-divergence rate given by

h(θ) = lim
n→∞

1

n
Eθ0

(
log

fθ0(Y n)

fθ(Y n)

)
,

provided that it exists (possibly being infinite), where Eθ0 denotes expectation with

respect to the true model. Let

h (A) = ess inf
θ∈A

h(θ);

J(θ) = h(θ)− h(Θ);

J(A) = ess inf
θ∈A

J(θ).

Thus, h(A) can be roughly interpreted as the minimum KL-divergence between the

postulated and the true model over the set A. If h(Θ) > 0, this indicates model

misspecification. However, as we shall show, model misspecification need not always

imply that h(Θ) > 0. For A ⊂ Θ, h(A) > h(Θ), so that J(A) > 0.

As regards the prior, it is required to construct an appropriate sequence of sieves Gn

such that Gn → Θ and π(Gcn) ≤ α exp(−βn), for some α > 0.
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With the above notions, verification of (2.1.1) along with several other technical

conditions ensure that for any A ⊆ Θ such that π(A) > 0,

lim
n→∞

π(A|Y n) = 0, (2.1.2)

almost surely, provided that h(A) > h(Θ). Under mild assumptions, it also holds that

lim
n→∞

1

n
log π(A|Y n) = −J(A), (2.1.3)

almost surely, where π(·|Y n) denotes the posterior distribution of θ given Y n. With

respect to (2.1.2) note that h(A) > h(Θ) implies positive KL-divergence in A, even if

h(Θ) = 0. In other words, A is the set in which the postulated model fails to capture the

true model in terms of the KL-divergence. Hence, expectedly, the posterior probability of

that set converges to zero. The result (2.1.3) asserts that the rate at which the posterior

probability of A converges to zero is about exp(−nJ(A)). From the above results it is

clear that the posterior concentrates on sets of the form Nε = {θ : h(θ) ≤ h(Θ) + ε}, for

any ε > 0.

As regards the rate of posterior convergence, let Nεn = {θ : h(θ) ≤ h(Θ) + εn}, where

εn → 0 such that nεn → ∞. Then under an additional technical assumption it holds,

almost surely, that

lim
n→∞

π (Nεn |Y n) = 1. (2.1.4)

Moreover, it was shown by Shalizi that the squares of the Hellinger and the total

variation distances between the posterior predictive distribution and the best possible

predictive distribution under the truth, are asymptotically almost surely bounded above

by h(Θ) and 4h(Θ), respectively. In other words, if h(Θ) = 0, then this entails very

accurate approximation of the true predictive distribution by the posterior predictive

distribution.

The rest of this chapter is structured as follows. We treat the Gaussian process
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regression with normal and double exponential errors in Section 2.2. Specifically, our

assumptions regarding the model and discussion of the assumptions are presented in

Section 2.2.1. In Section 2.2.2 we present our main results of posterior convergence,

along with the summary of the verification of Shalizi’s assumptions, for the Gaussian

process setup. The complete details are provided in Sections 2.A2 and 2.A3. We deal

with rate of convergence and model misspecification issue for Gaussian process regression

in Sections 2.2.3 and 2.2.4, respectively.

The case of general stochastic process regression with thick tailed error distribution is

taken up in Section 2.3. The assumptions with their discussion are provided in Section

2.3.1, the main posterior results are presented in Section 2.3.2, and Section 2.3.3 addresses

the rate of convergence and model misspecification issue. Finally, we make concluding

remarks in Section 2.4. The relevant details are provided in Section 2.A4.

2.2 The Gaussian process regression setup

As in Choi and Schervish (2007), we consider the following model:

yi = η(xi) + εi; i = 1, . . . , n; (2.2.1)

η(·) ∼ GP (µ(·), c(·, ·)) ; (2.2.2)

σ ∼ πσ(·). (2.2.3)

In (2.2.2), GP (µ(·), c(·, ·)) stands for Gaussian process with mean function µ(·) and

positive definite covariance function cov(η(x1), η(x2)) = c(x1, x2), for any x1, x2 ∈ X ,

where X is the domain of η.

As in Choi and Schervish (2007) we assume two separate distributions for the errors

εi, independent zero-mean normal with variance σ2 which we denote by N(0, σ2) and

independent double exponential distribution with median 0 and scale parameter σ with
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density

f(ε) =
1

2σ
exp

(
−|ε|
σ

)
; ε ∈ R.

We denote the double exponential distribution by DE(0, σ).

In our case, let θ = (η, σ) be the infinite-dimensional parameter associated with our

Gaussian process model and let θ0 = (η0, σ0) be the true (infinite-dimensional) parameter.

Let Θ denote the infinite-dimensional parameter space.

2.2.1 Assumptions and their discussions

Regarding the model and the prior, we make the following assumptions:

(A1) X is a compact, d-dimensional space, for some finite d ≥ 1, equipped with a

suitable metric.

(A2) The functions η are continuous on X and for such functions the limit

η′j(x) =
∂η(x)

∂xj
= lim

h→0

η(x+ hδj)− η(x)

h
(2.2.4)

exists for each x ∈ X , and is continuous on X , for j = 1, . . . , d. In the above, δj is

the d-dimensional vector where the j-th element is 1 and all the other elements

are zero. We denote the above class of functions by C′(X ).

(A3) We assume the following for the covariates xi, accordingly as they are considered

an observed random sample, or non-random.

(i) {xi : i = 1, 2, . . .} is an observed sample associated with an iid sequence

associated with some probability measure Q, supported on X , which is

independent of {εi : i = 1, 2, . . .}.

(ii) {xi : i = 1, 2, . . .} is an observed non-random sample. In this case, we consider

a specific partition of the d-dimensional space X into n subsets such that
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each subset of the partition contains at least one x ∈ {xi : i = 1, 2, . . .} and

has Lebesgue measure L/n, for some L > 0.

(A4) Regarding the prior for σ, we assume that for large enough n,

πσ

(
exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

)
≥ 1− cσ exp(−βn),

for cσ > 0 and β > 2h (Θ).

(A5) The true regression function η0 satisfies ‖η0‖ ≤ κ0 <∞. We do not assume that

η0 ∈ C′(X ). For random covariate X, we assume that η0(X) is measurable.

Discussion of the assumptions

The compactness assumption on X in Assumption (A1) guarantees that continuous

functions on X have finite sup-norms. Here, by sup-norm of any function f on X , we

mean ‖f‖ = sup
x∈X
|f(x)|. Hence, our Gaussian process prior on η, which gives probability

one to continuously differentiable functions, also ensures that ‖η‖ <∞, almost surely.

Compact support of the functions is commonplace in the Gaussian process literature;

see, for example, Cramer and Leadbetter (1967), Adler (1981), Adler and Taylor (2007),

Choi and Schervish (2007). The metric on X is necessary for partitioning X in the case

of non-random covariates.

Condition (A2) is required for constructing appropriate sieves for proving our posterior

convergence results. In particular, this is required to ensure that η is Lipschitz continuous

in the sieves. Since a function is Lipschitz if and only if its partial derivatives are

bounded, this serves our purpose, as continuity of the partial derivatives of η guarantees

boundedness in the compact domain X . Conditions guaranteeing the above continuity

and smoothness properties required by (A2) must also be reflected in the underlying

Gaussian process prior for η. The relevant conditions can be found in Cramer and

Leadbetter (1967), Adler (1981) and Adler and Taylor (2007), which we assume in our
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case. In particular, these require adequate smoothness assumptions on the mean function

µ(·) and the covariance function c(·, ·) of the Gaussian process prior. It follows that

η′j ; j = 1, . . . , d, are also Gaussian processes. It clearly holds that µ(·) and its partial

derivatives also have finite sup-norms.

As regards (A3) (i), thanks to the strong law of large numbers (SLLN), given any η

in the complement of some null set with respect to the prior, and given any sequence

{xi : i = 1, 2, . . .} this assumption ensures that for any ν > 0, as n→∞,

1

n

n∑
i=1

|η(xi)− η0(xi)|ν →
∫
X
|η(x)− η0(x)|ν dQ(X) = EX |η(X)− η0(X)|ν (say),

(2.2.5)

almost surely, where Q is some probability measure supported on X .

Condition (A3) (ii) ensures that 1
n

∑n
i=1 |η(xi)− η0(xi)|ν is a particular Riemann sum

and hence (2.2.5) holds with Q being the Lebesgue measure on X . We continue to denote

the limit in this case by EX [η(X)− η0(X)]ν .

In the light of (2.2.5), condition (A3) will play important role in establishing the

equipartition property, for both Gaussian and double exponential errors. Another

important role of this condition is to ensure consistency of the posterior predictive

distribution, in spite of some misspecifications.

Condition (A4) ensures that the prior probabilities of the complements of the sieves

are exponentially small. Such a requirement is common to most Bayesian asymptotic

theories.

The essence of (A5) is to allow misspecification of the prior for η in a way that the true

regression function is not even supported by the prior, even though it has finite sup-norm.

In contrast, Choi and Schervish (2007) assumed that η0 has continuous first-order partial

derivatives. The assumption of measurability of η0(X) is a very mild technical condition.

Let Θ = C′(X )×R+ denote the infinite-dimensional parameter space for our Gaussian

process model.
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2.2.2 Posterior convergence of Gaussian process regression under nor-

mal and double exponential errors

In this section we provide a summary of our results leading to posterior convergence of

Gaussian process regression when the errors are assumed to be either normal or double

exponential. The details are provided in the supplement. The key results associated

with the asymptotic equipartition property are provided in Lemma 3 and Theorem 4,

the proofs of which are provided in the supplement in the context of detailed verification

of Shalizi’s assumptions.

Lemma 3 Under the Gaussian process model and conditions (A1) and (A3), the KL-

divergence rate h(θ) exists for θ ∈ Θ, and is given by

h(θ) = log

(
σ

σ0

)
− 1

2
+

σ2
0

2σ2
+

1

2σ2
EX [η(X)− η0(X)]2 , (2.2.6)

for the normal errors, and

h(θ) = log

(
σ

σ0

)
− 1 +

1

σ
EX |η(X)− η0(X)|+ σ0

σ
EX

[
exp

(
−|η(X)− η0(X)|

σ0

)]
,

(2.2.7)

for the double exponential errors.

Theorem 4 Under the Gaussian process model with normal and double exponential

errors and conditions (A1) and (A3), the asymptotic equipartition property holds, and is

given by

lim
n→∞

1

n
logRn(θ) = −h(θ), almost surely.

The convergence is uniform on any compact subset of Θ.

Lemma 3 and Theorem 4 ensure that conditions (S1) – (S3) of Shalizi hold, and (S4)
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holds since h(θ) is almost surely finite. We construct the sieves Gn as

Gn =
{

(η, σ) : ‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn))1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d
}
.

(2.2.8)

It follows that Gn → Θ as n → ∞ and the properties of the Gaussian processes η,

η′, together with (A4) ensure that π(Gcn) ≤ α exp(−βn), for some α > 0. This result,

continuity of h(θ), compactness of Gn and the uniform convergence result of Theorem 4,

together ensure (S5).

Now observe that the aim of assumption (S6) is to ensure that (see the proof of

Lemma 7 of Shalizi (2009)) for every ε > 0 and for all n sufficiently large,

1

n
log

∫
Gn
Rn(θ)dπ(θ) ≤ −h (Gn) + ε, almost surely.

Since h (Gn)→ h (Θ) as n→∞, it is enough to verify that for every ε > 0 and for all n

sufficiently large,

1

n
log

∫
Gn
Rn(θ)dπ(θ) ≤ −h (Θ) + ε, almost surely. (2.2.9)

In this regard, first observe that

1

n
log

∫
Gn
Rn(θ)dπ(θ) ≤ 1

n
log

[
sup
θ∈Gn

Rn(θ)π(Gn)

]
=

1

n
log

[
sup
θ∈Gn

Rn(θ)

]
+

1

n
log π(Gn)

= sup
θ∈Gn

1

n
logRn(θ) +

1

n
log π(Gn)

≤ 1

n
sup
θ∈Gn

logRn(θ), (2.2.10)

where the last inequality holds since 1
n log π(Gn) ≤ 0. Now, letting S = {θ : h(θ) ≤ κ},
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where κ > h (Θ) is large as desired,

sup
θ∈Gn

1

n
logRn(θ) ≤ sup

θ∈Θ

1

n
logRn(θ) = sup

θ∈S∪Sc

1

n
logRn(θ)

≤ max

{
sup
θ∈S

1

n
logRn(θ), sup

θ∈Sc

1

n
logRn(θ)

}
. (2.2.11)

In Sections 2.A2.5 and 2.A3.5 we have proved continuity of h(θ) for Gaussian and

double exponential errors, respectively. Now observe that ‖η‖ ≤ ‖η− η0‖+ ‖η0‖, so that

‖η‖ → ∞ implies ‖η − η0‖ → ∞ (since ‖η0‖ < ∞). Hence, for each η, there exists a

subset Xη of X depending upon η such that Q (Xη) > 0 and sup
x∈Xη

|η(x)− η0(x)| → ∞ as

‖η‖ → ∞. It then follows that EX |η(X)− η0(X)| → ∞ and EX (η(X)− η0(X))2 →∞

as ‖η‖ → ∞. Hence observe that ‖θ‖ → ∞ if σ → ∞ and ‖η‖ → ∞, or if σ tends

to zero or some non-negative constant and ‖η‖ → ∞. In both the cases h(θ) → ∞,

for both Gaussian and double exponential errors. In other words, h(θ) is a continuous

coercive function in this sense (see for example, Lange (2010) for concepts of coercive

functions on finite-dimensional Euclidean spaces). Using similar principles as in the

context of continuous coercive functions on finite-dimensional Euclidean spaces, it can

be shown that S is a closed and bounded set. Since S is bounded, we must have

‖η‖ < M for some 0 < M < ∞, for all η ∈ S. Now, compactness of X permits us

to assume that ‖x1 − x2‖ > L > 0 for all x1, x2 ∈ X . Hence, for any x1, x2 ∈ X ,

|η(x1)−η(x2)| ≤ 2M
‖x1−x2‖ ×‖x1−x2‖ ≤ 2M

L ‖x1−x2‖ for all x1, x2 ∈ X and for all η ∈ S,

showing that S is uniformly equicontinuous as well. Hence, S is compact.

Now note that for any two real valued functions f and g, and for any set A in the

domain of f and g, sup
x∈A

f(x) = sup
x∈A

[(f(x)− g(x)) + g(x)] ≤ sup
x∈A

(f(x)−g(x))+sup
x∈A

g(x),

so that sup
x∈A

f(x) − sup
x∈A

g(x) ≤ sup
x∈A

(f(x) − g(x)) ≤ sup
x∈A

|f(x)− g(x)|. Interchanging

the roles of f and g, we obtain −
[
sup
x∈A

f(x)− sup
x∈A

g(x)

]
≤ sup

x∈A
|f(x)− g(x)|, so that

combining the above two inequalities lead to

∣∣∣∣sup
x∈A

f(x)− sup
x∈A

g(x)

∣∣∣∣ ≤ sup
x∈A

|f(x)− g(x)|.
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In our case, replacing A, f(x) and g(x) with S, 1
n logRn(θ) and −h(θ), respectively, we

obtain using uniform convergence of Theorem 4, that

sup
θ∈S

1

n
logRn(θ)→ sup

θ∈S
− h(θ) = −h (S) , almost surely, as n→∞. (2.2.12)

We now show that

sup
θ∈Sc

1

n
logRn(θ) ≤ −h (Θ) almost surely, as n→∞. (2.2.13)

First note that if sup
θ∈Sc

1
n logRn(θ) > −h (Θ) infinitely often, then 1

n logRn(θ) > −h (Θ)

for some θ ∈ Sc infinitely often. But 1
n logRn(θ) > −h (Θ) if and only if 1

n logRn(θ) +

h(θ) > h(θ)− h (Θ) , for θ ∈ Sc. Hence, if we can show that

P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ− h (Θ) , for θ ∈ Sc infinitely often

)
= 0, (2.2.14)

then (2.2.13) will be proved. We use the Borel-Cantelli lemma to prove (2.2.14). In

other words, we prove in the supplement, in the context of verifying condition (S6) of

Shalizi, that

Theorem 5 For both normal and double exponential errors, under (A1)–(A5), it holds

that
∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ− h (Θ)

)
dπ(θ) <∞. (2.2.15)

Since h(θ) is continuous, (S7) holds trivially. In other words, all the assumptions (S1)–

(S7) are satisfied for Gaussian process regression, for both normal and double exponential

errors. Formally, our results lead to the following theorem.

Theorem 6 Assume the Gaussian process regression model where the errors are either

normally or double-exponentially distributed. Then under the conditions (A1) – (A5),

(2.1.2) holds. Also, for any measurable set A with π(A) > 0, if β > 2h(A), where h
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is given by (2.2.6) for normal errors and (2.2.7) for double-exponential errors, or if

A ⊂ ∩∞k=nGk for some n, where Gk is given by (2.2.8), then (2.1.2) and (2.1.3) hold.

2.2.3 Rate of convergence

For Shalizi’s approach to the rate of convergence, it is first required to observe that for

each measurable A ⊆ Θ, for every δ > 0, there exists a random natural number τ(A, δ)

such that n−1 log
∫
ARn(θ)dπ(θ) ≤ δ + lim sup

n
n−1 log

∫
ARn(θ)dπ(θ) for all n > τ(A, δ),

provided the lim sup is finite.

Shalizi considered the set Nεn = {θ : h(θ) ≤ h(Θ) + εn}, where εn → 0 and nεn →∞,

as n→∞, and proved the following result.

Theorem 7 Under (S1)–(S7), if for each δ > 0,

τ
(
Gn ∩N c

εn , δ
)
≤ n (2.2.16)

eventually almost surely, then (2.1.4) holds almost surely.

To investigate the rate of convergence in our cases, we need to show that for any ε > 0

and all n sufficiently large,

1

n
log

∫
Gn∩Nc

εn

Rn(θ)dπ(θ) ≤ −h
(
Gn ∩N c

εn

)
+ ε. (2.2.17)

For εn ↓ 0 such that nεn → 0 as n → ∞, it holds that N c
εn ↑ Θ. Since Gn ↑ Θ as well,

h
(
Gn ∩N c

εn

)
↓ h(Θ), since h(θ) is continuous in θ. Combining these arguments with

(2.2.17) makes it clear that if we can show

1

n
log

∫
Gn∩Nc

εn

Rn(θ)dπ(θ) ≤ −h (Θ) + ε, (2.2.18)

for any ε > 0 and all n sufficiently large, where εn ↓ 0 such that nεn → 0 as n → ∞,
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then that εn is the rate of convergence. Now, the same steps as (2.2.10) lead to

1

n
log

∫
Gn∩Nc

εn

Rn(θ)dπ(θ) ≤ 1

n
log

[
sup
θ∈Gn

Rn(θ)π(Gn)

]
≤ 1

n
sup
θ∈Gn

logRn(θ). (2.2.19)

Since the set S is compact for both Gaussian and double exponential errors, in the light

of (2.2.19), (2.2.11), (2.2.12), (2.2.13) and (2.2.14) we only need to verify (2.2.15) to

establish (2.2.18). As we have already verified (2.2.15) for both Gaussian and double

exponential errors, (2.2.18) stands verified.

In other words, (2.2.16), and hence (2.1.4) hold for both the Gaussian process models

with Gaussian and double exponential errors, so that their convergence rate is given

by εn. In other words, the posterior rate of convergence with respect to KL-divergence

is just slower than n−1 (just slower that n−
1
2 with respect to Hellinger distance), for

both kinds of errors that we consider. Our result can be formally stated as the following

theorem.

Theorem 8 For Gaussian process regression with either normal or double exponential

errors, under (A1)–(A5), (2.1.4) holds almost surely, for εn ↓ 0 such that nεn →∞.

2.2.4 Consequences of model misspecification

Suppose that the true function η0 consists of countable number of discontinuities but

has continuous first order partial derivatives at all other points. Then η0 /∈ C′(X ), that

is, η0 is not in the parameter space. Now, assume that there exists some η̃ ∈ C′(X ) such

that η̃(x) = η0(x) for all x ∈ X where η0 is continuous.

Note that it is always possible to obtain discontinuous η0 given η̃ ∈ C′(X ) by creating

countable number of points of discontinuities in η̃ (for example, let η̃(x) = x and

η0(x) = x if x 6= 1 and η0(1) = 10). On the other hand, there need not exist even

continuous η̃ correponding to any η0 with countable number of discontinuities (for
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instance, η0(x) = x/|x| when x 6= 0 and η0(0) = 0, does not admit any continuous

modification). However, in many cases such η0 does exist.

Then, if the probability measure Q of (A3) is dominated by the Lebesgue measure,

it follows from (2.2.6) and (2.2.7), that h(Θ) = 0 for both the Gaussian and double

exponential error models. In this case, the posterior of η concentrates around η̃, which

is the same as η0 except at the countable number of discontinuities of η0. If (η0, σ0) is

such that 0 < h(Θ) <∞, then the posterior concentrates around the minimizers of h(θ),

provided such minimizers exist in Θ.

Now, following Shalizi, let us define the one-step-ahead predictive distribution of

θ by Fnθ ≡ Fθ (Yn|Y1, . . . , Yn−1), with the convention that n = 1 gives the marginal

distribution of the first observation. Similarly, let Pn ≡ Pn (Yn|Y1, . . . , Yn−1), which

is the best prediction one could make had P been known. The posterior predictive

distribution is given by Fnπ =
∫

Θ F
n
θ dπ (θ|Y n). With the above definitions, Shalizi (2009)

proved the following results:

Theorem 9 Under assumptions (S1)–(S7), with probability 1,

lim sup
n→∞

ρ2
H (Pn, Fnπ ) ≤ h (Θ) ; (2.2.20)

lim sup
n→∞

ρ2
TV (Pn, Fnπ ) ≤ 4h (Θ) , (2.2.21)

where ρH and ρTV are Hellinger and total variation metrics, respectively.

Since, for both our Gaussian process models with normal and double exponential errors,

h(Θ) = 0 if η0 consists of countable number of discontinuities, it follows from (2.2.20)

and (2.2.21) that in spite of such misspecification, the posterior predictive distribution

does a good job in learning the best possible predictive distribution in terms of the

popular Hellinger and the total variation distance. We state our result formally as the

following theorem.
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Theorem 10 In the Gaussian process regression problem with either normal or double

exponential errors, assume that the true function η0 consists of countable number of

discontinuities but has continuous first order partial derivatives at all other points. Also

assume that the probability measure Q of (A3) is dominated by the Lebesgue measure.

Then under (A1) – (A5),

lim sup
n→∞

ρH (Pn, Fnπ ) = 0;

lim sup
n→∞

ρTV (Pn, Fnπ ) = 0,

almost surely.

2.3 The general nonparametric regression setup

Following Choi (2009) we consider the following model:

yi = η(xi) + εi; i = 1, . . . , n; (2.3.1)

εi
iid∼ 1

σ
φ
(εi
σ

)
; σ > 0; (2.3.2)

η(·) ∼ πη(·); (2.3.3)

σ ∼ πσ(·). (2.3.4)

In (2.3.2), we model the random errors εi; i = 1, . . . , n as iid samples from some density

1
σφ
( ·
σ

)
. In (2.3.3), πη stands for any reasonable stochastic process prior, which may may

or may not be Gaussian, and in (2.3.4), πσ is some appropriate prior on σ.

2.3.1 Additional assumptions and their discussions

Regarding the model and the prior, we make the following assumptions in addition to

(A1) – (A5) presented in Section 2.2.1:
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(A6) The prior on η is chosen such that for β > 2h (Θ),

π
(
‖η‖ ≤ exp

(
(βn)1/4

))
≥ 1− cη exp (−βn) ;

π
(
‖η′j‖ ≤ exp

(
(βn)1/4

))
≥ 1− cη′j exp (−βn) , for j = 1, . . . , d, (2.3.5)

where cη and cη′j ; j = 1, . . . , d, are positive constants.

(A7) φ(·) is symmetric about zero; that is, for any x ∈ R, φ(x) = φ(|x|). Further, log φ

is L-Lipschitz, that is, there exists a L > 0 such that | log φ(x1) − log φ(x2)| ≤

L|x1 − x2|, for any x1, x2 ∈ R.

(A8) For x ∈ X , let gη,σ(x) = Eθ0

[
log φ

(
y−η(x)
σ

)]
=
∫∞
−∞ log φ

(
σ0z+η0(x)−η(x)

σ

)
φ(z)dz.

Then given (η, σ), Ui = log φ
(
yi−η(xi)

σ

)
− gη,σ(xi) are independent sub-exponential

random variables satisfying for any i = 1, . . . , n,

Eθ0 [exp (λUi)] ≤ exp

(
λ2s2

η,σ

2

)
, for |λ| ≤ s−1

η,σ, (2.3.6)

where, for c1 > 0, c2 > 0,

sη,σ =
c1‖η − η0‖+ c2

σ
. (2.3.7)

(A9) For σ > 0,
∫∞
−∞

∣∣log φ
(
σ0
σ z
)∣∣φ(z)dz ≤ c3

σ , where c3 > 0. Also,
∫∞
−∞ |z|φ(z)dz <∞.

(A10) (i) EX [gη,σ(X)] is jointly continuous in (η, σ);

(ii) EX [gη,σ(X)]→∞ as ‖θ‖ = ‖η‖+ σ →∞.

Discussion of the new assumptions

Condition (A6) ensures that the prior probabilities of the complements of the sieves

are exponentially small. Such a requirement is common to most Bayesian asymptotic
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theories. In particular, the first two inequalities are satisfied by Gaussian process priors

even if exp
(

(βn)1/4
)

is replaced by
√
βn.

Assumption (A7) is the same as that of Choi (2009), and holds in the case of double

exponential errors, for instance.

Conditions (A8), (A9) and (A10) are reasonably mild conditions, and as shown in the

supplement, are satisfied by double exponential errors.

As before, let Θ = C′(X )× R+ denote the infinite-dimensional parameter space for

our model.

2.3.2 Posterior convergence

As before, we provide a summary of our results leading to posterior convergence in our

general setup. The details are provided in the supplement.

Lemma 11 Under our model assumptions and conditions (A1) and (A3), the KL-

divergence rate h(θ) exists for θ ∈ Θ, and is given by

h(θ) = log

(
σ

σ0

)
+ c− EX [gη,σ(X)] , (2.3.8)

where c = Eθ0

[
log φ

(
yi−η0(xi)

σ0

)]
=
∫∞
−∞ [log φ(z)]φ(z)dz.

Theorem 12 Under our model assumptions and conditions (A1) and (A3), the asymp-

totic equipartition property holds, and is given by

lim
n→∞

1

n
logRn(θ) = −h(θ), almost surely.

The convergence is uniform on any compact subset of Θ.

Lemma 11 and Theorem 12 ensure that conditions (S1) – (S3) of Shalizi hold, and (S4)

holds since h(θ) is almost surely finite. We construct the sieves Gn as in (2.2.8). Hence,
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as before, Gn → Θ as n→∞ and the assumptions on η, η′ given by (A6), together with

(A4) ensure that π(Gcn) ≤ α exp(−βn), for some α > 0. This result, continuity of h(θ),

compactness of Gn and the uniform convergence result of Theorem 4, together ensure

(S5).

As regards (S6), let us note that from the definition of gη,σ(x) and Lipschitz continuity

of log φ, it follows that EX [gη,σ(X)] is Lipschitz continuous in η. However, we still need

to assume that EX [gη,σ(X)] is jointly continuous in θ = (η, σ). Due to (A10) it follows

that h(θ) is continuous in θ and h(θ) → ∞ as ‖θ‖ → ∞. In other words, h(θ) is a

continuous coercive function as in the Gaussian process setup. Hence, as before, it is

seen that S is a compact set. With these observations, we then have the following result

analogous to the Gaussian process case, the proof which is provided in the supplement.

Theorem 13 In our setup, under (A1)–(A10), it holds that

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ− h (Θ)

)
dπ(θ) <∞.

Since h(θ) is continuous, (S7) holds trivially. Thus, all the assumptions (S1)–(S7) are

satisfied, showing that Theorems 1 and 2 hold. Formally, our results lead to the following

theorem.

Theorem 14 Assume the hierarchical model given by (2.3.1), (2.3.2), (2.3.3) and

(2.3.4). Then under the conditions (A1) – (A10), (2.1.2) holds. Also, for any measurable

set A with π(A) > 0, if β > 2h(A), where h is given by (2.3.8), or if A ⊂ ∩∞k=nGk for

some n, where Gk is given by (2.2.8), then (2.1.3) holds.

2.3.3 Rate of convergence and consequences of model misspecification

For the general nonparametric model, the same result as Theorem 8 holds, under (A1)–

(A10). Also, the same issues regarding model misspecification as detailed in Section 2.2.4
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continues to be relevant in this setup. In other words, Theorem 10 holds under (A1) –

(A10).

2.4 Conclusion

The fields of both theoretical and applied Bayesian nonparametric regression are domi-

nated by Gaussian process priors and Gaussian noise. From the asymptotics perspective,

even in the Gaussian setup, a comprehensive theory unifying posterior convergence for

both random and non-random covariates along with the rate of convergence in the case

of general priors for the unknown error variance, while also allowing for misspecification,

seems to be very rare. Even more rare is the aforementioned investigations in the

setting where a general stochastic process prior is on the unknown regression function is

considered and the noise distribution is non-Gaussian and thick-tailed.

The approach of Shalizi allowed us to consider the asymptotic theory incorporating all

the above issues, for both Gaussian and general stochastic process prior for the regression

function. The approach, apart from enabling us to ensure consistency for both random

and non-random covariates, allows us to compute the rate of convergence, while allowing

misspecifications. Perhaps the most interesting result that we obtained is that even if

the unknown regression function is misspecified, the posterior predictive distribution still

captures the true predictive distribution asymptotically, for both Gaussian and general

setups.

It seems that the most important condition among the assumptions of Shalizi is the

asymptotic equipartition property. This directly establishes the KL property of the

posterior which characterizes the posterior convergence, the rate of posterior convergence

and misspecification. Interestingly, such a property that plays the key role, turned out

to be relatively easy to establish in our context under reasonably mild conditions. On

the other hand, in all the applications that we investigated so far, (S6) turned out to be

the most difficult to verify. But the approach we devised to handle this condition and
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the others, seem to be generally applicable for investigating posterior asymptotics in

general Bayesian parametric and nonparametric problems.



Appendix

2.A1 Preliminaries for ensuring posterior consistency un-

der general set-up

Following Shalizi (2009) we consider a probability space (Ω,F , P ), and a sequence

of random variables y1, y2, . . ., taking values in some measurable space (Ξ,Y), whose

infinite-dimensional distribution is P . The natural filtration of this process is σ(yn), the

smallest σ-field with respect to which yn is measurable. In other words, the distribution

P is an infinite-dimensional distribution since it is the joint distribution of infinitely

many random variables corresponding to a valid stochastic process. As guaranteed by

Kolmogorov’s consistency result (see, for example, Billingsley (1995), Schervish (1995)),

all finite-dimensional distributions associated with P can be obtained by marginalizing

over the remaining (infinite number of) variables. The theoretical development requires

no restrictive assumptions on P such as it being a product measure, Markovian, or

exchangeable, thus paving the way for great generality.

We denote the distributions of processes adapted to σ(yn) by Fθ, where θ is asso-

ciated with a measurable space (Θ, T ), and is generally infinite-dimensional. In other

words, assuming that θ is the infinite-dimensional distribution of the stochastic process

{Y1, Y2, . . .}, Fθ denotes the n-dimensional marginal distribution associated with θ; n

is suppressed for ease of notation. For parametric models, the probability measure θ

corresponds to a probability density with respect to some dominating measure (such

as Lebesgue or counting measure) and consists of finite number of parameters. For

nonparametric models, θ is usually associated with an infinite number of parameters

39
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and may not have a density with respect to σ-finite measures.

For the sake of convenience, we assume, as in Shalizi (2009), that P and all the Fθ are

dominated by a common reference measure, with respective densities fθ0 and fθ. The

usual assumptions that P ∈ Θ or even P lies in the support of the prior on Θ, are not

required for Shalizi’s result, rendering it very general indeed.

Given a prior π on θ, we assume that the posterior distributions π(·|Xn) are dominated

by a common measure for all n ≥ 1; abusing notation, we denote the density at θ by

π(θ|Xn).

2.A1.1 Assumptions and theorems of Shalizi

(S1) Consider the following likelihood ratio:

Rn(θ) =
fθ(Y n)

fθ0(Y n)
. (2.A1.1)

Assume that Rn(θ) is σ(Y n)× T -measurable for all n > 0.

(S2) For every θ ∈ Θ, the KL-divergence rate

h(θ) = lim
n→∞

1

n
E

(
log

fθ0(Y n)

fθ(Y n)

)
. (2.A1.2)

exists (possibly being infinite) and is T -measurable. Note that in the iid set-up,

h(θ) reduces to the KL-divergence between the true and the hypothesized model,

so that h(θ) may be regarded as a generalized KL-divergence measure.

(S3) For each θ ∈ Θ, the generalized or relative asymptotic equipartition property holds,

and so, almost surely,

lim
n→∞

1

n
logRn(θ) = −h(θ).

Roughly, the terminology “asymptotic equipartition” refers to dividing up log [Rn(θ)]

into n factors for large n such that all the factors are asymptotically equal. Again,
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considering the iid scenario helps clarify this point, as in this case each factor

converges to the same Kullback-Leibler divergence between the true and the pos-

tulated model. With this understanding note that the purpose of condition (S3) is

to ensure that relative to the true distribution, the likelihood of each θ decreases

to zero exponentially fast, with rate being the KL-divergence rate.

(S4) Let I = {θ : h(θ) =∞}. The prior π satisfies π(I) < 1.

Following the notation of Shalizi (2009), for A ⊆ Θ, let

h (A) = ess inf
θ∈A

h(θ); (2.A1.3)

J(θ) = h(θ)− h(Θ); (2.A1.4)

J(A) = ess inf
θ∈A

J(θ), (2.A1.5)

where, for any function g : Θ 7→ R, where R is the real line,

ess inf
θ∈A

g(θ) = sup {r ∈ R : g(θ) > r, for almost all θ ∈ A} ,

is the essential infimum of g over the set A. Here “almost all” is with respect to the

prior distribution. In words, essential infimum is the greatest lower bound which holds

with prior probability one.

(S5) There exists a sequence of sets Gn → Θ as n→∞ such that:

(1)

π (Gn) ≥ 1− α exp (−βn) , for some α > 0, β > 2h(Θ); (2.A1.6)

(2) The convergence in (S3) is uniform in θ over Gn \ I.

(3) h (Gn)→ h (Θ), as n→∞.
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The sets Gn can be loosely interpreted as the sieves corresponding to the method

of sieves (Geman and Hwang (1982)) such that the behaviour of the likelihood

ratio and the posterior on the sets Gn essentially carries over to Θ. This can be

anticipated from the first and the second parts of the assumption; the second part

ensuring in particular that the parts of Θ on which the log likelihood ratio may be

ill-behaved have exponentially small prior probabilities. The third part is more of

a technical condition that is useful in proving posterior convergence through the

sets Gn. For further details, see Shalizi (2009).

For each measurable A ⊆ Θ, for every δ > 0, there exists a random natural number

τ(A, δ) such that

n−1 log

∫
A
Rn(θ)π(θ)dθ ≤ δ + lim sup

n→∞
n−1 log

∫
A
Rn(θ)π(θ)dθ, (2.A1.7)

for all n > τ(A, δ), provided lim sup
n→∞

n−1 log π (IARn) <∞. Regarding this, the following

assumption has been made by Shalizi:

(S6) The sets Gn of (S5) can be chosen such that for every δ > 0, the inequality

n > τ(Gn, δ) holds almost surely for all sufficiently large n.

To understand the essence of this assumption, note that for almost every data set

{X1, X2, . . .} there exists τ(Gn, δ) such that (2.A1.7) holds with A replaced by Gn

for all n > τ(Gn, δ). Since Gn are sets with large enough prior probabilities, the

assumption formalizes our expectation that Rn(θ) decays fast enough on Gn. See

Shalizi (2009) for more detailed explanation.

(S7) The sets Gn of (S5) and (S6) can be chosen such that for any set A with π(A) > 0,

h (Gn ∩A)→ h (A) , (2.A1.8)

as n→∞.
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Under the above assumptions, Shalizi (2009) proved the following results.

Theorem 1 (Shalizi (2009)) Consider assumptions (S1)–(S7) and any set A ∈ T

with π(A) > 0 and h(A) > h(Θ). Then,

lim
n→∞

π(A|Y n) = 0, almost surely.

The rate of convergence of the log-posterior is given by the following result.

Theorem 2 (Shalizi (2009)) Consider assumptions (S1)–(S7) and any set A ∈ T

with π(A) > 0. If β > 2h(A), where β is given in (2.A1.6) under assumption (S5), or if

A ⊂ ∩∞k=nGk for some n, then

lim
n→∞

1

n
log π(A|Y n) = −J(A), almost surely.

2.A2 Verification of the assumptions of Shalizi for the

Gaussian process model with normal errors

2.A2.1 Verification of (S1)

note that

fθ(Y n) =
1(

σ
√

2π
)n exp

{
− 1

2σ2

n∑
i=1

(Yi − η(xi))
2

}
; (2.A2.1)

fθ0(Y n) =
1(

σ0

√
2π
)n exp

{
− 1

2σ2
0

n∑
i=1

(Yi − η0(xi))
2

}
. (2.A2.2)

The equations (2.A2.1) and (2.A2.2) yield, in our case,

1

n
logRn(θ) = log

(σ0

σ

)
+

1

2σ2
0

× 1

n

n∑
i=1

(yi − η0(xi))
2 − 1

2σ2
× 1

n

n∑
i=1

(yi − η(xi))
2 .

(2.A2.3)
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We show that the right hand side of (2.A2.3), which we denote as f(yn, θ), is continuous in

(yn, θ), which is sufficient to confirm measurability of Rn(θ). Let ‖(yn, θ)‖ = ‖yn‖+ ‖θ‖,

where ‖yn‖ is the Euclidean norm and ‖θ‖ = ‖η‖+ |σ|, with ‖η‖ = sup
x∈X
|η(x)|. Since X

is compact and η is almost surely continuous, it follows that ‖η‖ <∞ almost surely.

Consider yn = (y1, y2, . . . , yn)T and η0n = (η0(x1), . . . , η0(xn))T . Then

n∑
i=1

(yi − η0(xi))
2 = yTnyn − 2yTnη0n + ηT0nη0n (2.A2.4)

is clearly continuous in yn. Now note that

1

n

n∑
i=1

(yi−η(xi))
2 =

1

n

n∑
i=1

(yi−η0(xi))
2+

1

n

n∑
i=1

(η(xi)−η0(xi))
2− 2

n

n∑
i=1

(yi−η0(xi))(η(xi)−η0(xi)),

(2.A2.5)

where we have already proved continuity of the first term on the right hand side of

(2.A2.5). To see continuity of 1
n

∑n
i=1(η(xi)− η0(xi))

2 with respect to η, first consider

any sequence {ηj : j = 1, 2, . . .} satisfying ‖ηj − η̃‖ → 0, as j →∞. Then

∣∣∣∣∣ 1n
n∑
i=1

(ηj(xi)− η0(xi))
2 − 1

n

n∑
i=1

(η̃(xi)− η0(xi))
2

∣∣∣∣∣ (2.A2.6)

≤ 1

n

n∑
i=1

|ηj(xi)− η̃(xi)| × |(ηj(xi)− η0(xi)) + (η̃(xi)− η0(xi))|

≤ ‖ηj − η̃‖ × [‖ηj − η0‖+ ‖η̃ − η0‖]

≤ ‖ηj − η̃‖ × [‖ηj − η̃‖+ 2‖η̃ − η0‖]

→ 0, as j →∞. (2.A2.7)

This proves continuity of the second term of (2.A2.5).

For the third term of (2.A2.5) we now prove that for any ỹ ∈ Rn, and for any sequence{
yj : j = 1, 2, . . .

}
(we denote the i-th component of yj as yij) such that ‖yj−ỹ‖ → 0, as

j →∞, and for any function η̃ associated with any sequence {ηj : j = 1, 2, . . .} satisfying
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‖ηj− η̃‖ → 0, as j →∞,
∑n

i=1(yij−η0(xi))(ηj(xi)−η0(xi))→
∑n

i=1(ỹi−η0(xi))(η̃(xi)−

η0(xi)), as j →∞. Indeed, observe that∣∣∣∣∣
n∑
i=1

(yij − η0(xi))(ηj(xi)− η0(xi))−
n∑
i=1

(ỹi − η0(xi))(η̃(xi)− η0(xi))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(yij − ỹi)(ηj(xi)− η̃(xi)) +

n∑
i=1

(ỹi − η0(xi))(ηj(xi)− η̃(xi))

+
n∑
i=1

(yij − ỹi)(η̃(xi)− η0(xi))

∣∣∣∣∣
≤ n‖yj − ỹ‖‖ηj − η̃‖+ n‖ỹ − η0n‖‖ηj − η̃‖+ n‖yj − ỹ‖‖η̃ − η0‖

→ 0, as ‖yj − ỹ‖ → 0 and ‖ηj − η̃‖ → 0, as j →∞.

Hence,
∑n

i=1(yi− η0(xi))(η(xi)− η0(xi)) is continuous in yn and η. Continuity is clearly

preserved if the above expression is divided by σ.

Also, the first term of f(yn, θ), given by log
(
σ0
σ

)
, is clearly continuous in σ. Thus,

continuity of f(yn, θ) with respect to (yn, θ) is guaranteed, so that (S1) holds. Also

observe that when the covariates are regarded as random, due to measurability of η0(X)

assumed in (A4) and continuity of η(x) in x.

2.A2.2 Verification of (S2) and proof of Lemma 3 for Gaussian errors

It follows from (2.A2.1) and (2.A2.2), that

log
fθ0(yn)

fθ(yn)
= n log

(
σ

σ0

)
− 1

2σ2
0

n∑
i=1

(yi − η0(xi))
2 +

1

2σ2

n∑
i=1

(yi − η(xi))
2, (2.A2.8)

so that

1

n
Eθ0

(
log

fθ0(yn)

fθ(yn)

)
= log

(
σ

σ0

)
− 1

2
+

σ2
0

2σ2
+

1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 . (2.A2.9)
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By (A3), as n→∞,

1

n

n∑
i=1

(η(xi)− η0(xi))
2 → EX [η(X)− η0(X)]2 =

∫
X

[η(X)− η0(X)]2 dQ. (2.A2.10)

Hence,

1

n
Eθ0

(
log

fθ0(yn)

fθ(yn)

)
→ log

(
σ

σ0

)
− 1

2
+

σ2
0

2σ2
+

1

2σ2
EX [η(X)− η0(X)]2 , as n→∞.

(2.A2.11)

We let

h(θ) = log

(
σ

σ0

)
− 1

2
+

σ2
0

2σ2
+

1

2σ2
EX [η(X)− η0(X)]2 .

2.A2.3 Verification of (S3) and proof of Theorem 4 for Gaussian errors

By SLLN, as n→∞,
1

n

n∑
i=1

(yi − η0(xi))
2 a.s.−→ σ2

0, (2.A2.12)

where “
a.s.−→ ” denotes convergence almost surely. Also,

1

n

n∑
i=1

(yi − η(xi))
2 =

1

n

n∑
i=1

(yi − η0(xi))
2 +

1

n

n∑
i=1

(η(xi)− η0(xi))
2

+
2

n

n∑
i=1

(yi − η0(xi)) (η0(xi)− η(xi)) . (2.A2.13)

By (2.A2.12) the first term on the right hand side of (2.A2.13) converges almost surely

to σ2
0. The second term converges to EX [η(X)− η0(X)]2 and the third term con-

verges almost surely to zero by Kolmogorov’s SLLN for independent random vari-

ables, noting that yi − η0(xi) = εi are independent zero mean random variables and∑∞
i=1 i

−2V ar ((yi − η0(xi)(η0(xi)− η(xi))) = σ2
0

∑∞
i=1 i

−2 (η0(xi)− η(xi))
2 ≤ σ2

0‖η −
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η0‖2
∑∞

i=1 i
−2 <∞. Hence, letting n→∞ in (2.A2.3), it follows that

1

n
logRn(θ)

a.s.−→ log
(σ0

σ

)
+

1

2
− σ2

0

2σ2
− 1

2σ2
EX [η(X)− η0(X)]2 = −h(θ). (2.A2.14)

The above results of course remain the same if the covariates are assumed to be random.

2.A2.4 Verification of (S4)

Note that h(θ) ≤ log
(
σ
σ0

)
− 1

2 +
σ2

0
2σ2 + ‖η−η0‖2

2σ2 , where 0 < σ <∞ and 0 < ‖η− η0‖ <∞

with prior probability one. Hence, h(θ) < ∞ with probability one, showing that (S4)

holds.

2.A2.5 Verification of (S5)

Verification of (S5) (1)

Recall that

Gn =
{

(η, σ) : ‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d
}
.
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Then Gn → Θ, as n→∞. Now note that

π(Gn) = π
(
‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

)
− π

({
‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d

}c)
= π

(
‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

)
− π

 d⋃
j=1

{
‖η′j‖ > exp((βn)1/4)

}
≥ 1− π

(
‖η‖ > exp((βn)1/4)

)
− π

({
exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

}c)
−

d∑
j=1

π
(
‖η′j‖ > exp((βn)1/4)

)

≥ 1− (cη + cσ +
d∑
j=1

cη′j ) exp(−βn), (2.A2.15)

by the Borell-TIS inequality and (A5). In other words, (S5) (1) holds.

Verification of (S5) (2)

We now show that (S5) (2), namely, convergence in (S3) is uniform in θ over Gn \ I holds.

First note that I = ∅ in our case, so that Gn \ I = Gn.

To proceed further, we show that Gn is compact. Note that Gn = Gn,η × Gn,σ, where

Gn,η =
{
η : ‖η‖ ≤ exp((βn)1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d

}
and

Gn,σ =
{
σ : exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

}
.

Since Gn,σ is compact and products of compact sets is compact, it is enough to prove

compactness of Gn,η. We use the Arzela-Ascoli lemma to prove that Gn,η is compact for

each n ≥ 1. In other words, Gn,η is compact if and only if it is closed, bounded and
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equicontinuous. By boundedness we mean |η(x)| < M for each x ∈ X and for each

η ∈ Gn,η. Equicontinuity entails that for any ε > 0, there exists δ > 0 which depends only

on ε such that |η(x1)− η(x2)| < ε whenever ‖x1 − x2‖ < δ, for all η ∈ Gn,η. Closedness

and boundedness are obvious from the definition of Gn,η. Equicontinuity follows from

the fact that the elements of Gn,η are Lipschitz continuous thanks to boundedness of the

partial derivatives. Thus, Gn,η, and hence Gn is compact.

Since Gn is compact for all n ≥ 1, uniform convergence as required will be proven if we

can show that 1
n logRn(θ) + h(θ) is stochastically equicontinuous almost surely in θ ∈ G

for any G ∈ {Gn : n = 1, 2, . . .} and 1
n logRn(θ) + h(θ)→ 0, almost surely, for all θ ∈ G

(see Newey (1991), Billingsley (2013)) for the general theory of uniform convergence in

compact sets under stochastic equicontinuity). Since, in the context of (S3) we have

already shown almost sure pointwise convergence of 1
n logRn(θ) to −h(θ), it is enough

to verify stochastic equicontinuity of 1
n logRn(θ) + h(θ) in G ∈ {Gn : n = 1, 2, . . .}.

Stochastic equicontinuity usually follows easily if one can prove that the function

concerned is almost surely Lipschitz continuous. Recall from (2.A2.3), (2.A2.4), (2.A2.5)

and (2.A2.7) that if the term 1
n

∑n
i=1(yi−η0(xi))(η(xi)−η0(xi)) can be proved Lipschitz

continuous in η ∈ G, then 1
n logRn(θ) is Lipschitz for η ∈ G. Also, if EX [η(X)− η0(X)]2

is Lipschitz in η, then it would follow from (2.2.6) that h(θ) is Lipschitz for η ∈ G.

Since sum of Lipschitz functions is Lipschitz, this would imply that 1
n logRn(θ) + h(θ)

is Lipschitz in η ∈ G. Since the first derivative of 1
n logRn(θ) + h(θ) with respect to

σ is bounded (as σ is bounded in G), it would then follow that 1
n logRn(θ) + h(θ) is

Lipschitz for θ ∈ G. Hence, to see that 1
n

∑n
i=1(yi − η0(xi))(η(xi) − η0(xi)) is almost

surely Lipschitz in η ∈ G, note that for any η1, η2 ∈ G,∣∣∣∣∣ 1n
n∑
i=1

(yi − η0(xi))(η1( i)− η0(xi))−
1

n

n∑
i=1

(yi − η0(xi))(η2(xi)− η0(xi))

∣∣∣∣∣
≤ ‖η1 − η2‖ ×

1

n

n∑
i=1

|yi − η0(xi)| .
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Hence, 1
n

∑n
i=1(yi−η0(xi))(η(xi)−η0(xi) is Lipschitz in η and since 1

n

∑n
i=1 |yi − η0(xi)| →

Eθ0 |y1 − η0(x1)| <∞ as n→∞, stochastic equicontinuity follows.

That EX [η(X)− η0(X)]2 is also Lipschitz in G can be seen from the fact that for

η1, η2 ∈ G,

∣∣∣EX [η1(X)− η0(X)]2 − EX [η2(X)− η0(X)]2
∣∣∣ ≤ ‖η1 − η2‖ × [‖η1‖+ ‖η2‖+ 2‖η0‖] ,

where ‖η0‖ < κ0 by (A4) and for j = 1, 2, ‖ηj‖ ≤ exp((βm)1/4), where G = Gm, for

m ≥ 1.

Verification of (S5) (3)

We now verify (S5) (3). For our purpose, let us show that h(θ) is continuous in θ.

Continuity will easily follow if we can show that EX [η(X)− η0(X)]2 is continuous in

η. As before, let ηj be a sequence of functions converging to η̃ in the sense ‖ηj −

η̃‖ → 0 as j → ∞. Then, since
∣∣∣EX [ηj(X)− η0(X)]2 − EX [η̃(X)− η0(X)]2

∣∣∣ ≤ ‖ηj −
η̃‖ [‖ηj − η̃‖+ 2‖η̃ − η0‖]→ 0 as j →∞, continuity follows. Hence, continuity of h(θ),

compactness of Gn, along with its non-decreasing nature with respect to n implies that

h (Gn)→ h(Θ), as n→∞.

2.A2.6 Verification of (S6) and proof of Theorem 5 for Gaussian errors

Observe that

1

n
logRn(θ) + h(θ) =

[
1

2σ2
0

× 1

n

n∑
i=1

(yi − η0(xi))
2 − 1

2

]
+

[
1

2σ2
× 1

n

n∑
i=1

(yi − η0(xi))
2 − σ2

0

2σ2

]

+

[
1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 − 1

2σ2
EX (η(X)− η0(X))2

]

+

[
1

σ2
× 1

n

n∑
i=1

(yi − η0(xi)) (η(xi)− η0(xi))

]
. (2.A2.16)
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Let κ1 = κ− h(Θ). Then it follows from (2.A2.16) that for all θ ∈ G, we have

P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ1

)
≤ P

(∣∣∣∣∣ 1

2σ2
0

× 1

n

n∑
i=1

(yi − η0(xi))
2 − 1

2

∣∣∣∣∣ > κ1

4

)
+ P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(yi − η0(xi))
2 − σ2

0

2σ2

∣∣∣∣∣ > κ1

4

)

+ P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 − 1

2σ2
EX (η(X)− η0(X))2

∣∣∣∣∣ > κ1

4

)

+ P

(∣∣∣∣∣ 1

σ2
× 1

n

n∑
i=1

(yi − η0(xi)) (η(xi)− η0(xi))

∣∣∣∣∣ > κ1

4

)
. (2.A2.17)

Note that
∑n

i=1

(
yi−η0(xi)

σ0

)2
= zTnzn, where zn ∼ Nn (0n, In), the n-dimensional

normal distribution with mean 0n = (0, 0, . . . , 0)T and covariance matrix In, the identity

matrix. Using the Hanson-Wright inequality we bound the first term of the right hand

side of (2.A2.17) as follows:

P

(∣∣∣∣∣ 1

2σ2
0

× 1

n

n∑
i=1

(yi − η0(xi))
2 − 1

2

∣∣∣∣∣ > κ1

4

)

= P
(∣∣zTnzn − n∣∣ > nκ1

2

)
≤ 2 exp

(
−nmin

{
κ2

1

16c0
,
κ1

4c0

})
, (2.A2.18)

where c0 > 0 is a constant. It follows from (2.A2.18) that

∫
Sc
P

(∣∣∣∣∣ 1

2σ2
0

× 1

n

n∑
i=1

(yi − η0(xi))
2 − 1

2

∣∣∣∣∣ > κ1

4

)
dπ(θ) ≤ 2 exp

(
−nmin

{
κ2

1

16c0
,
κ1

4c0

})
.

(2.A2.19)

In almost the same way as in (2.A2.18), the second term of the right hand side of
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(2.A2.17) can be bounded as:

P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(yi − η0(xi))
2 − σ2

0

2σ2

∣∣∣∣∣ > κ1

4

)

= P

(∣∣zTnzn − n∣∣ > nκ1σ
2

2σ2
0

)
≤ 2 exp

(
−nmin

{
κ2

1σ
4

16c0σ4
0

,
κ1σ

2

4c0σ2
0

})
. (2.A2.20)

Now

∫
Sc
P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(yi − η0(xi))
2 − σ2

0

2σ2

∣∣∣∣∣ > κ1

4

)
dπ(θ)

≤
∫
Gn

2 exp

(
−nmin

{
κ2

1σ
4

16c0σ4
0

,
κ1σ

2

4c0σ2
0

})
π(σ2)dσ2

+

∫
Gcn

2 exp

(
−nmin

{
κ2

1σ
4

16c0σ4
0

,
κ1σ

2

4c0σ2
0

})
π(θ)dθ

≤
∫
Gn

2 exp

(
−nmin

{
κ2

1σ
4

16c0σ4
0

,
κ1σ

2

4c0σ2
0

})
π(σ2)dσ2 + 2π(Gcn)

≤
∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
2 exp

(
−n κ2

1σ
4

16c0σ4
0

)
π(σ2)dσ2

+

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
2 exp

(
−n κ1σ

2

4c0σ2
0

)
π(σ2)dσ2 + 2π(Gcn)

=

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
2 exp

(
−n κ

2
1u
−2

16c0σ4
0

)
π(u−1)u−2du

+

∫ exp(2(βn)1/4)

exp(−2(βn)14)
2 exp

(
−nκ1u

−1

4c0σ2
0

)
π(u−1)u−2du+ 2π(Gcn). (2.A2.21)

Let us first consider the first term of (2.A2.21). Note that the prior π
(
u−1

)
u−2

is such that large values of u receive small probabilities. Hence, if this prior is re-

placed by an appropriate function which has a thicker tail than the prior, then the

resultant integral provides an upper bound for the first term of (2.A2.21). We con-

sider a function π̃(u) which is of mixture form depending upon n, that is, we let
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π̃n(u) = c3
∑Mn

r=1 ψ
ζrn
rn exp(−ψrnu2)u2(ζrn−1), where Mn ≤ exp((βn)1/4) is the number of

mixture components, c3 > 0, for r = 1, . . . ,Mn, 1
2 < ζrn ≤ c4n

q, for 0 < q < 1/4 and

n ≥ 1, where c4 > 0, and 0 < ψ1 ≤ ψrn < c5 < ∞, for all r and n. In this case, with

C1 = 1
16c0σ4

0
,

∫ exp(2(βn)1/4

exp(−2(βn)1/4)
exp

(
−C1κ

2
1nu

−2
)
π(u−1)u−2du

≤ c3

Mn∑
r=1

ψζrnrn

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
exp

[
−
(
C1κ

2
1nu

−2 + ψ1u
2
)] (

u2
)ζrn−1

du. (2.A2.22)

Now the r-th integrand of (2.A2.22) is maximized at ũ2
rn =

ζrn−1+
√

(ζrn−1)2+4C1ψ1κ2
1n

2ψ1
, so

that for sufficiently large n, c1κ1

√
n
ψ1
≤ ũ2

rn ≤ c̃1κ1

√
n
ψ1

, for some positive constants c1

and c̃1. Now, for sufficiently large n, we have ũ2
rn

log ũ2
rn
≥ ζrn−1

ψ1(1−c2) , for 0 < c2 < 1. Hence,

for sufficiently large n, C1κ
2
1nũ

−2
rn + ψ1ũ

2
rn − (ζrn − 1) log(ũ2

rn) ≥ c2ψ1ũ
2
rn ≥ C2κ1

√
ψ1n

for some positive constant C2. From these and (2.A2.22) it follows that

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
2 exp

(
−n κ

2
1u
−2

16c0σ4
0

)
π(u−1)u−2du

= c3

Mn∑
r=1

ψζrnrn

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
exp

[
−
(
C1κ

2
1nu

−2 + ψ1u
2
)] (

u2
)ζrn−1

du

≤ c3Mn exp
[
−
(
C2κ1

√
nψ1 − 2 (βn)1/4 − c̃5n

q
)]

≤ c3 exp
[
−
(
C2κ1

√
nψ1 − 3 (βn)1/4 − c̃5n

q
)]
. (2.A2.23)

for some constant c̃5. The negative of the exponent of (2.A2.23) is clearly positive for

large n.

For the second term of (2.A2.21), we consider π̃n(u) = c3
∑Mn

r=1 ψ
ζrn
rn exp(−ψrnu)u(ζrn−1),

with Mn ≤ exp((βn)1/4) being the number of mixture components, c3 > 0, for

r = 1, . . . ,Mn, 0 < ζrn ≤ c4n
q, for 0 < q < 1/4 and n ≥ 1, where c4 > 0, and

0 < ψ1 ≤ ψrn < c5 <∞, for all r and n. Thus, the only difference here with the previous
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definition of π̃n(u) is that here ζrn > 0 instead of ζrn >
1
2 , which is due to the fact that

here u2 is replaced with u. In the same way as in (2.A2.23), it then follows that

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
2 exp

(
−nκ1u

−1

4c0σ2
0

)
π(u−1)u−2du ≤ c3 exp

[
−
(
C2

√
κ1nψ1 − 3 (βn)1/4 − c̃5n

q
)]
.

(2.A2.24)

Again, the negative of the exponent of (2.A2.24) is clearly positive for large n.

For the third term, let us first consider the case of random covariates X. Here observe

that by Hoeffding’s inequality (Hoeffding (1963)),

P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 − 1

2σ2
EX (η(X)− η0(X))2

∣∣∣∣∣ > κ1

4

)

≤ 2 exp

{
− nCκ2

1σ
4

‖η − η0‖2

}
, (2.A2.25)

where C > 0 is a constant. Note that ‖η− η0‖ is clearly the upper bound of |η(·)− η0(·)|.

Such an upper bound is finite since X is compact, η(·) is continuous on X , and ‖η0‖ <∞.

The same inequality holds when the covariates are non-random; here we can view

(η(xi)− η0(xi))
2; i = 1, . . . , n, as a set of independent realizations from some independent

stochastic process. It follows that

∫
Sc
P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 − 1

2σ2
EX (η(X)− η0(X))2

∣∣∣∣∣ > κ1

4

)
dπ(θ)

≤ 2

∫
Gn

exp

{
− nCκ2

1σ
4

‖η − η0‖2

}
dπ(θ) + π(Gcn)

= 2

∫
‖η‖≤exp((βn)1/4)

[∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
exp

(
−nCκ

2
1u
−2

‖η − η0‖2

)
π
(
u−1

)
u−2du

]
π (‖η‖) d‖η‖

+ π(Gcn). (2.A2.26)

Replacing π
(
u−1

)
u−2 with π̃n(u) = c3

∑Mn
r=1 ψ

ζrn
rn exp(−ψrnu2)u2(ζrn−1), where Mn ≤

exp((βn)1/4) is the number of mixture components, c3 > 0, for r = 1, . . . ,Mn, 1
2 < ζrn ≤
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c4n
q, for 0 < q < 1/4 and n ≥ 1, where c4 > 0, and 0 < ψ1 ≤ ψrn < c5 < ∞, for all r

and n, and using the same techniques as before, we obtain

∫ exp(2(βn)1/4)

exp(−2(βn)1/4)
exp

(
−nCκ

2
1u
−2

‖η − η0‖2

)
π
(
u−1

)
u−2du

≤ c3 × exp
{

3 (βn)1/4 + nq log c5

}
× exp

{
− C1κ1

√
ψ1n

(‖η‖+ ‖η0‖)

}
, (2.A2.27)

for some constant C1 > 0. Now, using the same techniques as before, we obtain

∫
‖η‖≤exp((βn)1/4)

exp

{
− C1κ1

√
ψ1n

(‖η‖+ ‖η0‖)

}
π (‖η‖) d‖η‖

=

∫
v≤‖η0‖+exp((βn)1/4)

exp

(
−C1κ1

√
ψ1n

v

)
π (v − ‖η0‖) dv

≤ c3

Mn∑
r=1

cn
q

5

∫
v≤‖η0‖+exp((βn)1/4)

exp

{
−
(
C1κ1

√
ψ1n

v
+ ψ1v − (ζrn − 1) log v

)}
dv

(2.A2.28)

≤ 2c3 exp
{
−
(
C2
√
κ1n

1/4 − 2 (βn)1/4 − nq log c5

)}
, (2.A2.29)

with π (v − ‖η0‖) replaced with the mixture as before. Here Mn ≤ exp((βn)1/4), c3 > 0,

for r = 1, . . . ,Mn, 0 < ζrn ≤ c4n
q, for 0 < q < 1/4 and n ≥ 1, where c4 > 0, and

0 < ψ1 ≤ ψrn < c5 < ∞, for all r and n. Note that the negative of the exponent of

the r-th term of (2.A2.27) is minimized for ṽrn =
ζrn−1+

√
(ζrn−1)2+4ψ1C1κ1

√
ψ1n

2ψ1
, and for

large n it holds that
C̃1
√
κ1n1/4

2ψ1
≤ ṽrn ≤ C̃2

√
κ1n1/4

2ψ1
, for some positive constants C̃1 and C̃2.

Also, for large n, ṽrnψ1(1−c2) ≥ (ζrn−1) log ṽrn, for 0 < c2 < 1. Hence (2.A2.29) follows

from (2.A2.28) using C1κ1
√
ψ1n

ṽrn
+ ψ1ṽrn − (ζrn − 1) log ṽrn ≥ ψ1ṽrn − (ζrn − 1) log ṽrn ≥

c2ṽrnψ1 ≥ C2
√
κ1n

1/4, for some C2 > 0.
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Combining (2.A2.26), (2.A2.27) and (2.A2.29), we obtain

∫
Sc
P

(∣∣∣∣∣ 1

2σ2
× 1

n

n∑
i=1

(η(xi)− η0(xi))
2 − 1

2σ2
EX (η(X)− η0(X))2

∣∣∣∣∣ > κ1

4

)
dπ(θ)

≤ C1 exp
{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
+ π (Gcn) , (2.A2.30)

where C1 and C2 are appropriate positive constants. Since κ1 is as large as desired, it

follows that (2.A2.29) is summable.

For the fourth term, note that

Zn =
1

n

n∑
i=1

(
yi − η0(xi)

σ0

)
(η(xi)− η0(xi)) ∼ N

(
0,

1

n2

n∑
i=1

(η(xi)− η0(xi))

)
.

Then since

n∑
i=1

(η(xi)− η0(xi))
2 ≤ n

(
sup
x∈X
|η(x)− η0(x)|

)2

= n‖η − η0‖2,

P

(∣∣∣∣∣ 1

σ2
× 1

n

n∑
i=1

(yi − η0(xi)) (η(xi)− η0(xi))

∣∣∣∣∣ > κ1

4

)
= P

(
|Zn| >

κ1σ
2

4σ0

)
≤ 2 exp

(
− Cnκ2

1σ
4

σ2
0‖η − η0‖2

)
, (2.A2.31)

for some C > 0. Hence, in the same way as (2.A2.30), we obtain using (2.A2.31),

∫
Sc
P

(∣∣∣∣∣ 1

σ2
× 1

n

n∑
i=1

(yi − η0(xi)) (η(xi)− η0(xi))

∣∣∣∣∣ > κ1

4

)
dπ(θ)

≤
∫
Gn

2 exp

(
− Cnκ2

1σ
4

σ2
0‖η − η0‖2

)
dπ(θ) + 2π (Gcn)

≤ C1 exp
{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
+ π (Gcn) , (2.A2.32)

for relevant positive constants C1, C2, c5.
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Combining (2.A2.17), (2.A2.19), (2.A2.21), (2.A2.23), (2.A2.24), (2.A2.26), (2.A2.30),

(2.A2.32), and noting that
∑∞

n=1 π (Gcn) <
∑∞

n=1 α exp (−βn) <∞, we obtain

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ1

)
dπ(θ) <∞.

2.A2.7 Verification of (S7)

For any set A such that π(A) > 0, Gn ∩A ↑ A. It follows from this and continuity of h

that h (Gn ∩A) ↓ h (A) as n→∞, so that (S7) holds.

2.A3 Verification of Shalizi’s conditions for Gaussian pro-

cess regression with double exponential error distri-

bution

2.A3.1 Verification of (S1)

In this case,

1

n
logRn(θ) = log

(σ0

σ

)
+

1

σ0
× 1

n

n∑
i=1

|yi − η0(xi)) | −
1

σ
× 1

n

n∑
i=1

|yi − η(xi)| . (2.A3.1)
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As before, note that ∣∣∣∣∣ 1n
n∑
i=1

|y1i − η0(xi)| −
1

n

n∑
i=1

|y2i − η0(xi)|

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣∣ |y1i − η0(xi)| − |y2i − η0(xi)|

∣∣∣∣∣
≤ 1

n

n∑
i=1

|y1i − y2i|

≤ n−
1
2

√√√√ n∑
i=1

(y1i − y2i)2

= n−
1
2 ‖y1n − y2n‖,

from which Lipschitz continuity follows. Similarly,∣∣∣∣∣ 1n
n∑
i=1

|y1i − η1(xi)| −
1

n

n∑
i=1

|y2i − η2(xi)|

∣∣∣∣∣
≤ 1

n

n∑
i=1

|y1i − η1(xi)− y2i + η2(xi)|

≤ 1

n

n∑
i=1

[|y1i − y2i|+ |η1(xi)− η2(xi)|]

≤ n−
1
2 ‖y1 − y2‖+ ‖η1 − η2‖, (2.A3.2)

which implies continuity of 1
n

∑n
i=1 |yi − η(xi)| with respect to y and η. In other words,

(2.A2.14) is continuous and hence measurable, as before. Measurability, when the

covariates are considered random, also follows as before, using measurability of η0(X) as

assumed in (A4).
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2.A3.2 Verification of (S2) and proof of Lemma 3 for double-exponential

errors

Now note that if εi = yi − η0(xi) has the double exponential density of the form

f(ε) =
1

2σ
exp

(
−|ε|
σ

)
; ε ∈ R.

with σ replaced with σ0, then

Eθ0 |yi − η0(xi)| = σ0; (2.A3.3)

Eθ0 |yi − η(xi)| = Eθ0 |(yi − η0(xi)) + (η0(xi)− η(xi))|

= |η0(xi)− η(xi)|+ σ0 exp

(
−|η0(xi)− η(xi)|

σ0

)
. (2.A3.4)

It follows from (2.A3.3), (2.A3.4) and (A3), that

1

n

n∑
i=1

Eθ0 |yi − η0(xi)| = σ0; (2.A3.5)

1

n

n∑
i=1

Eθ0 |yi − η(xi)| =
1

n

n∑
i=1

[
|η(xi)− η0(xi)|+ σ0 exp

(
−|η(xi)− η0(xi)|

σ0

)]
→ EX |η(X)− η0(X)|+ σ0EX

[
exp

(
−|η(X)− η0(X)|

σ0

)]
, as n→∞. (2.A3.6)

Using (2.A3.5) and (2.A3.6) we see that as n→∞,

1

n
Eθ0 [logRn(θ)] = log

(σ0

σ

)
+

1

σ0
× 1

n

n∑
i=1

Eθ0 |yi − η0(xi)| −
1

σ
× 1

n

n∑
i=1

Eθ0 |yi − η(xi)|

→ log
(σ0

σ

)
+ 1− 1

σ
EX |η(X)− η0(X)| − σ0

σ
EX

[
exp

(
−|η(X)− η0(X)|

σ0

)]
,

= −h(θ), (2.A3.7)
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where

h(θ) = log

(
σ

σ0

)
− 1 +

1

σ
EX |η(X)− η0(X)|+ σ0

σ
EX

[
exp

(
−|η(X)− η0(X)|

σ0

)]
.

As in the case of Gaussian errors, the results remain the same if the covariates are

assumed to be random.

2.A3.3 Verification of (S3) and proof of Theorem 4 for double expo-

nential errors

We now show that for all θ ∈ Θ, lim
n→∞

1
n logRn(θ) = −h(θ), almost surely. First note that

∣∣∣∣ 1nRn(θ) + h(θ)

∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

|yi − η0(xi)|
σ0

− 1

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

|yi − η(xi)|
σ

− 1

σ
EX |η(X)− η0(X)| − σ0

σ
EX

[
exp

(
−|η(X)− η0(X)|

σ0

)]∣∣∣∣∣ .
(2.A3.8)

Since |yi−η0(xi)|
σ0

has the exponential distribution with mean one, the term
∣∣∣ 1
n

∑n
i=1

|yi−η0(xi)|
σ0

− 1
∣∣∣→

0 almost surely as n→∞ by the strong law of large numbers. That the term (2.A3.8) also

tends to zero almost surely as n→∞ can be shown using the Borel-Cantelli lemma, using

the inequality (2.A3.19), and replacing κ1 in that inequality with any δ1 > 0. In other

words, it holds that for all θ ∈ Θ, lim
n→∞

1
n logRn(θ) = −h(θ), almost surely. Also, it follows

from (2.A3.1), (2.A3.2), (2.2.7), Lipschitz continuity of x 7→ exp(−|x|), boundedness of

the first derivative with respect to σ, that 1
n logRn(θ)+h(θ) is Lipschitz on θ ∈ Gn\I = Gn,

which is compact. As a result, it follows that 1
n logRn(θ) +h(θ) is stochastically equicon-

tinuous in G ∈ {G1,G2, . . . , }. Hence, the convergence lim
n→∞

1
n logRn(θ) = −h(θ) occurs

uniformly for θ ∈ G, almost surely.
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2.A3.4 Verification of (S4)

Note that h(θ) ≤ log
(
σ
σ0

)
− 1 + ‖η−η0‖+σ0

σ . Now 0 < ‖η − η0‖ < ∞ and 0 < σ < ∞

with prior probability one. Consequently, it follows that h(θ) <∞ with probability one,

so that I = ∅ and hence, Gn \ I = Gn.

2.A3.5 Verification of (S5)

Verification of (S5) (1) and (S5) (2) remains the same as for Gaussian noise. (S5) (3)

follows in the same way as for Gaussian noise is we can show that h(θ) is continuous

in θ. To see that h(θ) is continuous in θ, again assume that ηj → η̃ as j → ∞ in the

sense that ‖ηj − η̃‖ → 0 as j →∞. Then |EX |ηj(X)− η0(X)| − EX |η̃(X)− η0(X)|| ≤

EX |ηj(X)− η̃(X)| ≤ ‖ηj − η̃‖ → 0 as j →∞. Also,

∣∣∣∣EX [exp

(
−|ηj(X)− η0(X)|

σ0

)]
− EX

[
exp

(
−|η̃(X)− η0(X)|

σ0

)]∣∣∣∣
≤ EX

[
exp (− |η̃(X)− η0(X)|)×

∣∣∣∣exp

(
−(|ηj(X)− η0(X)| − |η̃(X)− η0(X)|)

σ0

)
− 1

∣∣∣∣]
≤ EX

[
exp (− |η̃(X)− η0(X)|)×

∣∣∣∣exp

(
|ηj(X)− η̃(X)|

σ0

)
− 1

∣∣∣∣]
≤
∣∣∣∣exp

(
‖ηj − η̃‖

σ0

)
− 1

∣∣∣∣× EX [exp (− |η̃(X)− η0(X)|)]

→ 0, as j →∞.

Continuity of h(θ) hence follows easily.
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2.A3.6 Verification of (S6) and proof of Theorem 5 for double expo-

nential errors

It follows from (2.A3.8) that for all θ ∈ Θ, for κ1 = κ− h(Θ), we have

P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ1

)
≤ P

(∣∣∣∣∣ 1

σ0
× 1

n

n∑
i=1

|yi − η0(xi)| − 1

∣∣∣∣∣ > κ1

2

)

+ P

(∣∣∣∣∣ 1σ × 1

n

n∑
i=1

|yi − η(xi)| −
1

σ
EX |η(X)− η0(X)|

−σ0

σ
EX

(
exp

{
−|η(X)− η0(X)|

σ0

})∣∣∣∣ > κ1

2

)
. (2.A3.9)

Since |yi−η0(xi)|
σ0

are exponential random variables with expectation one, it follows that

|yi−η0(xi)|
σ0

− 1 are zero-mean, independent sub-exponential random variables with some

parameter s > 0. Hence, by Bernstein’s inequality (Uspensky (1937), Bennett (1962),

Massart (2003)),

P

(∣∣∣∣∣ 1

σ0
× 1

n

n∑
i=1

|yi − η0(xi)| − 1

∣∣∣∣∣ > κ1

2

)
≤ 2 exp

(
−n

2
min

{
κ2

1

4s2
,
κ1

2s

})
.

Hence,

∫
Sc
P

(∣∣∣∣∣ 1

σ0
× 1

n

n∑
i=1

|yi − η0(xi)| − 1

∣∣∣∣∣ > κ1

2

)
≤ 2 exp

(
−n

2
min

{
κ2

1

4s2
,
κ1

2s

})
.

(2.A3.10)

Let ϕ̄ = EX |η(X)− η0(X)| + σ0EX

(
exp

{
− |η(X)−η0(X)|

σ0

})
. Also, letting ϕ(x) =

|η(x)− η0(x)|+ σ0

(
exp

{
− |η(x)−η0(x)|

σ0

})
, note that

1

n

n∑
i=1

ϕ(xi)→ ϕ̄, as n→∞. (2.A3.11)
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With this, the second term of (2.A3.9) can be bounded as follows:

P

(∣∣∣∣∣ 1σ × 1

n

n∑
i=1

|yi − η(xi)| −
ϕ̄

σ

∣∣∣∣∣ > κ1

2

)

= P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

{|yi − η(xi)| − ϕ(xi)}+
1

n

n∑
i=1

ϕ(xi)− ϕ̄

∣∣∣∣∣ > κ1

2

)

≤ P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

{|yi − η(xi)| − ϕ(xi)}

∣∣∣∣∣ > κ1

4

)
+ P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)− ϕ̄

∣∣∣∣∣ > κ1

4

)
.

(2.A3.12)

In the case of random or non-random covariates X, again by Hoeffding’s inequality,

P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)− ϕ̄

∣∣∣∣∣ > κ1

4

)
≤ exp

{
− nCκ2

1σ
2

(‖η‖+ c0)2

}
, (2.A3.13)

where C > 0 is a constant. Note that (‖η‖+ c0), with c0 = ‖η0‖+σ0, is an upper bound

of |ϕ(·)|. Again, such an upper bound exists since X is compact and η(·) is continuous

on X . Application of the same method as proving (2.A2.24) and (2.A2.30) yields

∫
Sc
P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

ϕ(xi)− ϕ̄

∣∣∣∣∣ > κ1

4

)
π(θ)dθ

≤ C1 exp
{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
+ π (Gcn) , (2.A3.14)

where as before κ1 is large enough to make the exponent of (2.A3.14) negative.

For the first term of (2.A3.12), let us first prove that |yi − η(xi)| − ϕ(xi) are sub-

exponential random variables. Then we can apply Bernstein’s inequality to directly

bound the term. We need to show that Eθ0 [exp {t (|yi − η(xi)|)− ϕ(xi)}] ≤ exp
(
t2s2

2

)
for |t| ≤ s−1, for some s > 0.
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2.A3.7 Case 1: t ≥ 0, η(xi)− η0(xi) > 0

Direct calculation shows that

Eθ0 [exp {t (|yi − η(xi)|)− ϕ(xi)}]

= exp (−tϕ(xi))×
exp {(η(xi)− η0(xi))t} − exp

(
η0(xi)−η(xi)

σ0

)
1− σ2

0t
2

≤ exp {t (ϕ(xi) + η(xi)− η0(xi))}
1− σ2

0t
2

≤ exp {t (2‖η − η0‖+ σ0)}
1− σ2

0t
2

. (2.A3.15)

To show that (2.A3.15) is bounded above by exp(t2s2/2), we need to show that

f(t) =
t2s2

2
− 2(‖η − η0‖+ σ0)t+ log(1− σ2

0t
2) ≥ 0. (2.A3.16)

For t > 0, it is sufficient to show that

ts2

2
≥ 2(‖η − η0‖+ σ0)− log(1− σ2

0t
2)

t
. (2.A3.17)

Now, − log(1−σ2
0t

2)
t → 0, as t → 0. Hence, for any ε > 0, there exists δ(ε) > 0 such

that t ≤ δ(ε) implies − log(1−σ2
0t

2)
t < ε. Let s ≥ C1‖η−η0‖+C2

δ(ε) , where C1 > 0 and C2 > 0

are sufficiently large quantities. Hence, if δ(ε)2 ≤ t ≤ δ(ε), then (2.A3.17), and hence

(2.A3.16), is satisfied. Now, f(t) given by (2.A3.16) is continuous in t and f(0) = 0.

Hence, (2.A3.16) holds even for 0 ≤ t ≤ δ(ε)2. In other words,

Eθ0 [exp {t (|yi − η(xi)|)− ϕ}] ≤ exp

(
t2s2

2

)
, for 0 ≤ t ≤ s−1 ≤ δ(ε)

C1‖η − η0‖+ C2
≤ δ(ε).

(2.A3.18)
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2.A3.8 Case 2: t ≥ 0, η(xi)− η0(xi) < 0

In this case,

Eθ0 [exp {t (|yi − η(xi)|)− ϕ(xi)}]

= exp (−tϕ(xi))×
exp {(η0(xi)− η(xi))t}+ σ0t exp

(
η(xi)−η0(xi)

σ0

)
1− σ2

0t
2

≤ exp (tϕ(xi))×
2 exp {(η0(xi)− η(xi))t}

1− σ2
0t

2

≤ exp {t (ϕ(xi) + (η0(xi)− η(xi)))}
1−σ2

0t
2

2

≤ exp {t (2‖η − η0‖+ σ0)}
1−σ2

0t
2

2

.

As in Section 2.A3.7 it can be seen that (2.A3.18) holds.

2.A3.9 Case 3: t ≤ 0, η(xi)− η0(xi) > 0

Here

Eθ0 [exp {t (|yi − η(xi)|)− ϕ(xi)}]

= exp (−tϕ(xi))×
exp {(η(xi)− η0(xi))t} − σ0|t| exp

(
η0(xi)−η(xi)

σ0

)
1− σ2

0t
2

≤ exp (−tϕ(xi))×
1

1− σ2
0t

2

≤ exp {−t (‖η − η0‖+ σ0)}
1− σ2

0t
2

.

Here we need to have |t|
[
|t|s2

2 − (‖η − η0‖+ σ0) +
log(1−σ2

0t
2)

|t|

]
> 0. In the same way as

before it follows that

Eθ0 [exp {t (|yi − η(xi)|)− ϕ}] ≤ exp

(
t2s2

2

)
, for 0 ≤ |t| ≤ s−1 ≤ δ(ε)

C1‖η − η0‖+ C2
≤ δ(ε).
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2.A3.10 Case 4: t ≤ 0, η(xi)− η0(xi) < 0

In this case,

Eθ0 [exp {t (|yi − η(xi)|)− ϕ(xi)}]

= exp (−tϕ(xi))×
exp {(η0(xi)− η(xi))t} − σ0|t| exp

(
η(xi)−η0(xi)

σ0

)
1− σ2

0t
2

≤ exp (−tϕ(xi))×
1

1− σ2
0t

2

≤ exp {−t (‖η − η0‖+ σ0)}
1− σ2

0t
2

.

Hence, (2.A3.19) holds.

Hence, for i = 1, . . . , n, |yi − η(xi)| −E (|yi − η(xi)|) are zero-mean, independent sub-

exponential random variables with parameter s. In particular, we can set s = C1‖η−η0‖+C2

δ(ε) .

Hence, by Bernstein’s inequality,

P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

{|yi − η(xi)| − ϕ(xi)}

∣∣∣∣∣ > κ1

4

)

≤ 2 max

{
P

(
σ−1

n

n∑
i=1

{|yi − η(xi)| − ϕ(xi)} >
κ1

4

)
, P

(
σ−1

n

n∑
i=1

{|yi − η(xi)| − ϕ(xi)} < −
κ1

4

)}

≤ 2 exp

(
−n

2
min

{
κ2

1σ
2

16s2
,
κ1σ

4s

})
= 2 exp

(
−n

2
min

{
κ2

1δ(ε)
2σ2

16(C1‖η − η0‖+ C2)2
,

κ1δ(ε)σ

4(C1‖η − η0‖+ C2)

})
. (2.A3.19)
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Hence,

∫
Sc
P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

{|yi − η(xi)| − ϕ(xi)}

∣∣∣∣∣ > κ1

4

)
dπ(θ)

≤
∫
Gn

2 exp

(
− nκ2

1δ(ε)
2σ2

32(C1‖η − η0‖+ C2)2

)
dπ(θ) +

∫
Gn

2 exp

(
− nκ1δ(ε)σ

8(C1‖η − η0‖+ C2)

)
(2.A3.20)

+ 2π (Gcn) . (2.A3.21)

Applying the same techniques as proving (2.A2.30) we obtain

∫
Gn

2 exp

(
− nκ2

1δ(ε)
2σ2

32(C1‖η − η0‖+ C2)2

)
dπ(θ) ≤ C1 exp

{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
,

(2.A3.22)

for appropriate positive constants C1, C2, c5.

For the second integral of (2.A3.20), observe that for appropriate positive constant c0

and C,

∫
Gn

2 exp

(
− nκ1δ(ε)σ

8(C1‖η − η0‖+ C2)

)
≤ 2

∫
‖η‖≤exp((βn)1/4)

[∫ exp(−2(βn)1/4)

exp(−2(βn)1/4)
exp

(
−Cκ1nu

−1

‖η‖+ c0

)
2π(u−2)u−3du

]
π (‖η‖) d‖η‖

(2.A3.23)

Replacing 2π(u−2)u−3 with the mixture form as before with 0 < ζrn < c5n
q, where

0 < q < 1/4, and the rest remaing the same as before, we obtain

∫ exp(−2(βn)1/4)

exp(−2(βn)1/4)
exp

(
−Cκ1nu

−1

‖η‖+ c0

)
2π(u−2)u−3du ≤ exp

(
− C1κ1

√
n√

‖η‖+ c0

)
, (2.A3.24)

for some appropriate positive constant C1.
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Now we obtain

∫
‖η‖≤exp((βn)1/4)

exp

(
− C1κ1

√
n√

‖η‖+ c0

)
π (‖η‖) d‖η‖

=

∫
0≤v≤

√
c0+exp((βn)1/4)

exp

(
−C2κ1

√
n

v

)
π
(
v2 − c0

)
2vdv

≤ C̃1 exp

{
−
(
C̃2
√
κ1n

1/4 − 9

2
(βn)1/4 − 2nq log c5

)}
, (2.A3.25)

for appropriate positive constants C̃1 and C̃2. From (2.A3.24) and (2.A3.25) it follows

that (2.A3.25) is an upper bound for (2.A3.23). Combining this with (2.A3.19), (2.A3.20),

(2.A3.21) and (2.A3.22), we obtain

P

(
σ−1

∣∣∣∣∣ 1n
n∑
i=1

{|yi − η(xi)| − ϕ(xi)}

∣∣∣∣∣ > κ1

4

)

≤ C1 exp
{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
+ C̃1 exp

{
−
(
C̃2
√
κ1n

1/4 − 9

2
(βn)1/4 − 2nq log c5

)}
+ 2π (Gcn) . (2.A3.26)

Gathering (2.A3.10), (2.A3.14) and (2.A3.26) we see that

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > δ

)
π(θ)dθ <∞. (2.A3.27)

2.A3.11 Verification of (S7)

Verification of (S7) is exactly the same as for Gaussian errors.
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2.A4 Verification of the assumptions of Shalizi for the gen-

eral stochastic process model

Note that

fθ(yn) =
1

σn

n∏
i=1

φ(yi − η(xi)); (2.A4.1)

fθ0(yn) =
1

σn0

n∏
i=1

φ(yi − η0(xi)). (2.A4.2)

2.A4.1 Verification of (S1)

The equations (2.A4.1) and (2.A4.2) yield, in our case,

1

n
logRn(θ) = log

(σ0

σ

)
+

1

n

n∑
i=1

log φ

(
yi − η0(xi)

σ0

)
− 1

n

n∑
i=1

log φ

(
yi − η(xi)

σ

)
.

(2.A4.3)

We show that the right hand side of (2.A4.3), which we denote as f(yn, θ), is continuous in

(yn, θ), which is sufficient to confirm measurability of Rn(θ). Let ‖(yn, θ)‖ = ‖yn‖+ ‖θ‖,

where ‖yn‖ is the Euclidean norm and ‖θ‖ = ‖η‖+ |σ|, with ‖η‖ = sup
x∈X
|η(x)|. Since X

is compact and η is almost surely continuous, it follows that ‖η‖ <∞ almost surely.

Consider y1n = (y11, y12, . . . , y1n)T , y2n = (y21, y22, . . . , y2n)T , θ1 and θ2. Using the

Lipschitz condition of (A7), we obtain∣∣∣∣∣ 1n
n∑
i=1

log φ

(
y1i − η0(xi)

σ0

)
− 1

n

n∑
i=1

log φ

(
y2i − η0(xi)

σ0

) ∣∣∣∣∣ (2.A4.4)

≤ L

nσ0

n∑
i=1

|y1i − y2i| ≤
L

nσ0
‖y1n − y2n‖. (2.A4.5)

Hence, the term 1
n

∑n
i=1 log φ

(
yi−η0(xi)

σ0

)
is Lipschitz continuous.

To prove continuity of the term 1
n

∑n
i=1 log φ

(
yi−η(xi)

σ

)
, we first recall from (A7)

that log φ(x) = log φ(|x|) is Lipschitz continuous in x. Hence, if we can show that for
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each i = 1, . . . , n, yi−η(xi)
σ is continuous in (yn, θ), then this would prove continuity of

1
n

∑n
i=1 log φ

(
yi−η(xi)

σ

)
since sum and composition of continuous functions are continuous.

Now, |(y1i−η1(xi))−(y2i−η2(xi))| ≤ |y1i−y2i|+|η1(xi)−η(xi)| ≤ ‖y1n−y2n‖+‖η1−η2‖,

showing continuity of yi − η(xi). Division of this term by σ (> 0), preserves continuity.

Hence, f(yn, θ) is continuous with respect to (yn, θ), so that (S1) holds in our case.

2.A4.2 Verification of (S2) and proof of Lemma 11

It follows from (2.A4.1) and (2.A4.2), that

Eθ0

[
1

n
log

fθ0(yn)

fθ(yn)

]
= log

(
σ

σ0

)
+

1

n

n∑
i=1

Eθ0

[
log φ

(
yi − η0(xi)

σ0

)]
− 1

n

n∑
i=1

Eθ0

[
log φ

(
yi − η(xi)

σ

)]
.

(2.A4.6)

Now Eθ0

[
log φ

(
yi−η0(xi)

σ0

)]
=
∫∞
−∞ [log φ(z)]φ(z)dz = c (say), so that for any n ≥ 1,

1

n

n∑
i=1

Eθ0

[
log φ

(
yi − η0(xi)

σ0

)]
= c. (2.A4.7)

Now for any x ∈ X , let

gη,σ(x) = Eθ0

[
log φ

(
y − η(x)

σ

)]
=

∫ ∞
−∞

log φ

(
σ0z + η0(x)− η(x)

σ

)
φ(z)dz.

(2.A4.8)

Let us first investigate continuity of gη,σ(x) with respect to x. To this end, observe that

for x1, x2 ∈ X , the following hold thanks to Lipschitz continuity of log φ:

|gη,σ(x1)− gη,σ(x2)|

≤
∫ ∞
−∞

∣∣∣∣log φ

(
σ0z + η0(x1)− η(x1)

σ

)
− log φ

(
σ0z + η0(x2)− η(x2)

σ

)∣∣∣∣φ(z)dz

=
L

σ

∫ ∞
−∞
|(η0(x1)− η0(x2))− (η(x1)− η(x2))|φ(z)dz

≤ L

σ
(|η0(x1)− η0(x2)|+ |η(x1)− η(x2)|) . (2.A4.9)
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In our model, η(x) is continuous in x, but η0(x) need not be so. If η0(x) is allowed to be

continuous, then by (2.A4.9), gη,σ(x) is continuous in x. If η0(x) has at most countably

many discontinuities, then gη,σ(x) is continuous everywhere on X except perhaps at a

countable number of points. In both the cases, gη,σ(x) is Riemann integrable when the

covariates are considered deterministic. In that case,

1

n

n∑
i=1

Eθ0

[
log φ

(
yi − η(xi)

σ

)]
=

1

n

n∑
i=1

gη,σ(xi)→
∫
X
gη,σ(x)dx, as n→∞.

(2.A4.10)

If {xi : i = 1, 2, . . .} is considered to be an iid realization from Q, then by the ergodic

theorem

1

n

n∑
i=1

Eθ0

[
log φ

(
yi − η(xi)

σ

)]
=

1

n

n∑
i=1

gη,σ(xi)→
∫
X
gη,σ(x)dQ, as n→∞.

(2.A4.11)

We denote both
∫
X gη,σ(x)dx and

∫
X gη,σ(x)dQ by EX [gη,σ(X)]. Note that both the

integrals exist thanks to continuity of gη,σ(x) and compactness of X . Combining (2.A4.7),

(2.A4.10) and (2.A4.11) we obtain

Eθ0

[
1

n
log

fθ0(yn)

fθ(yn)

]
→ h(θ), (2.A4.12)

where h(θ) is given by (2.3.8). In other words, (S2) holds.
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2.A4.3 Verification of (S3) and proof of Theorem 12

For any δ > 0, and for any θ ∈ Θ,

P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > δ

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η(xi)

σ

)
− 1

n

n∑
i=1

log φ

(
yi − η0(xi)

σ0

)
+ c− EX [gη,σ(X)]

∣∣∣∣∣ > δ

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η(xi)

σ

)
− EX [gη,σ(X)]

∣∣∣∣∣ > δ

2

)
(2.A4.13)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η0(xi)

σ0

)
− c

∣∣∣∣∣ > δ

2

)
. (2.A4.14)

Let us focus attention on the probability given by (2.A4.13).

P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η(xi)

σ

)
− EX [gη,σ(X)]

∣∣∣∣∣ > δ

2

)

= P

(∣∣∣∣∣ 1n
n∑
i=1

[
log φ

(
yi − η(xi)

σ

)
− gη,σ(xi)

]
+

[
1

n

n∑
i=1

gη,σ(xi)− EX [gη,σ(X)]

]∣∣∣∣∣ > δ

2

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

[
log φ

(
yi − η(xi)

σ

)
− gη,σ(xi)

]∣∣∣∣∣ > δ

4

)
(2.A4.15)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

gη,σ(xi)− EX [gη,σ(X)]

∣∣∣∣∣ > δ

4

)
. (2.A4.16)

Let us first deal with the probability given by (2.A4.15), with Ui = log φ
(
yi−η(xi)

σ

)
−

gη,σ(xi).

Due to (A8), we apply Bernstein’s inequality to obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ > δ

4

)
≤ 2 max

{
P

(
1

n

n∑
i=1

Ui >
δ

4

)
, P

(
1

n

n∑
i=1

Ui < −
δ

4

)}

≤ 2 exp

(
−n

2
min

{
δ2

16s2
η,σ

,
δ

4sη,σ

})
. (2.A4.17)
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Now note that the probability given by (2.A4.16) is the probability of a deterministic

quantity with respect to yn and due to (2.A4.10) and (2.A4.11), is identically zero for

large enough n. In the case of random covariates, using (A9) we obtain

|gη,σ(x)| ≤
∫ ∞
−∞

∣∣∣log φ
(σ0

σ
z
)∣∣∣φ(z)dz +

L‖η − η0‖
σ

≤ c3 + L‖η − η0‖
σ

= c̃η,σ (say). (2.A4.18)

gη,σ(xi) are independent, and satisfy (2.A4.18). Hence, Hoeffding’s inequality yields

P

(∣∣∣∣∣ 1n
n∑
i=1

gη,σ(xi)− EX [gη,σ(X)]

∣∣∣∣∣ > δ

4

)

≤ exp

{
− n2δ2

144nc̃2
η,σ

}
= exp

{
− nδ2

144c̃2
η,σ

}
. (2.A4.19)

The probability given by (2.A4.14) can be bounded in the same way as (2.A4.17).

Indeed, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η0(xi)

σ0

)
− c

∣∣∣∣∣ > δ

2

)
≤ 2 exp

(
−n

2
min

{
δ2

16s2
η0,σ0

,
δ

4sη0,σ0

})
.

(2.A4.20)

Combining the above results, it is seen that for any δ > 0, and for each θ ∈ Θ, there

exists aθ > 0, depending on θ such that P
(∣∣ 1
n logRn(θ) + h(θ)

∣∣ > δ
)
≤ 5 exp {−naθ},

which is summable. Hence, by the Borel-Cantelli lemma, 1
n logRn(θ)→ −h(θ), almost

surely, as n→∞, for all θ ∈ Θ. Thus, (S3) holds.

2.A4.4 Verification of (S4)

Using (2.A4.18) it is easily seen that

h(θ) ≤
∣∣∣∣log

(
σ

σ0

)∣∣∣∣+ |c|+
∫ ∞
−∞

∣∣∣log φ
(σ0

σ
z
)∣∣∣φ(z)dz +

‖η0‖+ ‖η‖
σ

. (2.A4.21)
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Since almost surely with respect to the prior πσ, 0 < σ < ∞, and ‖η‖ < ∞ almost

surely with respect to the prior of η, and since ‖η0‖ <∞, it follows from (2.A4.21), that

π (h(θ) =∞) = 0, showing that (S4) holds.

2.A4.5 Verification of (S5)

Verification of (S5) (1)

Recall from (2.2.8) that

Gn =
{

(η, σ) : ‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d
}
.

Then Gn → Θ, as n→∞. Now note that

π(Gn) = π
(
‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

)
− π

({
‖η′j‖ ≤ exp((βn)1/4); j = 1, . . . , d

}c)
= π

(
‖η‖ ≤ exp((βn)1/4), exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

)
− π

 d⋃
j=1

{
‖η′j‖ > exp((βn)1/4)

}
≥ 1− π

(
‖η‖ > exp((βn)1/4)

)
− π

({
exp(− (βn)1/4) ≤ σ ≤ exp((βn)1/4)

}c)
−

d∑
j=1

π
(
‖η′j‖ > exp((βn)1/4)

)

≥ 1− (cη + cσ +
d∑
j=1

cη′j ) exp(−βn), (2.A4.22)

by (A5) and (A6). In other words, (S5) (1) holds.
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Verification of (S5) (2)

We now show that (S5) (2), namely, convergence in (S3) is uniform in θ over Gn \ I holds.

In our case, by (S4), h(θ) <∞ with probability one, so that I = ∅ and Gn \I = Gn. Since

we have already proved in the context of (S3) that lim
n→∞

1
n logRn(θ) = −h(θ), almost

surely, for all θ ∈ Θ, (S5) (2) will be verified if we can further prove that Gn is compact for

each n ≥ 1 and if 1
n logRn(θ) +h(θ) is Lipschitz in θ ∈ G, for any G ∈ {Gn : n = 1, 2, . . .}.

Compactness of Gn, for all n ≥ 1, follows as before. Hence uniform convergence

as required will be proven if we can show that 1
n logRn(θ) + h(θ) is stochastically

equicontinuous almost surely in θ ∈ G for any G ∈ {Gn : n = 1, 2, . . .} and 1
n logRn(θ) +

h(θ) → 0, almost surely, for all θ ∈ G As before, we rely on Lipschitz continuity. To

see that 1
n logRn(θ) + h(θ) is Lipschitz in θ ∈ G, first observe that it follows from the

arguments in Section 2.A4.1 that 1
n logRn(θ) is Lipschitz in η, when the data are held

constant. Moreover, the derivative with respect to σ is bounded since log φ is Lipschitz

and since σ in bounded in G. In other words, 1
n logRn(θ) is almost surely Lipschitz in

θ. Thus, if we can show that h(θ) is also Lipschitz in θ, then this would prove that

1
n logRn(θ) + h(θ) is almost surely Lipschitz in θ. For our purpose, it is sufficient to

show that EX [gη,σ(X)] is Lipschitz in (η, σ). Since for any η1, η2, σ ∈ Θ,

|EX [gη1,σ(X)]− EX [gη2,σ(X)]|

≤ EX |gη1,σ(X)− gη2,σ(X)|

= EX

[∫ ∞
−∞

∣∣∣∣log φ

(
σ0z + η0(X)− η1(X)

σ

)
− log φ

(
σ0z + η0(X)− η2(X)

σ

)∣∣∣∣φ(z)dz

]
≤ L

σ
EX

[∫ ∞
−∞
|η1(X)− η2(X)|φ(z)dz

]
≤ L2

σ
‖η1 − η2‖, (2.A4.23)

for some L2 > 0, EX [gη,σ(X)] is Lipschitz in η. Now recall that under the assumption

(A9),
∫∞
−∞ |z|φ(z)dz <∞. With this, we now show that EX [gη,σ(X)] has bounded first
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derivative with respect to σ in the interior of G. Observe that

|r|−1 |gη,σ+r(x)− gη,σ(x)|

≤ |r|−1

[∫ ∞
−∞

∣∣∣∣log φ

(
σ0z + η0(x)− η(x)

σ + r

)
− log φ

(
σ0z + η0(x)− η(x)

σ

)∣∣∣∣φ(z)dz

]
≤ L

[∫ ∞
−∞

(
σ0|z|+ ‖η − η0‖

σ(σ + r)

)
φ(z)dz

]
(since log φ is Lipschitz)

≤ L

σ(σ + r)

(
σ0

∫ ∞
−∞
|z|φ(z)dz + ‖η − η0‖

)
. (2.A4.24)

By (A9),
∫∞
−∞ |z|φ(z)dz < ∞, and σ, σ + r (both in the interior of G) are both upper

and lower bounded in G, the lower bound being strictly positive. Hence, (2.A4.24) is

integrable with respect to (the distribution) of X, since X is compact. Hence, by the

dominated convergence theorem, differentiation with respect to σ can be performed

inside the double integral associated with EX [gη,σ(X)]. Since log φ has bounded first

derivative as it is Lipschitz and since σ is lower bounded by a positive quantity in G, it

follows that EX [gη,σ(X)] has bounded first derivative with respect to σ. Combined with

the result that EX [gη,σ(X)] is Lipschitz in η, this yields that EX [gη,σ(X)] is Lipschitz

in (η, σ). In conjunction with the result that 1
n logRn(θ) is almost surely Lipschitz in θ,

it holds that 1
n logRn(θ) + h(θ) is almost surely Lipschitz in θ ∈ G. In other words, (S5)

(2) stands verified.

Verification of (S5) (3)

To verify (S5) (3), note that continuity of h(θ), compactness of Gn, along with its

non-decreasing nature with respect to n implies that h (Gn)→ h(Θ), as n→∞.



77
2.A4. VERIFICATION OF THE ASSUMPTIONS OF SHALIZI FOR THE

GENERAL STOCHASTIC PROCESS MODEL

2.A4.6 Verification of (S6) and proof of Theorem 13

Let κ1 = κ − h(Θ). Then it follows from (2.A4.14), (2.A4.15), (2.A4.16), (2.A4.17),

(2.A4.19) and (2.A4.20), that

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ1

)
dπ(θ)

≤
∫
Sc
P

(∣∣∣∣∣ 1n
n∑
i=1

[
log φ

(
yi − η(xi)

σ

)
− gη,σ(xi)

]∣∣∣∣∣ > κ1

4

)
dπ(θ)

+

∫
Sc
P

(∣∣∣∣∣ 1n
n∑
i=1

gη,σ(xi)− EX [gη,σ(X)]

∣∣∣∣∣ > κ1

4

)
dπ(θ)

+

∫
Sc
P

(∣∣∣∣∣ 1n
n∑
i=1

log φ

(
yi − η0(xi)

σ0

)
− c

∣∣∣∣∣ > κ1

2

)
dπ(θ)

≤
∫
Sc

2 exp

(
−n

2
min

{
κ2

1

16s2
η,σ

,
κ1

4sη,σ

})
dπ(θ) +

∫
Sc

exp

(
−Cnκ

2
1

c̃2
η,σ

)
dπ(θ) (2.A4.25)

+

∫
Sc

2 exp

(
−n

2
min

{
κ2

1

16s2
η0,σ0

,
κ1

4sη0,σ0

})
dπ(θ), (2.A4.26)

for some relevant positive constant C.

Now, in the same way as (2.A3.26) we obtain

∫
Sc

2 exp

(
−n

2
min

{
κ2

1

16s2
η,σ

,
κ1

4sη,σ

})
dπ(θ)

≤
∫
Gn

2 exp

(
−n

2

κ2
1

16s2
η,σ

)
dπ(θ) +

∫
Gn

2 exp

(
−n

2

κ1

4sη,σ

)
dπ(θ) + 2π(Gcn)

≤ C1 exp
{
−
(
C2
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c5

)}
+ C̃1 exp

{
−
(
C̃2
√
κ1n

1/4 − 9

2
(βn)1/4 − 2nq log c5

)}
+ 2π (Gcn) , (2.A4.27)

for relevant positive constants C1, C2, C̃1, C̃2, c5. In the same way,

∫
Sc

exp

(
−Cnκ

2
1

c̃2
η,σ

)
dπ(θ) ≤ C11 exp

{
−
(
C21
√
κ1n

1/4 − 5 (βn)1/4 − 2nq log c51

)}
+π (Gcn) ,

(2.A4.28)
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for relevant positive constants C11, C21, c51.

Since (2.A4.27) and (2.A4.28) are summable, and since (2.A4.26) is summable (as the

integrand is independent of parameters), it follows from (2.A4.25) and (2.A4.26) that

∫
Sc
P

(∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ > κ1

)
dπ(θ) <∞,

showing that (S6) holds.

2.A4.7 Verification of (S7)

For any set A such that π(A) > 0, Gn ∩A ↑ A. It follows from this and continuity of h

that h (Gn ∩A) ↓ h (A) as n→∞, so that (S7) holds.



3
Posterior Convergence of Nonparametric

Binary and Poisson Regression Under

Possible Misspecifications

3.1 Introduction

The situation for applicability of nonparametric regression is frequently encountered in

many practical scenarios where no parametric model fits the data. In particular, non-

parametric regression for binary dependent variables is very common for various branches

of statistics like medical and spatial statistics, whereas nonparametric version of Poisson

regression is being used recently in many non-trivial scenerios such as for analyzing the

likelihood and severity of vehicle crashes (Ye et al. (2018)). Interestingly, despite vast

applicability of both binary and Poisson regression, it seems that the available literature

79
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on nonparametric Poisson regression is scarce in comparison to the available literature

on nonparametric binary regression. The Bayesian approach to nonparametric binary

regression problem has been accounted for in Diaconis and Freedman (1993). An account

of posterior consistency for Gaussian process prior in nonparametric binary regression

modeling can be found in Ghosal and Roy (2006), where the authors suggested that

similar consistency results should hold for the nonparametric Poisson regression setup.

Literature on consistency results for nonparametric Poisson regression is very limited.

Pillai et al. (2007) have obtained consistency results for Poisson regression using an

approach similar to that of Ghosal and Roy (2006) under certain assumptions, but so far

without explicit specifications and details with respect to the prior. On the other hand,

our approach will be based on the results of Shalizi (2009), which is much different from

Ghosal and Roy (2006) and capable of handling model misspecification. In addition to

facilitating investigation of the traditional posterior convergence rate, the approach of

Shalizi (2009) also enables us to investigate the rate at which the posterior converges,

which turns out to be the KL divergence rate.

In this chapter, we investigate posterior convergence of nonparametric binary and

Poisson regression where the nonparametric regression is modeled as some suitable

stochastic process. In the binary situation, we consider a similar setup as that of Ghosal

and Roy (2006), where the authors have considered binary observations with response

probability as an unknown smooth function of a set of covariates, which was modeled

using Gaussian process. Here we will consider a binary response variable Y and a

d-dimensional covariate X belonging to a compact set. The probability function is

given by p(x) = P (Y = 1|X = x) along with a prior for p induced by some appropriate

stochastic process η(x) with the relation p(x) = H (η(x)) for a known, non-decreasing

and continuously differentiable cumulative distribution function H(·). We will establish

a posterior convergence theory for nonparametric binary regression based on the general

theory of posterior convergence of Shalizi (2009). Our theory also includes the case of
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misspecified models, that is, if the true regression function is not even supported by

the prior. This approach to Bayesian asymptotics also permits us to show that the

relevant posterior probabilities converge at the KL divergence rate, and that the posterior

convergence rate with respect to KL divergence is just slower than 1
n , where n denotes the

number of observations. We further show that even in the case of misspecification, the

posterior predictive distribution can approximate the best possible predictive distribution

adequately, in the sense that the Hellinger distance, as well as the total variation distance

between the two distributions, can tend to zero.

For nonparametric Poisson regression, given x in the compact space of covariates, we

model the mean function λ(x) as λ(x) = H(η(x)), where H is a known, continuously

differentiable function. Again, we investigate the general theory of posterior convergence,

including misspecifications, rate of convergence of the posterior distribution and the

usual posterior convergence rate, in Shalizi’s framework.

The rest of this chapter is structured as follows. The basic prenises for nonparametric

binary and Poisson regression are provided in Sections 3.2 and 3.3, respectively. The

required assumptions and their discussions are provided in Section 3.4. In Section 3.5,

our main results on posterior convergence of binary and Poisson regression are provided,

while Section 3.7 details the consequences of misspecifications. Concluding remarks are

provided in Section 3.8.

The detailed proofs of verification of Shalizi’s assumptions are provided in Appendices

3.A1 and 3.A2 for binary and Poisson regression setups, respectively.

3.2 Model setup and preliminaries of the binary regression

Let Yn = (Y1, Y2, . . . , Yn)T be the vector of binary response random variables against

the covariate vector Xn = (X1, X2, . . . , Xn)T . The corresponding realized values will

be denoted by yn = (y1, y2, . . . , yn)T and xn = (x1, x2, . . . , xn)T respectively. Let the
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model be specified as follows: for i = 1, 2, . . . , n,

Yi|Xi ∼ Binomial (1, p(Xi)) (3.2.1)

p(x) = H (η(x)) (3.2.2)

η(·) ∼ πη, (3.2.3)

where the link function H is a known, non-decreasing, continuously differentiable cumu-

lative distribution function on the real line R, πη is the prior for some suitable stochastic

process.

Note that the prior for p is induced by the prior for η. Our concern is to infer about the

success probability function p(x) = P (Y = 1|X = x) when the number of observations

goes to infinity. We assume that for each i ≥ 1, xi ∈ X , where X ⊂ Rd is the compact

space of covariates, with d ≥ 1 being the dimension of the covariate space. We assume

that d is finite and known. We also assume that the functions η have continuous first

partial derivatives. We denote this class of functions by C′(X ). We do not assume the

truth η0 in C′(X ), allowing misspecification.

It is widely accepted to assume the function H(·) to be known as part of model

assumption. For example, in logistic regression we choose the standard logistic cumulative

distribution function as the link function, whereas in probit regression H is chosen to

be the standard normal cumulative distribution function φ. More discussion on link

function along with several other examples can be found in Choudhuri et al. (2007),

Newton et al. (1996), Gelfand and Kuo (1991). A Bayesian method for estimation of p

has been provided in Choudhuri et al. (2007). It has been shown in Ghosal and Roy

(2006) that the sample paths of the Gaussian processes can well approximate a large

class of functions and hence it is not essential to consider additional uncertainty in the

link function H.

Let C be the counting measure on {0, 1}. Then according to the model assumption,
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the conditional density of y given x with respect to C will be represented by the density

function f as follows:

f(y|x) = p(x)y (1− p(x))1−y . (3.2.4)

The prior for f will be denoted by π. Let f0 and p0 denote the true density and true

success probability, respectively. Then under the truth, the joint density is:

f0(y|x) = p0(x)y (1− p0(x))1−y . (3.2.5)

One of the main objectives of this chapter is to show consistency of the posterior

distribution of η(·) treated as a parameter arising from the parameter space Θ = C′(X ).

Note that this would imply posterior consistency of p(·) = H (η(·)).

3.3 Model setup and preliminaries of Poisson regression

For Poisson regression, we let Y n = (Y1, Y2, . . . , Yn)T be independent responses con-

ditional on covariates Xn = (X1, X2, . . . , Xn)T , with realized values denoted by yn =

(y1, y2, . . . , yn)T and xn = (x1, x2, . . . , xn)T as before. For each i ≥ 1, yi ∈ N, where

N is the set of non-negative integers and as before we assume that xi ∈ X , where X

is a compact subset of the real line Rd, where d ≥ 1 is finite and known. The mean

function is given by λ(x) = H (η(x)), where H is a known, non-negative continuously

differentiable function on R and η ∈ C′(X ). Thus, here also the parameter space is

Θ = C′(X ). The model is specified as follows: for i = 1, 2, . . . , n,

Yi|Xi ∼ exp (−λ(Xi))
(λ(Xi))

y

y!
; (3.3.1)

η(·) ∼ πη. (3.3.2)

Now, let C be the counting measure on N. According to the model assumption
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for Poisson regression, the conditional density of y given x with respect to C will be

represented by density function f as follows:

f(y|x) = exp (−λ(x))
(λ(x))y

y!
. (3.3.3)

The prior for f will be denoted by Π. We do not assume the truth η0 to be in C′(X ) as

before, allowing misspecification. Let f0 and λ0 denote the true density and true mean

function, respectively. Again, one of our main aims is to establish consistency of the

posterior distribution of λ(·) through posterior consistency of η(·).

3.4 Assumptions and their discussions

We need to make some appropriate assumptions for establishing convergence of both the

binary and Poisson regression models equipped with stochastic process prior. The latter

also requires suitable assumptions. Many of the assumptions are similar to those taken

in Chapter 2. Hence the purpose of such assumptions will be as discussed in Chapter 2,

which we shall briefly touch upon here.

Assumption 1 X is a compact, d-dimensional space, for some finite, known, d ≥ 1,

and is equipped with a suitable metric.

Assumption 2 Recall that in our notation, C′(X ) denotes the class of continuously

partially differentiable function on X . In other words, the functions η ∈ C′(X ) are

continuous on X and for such functions the limit

η′j(x) =
∂η(x)

∂xj
= lim

h→0

η (x+ hδj)− η(x)

h
(3.4.1)

exists for j = 1, . . . , d, for each x ∈ X and is continuous on X . Here δj is the d-

dimensional vector with the j-th element as 1 and all the other elements as zero.



85 3.4. ASSUMPTIONS AND THEIR DISCUSSIONS

Assumption 3 The priors for η is chosen such that for β > 2h (Θ),

π
(
‖η‖ ≤ exp

(
(βn)1/4

))
≥ 1− cη exp (−βn) ;

π
(
‖η′j‖ ≤ exp

(
(βn)1/4

))
≥ 1− cη′j exp (−βn) , for j = 1, . . . , d;

where cη and cη′j ; j = 1, . . . , d, are positive constants. In the above, for any function

f : X 7→ R, ‖f‖ = sup
x∈X
|f(x)|.

We treat the covariates as either random (observed or unobserved) or non-random

(observed). Accordingly, in Assumption 4 below we provide conditions pertaining to

these aspects.

Assumption 4 (i) {xi : i = 1, 2, . . .} is an observed or unobserved sample associated

with an iid sequence associated with some probability measure Q, supported on X ,

which is independent of {yi : i = 1, 2, . . .}

(ii) {xi : i = 1, 2, . . .} is an observed non-random sample. In this case, we consider

a specific partition of the d-dimensional space X into n subsets such that each

subset of the partition contains at least one x ∈ {xi : i = 1, 2, . . .} and has Lebesgue

measure L
n , for some L > 0.

Assumption 5 The true function η0 is bounded in sup norm. In other words, the truth

η0 satisfies the following for some finite, positive constant κ0 :

‖η0‖ < κ0 <∞. (3.4.2)

Observe that in general η0 /∈ C′(X ). For random covariate X, we assume that η0(X) is

measurable.
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Assumption 6 For the binary regression model set up we assume a uniform positive

lower bound κB for min{p(·), 1− p(·)}. In other words, for all p ∈ Θ,

inf{min (p(x), 1− p(x)) : x ∈ X} ≥ κB > 0.

Assumption 7 For the Poisson regression model set up we assume a uniform positive

lower bound κP for λ(·). In other words, for all λ ∈ Λ,

inf{λ(x) : x ∈ X} ≥ κP > 0.

3.4.1 Discussion of the assumptions

Assumption 1 is on compactness of X , which guarantees that continuous functions on X

will have finite sup-norms.

Assumption 2 is as taken in Chapter 2 for the purpose of constructing appropriate

sieves in order to show posterior convergence results. More precisely, Assumption 2 is

required for to ensure that η is Lipschitz continuous in the sieves. Since a differentiable

function is Lipschitz if and only if its partial derivatives are bounded, this serves our

purpose, as continuity of the partial derivatives of η guarantees boundedness in the

compact domain X . In particular, if η is a Gaussian process, the conditions presented in

Adler (1981), Adler and Taylor (2007), Cramer and Leadbetter (1967) guarantee the

above continuity and smoothness properties required by Assumption 2. We refer to

Chapter 2 for more discussion about this.

Assumption 3 is required for ensuring that the complements of the sieves have

exponentially small probabilities. In particular, this assumption is satisfied if η is a

Gaussian process, even if exp
(

(βn)1/4
)

is replaced with
√
βn.

Assumption 4 is for the covariates xi, accordingly as they are considered an observed

random sample, unobserved random sample, or non-random. Note that thanks to the

strong law of large numbers (SLLN), given any η in the complement of some null set
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with respect to the prior, and given any sequence {xi : i = 1, 2, . . .} Assumption 4 (i)

ensures that for any integrable function g, as n→∞,

1

n

n∑
i=1

g(xi)→
∫
X
g(x)dQ(X) = EX [g(X)] (say), (3.4.3)

almost surely, where Q is some probability measure supported on X .

Assumption 4 (ii) ensures that 1
n

∑n
i=1 g(xi) is a particular Riemann sum and hence

(3.4.3) holds with Q being the Lebesgue measure on X . We continue to denote the limit

in this case by EX [g(X)].

Assumption 5 is equivalent to the Assumption(T) of Ghosal and Roy (2006). Assump-

tion 5 actually implies that p0(x) = H(η0(x)) is bounded away from 0 and 1. For the

Poisson regression model set up it follows that ‖λ0‖ <∞. It is to be noted that here we

do not require to assume that p0 ∈ Θ or λ0 ∈ Λ, allowing model misspecifications.

Observe that, similar to Pillai et al. (2007) we need the parameter space for Poisson

regresion to be bounded away from zero (Assumption 7). As pointed out in Pillai et al.

(2007), we cannot bypass this and as such this is not a mere pathway towards our proof.

This is because, if almost all observations in a sample from a Poisson distribution are

zero, then it impossible to extract the information about the (log) mean. Hence we must

require at least some condition to make it bound away from zero. Similar argument is

also applicable for binary regression, which is reflected in Assumption 6.

It is important to remark that Assumptions 6 and 7 are necessary only to validate

Assumptions (S5) (3) (that is, the third part of Assumption (S5) ) and (S6) of Shalizi, and

unnecessary elsewhere. Although many of our proofs would be simpler if Assumptions 6

and 7 were used, we reserved these assumptions only to validate Assumptions (S5) (3)

and (S6) of Shalizi.

For any x ∈ R and for any given set A ⊆ R, let IA(x) = 1 if x ∈ A and 0 otherwise.
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To achieve Assumptions 6 and 7, we set, for all x ∈ R,

H(x) = κBI{G(x)≤κB}(x) +G(x)I{κB<G(x)<1−κB}(x) + (1−κB)I{G(x)≥1−κB}(x), (3.4.4)

for the binary case, where 0 < κB < 1/2, and

H(x) = κP I{G(x)≤κP }(x) +G(x)I{G(x)>κP }(x), (3.4.5)

where κP > 0. In (3.4.4), G is a continuously differentiable distribution function on R

and in (3.4.5), G is a non-negative continuously differentiable function on R.

3.5 Main results on posterior convergence

Here we will state a summary of our main results regarding posterior convergence of

nonparametric binary regression and Poisson regression. The key results associated with

the asymptotic equipartition property are provided in Theorems 3 – 6, proofs of which

are provided in Appendix 3.A1 (for binary regression) and in Appendix 3.A2 (for Poisson

regression).

Theorem 3 Let Q and the counting measure C on {0, 1} be the measures associated

with the random variable X and the binary random variable Y respectively. Denote

EX,Y (·) =
∫ ∫
· dC dQ and EX(·) =

∫
· dQ. Then under the nonparametric binary

regression model, under Assumption 4, the KL divergence rate h1(p) exists for η ∈ Θ,

and is given by

h1(p) =

[
EX

(
p0(X) log

{
p0(X)

p(X)

})
+ EX

(
(1− p0(X)) log

{
(1− p0(X))

(1− p(X))

})]
.

(3.5.1)
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Alternatively, h1(p) admits the following form:

h1(p) = EX,Y

(
f0(X,Y ) log

{
f0(X,Y )

f(X,Y )

})
, (3.5.2)

where f and f0 are as defined in (3.2.4) and (3.2.5).

Theorem 4 Let Q and the counting measure C on N be associated with the random

variable X and the count random variable Y , respectively. Denote EX,Y (·) =
∫ ∫
· dC dQ

and EX(·) =
∫
· dQ. Then under the nonparametric Poisson regression model, under

Assumption 4, the KL divergence rate h2(λ) exists for η ∈ Θ, and is given by

h2(λ) =

[
EX (λ(X)− λ0(X)) + EX

(
λ0(X) log

{
λ0(X)

λ(X)

})]
. (3.5.3)

Theorem 5 Under the nonparametric binary regression model and Assumption 4, the

asymptotic equipartition property holds, and is given by

lim
n→∞

1

n
log [Rn(p)] = −h1(p). (3.5.4)

The convergence is uniform on any compact subset of Θ.

Theorem 6 Under the nonparametric Poisson regression model and Assumption 4, the

asymptotic equipartition property holds, and is given by

lim
n→∞

1

n
log [Rn(λ)] = −h2(λ). (3.5.5)

The convergence is uniform on any compact subset of Θ.

Theorems 3 and 5 for binary regression and Theorems 4 and 6 for Poisson regression

ensure that conditions (S1) to (S3) of Shalizi (2009) hold, and (S4) holds for both binary

and Poisson regression because of compactness of X and continuity of H and η. The

detailed proofs are presented in Appendix 3.A1.4 and Appendix 3.A2.4, respectively.
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We construct the sieves Gn for binary regression model set up as follows:

Gn = {η ∈ C′(X ) : ‖η‖ ≤ exp((βn)1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, 2, . . . , d}. (3.5.6)

It follows that Gn → Θ as n → ∞. We consider the same form (3.5.6) for the sieves

associated with Poisson regression. That Gn is compact, is already proved in Chapter 2.

For notational convenience, we denote the sieves for Poisson regression by Gn.

Assumption 3 ensures that for binary regression, Π (Gcn) ≤ α exp(−βn) for some α > 0

and similarly Π (Gc
n) ≤ α exp(−βn) for Poisson regression. Now, these results, continuity

of h(p), h(λ) (the proofs of continuity of h(p) and h(λ) follows using the same techniques

as in Appendices 3.A1.1 and 3.A2.1), compactness of Gn, Gn and the uniform convergence

results of Theorems 5 and 6, together ensure (S5) for both the model setups.

Now, as pointed out in Chapter 2 we observe that the aim of assumption (S6) is to

ensure that (see the proof of Lemma 7 of Shalizi (2009)) for every ε > 0 and for all

sufficiently large n,

1

n
log

∫
Gn
Rn(p) dπ(η) ≤ h1(Gn) + ε, almost surely. (3.5.7)

As h(Gn)→ h1(Θ) as n→∞, it is enough to verify that for every ε > 0 and for all n

sufficiently large,

1

n
log

∫
Gn
Rn(p) dπ(η) ≤ h(Θ) + ε, almost surely. (3.5.8)

First we observe that

1

n
log

∫
Gn
Rn(p) dπ(η) ≤ 1

n
sup
η∈Gn

logRn(p). (3.5.9)

For large enough κ > h1(Θ), consider S = {η : h1(p) ≤ κ, ‖η‖ ≤M}, for M > 0.

Lemma 3.5.1 For M > 0, S = {η : h1(p) ≤ κ, ‖η‖ ≤M} is a compact set.
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Proof. First recall that the proof of continuity of h1(p) in η follows easily using the

same techniques as in Appendix 3.A1.1. Hence, it follows that S is a closed and bounded

set.

Now, since X is compact, ‖x1 − x2‖ > L > 0 for all x1, x2 ∈ X . Hence, for any

x1, x2 ∈ X , |η(x1)− η(x2)| ≤ 2M
‖x1−x2‖ × ‖x1 − x2‖ ≤ 2M

L ‖x1 − x2‖ for all x1, x2 ∈ X and

for all η ∈ S, showing that S is uniformly equicontinuous as well. Hence, S is compact.

In a very similar manner, the following lemma also holds for Poisson model set up.

Lemma 3.5.2 S = {η : h2(λ) ≤ κ, ‖η‖ ≤M} is a compact set for M > 0.

Proof. Again, recall that continuity of h2(λ) in η can be shown using the same techniques

as in Appendix 3.A2.1. The rest of the proof follows in the same way as that of Lemma

3.5.1.

Now observe that if κB of Assumption 6 is actually zero instead of positive, then

as ‖η‖ → ∞, h1(p) → ∞. Moreover, we have already shown continuity of h1(p) with

respect to η. Hence, for sufficiently large M , ‖η‖ > M implies h1(p) ≥ κ, provided

that κB is sufficiently small. Hence, Sc = {η : h1(p) > κ} ∪ {η : h1(p) ≤ κ, ‖η‖ > M} =

{η : h1(p) > κ}∪{η : h1(p) = κ, ‖η‖ > M}, for sufficiently small κB and sufficiently large

M .

In the same way, for Poisson regression, if κP of Assumption 7 is actually zero instead

of positive, then as ‖η‖ → ∞, h(λ) → ∞. This, along with continuity of h2(λ) with

respect to η ensures that h2(λ) ≥ κ when ‖η‖ > M , for sufficiently large M , if κP is small

enough. Hence, for sufficiently small κP and sufficiently large M , Sc = {η : h2(λ) > κ}∪

{η : h2(λ) ≤ κ, ‖η‖ > M} = {η : h2(λ) > κ} ∪ {η : h2(λ) = κ, ‖η‖ > M}, in the context

of Poisson regression.

Using compactness of S, in the same way as in Chapter 2 condition (S6) of Shalizi

can be shown to be equivalent to (3.5.10) and (3.5.11) in Theorems 7 and 8 below,
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corresponding to binary and Poisson cases. In the supplement we show that these

equivalent conditions are satisfied in our model setups.

Theorem 7 For the binary regression setup, (S6) is equivalent to the following, which

holds under Assumptions 1 – 6:

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(p) + h1(p)

∣∣∣∣ > κ− h1(Θ)

)
dπ(η) <∞. (3.5.10)

Theorem 8 For the Poisson regression model set up, (S6) is equivalent to the following,

which holds under Assumptions 1–5 and 7:

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ− h2(Θ)

)
dπ(η) <∞. (3.5.11)

Assumption (S7) of Shalizi also holds for both the model setups because of continuity

of h1(p) and h2(λ). Hence, all the assumptions (S1)–(S7) are satisfied for binary and

Poisson regression setups.

Overall, our results lead to the following theorems.

Theorem 9 Assume the nonparametric binary regression setup. Then under Assump-

tions 1–6, for A ⊆ Θ for which π(A) > 0 and h1(A) > h1(Θ),

lim
n→∞

π(A|Yn) = 0, almost surely.

Also, for any measurable set A with π(A) > 0, if β > 2h1(A), where h1 is given by

(3.5.1), or if A ⊂
⋂∞
k=n Gk for some n, where Gk is given by (3.5.6), then the following

holds:

lim
n→∞

1

n
log [π(A|Yn)] = −J1(A), almost surely.
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Theorem 10 Assume the nonparametric Poisson regression setup. Then under As-

sumptions 1–5 and 7, for A ⊆ Θ for which π(A) > 0 and h2(A) > h2(Θ),

lim
n→∞

π(A|Yn) = 0, almost surely.

Also, for any measurable set A with π(A) > 0, if β > 2h2(A), where h2 is given by

(3.5.3), or if A ⊂
⋂∞
k=nGk for some n, where Gk is of the same form as (3.5.6), then

the following holds:

lim
n→∞

1

n
log [π(A|Yn)] = −J2(A), almost surely.

3.6 Rate of convergence

For Shalizi’s approach to the rate of convergence, it is first required to observe that for

each measurable A ⊆ Θ, for every δ > 0, there exists a random natural number τ(A, δ)

such that n−1 log
∫
ARn(θ)dπ(θ) ≤ δ + lim sup

n
n−1 log

∫
ARn(θ)dπ(θ) for all n > τ(A, δ),

provided the lim sup is finite.

Now consider a sequence of positive reals εn such that εn → 0 while nεn → ∞ as

n→∞ and the set Nεn = {θ : h(θ) ≤ h(Θ) + εn}. Then the following result of Shalizi

holds.

Theorem 11 (Shalizi (2009)) Assume (S1) to (S7) of Shalizi. If for each δ > 0,

τ
(
Gn ∩N c

εn , δ
)
≤ n

eventually almost surely, then almost surely the following holds:

lim
n→∞

(Nεn |Yn) = 1.

In our contexts, let N1,εn = {η : h1(p) ≤ h1(Θ) + εn} and N2,εn = {η : h2(λ) ≤
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h2(Θ) + εn}. To investigate the rate of convergence in our cases, it follows from Chapter

2 that εn will be the rate of convergence for εn → 0, nεn →∞ as n→∞, if we can show

that the following hold:

1

n
log

∫
Gn∩Nc

1,εn

Rn(p) dπ(η) ≤ −h1(Θ) + ε, (3.6.1)

and
1

n
log

∫
Gn∩Nc

2,εn

Rn(λ) dπ(η) ≤ −h2(Θ) + ε, (3.6.2)

for any ε > 0 and all n sufficiently large.

Following similar arguments of Chapter 2, we find that the posterior rate of convergence

with respect to KL divergence is just slower than n−1. To put it another way, it is just

slower that n−
1
2 with respect to Hellinger distance for the model setups we consider.

Our results can be formally stated in Theorem 12 for Binary regression and in Theorem

13 for Poisson regression.

Theorem 12 For the nonparametric binary regression setup, under Assumptions 1–6,

limn→∞ (Nεn |Yn) = 1 holds almost surely.

Theorem 13 For the nonparametric Poisson regression setup, under Assumptions 1–5

and 7, limn→∞ (Nεn |Yn) = 1 holds almost surely.

3.7 Consequences of model misspecification

Suppose that the true function η0 consists of countable number of discontinuities but has

continuous first order partial derivatives at all other points. Then η0 6∈ C′(X ). However,

there exists some η̃ ∈ C′(X ) such that η̃(x) = η0(x) for all x ∈ X where η0 is continuous.

Similar situation is mentioned in Chapter 2. Observe that, if the probability measure

Q of X is dominated by the Lebesgue measure, then from Theorems 3 and 4 we have

h1(Θ) = 0 and h2(Θ) = 0. Then the posterior of η concentrates around η̃, which is
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the same as η0 except at the countable number of discontinuities of η0. Corresponding

p̃ = H(η̃) and λ̃ = H(η̃) will also differ from p0 and λ0. If p0 and λ0 are such that

0 < h1(Θ) <∞ and 0 < h2(Θ) <∞ respectively, then the posteriors concentrate around

the minimizers of h1(p) and h2(λ), provided such minimizers exist in Θ.

3.7.1 Consequences from the subjective Bayesian perspective

Bayesian posterior consistency has two apparently different viewpoints, namely, classical

and subjective. Bayesian analysis starts with a prior knowledge, and updates the

knowledge given the data, forming the posterior. It is of utmost importance to know

whether the updated knowledge becomes more and more accurate and precise as data are

collected indefinitely. This requirement is called consistency of the posterior distribution.

From the classical Bayesian point of view we should believe in existence of a true model.

On the contrary, if we look from the subjective Bayesian viewpoint, then we need not

believe in true models. A subjective Bayesian thinks only in terms of the predictive

distribution of future observations. But Blackwell and Dubins (1962), Diaconis and

Freedman (1986) have shown that consistency is equivalent to inter subjective agreement,

which means that two Bayesians will ultimately have very close posterior predictive

distributions.

Shalizi considered the one-step-ahead predictive distribution of θ, given by Fnθ ≡

Fθ (Yn|Y1, . . . , Yn−1), with the convention that n = 1 gives the marginal distribution of

the first observation. Accordingly, he also considered Pn ≡ Pn (Yn|Y1, . . . , Yn−1), which

is the best prediction one could make had P been known. The posterior predictive

distribution is given by Fnπ =
∫

Θ F
n
θ dπ (θ|Y n). With the above definitions, the following

results have been proved by Shalizi.

Theorem 14 (Shalizi (2009)) Let ρH and ρTV be Hellinger and total variation met-

rics, respectively. Then with probability 1,
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lim sup
n→∞

ρ2
H (Pn, Fnπ ) ≤ h(Θ);

lim sup
n→∞

ρ2
TV (Pn, Fnπ ) ≤ 4h(Θ).

In our nonparametric setup, h1(Θ) = 0 and h2(Θ) = 0 if η0 consists of countable

number of discontinuities. Hence, from Theorem 14 it is clear that in spite of such

misspecification, the posterior predictive distribution does a good job in learning the

best possible predictive distribution in terms of the popular Hellinger and the total

variation distance. We state our result formally as follows.

Theorem 15 Consider the setups of nonparametric binary and Poisson regression.

Assume that the truth function η0 consists of countable number of discontinuities but has

continuous first order partial derivatives at all other points. Then under Assumptions

1–6 (for binary regression) or under Assumptions 1–5 and 7 (for Poisson regression) the

following hold:

lim sup
n→∞

ρ2
H (Pn, Fnπ ) = 0;

lim sup
n→∞

ρ2
TV (Pn, Fnπ ) = 0.

3.8 Conclusion

In this chapter we attempted to address posterior convergence of nonparametric binary

and Poisson regression, along with the rate of convergence, while also allowing for

misspecification, using the approach of Shalizi (2009). As in Chapter 2, we also have

shown that, even in the case of misspecification, the posterior predictive distribution can

be quite accurate asymptotically, which should be a point of interest from the subjective

Bayesian viewpoint. The asymptotic equipartition property plays a central role even

in binary and Poisson regression contexts. It is one of the crucial assumptions and yet
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relatively easy to establish under mild conditions. It actually brings forward the KL

property of the posterior, which in turn characterizes the posterior convergence, and

also the rate of posterior convergence and misspecification, as in the nonparametric

regression with Gaussian and double-exponential errors dealt with in Chapter 2.



Appendix

3.A1 Verification of Assumptions (S1) to (S7) of Shalizi

for binary regression

3.A1.1 Verification of (S1)

Observe that

fp(Y n|Xn) =
n∏
i=1

f(yi|xi) =
n∏
i=1

p(xi)
yi (1− p(xi))1−yi , (3.A1.1)

fp0(Y n|Xn) =
n∏
i=1

f0(yi|xi) =
n∏
i=1

p0(xi)
yi (1− p0(xi))

1−yi . (3.A1.2)

Therefore,

1

n
logRn(p) =

1

n

n∑
i=1

{(
yi log

(
p(xi)

p0(xi)

))
+ (1− yi) log

(
1− p(xi)
1− p0(xi)

)}
. (3.A1.3)

To show measurability of Rn(p), first note that for any a ∈ R,

{
(yi, η) : yi log

(
p(xi)

p0(xi)

)
+ (1− yi) log

(
1− p(xi)
1− p0(xi)

)
< a

}
=

{
η : log

(
p(xi)

p0(xi)

)
< a

}⋃{
η : log

(
1− p(xi)
1− p0(xi)

)
< a

}
. (3.A1.4)

Note that for given p, there exists 0 < ε < 1/2 such that ε < p(x) < 1− ε, for all x ∈ X .

Now consider a sequence η̃j , j = 1, 2, . . . such that ‖η̃j − η‖ → 0, as j →∞. Then, with

p̃j(x) = H (η̃j(x)), note that there exists j0 ≥ 1 such that for j ≥ j0, ε < p̃j(x) < 1− ε,

98
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for all x ∈ X . Hence, using the inequality 1 − 1
x ≤ log x ≤ x − 1 for x > 0, we obtain∣∣∣log

(
p̃j(xi)
p(xi)

)∣∣∣ ≤ C‖p̃j − p‖ and
∣∣∣log

(
1−p̃j(xi)
1−p(xi)

)∣∣∣ ≤ C‖p̃j − p‖, for some C > 0, for all

x ∈ X . Hence, for j ≥ j0,

∣∣∣∣log

(
p̃j(xi)

p0(xi)

)
− log

(
p(xi)

p0(xi)

)∣∣∣∣ =

∣∣∣∣log

(
p̃j(xi)

p(xi)

)∣∣∣∣ ≤ C‖p̃j − p‖. (3.A1.5)

Now, since H is continuously differentiable, using Taylor’s series expansion up to the

first order we obtain,

‖p̃j − p‖ = sup
x∈X

|H (η̃j(x))−H (η(x))|

= sup
x∈X

∣∣H ′(u(η̃j(x), η(x)))
∣∣ ‖η̃j − η‖, (3.A1.6)

where u(η̃j(x), η(x)) lies between η(x) and η̃j(x)− η(x). Since ‖η̃j − η‖ → 0, as j →∞,

it follows from (3.A1.6) that ‖p̃j − p‖ → 0, as j → ∞. This again implies, thanks to

(3.A1.5), that
∣∣∣log

(
p̃j(xi)
p0(xi)

)
− log

(
p(xi)
p0(xi)

)∣∣∣→ 0, as j →∞.

In other words, log
(
p(xi)
p0(xi)

)
is continuous in η, and hence

{
η : log

(
p(xi)
p0(xi)

)
< a

}
of (3.A1.4) is measurable. Similarly, log

(
1−p(xi)
1−p0(xi)

)
is also continuous in η, so that{

η : log
(

1−p(xi)
1−p0(xi)

)
< a

}
is also measurable. Hence, the individual terms in (3.A1.3)

are measurable. Since sums of measurable functions are measurable, it follows that

logRn(p), and hence Rn(p), is measurable.

3.A1.2 Verification of (S2)

for every η ∈ Θ, we need to show that the KL divergence rate

h1(p) = lim
n→∞

1

n
Ep0

[
log

{
fp0(Y n|Xn)

fp(Y n|Xn)

}]
= lim

n→∞

1

n
Ep0 [− log {Rn(p)}]

exists (possibly being infinite) and is T -measurable.
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Now,

1

n
logRn(p) =

1

n

n∑
i=1

{(yi log p(xi)) + (1− yi) log (1− p(xi))} (3.A1.7)

− 1

n

n∑
i=1

{(yi log p0(xi)) + (1− yi) log (1− p0(xi))} .

Therefore,

1

n
Ep0 [− log {Rn(p)}] =

1

n

n∑
i=1

{(p0(xi) log p0(xi)) + (1− p0(xi)) log (1− p0(xi))}

(3.A1.8)

− 1

n

n∑
i=1

{(p0(xi) log p(xi)) + (1− p0(xi)) log (1− p(xi))} .

lim
n→∞

1

n
Ep0 [− log {Rn(p)}] = lim

n→∞

1

n

n∑
i=1

{(p0(xi) log p0(xi)) + (1− p0(xi)) log (1− p0(xi))}

− lim
n→∞

1

n

n∑
i=1

{(p0(xi) log p(xi)) + (1− p0(xi)) log (1− p(xi))}

=EX {(p0(X) log p0(X)) + (1− p0(X)) log (1− p0(X))}

−EX {(p0(X) log p(X)) + (1− p0(X)) log (1− p(X))} .

(3.A1.9)

The last line follows from Assumption 4 and SLLN. Here EX(·) =
∫
X · dQ.

Hence,

h1(p) =

[
EX

(
p0(X) log

{
p0(X)

p(X)

})
+ EX

(
(1− p0(X)) log

{
(1− p0(X))

(1− p(X))

})]
.

(3.A1.10)

It is easily seen that h1 is continuous in η and hence measurable.
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3.A1.3 Verification of (S3)

Here we need to verify the asymptotic equipartition, that is, almost surely with respect

to fp0 ,

lim
n→∞

1

n
log [Rn(p)] = −h1(p) = lim

n→∞

1

n
Ep0

[
log

{
fp(Y n|Xn)

fp0(Y n|Xn)

}]
. (3.A1.11)

Observe that,

1

n
logRn(p) =

1

n

n∑
i=1

{(yi log p(xi)) + (1− yi) log (1− p(xi))}

− 1

n

n∑
i=1

{(yi log p0(xi)) + (1− yi) log (1− p0(xi))} .

By rearranging the terms we get,

− 1

n
logRn(p) =

1

n

n∑
i=1

{
yi log

(
p0(xi)

p(xi)

)
+ (1− yi) log

(
1− p0(xi)

1− p(xi)

)}
.

Using the inequality 1− 1
x ≤ log x ≤ x−1 for x > 0, compactness of X , and continuity

of p(x) in x ∈ X for given η ∈ Θ,
∣∣∣log

(
p0(xi)
p(xi)

)∣∣∣ ≤ C‖p − p0‖ and
∣∣∣log

(
1−p0(xi)
1−p(xi)

)∣∣∣ ≤



102
3.A1. VERIFICATION OF ASSUMPTIONS (S1) TO (S7) OF SHALIZI FOR

BINARY REGRESSION

C‖p− p0‖, for some C > 0. Hence,

∞∑
i=1

i−2V ar

[{
yi log

(
p0(xi)

p(xi)

)
+ (1− yi) log

(
1− p0(xi)

1− p(xi)

)}]
(3.A1.12)

=

∞∑
i=1

i−2p0(xi)(1− p0(xi))

×

{[
log

(
p0(xi)

p(xi)

)]2

+

[
log

(
1− p0(xi)

1− p(xi)

)]2

− 2 log

(
p0(xi)

p(xi)

)
× log

(
1− p0(xi)

1− p(xi)

)}

≤ 4C2‖p− p0‖2
∞∑
i=1

i−2

<∞. (3.A1.13)

Observe that yi are realizations of independent random variables. Hence by Kol-

mogorov’s SLLN for independent random variables,

− 1

n
logRn(p) =

1

n

n∑
i=1

{
yi log

(
p0(xi)

p(xi)

)
+ (1− yi) log

(
1− p0(xi)

1− p(xi)

)}
→
[
EX

(
p0(X) log

{
p0(X)

p(X)

})
+ EX

(
(1− p0(X)) log

{
(1− p0(X))

(1− p(X))

})]
= h1(p),

almost surely, as n→∞.

3.A1.4 Verification of (S4)

If I = {η : h1(p) =∞} then we need to show π(I) < 1. Note that due to compactness

of X and continuity of H and η, given η ∈ Θ, p is bounded away from 0 and 1, almost

surely. Hence, h1(p) ≤ ‖p− p0‖×

(
1

inf
x∈X

p(x) + 1
1− sup

x∈X
p(x)

)
<∞, almost surely. In other

words, (S4) holds. Indeed, note that under Assumption 6, I = ∅.
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3.A1.5 Verification of (S5)

In our model, the parameter space is Θ = C′(X ). We need to show that there exists a

sequence of sets Gn → Θ as n→∞ such that:

1. h1 (Gn)→ h1 (Θ), as n→∞.

2. The inequality π (Gn) ≥ 1− α exp (−βn) holds for some α > 0, β > 2h(Θ).

3. The convergence in (S3) is uniform in η over Gn \ I.

Recall that in our case,

Gn =
{
η ∈ C′(X ) : ‖η‖ ≤ exp((βn)1/4), ‖η′j‖ ≤ exp((βn)1/4); j = 1, 2, . . . , d

}
.

so that Gn → Θ as n→∞.

Verification of (S5) (1)

We now verify that h1 (Gn) → h1 (Θ), as n → ∞. Recall from our verification of (S2)

that h1(p) is continuous in η. Hence, continuity of h1(p), compactness of Gn along with

its non-decreasing nature with respect to n implies that h1 (Gn)→ h1 (Θ), as n→∞.
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Verification of (S5) (2)

π(Gn) = π
(
‖η‖ ≤ exp((βn)1/4)

)
− π

(
‖η′j‖ ≤ exp((βn)1/4); j = 1, 2, . . . , d

)
= π

(
‖η‖ ≤ exp((βn)1/4),

)
− π

 d⋃
j=1

{
‖η′j‖ ≤ exp((βn)1/4)

}
≥ 1− π

(
‖η‖ > exp((βn)1/4)

)
−

d∑
j=1

π
(
‖η′j‖ ≤ exp((βn)1/4)

)

≥ 1−

cη +

d∑
j=1

cη′j

 exp(−βn).

where the last inequality follows from Assumption 3.

Verification of (S5) (3)

We need to show that uniform convergence in (S3) in η over Gn \ I holds, where

I = {η : h(p) =∞} as in Section 3.A1.4. In our case, I = ∅ under Assumption 6. Hence,

we need to show uniform convergence in (S3) in η over Gn. We need to establish that

Gn is compact, but this has already been shown in Chapter 2. Indeed, recall that we

proved compactness of Gn for each n ≥ 1 by showing that Gn is closed, bounded and

equicontinuous and then by using Arzela-Ascoli lemma to imply compactness. It should

be noted that boundedness of the partial derivatives as in Assumption 1 is used to show

Lipschitz continuity, hence equicontinuity.

Consider G ∈ {Gn : n = 1, 2, . . .}. Now, to show uniform convergence we only need to

show the following:

(i)
1

n
logRn(p) + h1(p) is stochastically equicontinuous almost surely in η ∈ G,
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(ii)
1

n
logRn(p) + h1(p)→ 0 for all η ∈ G as n→∞.

We have already shown almost sure pointwise convergence of n−1 logRn(p) to −h1(p)

in Appendix 3.A1.3. Hence it is enough to verify stochastic equicontinuity of
1

n
logRn(p)+

h1(p) in G ∈ {Gn : n = 1, 2, . . .}. Stochastic equicontinuity usually follows easily if one

can prove that the function concerned is almost surely Lipschitz continuous. Observe

that, if we can show that both
1

n
logRn(p) and h1(p) are Lipschitz in η, then this would

imply that
1

n
logRn(p) + h1(p) is Lipschitz (sum of Lipschitz functions is Lipschitz).

We now show that
1

n
logRn(p) and h1(p) are both Lipschitz on G. Note that,

1

n
logRn(p) =

1

n

n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
+ (1− yi) log

(
1− p(xi)
1− p0(xi)

)}
. (3.A1.14)

Let p1, p2 correspond to η1, η2 ∈ Θ. Since 0 < κB ≤ p1(x), p2(x) ≤ 1 − κB < 1, for all

x ∈ X , there exists C > 0 such that
∣∣∣log

(
p1(x)
p2(x)

)∣∣∣ ≤ C‖p1 − p2‖ and
∣∣∣log

(
1−p1(x)
1−p2(x)

)∣∣∣ ≤
C‖p1 − p2‖, for x ∈ X . Hence,

∣∣∣∣ 1n logRn(p1)− 1

n
logRn(p2)

∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

{
yi log

(
p1(xi)

p2(xi)

)
+ (1− yi) log

(
1− p1(xi)

1− p2(xi)

)}∣∣∣∣∣
≤ 2C‖p1 − p2‖,

showing Lipschitz continuity of 1
n logRn(p) with respect to p corresponding to η ∈ G = Gm.

Since H is continuously differentiable, η and η′ are bounded on G, with the same bound

for all η, it follows that p is Lipschitz on G.
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To see that h1(p) is also Lipschitz in G = Gm, it is enough to note that

|h1(p1)− h1(p2)| =
∣∣∣∣EX (p0(X) log

(
p2(X)

p1(X)

))
+ EX

(
(1− p0(X)) log

(
1− p2(X)

1− p1(X)

))∣∣∣∣
≤ 2C‖p1 − p2‖,

and the result follows since p is Lipschitz on G.

3.A1.6 Verification of (S6)

We need to show:

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(p) + h1(p)

∣∣∣∣ > κ− h1(Θ)

)
dπ(η) <∞. (3.A1.15)

Let us take κ1 = κ− h(Θ). Observe that,

1

n
logRn(p) + h1(p)

=
1

n

n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
+ (1− yi) log

(
1− p(xi)
1− p0(xi)

)}
+

[
EX

(
p0(X) log

{
p0(X)

p(X)

})
+ EX

(
(1− p0(X)) log

{
(1− p0(X))

(1− p(X))

})]
=

1

n

n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
− EX

(
p0(X) log

{
p(X)

p0(X)

})}

+
1

n

n∑
i=1

{
(1− yi) log

(
1− p(xi)
1− p0(xi)

)
− EX

(
(1− p0(X)) log

{
(1− p(X))

(1− p0(X))

})}
.
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It follows that:

P

(∣∣∣∣ 1n logRn(p) + h1(p)

∣∣∣∣ > κ1

)
(3.A1.16)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
− EX

(
p0(X) log

{
p(X)

p0(X)

})}∣∣∣∣∣ > κ1

2

)
(3.A1.17)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

{
(1− yi) log

(
1− p(xi)
1− p0(xi)

)
− EX

(
(1− p0(X)) log

{
(1− p(X))

(1− p0(X))

})}∣∣∣∣∣ > κ1

2

)
.

(3.A1.18)

Since yi are binary, it follows using the inequalities 1 − 1
x ≤ log x ≤ x − 1, for

x > 0 and Assumptions 5 and 6, that the random variables Vi = yi log

(
p(xi)

p0(xi)

)
and

Wi = yi log

(
1− p(xi)
1− p0(xi)

)
are absolutely bounded by C‖p − p0‖, for some C > 0. We

shall apply Hoeffding’s inequality (Hoeffding (1963)) separately on the two terms of

(3.A1.18) involving Vi and Wi.

Note that for η ∈ Gn,

P

(∣∣∣∣∣ 1n
n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
− EX

(
p0(X) log

{
p(X)

p0(X)

})}∣∣∣∣∣ > κ1

2

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
− p0(xi) log

(
p(xi)

p0(xi)

)}∣∣∣∣∣ > κ1

4

)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

{
p0(xi) log

(
p(xi)

p0(xi)

)
− EX

(
p0(X) log

{
p(X)

p0(X)

})}∣∣∣∣∣ > κ1

4

)

≤ 4 exp

{
− nκ2

1

8C2‖p− p0‖2

}
≤ 4 exp

{
− nκ2

1

8C2L2‖η − η0‖2

}
, (3.A1.19)

where L > 0 is the Lipschitz constant associated with H. Here it is important to note

that for η ∈ Gn, H(η) is Lipschitz in η thanks to continuous differentiability of H, and

boundedness of η and η′ by the same constant on Gn. Also note that (3.A1.19) holds

irrespective of xi; i = 1, . . . , n being random or non-random (see also Chapter 2).
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Similarly, for η ∈ Gn,

P

(∣∣∣∣∣ 1n
n∑
i=1

{
(1− yi) log

(
1− p(xi)
1− p0(xi)

)
− EX

(
(1− p0(X)) log

{
(1− p(X))

(1− p0(X))

})}∣∣∣∣∣ > κ1

2

)

≤ 4 exp

{
− nκ2

1

8C2L2‖η − η0‖2

}
. (3.A1.20)

Now,

∞∑
n=1

∫
Sc
P

(∣∣∣∣∣ 1n
n∑
i=1

{
yi log

(
p(xi)

p0(xi)

)
− EX

(
p0(X) log

{
p(X)

p0(X)

})}∣∣∣∣∣ > κ1

2

)
dπ(p)

≤
∞∑
n=1

∫
Gn

4 exp

{
− nκ2

1

8C2L2‖η − η0‖2

}
dπ(η) +

∞∑
n=1

π (Gcn) , (3.A1.21)

and

∞∑
n=1

∫
Sc
P

(∣∣∣∣∣ 1n
n∑
i=1

{
(1− yi) log

(
1− p(xi)
1− p0(xi)

)
− EX

(
(1− p0(X)) log

{
1− p(X)

1− p0(X)

})}∣∣∣∣∣ > κ1

2

)
dπ(p)

≤
∞∑
n=1

∫
Gn

4 exp

{
− nκ2

1

8C2L2‖η − η0‖2

}
dπ(η) +

∞∑
n=1

π (Gcn) . (3.A1.22)

Then proceeding in the same way as in the coresponding situation in Chapter 2, and

noting that
∑∞

n=1 π (Gcn) <∞, we obtain (3.A1.15).

Hence (S6) holds.

Remark 3.A1.1 It is important to clarify the role of Assumption 6 here. For instance,

let H(η(x)) = exp(η(x))
1+exp(η(x)) , and let ‖η‖ ≤

√
βn on Gn, for simpicity of exposition. Then

with our bounding method using the inequality log x ≥ 1− 1/x for x > 0, and noting that

bothe −η(x) ≤ ‖η‖ ≤
√
βn and η(x) ≤ ‖η‖ ≤

√
βn, we have log

(
p(x)
p0(x)

)
≥ −‖p−p0‖

p(x) ≥

−2 exp
(
2
√
βn
)
‖p − p0‖. Using log x ≤ x − 1 for x > 0, we obtain log

(
p(x)
p0(x)

)
≤

2 exp
(
2
√
βn
)
‖p − p0‖. Thus,

∣∣∣log
(
p(x)
p0(x)

)∣∣∣ ≤ 2 exp
(
2
√
βn
)
‖p − p0‖. It would then

follow that the exponent of the Hoeffding inequality is o(1). This would fail to ensure
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summability of the corresponding terms involving Vi. Thus, we need to ensure that p(x)

is bounded away from 0. Similarly, the infinite sum associated with Wi would not be

finite unless 1− p(x) is bounded away from 0.

3.A1.7 Verification of (S7)

This verification follows from the fact that h1(p) is continuous. Indeed, for any set A

with π(A) > 0, Gn ∩A ↑ A. It follows from continuity of h1 that h1 (Gn ∩A) ↓ h1(A) as

n→∞ and hence (S7) holds.

3.A2 Verification of Assumptions (S1) to (S7) of Shalizi

for Poisson regression

3.A2.1 Verification of (S1)

Observe that

fλ(Yn|Xn) =
n∏
i=1

f(yi|xi) =
n∏
i=1

exp (−λ(xi))
(λ(xi))

yi

yi!
,

fλ0(Yn|Xn) =

n∏
i=1

f0(yi|xi) =

n∏
i=1

exp (−λ0(xi))
(λ0(xi))

yi

yi!
.

Therefore,

Rn(λ) = exp

(
−

n∑
i=1

[λ(xi)− λ0(xi)]

)
n∏
i=1

(
λ(xi)

λ0(xi)

)yi
(3.A2.1)

and

1

n
logRn(λ) =

(
− 1

n

n∑
i=1

[λ(xi)− λ0(xi)]

)
+

1

n

n∑
i=1

yi log

(
λ(xi)

λ0(xi)

)
. (3.A2.2)
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Note that for any a ∈ R,

{
(yi, η) : yi log

(
λ(xi)

λ0(xi)

)
< a

}
=
⋃∞
r=1

{
η : r log

(
λ(xi)

λ0(xi)

)
< a

}
.

Let η̃j ; j = 1, 2, . . . be such that ‖ηj−η‖ → 0, as j →∞. Then, letting λ̃j(x) = H(η̃j(x)),

for all x ∈ X , it follows, since 0 < C1 ≤ λ(x) ≤ C2 <∞ on X , that there exists j0 ≥ 1

such that for j ≥ j0, 0 < C1 ≤ λ̃j(x) ≤ C2 < ∞. Hence, using the inequalities

1− 1
x ≤ log x ≤ x− 1 for x > 0, we obtain

∣∣∣log
(
λ̃j(xi)
λ(xi)

)∣∣∣ ≤ C‖λ̃j − λ‖, for some C > 0,

for j ≥ j0 ≥ 1. It follows that∣∣∣∣∣r log

(
λ̃j(xi)

λ0(xi)

)
− r log

(
λ(xi)

λ0(xi)

)∣∣∣∣∣ = r

∣∣∣∣∣log

(
λ̃j(xi)

λ(xi)

)∣∣∣∣∣ ≤ rC‖λ̃j − λ‖ → 0,

in the same way as in the binary regression, using Taylor’s series expansion up to

the first order. Hence, r log

(
λ(xi)

λ0(xi)

)
is continuous in η, ensuring measurability of{

η : r log

(
λ(xi)

λ0(xi)

)
< a

}
, and hence of

{
(yi, η) : yi log

(
λ(xi)

λ0(xi)

)
< a

}
. It follows that

1
n

∑n
i=1 yi log

(
λ(xi)

λ0(xi)

)
is measurable.

Also, continuity of λ(xi)−λ0(xi) with respect to η ensures measurability of− 1
n

∑n
i=1[λ(xi)−

λ0(xi)]. Thus, 1
n logRn(λ), and hence Rn(λ), is measurable.

3.A2.2 Verification of (S2)

For every η ∈ Θ, we need to show that the KL divergence rate

h2(λ) = lim
n→∞

1

n
Eλ0

[
log

{
fλ0(Y n|Xn)

fλ(Y n|Xn)

}]
= lim

n→∞

1

n
Eλ0 [− log {Rn(λ)}]

exists (possibly being infinite) and is T -measurable.

Now,

1

n
logRn(λ) =

(
− 1

n

n∑
i=1

[λ(xi)− λ0(xi)]

)
+

1

n

n∑
i=1

yi log

(
λ(xi)

λ0(xi)

)
.

Therefore,
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1

n
Eλ0 [− log {Rn(λ)}] =

(
1

n

n∑
i=1

[λ(xi)− λ0(xi)]

)
+

1

n

n∑
i=1

λ0(xi) log

(
λ0(xi)

λ(xi)

)
.

lim
n→∞

1

n
Eλ0 [− log {Rn(λ)}] = lim

n→∞

(
1

n

n∑
i=1

[λ(xi)− λ0(xi)]

)
+ lim
n→∞

1

n

n∑
i=1

λ0(xi) log

(
λ0(xi)

λ(xi)

)
=EX [λ(X)− λ0(X)] + EX

[
λ0(X) log

(
λ0(X)

λ(X)

)]
.

The last line holds due to Assumption 4 and SLLN. Here EX(·) =
∫
X · dQ. In other

words,

h2(λ) = EX [λ(X)− λ0(X)] + EX

[
λ0(X) log

(
λ0(X)

λ(X)

)]
. (3.A2.3)

It is easily seen that h2 is continuous in η, and hence measurable.

3.A2.3 Verification of (S3)

Here we need to verify the asymptotic equipartition property, that is, almost surely with

respect to the true model fλ0 ,

lim
n→∞

1

n
log [Rn(λ)] = −h2(λ) = lim

n→∞

1

n
Eλ0

[
log

{
fλ(Y n|Xn)

fλ0(Y n|Xn)

}]
. (3.A2.4)

Now,

− 1

n
logRn(λ) =

1

n

n∑
i=1

{
[λ(xi)− λ0(xi)] + yi log

(
λ0(xi)

λ(xi)

)}
.
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As before, for given λ, there exists C > 0 such that
∣∣∣log

(
λ0(xi)
λ(xi)

)∣∣∣ ≤ C‖λ− λ0‖. Hence,

∞∑
i=1

i−2V ar

[{
[λ(xi)− λ0(xi)] + yi log

(
λ0(xi)

λ(xi)

)}]

=
∞∑
i=1

i−2λ0(xi)

[
log

(
λ0(xi)

λ(xi)

)]2

≤ C2H(κ0) (‖λ− λ0‖)2
∞∑
i=1

i−2

<∞. (3.A2.5)

Observe that yi are observations from independent random variables. Hence from

Kolmogorov’s SLLN for independent random variables and from Assumption 4, (3.A2.4)

holds as n→∞.

3.A2.4 Verification of (S4)

If I = {η : h2(λ) =∞} then we need to show π(I) < 1. But this holds in almost the

same way as for binary regression. In other words, (S4) holds for Poisson regression.

3.A2.5 Verification of (S5)

We need to verify that

1. h2 (Gn)→ h2 (Θ), as n→∞;

2. The inequality π (Gn) ≥ 1− α exp (−βn) holds for some α > 0, β > 2h2(Θ);

3. The convergence in (S3) is uniform over Gn \ I.

Verification of (S5) (1)

We now need to verify that h2 (Gn) → h2 (Θ) as n → ∞. But this holds in the same

way as for binary regression.
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Verification of (S5) (2)

Again, this holds in the same way as for binary regression.

Verification of (S5) (3)

Using the same arguments as in the binary regression case, here we only need to show

that
1

n
log(Rn(λ)) and h2(λ) are both Lipschitz.

Recall that

1

n
logRn(λ) =

1

n

n∑
i=1

{
[λ0(xi)− λ(xi)] + yi log

(
λ(xi)

λ0(xi)

)}
.

For any η1, η2 ∈ G, there exists C > 0 such that
∣∣∣log

(
λ1(x)
λ2(x)

)∣∣∣ ≤ C‖λ1 − λ2‖, for all

x ∈ X , where λ1 = H(η1) and λ2 = H(η2). Hence,

∣∣∣∣ 1n logRn(λ1)− 1

n
logRn(λ2)

∣∣∣∣ ≤ ‖λ1 − λ2‖

(
1 + C × 1

n

n∑
i=1

yi

)
.

Thus, 1
n logRn(λ) is almost surely Lipschitz with respect to λ. Since, by Kolmogorov’s

SLLN for independent variables, 1
n

∑n
i=1 yi

a.s−→ EX (λ0(X)) <∞, as n→∞, and since

λ = H(η) is Lipschitz in η ∈ Gn in the same way as in binary regression, the desired

stochastic equicontinuity follows. Lipschitz continuity of h2(λ) in Gn follows using similar

techniques.
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3.A2.6 Verification of (S6)

Since

∞∑
n=1

∫
Sc
P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ− h2(Θ)

)
dπ(η)

≤
∞∑
n=1

∫
Gn
P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ− h2(Θ)

)
dπ(η)

+
∞∑
n=1

∫
Gcn
P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ− h2(Θ)

)
dπ(η)

≤
∞∑
n=1

∫
Gn
P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ− h2(Θ)

)
dπ(η) +

∞∑
n=1

π (Gc
n) , (3.A2.6)

and the second term of (3.A2.6) is finite, it is enough to show that the first term of

(3.A2.6) is finite.

Let us take κ1 = κ− h2(Θ). Observe that for η ∈ Gn,

P

(∣∣∣∣ 1n logRn(λ) + h2(λ)

∣∣∣∣ > κ1

)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

[
λ0(xi) log

(
λ(xi)

λ0(xi)

)
− EX

(
λ0(X) log

(
λ(X)

λ0(X)

))]∣∣∣∣∣ > κ1

3

)
(3.A2.7)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

[(λ0(xi)− λ(xi))− EX (λ0(X)− λ(X))]

∣∣∣∣∣ > κ1

3

)
(3.A2.8)

+ P

(∣∣∣∣∣ 1n
n∑
i=1

[
yi log

(
λ(xi)

λ0(xi)

)
− λ0(xi) log

(
λ(xi)

λ0(xi)

)]∣∣∣∣∣ > κ1

3

)
. (3.A2.9)

Using Hoeffding’s inequality and Lipschitz continuity of H in Gn as in binary regres-

sion, we find that (3.A2.7) and (3.A2.8) are bounded above by 2 exp
(
− C1nκ2

1
‖η−η0‖2

)
, and

exp
(
− C2nκ2

1
‖η−η0‖2

)
, for some C1 > 0 and C2 > 0. These bounds hold even if the covariates

are non-random.

To bound (3.A2.9), we shall first show that the summands are sub-exponential, and

then shall apply Bernstein’s inequality (see, for example, Uspensky (1937), Bennett
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(1962), Massart (2003)). Direct calculation yields

E

[
exp

{
t

(
yi log

(
λ(xi)

λ0(xi)

)
− λ0(xi) log

(
λ(xi)

λ0(xi)

))}]
= exp

[
−tλ0(xi) log

(
λ(xi)

λ0(xi)

)]
× exp

[
λ0(xi)

{
exp

(
t log

(
λ(xi)

λ0(xi)

))
− 1

}]
.

(3.A2.10)

The first factor of (3.A2.10) has the following upper bound:

exp

[
−tλ0(xi) log

(
λ(xi)

λ0(xi)

)]
≤ exp (cλ‖λ‖ × |t|) . (3.A2.11)

A bound for the second factor of (3.A2.10) is given as follows:

exp

[
λ0(xi)

{
exp

(
t log

(
λ(xi)

λ0(xi)

))
− 1

}]
≤ exp

[
‖λ0‖

(
exp

(
t‖λ− λ0‖

κP

)
− 1

)]
≤ exp

[
‖λ0‖

(
cλ|t|+ c2

λt
2
)]
, (3.A2.12)

for |t| ≤ c−1
λ , where cλ = C‖λ− λ0‖, for some C > 0.

Combining (3.A2.10), (3.A2.11) and (3.A2.12) we see that (3.A2.10) is bounded above

by exp
(
c2
λt

2
)

provided that

cλ|t| ≥ 2/
(
‖λ0‖−1 − 1

)
≥ 2/

(
κ−1
P − 1

)
. (3.A2.13)

The rightmost bound of (3.A2.13) is close to zero if κP is chosen sufficiently small.

Now consider the function g(t) = exp
(
c2
λt

2
)
− f(t), where f(t) is given by (3.A2.10).

Since g(t) is continuous in t and g(0) = 0 and g(t) > 0 on 2/
(
κ−1
P − 1

)
≤ |t| ≤ c−1

λ ,

it follows that on the sufficiently small interval 0 ≤ |t| ≤ 2/
(
κ−1
P − 1

)
, g(t) > 0.

In other words, (3.A2.10) is bounded above by exp
(
c2
λt

2
)

for 0 ≤ |t| ≤ c−1
λ . Thus,
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zi = yi log
(
λ(xi)
λ0(xi)

)
− λ0(xi) log

(
λ(xi)
λ0(xi)

)
are independent sub-exponential variables with

parameter cλ.

Bernstein’s inequality, in conjunction with Lipschitz continuity of H on Gn then

ensures that (3.A2.9) is bounded above by 2 exp
[
−n

2 min
{

C1κ2
1

‖η−η0‖2 ,
C2κ1
‖η−η0‖

}]
, for positive

constants C1 and C2.

The rest of the proof of finiteness of (3.A2.6) follows in the same (indeed, simpler)

way as in Chapter 2. Hence (S6) holds.

Remark 3.A2.1 Arguments similar to that of Remark 3.A1.1 shows that it is essential

to have λ bounded away from zero.

3.A2.7 Verification of (S7)

This verification follows from the fact that h2(λ) is continuous, similar to binary regres-

sion.



4
Posterior Consistency of Bayesian

Inverse Regression and Inverse

Reference Distributions

4.1 Introduction

As already pointed out in Chapter 1, the literature on goodness-of-fit for inverse regression

models is non-existent, except for the IRD approach of Bhattacharya (2013), the basic

premise with the LOO-CV setup and the key idea of which are discussed in Section 1.3.2.

In this chapter we develop the asymptotic theory of IRD; in particular, we establish

consistency of the IRD approach in the sense that with probability tending to one as

the sample size tends to infinity, the approach declares the goodness-of-fit of the correct,

data-generating model as satisfactory and the wrong models as unsatisfactory.

117
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Our asymptotic theory of IRD relies on consistency of the LOO-CV posteriors associ-

ated with the covariates, and it has been shown in Section 1.3.1 that such consistency

does not hold for general priors for the covariates, considered to be unknown for the sake

of Bayesian cross-validation. In this chapter we introduce a specialized class of priors

that depend upon the data as well as on the unknown model parameters, using which

we establish consistency of the LOO-CV posteriors associated with the covariates.

Note that the LOO-CV posteriors, as well as the specialized prior for the unknown

covariates, may involve unknown functions, modeled nonparametrically by appropriate

stochastic processes, posterior consistency of which is required for our asymptotic theory

of the LOO-CV posteriors of the unknown covariates, and hence of the IRD approach. In

this regard, our posterior convergence results with respect to Gaussian and other general

stochastic processes under different model setups like normal, double exponential, binary

and Poisson, provide the necessary technical support. Note that unknown functions

embedded in the inverse LOO-CV of the unknown covariates and the IRD approach also

vindicate that inverse regression problems contain the traditional inverse problems as

special cases, as already pointed out in Chapter 1.

Not only do we establish asymptotic results, we conduct adequate simulation ex-

periments that uphold our methods and asymptotic investigations. In particular, we

demonstrate consistency of the LOO-CV posteriors of the unknown covariates with our

specialized prior using simulation studies under both parametric and nonparametric

setups, which would in turn induce consistency of the respective IRD strategies.

The rest of this chapter is structured as follows. The general premise of our inverse

regression model, LOO-CV and the IRD approach are described in Section 4.2. General

consistency issues of the same are discussed in Section 4.3. We propose an appropriate

prior for x̃i and investigate its properties in Section 4.4, and in Section 4.5 prove

consistency of the LOO-CV posteriors under reasonably mild conditions. Relating

consistency of the LOO-CV posteriors, we prove consistency of the IRD approach in
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Section 4.6. In Section 4.7 we provide a discussion on the issues and applicability of our

asymptotic theory in various inverse regression contexts and in Section 4.8, we illustrate

our asymptotic theory with simulation studies. Finally, we make concluding remarks in

Section 4.9.

4.2 Preliminaries and the general setup

We consider experiment with n covariate observations x1, x2, . . . , xn along with responses

{yij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. In other words, the experiment considered here will allow

us to have m samples of responses {yi1, yi2, . . . , yim} against covariate observations xi,

for i = 1, 2, . . . , n. Both xi and yij are allowed to be multidimensional. In this chapter,

we consider the large sample scenario where both m,n→∞.

For i = 1, . . . , n and j = 1, . . . ,m, consider the following general model setup:

conditionally on xi and θ,

yij ∼ fθ (xi) , (4.2.1)

independently. In (4.2.1), fθ is a known distribution depending upon (a set of) parameters

θ ∈ Θ, where Θ is the parameter space, which may be infinite-dimensional. For the sake

of generality, we shall consider θ = (η, ξ), where η is a function of the covariates, which

we more explicitly denote as η(x), where x ∈ X , X being the space of covariates. The

part ξ of θ will be assumed to consist of other parameters, such as the unknown error

variance.

4.2.1 Examples of the above model setup

(i) yij ∼ Poisson(θxi), where θ > 0 and xi > 0 for all i.

(ii) yij ∼ Bernoulli(pi), where pi = H (η(xi)), where H is some appropriate link

function and η is some function with known or unknown form. For known, suitably
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parameterized form, the model is parametric. If the form of η is unknown, one may

model it by a Gaussian process, assuming adequate smoothness of the function.

(iii) yij ∼ Poisson(λi), where λi = H (η(xi)), whereH is some appropriate link function

and η is some function with known (parametric) or unknown (nonparametric)

form. Again, in case of unknown form of η, the Gaussian process can be used as a

suitable model under sufficient smoothness assumptions.

(iv) yij = η(xi) + εij , where η is a parametric or nonparametric function and εij are

iid Gaussian errors. In particular, η(xi) may be a linear regression function, that

is, η(xi) = β′xi, where β is a vector of unknown parameters. Non-linear forms of

η are also permitted. Also, η may be a reasonably smooth function of unknown

form, modeled by some appropriate Gaussian process.

4.2.2 The Bayesian inverse LOO-CV setup and the IRD approach

In the Bayesian inverse LOO-CV setup, for i ≥ 1, we successively leave out xi from

the data set, and attempt to predict the same using the rest of the dataset, in the

form of the posterior π(x̃i|Xn,−i,Y nm), where Y nm = {yij : i = 1, . . . , n; j = 1, . . . ,m},

Xn = {xi : i = 1, . . . , n} and Xn,−i = Xn\{xi}, and x̃i is the random quantity

corresponding to the left out xi.

In this chapter, we are interested in proving that π(x̃i ∈ U ci |Xn,−i,Y nm)→ 0 almost

surely as m,n→∞, where Ui is any neighborhood of xi. Here, for any set A, Ac denotes

the complement of A.

Note that the i-th LOO-CV posterior is given by

π(x̃i|Xn,−i,Y nm) =

∫
Θ
π(x̃i|θ,yi)dπ(θ|Xn,−i,Y nm). (4.2.2)

In the IRD approach, we consider the distribution of any suitable statistic T (X̃n),

where the distribution of X̃n = {x̃1, . . . , x̃n} is induced by the respective LOO-CV
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posteriors of the form (4.2.2). The distribution of T (X̃n) is referred to as the IRD

in Bhattacharya (2013). Now consider the observed statistic T (Xn). In a nutshell, if

T (Xn) falls within the desired 100(1 − α)% (0 < α < 1) of the IRD, then the model

is said to fit the data; otherwise, the model does not fit the data. Typical examples of

T (Xn), which turned out to be useful in the palaeoclimate modeling context are (see

Mukhopadhyay and Bhattacharya (2013)) are:

T1(Xn) =

n∑
i=1

(xi − Eπ(x̃i))
2

Vπ(x̃i)
(4.2.3)

T2(Xn) =

n∑
i=1

|xi − Eπ(x̃i)|√
Vπ(x̃i)

(4.2.4)

T3(Xn) = xi (4.2.5)

To obtain T (X̃n) corresponding to T (Xn) above, we only need to replace xi with x̃i

in (4.2.3) – (4.2.5). In the above, Eπ and Vπ denote the expectation and the variance,

respectively, with respect to the LOO-CV posteriors. The statistic T3(X̃n) is x̃i itself,

so that the posterior of T3(X̃n) is nothing but the i-th LOO-CV posterior. Such a

statistic can be important when there is particular interest in xi, for instance, if one

suspects outlyingness of xi. An example of such an issue is considered in Bhattacharya

and Haslett (2007).

4.3 Discussion regarding consistency of the LOO-CV and

the IRD approach

The question now arises if the IRD approach is at all consistent. That is, whether by

increasing n and m, the distribution of T (x̃) will increasingly concentrate around T (x).

A sufficient condition for this to hold is consistency of the i-th LOO-CV posterior at xi,

for i ≥ 1. From (4.2.2) it is clear that consistency of π(θ|Xn,−i,Y nm) at the truth θ0 is

required for this purpose, but even if θ in π(x̃i|θ,yi) is replaced with θ0, consistency of
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(4.2.2) at xi does not hold for arbitrary priors on x̃i, and for fixed m ≥ 1. This has been

demonstrated in Chapter 1. with the help of a simple Poisson regression with mean

θxi, where both θ and xi are positive quantities. Special priors on x̃i is needed, along

with the setup with m→∞, to achieve desired consistency of the LOO-CV posterior of

x̃i at xi. In Section 4.4 we propose such an appropriate prior form and establish some

requisite properties of the prior and π(x̃i|θ,yi). With such prior and with conditions that

ensure consistency of π(θ|Xn,−i,Y nm) at θ0, we establish consistency of the LOO-CV

posteriors in Section 4.5.

Indeed, in the setups that we consider, for any m ≥ 1, π(θ|Xn,Y nm) is consistent

at the true value θ0. That is, for any neighbourhood V of θ0, for given m ≥ 1,

π(θ ∈ V |Xn,Y nm)→ 1 almost surely, as n→∞. Assuming complete separable metric

space Θ, this is again equivalent to weak convergence of π(θ|Xn,Y nm) to δθ0 , as n→∞,

for m ≥ 1, for almost all data sequences (see, for example, Ghosh and Ramamoorthi

(2003), Ghosal and van derVaart (2017)).

In our situations, we assume that the conditions of Shalizi (2009) hold for m ≥ 1,

which would ensure consistency of π(θ|Xn,Y nm) is consistent at the true value θ0. The

advantages of Shalizi’s results include great generality of the model and prior including

dependent setups, and reasonably easy to verify conditions. The results crucially hinge

on verification of the asymptotic equipartition property. In Section 4.3.1 we show that

Shalizi’s result leads to weak convergence of the posterior of θ to the point mass at θ0,

which will play an useful role in our proof of consistency of the LOO-CV posteriors.

4.3.1 Weak convergence of Shalizi’s result

From (2.1.2) it follows that for any ε > 0,

lim
n→∞

π(Ncε|Y n) = 0, (4.3.1)
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where Nε = {θ : h(θ) ≤ h (Θ) + ε}. In our case, we shall not consider misspecification,

as we are interested in ensuring posterior consistency. Thus, we have h (Θ) = 0 in our

context. Now observe that h(θ) given by (2.A1.2) is not a proper KL-divergence between

two distributions. Thus the question arises if (4.3.1) suffices for posterior consistency,

and hence weak convergence of the posterior to δθ0 . Lemma 16 below settles this question

in the affirmative.

Lemma 16 Given any neighborhood U of θ0, the set Nε is contained in U for sufficiently

small ε.

Proof. It is sufficient to prove that h(θ) > 0 if and only if θ 6= θ0. Note that

Eθ0

(
log

fθ0 (Y n)

fθ(Y n)

)
is a proper KL-divergence and hence is non-decreasing with n (see

van Erven and Harremoës (2014)). Hence if θ 6= θ0, then there exists ε > 0 such that

Eθ0

(
log

fθ0 (Y n)

fθ(Y n)

)
> ε for all n ≥ 1. Hence, h(θ) given by (2.A1.2) is larger than ε if θ 6= θ0.

Of course, if h(θ) > 0, we must have θ 6= θ0, since otherwise, Eθ0

(
log

fθ0 (Y n)

fθ(Y n)

)
= 0 for

all n, which would imply h(θ) = 0. This proves the lemma.

It follows from Lemma 16 that for any neighborhood U of θ0, π(U |Y n)→ 1, almost

surely, as n → ∞. Thus, π(·|Y n)
w−→ δθ0(·), almost surely, as n → ∞, where “

w−→ ”

denotes weak convergence.

4.4 Prior for x̃i

We consider the following prior for x̃i: given θ,

x̃i ∼ Uniform (Bim(θ)) , (4.4.1)

where

Bim(θ) =

({
x : H (η(x)) ∈

[
ȳi −

csi√
m
, ȳi +

csi√
m

]})
, (4.4.2)
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for some appropriate transformationH. In (4.4.2), ȳi = 1
m

∑m
j=1 yij and s2

i = 1
m−1

∑m
j=1(yij−

ȳi)
2, and c ≥ 1 is some constant. We denote this prior by π(x̃i|η). Lemma 17 shows that

the density or any probability associated with π(x̃i|η) is continuous with respect to η.

4.4.1 Illustrations

(i) yij ∼ Poisson(θxi), where θ > 0 and xi > 0 for all i. Here, under the prior π(x̃i|θ),

x̃i has uniform distribution on the set Bim(θ) =

{
x > 0 :

ȳi−
csi√
m

θ ≤ x ≤
ȳi+

csi√
m

θ

}
.

(ii) yij ∼ Poisson(λi), where λi = λ(xi), with λ(x) = H(η(x)). Here H is a known,

one-to-one, continuously differentiable function and η(·) is an unknown function

modeled by Gaussian process. Here, the prior for x̃i is the uniform distribution on

Bim(η) =

{
x : η(x) ∈ H−1

{[
ȳi −

csi√
m
, ȳi +

csi√
m

]}}
.

(iii) yij ∼ Bernoulli(pi), where pi = λ(xi), with λ(x) = H(η(x)). Here H is a known, in-

creasing, continuously differentiable, cumulative distribution function and η(·) is an

unknown function modeled by some appropriate Gaussian process. Here, the prior

for x̃i is the uniform distribution onBim(η) =
{
x : η(x) ∈ H−1

{[
ȳi − csi√

m
, ȳi + csi√

m

]}}
.

(iv) yij = η(xi) + εij , where η(·) is an unknown function modeled by some appropriate

Gaussian process, and εij are iid zero-mean Gaussian noise with variance σ2. Here,

the prior for x̃i is the uniform distribution onBim(η) =
{
x : η(x) ∈

[
ȳi − csi√

m
, ȳi + csi√

m

]}
.

If η(xi) = α+ βxi, then the prior for x̃i is the uniform distribution on [a, b], where

a = min

{
ȳi−

csi√
m
−α

β ,
ȳi+

csi√
m
−α

β

}
and b = max

{
ȳi−

csi√
m
−α

β ,
ȳi+

csi√
m
−α

β

}
.

4.4.2 Some properties of the prior

Our proposed prior for x̃i possesses several useful properties necessary for our asymptotic

theory. These are formally provided in the lemmas below.
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Lemma 17 The prior density π(x̃i|η) or any probability associated with π(x̃i|η) is

continuous with respect to η.

Proof. Let {ηk : k = 1, 2, . . .} be a sequence of functions such that ‖ηk − η‖ → 0, as

k →∞, where ‖ · ‖ denotes the sup norm. It then follows that for any set A,

{x : ηk(x) ∈ A} ∩Bim(ηk)→ {x : η(x) ∈ A} ∩Bim(η), as k →∞.

Hence, as k →∞,

Leb ({x : ηk(x) ∈ A} ∩Bim(ηk))→ Leb ({x : η(x) ∈ A} ∩Bim(η)) ,

where, for any set A, Leb(A) denotes the Lebesgue measure of A. This proves the lemma.

If the density of yi given x̃i and θ, which we denote by f(yi|θ, x̃i), is continuous in θ

and Θ is bounded then it would follow from Lemma 17 and the dominated convergence

theorem that π(x̃i|θ,yi) and its associated probabilities are also continuous in θ. Below

we formally present the result as Lemma 18.

Lemma 18 If f(yi|θ, x̃i) is continuous in θ and Θ is bounded, then the density π(x̃i|θ,yi)

or any probability associated with π(x̃i|θ,yi) is continuous with respect to θ.

However, we usually can not assume a compact parameter space. For example, such

compactness assumption is invalid for Gaussian process priors for θ. But in most

situations, continuity of the density of π(x̃i|θ,yi) and its associated probabilities with

respect to θ hold even without the compactness assumption, provided f(yi|θ, x̃i) is

continuous in θ. We thus make the following realistic assumption:

Assumption 8 π(x̃i|θ,yi) is continuous in θ.

The following result holds due to Assumption 8 and Scheffe’s theorem (see, for example,

Schervish (1995)).
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Lemma 19 If Assumption 8 holds, then any probability associated with π(x̃i|θ,yi) is

continuous in θ.

4.5 Consistency of the LOO-CV posteriors

For consistency of the LOO-CV posteriors given by (4.2.2), we first need to ensure weak

convergence of π(θ|Xn,−i,Y nm) almost surely to δθ0 , as n→∞, for m ≥ 1. This holds

if and only if π(θ|Xn,Y nm) is consistent at θ0. This can be seen by noting that the

i-th factor of logRn(θ), obtained by integrating out x̃i, does not play any role in (2.1.1)

and (2.A1.2), so that these limits remain the same as in the case of π(θ|Xn,Y nm). The

other conditions of Shalizi also remain the same for both the posteriors π(θ|Xn,Y nm)

and π(θ|Xn,−i,Y nm).

Hence, assuming that conditions (S1)–(S7) of Shalizi are verified for π(θ|Xn,Y nm),

for fixed m, it follows that π(·|Xn,−i,Y nm)
w−→ δθ0(·), almost surely, as n→∞.

For any neighborhood Ui of xi, note that the probability π(x̃i ∈ U ci |θ,yi) is continuous

in θ due to Lemma 19. Moreover, since it is a probability, it is bounded. Hence, by the

Portmanteau theorem, using (4.2.2) and consistency of π (θ|Xn,−i,Y nm) it holds almost

surely that

π(x̃i ∈ U ci |Xn,−i,Y nm) =

∫
Θ
π(x̃i ∈ U ci |θ,yi)dπ(θ|Xn,−i,Y nm)

a.s.−→ π(x̃i ∈ U ci |θ0,yi), as n→∞, for any m ≥ 1. (4.5.1)

We formalize this result as the following theorem.

Theorem 20 Assume conditions (S1)–(S7) of Shalizi. Then for i ≥ 1, under the

prior (4.4.1) and Assumption 8, (4.5.1) holds almost surely, for any m ≥ 1, for any

neighborhood Ui of xi.

Let us now make the following extra assumptions:
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Assumption 9 f(yi|θ0, x̃i) is continuous in x̃i.

Assumption 10 η0 is a one-to-one function.

With these assumptions, we have the following result.

Theorem 21 Under the prior (4.4.1) and Assumptions 9 and 10, for any neighborhood

Ui of xi, for any i ≥ 1,

π(x̃i ∈ U ci |θ0,yi)
a.s.−→ 0, as m→∞. (4.5.2)

Proof. Note that

π(x̃i ∈ U ci |θ0,yi) =

∫
Uci
π(x̃i|θ0)f(yi|θ0, x̃i)dx̃i∫

Uci
π(x̃i|θ0)f(yi|θ0, x̃i)dx̃i +

∫
Ui
π(x̃i|θ0)f(yi|θ0, x̃i)dx̃i

. (4.5.3)

Let us consider
∫
Uci
π(x̃i|θ0)f(yi|θ0, x̃i)dx̃i of (4.5.3). Since the support of x̃i is compact,

Assumption 9 ensures that f(yi|θ0, x̃i) is bounded. Hence,

∫
Uci

π(x̃i|θ0)f(yi|θ0, x̃i)dx̃i ≤ K
∫
Uci

π(x̃i|θ0)dx̃i = Kπ(x̃i ∈ U ci |θ0), (4.5.4)

for some positive constant K. Now note that π(x̃i ∈ U ci |θ0) = π(x̃i ∈ U ci ∩Bim(θ0)|θ0),

and Assumption 10 ensures that Bim(θ0)→ {xi} almost surely, as m→∞, for all i ≥ 1.

It follows that there exists m0 ≥ 1 such that U ci ∩ Bim(θ0) = ∅, for m ≥ m0. Hence,

π(x̃i ∈ U ci ∩Bim(θ0)|θ0)→ 0, as m→∞. This implies, in conjunction with (4.5.4) and

(4.5.3), that (4.5.2) holds.

Combining Theorems 20 and 21 yields the following main result.

Theorem 22 Assume conditions (S1)–(S7) of Shalizi. Then with the prior (4.4.1),
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under further Assumptions 8 – 10, for i ≥ 1,

lim
m→∞

lim
n→∞

π(x̃i ∈ U ci |Xn,−i,Y nm) = 0, almost surely, (4.5.5)

for any neighborhood Ui of xi.

4.6 Consistency of the IRD approach

Due to practical usefulness, we consider consistency of IRD associated with (4.2.3) –

(4.2.5). Among these, the IRD associated with T3 is just the i-th LOO-CV posterior,

which is consistent by Theorem 22. For T1 and T2, we consider slight modification by

dividing the right hand sides of (4.2.3) and (4.2.4) by n, and adding some small quantity

ε > 0 to Vπ(x̃i). These adjustments are not significant for practical applications, but

seems to be necessary for our asymptotic theory. With these, we provide the consistency

result and its for the IRD corresponding to T1; that corresponding to T2 would follow in

the same way.

Theorem 23 Assume conditions (S1)–(S7) of Shalizi, and the prior (4.4.1). Also let

Assumptions 8 – 10 hold, for i ≥ 1, Define for some ε > 0, the following:

T1(X̃n) =
1

n

n∑
i=1

(x̃i − Eπ(x̃i))
2

Vπ(x̃i) + ε

and

T1(Xn) =
1

n

n∑
i=1

(xi − Eπ(x̃i))
2

Vπ(x̃i) + ε
.

Then

∣∣∣T1(X̃n)− T1(Xn)
∣∣∣ P−→ 0, as m→∞, n→∞, almost surely. (4.6.1)

In the above, “
P−→ ” denotes convergence in probability.
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Proof. The assumptions of this theorem ensures consistency of the LOO-CV posteriors

due to Theorem 22. This again is equivalent to almost sure weak convergence of the

i-th cross-validation posterior to δ{xi}, for i ≥ 1. This is again equivalent to convergence

in (cross-validation posterior) distribution of x̃i, to the degenerate quantity xi, almost

surely. Due to degeneracy, this is again equivalent to convergence in probability, almost

surely.

For notational clarity we denote x̃i by x̃nmi , whose LOO-CV posterior is π(·|Xn,−i,Y nm).

Let also X̃
nm

= {x̃nm1 , . . . , x̃nmn }, so that we now denote T1(X̃n) by T1(X̃
nm

). It follows

from the above arguments that for i ≥ 1,

x̃nmi
P−→ xi, almost surely, as m→∞, n→∞. (4.6.2)

Now consider T1(X̃
nm

)− T1(Xn), which is an average of n terms, the i-th term being

znmi =
(x̃nmi − Eπ(x̃nmi ))2 − (xi − Eπ(x̃nmi ))2

Vπ(x̃nmi ) + ε
. (4.6.3)

Due to bounded support of x̃nmi and (4.6.2), uniform integrability entails Eπ(x̃i)→ xi

and Vπ(x̃i)→ 0, almost surely. The latter two results ensure, along with (4.6.2), that

for i ≥ 1,

znmi
P−→ 0, as m→∞, n→∞, almost surely. (4.6.4)

Now note that if znmi were non-random, then znmi → 0, as m→∞, n→∞, would imply

1
n

∑n
i=1 z

nm
i → 0 as m→∞, n→∞. Hence, by Theorem 7.15 of Schervish (1995) (page

398), it follows that

T1(X̃
nm

)− T1(Xn)
P−→ 0, as m→∞, n→∞, almost surely.

In other words, (4.6.1) holds.



130
4.7. DISCUSSION OF THE APPLICABILITY OF OUR ASYMPTOTIC RESULTS

IN THE INVERSE REGRESSION CONTEXTS

4.7 Discussion of the applicability of our asymptotic re-

sults in the inverse regression contexts

From the development of the asymptotic results it is clear that there are two separate

aspects that ensures consistency of the LOO-CV posteriors. The first is consistency of

the posterior of the parameter(s) θ, and then consistency of π(x̃i|θ,yi). Once consistency

of the posterior of θ is ensured, our prior for x̃i then guarantees consistency of the

posterior of x̃i at xi. To verify consistency of the posterior of θ, we referred to the general

conditions of Shalizi because of their wide applicability, including dependent setups, and

relatively easy verifiability of the conditions. Indeed, the seven conditions of Shalizi have

been verified in the contexts of general stochastic process (including Gaussian process)

regression (Chapter 2) with both Gaussian and double exponential errors, binary and

Poisson regression involving general stochastic process (including Gaussian process)

and known link functions (Chapter 3). Moreover, for finite-dimensional parametric

problems, the conditions are much simpler to verify. Thus, the examples provided in

Section 4.4.1 are relevant in this context, and the LOO-CV posteriors, and hence the

IRD, are consistent. Furthermore, Chandra and Bhattacharya (2020a) and Chandra and

Bhattacharya (2020b) establish the conditions of Shalizi in an autoregressive regression

context, even for the so-called “large p, small n” paradigm. In such cases, our asymptotic

results for the LOO-CV posteriors and the IRD, will hold.

There is one minor point to touch upon regarding our requirement for ensuring

consistency. In all the aforementioned works regarding verification of Shalizi’s conditions,

m = 1 was considered. For our asymptotic theory, we first require consistency of θ as

n→∞, for fixed m ≥ 1, and then take the limit as m→∞. This is of course satisfied

if consistency holds for m = 1, as for more information about θ brought in for larger

values of m, consistency automatically continues to hold. Indeed, for fixed m ≥ 1, the

limit as n→∞ does not depend upon m, as the posterior of θ converges weakly to the
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point mass at θ0, almost surely. Thus, it is always sufficient to verify consistency of the

posterior of θ for m = 1.

4.8 Simulation studies

4.8.1 Poisson parametric regression

Let us first consider the case where yij ∼ Poisson(θxi), as briefed in Section 4.4.1

(i). Here we investigate consistency of the posterior of x̃i. We generate the data by

simulating θ ∼ Uniform(0, 2), xi ∼ Uniform(0, 2), i = 1, . . . , n, and then by generating

yij ∼ Poisson(θxi), for j = 1, . . . ,m and i = 1, . . . , n. We set π(θ) = 1; θ > 0, for the

prior for θ.

Since numerical integration turned out to be unstable, we resort to Gibbs sampling

from the posterior, noting that the full conditional distributions of θ and x̃i are of the

forms

[θ|x̃i,Xn,−i,Y nm] ∝ θ
∑n
i=1

∑m
j=1 yij exp

−mθ
x̃i +

∑
j 6=i

xj

 I[max{0,ȳi−csi/
√
m}

x̃i
,
ȳi+csi/

√
m

x̃i

](θ);
[x̃i|θ,Xn,−i,Y nm] ∝ x̃mȳii exp (−mθx̃i) I[max{0,ȳi−csi/

√
m}

θ
,
ȳi+csi/

√
m

θ

](x̃i).

It follows that [θ|x̃i,Xn,−i,Y nm] has the gamma distribution with shape parameter∑n
i=1

∑m
j=1 yij+1 and rate parameterm

(
x̃i +

∑
j 6=i xj

)
, truncated on

[
max{0,ȳi−csi/√m}

x̃i
, ȳi+csi/

√
m

x̃i

]
.

Similarly, [x̃i|θ,Xn,−i,Y nm] has the gamma distribution with shape parameter mȳi + 1

and rate parameter mx̃i, truncated on

[
max{0,ȳi−csi/√m}

θ , ȳi+csi/
√
m

θ

]
.

For our investigation, we set i = 1. That is, without loss of generality, we address

consistency of the posterior of x̃1 via simulation study. As for the choice of c, we set

c = 20. This choice ensured that the full conditional distributions have reasonably large

support, for given values of n and m. We run our Gibbs sampler for 11000 iterations,

and discard the first 1000 iterations as burn-in.
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Figure 4.8.1: Demonstration of posterior consistency in inverse parametric Poisson regression. The verti-
cal line denotes the true value.

Figure 4.8.1 displays the posterior densities of x̃1 for different values of m and n; here,

for convenience of presentation, we have set m = n. The vertical line denotes the true

value x1. The diagram vividly depicts that the LOO-CV posterior of x̃1 concentrates

more and more around x1 as n and m increase.

4.8.2 Poisson nonparametric regression

We now consider the case where yij ∼ Poisson(λ(xi)), where λ(x) = H(η(x)), as

briefed in Section 4.4.1 (ii). In particular, we let H(·) = exp(·) and η(·) be a Gaus-

sian process with mean function µ(x) = α + βx and covariance Cov (η(x1), η(x2)) =

σ2 exp
{
−(x1 − x2)2

}
, where σ is unknown. We assume that the true data-generating

distribution is yij ∼ Poisson(λ(xi)), with λ(x) = exp(α0 +β0(x)). We generate the data
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by simulating α0 ∼ Uniform(−1, 1), β0 ∼ Uniform(−1, 1) and xi ∼ Uniform(−1, 1);

i = 1, . . . , n, and then finally simulating yij ∼ Poisson(λ(xi)); j = 1, . . . ,m, i = 1, . . . , n.

For our convenience, we reparameterize σ2 as exp(ω), where −∞ < ω <∞. For the

prior on the parameters, we set π (α, β, ω) = 1, for −∞ < α, β, ω <∞. Now note that

the prior for x̃i, which is uniform on Bim(η) =
{
x : η(x) ∈ H−1

{[
ȳi − c1si√

m
, ȳi + c2si√

m

]}}
,

does not have a closed form, since the form of η(x) is unknown. However, if m is large, the

interval H−1
{[
ȳi − c1si√

m
, ȳi + c2si√

m

]}
is small, and η(x) falling in this small interval can

be reasonably well-approximated by a straight line. Hence, we set η(x) = µ(x) = α+ βx,

for η(x) falling in this interval. In our case, it follows that [x̃i|η] ∼ Uniform(a, b), where

a = min

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α

)}

and

b = max

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α

)}
.

We set c1 = 1 and c2 = 100, for ensuring positive value of ȳi − c1si√
m

(so that logarithm

of this quantity is well-defined) and a reasonably large support of the prior for x̃i. As

before, we set i = 1, for our purpose, thus focussing on posterior consistency of x̃1 only.

In this example, both numerical integration and Gibbs sampling are infeasible. Hence,

we resort to Transformation based Markov Chain Monte Carlo (TMCMC) (Dutta and

Bhattacharya (2014)) for simulating from the posterior. In particular, we use the additive

transformation and update all the unknowns simultaneously, in a single block. More

specifically, at each iteration t = 1, 2, . . ., we first generate ε ∼ N(0, 1), a standard normal

variable. Then, letting
(
x̃

(t)
1 , α(t), β(t), ω(t), η(t)(x2), . . . , η(t)(xn)

)
denote the values of

the unknowns at the t-th iteration, at the (t + 1)-th iteration we set α = α(t) ± 0.5ε,

β = β(t) ± 0.5ε, ω = ω(t) ± 0.05ε, and η(xk) = η(t)(xk) ± 0.00005ε; k = 2, . . . , n. For

updating x̃1 we set x̃1 = x̃
(t)
1 ± anmε, where we let the scale anm depend upon n and

m. Specifically, since for our experiments we set n = m = 10, 50, 100, 100, we choose



134 4.8. SIMULATION STUDIES

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

LOO−CV of   x~1

x~1

Po
st

er
io

r D
en

sit
y

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

LOO−CV of   x~1

x~1

Po
st

er
io

r D
en

sit
y

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

LOO−CV of   x~1

x~1

Po
st

er
io

r D
en

sit
y

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

LOO−CV of   x~1

x~1

Po
st

er
io

r D
en

sit
y

m=10, n=10

m=50, n=50

m=100, n=100

m=500, n=500

Figure 4.8.2: Demonstration of posterior consistency in inverse nonparametric Poisson regression. The
vertical line denotes the true value.

anm = 0.8, 0.65, 0.65, 0.45, respectively, for such values of n and m. We accept these

proposed values with an appropriate acceptance probability (see Dutta and Bhattacharya

(2014) for details), provided the prior conditions are satisfied. This strategy has yielded

reasonable mixing properties of the additive TMCMC algorithm, for all values of n and

m chosen. We run our additive TMCMC algorithm for 11000 iterations, discarding the

first 1000 iterations as burn-in.

Figure 4.8.2 shows the posterior densities of x̃1 for this nonparametric inverse regression

problem for different values of n and m. Again, it is clearly evident that the posterior

concentrates more and more around the true value x1, as n and m are increased.
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4.9 Conclusion

In this chapter, we have proposed a prior for x̃i that seems to be natural for ensuring

consistency of the LOO-CV posteriors, and hence of the IRD approach. Crucially,

we need m observations corresponding to each xi, and m is taken to infinity for the

asymptotic theory. Note that for m = 1, or for any finite m, consistency of the LOO-CV

posterior of x̃i not achievable, even though consistency of the corresponding posterior of

θ is attainable for any m ≥ 1. This issue sets apart the problem of LOO-CV consistency

from the usual parameter consistency.

An interesting issue is that, for forward Bayesian problems, the posterior predictive

distribution of the i-th response yi does not tend to point mass at yi, even if the

corresponding posterior of θ is consistent at θ0. The reason is that the distribution of

yi given θ and xi is specified as per the modeled likelihood, and does not admit any

prior construction as in the inverse setup. Since the modeled response variable is always

associated with positive variability, even under the true model, the posterior predictive

distribution of yi always has positive variance, and hence, can not be consistent at yi.

From this perspective, even in forward problems, it perhaps makes sense to consider

the IRD approach for model validation. Indeed, our simulation studies demonstrate the

effectiveness of the IRD approach to model validation compared to the forward approach.

As a final remark, we mention that for our prior on x̃i we required independence

among {yi1, . . . , yim}, for the strong law of large numbers to hold for ȳi and s2
i . However,

independence is not strictly necessary, as the ergodic theorem can often be utilized for

ensuring limits in the strong sense.



5
A Short Note on Almost Sure

Convergence of Bayes Factors in the

General Setup

5.1 Introduction

Bayes factors are well-established in the Bayesian literature for the purpose of model

comparison. Briefly, given data Y n = {Y1, Y2, . . . , Yn}, where n is the sample size,

consider the problem of comparing any two modelsM1 andM2 associated with parameter

spaces Θ1 and Θ2, respectively. For i = 1, 2, let the likelihoods, priors and the marginal

densities for the two models be Ln(θi|Mi) = fθi(Y n|Mi), π(θi|Mi) and m(Y n|Mi) =∫
Θi
Ln(θi|Mi)π(dθi|Mi), respectively. Then the Bayes factor of model M1 against M2
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is given by

B(12)
n =

m(Y n|M1)

m(Y n|M2)
. (5.1.1)

Thus, B
(12)
n can be interpreted as the quantification of the evidence of modelM1 against

model M2, given data Y n. A comprehensive account of Bayes factors is provided in

Kass and Raftery (1995).

The asymptotic study of Bayes factor involves investigation of limiting properties

of B
(12)
n as n goes to infinity. In particular, it is essential to guarantee the consistency

property that B
(12)
n goes to infinity almost surely when M1 is the better model and to

zero almost surely when M2 is the better model. It is also important to obtain the rate

of convergence of the Bayes factor. In the case of independent and identically distributed

(iid) data, a relevant result is provided in Walker (2004) and Walker et al. (2004). Such

strong “almost sure” convergence results are rare however, even when the data are

independent but not identically distributed. Recently, Maitra and Bhattacharya (2016a)

obtained a strong, general result when the data are independent but not identically

distributed and applied it to time-varying covariate and drift function selection in the

context of systems of stochastic differential equations (see also Maitra and Bhattacharya

(2016b) for further application of Bayes factor asymptotics in stochastic differential

equations). The other existing works on Bayes factor asymptotics are problem specific

and even in such particular set-ups strong consistency results are seldom available (but

see, for example, Dawid (1992), Kundu and Dunson (2014), Choi and Rousseau (2015)).

For a comprehensive review of Bayes factor consistency, see Chib and Kuffner (2016).

We are interested in more general frameworks where the data may be dependent and

where the possible models are perhaps all misspecified. We are not aware of any existing

work on Bayes factor asymptotics in this direction. However, posterior convergence has

been addressed by Shalizi (2009), and indeed, Theorem 2 of Shalizi (2009) combined

with a well-known identity satisfied by Bayes factors, holds the key to an elegant almost

sure convergence result for the Bayes factor. The result depends explicitly on the average
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Kullback-Leibler divergence between the competing and the true models, even in such a

general set-up. Here it is important to emphasize that although Chib and Kuffner (2016)

is essentially a review paper, the authors demonstrate for the first time with a specific

example of nested models that the identity satisfied by the Bayes factor may be exploited

to prove weak consistency of the latter, and provide general discussion regarding “in

probability” Bayes factor convergence assuming that the identity is satisfied by the Bayes

factor.

The rest of this chapter is structured as follows. In Section 5.2, based on Shalizi

(2009) we describe the general setting for our Bayes factor investigation, and provide the

result of Shalizi (2009) on which our main result on Bayes factor hinges. In Section 5.3

we provide our results on Bayes factor convergence. We make concluding remarks in

Section 4.9. Additional details are provided in the Appendix.

5.2 The general setup for model comparison using Bayes

factors

Here ee assume the same setup detailed in Chapter 2.A1. As in Shalizi (2009), we

assume that P and all the Fθ are dominated by a common measure with densities p and

fθ, respectively. In Shalizi (2009) and in our case, the assumption that P ∈ Θ is not

required so that all possible models are allowed to be misspecified.

Given a prior π on θ, we assume that the posterior distributions π(·|Y n) are dominated

by a common measure for all n ≥ 1; abusing notation, we denote the density at θ by

π(θ|Y n).

Let Ln(θ) = fθ(Y n) be the likelihood and pn = p(Y n) be the marginal density of Y n

under the true model P . Below we furnish Theorem 2 of Shalizi (2009) which shall play

the key role for our purpose of deriving almost sure convergence of Bayes factors.
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Theorem 24 (Theorem 2 of Shalizi (2009)) Consider assumptions (S1)–(S6). Then

for all θ such that π(θ) > 0,

lim
n→∞

1

n
log [π(θ|Y n)] = −J(θ), (5.2.1)

almost surely with respect to the true model P , where J(θ) is given by (2.A1.4).

5.3 Convergence of Bayes factors

For the model comparison problem using Bayes factors, we now assume the likelihoods

and the priors of all the competing models satisfy (S1)–(S6), in addition to satisfying

that P and all the Fθ for θ ∈ Θ1 ∪Θ2 have densities with respect to a common σ-finite

measure. We also assume that for i = 1, 2, the posterior π(·|Y n,Mi) associated with

model Mi is dominated by the prior π(·|Mi), which is again absolutely continuous with

respect to some appropriate σ-finite measure. These latter assumptions ensure that up

to the normalizing constant, the posterior density associated with Mi is factorizable

into the prior density times the likelihood. Indeed, for any θi ∈ Θi,

log [m(Y n|Mi)] = log [Ln(θi|Mi)] + log [π(θi|Mi)]− log [π(θi|Y n,Mi)] . (5.3.1)

Hence, the logarithm of the Bayes factor is given, for any θ1 ∈ Θ1 and θ2 ∈ Θ2, by (see,

for example, Chib (1995), Chib and Kuffner (2016))

log
[
B(12)
n

]
= log

[
Ln(θ1|M1)

Ln(θ2|M2)

]
+ log

[
π(θ1|M1)

π(θ2|M2)

]
− log

[
π(θ1|Y n,M1)

π(θ2|Y n,M2)

]
,
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so that

1

n
log
[
B(12)
n

]
=

1

n
log [Rn(θ1|M1)]− 1

n
log [Rn(θ2|M2)]

+
1

n
log [π(θ1|M1)]− 1

n
log [π(θ2|M2)]

− 1

n
log [π(θ1|Y n,M1)] +

1

n
log [π(θ2|Y n,M2)] , (5.3.2)

where, for i = 1, 2, Rn(θi|Mi) = Ln(θi|Mi)
pn

.

Now let Ji(θi) = hi(θi) − hi(Θi), where hi(θi) is defined as in (2.A1.2) with Ln(θ)

replaced with Ln(θi|Mi), and hi (A) = ess inf
θi∈Ai

hi(θi), for any Ai ⊆ Θi. Assumption (S3)

then yields

lim
n→∞

1

n
log [Rn(θi|Mi)] = −hi(θi), (5.3.3)

almost surely, and assuming that both the models and their associated priors satisfy

assumptions (S1)–(S6), it follows using Theorem 24 that for i = 1, 2,

lim
n→∞

1

n
log [π(θi|Y n,Mi)] = −Ji(θi), (5.3.4)

almost surely.

Assuming that for i = 1, 2, π(θi|Mi) > 0 for all θi ∈ Θi, note that 1
n log [π(θi|Mi)]→ 0

as n→∞, so that it follows using (5.3.2), (5.3.3) and (5.3.4), that

lim
n→∞

1

n
log
[
B(12)
n

]
= − [h1(Θ1)− h2(Θ2)] , (5.3.5)

almost surely with respect to P . We formalize this main result in the form of the

following theorem:

Theorem 25 (Bayes factor convergence) Assume that for i = 1, 2, the competing

models Mi satisfy assumptions (S1)–(S6), with parameter spaces Θi, in addition to

satisfying that P and all the Fθ for θ ∈ Θ1 ∪Θ2 have densities with respect to a common
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σ-finite measure. We also assume that the posterior associated with Mi is dominated by

the prior, which is again absolutely continuous with respect to some appropriate σ-finite

measure, and that the priors satisfy π(θi|Mi) > 0 for all θi ∈ Θi. Then (5.3.5) holds

almost surely with respect to the true infinite-dimensional probability measure P .

Theorem 25 provides an elegant convergence result for Bayes factors, explicitly in

terms of differences between average Kullback-Leibler divergences between the competing

and the true models. That such a result holds in the general set-up that includes even

dependent data and misspecified models, is very encouraging. Indeed, we are not aware

of any such result in the general set-up, although in the iid situation Walker (2004)

and Walker et al. (2004) prove strong convergence of Bayes factor in terms of Kullback-

Leibler divergences, taking misspecification into account. Theorem 25 readily leads to

the following corollaries.

Corollary 26 (Consistency of Bayes factor) Without loss of generality, let M1 be

the correct model and M2 be incorrect. Then Ln(θ1|M1) = pn for all θ1 ∈ Θ1, so that

h1(θ1) = 0 for all θ1 ∈ Θ1, implying that h1(Θ1) = 0. On the other hand, h2(Θ2) > 0,

so that by Theorem 25, lim
n→∞

1
n log

[
B

(12)
n

]
= h2(Θ2). In other words, B

(12)
n → ∞

exponentially fast, confirming consistency of the Bayes factor. If M1 is not necessarily

the correct model but is a better model than M2 in the sense that its average Kullback-

Leibler divergence h1(Θ1) is smaller than h2(Θ2), then again B
(12)
n →∞ exponentially

fast, guaranteeing consistency.

Corollary 27 (Selection among a countable class of models) Theorem 25 and Corol-

lary 26 make it explicit that if the class of competing models is countable and contains the

true model, it is selected by the Bayes factor, otherwise Bayes factor selects the model for

which the average Kullback-Leibler divergence from the true model is minimized among

the (countable) class of misspecified models, provided that the infimum is attained by

some model.
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Corollary 28 (The case when two or more models are asymptotically correct)

For simplicity let us consider two models M1 and M2 as before with parameter spaces

Θ1 and Θ2 respectively. From Theorem 25 it follows that 1
n log

[
B

(12)
n

]
→ 0 almost surely

if and only if h1(Θ1) = h2(Θ2), that is, if and only if both the models are asymptotically

correct in the average Kullback-Leibler sense. Note that the zero limit of 1
n log

[
B

(12)
n

]
is the only logical limit here since any non-zero limit would lead the Bayes factor to

lend infinitely more support to one model compared to the other even though both the

competing models are correct asymptotically. The situation of zero limit of 1
n log

[
B

(12)
n

]
may arise in the case of comparisons between nested models or when testing parametric

versus nonparametric models. In these cases even though both the competing models are

correct asymptotically, one may be a much larger model. For reasons of parsimony it

then makes sense to choose the model with smaller dimensionality. If both the models

are infinite-dimensional, for example, when comparing two sets of basis functions, then

model combination seems to be the right step.

In the Appendix we illustrate Theorem 25 with an example with autoregressive

models of the first order (AR(1) models) comparing (asymptotically) stationary versus

nonstationary models when the true model is (asymptotically) stationary. We show that

asymptotically the Bayes factor heavily favours the (asymptotically) stationary model.

In Corollary 28, we have referred to comparisons with nonparametric models. However,

recall that the results of Shalizi require the true model P and all the postulated models Fθ

to have densities with respect to a common dominating measure, and also the posteriors

π(·|Y n) to be dominated by a common reference measure for all n ≥ 1. These conditions

are typically satisfied by parametric models, but not necessarily by nonparametric

models. Indeed, in the case of the traditional nonparametric Bayesian analysis using

the Dirichlet process prior, there is no parametric form of the likelihood as there is no

density of the data Y n under this nonparametric set-up. Also, the prior is not dominated

by any σ-finite measure, and so does not have any density. In other words, not all
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nonparametric models lead to posteriors that can be factorized as proportional to prior

times likelihood, as our Bayes factor treatment requires. However, as we clarify in the

Appendix with a series of various examples of nonparametric Bayesian set-ups, in general

the aforementioned factorization of the posterior holds in Bayesian nonparametrics and

the domination requirements of Shalizi also hold in general. However, we emphasize that

we did not yet verify assumptions (S1)–(S6) for all the examples, as we reserve this task

for our future paper to be communicated elsewhere.

5.4 Conclusion

In this chapter, we have obtained an elegant almost sure convergence result for Bayes

factors in the general set-up where the data may be dependent and where all possible

models are allowed to be misspecified. To our knowledge, this is a first-time effort in

this direction. Interestingly, in spite of the importance of the result, it follows rather

trivially from Shalizi’s result on posterior consistency applied to the identity satisfied by

Bayes factors. We assert that although similar results can be shown to hold in simpler

set-ups (see Walker (2004) and Walker et al. (2004) for the iid set-up and Maitra and

Bhattacharya (2016a) for the independent and non-identical set-up) and perhaps under

specific models, our contribution is a proof of a strong convergence result under a very

general set-up that has not been considered before.

The generality of our result will enable Bayes factor based asymptotic comparisons

of various models in various set-ups, for example, k-th order Markov models, hidden

Markov models, spatial Markov random field models, models based on dependent

systems of stochastic differential equations, parametric versus nonparametric models in

the dependent data setting (Ghosal et al. (2008) consider the iid set-up and study “in-

probability” convergence of Bayes factor comparing specific finite and infinite-dimensional

models). dependent versus independent model set-ups, to name only a few. Moreover,

even in the iid data contexts, the existing Bayes factor asymptotic results for the specific
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problems are usually not directly based on Kullback-Leibler divergence. Since our result

directly make use of Kullback-Leibler divergence in any set-up, it is much more appealing

from this perspective compared to the existing results.

In our future endeavors, we shall explore the effectiveness of our result in various

specific set-ups, along with comparisons with existing results whenever applicable.



Appendix

5.A1 Illustration of our result on Bayes factor with com-

peting AR(1) models

Let the true model P stand for the following AR(1) model:

yt = ρ0yt−1 + εt, t = 1, 2, . . . , (5.A1.1)

where y0 ≡ 0, |ρ0| < 1 and εt
iid∼ N(0, σ2

0), for t = 1, 2, . . .. We assume the competing

models M1 and M2 to be of the same form as (5.A1.1) but with the true parameter ρ0

replaced with the unknown parameters ρ1 and ρ2, respectively, such that |ρ1| < 1 and

ρ2 ∈ (−1, 1)c, where (−1, 1)c denotes complement of (−1, 1). For model Mi; i = 1, 2,

we assume that y0 ≡ 0 and εt
iid∼ N(0, σ2

i ); t = 1, 2, . . .. For simplicity of illustration

we assume for the time being that σ1 and σ2 are known, that is, σ1 = σ2 = σ0, but

see Section 5.A3 where we allow σ1 and σ2 to be unknown. Thus, we are interested in

comparing (asymptotically) stationary and nonstationary AR(1) models where the true

AR(1) model is (asymptotically) stationary. Note that Θ1 = (−1, 1) and Θ2 = (−1, 1)c.

We consider priors π(·|Mi); i = 1, 2, both of which have densities with respect to the

Lebesgue measure. Let us first verify assumptions (S1)–(S6) with respect toM1. All the

probabilities and expectations below are with respect to the true model P . Notationally,

in this time series context we denote the sample size by the more natural notation T

rather than n.
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COMPETING AR(1) MODELS

5.A1.1 Verification of (S1) for M1

Note that

logRT (ρ1) =

(
ρ0 − ρ1

σ2
0

)[( T∑
t=1

y2
t−1

)(
ρ0 + ρ1

2

)
−

T∑
t=1

ytyt−1

]
. (5.A1.2)

Thanks to continuity it is clear that RT (ρ1) is FT × T measurable. In other words, (S1)

holds.

5.A1.2 Verification of (S2) for M1

It is easy to verify that under the true model P the autocovariance function is given by

Cov(yt+h, yt) ∼
σ2

0ρ
h
0

1− ρ2
0

; h ≥ 0, (5.A1.3)

where for any two sequences {at}∞t=1 and {bt}∞t=1, at ∼ bt stands for at/bt → 1 as t→∞.

This leads to

E [logRT (ρ1)] = −
(
ρ1 − ρ0

σ2
0

)[( T∑
t=1

E
(
y2
t−1

))(ρ1 + ρ0

2

)
−

T∑
t=1

E (ytyt−1)

]

∼ − (ρ1 − ρ0)

[
(T − 1) (ρ1 + ρ0)

2(1− ρ2
0)

− (T − 1)ρ0

(1− ρ2
0)

]
,

so that
E [logRT (ρ1)]

T
→ −(ρ1 − ρ0)2

2(1− ρ2
0)
, as T →∞.

In other words, (S2) holds, with

h1(ρ1) =
(ρ1 − ρ0)2

2(1− ρ2
0)
. (5.A1.4)
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5.A1.3 Verification of (S3) for M1

Rather than proving pointwise almost sure convergence of logRT (ρ1)
T to −h1(ρ1), we prove

the stronger result of almost sure uniform convergence in our example. Indeed, note that

sup
|ρ1|<1

∣∣∣∣ logRT (ρ1)

T
+ h1(ρ1)

∣∣∣∣
= sup
|ρ1|<1

∣∣∣∣ρ1 − ρ0

σ2
0

∣∣∣∣×
∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ1 + ρ0

2

)
−
∑T

t=1 ytyt−1

T
− σ2

0 (ρ1 − ρ0)

2(1− ρ2
0)

∣∣∣∣∣
≤ sup
|ρ1|≤1

∣∣∣∣ρ1 − ρ0

σ2
0

∣∣∣∣×
∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ1 + ρ0

2

)
−
∑T

t=1 ytyt−1

T
− σ2

0 (ρ1 − ρ0)

2(1− ρ2
0)

∣∣∣∣∣
=

∣∣∣∣ ρ̂1 − ρ0

σ2
0

∣∣∣∣×
∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ̂1 + ρ0

2

)
−
∑T

t=1 ytyt−1

T
− σ2

0 (ρ̂1 − ρ0)

2(1− ρ2
0)

∣∣∣∣∣ (5.A1.5)

≤ κ

∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ̂1 + ρ0

2

)
−
∑T

t=1 ytyt−1

T
− σ2

0 (ρ̂1 − ρ0)

2(1− ρ2
0)

∣∣∣∣∣ , (5.A1.6)

where step (5.A1.5) follows due to compactness of [−1, 1]; here ρ̂1 ∈ [−1, 1] depends

upon the data. In (5.A1.6), κ is a finite positive constant greater than the bounded

positive quantity
∣∣∣ ρ̂1−ρ0

σ2
0

∣∣∣.
Now observe that under P , the Markov chain {yt : t = 1, 2, . . . , } is not only an

asymptotically stationary process but is also irreducible and aperiodic (for definitions,

see, for example, Meyn and Tweedie (1993) and Robert and Casella (2004)). The latter

two properties are easy to see because the chain can travel from any value in the real

line to any set with positive Lebesgue measure in just one step with positive probability.

Thus, the ergodic theorem holds, so that as T →∞,

∑T
t=1 y

2
t−1

T
→ σ2

0

1− ρ2
0

, (5.A1.7)
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almost surely with respect to P . To deal with
∑T
t=1 ytyt−1

T , note that under P ,

ytyt−1 = ρ0y
2
t−1 + εtyt−1, (5.A1.8)

and that {εtyt−1 : t = 2, 3, . . .} is also an asymptotically stationary, irreducible and

aperiodic Markov chain. Hence, applying ergodic theorem to the latter Markov chain,

we obtain, using independence of εt and yt−1 for all t ≥ 2,

∑T
t=1 εtyt−1

T
→ 0, (5.A1.9)

as T →∞, almost surely with respect to P . It follows by combining (5.A1.7), (5.A1.8)

and (5.A1.9) that ∑T
t=1 ytyt−1

T
→ σ2

0ρ0

1− ρ2
0

, (5.A1.10)

as T →∞, almost surely with respect to P . Applying (5.A1.7) and (5.A1.10) to (5.A1.6)

yields ∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ̂1 + ρ0

2

)
−
∑T

t=1 ytyt−1

T
− σ2

0 (ρ̂1 − ρ0)

2(1− ρ2
0)

∣∣∣∣∣
=

∣∣∣∣∣
(∑T

t=1 y
2
t−1

T
− σ2

0

1− ρ2
0

)(
ρ̂1 + ρ0

2

)
−

(∑T
t=1 ytyt−1

T
− σ2

0ρ0

1− ρ2
0

)∣∣∣∣∣
≤
∣∣∣∣( ρ̂1 + ρ0

2

)∣∣∣∣×
∣∣∣∣∣
∑T

t=1 y
2
t−1

T
− σ2

0

1− ρ2
0

∣∣∣∣∣+

∣∣∣∣∣
∑T

t=1 ytyt−1

T
− σ2

0ρ0

1− ρ2
0

∣∣∣∣∣
→ 0, (5.A1.11)

as T → ∞, almost surely with respect to P . In other words, (S3) holds and the

convergence is uniform.
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5.A1.4 Verification of (S4) for M1

In our example, (S4) holds trivially since h1(ρ1) = (ρ1−ρ0)2

2(1−ρ2
0)

, and |ρ| < 1 almost surely.

Specifically, π(I|M1) = 0.

5.A1.5 Verification of (S5) for M1

First note that h1 (Θ1) = ess inf
ρ1∈Θ1

h1(ρ1) = ess inf
ρ1∈Θ1

(ρ1−ρ0)2

2(1−ρ2
0)

= 0. Next, let GT = Θ1, for

T > 0. Then (S5) (1) and (S5) (2) hold trivially. Validation of (S5) (3) is exactly the

same as our proof of uniform convergence of logRT (·)
T to h1(·), provided in Section 5.A1.3.

Hence, (S5) is satisfied.

5.A1.6 Verification of (S6) for M1

Under (S1) – (S3), which we have already verified, it holds that (see equation (18) of

Shalizi (2009)) for any fixed G of the sequence GT , for any ε > 0 and for sufficiently large

T ,
1

T
log

∫
G
RT (ρ1)π(ρ1|M1)dρ1 ≤ −h1(G) + ε+

1

T
log π(G|M1). (5.A1.12)

It follows that τ(GT , δ) is almost surely finite for all T and δ. We now argue that for

sufficiently large T , τ(GT , δ) > T only finitely often with probability one. By equation

(41) of Shalizi (2009),

∞∑
T=1

P (τ(GT , δ) > T ) ≤
∞∑
T=1

∞∑
m=T+1

P

(
1

m
log

∫
GT
Rm(ρ1)π(ρ1|M1)dρ1 > δ − h1(GT )

)
.

(5.A1.13)
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Since 1
m log

∫
GT Rm(ρ1)π(ρ1|M1)dρ1 = 1

m log
∫
|ρ1|≤1Rm(ρ1)π(ρ1|M1)dρ1, by the mean

value theorem for integrals,

1

m
log

∫
GT
Rm(ρ1)π(ρ1|M1)dρ1 =

1

m
log [Rm(ρ̂T )π(Θ1|M1)] =

1

m
log [Rm(ρ̂T )] ,

(5.A1.14)

for ρ̂T ∈ [−1, 1] depending upon the data.

Since h1(GT ) = h1 ((−1, 1)) = 0, and h1(ρ̂T ) ≥ 0, it follows from

1

m
log

∫
GT
Rm(ρ1)π(ρ1|M1)dρ1 > δ − h1(GT )

and (5.A1.14) that

1

m
logRm(ρ̂T ) + h1(ρ̂T ) > δ + h1(ρ̂T ) > δ.

Thus, it follows from (5.A1.13), (5.A1.6) and (5.A1.8), that

∞∑
T=1

P (τ(GT , δ) > T )

≤
∞∑
T=1

∞∑
m=T+1

P

(∣∣∣∣ 1

m
logRm(ρ̂T ) + h1(ρ̂T )

∣∣∣∣ > δ

)

≤
∞∑
T=1

∞∑
m=T+1

P

(∣∣∣∣(∑m
t=1 y

2
t−1

m

)(
ρ̂T − ρ0

2

)
−
∑m

t=2 εtyt−1

m
− σ2

0 (ρ̂T − ρ0)

2(1− ρ2
0)

∣∣∣∣ > δ

κ

)

≤
∞∑
T=1

∞∑
m=T+1

P

(∣∣∣∣(∑m
t=1 y

2
t−1

m

)(
ρ̂T − ρ0

2

)
− σ2

0 (ρ̂T − ρ0)

2(1− ρ2
0)

∣∣∣∣ > δ

2κ

)
(5.A1.15)

+

∞∑
T=1

∞∑
m=T+1

P

(∣∣∣∣∑m
t=2 εtyt−1

m

∣∣∣∣ > δ

2κ

)
. (5.A1.16)

We first show that (5.A1.15) is convergent. To simplify arguments, we first approximate
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yt =
∑t

k=1 ρ
t−k
0 εk by

ỹt =
t∑

k=t−t0

ρt−k0 εk (5.A1.17)

in the “in probability” sense. In ỹt, t0 is such that, for any given ε > 0, for t > t0,

max

{
E |ε1| ×

ρt0+1
0

1− ρ0
,
σ2

0ρ
2(t0+1)
0

1− ρ2
0

}
< ε. (5.A1.18)

Since ỹt consists of only t0 + 1 terms for any t > t0, it is easier to handle compared to yt,

whose number of terms increases with t. Importantly, ỹt and ỹt+t0+k are independent,

for any k ≥ 1. This property, which is not possessed by yt, will be instrumental for

making most of the terms zero associated with multinomial expansions required in our

proceeding.

For the “in probability” fact, note that

E |yt − ỹt| ≤ E |ε1|
t−t0−1∑
k=1

ρt−k0 = E |ε1| ×
ρt0+1

0

(
1− ρt−t0−1

0

)
1− ρ0

< ε, (5.A1.19)

and

E |yt − ỹt|2 = σ2
0

t−t0−1∑
k=1

ρ
2(t−k)
0 =

σ2
0ρ

2(t0+1)
0

(
1− ρ2(t−t0−1)

0

)
1− ρ2

0

< ε, (5.A1.20)

due to (5.A1.18). Since ε > 0 is arbitrary, it follows that

|yt − ỹt|
P−→ 0, as t→∞, (5.A1.21)

where “
P−→ ” indicates “in probability” convergence. Now,

∣∣y2
t − ỹ2

t

∣∣ = |yt + ỹt| ×

|yt − ỹt|, where yt is an irreducible, aperiodic Markov chain with mean zero Gaussian

asymptotic stationary distribution with variance σ2
0/(1−ρ2

0), and ỹt is also asymptotically

Gaussian with mean zero and variance σ2
0(1−ρ2(t0+1)

0 )/(1−ρ2
0). Hence, |yt + ỹt| converges
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in probability to a finite random variable, and because of (5.A1.21), it follows from the

above representation that

∣∣y2
t − ỹ2

t

∣∣ P−→ 0, as t→∞. (5.A1.22)

It then follows from the representation∣∣∣∣∣
∑T

t=1 y
2
t

T
−
∑T

t=1 ỹ
2
t

T

∣∣∣∣∣ ≤
∑T

t=1

∣∣y2
t − ỹ2

t

∣∣
T

,

(5.A1.22), and Theorem 7.15 of Schervish (1995) that

∣∣∣∣∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

∣∣∣∣ P−→ 0, as m→∞. (5.A1.23)

Now note that for any finite integer p ≥ 1,

sup
m≥1

E

(∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

)p
≤ 2p−1 sup

m≥1
E

(∑m
t=1 y

2
t

m

)p
+ 2p−1 sup

m≥1
E

(∑m
t=1 ỹ

2
t

m

)p
.

(5.A1.24)

Noting that the multinomial expansion (a1 + a2 + · · ·+ am)p =
∑

b1+b2+···+bm=p

∏m
j=1 a

bj
j

(where b1, . . . , bm are non-negative integers) consists of
(
m+p−1

p

)
terms, it follows using

asymptotic stationarity of yt and ỹt that both the expectations on the right hand side of

(5.A1.24) are of the order O(1), as m→∞. Also, since for any finite m, the expectations

are finite, it follows that the right hand side of (5.A1.24) is finite, from which uniform

integrability, and hence

E

∣∣∣∣∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

∣∣∣∣p → 0, as m→∞, (5.A1.25)

follows for integers p ≥ 1. Hence, using binomial expansion, the Cauchy-Schwartz
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inequality and (5.A1.25), it follows that

E

∣∣∣∣∑m
t=1 y

2
t

m

∣∣∣∣p − E ∣∣∣∣∑m
t=1 ỹ

2
t

m

∣∣∣∣p
= E

∣∣∣∣(∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

)
+

∑m
t=1 ỹ

2
t

m

∣∣∣∣p − E ∣∣∣∣∑m
t=1 ỹ

2
t

m

∣∣∣∣p
≤

p−1∑
k=0

(
p

k

){
E

(∣∣∣∣∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

∣∣∣∣2(p−k)
)}1/2

×

{
E

(∣∣∣∣∑m
t=1 ỹ

2
t

m

∣∣∣∣2k
)}1/2

,

so that

E
∣∣∣∑m

t=1 y
2
t

m

∣∣∣p
E
∣∣∣∑m

t=1 ỹ
2
t

m

∣∣∣p − 1 ≤
p−1∑
k=0

(
p

k

){
E

(∣∣∣∣∑m
t=1 y

2
t

m
−
∑m

t=1 ỹ
2
t

m

∣∣∣∣2(p−k)
)}1/2

×


E

(∣∣∣∑m
t=1 ỹ

2
t

m

∣∣∣2k)
E
∣∣∣∑m

t=1 ỹ
2
t

m

∣∣∣2p


1/2

→ 0, as m→∞ (due to (5.A1.25)). (5.A1.26)

In other words, for p ≥ 1,

E

∣∣∣∣∑m
t=1 y

2
t

m

∣∣∣∣p ∼ E ∣∣∣∣∑m
t=1 ỹ

2
t

m

∣∣∣∣p , as m→∞. (5.A1.27)

Hence, while applying Markov’s inequality to the probability terms of the series (5.A1.15),

we can replace the moments associated with yt with those associated with ỹt, for m > T0,

where T0 is sufficienty large.

Now observe that

P

(∣∣∣∣(∑m
t=1 y

2
t−1

m

)(
ρ̂T − ρ0

2

)
− σ2

0 (ρ̂T − ρ0)

2(1− ρ2
0)

∣∣∣∣ > δ

2κ

)
≤ P

(∣∣∣∣∣
(∑m

t=1

[
y2
t−1 − E

(
y2
t−1

)]
m

)(
ρ̂T − ρ0

2

)∣∣∣∣∣ > δ

4κ

)
(5.A1.28)

+ P

(∣∣∣∣ ρ̂T − ρ0

2

∣∣∣∣×
∣∣∣∣∣
∑m

t=1E
(
y2
t

)
m

− σ2
0

1− ρ2
0

∣∣∣∣∣ > δ

4κ

)
. (5.A1.29)
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For m > T0, where T0 is sufficiently large,
∣∣∣ ρ̂T−ρ0

2

∣∣∣× ∣∣∣∣∑m
t=1 E(y2

t )
m − σ2

0

1−ρ2
0

∣∣∣∣ < δ
4κ , so that

the (5.A1.29) is exactly zero for m > T0. Using Markov’s inequality for (5.A1.29) where

m > T0 and replacing yt with ỹt in the right hand side of Markov’s inequality using

(5.A1.27) we obtain

P

(∣∣∣∣∣
(∑m

t=1

[
y2
t−1 − E

(
y2
t−1

)]
m

)(
ρ̂T − ρ0

2

)∣∣∣∣∣ > δ

4κ

)

< C

(
4κ

δ

)5( ρ̂T − ρ0

2

)5

E

(∑m
t=1

[
ỹ2
t−1 − E

(
ỹ2
t−1

)]
m

)5

, (5.A1.30)

where C is a positive constant. Now,
(∑m

t=1

[
ỹ2
t−1 − E

(
ỹ2
t−1

)])5
admits the multinomial

expansion of the form (a1 + a2 + · · · + am)5 =
∑

b1+b2+···+bm=5

∏m
t=1 a

bt
t , where at =[

ỹ2
t−1 − E

(
ỹ2
t−1

)]
and b1, . . . , bm are non-negative integers. Observe that for any t ≥ 1, at

and at+t0+k are independent for any k ≥ 1, which enables factorization of E
(∏m

t=1 a
bt
t

)
into products of expectations of the independent terms. Since E(at) = 0 for t = 2, . . . ,m,

the expected product term becomes zero whenever it consists of at least one term of the

form E(at), for any t = 2, . . . ,m.

For the sake of convenience, let m = (s+ 1)(t0 + 1), where s (≥ 1) is an integer. Let

Al = {at : t = (l − 1)t0 + 1, . . . , l(t0 + 1)}, for l = 1, . . . , (s + 1). Then Al and Al+2+r

are independent sets for any integer l ≥ 1 and any integer r ≥ 0.

When at least one bt = 1, the following argument gives an upper bound on the number

of ways E
(∏m

t=1 a
bt
t

)
can be non-zero. Consider selecting 5 sets, say, {Al, Al+1, Al+2, Al+3, Al+4}

from {A1, . . . , As+1}, for some l ≥ 1. Let Bl = {bt : t = (l − 1)t0 + 1, . . . , l(t0 + 1)} for

l = 1, . . . , (s + 1), and consider setting one element of each of Bl+r; r = 0, . . . , 4, to

be 1 and the rest of the bt’s to be zero. Then the number of such cases, namely,

O ((s+ 1)) (since t0 is a constant), provides an upper bound on the number of possible

ways E
(∏m

t=1 a
bt
t

)
can be non-zero when at least one bt = 1.

Further cases of non-zero E
(∏m

t=1 a
bt
t

)
can occur when one of the bt’s is 5 and the



155
5.A1. ILLUSTRATION OF OUR RESULT ON BAYES FACTOR WITH

COMPETING AR(1) MODELS

rest are zeros, and when one of the bt is 3, another is 2, and the rest are zeros, so that

there are m+m(m− 1) = m2 cases with respect to such choices.

Hence, in all there are O
(
m2
)

possible cases when E
(∏m

t=1 a
bt
t

)
is non-zero, and in

the remaining cases E
(∏m

t=1 a
bt
t

)
= 0. In other words,

(
4κ

δ

)5( ρ̂T − ρ0

2

)5

E

(∑m
t=1

[
ỹ2
t−1 − E

(
ỹ2
t−1

)]
m

)5

= O
(
m−3

)
, (5.A1.31)

since ρ̂T ∈ [−1, 1].

Now, (5.A1.15) converges if and only if

∞∑
T=T0

∞∑
m=T+1

P

(∣∣∣∣(∑m
t=1 y

2
t−1

m

)(
ρ̂T − ρ0

2

)
− σ2

0 (ρ̂T − ρ0)

2(1− ρ2
0)

∣∣∣∣ > δ

κ

)
(5.A1.32)

<∞,

for sufficiently large T0. Due to (5.A1.28), (5.A1.29) (which is exactly zero for m > T0),

(5.A1.30) and (5.A1.31), we see that (5.A1.32) is dominated by some finite positive

constant times the series

∞∑
T=T0

∞∑
m=T+1

1

m3
=

1

(T0 + 1)3
+

1

(T0 + 2)3
+

1

(T0 + 3)3
+ · · ·

+
1

(T0 + 2)3
+

1

(T0 + 3)3
+ · · ·

+
1

(T0 + 3)3
+ · · ·

+ · · ·
...

=
∞∑
k=1

k

(T0 + k)3
. (5.A1.33)

The series (5.A1.33) is convergent since it is bounded above by
∑∞

k=1
(T0+k)
(T0+k)3 ≤

∑∞
k=1

1
k2 <
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∞.

Similar (and simpler) arguments and using the result

∣∣∣∣∑m
t=1 εtyt−1

m
−
∑m

t=1 εtỹt−1

m

∣∣∣∣ ≤ ∑m
t=1 |εt| |yt−1 − ỹt−1|

m

P−→ 0, as m→∞,

shows that the series (5.A1.16) also converges. Hence, (S6) stands verified.

Thus, (S1)–(S6) holds for M1.

5.A2 Verification of Shalizi’s conditions for model M2

We now verify the same set of conditions for M2. As in M1, (S1) and (S2) easily hold;

here h2(ρ2) = (ρ2−ρ0)2

2(1−ρ2
0)

is of the same form as h1. With respect to (S3) we verify pontwise

convergence as required, rather than uniform convergence as in M1. Using (5.A1.7),

(5.A1.8), (5.A1.9) and (5.A1.10), it is easily seen that logRT (ρ2)
T + h2(ρ2) → 0 almost

surely, for all ρ2 ∈ Θ2. As in M1, it is clear that π(I|M2) = 0 so that (S4) holds.

As regards (S5), note that

h2 (Θ2) = min

{
(1− ρ0)2

2(1− ρ2
0)
,

(1 + ρ0)2

2(1− ρ2
0)

}
. (5.A2.1)

Now, in contrast withM1, here let GT =
{
ρ2 ∈ Θ2 : |ρ2| ≤ β

1
q1 T

1
q1

}
, where q1 > 5. This

q1 is the power associated with the Markov inequality of the form similar to (5.A1.30)

required in verification of (S6) for model M2. It is easily seen that GT → Θ2 and

h2(GT ) → h2(Θ2), as T → ∞, so that (S5) (1) holds. To see that (S5) (2) is satisfied,

note that by Markov’s inequality, π(GT ) > 1−E (exp(α|ρ2|q1) exp (−αβT ), where α (> 0)

is such that E (exp(α|ρ2|q1) <∞. We choose β so large that αβ > h2(Θ2).

Since GT is compact for all T ≥ 1, uniform convergence as required will be proven if

we can show that 1
T logRT (ρ2) + h2(ρ2) is stochastically equicontinuous almost surely

in ρ2 ∈ G for any G ∈ {GT : T = 1, 2, . . .} and 1
T logRT (ρ2) + h2(ρ2)→ 0, almost surely,
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for all ρ2 ∈ G. Since we have already verified pointwise convergence of the above

for all ρ2 ∈ Θ2 while verifying (S4), it remains to prove stochastic equicontinuity of

1
T logRT (·) + h2(·). Stochastic equicontinuity usually follows easily if one can prove

that the function concerned is almost surely Lipschitz continuous. In our case, for any

ρ
(1)
2 , ρ

(2)
2 ∈ G,

∣∣∣∣ 1

T
logRT (ρ

(1)
2 ) + h2(ρ

(1)
2 )− 1

T
logRT (ρ

(2)
2 )− h2(ρ

(2)
2 )

∣∣∣∣
=
∣∣∣ρ(1)

2 − ρ
(2)
2

∣∣∣× ∣∣∣∣∣
(∑T

t=1 y
2
t−1

T

)(
ρ

(1)
2 + ρ

(2)
2

2σ2
0

)
−
∑T

t=1 ytyt−1

T
× 1

σ2
0

− σ2
0

2(1− ρ2
0)

∣∣∣∣∣ .
(5.A2.2)

By (5.A1.7) and (5.A1.10),
∑T
t=1 y

2
t−1

T and
∑T
t=1 ytyt−1

T converge almost surely to σ2
0/(1−ρ2

0)

and σ2
0ρ0/(1−ρ2

0), respectively, while ρ
(1)
2 +ρ

(2)
2 is bounded since ρ

(1)
2 , ρ

(2)
2 ∈ G. It follows

that 1
T logRT (ρ2) + h2(ρ2) is stochastically equicontinuous. Hence, uniform convergence

as required by (S5) (3), follows. That is, (S5) is satisfied for M2.

We now verify (S6). First note that almost sure finiteness of τ(GT , δ) is guaranteed in

the same way as in model M1. We hence need to verify that T ≥ τ(GT , δ) almost surely,

for all sufficiently large T and for all δ > 0. Again by equation (41) of Shalizi (2009),

∞∑
T=1

P (τ(GT , δ) > T ) ≤
∞∑
T=1

∞∑
m=T+1

P

(
1

m
log

∫
GT
Rm(ρ2)π(ρ2|M2)dρ2 > δ − h2(GT )

)
.

(5.A2.3)

Now since Rn(ρ2) is also continuous in ρ2, by the mean value theorem for integrals it

holds that

1

m
log

∫
GT
Rm(ρ2)dπ(θ) =

1

m
log [Rm(ρ̃2)π(GT )] =

1

m
logRm(ρ̃2) +

1

m
log π(GT ),

(5.A2.4)

for ρ̃2 ∈ GT , perhaps depending upon the data. Thus, 1
m log

∫
GT Rm(ρ2)dπ(ρ2) >
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δ−h2(GT ) implies, since h2(ρ̃2) ≥ h2(GT ), that 1
m logRm(ρ̃2)+ 1

m log π(GT )+h2(ρ̃2) > δ,

so that 1
m logRm(ρ̃2) + h2(ρ̃2) > δ, as δ − 1

m log π(GT ) > δ. Again this implies that∣∣ 1
m logRm(ρ̃2) + h2(ρ̃2)

∣∣ > δ, from which it finally follows that sup
θ∈GT

∣∣ 1
m logRm(ρ2) + h2(ρ2)

∣∣ >
δ. Hence,

P

(
1

m
log

∫
GT
Rm(ρ2)dπ(ρ2) > δ − h2(GT )

)
≤ P

(
sup
ρ2∈GT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ > δ

)
.

(5.A2.5)

Since GT is compact, there exist finite number of open sets OiT ; i = 1, . . . , pT , with

pT (≥ 1) finite for each T ≥ 1, such that GT ⊆ ∪pTi=1OiT . Here, for i = 1, . . . , pT ,

OiT = {ρ2 : |ρ2 − ciT | ≤ r/2}, where ciT ∈ GT and r > 0 is such that by stochastic

equicontinuity, |ρ(1)
2 − ρ

(2)
2 | < r implies

∣∣∣∣ 1

m
logRm(ρ

(1)
2 ) + h2(ρ

(1)
2 )− 1

m
logRm(ρ

(2)
2 )− h2(ρ

(2)
2 )

∣∣∣∣ ≤ δ/2, (5.A2.6)

for sufficiently large m, almost surely. Indeed, observe that if ρ
(1)
2 , ρ

(2)
2 ∈ OiT for any

i = 1, . . . , pT , then |ρ(1)
2 −ρ

(2)
2 | ≤ |ρ

(1)
2 −ciT |+ |ρ

(2)
2 −ciT | < r. With these, it then follows

that

P

(
sup
ρ2∈GT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ > δ

)

= 1− P

(
sup
θ∈GT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ ≤ δ
)

= 1− P

(
sup
θ∈OiT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ ≤ δ, i = 1, . . . , pT

)
. (5.A2.7)

Now for any ρ∗iT ∈ OiT ,

∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ ≤ δ/2, (5.A2.8)

for sufficiently large m due to pointwise convergence of
∣∣ 1
m logRm(ρ2) + h2(ρ2)

∣∣ to zero
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for all ρ2 ∈ Θ2 as we verified in the context of (S3) (indeed, due to uniform convergence

to zero over GT \ I, as we verified in the context of (S5) (2)). Then for any ρ2 ∈ OiT ,

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ ≤ ∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)− 1

m
logRm(ρ∗iT )− h2(ρ∗iT )

∣∣∣∣
+

∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ . (5.A2.9)

By (5.A2.6) and (5.A2.8) respectively, the first and second terms of the right hand side

of (5.A2.9) are less than δ/2, for sufficiently large m. Hence, for sufficiently large m,

sup
ρ2∈OiT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ ≤ δ.
It then follows from (5.A2.7) that

P

(
sup
θ∈GT

∣∣∣∣ 1

m
logRm(ρ2) + h2(ρ2)

∣∣∣∣ > δ

)

≤ 1− P
(∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ ≤ δ, i = 1, . . . , pT

)
≤

pT∑
i=1

P

(∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ > δ

)
. (5.A2.10)

Combining (5.A2.10) with (5.A2.5) and (5.A2.3) we observe that it is now required to

prove finiteness of the following sum:

∞∑
T=1

∞∑
m=T+1

pT∑
i=1

P

(∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ > δ

)
. (5.A2.11)

Using the same ideas as in Section 5.A1.6 for verification of (S6) for M1, but the right

hand side of the Markov’s inequality (5.A1.30) raised to an appropriate power q1 (> 5)

instead of 5, we find that P
(∣∣ 1
m logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣ > δ
)

is bounded above by an

expression of the form aiTm
−q2 , for some aiT > 0 depending on ρ∗iT , where q2 > 4.
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But since ρ∗iT ∈ OiT with center ciT satisfying 1 < |ciT |q1 < βT for all i, it is easy

to see that aiTm
−q2 = O (Tm−q2). Hence,

∑pT
i=1 P

(∣∣ 1
m logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣ > δ
)

=

O (pTTm
−q2). Now pT is the number of open balls with radius r/2 required to cover GT .

By Lemma 1 of Lorentz (1966), βTr ≤ pT ≤
6βT
r . Hence,

∑pT
i=1 P

(∣∣ 1
m logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣ > δ
)

=

O
(
T 2m−q2

)
. We then have, for sufficiently large T0,

∞∑
T=T0

∞∑
m=T+1

pT∑
i=1

P

(∣∣∣∣ 1

m
logRm(ρ∗iT ) + h2(ρ∗iT )

∣∣∣∣ > δ

)
<
∞∑
k=1

k

(T0 + k)q2−2
<

1

kq2−3
<∞,

(5.A2.12)

since q2 > 4. In other words, (S6) holds for model M2.

Hence, Theorem 25, so that

lim
T→∞

1

T
log[B

(12)
T ] = h2(Θ2), (5.A2.13)

that is, the Bayes factor heavily favours the (asymptotically) stationary model M1 over

the nonstationary model M2. Since the true model P is (asymptotically) stationary,

this result is very encouraging.

5.A3 Convergence of Bayes factor when ρ1, ρ2, σ1 and σ2

are all unknown

When apart from unknown ρ1 and ρ2, the error variances σ2
1 and σ2

2 associated with

models M1 and M2 are also unknown, we consider the parameter spaces Θ1 =

{(ρ1, σ1) : |ρ1| < 1, σ1 > 0} and Θ2 = {(ρ2, σ2) : ρ2 ∈ (−1, 1)c, σ2 > 0} associated with

models M1 and M2, respectively. For i = 1, 2, we assume joint priors π(ρi, σi|Mi),

having densities on Θi, with respect to the Lebesgue measure. It can be easily seen that
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in this case, for i = 1, 2,

hi(ρi, σi) =
1

2(1− ρ2
0)

[(
ρ0 −

σ0ρi
σi

)2

+
σ2

0

σ2
i

− (1− ρ2
0) log

σ2
0

σ2
i

− 1

]
. (5.A3.1)

Since (1 − ρ2
0) log

σ2
0

σ2
i

+ 1 ≤ log
σ2

0

σ2
i

+ 1 ≤ σ2
0

σ2
i
, (5.A3.1) is non-negative. Also, as in the

case with σ1 = σ2 = σ0, it holds that h1(Θ1) = 0 and h2 (Θ2) = min
{

(1−ρ0)2

2(1−ρ2
0)
, (1+ρ0)2

2(1−ρ2
0)

}
.

Further, note that π(I|Mi) = 0, for i = 1, 2. Thus, conditions (S1)–(S4) are easily seen

to hold for both the competing models.

We now verify the remaining conditions for the models. As regards GT , here we set

GT =

{
(ρ1, σ1) : |ρ1| < 1,

1

T 1/2q1
≤ σ1 ≤ βT

}

for model M1 where β > h1(Θ1) = 0, and for model M2 we set

GT =

{
(ρ2 ∈ Θ2, σ2 ≥ 0) : |ρ2| ≤ βT,

1

T 1/2q1
≤ σ2 ≤ βT

}
.

Note that there exists T0 ≥ 1 such that 1
T 1/2q1

≤ σ0 ≤ βT for T ≥ T0. Hence,

h1(GT ) = h1(Θ1) = 0 and h2(GT ) = h2(Θ2) = min
{

(1−ρ0)2

2(1−ρ2
0)
, (1+ρ0)2

2(1−ρ2
0)

}
, for T ≥ T0.

Hence, (S5) (1) holds for both M1 and M2. Letting E1 denote the expectation with

respect to π(·|M1), now observe that for α > 0 such that E1 [exp (ασ1)] < ∞ and
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E1

[
exp

(
αβ

σ
2q1
1

)]
<∞,

π(GT |M1) = π

(
1

T 1/2q1
≤ σ1 ≤ βT

)
= π (σ1 ≤ βT )− π

(
σ1 ≤

1

T
1

2q1

)

> 1− E1 [exp (ασ1)] exp (−αβT )− π
(

1

σ1
≥ T

1
2q1

)
> 1− E1 [exp (ασ1)] exp (−αβT )− E1

[
exp

(
αβ

σ2q1
1

)]
exp (−αβT )

= 1−

(
E1 [exp (ασ1)] + E1

[
exp

(
αβ

σ2q1
1

)])
exp (−αβT ) , (5.A3.2)

so that (S5) (2) holds for M1, since αβ > 0 = h1(Θ1).

For M2, denoting by E2 the expectation with respect to π(·|M2), and assuming

the existence of α > 0 such that E2 [exp (ασ2)] < ∞, E2

[
exp

(
αβ

σ
2q1
2

)]
< ∞ and

E2 [exp (α|ρ2|)] <∞, note that

π(GT |M2) = π

(
1

T 1/2q1
≤ σ2 ≤ βT |M2

)
− π

(
|ρ2| > βT,

1

T 1/2q1
≤ σ2 ≤ βT |M2

)
,

where

π

(
1

T 1/2q1
≤ σ2 ≤ βT |M2

)
> 1−

(
E2 [exp (ασ2)] + E2

[
exp

(
αβ

σ2q1
2

)])
exp (−αβT ) ,

in the same way as (5.A3.2), and

π

(
|ρ2| > βT,

1

T 1/2q1
≤ σ2 ≤ βT |M2

)
≤ π (|ρ2| > βT |M2) < E2 [exp (α|ρ2|)] exp(−αβT ),

by Markov’s inequality. It follows that

π(GT |M2) > 1−

(
E2 [exp (ασ2)] + E2

[
exp

(
αβ

σ2q1
2

)]
+ E2 (exp (α|ρ2|))

)
exp (−αβT ) ,
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that is, (S5) (2) holds for M2, with β large enough such that αβ > h2(Θ2). For

both M1 and M2, (S5) (3) can be seen to hold in almsot the same way as in Sec-

tion 5.A2 using compactness of G ∈ {Gk; k ≥ 1}, and stochastic equicontinuity uti-

lizing the assumption that σ2 is bounded away from zero in G. Indeed, (S6) for

model M1 can be verified in almsot the same way as in Section 5.A2. Here we note

that the number of open balls with radius r/2 required to cover GT for M1 still re-

mains of the order T as |ρ1| is bounded above by the constant 1 in GT . But since

σ2 is unknown, an exra factor of the order T would emerge after raising the right

hand side of the Markov’s inequality (5.A1.30) to the power q1, which is actually the

lower bound of σ2q1 , where σ ∈ GT features in the aforementioned Markov inequal-

ity. Hence,
∑pT

i=1 P
(∣∣ 1
m logRm(θ∗iT ) + h1(θ∗iT )

∣∣ > δ
)

= O
(
T 2m−q2

)
, where q2 > 4, and

θ∗iT = (ρ∗iT , σ
∗
iT ) ∈ OiT . In exactly the same way as in (5.A2.12) it then follows that

for sufficiently large T0,
∑∞

T=T0

∑∞
m=T+1

∑pT
i=1 P

(∣∣ 1
m logRm(θ∗iT ) + h1(θ∗iT )

∣∣ > δ
)
<∞.

Hence, (S6) holds for model M1.

For modelM2, pT is of the order T 2, instead of T in the previous case. Note that here

we need q1 to be larger than in the previous case such that now q2 > 5. Consequently,

in the same way as before, (S6) can be seen to hold for model M2.

Hence, Theorem 25 is applicable to this situation and the result remains the same as

(5.A2.13).

5.A4 A first look at the applicability of our Bayes factor

result to some infinite-dimensional models

5.A4.1 Traditional Dirichlet process model: undominated case

Theorem 25 requires the unnormalized posterior to admit factorization as the prior times

the likelihood. It is well-known that for the original nonparametric models associated

with the Dirichlet process prior (Ferguson (1973)) such factorization is not possible, since
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there is no parametric form of the likelihood. In other words, if [Y1, . . . , YT |F ]
iid∼ F ,

where F ∼ DP (αF0), where DP (αF0) stands for Dirichlet process with base measure

F0 and precision parameter α, then the likelihood associated with the data Y1, . . . , YT

does not have a parametric form, and although the posterior π(F |Y T ) is well-defined, it

is not dominated by any σ-finite measure (see, for example, Proposition 7.7 of Orbanz

(2014)), and hence does not have a density. This of course prevents factorization of

the posterior of F as the prior times likelihood. Moreover, recall that Shalizi (2009)

also assumes the existence of a common reference measure for the posteriors π(·|Y T ),

for all T , which does not hold here. Indeed, such an assumption is valid in the usual

dominated case of Bayes theorem where the aforementioned factorization is possible; in

such (usually parametric) cases, the prior is the natural common dominating measure

(see Schervish (1995), for example).

5.A4.2 Dirichlet process mixture model: dominated case

Since Dirichlet process supports discrete distributions with probability one, the modeling

style described in Section 5.A4.1 is inappropriate if the data Y T arises from some

continuous distribution. Hence, for such data it is usual in Bayesian nonparametrics

based on the Dirichlet process prior to consider the following mixture model (see, for

example, Ghosh and Ramamoorthi (2003)):

[Y1, . . . , YT |F ]
iid∼
∫
f(·|ξ)dF (ξ), (5.A4.1)

where f(·|ξ) is some standard continuous density, usually Gaussian, given ξ ∼ F ,

where F ∼ DP (αF0). By Sethuraman’s construction (Sethuraman (1994)), F (·) =∑∞
i=1 piδξi(·), with probability one, where, for i = 1, 2, . . ., ξi

iid∼ F0, and for any ξ,

δξ(·) denotes the point mass on ξ. Also, for i = 1, 2, . . ., pi = Vi
∏
j<i(1 − Vj), where

Vi
iid∼ Beta(α, 1). It is easy to verify that

∑∞
i=1 pi = 1, almost surely. Application of
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Sethuraman’s construction in (5.A4.1) yields the equivalent infinite mixture representa-

tion

[Y1, . . . , YT |θ]
iid∼
∞∑
i=1

pif(·|ξi), (5.A4.2)

where θ = (ξ1, ξ2, . . . , V1, V2, . . .) is the infinite-dimensional parameter. The prior on θ is

already specified by the iid F0 and Beta(α, 1) distributions, and is the infinite product

probability measure associated with these iid distributions, so that each factor of the

product of the probability measures is dominated by the Lebesgue measure. In this case,

the posterior of θ admits the representation

π(θ|Y T ) ∝ π(θ)

T∏
t=1

[ ∞∑
i=1

pif(Yt|ξi)

]
, (5.A4.3)

and hence the representation of Bayes factor in terms of the prior and the likelihood holds

in this case, as required by Theorem 25. Moreover, the posterior π(·|Y T ) is absolutely

continuous with respect to π(·) for all T , as assumed by Shalizi (2009).

5.A4.3 Polya urn based mixture obtained by integrating out random

F : dominated case but T changes with T

Assume that for t = 1, . . . , T , [Yt|φt] ∼ f(·φt), independently, and φ1, . . . , φT
iid∼ F , where

F ∼ DP (αF0). This is equivalent to the Dirichlet process mixture model (5.A4.1), but

if F is integrated out, then the joint distribution of φ1, . . . , φT is given by the Polya urn

scheme, that is, φ1 ∼ F0, and for t = 2, . . . , T , [φt|φ1, . . . , φt−1] ∼ αF0
α+t−1 +

∑t−1
j=1 δφj
α+t−1 (see,

for example, Ferguson (1973), Escobar and West (1995)). The joint prior distribution

of φ1, . . . , φT has a density with respect to a measure composed of Lebesgue measures

in lower dimensions; see Lemma 1.99 of Schervish (1995) for the exact forms of the

density and the dominating measure. Hence, in this case the posterior of φ1, . . . , φT

is proportional to the prior times the likelihood, where the likelihood is given by∏T
t=1 f(Yt|φt), and the posterior is dominated by the prior probability measure. Hence,
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a countably infinite convex combination of the prior probability measures dominates

the posterior of φ1, . . . , φT for all T , as required for the results of Shalizi (2009) to hold.

However, Shalizi (2009) assumes that the σ-field T associated with the parameter space

Θ does not change with T , which does not hold in this case.

5.A4.4 Polya urn based finite mixture: dominated case and T remains

fixed

Bhattacharya (2008) (see also Mukhopadhyay et al. (2011), Mukhopadhyay et al. (2012))

introduce the following finite mixture model based on Dirichlet process:

Y1, . . . , YT
iid∼ 1

M

M∑
i=1

f(·|φi); (5.A4.4)

φ1, . . . , φM
iid∼ F ; (5.A4.5)

F ∼ DP (αF0) , (5.A4.6)

where f(·|φ) is any standard density as before, given parameter(s) φ, and M (> 1) is

some fixed integer. Integrating out F yields the following Polya urn scheme for the

joint distribution of φ1, . . . , φM : φ1 ∼ F0, and for t = 2, . . . ,M , [φt|φ1, . . . , φt−1] ∼
αF0
α+t−1 +

∑t−1
j=1 δφj
α+t−1 . Here θ = (φ1, . . . , φM ), which is of fixed, finite size, even though the

problem is induced by the nonparametric Dirichlet process prior. Also clearly the σ-field

T associated with the parameter space Θ does not change with T . Thus, in this set-up,

not only is the posterior written in terms of product of the prior and the likelihood, but

is dominated by the Polya urn based prior of θ, for all sample sizes T .

5.A4.5 Nonparametric Bayesian using the Polya tree prior: domi-

nated case

Lavine (1992), Lavine (1994) proposed the Polya tree prior for the random probability

measure F as an alternative to the Dirichlet process prior. Briefly, one starts with a
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partition π1 = {B0, B1} of the sample space Ω, so that Ω = B0 ∪ B1. This procedure

is then continued with B0 = B00 ∪B01, B1 = B10 ∪B11, etc. At level m, the partition

is then πm = {Bε : ε = ε1 . . . εm}, where ε are all binary sequences of length m. Let

Π = {πm : m = 1, 2, . . .}, and A = {αε} be a sequence of non-negative numbers, one for

each partitioning subset. Now, if Yε0 = F (Bε0|Bε) ∼ Beta(αε0, αε1) independently with

respect to the ε’s, then F is said to have the Polya tree prior PT (Π,A).

It can be shown that if αε ∝ m−1/2, the Polya tree prior reduces to the Dirichlet process

prior, confirming that the latter is a special case of the Polya tree prior. However, the most

important property of the Polya tree prior is that with appropriate choices of the αε, F can

be made absolutely continuous with respect to the Lebesgue measure. Specifically, if αε ∝

m2, for the m-th level subset, then F is dominated by the Lebesgue measure almost surely.

Hence, if [Y1, . . . , YT |F ] ∼ F and F ∼ PT (Π,A), with αε ∝ m2, then the likelihood is

available almost surely. Here we may set θ = {Yε0 : ε = ε1 . . . εm,m = 1, 2, . . .}, which

has the infinite product prior measure. The posterior of F given Y T , which is also

a Polya tree process, is dominated by π(θ) for all T > 0. Similar issues hold for the

extended Polya tree prior, namely, the optional Polya tree prior proposed by Wong and

Ma (2010).

5.A4.6 Bayesian density estimation using the generalized lognormal

process prior: dominated case

Lenk (1988) model the unknown density f(x) with respect to measure λ as

f(x) =
W (x)∫

X W (s)dλ(s)
, (5.A4.7)

where W is a generalized lognormal process over X . The generalized lognormal process
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has distribution Λζ given by (see Lenk (1988))

Λζ(A) =
E
[(∫
X Wdλ

)ζ IA]
E
[(∫
X Wdλ

)ζ] , (5.A4.8)

where −∞ < ζ <∞ and the expectations are taken with respect to the usual lognormal

process, that is, with respect to W = exp (Z), where Z is a Gaussian process. In (5.A4.8),

IA is the indicator of the set A, where A belongs to the Borel σ-field associated with

the space of functions from X to (0,∞). The properties and moments of the lognormal

process are provided in Lenk (1988).

In this formulation, the likelihood with respect to iid data Y1, . . . , YT is defined via

(5.A4.7). The prior distribution, as well as the posterior distribution of Θ = W for

all T ≥ 1, are absolutely continuous with respect to the distribution of the lognormal

process W = exp (Z), where Z is a Gaussian process.

5.A4.7 Bayesian regression using Gaussian process: dominated case

Consider the Bayesian nonparametric regression setups embedded in normal, double-

exponential, binary and Poisson models, as considered in Chapters 2 and 3. Let the

unknown regression function η(·) be modeled by Gaussian process with mean function

µ(·) on X and covariance function σ2c(·, ·) on X ×X , where X is the space of covariates.

From Mercer’s theorem (see, for example, Rasmussen and Williams (2006)) it follows

that the Gaussian process η(·) admits the representation below almost surely:

η(·) = µ(·) +

∞∑
i=1

√
λiψi(·)ei, (5.A4.9)

where ψi and λi are the normalized eigenfunctions and eigenvalues of the positive definite

function c(·, ·); and, for i = 1, 2, . . ., ei
iid∼ N(0, 1). The above representation for Gaussian

processes is popularly known as the Karhunen-Loève expansion (see, for example, Ash
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and Gardner (1975)).

Hence, both the likelihood and the prior can be parameterized in terms of ψi(·); i =

1, 2, . . . and εεε = {ei; i = 1, 2, . . .}, the latter being unknown and having the infinite

product prior distribution such that ei
iid∼ N(0, 1); i = 1, 2, . . .. Letting θ = (εεε, ϑ), where

ϑ stands for other finite-dimensional model parameters including σ2 with probability

measure ϕ, say, observe that the posterior distribution of θ, is clearly dominated by this

infinite product prior measure times ϕ, for almost all datasets.



6
Convergence of Pseudo-Bayes Factors in

Forward and Inverse Regression

Problems

6.1 Introduction

The Bayesian statistical literature on model selection is rich in its collection of innova-

tive methodologies, among which the most principled method of comparing different

competing models seems to be offered by Bayes factors (BFs), through the ratio of the

posterior and prior odds associated with the models under comparison, which reduces

to the ratio of the marginal densities of the data under the two models. In Chapter

5 we established the almost sure convergence theory of BF in the general setup that

includes even dependent data and misspecified models. The result depends explicitly on

170
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the average KL-divergence between the competing and the true models. Thus, BFs have

sound theoretical properties as well, which make them very useful for model comparison

in general.

However, BFs are known to have several limitations. First, if the prior for the

model parameter θj is improper, then the marginal density m(·|Mj) is also improper

and hence m(Y n|Mj) does not admit any sensible interpretation. Second, BFs suffer

from the Jeffreys-Lindley-Bartlett paradox (see Jeffreys (1939), Lindley (1957), Bartlett

(1957), Robert (1993), Villa and Walker (2015) for details and general discussions on

the paradox). Furthermore, a drawback of BFs in practical applications is that the

marginal density of the data Y n is usually quite challenging to compute accurately,

even with sophisticated simulation techniques based on importance sampling, bridge

sampling and path sampling (see, for example, Meng and Wong (1996), Gelman and

Meng (1998); see also Gronau et al. (2017) for a relatively recent tutorial and many

relevant references), particularly when the posterior is far from normal and when the

dimension of the parameter space is large. Moreover, the marginal density is usually

extremely close to zero if n is even moderately large. This causes numerical instability

in computation of the BF.

The problems of BFs regarding improper prior, Jeffreys-Lindley-Bartlett paradox,

and general computational difficulties associated with the marginal density can be

simultaneously alleviated if the marginal density m(Y n|Mj) for model Mj is replaced

with the product of leave-one-out cross-validation posteriors
∏n
i=1 π (yi|Y n,−i,Mj),

where Y n,−i = Y n\{yi} = {y1, . . . , yi−1, yi+1, . . . , yn}, and

π (yi|Y n,−i,Mj) =

∫
Θj

f(yi|θj , y1, . . . , yi−1,Mj)dπ (θj |Y n,−i,Mj) (6.1.1)

is the i-th leave-one-out cross-validation posterior density evaluated at yi. In the above

equation (6.1.1), f(yi|θj , y1, . . . , yi−1,Mj) is the density of yi given model parameters

θj and y1, . . . , yi−1; π (θj |Y n,−i,Mj) is the posterior distribution of θj given Y n,−i.
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Viewing
∏n
i=1 π (yi|Y n,−i,Mj) as the surrogate for m(Y n|Mj), it seems reasonable to

replace BF (n)(M1,M2) with the corresponding pseudo-Bayes factor (PBF) given by

PBF (n)(M1,M2) =

∏n
i=1 π (yi|Y n,−i,M1)∏n
i=1 π (yi|Y n,−i,M2)

. (6.1.2)

In the case of independent observations, the above formula and the terminology “pseudo-

Bayes factor” seem to be first proposed by Geisser and Eddy (1979). Their motivation

for PBF did not seem to arise as providing solutions to the problems of BFs, however,

but rather the urge to exploit the concept of cross-validation in Bayesian model selection,

which had been proved to be indispensable for constructing model selection criteria in

the classical statistical paradigm. Below we argue how this cross-validation idea helps

solve the aforementioned problems of BFs.

First note that the posterior π (θj |Y n,−i,Mj) is usually proper even for improper prior

for θj is n is sufficiently large. Thus, π (yi|Y n,−i,Mj) given by (6.1.1) is usually well-

defined even for improper priors, unlike m(Y n|Mj). So, even though BF is ill-defined

for improper priors, PBF is usually still well-defined.

Second, a clear theoretical advantage of PBF over BF is that PBF is immune to the

problem of Jeffreys-Lindley-Bartlett paradox (see Gelfand and Dey (1994) for example),

while BF is certainly not.

Finally, PBF enjoys significant computational advantages over BF. Note that straight-

forward Monte Carlo averages of f(yi|θj , y1, . . . , yi−1,Mj) over realizations of θ obtained

from π (θ|Y n,−i,Mj) by simulation techniques is sufficient to ensure good estimates of

the cross-validation posterior density π (yi|Y n,−i,Mj). Since π (yi|Y n,−i,Mj) is the

density of yi individually, the estimate is also numerically stable compared to estimates

of m(Y n|Mj). Hence, the sum of logarithms of the estimates of π (yi|Y n,−i,Mj), for

i = 1, . . . , n, results in quite accurate and stable estimates of log [
∏n
i=1 π (yi|Y n,−i,Mj)].

In other words, PBF is far simpler to compute accurately than BF and is numerically

far more stable and reliable.
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In spite of the advantages of PBF over BF, it seems to be largely ignored in the

statistical literature, both theoretically and application-wise. Some asymptotic theory of

PBF has been attempted by Gelfand and Dey (1994) using independent observations,

Laplace approximations and some essentially ad-hoc simplifying approximations and

arguments. Application of PBF has been considered in Bhattacharya (2008) for demon-

strating the superiority of his new Bayesian nonparametric Dirichlet process model over

the traditional Dirichlet process mixture model. But apart from these works we are not

aware of any other significant research involving PBF.

In this chapter, we establish the asymptotic theory for PBF in the general setup

consisting of dependent observations, model misspecifications as well as covariates;

inclusion of covariates also validates our asymptotic theory in the variable selection

framework. Judiciously exploiting the posterior convergence treatise of Shalizi (2009)

we prove almost sure exponential convergence of PBF in favour of the true model, the

convergence explicitly depending upon the KL-divergence rate from the true model.

For any two models different from the true model, we prove almost sure exponential

convergence of PBF in favour of the better model, where the convergence depends

explicitly upon the difference between KL-divergence rates from the true model. Thus,

our PBF convergence results agree with the BF convergence results established in Chapter

5.

An important aspect of our PBF research involves establishing its convergence proper-

ties for inverse regression problems, and even if one of the two competing models involve

inverse regression and the other forward regression. Recall that, crucially, Bayesian

inverse regression problems require priors on the covariate values to be predicted. In

this chapter, we consider two setups of inverse regression and establish almost sure

exponential convergence of PBF in general inverse regression for both the setups. These

include situations where one of the competing models involve forward regression and the

other is associated with inverse regression.
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We illustrate our asymptotic results with various theoretical examples in both forward

and inverse regression contexts, including forward and inverse variable selection problems.

We also follow up our theoretical investigations with simulation experiments in small

samples involving Poisson and geometric forward and inverse regression models with

relevant link functions and both linear regression and nonparametric regression, the

latter modeled by Gaussian processes. We also illustrate variable selection in the

aforementioned setups with two different covariates. The results that we obtain are quite

encouraging and illuminating, providing useful insights into the behaviour of PBF for

forward and inverse parametric and nonparametric regression.

The roadmap for the rest of this chapter is as follows. We begin our progress by

discussing and formalizing the relevant aspects of forward and inverse regression problems

and the associated pseudo-Bayes factors in Section 6.2. Convergence of PBF in the

forward regression context is established in Section 6.3, while in Sections 6.4 and 6.5 we

establish convergence of PBF in the two setups related to inverse regression. In Sections

6.6 and 6.7 we provide theoretical illustrations of PBF convergence in forward and inverse

setups, respectively, with various examples including variable selection. Details of our

simulation experiments with small samples involving Poisson and geometric linear and

Gaussian process regression for relevant link functions, under both forward and inverse

setups, are reported in Section 6.8, which also includes experiments on variable selection.

Finally, we summarize our contributions and provide future directions in Section 6.9.

6.2 Preliminaries and general setup for forward and in-

verse regression problems

Let us first consider the forward regression setup.
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6.2.1 Forward regression problem

For i = 1, . . . , n, let observed response yi be related to observed covariate xi through

y1 ∼ f(·|θ, x1) and yi ∼ f(·|θ, xi,Y (i−1)) for i = 2, . . . , n, (6.2.1)

where for i = 2, . . . , n, Y (i) = {y1, . . . , yi} and f(·|θ, x1), f(·|θ, xi,Y (i−1)) are known

densities depending upon (a set of) parameters θ ∈ Θ, where Θ is the parameter space,

which may be infinite-dimensional. For the sake of generality, we shall consider θ = (η, ξ),

where η is a function of the covariates, which we more explicitly denote as η(x). The

covariate x ∈ X , X being the space of covariates. The part ξ of θ will be assumed to

consist of other parameters, such as the unknown error variance. For Bayesian forward

regression problems, some prior needs to be assigned on the parameter space Θ. For

notational convenience, we shall denote f(·|θ, x1) by f(·|θ, x1,Y
(0)), so that we can

represent (6.2.1) more conveniently as

yi ∼ f(·|θ, xi,Y (i−1)) for i = 1, . . . , n. (6.2.2)

6.2.2 Forward pseudo-Bayes factor

Letting Y n = {yi : i = 1, . . . , n}, Xn = {xi : i = 1, . . . , n}, Y n,−i = Y n\{yi} and

Xn,−i = Xn\{xi}, let π(yi|Y n,−i,Xn,M) denote the posterior density at yi, given data

Y n,−i, Xn and model M. Let the density of yi given θ and xi under model M be

denoted by f(yi|θ, xi,Y (i−1)M). Then note that

π(yi|Y n,−i,Xn,M) =

∫
Θ
f(yi|θ, xi,Y (i−1),M)dπ(θ|Y n,−i,Xn,−i,M), (6.2.3)

where

π(θ|Y n,−i,Xn,−i,M) ∝ π(θ)

n∏
j 6=i;j=1

f(yj |θ, xj ,Y (j−1),M). (6.2.4)
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For any two models M1 and M2, the forward pseudo Bayes factor (FPBF) of M1

against M2 based on the cross-validation posteriors of the form (6.2.3) is defined as

follows:

FPBF (n)(M1,M2) =

∏n
i=1 π(yi|Y n,−i,Xn,M1)∏n
i=1 π(yi|Y n,−i,Xn,M2)

, (6.2.5)

and we are interested in studying the limit lim
n→∞

1
n logFPBF (n)(M1,M2) for almost

all data sequences.

6.2.3 Inverse regression problem: first setup

In inverse regression, the basic premise remains the same as in forward regression detailed

in Section 6.2.1. In other words, the distribution f(·|θ, xi,Y (i−1)), parameter θ, the

parameter and the covariate space remain the same as in the forward regression setup.

However, unlike in Bayesian forward regression problems where a prior needs to be

assigned only to the unknown parameter θ, a prior is also required for x̃, the unknown

covariate observation associated with known response ỹ, say. Given the entire dataset

and ỹ, the problem in inverse regression is to predict x̃. Hence, in the Bayesian inverse

setup, a prior on x̃ is necessary. Given model M and the corresponding parameters θ,

we denote such prior by π(x̃|θ,M). For Bayesian cross-validation in inverse problems

it is pertinent to successively leave out (yi, xi); i = 1, . . . , n, and compute the posterior

predictive distribution π(x̃i|Y n,Xn,−i), from yi and the rest of the data (Y n,−i,Xn,−i)

(see Bhattacharya and Haslett (2007)). But these posteriors are not useful for Bayes of

pseudo-Bayes factors even for inverse regression setups. The reason is that the Bayes

factor for inverse regression is still the ratio of posterior odds and prior odds associated

with the competing models, which as usual translates to the ratio of the marginal

densities of the data under the two competing models. The marginal densities depend

upon the prior for (θ, x̃), however, under the competing models. The pseudo-Bayes factor

for inverse models is then the ratio of products of the cross-validation posteriors of yi,

where θ and x̃i are marginalized out. Details of such inverse cross-validation posteriors
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and the definition of pseudo-Bayes factors for inverse regression are given below.

Inverse pseudo-Bayes factor in this setup

In the inverse regression setup, first note that

π(x̃i, θ|Y n,−i,Xn,−i,M)

=
π(x̃i, θ|M)

∏n
j 6=i;j=1 f(yj |θ, xj ,Y (j−1),M)∫

X
∫

Θ dπ(u, ψ)
∏n
j 6=i;j=1 f(yj |ψ, xj ,Y (j−1),M)

=
π(x̃i|θ,M)π(θ|M)

∏n
j 6=i;j=1 f(yj |θ, xj ,Y (j−1),M)∫

X
∫

Θ dπ(u|ψ,M)dπ(ψ|M)
∏n
j 6=i;j=1 f(yj |ψ, xj ,Y (j−1),M)

=
π(x̃i|θ,M)π(θ|M)

∏n
j 6=i;j=1 f(yj |θ, xj ,Y (j−1),M)∫

Θ dπ(ψ|M)
∏n
j 6=i;j=1 f(yj |ψ, xj ,Y (j−1),M)

= π(x̃i|θ,M)π(θ|Y n,−i,Xn,−i,M).

(6.2.6)

Using (6.2.6) we obtain

π(yi|Y n,−i,Xn,−i,M) =

∫
X

∫
Θ
f(yi|θ, x̃i,Y (i−1),M)dπ(x̃i, θ|Y n,−i,Xn,−i,M),

=

∫
Θ
g(Y (i), θ,M)dπ(θ|Y n,−i,Xn,−i,M), (6.2.7)

where

g(Y (i), θ,M) =

∫
X
f(yi|θ, x̃i,Y (i−1),M)dπ(x̃i|θ,M), (6.2.8)

and π(θ|Y n,−i,Xn,−i,M) is the same as (6.2.4). For any two models M1 and M2,

the inverse pseudo Bayes factor (IPBF) of M1 against M2 based on cross-validation

posteriors of the form (6.2.7) is given by

IPBF (n)(M1,M2) =

∏n
i=1 π(yi|Y n,−i,Xn,−i,M1)∏n
i=1 π(yi|Y n,−i,Xn,−i,M2)

, (6.2.9)

and our goal is to investigate lim
n→∞

1
n log IPBF (n)(M1,M2) for almost all data sequences.
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6.2.4 Inverse regression problem: second setup

In the inverse regression context, we consider another setup under which we established

consistency of the inverse cross-validation posteriors of x̃i in Chapter 4. Here we

consider experiments with covariate observations x1, x2, . . . , xn along with responses

Y nm = {yij : i = 1, . . . , n, j = 1, . . . ,m}. In other words, the experiment considered

here will allow us to have m samples of responses yi = {yi1, yi2, . . . , yim} against each

covariate observation xi, for i = 1, 2, . . . , n. Again, both xi and yij are allowed to be

multidimensional. Let Y nm,−i = Y nm\{yi}.

For i = 1, . . . , n consider the following general model setup: conditionally on θ, xi

and Y
(i−1)
j = {y1j , . . . , yi−1,j},

yij ∼ f
(
·|θ, xi,Y (i−1)

j

)
; j = 1, . . . ,m, (6.2.10)

independently, where f(·|θ, x1,Y
(0)) = f(·|θ, x1) as before.

We consider the prior for xi to be of the same form as in Chapter 4.4, whose illustrations

and properties are provided in Chapters 4.4.1 and 4.4.2, respectively.

Inverse pseudo-Bayes factor in this setup

For any two models M1 and M2 we define inverse pseudo-Bayes factor for model M1

against model M2, for any k ≥ 1, as

IPBF (n,m,k)(M1,M2) =

∏n
i=1 π(yik|Y nm,−i,Xn,−i,M1)∏n
i=1 π(yik|Y nm,−i,Xn,−i,M2)

(6.2.11)

and study the limit lim
m→∞

lim
n→∞

1
n log IPBF (n,m,k)(M1,M2) for almost all data sequences.

Note that since {yik; k ≥ 1} are distributed independently as f
(
·|θ, xi,Y (i−1)

k

)
given

any θ and xi, it would follow that if the limit exists, it must be the same for all k ≥ 1.

Suppose that the true data-generating parameter θ0 is not contained in Θ, the

parameter space considered. This is a case of misspecification that we must incorporate
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in our convergence theory of PBF. Our PBF asymptotics draws on posterior convergence

theory for (possibly infinite-dimensional) parameters that also allows misspecification.

In this regard, the approach presented in Shalizi (2009) seems to be very appropriate.

Before proceeding further, we first provide a brief overview of this approach, which we

conveniently exploit for our purpose.

In what follows, we denote almost sure convergence by “
a.s.−→”, almost sure equality by

“
a.s.
= ” and weak convergence by “

w−→”.

6.3 Convergence of PBF in forward problems

Let M0 denote the true model which is also associated with parameter θ ∈ Θ0, where

Θ0 is a parameter space containing the true parameter θ0. Then the following result

holds.

Theorem 29 Assume conditions (S1)–(S7) of Shalizi, and let the infimum of h(θ) over

Θ be attained at θ̃ ∈ Θ, where θ̃ 6= θ0. Also assume that Θ and Θ0 are complete separable

metric spaces and that for i ≥ 1, f(yi|θ, xi,Y (i−1),M) and f(yi|θ, xi,Y (i−1),M0) are

bounded and continuous in θ. Then,

1

n
logFPBF (n)(M,M0) =

1

n
log

[ ∏n
i=1 π(yi|Y n,−i,Xn,M)∏n
i=1 π(yi|Y n,−i,Xn,M0)

]
a.s.−→ −h(θ̃), as n→∞,

(6.3.1)

where, for any θ,

h(θ) = lim
n→∞

1

n
Eθ0

{
n∑
i=1

log

[
f(yi|θ0, xi,Y

(i−1),M0)

f(yi|θ, xi,Y (i−1),M)

]}
. (6.3.2)

Proof. By the hypotheses, (2.1.2) holds, from which it follows that for any ε > 0,

lim
n→∞

π(Ncε|Y n,−i,Xn,−i,M) = 0, (6.3.3)
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where Nε = {θ : h(θ) ≤ h (Θ) + ε}.

Now, by hypothesis, the infimum of h(θ) over Θ is attained at θ̃ ∈ Θ, where θ̃ 6= θ0.

Then by (6.3.3), the posterior of θ given Y n,−i and Xn,−i, given by (6.2.4), concentrates

around θ̃, the minimizer of the limiting KL-divergence rate from the true distribution.

Formally, given any neighborhood U of θ̃, the set Nε is contained in U for sufficiently

small ε. It follows that for any neighborhood U of θ̃, π(U |Y n,−i,Xn,−i,M)→ 1, almost

surely, as n→∞. Since Θ is a complete, separable metric space, it follows that (see, for

example, Ghosh and Ramamoorthi (2003), Ghosal and van derVaart (2017))

π(·|Y n,−i,Xn,−i,M)
w−→ δθ̃(·), almost surely, as n→∞. (6.3.4)

Then, due to (6.3.4) and the Portmanteau theorem, as f(yi|θ, xi,Y (i−1),M) is bounded

and continuous in θ, it holds using (6.2.3), that

π(yi|Y n,−i,Xn,M)
a.s.−→ f(yi|θ̃, xi,Y (i−1),M), as n→∞. (6.3.5)

Now, due to (6.3.5),

1

n

n∑
i=1

log π(yi|Y n,−i,Xn,M)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log f(yi|θ̃, xi,Y (i−1),M), as n→∞.

(6.3.6)

Also, essentially the same arguments leading to (6.3.5) yield

π(yi|Y n,−i,Xn,M0)
a.s.−→ f(yi|θ0, xi,Y

(i−1),M0), as n→∞,

which ensures

1

n

n∑
i=1

log π(yi|Y n,−i,Xn,M0)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log f(yi|θ0, xi,Y
(i−1),M0), as n→∞.

(6.3.7)
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From (6.3.6) and (6.3.7) we obtain

lim
n→∞

1

n
logFPBF (n)(M,M0)

a.s.
= lim

n→∞

1

n

n∑
i=1

log

[
f(yi|θ̃, xi,Y (i−1),M)

f(yi|θ̃0, xi,Y
(i−1),M0)

]
a.s.
= −h(θ̃),

(6.3.8)

where the rightmost step of (6.3.8), given by (6.3.2), follows due to (2.1.1). Hence, the

result is proved.

For postulated model Mj , let the KL-divergence rate h in (2.A1.2) be denoted by hj ,

for j ≥ 1.

Theorem 30 For models M0, M1 and M2 with complete separable parameter spaces

Θ0, Θ1 and Θ2, assume conditions (S1)–(S7) of Shalizi, and for j = 1, 2, let the infimum

of hj(θ) over Θj be attained at θ̃j ∈ Θj, where θ̃j 6= θ0. Also assume that for i ≥ 1,

f(yi|θ, xi,Y (i−1),Mj); j = 1, 2, and f(yi|θ, xi,Y (i−1),M0) are bounded and continuous

in θ. Then,

1

n
logFPBF (n)(M1,M2) =

1

n
log

[∏n
i=1 π(yi|Y n,−i,Xn,M1)∏n
i=1 π(yi|Y n,−i,Xn,M2)

]
a.s.−→ −

[
h(θ̃1)− h(θ̃2)

]
, as n→∞,

(6.3.9)

where, for j = 1, 2, and for any θ,

hj(θ) = lim
n→∞

1

n
Eθ0

{
n∑
i=1

log

[
f(yi|θ0, xi,Y

(i−1),M0)

f(yi|θ, xi,Y (i−1),Mj)

]}
. (6.3.10)

Proof. The proof follows by noting that

1

n
logFPBF (n)(M1,M2) =

1

n
logFPBF (n)(M1,M0)− 1

n
logFPBF (n)(M2,M0),

and then using (6.3.1) for 1
n logFPBF (n)(M1,M0) and 1

n logFPBF (n)(M2,M0).
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6.4 Convergence results for PBF in inverse regression: first

setup

Theorem 31 Assume conditions (S1)–(S7) of Shalizi, and let the infimum of h(θ) over

Θ be attained at θ̃ ∈ Θ, where θ̃ 6= θ0. Also assume that Θ and Θ0 are complete separable

metric spaces and that for i ≥ 1, g(Y (i), θ,M) and g(Y (i), θ,M0) are bounded and

continuous in θ. Then,

1

n
log IPBF (n)(M,M0) =

1

n
log

[ ∏n
i=1 π(yi|Y n,−i,Xn,−i,M)∏n
i=1 π(yi|Y n,−i,Xn,−i,M0)

]
a.s.−→ −h∗(θ̃), as n→∞,

(6.4.1)

where, for any θ,

h∗(θ) = lim
n→∞

1

n

n∑
i=1

log

[
g(Y (i), θ0,M0)

g(Y (i), θ,M)

]
,

provided that the limit exists.

Proof. Since π(·|Y n,−i,Xn,−i,M) remains the same as in Theorem 29, it follows as

before that

π(·|Y n,−i,Xn,−i,M)
w−→ δθ̃(·), almost surely, as n→∞.

Then, since g(yi, θ,M) is bounded and continuous in θ, the above ensures in conjunction

with the Portmanteau theorem using (6.2.7), that

π(yi|Y n,−i,Xn,−i,M)
a.s.−→ g(Y (i), θ̃,M), as n→∞. (6.4.2)

Hence,

1

n

n∑
i=1

log π(yi|Y n,−i,Xn,−i,M)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log g(Y (i), θ̃,M), as n→∞. (6.4.3)
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Similarly,

1

n

n∑
i=1

log π(yi|Y n,−i,Xn,−i,M0)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log g(Y (i), θ0,M0), as n→∞.

(6.4.4)

Combining (6.4.3) and (6.4.4) yields

lim
n→∞

1

n
log IPBF (n)(M,M0)

a.s.
= lim

n→∞

1

n

n∑
i=1

log

[
g(Y (i), θ̃,M)

g(Y (i), θ0,M0)

]
= −h∗(θ̃).

Hence, the result is proved.

Remark 32 Observe that h∗(θ̃) in Theorem 31 does not correspond to the KL-divergence

rate given by (2.A1.2), even though in the forward context, Theorem 29 shows almost

convergence of 1
n logFPBF (n) to −h(θ̃), where h(θ̃) is the bona fide KL-divergence rate.

In Theorem 31 we have assumed that for cross-validation even in the true model M0,

xi is assumed unknown, and that a prior has been placed on the corresponding unknown

random quantity x̃i. If, on the other hand, xi is considered known for cross-validation in

M0, then we we have the following theorem, which is an appropriately modified version

of Theorem 31.

Theorem 33 Assume conditions (S1)–(S7) of Shalizi for models M0 and M, and let

the infimum of h(θ) over Θ be attained at θ̃ ∈ Θ, where θ̃ 6= θ0. Also assume that

Θ and Θ0 are complete separable metric spaces and that for i ≥ 1, g(Y (i), θ,M) and

f(yi|θ, xi,Y (i−1),M0) are bounded and continuous in θ. Then the following result holds

if xi is assumed known for cross-validation with respect to M0:

1

n
log IPBF (n)(M,M0) =

1

n
log

[ ∏n
i=1 π(yi|Y n,−i,Xn,−i,M)∏n
i=1 π(yi|Y n,−i,Xn,−i,M0)

]
a.s.−→ −h∗(θ̃), as n→∞,

(6.4.5)
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where, for any θ,

h∗(θ) = lim
n→∞

1

n

n∑
i=1

log

[
f(yi|θ0, xi,Y

(i−1),M0)

g(Y (i), θ,M)

]
,

provided that the limit exists.

Proof. In this case, for the true modelM0, the cross-validation posterior π(yi|Y n,−i,Xn,−i,M0)

is of the same form as (6.2.3) and hence, (6.3.7) holds. The rest of the proof remains the

same as that of Theorem 31.

Remark 34 Observe that h∗(θ̃) in Theorem 33 is a genuine KL-divergence rate. How-

ever, this is not the same as h(θ̃) of Theorem 29, which is the KL-divergence rate between

M and M0 when all the xi are known. Since cross-validation with all xi known can

occur only in the forward regression setup, convergence rates of pseudo-Bayes factors in

inverse regression problems can never be associated with h, even though the conditions

of Theorem 33 show that θ̃ is the minimizer of h.

Theorem 35 For models M0, M1 and M2 with complete separable parameter spaces

Θ0, Θ1 and Θ2, assume conditions (S1)–(S7) of Shalizi, and for j = 1, 2, let the infimum

of hj(θ) over Θj be attained at θ̃j ∈ Θj, where θ̃j 6= θ0. Also assume that for i ≥ 1,

g(Y (i), θ,Mj); j = 1, 2, and f(yi|θ, xi,Y (i−1),M0) are bounded and continuous in θ,

Then, if xi is assumed known for cross-validation with respect to M0, the following holds:

1

n
log IPBF (n)(M1,M2) =

1

n
log

[∏n
i=1 π(yi|Y n,−i,Xn,M1)∏n
i=1 π(yi|Y n,−i,Xn,M2)

]
a.s.−→ −

[
h∗1(θ̃1)− h∗2(θ̃2)

]
, as n→∞,

(6.4.6)

where, for j = 1, 2, and for any θ,

h∗j (θ) = lim
n→∞

1

n

n∑
i=1

log

[
f(yi|θ0, xi,Y

(i−1),M0)

g(Y (i), θ,Mj)

]
, (6.4.7)
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provided the limit exists.

Proof. The proof follows by noting that

1

n
log IPBF (n)(M1,M2) =

1

n
log IPBF (n)(M1,M0)− 1

n
log IPBF (n)(M2,M0),

and then using (6.4.5) for 1
n log IPBF (n)(M1,M0) and 1

n log IPBF (n)(M2,M0).

Remark 36 Note that the result of Theorem 35 holds without the assumption that

Θ0 is complete separable and f(yi|θ, xi,Y (i−1),M0) is bounded and continuous in θ,

irrespective of whether or not xi is treated as known in the case of cross-validation with

respect to the true model M0. Indeed, assuming the rest of the conditions of Theorem

35, it holds that

1

n
log IPBF (n)(M1,M2) =

1

n
log

[∏n
i=1 π(yi|Y n,−i,Xn,−i,M1)∏n
i=1 π(yi|Y n,−i,Xn,−i,M2)

]
a.s.−→ −h∗(θ̃1, θ̃2), as n→∞,

where, for any θ1, θ2,

h∗(θ1, θ2) = lim
n→∞

1

n

n∑
i=1

log

[
g(Y (i), θ2,M2)

g(Y (i), θ1,M1)

]
,

provided that the limit exists. The proof follows in the same way as in Theorem 31

by replacing M and M0 with M1 and M2. Note that h∗(θ̃1, θ̃2) above is the same as

h∗(θ̃1)− h∗(θ̃2) of Theorem 35, but the latter is interpretable as the difference between

limiting KL-divergence rates for M1 and M2, while the former does not admit such

desirable interpretation since without the assumptions Θ0 is complete separable and

f(yi|θ, xi,Y (i−1),M0) is bounded and continuous in θ, the convergence

1

n

n∑
i=1

log π(yi|Y n,−i,Xn,−i,M0)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log f(yi|θ0, xi,Y
(i−1),M0), as n→∞,

need not hold, even if xi is considered known for cross-validation with respect to M0.
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6.5 Convergence results for PBF in inverse regression: sec-

ond setup

In the misspecified situation, θ0 /∈ Θ, and θ̃ is the minimizer of the limiting KL-divergence

rate from θ0. If θ is thus misspecified, then as m→∞, Bim(θ̃)
a.s.−→ {x∗i } for some non-

random x∗i (6= xi) depending upon both θ̃ and θ0. In other words, the prior distribution

of x̃i given θ̃ and yi concentrates around x∗i , as m→∞. We now state and prove our

result on IPBF convergence with respect to the prior (4.4.1).

Theorem 37 Assume conditions (S1)–(S7) of Shalizi. Let the infimum of h(θ) over

Θ be attained at θ̃ ∈ Θ, where θ̃ 6= θ0. Assume that θ̃ and θ0 are one-to-one functions.

Also assume that Θ and Θ0 are complete separable metric spaces and that for i ≥ 1 and

k ≥ 1, f(yik|θ, x̃i,Y
(i−1)
k ,M) and f(yik|θ, x̃i,Y

(i−1)
k ,M0) are bounded and continuous

in (θ, x̃i). Then, for prior (4.4.1) on x̃i, the following holds for any k ≥ 1:

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M,M0) = lim

m→∞
lim
n→∞

1

n
log

[ ∏n
i=1 π(yik|Y nm,−i,Xn,−i,M)∏n
i=1 π(yik|Y nm,−i,Xn,−i,M0)

]
a.s.
= −h∗(θ̃),

(6.5.1)

where

h∗(θ̃) = lim
n→∞

1

n

n∑
i=1

log

[
f(yik|θ0, xi,Y

(i−1)
k ,M0)

f(yik|θ̃, x∗i ,Y
(i−1)
k ,M)

]
,

provided that the limit exists.

Proof. It follows from (6.2.6) that π(x̃i, θ|Y nm,−i,Xn,−i,M) = π(x̃i|θ,M)π(θ|Y nm,−i,Xn,−i,M).

Hence, letting Ui × V be any neighborhood of (x∗i , θ̃), we have

π(x̃i ∈ Ui, θ ∈ V |Y nm,−i,Xn,−i,M) =

∫
V
π(x̃i ∈ Ui|θ,M)dπ(θ|Y n,−i,Xn,−i,M).

(6.5.2)

Since π(·|Y n,−i,Xn,−i,M)
w−→ δθ̃(·), as n → ∞, for any m ≥ 1, and since π(x̃i ∈

Ui|θ,M) is bounded (since it is a probability) and continuous in θ by Lemma 17, by the
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Portmanteau theorem it follows from (6.5.2) that for m ≥ 1,

π(x̃i ∈ Ui, θ ∈ V |Y nm,−i,Xn,−i,M)
a.s.−→ π(x̃i ∈ Ui|θ̃,M), as n→∞. (6.5.3)

Now, since Bim(θ̃)
a.s.−→ {x∗i } as m→∞ since θ̃ is one-to-one, it follows that there exists

m0 ≥ 1 such that for m ≥ m0, Bim(θ̃) ⊂ Ui. Hence,

π(x̃i ∈ Ui|θ̃,M)
a.s.−→ 1, as m→∞. (6.5.4)

Combining (6.5.3) and (6.5.4) yields

π(x̃i ∈ Ui, θ ∈ V |Y nm,−i,Xn,−i,M)
a.s.−→ 1, as m→∞, n→∞. (6.5.5)

From (6.5.5) it follows thanks to complete separability of X and Θ, that

π(·|Y nm,−i,Xn,−i,M)
w−→ δ(x∗i ,θ̃)

(·), as m→∞, n→∞. (6.5.6)

Since π(yik|Y nm,−i,Xn,−i,M) =
∫
X
∫

Θ f(yik|θ, x̃i,Y (i−1),M)dπ(x̃i, θ|Y nm,−i,Xn,−i,M),

and f(yik|θ, x̃i,Y (i−1),M) is bounded and continuous in (θ, x̃i), it follows using (6.5.6)

and the Portmanteau theorem, that

π(yik|Y nm,−i,Xn,−i,M)
a.s.−→ f(yik|θ̃, x∗i ,Y

(i−1)
k ,M), as m→∞, n→∞. (6.5.7)

Hence,

1

n

n∑
i=1

log π(yik|Y nm,−i,Xn,−i,M)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log f(yik|θ̃, x∗i ,Y
(i−1)
k ,M), asm→∞, n→∞.

(6.5.8)
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In the same way,

1

n

n∑
i=1

log π(yik|Y nm,−i,Xn,−i,M0)
a.s.−→ lim

n→∞

1

n

n∑
i=1

log f(yik|θ0, xi,Y
(i−1)
k ,M0), asm→∞, n→∞.

(6.5.9)

Combining (6.5.8) and (6.5.9) yields

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M,M0)

a.s.
= lim

n→∞

1

n

n∑
i=1

log

[
f(yik|θ̃, x∗i ,Y

(i−1)
k ,M)

f(yik|θ0, xi,Y
(i−1)
k ,M0)

]
= −h∗(θ̃),

thereby proving the result.

Remark 38 Theorem 37 assumes that for M0, cross-validation is carried out assuming

xi is unknown. However, as is clear from the proof, the same result continues to hold

even if xi is treated as known.

Theorem 39 For models M0, M1 and M2 with complete separable parameter spaces

Θ0, Θ1 and Θ2, assume conditions (S1)–(S7) of Shalizi and for j = 1, 2, let the infimum

of hj(θ) over Θj be attained at θ̃j ∈ Θj, where θ̃j 6= θ0. Consider the prior (4.4.1)

on x̃i and let Bim(θ̃j)
a.s.−→ {x∗ij}, for j = 1, 2. Also assume that for i ≥ 1 and k ≥ 1,

f(yik|θ, x̃i,Y (i−1),Mj); j = 1, 2, and f(yik|θ, x̃i,Y (i−1),M0) are bounded and contin-

uous in (θ, x̃i), in addition to the conditions that θ0 and θ̃j; j = 1, 2, are one-to-one.

Then, the following holds for any k ≥ 1:

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M2)

= lim
m→∞

lim
n→∞

1

n
log

[∏n
i=1 π(yik|Y nm,−i,Xn,−i,M1)∏n
i=1 π(yik|Y nm,−i,Xn,−i,M2)

]
a.s.
= −

[
h∗1(θ̃1)− h∗2(θ̃2)

]
,

(6.5.10)

where, for j = 1, 2, and for any θ,

h∗j (θ) = lim
n→∞

1

n

n∑
i=1

log

[
f(yik|θ0, xi,Y

(i−1)
k ,M0)

f(yik|θ, x∗ij ,Y
(i−1)
k ,Mj)

]
, (6.5.11)
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provided the limit exists.

Proof. The proof follows by noting that

1

n
log IPBF (n,m,k)(M1,M2) =

1

n
log IPBF (n,m,k)(M1,M0)− 1

n
log IPBF (n,m,k)(M2,M0),

and then using (6.5.1) for 1
n log IPBF (n,m,k)(M1,M0) and 1

n log IPBF (n,m,k)(M2,M0).

Remark 40 As in Remark 36 note that the result of Theorem 39 holds without the

assumption that Θ0 is complete separable and f(yik|θ, x̃i,Y (i−1),M0) is bounded and

continuous in (θ, x̃i) for k ≥ 1, irrespective of whether or not xi is treated as known for

cross-validation with respect to M0. In this case, assuming the rest of the conditions of

Theorem 39, it holds for any k ≥ 1, that

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M2)

= lim
m→∞

lim
n→∞

1

n
log

[∏n
i=1 π(yik|Y nm,−i,Xnm,−i,M1)∏n
i=1 π(yik|Y nm,−i,Xnm,−i,M2)

]
a.s.
= −h∗(θ̃1, θ̃2),

where, for any θ1, θ2,

h∗(θ1, θ2) = lim
n→∞

1

n

n∑
i=1

log

[
f(yik|θ2, x

∗
i2,Y

(i−1)
k ,M2)

f(yik|θ1, x∗i1,Y
(i−1)
k ,M1)

]
,

provided that the limit exists. As in Remark 36, again h∗(θ̃1, θ̃2) above is the same

as h∗(θ̃1) − h∗(θ̃2) of Theorem 39, although, unlike the latter, the former meed not be

interpretable as the difference between limiting KL-divergence rates for M1 and M2.
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6.6 Illustrations of PBF convergence in forward regression

problems

6.6.1 Forward linear regression model

Let

M1 : yi = α+ βxi + εi; i = 1, . . . , n, (6.6.1)

where εi ∼ N
(
0, σ2

ε

)
independently, for i = 1, . . . , n. Here θ = (α, β, σ2

ε ) is the unknown

set of parameters. Let the parameter space be Θ = R× R× R+. Clearly, Θ is complete

and separable.

Also let

M0 : yi = η0(xi) + εi; i = 1, . . . , n, (6.6.2)

where η0(x) is the true, non-linear function of x, which is also continuous, and εi ∼

N
(
0, σ2

0

)
independently, for i = 1, . . . , n. In this

Let us assume that X , the covariate space, is compact, under both M1 and M0.

Verification of the assumptions

From (6.6.1) it is clear that f(yi|θ, xi,Y (i−1),M1) = f(yi|θ, xi,M1) is bounded and

continuous in θ, and the true model f(yi|xi,Y (i−1),M0) = f(yi|xi,M0) is devoid of any

parameters. Consequently, in this case, π(yi|Y n,−i,Xn,M0) ≡ f(yi|xi,M0).

We are now left to verify the seven assumptions of Shalizi. First note from the forms of

(6.6.1) and (6.6.2) that measurability of Rn(θ) clearly holds, so that the first assumption

of Shalizi, namely, (S1) is satisfied.
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Now,

1

n
log

n∏
i=1

f(yi|θ, xi,M1) = −1

2
log 2πσ2

ε −
1

2σ2
εn

n∑
i=1

(yi − η0(xi))
2 − 1

2σ2
εn

n∑
i=1

(η0(xi)− α− βxi)2

− 1

σ2
εn

n∑
i=1

(yi − η0(xi))(η0(xi)− α− βxi). (6.6.3)

In (6.6.3),

1

n

n∑
i=1

(yi − η0(xi))
2 a.s.−→ σ2

0, as n→∞, (6.6.4)

and letting |X | denote the Lebesgue measure of the compact space X ,

1

n

n∑
i=1

(η0(xi)− α− βxi)2 → |X |−1

∫
X

(η0(x)− α− βx)2dx, as n→∞, (6.6.5)

since the former is a Riemann sum. Also, letting E0 and V0 denote the mean and variance

under model M0, we see that for all n ≥ 1,

E0

[
1

n

n∑
i=1

(yi − η0(xi))(η0(xi)− α− βxi)

]
= 0, (6.6.6)

and

∞∑
i=1

V0 [(yi − η0(xi))(η0(xi)− α− βxi)]
i2

≤ σ2
0 sup
x∈X

(η0(x)− α− βx)2
∞∑
i=1

1

i2
<∞.

(6.6.7)

From (6.6.6) and (6.6.7), it follows from Kolmogorov’s strong law of large numbers for

independent but non-identical random variables,

1

n

n∑
i=1

(yi − η0(xi))(η0(xi)− α− βxi)
a.s.−→ 0, as n→∞. (6.6.8)
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Applying (6.6.4), (6.6.5) and (6.6.8) to (6.6.3) yields

1

n
log

n∏
i=1

f(yi|θ, xi,M1)
a.s.−→ −1

2
log 2πσ2

ε −
|X |−1

2σ2
ε

∫
X

(η0(x)− α− βx)2dx, as n→∞.

(6.6.9)

Now observe that for the true model M0,

1

n
log

n∏
i=1

f(yi|xi,M0) = −1

2
log 2πσ2

0−
1

2σ2
0n

n∑
i=1

(yi−η0(xi))
2 a.s.−→ −1

2
log 2πσ2

0−
1

2
, as n→∞.

(6.6.10)

From (6.6.9) and (6.6.10) we have, for θ ∈ Θ,

1

n
logRn(θ)

a.s.−→ −h1(θ),

where

h1(θ) =
1

2
log

(
σ2
ε

σ2
0

)
+

σ2
0

2σ2
ε

+
|X |−1

2σ2
ε

∫
X

(η0(x)− α− βx)2dx− 1

2
. (6.6.11)

Hence, (S3) of Shalizi holds.

It is easy to see by taking the limits of the expectations of 1
n log

∏n
i=1 f(yi|θ, xi,M1)

and 1
n log

∏n
i=1 f(yi|xi,M0), that the following also holds:

lim
n→∞

1

n
E0 [logRn(θ)] = −h1(θ).

In other words, (S2) holds.

Note that h1(θ) <∞ almost surely if under the priors for α, β, σ2
ε , |α| <∞, |β| <∞

and 0 < σ2
ε <∞, almost surely. Hence, (S4) holds.

Let

Gn =
{
θ ∈ Θ : |α| ≤ exp (γn) , |β| ≤ exp (γn) , σ−2

ε ≤ exp (γn)
}
, (6.6.12)
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where γ > 2h (Θ). Then Gn ↑ Θ, as n→∞.

Let us assume that the prior for
(
α, β, σ−2

ε

)
is such that the prior expectations E(|α|),

E(|β|) and E(σ−2
ε ) are finite. Then under such priors, using Markov’s inequality, the

probabilities P (|α| > exp (γn)), P (|β| > exp (γn)) and P
(
σ−2
ε > exp (γn)

)
are bounded

above as follows:

P (|α| > exp (γn)) < E (|α|) exp (−γn) ; (6.6.13)

P (|β| > exp (γn)) < E (|β|) exp (−γn) ; (6.6.14)

P
(
σ−2
ε > exp (γn)

)
< E

(
σ−2
ε

)
exp (−γn) . (6.6.15)

From (6.6.12) and the inequalities (6.6.13), (6.6.14) and (6.6.15) it follows that

π(Gn) ≥ 1−
(
P (|α| > exp (γn)) + P (|β| > exp (γn)) + P (σ−2

ε > exp (γn))
)

≥ 1−
(
E (|α|) + E (|β|) + E

(
σ−2
ε

))
exp (−γn) . (6.6.16)

Thus, (S5)(1) holds.

The differential of 1
n logRn(θ) is continuous in θ, and since X is compact, it is easy

to see that the differential is almost surely bounded on any compact subset G of Θ, as

n → ∞. That is, 1
n logRn(θ) is almost surely Lipschitz, hence, equicontinuous on G.

Since 1
n logRn(θ) almost surely converges to −h1(θ) pointwise, as n→∞, it holds due

to the stochastic Ascoli lemma that

lim
n→∞

sup
θ∈G

∣∣∣∣ 1n logRn(θ) + h1(θ)

∣∣∣∣ = 0, almost surely. (6.6.17)

Since for any n ≥ 1, Gn is compact, (S5)(2) holds.

Since h1(θ) is continuous in θ, Gn is compact and h (Gn) is non-increasing in n, (S5)(3)

holds. Also, for any set A such that π(A) > 0, since Gn ∩ A increases to A, it follows

due to continuity of h1(θ) that h (Gn ∩A) decreases to h1(A), so that (S7) holds.
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Regarding verification of (S6), recall that the aim of assumption (S6) is to ensure that

(see the proof of Lemma 7 of Shalizi (2009)) for every ε > 0 and for all n sufficiently

large,
1

n
log

∫
Gn
Rn(θ)dπ(θ) ≤ −h (Gn) + ε, almost surely.

Since h (Gn)→ h (Θ) as n→∞, it is enough to verify that for every ε > 0 and for all n

sufficiently large,

1

n
log

∫
Gn
Rn(θ)dπ(θ) ≤ −h (Θ) + ε, almost surely.

In other words, it is sufficient to verify that

lim sup
n→∞

1

n
log

∫
Gn
Rn(θ)π(θ)dθ ≤ −h (Θ) , almost surely. (6.6.18)

Theorem 55 stated and proved in Appendix 6.A1 provides sufficient conditions for (6.6.18)

to hold in general with proper priors on the parameters. We now make use of Theorem

55 of Appendix 6.A1 to validate (S6) of Shalizi. For any function g(x) on X , let us

consider the notation

EX [g(X)] = |X |−1

∫
X
g(x)dx. (6.6.19)

Note that (6.6.19) is indeed the expectation of g(X) with respect to the uniform

distribution on the compact set X .

Now observe that h1(θ) is uniquely minimized by

β̃ =
EX [(X − EX(X))(η0(X)− E(η0(X)))]

EX(X − EX(X))2
; (6.6.20)

α̃ = EX(η0(X))− β̃EX(X); (6.6.21)

σ̃2
ε = σ2

0 + EX

(
η0(X)− α̃− β̃X

)2
. (6.6.22)

Now, letting x̄n =
∑n
i=1 xi
n , ȳn =

∑n
i=1 yi
n and η̄0n =

∑n
i=1 η0(xi)

n , we see that 1
n logRn(θ) is
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maximized at

β̃∗n =

∑n
i=1(yi − ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2
; (6.6.23)

α̃∗n = ȳn − β̃∗nx̄n; (6.6.24)

σ̃∗
2
n =

1

n

[
n∑
i=1

(yi − η0(xi))
2 +

n∑
i=1

(
η0(xi)− α̃∗n − β̃∗nxi

)2

+2

n∑
i=1

(yi − η0(xi))
(
η0(xi)− α̃∗n − β̃∗nxi

)]
. (6.6.25)

Using Kolmogorov’s strong law of large numbers and Riemann sum convergence, we see

that

β̃∗n
a.s.−→ β̃, (6.6.26)

where β̃ is given by (6.6.20).

By (6.6.26), and since ȳn
a.s.−→ EX(η0(X)), x̄n → EX(X), it follows that

α̃∗n
a.s.−→ α̃, (6.6.27)

where α̃ is given by (6.6.21).

For the convergence of σ̃∗
2
n given by (6.6.25), first observe that the first term on the

right hand side of (6.6.25) converges almost surely to σ2
0. The i-th term of the second

term on the right hand side converges to (η0(xi)− α̃− β̃xi)2 almost surely, so that the

second term converges to EX(η0(X) − α̃ − β̃X)2. The i-th term of the third term on

the right hand side converges almost surely to 2(yi − η0(xi))(η0(xi)− α̃− β̃xi), so that

the third term converges to zero almost surely due to (6.6.8). It follows that

σ̃∗
2
n
a.s.−→ σ̃2

ε , (6.6.28)
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where σ̃2
ε is given by (6.6.22). Combining (6.6.26), (6.6.27) and (6.6.28) yields

θ̃∗n =
(
α̃∗n, β̃

∗
n, σ̃

∗2
n

)
a.s.−→

(
α̃, β̃, σ̃2

ε

)
= θ̃, as n→∞. (6.6.29)

In other words, we have shown that conditions (i) and (ii) of Theorem 55 hold. Since

we have already shown pointwise almost sure convergence of 1
n logRn(θ) to −h1(θ) in

the context of verifying (S3) and stochastic equicontinuity of 1
n logRn(θ) on compact

subsets of Θ in the context of verifying (S5)(2), all the conditions of Theorem 55 go

through with proper prior for θ. Hence (6.6.18), and consequently, (S6), holds.

With these, it is seen that the conditions of Theorem 29 are satisfied, which leads to

the following specialized version of the theorem:

Theorem 41 Consider the linear regression model M1 given by (6.6.1) and the true,

non-linear model M0 given by (6.6.2). Assume the parameter space Θ associated with

model M1 be R × R × R+, and let the covariate space X be compact. Then (6.3.1)

holds for 1
n logFPBF (n)(M1,M0), where for θ ∈ Θ, h(θ) = h1(θ) is given by (6.6.11),

and θ̃ =
(
α̃, β̃, σ̃2

ε

)
, where α̃, β̃ and σ̃2

ε are given by (6.6.21), (6.6.20) and (6.6.22),

respectively.

6.6.2 Forward quadratic regression model

Now consider the following model on quadratic regression which may be regarded as a

competitor to linear regression:

M2 : yi = α+ β1xi + β2x
2
i + εi; i = 1, . . . , n, (6.6.30)

where εi ∼ N
(
0, σ2

ε

)
independently, for i = 1, . . . , n. Here θ = (α, β1, β2, σ

2
ε ) is the

unknown set of parameters, and the parameter space is Θ = R× R× R× R+.

In this case,
1

n
logRn(θ)

a.s.−→ −h2(θ),
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where

h2(θ) =
1

2
log

(
σ2
ε

σ2
0

)
+

σ2
0

2σ2
ε

+
|X |−1

2σ2
ε

∫
X

(η0(x)− α− β1x− β2x
2)2dx− 1

2
. (6.6.31)

It is easy to see that h2(θ) is uniquely minimized at ϑ̃ = (α̃, β̃1, β̃2), given by

ϑ̃ = A−1b, (6.6.32)

where

A =


1 EX(X) EX(X2)

EX(X) EX(X2) EX(X3)

EX(X2) EX(X3) EX(X4)

 and b =


EX(η0(X))

EX(Xη0(X))

EX(X2η0(X))

 , (6.6.33)

and

σ̃2
ε = σ2

0 + EX

(
η0(X)− α̃− β̃1X − β̃1X

2
)2
. (6.6.34)

That A in (6.6.33) is invertible, will be shown shortly.

The maximizer of 1
n logRn(θ) here is given by the least squares estimators ϑ̃∗n =

(α̃∗n, β̃
∗
1n, β̃

∗
2n) given by

ϑ̃∗n = A−1
n bn, (6.6.35)

where

An = n−1


n

∑n
i=1 xi

∑n
i=1 x

2
i∑n

i=1 xi
∑n

i=1 x
2
i

∑n
i=1 x

3
i∑n

i=1 x
2
i

∑n
i=1 x

3
i

∑n
i=1 x

4
i

 and bn = n−1


∑n

i=1 η0(xi)∑n
i=1 xiη0(xi)∑n
i=1 x

2
i η0(xi)

 ,

(6.6.36)
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and

σ̃∗
2
n =

1

n

[
n∑
i=1

(yi − η0(xi))
2 +

n∑
i=1

(
η0(xi)− α̃∗n − β̃∗1nxi − β̃∗2nx2

i

)2

+2
n∑
i=1

(yi − η0(xi))
(
η0(xi)− α̃∗n − β̃∗1nxi − β̃∗2nx2

i

)]
. (6.6.37)

Now note that An in (6.6.36) corresponds to the so-called Vandermonde design matrix

(see, for example, Macon and Spitzbart (1958)) associated with the least squares quadratic

regression. The design matrix if of full rank if all the xi are distinct, which we assume.

Hence, for all n ≥ 3, An is invertible, which makes the least squares estimators ϑ̃∗n, given

by (6.6.35), well-defined, for all n ≥ 3. Now observe that by Riemann sum convergence,

An
a.s.−→ A, as n→∞, and (6.6.38)

bn
a.s.−→ b, as n→∞. (6.6.39)

Since An is invertible for every n ≥ 3, A must also be invertible, since (6.6.38) holds.

Hence, ϑ̃ given by (6.6.32), is well-defined.

Now, thanks to (6.6.38) and (6.6.39), we have

ϑ̃∗n
a.s.−→ ϑ̃, as n→∞,

and also in the same way as for model M1, here also,

σ̃∗
2
n
a.s.−→ σ̃2

ε , as n→∞.

In other words,

θ̃∗n
a.s.−→ θ̃, as n→∞,

even for model M2.



199
6.6. ILLUSTRATIONS OF PBF CONVERGENCE IN FORWARD REGRESSION

PROBLEMS

For this quadratic regression model, let

Gn =
{
θ ∈ Θ : |α| ≤ exp (γn) , |β1| ≤ exp (γn) , |β2| ≤ exp (γn) , σ−2

ε ≤ exp (γn)
}
,

where γ > 2h (Θ). Then Gn ↑ Θ, as n→∞, and the rest of the assumptions of Shalizi are

easily seen to be satisfied. The condition of boundedness and continuity of f(yi|θ, xi,M2)

are also clearly satisfied.

We summarize our results on FPBF consistency in favour of M0 when the data is

modeled by M2 as follows.

Theorem 42 Consider the quadratic regression model M2 given by (6.6.30) and the

true, non-linear model M0 given by (6.6.2). Assume the parameter space Θ associated

with model M2 be R × R × R × R+, and let the covariate space X be compact. Also

assume that xi; i ≥ 1 are all distinct. Then (6.3.1) holds for 1
n logFPBF (n)(M2,M0),

where for θ ∈ Θ, h(θ) = h2(θ) is given by (6.6.31), and θ̃ =
(
α̃, β̃1, β̃2, σ̃

2
ε

)
, where α̃, β̃1,

β̃2 and σ̃2
ε are given by (6.6.32) and (6.6.34).

6.6.3 Asymptotic comparison of forward linear and quadratic models

with FPBF

Theorems 41 and 42 show almost sure exponential convergence of FPBF in favour of

the true model M0 given by (6.6.2) when the postulated models are either the forward

linear or quadratic regression model. Now, if the goal is to make asymptotic comparison

between the linear and quadratic regression models, then the aforementioned theorems

ensure the following result:

Theorem 43 Let the true model be given by M0 formulated in (6.6.2). Assuming that

the covariate observations xi; i ≥ 1 are all distinct and that the covariate space X is

compact, consider comparison of the linear and quadratic regression models M1 and M2

given by (6.6.1) and (6.6.30), respectively. Let θ̃1 and θ̃2 be the unique minimizers of h1
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and h2. Then,

1

n
logFPBF (n)(M1,M2)

a.s.−→ −
(
h1(θ̃1)− h2(θ̃2)

)
, as n→∞.

6.6.4 FPBF asymptotics for variable selection in autoregressive time

series regression

Let us consider the following first order autoregressive (AR(1)) time series linear regression

as model M1:

yt = ρ1yt−1 + β1xt + ε1t; t = 1, . . . , n, (6.6.40)

where y0 ≡ 0 xt; t = 1, . . . , n are covariate observations associated with variable x

and ε1t
iid∼ N

(
0, σ2

1

)
. Here θ1 =

(
ρ1, β1, σ

2
1

)
is the set of unknown parameters and

Θ1 = R× R× R+ is the parameter space. We might wish to compare this model with

another AR(1) regression model with covariate z different from x. This model, which

we refer to as M2, is given as follows:

yt = ρ2yt−1 + β2zt + ε2t; t = 1, . . . , n, (6.6.41)

where y0 ≡ 0 zt; t = 1, . . . , n are observations associated with covariate z different from x

and θ2 =
(
ρ2, β2, σ

2
2

)
is the set of parameters and the parameter space Θ2 = R×R×R+

remains the same as Θ1. Here, for t = 1, . . . , n, ε2t
iid∼ N

(
0, σ2

2

)
. Let the true model M0

be given by

yt = ρ0yt−1 + β0(xt + zt) + ε0t; t = 1, . . . , n, (6.6.42)

where |ρ0| < 1 and ε0t
iid∼ N

(
0, σ2

0

)
, for t = 1, . . . , n.

Our goal in this example is to compare modelsM1 andM2 using FPBF. Note that if

we use the same priors for θ1 and θ2, this boils down to selection of either covariate x or

z in the AR(1) regression. Hence, variable selection constitutes an important ingredient

in this FPBF convergence example. Note that both the models M1 and M2 are wrong
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with respect to the true model M0 which consists of both x and z. The purpose of

variable selection here is then to select the more important variable among x and z when

none of the available models considers both x and z.

We make the following assumptions that are analogous to the AR(1) regression

example considered in Chandra and Bhattacharya (2020a):

(A1)

1

n

n∑
t=1

xt → 0,
1

n

n∑
t=1

zt → 0;

1

n

n∑
t=1

xtzt → 0;
1

n

n∑
t=1

xt+kzt → 0;
1

n

n∑
t=1

xtzt+k → 0 for any k ≥ 1;

1

n

n∑
t=1

xt+kxt → 0 and
1

n

n∑
t=1

zt+kzt → 0 for any k ≥ 1;

1

n

n∑
t=1

x2
t → σ2

x and
1

n

n∑
t=1

z2
t → σ2

z ,

as n→∞. In the above, σ2
x and σ2

z are positive quantities.

(A2) sup
t≥1
|xtβ0| < C and sup

t≥1
|ztβ0| < C, for some C > 0.

Let 1
n logR

(1)
n (θ) and 1

n logR
(2)
n (θ) stand for 1

n logRn(θ) for modelsM1 andM2, respec-

tively. Also let σ2
x+z = σ2

x + σ2
z . Then proceeding in the same way as in Chandra and

Bhattacharya (2020a) it can be shown that

lim
n→∞

1

n
logR(1)

n (θ)
a.s.
= −h1(θ), for all θ ∈ Θ1; (6.6.43)

lim
n→∞

1

n
logR(2)

n (θ)
a.s.
= −h2(θ), for all θ ∈ Θ2, (6.6.44)

and the above convergences are uniform on compact subsets of Θ1 and Θ2, respectively.
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In the above,

h1(θ) = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

(
ρ2

2σ2
− ρ2

0

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

1

2σ2
β2σ2

x+z−
1

2σ2
0

β2
0σ

2
x+z−

(
ρ

σ2
− ρ0

σ2
0

)(
ρ0σ

2
0

1− ρ2
0

+
ρ0β

2
0σ

2
x+z

1− ρ2
0

)
−
(
β

σ2
− β0

σ2
0

)
σ2
x+zβ0+

σ2
zβ(2β0 − β)

2σ2
.

(6.6.45)

and

h2(θ) = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

(
ρ2

2σ2
− ρ2

0

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

1

2σ2
β2σ2

x+z−
1

2σ2
0

β2
0σ

2
x+z−

(
ρ

σ2
− ρ0

σ2
0

)(
ρ0σ

2
0

1− ρ2
0

+
ρ0β

2
0σ

2
x+z

1− ρ2
0

)
−
(
β

σ2
− β0

σ2
0

)
σ2
x+zβ0+

σ2
xβ(2β0 − β)

2σ2
.

(6.6.46)

For i = 1, 2, for model Mi, let

G(i)
n =

{
θ ∈ Θi : |ρ| ≤ exp (γin) , |β| ≤ exp (γin) , σ−2

ε ≤ exp (γin)
}
, (6.6.47)

where γi > 2hi (Θi). Then G(i)
n ↑ Θi, as n → ∞. Let us assume that under both M1

and M2, the prior for
(
ρ, β, σ−2

ε

)
is such that the prior expectations E(|ρ|), E(|β|) and

E(σ−2
ε ) are finite.

With these, conditions (S1)–(S5) and (S7) of Shalizi hold for M1 and M2 in the

same way as the AR(1) regression example of Chandra and Bhattacharya (2020a). Thus

verification of (S6) only remains, for which we begin with the following result.

Theorem 44 The functions 1
n logR

(1)
n (θ) and 1

n logR
(2)
n (θ) are asymptotically concave

in θ.

Proof. The proof follows in the same line as that of Theorem 17 of Chandra and

Bhattacharya (2020a).
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It is also easy to see that both h1(θ) and h2(θ) given by (6.6.45) and (6.6.46) are

convex in θ. Hence, there exist unique minimizers θ̃1 and θ̃2, respectively, of h1 and h2.

Theorem 45 shows consistency of the unique roots of 1
n logR

(1)
n (θ) and 1

n logR
(2)
n (θ) for

θ̃1 and θ̃2, respectively.

Theorem 45 Given any η > 0, 1
n logR

(1)
n (θ) and 1

n logR
(2)
n (θ) have their unique roots

in the η-neighbourhood of θ̃1 and θ̃2, respectively, almost surely, for large n.

Proof. See Appendix 6.A2.

For i = 1, 2, let θ̃
(i)
n stand for the unique maximizer of 1

n logR
(i)
n (θ). By Theorem 45

θ̃(i)
n

a.s.−→ θ̃(i), for i = 1, 2,

which, in turn implies thanks to Theorem 55, that (6.6.18), and hence (S6) of Shalizi,

holds for both M1 and M2.

In other words, models M1 and M2 satisfy conditions (S1)–(S7) of Shalizi. We

summarize below our results on variable selection in forward AR(1) regression framework.

Theorem 46 (FPBF consistency for M1 versus M0) Consider the AR(1) regres-

sion models M1 and M0 given by (6.6.40) and (6.6.42). Then under assumptions (A1)

and (A2),

lim
n→∞

1

n
logFPBF (n)(M1,M0)

a.s.
= −h1(θ̃1),

where h1 is given by (6.6.45) and θ̃1 is its unique minimizer.

Theorem 47 (FPBF consistency for M2 versus M0) Consider the AR(1) regres-

sion models M2 and M0 given by (6.6.41) and (6.6.42). Then under assumptions (A1)

and (A2),

lim
n→∞

1

n
logFPBF (n)(M2,M0)

a.s.
= −h2(θ̃2),

where h1 is given by (6.6.46) and θ̃2 is its unique minimizer.
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Theorem 48 (FPBF convergence for M1 versus M2) Consider the AR(1) regres-

sion models M1 and M2 given by (6.6.40) and (6.6.41) and the true model M0 given

by (6.6.42). Then under assumptions (A1) and (A2),

lim
n→∞

1

n
logFPBF (n)(M1,M2)

a.s.
= −

(
h1(θ̃1)− h2(θ̃2)

)
,

where h1 and h2 are given by (6.6.45) and (6.6.46) and θ̃1 and θ̃2 are their respective

unique minimizers.

6.7 Illustrations of PBF convergence in inverse regression

problems

First note that if f(yi|θ, x̃i,Y (i−1),M) is bounded and continuous in (θ, x̃i), then in

inverse regression setups, g(yi, θ,M) is bounded and continuous in θ if π(x̃i|θ,M) is

bounded and continuous in (θ, x̃i). Here continuity of g(Y (i), θM) follows by the domi-

nated convergence theorem. Thus, whenever f(yi|θ, xi,Y (i−1),M0) are also bounded and

continuous in θ and conditions (S1)–(S7) of Shalizi are verified, almost sure exponential

convergence of IPBF also hold, provided that h∗(θ̃) exists. But existence of h∗(θ̃) requires

existence of the limit of n−1
∑n

i=1 g(Y (i), , θ̃,M). Although this is expected to exist, it

is not straightforward to guarantee this rigorously for general regression problems.

However, in practice, simple approximations may be used. For example, if M stands

for simple linear regression, then let us consider a uniform prior for x̃i on X = [−a, a],

for some a > 0. Then

g(Y (i), θ,M) =

∫ a

−a

1

σε
√

2π
exp

{
− 1

2σ2
ε

(yi − α− βx̃i)2

}
dx̃i

a.s.−→ |β|−1, as a→∞.

Thus for sufficiently large a, g(Y (i), θ̃,M) can be approximated by |β̃|−1, which is

independent of i. Thus, for large enough a, the limit of n−1
∑n

i=1 log g(Y (i), θ̃,M) can be
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approximated by |β|−1. But in general non-linear regression, such simple approximations

are not available.

The setup where yi = {yi1, . . . , yim}, is far more flexible in this regard. Let us

illustrate this with respect to the models M0, M1 and M2 considered in Section 6.6.

Assuming invertibility of η0 in addition to continuity, we assume the prior

π(x̃i|η0,M0) ≡ U
(
B

(0)
im (η0)

)
(6.7.1)

under model M0, where

B
(0)
im (η0) =

{
x : η0(x) ∈

[
ȳi −

csi√
m
, ȳi +

csi√
m

]}
. (6.7.2)

In the case of the linear regression model M1 , we set

π(x̃i|θ,M1) ≡ U
(
B

(1)
im (θ)

)
(6.7.3)

where

B
(1)
im (θ) =

[
ȳi − α
β
− csi
|β|
√
m
,
ȳi − α
β

+
csi
|β|
√
m

]
. (6.7.4)

For the quadratic model M2, note that even if the true model is quadratic, then it is

not one-to-one. Hence the general form of the prior considered in Section 4.4 is not

applicable here. In this case, we propose the following prior for x̃i under the quadratic

model M2:

π(x̃i|θ,M2) ≡ U
(
B

(2)
im (θ)

)
(6.7.5)

where

B
(2)
im (θ) =

[
ȳi − α− β2x

2
i

β1
− csi
|β1|
√
m
,
ȳi − α− β2x

2
i

β1
+

csi
|β1|
√
m

]
. (6.7.6)

Note that the prior depends upon xi itself, which is the truth in this case. It is unusual in
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Bayesian inference to make the prior depend upon the truth. Indeed, the true parameter

is always unknown; had it been known, then one would give full prior probability to the

true parameter. In our case xi is actually known but a prior is needed for x̃i for the sake

of cross-validation. Moreover, the prior does not consider x̃i to be known as long as the

sample sizes n and m remain finite and θ is unknown or takes false values. The prior

has substantial variance in these cases. Hence, although unusual, such a prior on x̃i is

not untenable for inverse cross-validation.

Now observe that θ̃1 and θ̃2 associated with models M1 and M2 remain the same

as those in Section 6.6. Also note that when the true model is M0 and when θ̃1 is

associated with M1, then

B
(1)
im (θ̃1)

a.s.−→ {x∗i1} , as m→∞,

where

x∗i1 =
η0(xi)− α̃

β̃
. (6.7.7)

Similarly, when the true model is M0 and when θ̃2 is associated with M2, then

B
(2)
im (θ̃2)

a.s.−→ {x∗i2} , as m→∞,

where

x∗i2 =
η0(xi)− α̃− β̃2x

2
i

β̃1

. (6.7.8)

Let X1 and X2 be the co-domains of η0(x)−α̃
β̃

and η0(x)−α̃−β̃2x2

β̃1
for x ∈ X . Since these func-

tions are both continuous in x, the asymptotic calculations of 1
n log

∏n
i=1 f(yik|θ̃1, x

∗
i1,M1)

and 1
n log

∏n
i=1 f(yik|θ̃1, x

∗
i2,M2) remain the same as 1

n log
∏n
i=1 f(yi|θ̃1, xi,M1) and

1
n log

∏n
i=1 f(yi|θ̃1, xi,M2), respectively, detailed in Section 6.6, with X replaced with

X1 and X2, respectively. Hence, the final asymptotic results for IPBF remain the same

for FPBF with respect to the modelsM0,M1 andM2, only with X replaced by X1 and
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X2, respectively. Also note that here the cross-validation posterior for M0 is given by

π (yik|Y nm,−i,Xn,−i) =

∫
X
f(yik|x̃i,M0)dπ(x̃i|M0)

a.s.−→ f(yik|xi), as m→∞,

since B
(0)
im (η0)

a.s.−→ {xi}, as m→∞. Hence, the final asymptotic results do not depend

upon whether or not xi is considered known or the prior π(x̃i|η0,M0) is used treating it

as unknown, when cross-validating for M0. Appealing to Theorem 37, Remark 38 and

Theorem 39 we thus summarize our results for IPBF concerning M0, M1 and M2 as

follows.

Theorem 49 (IPBF convergence for linear regression) Assume the setup where

data {yij ; i = 1, . . . , n; j = 1, . . . ,m} are available. In this setup consider the linear

regression model M1 given by (6.6.1) and the true, non-linear model M0 given by

(6.6.2). Let the parameter space Θ associated with model M1 be R× R× R+, and let

the covariate space X be compact. Assume the priors (6.7.1) and (6.7.3) on x̃i under

the models M0 and M1, respectively. Then

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M0)

a.s.
= −h1(θ̃1),

where for θ ∈ Θ, h1(θ) is given by (6.6.11) with X replaced by X1, and θ̃1 =
(
α̃, β̃, σ̃2

ε

)
,

where α̃, β̃ and σ̃2
ε are given by (6.6.24), (6.6.23) and (6.6.25), respectively. The result

remains unchanged if xi is treated as known for cross-validation with respect to M0.

Theorem 50 (IPBF convergence for quadratic regression) Assume the setup where

data {yij ; i = 1, . . . , n; j = 1, . . . ,m} are available. In this setup consider the quadratic

regression model M2 given by (6.6.30) and the true, non-linear model M0 given by

(6.6.2). Let the parameter space Θ associated with model M2 be R× R× R× R+, and

let the covariate space X be compact. Also assume that xi; i ≥ 1 are all distinct. Assume
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the priors (6.7.1) and (6.7.5) on x̃i under the models M0 and M2, respectively. Then

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M2,M0)

a.s.
= −h2(θ̃2),

where for θ ∈ Θ, h2(θ) is given by (6.6.31) with X replaced by X2, and θ̃2 =
(
α̃, β̃1, β̃2, σ̃

2
ε

)
,

where α̃, β̃1, β̃2 and σ̃2
ε are given by (6.6.32), (6.6.33) and (6.6.34). The result remains

unchanged if xi is treated as known for cross-validation with respect to M0.

Theorem 51 (Comparison between linear and quadratic regressions) Assume

the setup where data {yij ; i = 1, . . . , n; j = 1, . . . ,m} are available. Let the true model be

given byM0 formulated in (6.6.2). Assuming that the covariate observations xi; i ≥ 1 are

all distinct and that the covariate space X is compact, consider comparison of the linear

and quadratic regression models M1 and M2 given by (6.6.1) and (6.6.30), respectively,

using IPBF. Assume the priors (6.7.1), (6.7.3) and (6.7.5) on x̃i under the models M0,

M1 and M2, respectively. Then,

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M2)

a.s.
= −

(
h1(θ̃1)− h2(θ̃2)

)
where h1(θ̃1) and h2(θ̃2) are the same as in Theorems 49 and 50, with X replaced by

X1 and X2, respectively. The result remains unchanged if x̃i is treated as known for

cross-validation with respect to M0.

6.7.1 IPBF asymptotics for variable selection in AR(1)

Now let us reconsider the AR(1) regression setup described by the competing models

M1 (6.6.40), M2 (6.6.41) and the true modelM0 (6.6.42), along with assumptions (A1)

and (A2). But now we reformulate the models as follows to suit the second setup of

inverse regression.

ytj = ρ1yt−1,j + β1xt + ε1t,j ; t = 1, . . . , n; j = 1, . . . ,m, (6.7.9)
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where y0j ≡ 0 for j = 1, . . . ,m and ε1t,j
iid∼ N

(
0, σ2

1

)
, for t = 1, . . . , n and j = 1, . . . ,m.

Similarly, M2 is now given by

ytj = ρ2yt−1,j + β2zt + ε2t,j ; t = 1, . . . , n; j = 1, . . . ,m, (6.7.10)

where ε2t,j
iid∼ N

(
0, σ2

2

)
, for t = 1, . . . , n and j = 1, . . . ,m.

The true model M0 be given by

ytj = ρ0yt−1,j + β0(xt + zt) + ε0t,j ; t = 1, . . . , n; j = 1, . . . ,m, (6.7.11)

where |ρ0| < 1 and ε0t,j
iid∼ N

(
0, σ2

0

)
, for t = 1, . . . , n and j = 1, . . . ,m.

For t = 1, . . . , n, let ȳt =
∑m
j=1 ytj
m and s2

t (ρ) = 1
m [(ytj − ȳt)− ρ(yt−1,j − ȳt−1)]2. We

consider the following priors for x̃t and z̃t associated with M1 and M2:

π(x̃t|θ1,M1) ≡ U
(
B

(1)
tm (θ1)

)
; (6.7.12)

π(z̃t|θ2,M2) ≡ U
(
B

(2)
tm (θ1)

)
, (6.7.13)

where

B
(1)
tm (θ1) =

[
ȳt − ρ1ȳt−1

β1
− cst(ρ1)

|β1|
√
m
,
ȳt − ρ1ȳt−1

β1
+
cst(ρ1)

|β1|
√
m

]
; (6.7.14)

B
(2)
tm (θ2) =

[
ȳt − ρ2ȳt−1

β2
− cst(ρ2)

|β2|
√
m
,
ȳt − ρ2ȳt−1

β2
+
cst(ρ2)

|β2|
√
m

]
. (6.7.15)

Note that

B
(1)
tm (θ̃1)

a.s.−→ {x∗t } as m→∞; (6.7.16)

B
(2)
tm (θ̃2)

a.s.−→ {z∗t } as m→∞, (6.7.17)
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where

x∗t =
β0
∑t

k=1 ρ
t−kxk − β0ρ̃1

∑t−1
k=1 ρ

t−k
0 xk

β̃1

; (6.7.18)

z∗t =
β0
∑t

k=1 ρ
t−kzk − β0ρ̃2

∑t−1
k=1 ρ

t−k
0 zk

β̃2

. (6.7.19)

Direct calculations reveal that

1

n

n∑
t=1

x∗t → 0;
1

n

n∑
t=1

x∗t
2 → σ2

x∗ = σ2
x

β2
0(1− ρ̃1)2

β̃2
1(1− ρ2

0)
, as n→∞; (6.7.20)

1

n

n∑
t=1

z∗t → 0;
1

n

n∑
t=1

z∗t
2 → σ2

z∗ = σ2
z

β2
0(1− ρ̃2)2

β̃2
2(1− ρ2

0)
, as n→∞. (6.7.21)

Hence, for the final IPBF calculations associated with h1 and h2 for this example, we

need to replace xt, zt, σ
2
x and σ2

z in (A1) with x∗t , z
∗
t , σ

2
x∗ and σ2

z∗ , respectively, for

models M1 and M2. In this regard, let

h∗1(θ) = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

(
ρ2

2σ2
− ρ2

0

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

1

2σ2
β2σ2

x+z −
1

2σ2
0

β2
0σ

2
x+z −

(
ρ

σ2
− ρ0

σ2
0

)(
ρ0σ

2
0

1− ρ2
0

+
ρ0β

2
0σ

2
x+z

1− ρ2
0

)
−
(
β

σ2
− β0

σ2
0

)
σ2
x+zβ0

+
σ2
zβ(β0 − β)

σ2
+

β2

2σ2

(
σ2
x+z + σ2

x∗ −
2β0σ

2
x

β̃1

)
. (6.7.22)

and

h∗2(θ) = log

(
σ

σ0

)
+

(
1

2σ2
− 1

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

(
ρ2

2σ2
− ρ2

0

2σ2
0

)(
σ2

0

1− ρ2
0

+
β2

0σ
2
x+z

1− ρ2
0

)
+

1

2σ2
β2σ2

x+z −
1

2σ2
0

β2
0σ

2
x+z −

(
ρ

σ2
− ρ0

σ2
0

)(
ρ0σ

2
0

1− ρ2
0

+
ρ0β

2
0σ

2
x+z

1− ρ2
0

)
−
(
β

σ2
− β0

σ2
0

)
σ2
x+zβ0

+
σ2
xβ(β0 − β)

σ2
+

β2

2σ2

(
σ2
x+z + σ2

z∗ −
2β0σ

2
z

β̃2

)
. (6.7.23)

If cross-validation is considered with respect to the true model M0 with a prior on
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the covariates, then since xt and zt are not separately identifiable inM0, let ut = xt + zt

and consider a prior on ũt as follows:

π(ũt|θ0,M0) ≡ U
(
B

(0)
tm (θ0)

)
, (6.7.24)

where

B
(0)
tm (θ0) =

[
ȳt − ρ0ȳt−1

β0
− cst(ρ0)

|β0|
√
m
,
ȳt − ρ1ȳt−1

β0
+
cst(ρ0)

|β0|
√
m

]
. (6.7.25)

Note that B
(0)
tm (θ0)

a.s.−→ {ut}, as m → ∞. Let Un,−t = {u1, . . . , un}\{ut}. As before,

it follows that π (ytk|Y nm,−t,Un,−t)
a.s.−→ f(ytk|ut, yt−1,k), as m → ∞. Hence, the final

asymptotic results do not depend upon whether or not ut is considered known or the

prior (6.7.24) is used for ũt treating ut it as unknown, when cross-validating for the true

model M0.

We summarize our results on variable selection in the inverse AR(1) regression

framework as follows.

Theorem 52 (IPBF consistency for M1 versus M0) Consider comparing model

M1 (6.7.9) against the true modelM0 (6.7.11). Assume the priors (6.7.12) and (6.7.24)

on x̃t and ũt under the models M1 and M0, respectively. Then

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M0)

a.s.
= −h∗1(θ̃1),

where for θ ∈ Θ1, h∗1(θ) is given by (6.7.22), and θ̃1 is the unique minimizer of h1 given

by (6.6.45). The result remains unchanged if ut is treated as known for cross-validation

with respect to M0.

Theorem 53 (IPBF consistency for M2 versus M0) Consider comparing model

M2 (6.7.10) against the true model M0 (6.7.11). Assume the priors (6.7.13) and
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(6.7.24) on z̃t and ũt under the models M2 and M0, respectively. Then

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M0)

a.s.
= −h∗2(θ̃2),

where for θ ∈ Θ2, h∗2(θ) is given by (6.7.23), and θ̃2 is the unique minimizer of h2 given

by (6.6.46). The result remains unchanged if ut is treated as known for cross-validation

with respect to M0.

Theorem 54 (IPBF convergence for M1 versus M2) Consider comparing models

M1 (6.7.9) against model M2 (6.7.10). Assume the priors (6.7.12) and (6.7.13) on x̃t

and z̃t under the models M1 and M2, respectively. Then

lim
m→∞

lim
n→∞

1

n
log IPBF (n,m,k)(M1,M2)

a.s.
= −

(
h∗1(θ̃1)− h∗2(θ̃2)

)
,

where h∗1 and h∗2 are given by (6.7.22) and (6.7.23). In the above, θ̃1 and θ̃2 are the

unique minimizers of h1 of h2 given by (6.6.45) and (6.6.46), respectively. The result

remains unchanged if ut is treated as known for cross-validation with respect to M0.

6.7.2 Discussion of FPBF and IPBF convergence for nonparametric

regression models

In Chapter 2 investigate posterior convergence for Gaussian and general stochastic

process regression under suitable assumptions while posterior convergence for binary and

Poisson nonparametric regression based on Gaussian process modeling of the regression

function are addressed in Chapter 3. In all these nonparametric setups, we verified

assumptions (S1)–(S7) of Shalizi. Here it is important to point out that Theorem

55 used to verify assumption (S6) of Shalizi in our parametric setups, is not valid in

infinite-dimensional nonparametric models since without further assumptions on model

sparsity, θ̃∗n can not converge to θ̃. That is, condition (ii) of Theorem 55 does not hold

in general for nonparametric models. Moreover, enforcing sparsity conditions to general
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stochastic processes, such as Gaussian processes, need not be desirable. Chapter 2

(see also Chapter 3) introduces a general sufficient condition for verification of (S6) of

Shalizi, which is appropriate for nonparametric models, and we use that condition for

our purposes.

The point of the above discussion is that assumptions (S1)–(S7) are already verified in

Chapters 2 and 3 for nonparametric Bayesian regression models, and since boundedness

and continuity of f(yi|θ,M) also hold for such models M, our asymptotic results on

almost sure exponential convergence of FPBF and IPBF are directly applicable to such

models. For IPBF convergence in nonparametric situations, the priors for x̃i proposed

in Section 4.4.1 for nonparametric cases (ii)–(iv) are appropriate.

Note that parametric and nonparametric models can also be compared asymptotically

using our FPBF and IPBF theory.

6.8 Simulation experiments

So far we have investigated large sample properties of FPBF and IPBF. However, for all

practical purposes it is important to provide insights into small sample behaviours of such

versions of pseudo-Bayes factor. In this section we undertake such small sample study

with the help of simulation experiments. Specifically, we set n = m = 10 and generate

data from relevant Poisson distribution with the log-linear link function and consider

modeling the data with Poisson and geometric distributions with log, logit and probit

links for linear models as well as nonparametric regression modeled by Gaussian process

having linear mean function and squared exponential covariance. We also consider

variable selection in these setups with respect to two different covariates. We report

both FPBF and IPBF results for the experiments. Details follow.
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6.8.1 Poisson versus geometric linear and nonparametric regresison

models when the true model is Poisson linear regression

True distribution

Let us first consider the case where the true data-generating distribution is yij ∼

Poisson(λ(xi)), with λ(x) = exp(α0 + β0x). We generate the data by simulating

α0 ∼ U(−1, 1), β0 ∼ U(−1, 1) and xi ∼ U(−1, 1); i = 1, . . . , n, and then finally

simulating yij ∼ Poisson(λ(xi)); j = 1, . . . ,m, i = 1, . . . , n.

To model the data generated from the true distribution, we consider both Poisson

and geometric distributions and both linear and Gaussian process based nonparametric

regression for such models. Let us begin with the Poisson setup.

6.8.2 Competing forward and inverse Poisson regression models

Forward Poisson linear regression model

In this setup we model the data as follows: yij ∼ Poisson(λ(xi)), with λ(x) = exp(α+

βx), and set the prior π (α, β) = 1, for −∞ < α, β < ∞. For the forward setup, this

completes the model and prior specifications. Denoting this by model M, we compute

the forward cross-validation posterior of the form

π(yi1|Y n,−i,Xn,M) =

∫
Θ
f(yi1|θ, xi,Y (i−1)

1 ,M)dπ(θ|Y n,−i,Xn,−i,M), (6.8.1)

by taking Monte Carlo averages of f(yi1|θ, xi,Y (i−1),M) over realizations of θ from

π(θ|Y n,−i,Xn,−i,M). In our case this is the Monte Carlo average of the relevant Poisson

probability of yi1 given xi over realizations of θ = (α, β). Samples of θ are obtained

approximately from the posterior distribution of π(θ|Y nm,−i,Xn,−i) by first generating

realizations from the “importance sampling density” π(θ|Y nm,Xn) using transformation

based Markov chain Monte Carlo (TMCMC) (Dutta and Bhattacharya (2014)) and then
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re-using the realizations with importance weights to obtain the desired Monte Carlo

averages. The rationale behind the choice of the full posterior π(θ|Y nm,Xn) associated

with the full data set as the importance sampling density is that it is not significantly

different from the posterior π(θ|Y nm,−i,Xn,−i) associated with leaving out a single data

point. This choice is also quite popular in the literature; see, for example, Gelfand (1996).

In our examples, we generate 30, 000 TMCMC samples from π(θ|Y nm,Xn) of which we

discard the first 10, 000 as burn-in, and re-sample 1000 θ-realizations without replacement

from the remaining 20, 000 realizations. We re-use each re-sampled θ-value 100 times

and compute the Monte Carlo average over such 1000 × 100 = 100, 000 realizations.

The re-use of each re-sampled θ-value corresponds to importance re-sampling MCMC

(IRMCMC) of Bhattacharya and Haslett (2007). Although IRMCMC is meant for

cross-validation in inverse problems, the idea carries over to forward problems as well.

We finally compute 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M) for model M.

Inverse Poisson linear regression model

With the same Poisson linear regression model as in the forward case, we now put

a prior on x̃i corresponding to xi. In our case, it follows from Section 4.4.1 that

π(x̃i|α, β) ≡ U(a, b), where

a = min

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α

)}
(6.8.2)

and

b = max

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α

)}
. (6.8.3)

We set c1 = 1 and c2 = 100, for ensuring positive value of ȳi − c1si√
m

(so that logarithm of

this quantity is well-defined) and a reasonably large support of the prior for x̃i. We then
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compute

π(yi1|Y nm,−i,Xn,−i,M) =

∫
X

∫
Θ
f(yi1|θ, x̃i,Y (i−1)

1 ,M)dπ(x̃i, θ|Y nm,−i,Xn,−i,M)

by Monte Carlo averaging of the relevant Poisson probability of yi1 over realizations

of (x̃i, θ) = (x̃i, α, β) generated from π(x̃i, θ|Y nm,−i,Xn,−i,M). Since it follows from

(6.2.6) that π(x̃i, θ|Y nm,−i,Xn,−i,M) = π(x̃i|θ,M)π(θ|Y nm,−i,Xn,−i,M), and since

realizations of θ from π(θ|Y nm,−i,Xn,−i,M) are already available in the forward con-

text, we simply generate x̃i given θ from the prior for x̃i to obtain realizations from

π(x̃i, θ|Y nm,−i,Xn,−i,M). Note that for different i, only sub-samples of θ of size 1000

from the original sample of size 20, 000 from the full posterior of θ are available, and each

θ is repeated 100 times. However, realizations of x̃i are all distinct in spite of repetitions

of θ-values.

Once for each i = 1, . . . , n, the Monte Carlo estimates of π(yi1|Y nm,−i,Xn,−i,M) are

available, we finally obtain the estimate of 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M) using

the individual Monte Carlo estimates.

Forward Poisson nonparametric regression model

We now consider the case where yij ∼ Poisson(λ(xi)), where λ(x) = exp(η(x)),

where η(·) is a Gaussian process with mean function µ(x) = α + βx and covariance

Cov (η(x1), η(x2)) = σ2 exp
{
−(x1 − x2)2

}
, where σ is unknown. For our convenience,

we reparameterize σ2 as exp(ω), where −∞ < ω <∞. For the prior on the parameters,

we set π (α, β, ω) = 1, for −∞ < α, β, ω <∞.

In the inverse case, for the reason of prior specification, we linearize η(x̃i) as α+ βx̃i;

see Section 6.8.2. Hence, for comparability with the inverse counterpart, we set η(xi) =

α+ βxi. Thus, in the forward case, θ = (α, β, η(x1), . . . , η(xi−1), η(xi+1), . . . , η(xn), ω).

We obtain 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M) using the same method of Monte Carlo

averaging described in Section 6.8.2, where θ is again first generated using TMCMC
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from the full posterior of θ by discarding the first 10, 000 iterations and retaining

the next 20, 000 for inference, which are re-used to approximate the desired posteri-

ors π(θ|Y nm,−i,Xn,−i,M). As before, we obtain Monte Carlo averages over 100, 000

realizations of θ.

Inverse Poisson nonparametric regression model

The model in this case remains the same as that in Section 6.8.2, but now a prior

on x̃i is needed. However, note that the prior for x̃i, which is uniform on Bim(η) ={
x : η(x) ∈ log

{[
ȳi − c1si√

m
, ȳi + c2si√

m

]}}
, does not have a closed form, since the form

of η(x) is unknown. However, if m is large, the interval log
{[
ȳi − c1si√

m
, ȳi + c2si√

m

]}
is

small, and η(x) falling in this small interval can be reasonably well-approximated by

a straight line. Hence, we set η(x) = µ(x) = α + βx, for η(x) falling in this interval.

Thus it follows that π(x̃i|η) ≡ U(a, b), where a and b are given by (6.8.2) and (6.8.3),

respectively. Hence, we obtain the same prior for x̃i as in the case of linear Poisson

regression described in Section 6.8.2. As before we set c1 = 1 and c2 = 100.

The method for obtaining 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M) remains the same as

discussed in Section 6.8.2.

6.8.3 Competing forward and inverse geometric regression models

We also report results of our simulation experiments where data generated from Poisson

linear regression is modeled by geometric regression models of the form

f(yij |θ, xi) = (1− p(xi))yijp(xi), (6.8.4)
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where p(xi) is modeled as logit or probit linear or nonparametric regression. In other

words, we consider the following possibilities of modeling p(x):

log

(
p(x)

1− p(x)

)
= α+ βx; log

(
p(x)

1− p(x)

)
= η(x);

p(x) = Φ (α+ βx) ; p(x) = Φ (η(x)) ,

where Φ is the cumulative distribution function of the standard normal distribution. In

the above, η is again modeled by a Gaussian process with mean function µ(x) = α+ βx

and covariance function given by Cov(η(x1), η(x2)) = σ2 exp
{
−(x1 − x2)2

}
. We again

set σ2 = exp(ω), where −∞ < ω < ∞, and consider the prior π(α, β, ω) = 1 for

−∞ < α, β, ω <∞.

In the inverse setup we assign prior on x̃i such that the mean of the geometric

distribution, namely, 1−p(x)
p(x) , lies in

[
ȳi − c1si√

m
, ȳi + c2si√

m

]
. Using the same principles as

before it follows that for the logit link, either for linear or Gaussian process regression,

the prior for x̃i is U(a1, b1), where

a1 = min

{
−β−1

(
log

(
ȳi −

c1si√
m

)
+ α

)
,−β−1

(
log

(
ȳi +

c2si√
m

)
+ α

)}
(6.8.5)

and

b1 = max

{
−β−1

(
log

(
ȳi −

c1si√
m

)
+ α

)
,−β−1

(
log

(
ȳi +

c2si√
m

)
+ α

)}
. (6.8.6)

We set c1 = 1 and c2 = 100, as before.
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For geometric probit regression, first let `im = ȳi − c1si√
m

and uim = ȳi + c2si√
m

. Let

a2 = min

Φ−1
(

1
uim+1

)
− α

β
,
Φ−1

(
1

`im+1

)
− α

β

 ; (6.8.7)

b2 = max

Φ−1
(

1
uim+1

)
− α

β
,
Φ−1

(
1

`im+1

)
− α

β

 . (6.8.8)

Then the prior for x̃i is U(a2, b2), for both linear and Gaussian process based geometric

probit regression.

The rest of the methodology for computing FPBF and IPBF for geometric regression

remains the same as for Poisson regression described in Section 6.8.2.

Results of the simulation experiment for model selection

For n = m = 10, when the true model is Poisson with log-linear regression, the last two

columns of Table 6.8.1 provide the forward and inverse estimates of 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M)

and 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M), respectively, for Poisson and geometric linear

and Gaussian process regression with different link functions, using which the models

can be easily compared with respect to both forward and inverse perspectives using

FPBF and IPBF. Note that forward and inverse perspectives can also be compared.

Observe that the forward Poisson log-linear regression turns out to be the best model as

expected, since this corresponds to the true, data-generating distribution. The Gaussian

process based Poisson inverse regression model is the next best, followed closely by

the Poisson log-linear inverse regression model, and then comes the Gaussian process

based Poisson forward regression model. This order of model selection can be explained

as follows. First, the inverse cases involve more uncertainties than the corresponding

forward models, since these cases treat xi as unknown. Hence, expectedly the Poisson

log-linear forward regression model outperforms the inverse counterpart. But the inverse

Gaussian process regression performs marginally better than the inverse linear model
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and more significantly better than the forward Gaussian process model. This merits an

interesting explanation. Recall that in the inverse Gaussian process model η(x̃i) has

been linearized for constructing the prior for x̃i, so that this part is equivalent to the

linear model, which explains why the difference between the inverse linear and Gaussian

process models is not significant. However, the linear part of the Gaussian process model

is of course influenced by the additional Gaussian process part associated with the other

data points, unlike the linear regression models. The posterior dependence structure, in

conjunction with the posterior distribution of x̃i, can yield better regression estimates

η(x̃i) for the i-th data point in a substantial number of Monte Carlo iterations. Since

the Gaussian process model includes the linear model as a special case (that is, it is not

a case of misspecification), this explains why the inverse Gaussian process regression

performs marginally better than the inverse linear model. In the forward Gaussian

process regression, even though we have linearized η(xi) for comparability with the

inverse model, xi is fixed. Thus, when the i-th regression part is not well-estimated in

the Monte Carlo simulations, there is no further scope for improvement in this part.

However, in the inverse Gaussian process regression, xi is replaced with the random

x̃i, which, though its posterior simulations, can improve upon the i-th regression part

with positive probability, even if the regression coefficients are not well-estimated. Thus,

the inverse Gaussian process regression model can significantly outperform the forward

counterpart, as we observe here.

The geometric logit and probit linear and Gaussian process regressions are examples

of model misspecifications since the true, data-generating model is the Poisson log-linear

regression model. Accordingly, both the forward and inverse setups perform worse

than the Poisson regression setups. Among the forward and inverse cases for geometric

regression, the probit linear model performs the best, followed closely by the logit linear

model, then by the forward logit Gaussian process and then by the forward probit

Gaussian process – all the inverse regression models perform worse than the worse of
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the forward regression models. This is not surprising since all these models are cases

of misspecifications and given the data generated from the true model, the inverse

models here only increase the uncertainty regarding xi compared to the forward models

without any positive effect. However, note that the inverse logit Gaussian process model

significantly outperforms the inverse logit linear model thanks to its better flexibility

and similar prior structure for x̃i as in the case of the true log-linear Poisson regression

whose positive effects carry over to this case from the first two rows of the last column

of Table 6.8.1. But the same phenomenon of superiority of the inverse probit Gaussian

process over inverse probit linear model is not at all visible since the prior structure of x̃i

in this misspecified case is completely different from that of the true Poisson log-linear

model, and indeed, inconsistent.

Table 6.8.1
Results of our simulation study for model selection using FPBF and IPBF. The last two columns show the
estimates of 1

n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M) and 1

n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M), respectively,

for forward and inverse setups.

Model Link function Regression form Forward Inverse

Poisson(λ(xi)) log linear −7.913 −8.440
Poisson(λ(xi)) log Gaussian process −8.503 −8.409
Geometric(p(xi)) logit linear −9.176 −18.247
Geometric(p(xi)) logit Gaussian process −9.529 −14.766
Geometric(p(xi)) probit linear −9.348 −14.434
Geometric(p(xi)) probit Gaussian process −10.915 −23.733

6.8.4 Variable selection in Poisson and geometric linear and nonpara-

metric regression models when true model is Poisson linear re-

gression

Rather than a single covariate x in the previous examples, let us now consider covariates

x and z, where the true data-generating distribution is yij ∼ Poisson(λ(xi, zi)), with

λ(x, z) = exp(α0 +β0x+γ0z). We generate the data by simulating α0, β0, γ0 ∼ U(−1, 1),

independently; independently simulating xi ∼ U(−1, 1), zi ∼ U(0, 2); i = 1, . . . , n,
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and then by finally simulating yij ∼ Poisson(λ(xi, zi)); j = 1, . . . ,m, i = 1, . . . , n,

independently.

We model the data yij ; i = 1, . . . , n; j = 1, . . . ,m with both Poisson and ge-

ometric models as before with the regression part consisting of either x or z, or

both. We denote the linear regression coefficients of the intercept, x and z as α,

β and γ, respectively, and give the improper prior density 1 to (α, β), (α, γ) and

(α, β, γ) when the models consist of these combinations of parameters. For Gaus-

sian process regression with both x and z, we let η(x, z) be the regression function

modeled by a Gaussian process with mean µ(x, z) = α + βx + γz and covariance

function Cov (η(x1, z1), η(x2, z2)) = exp (ω) exp
[
−
{

(x1 − x2)2 + (z1 − z2)2
}]

, and we

assign prior mass 1 to (α, β, ω), (α, γ, ω) and (α, β, γ, ω) when the models consist of the

covariates x, z or both. Using FPBF and IPBF we then compare the different models,

along with the covariates associated with them. In the inverse cases, where the model

consists of the single covariate x or z, then the priors for x̃i and z̃i remain the same as

in the previous cases.

But wherever the models consist of both the covariates x and z, we need to assign

priors for both x̃i and z̃i, in addition to requiring that E(yij |θ, xi, zi) under the postulated

model fall in
[
ȳi − c1si√

m
, ȳi + c2si√

m

]
. The same priors for x̃i and z̃i as the previous situations

where the models consisted of single covariates, will not be consistent in these situations.

For consistent priors we adopt the following strategy. Letting α be the intercept, β

and γ the coefficients of xi and zi respectively in the regression forms, we envisage the

following priors for x̃i and z̃i.
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Prior for x̃i and z̃i for Poisson regression

For the Poisson linear or Gaussian process regression model with log link consisting of

both the covariates x and z, we set x̃i ∼ U
(
a

(1)
x , b

(1)
x

)
and z̃i ∼ U

(
a

(1)
z , b

(1)
z

)
, where

a(1)
x = min

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α− γzi

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α− γzi

)}
,

b(1)
x = max

{
β−1

(
log

(
ȳi −

c1si√
m

)
− α− γzi

)
, β−1

(
log

(
ȳi +

c2si√
m

)
− α− γzi

)}
,

a(1)
z = min

{
γ−1

(
log

(
ȳi −

c1si√
m

)
− α− βxi

)
, γ−1

(
log

(
ȳi +

c2si√
m

)
− α− βxi

)}

and

b(1)
z = max

{
γ−1

(
log

(
ȳi −

c1si√
m

)
− α− βxi

)
, γ−1

(
log

(
ȳi +

c2si√
m

)
− α− βxi

)}
.

Note that the priors for x̃i and z̃i depend upon zi and xi respectively. This is somewhat

in keeping with (6.7.6) where the prior for x̃i depends upon xi itself. The discussion

following (6.7.6) is enough to justify that the priors for x̃i and z̃i in the current situation

do make sense, apart from ensuring consistency.

Prior for x̃i and z̃i for geometric regression with logit link

For the geometric linear or Gaussian process regression model with logit link consisting

of both the covariates x and z, we set x̃i ∼ U
(
a

(2)
x , b

(2
x

)
and z̃i ∼ U

(
a

(2)
z , b

(2)
z

)
, where

a(2)
x = min

{
−β−1

(
log

(
ȳi −

c1si√
m

)
+ α+ γzi

)
,−β−1

(
log

(
ȳi +

c2si√
m

)
+ α+ γzi

)}
,
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b(2)
x = max

{
−β−1

(
log

(
ȳi −

c1si√
m

)
+ α+ γzi

)
,−β−1

(
log

(
ȳi +

c2si√
m

)
+ α+ γzi

)}
,

a(2)
z = min

{
−γ−1

(
log

(
ȳi −

c1si√
m

)
+ α+ βxi

)
,−γ−1

(
log

(
ȳi +

c2si√
m

)
+ α+ βxi

)}

and

b(2)
z = max

{
−γ−1

(
log

(
ȳi −

c1si√
m

)
+ α+ βxi

)
,−γ−1

(
log

(
ȳi +

c2si√
m

)
+ α+ βxi

)}
.

Prior for x̃i and z̃i for geometric regression with probit link

For the geometric linear or Gaussian process regression model with probit link consisting

of both the covariates x and z, we set x̃i ∼ U
(
a

(3)
x , b

(3
x

)
and z̃i ∼ U

(
a

(3)
z , b

(3)
z

)
, where

a(3)
x = min

Φ−1
(

1
uim+1

)
− α− γzi

β
,
Φ−1

(
1

`im+1

)
− α− γzi

β

 ,

b(3)
x = max

Φ−1
(

1
uim+1

)
− α− γzi

β
,
Φ−1

(
1

`im+1

)
− α− γzi

β

 ,

a(3)
z = min

Φ−1
(

1
uim+1

)
− α− βxi

γ
,
Φ−1

(
1

`im+1

)
− α− βxi

γ


and

b(3)
z = max

Φ−1
(

1
uim+1

)
− α− βxi

γ
,
Φ−1

(
1

`im+1

)
− α− βxi

γ

 .
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Results of the simulation experiment for model and variable selection

For n = m = 10, when the true model is Poisson with log-linear regression on both

the covariates x and z, the last two columns of Table 6.8.2 provide the estimates of

1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M) and 1

n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M) for Poisson

and geometric linear and Gaussian process regression on either xi or zi or both, with

different link functions. Thus, the models, along with the associated covariates can be

compared with respect to both forward and inverse perspectives.

Table 6.8.2 shows that the correct Poisson log-linear model with both the covariates x

and z has turned out to be the third best, after the inverse Poisson log-linear model with

covariate x and the forward Poisson log-linear model with covariate z. However, the

difference between the latter and the correct model is not substantial and may perhaps

be attributed to Monte Carlo sampling fluctuations. So, considering only the forward

setup, it is difficult to rule out the possibility of the correct Poisson log-linear model

with both the covariates x and z from being the best.

That the inverse Poisson log-linear model with covariate x seems to perform so well

can be attributed to significant variability of the prior for x̃i which goes on to account for

the missing zi as well in the additive model. Since the additive model is not identifiable

when both xi and zi are unknown, the significant prior variability of x̃i compensates

for non-inclusion of zi in the model, given the data that has arisen from the true

model consisting of both x and z. The same argument is valid for good performance

of the inverse Poisson log-linear model with covariate z, where the prior variance for z̃i

compensates for non-inclusion of xi. However, note that the performance of the inverse

Poisson log-linear model deteriorates significantly when the regression consists of both x

and z. This is of course the consequence of the priors for both x̃i and z̃i, whose variances

get added up in the linear model. For small n and m as in our examples, the true

values xi and zi fail to get enough posterior weight, an issue that gets reflected in the

Monte Carlo simulations where the true regression is not represented in sufficiently large
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proportion.

For Poisson Gaussian process regression, the inverse models outperform their forward

counterparts by large margins. This admits similar explanation provided in Section

6.8.3 for the superiority of the inverse Poisson Gaussian process model compared to its

forward counterpart as visible in Table 6.8.1.

For geometric linear regression, the forward models emerge the winners in all the cases,

as opposed to the inverse counterparts and also outperform the Gaussian geometric

process regression models. Among the geometric models, the probit linear model with

both the covariates x and z, turns out to be the best. That the corresponding inverse

counterparts perform worse can be explained as in Section 6.8.3 that these are instances

of model misspecification, and here the inverse models only increase uncertainty by

treating xi and zi as unknown, without any beneficial effect.

In geometric Gaussian process regression, the inverse models perform better than the

corresponding forward ones in most cases. In these cases, given the data generated from

the true model, the Gaussian process dependence combined with the prior variability

render the inverse models somewhat less misspecified than the forward models with no

prior associated with the covariates.

Also observe that given either forward or inverse setups, the linear models perform

better than the corresponding Gaussian process models, for both Poisson and geometric

cases. Since the true regression is linear, this seems to provide an internal consistency.

However, this phenomenon is somewhat different from that observed in Table 6.8.1

where the Gaussian process model performed better than the linear regression model for

Poisson and geometric logit models. The reason for this is inconsistency of the prior for

x̃i when covariate z is ignored and that of the prior for z̃i when covariate x is ignored

in the postulated model. Indeed, Table 6.8.2 shows that in these cases, the inverse

linear models outperform the Gaussian process models by considerably large margins.

In these cases the Gaussian process priors only increase uncertainties without adding
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any value, since the priors for x̃i and z̃i are inconsistent. On the other hand, note that

when both x and z are incorporated in the inverse models, the linear models perform

only marginally better than the Gaussian process models in the cases of inverse Poisson

and inverse geometric logit models. This is because the priors of x̃i and z̃i are consistent

in such cases, and moreover, the prior structures of x̃i and z̃i are similar for Poisson

and geometric logit regressions. For geometric probit regression, the prior structures are

entirely different from those of the correct Poisson model and in fact inconsistent, and as

in Table 6.8.1, here also inverse geometric probit Gaussian process regression performs

much worse than inverse geometric probit linear regression.

Table 6.8.2
Results of our simulation study for model and variable selection using FPBF and IPBF. The last two columns

show the estimates of 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,M) and 1

n

∑n
i=1 log π(yi1|Y nm,−i,Xn,−i,M),

respectively, for forward and inverse setups.

Covariates Model Link function Regression form Forward Inverse

xi Poisson(λ(xi)) log linear −8.618 −8.388
zi Poisson(λ(zi)) log linear −8.834 −8.739

(xi, zi) Poisson(λ(xi, zi)) log linear −8.686 −13.257
xi Poisson(λ(xi)) log Gaussian process −31.831 −9.136
zi Poisson(λ(zi)) log Gaussian process −31.213 −10.052

(xi, zi) Poisson(λ((xi, zi)) log Gaussian process −17.712 −13.363
xi Geometric(p(xi)) logit linear −9.810 −10.526
zi Geometric(p(zi)) logit linear −9.673 −12.629

(xi, zi) Geometric(p(xi, zi)) logit linear −11.806 −15.478
xi Geometric(p(xi)) logit Gaussian process −26.232 −21.161
zi Geometric(p(zi)) logit Gaussian process −19.391 −29.388

(xi, zi) Geometric(p(xi, zi)) logit Gaussian process −17.128 −15.686
xi Geometric(p(xi)) probit linear −9.543 −11.671
zi Geometric(p(zi)) probit linear −9.401 −16.183

(xi, zi) Geometric(p(xi, zi)) probit linear −9.060 −13.839
xi Geometric(p(xi)) probit Gaussian process −23.538 −16.460
zi Geometric(p(zi)) probit Gaussian process −20.522 −17.099

(xi, zi) Geometric(p(xi, zi)) probit Gaussian process −20.102 −20.501
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6.9 Summary and future direction

The importance of PBF in Bayesian model and variable selection seems to have been

overlooked in the statistical literature. In this chapter we have pointed out the theoret-

ical and computational advantages of PBF over BF, and investigated the asymptotic

convergence properties of PBF in general forward and inverse regression setups. Since

the inverse regression problem requires a prior on the covariate value to be predicted, this

makes the treatise of PBF distinct from the forward regression problems. Specifically,

we considered two setups for inverse regression. One setup is the same as that of forward

regression except a prior for the relevant covariate value x̃i. Although the priors in this

case can not guarantee consistency of the posterior for x̃i, we show that the corresponding

PBF still converges exponentially and almost surely in favour of the better model, in

the same way as for forward regression. However, for the inverse case, the convergence

depends upon an integrated version of the KL-divergence, rather than KL-divergence

as in the forward case. In another inverse regression setup, we consider m responses

corresponding to each covariate value, and assign the general prior for x̃i constructed in

Chapter 4. This prior guarantees consistency for the posterior of x̃i when m tends to

infinity, along with the sample size. For this inverse setup, PBF has convergence results

similar to that of forward regression which is also applicable to this setup, except that

no prior is associated with the covariates.

Our results on PBF for forward regression are in agreement with the general BF

convergence theory established in Chapter 5, as both are the same almost sure exponential

convergence depending upon the KL-divergence from the true model. Now there might

arise the question if PBF and BF convergence agree even for inverse regression setups.

To clarify, first recall that BF is the ratio of the marginal densities of the data. Now

for forward regression, the marginal density of the data Y n depends upon the observed

covariates Xn. For model Mj ; j = 1, 2, let us denote this marginal by m(Y n|Xn,Mj).

In the inverse setup, we need to treat Xn as unknown, and replace this with X̃n =
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(x̃1, x̃2, . . . , x̃n) having some relevant prior, which may even follow from some stochastic

process specification for X̃∞ = (x̃1, x̃2, . . .). If L(θj |Y n,Xn,Mj) denotes the likelihood

of θj for fully observed data, then the marginal density of Y n in the inverse situation is

given by

m̃(Y n|Mj) =

∫
Θj

∫
Xn

L(θj |Y n, X̃n,Mj)dπ(X̃n|θj ,Mj)dπ(θj |Mj)

=

∫
Θj

L̃(θj |Y n,Mj)dπ(θj |Mj),

where

L̃(θj |Y n,Mj) =

∫
Xn

L(θj |Y n, X̃n,Mj)dπ(X̃n|θj ,Mj).

Letting

π̃(θj |Y n,Mj) =
L̃(θj |Y n,Mj)π(θj |Mj)

m̃(Y n|Mj)

we have for all θj ∈ Θj ,

log m̃(Y n|Mj) = log L̃(θj |Y n,Mj) + log π(θj |Mj)− log π̃(θj |Y n,Mj),

which reduces the inverse marginal to the same form as that used in Chapter 5 for

establishing the almost sure exponential BF convergence result which depends explicitly

on the KL-divergence rate between the postulated and the true models. Hence, even in

both the inverse setups that we consider, our PBF and BF convergence results agree.

We have illustrated our general asymptotic results for PBF with several theoretical

examples, including linear, quadratic, AR(1) regression and variable selection, providing

the explicit theoretical calculations for both forward and inverse setups. Our AR(1)

regression results validate our general PBF convergence theory in a dependent data

setup.

We also conducted extensive simulation experiments with small simulated datasets

comparing Poisson log regression and geometric logit and probit regressions, where the
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regressions are modeled by straight lines as well as Gaussian process based nonparametric

functions. Both forward and inverse setups are undertaken, which include, in addition,

variable selection among two possible covariates. Among several insightful revelations, our

results demonstrate that the inverse regression can outperform the forward counterpart

when the regression considered is nonparametric.

Thus, overall the premise for PBF investigation seems promising enough to pursue

further research. In particular, we shall address PBF based variable selection in both

forward and inverse regression contexts in the so-called “large p, small n” framework,

where the number of variables considered increases with sample size with various rates,

crucially, at rates faster than the sample size. Various complex and high-dimensional

real data based applications shall also be considered for model and variable selection

using forward and inverse PBF. More sophisticated computational methods combining

advanced versions of TMCMC, bridge sampling and path sampling may need to be

created for accurate estimations of PBF in such real situations. These ideas will be

communicated elsewhere.



Appendix

6.A1 A result on sufficient condition for (S6) of Shalizi

Theorem 55 Consider the following assumptions:

(i) Let θ̃ = arg min
θ∈Θ

h(θ) be the unique minimizer of h(θ) on Θ.

(ii) Let θ̃∗n = arg max
θ∈Θ

1
n logRn(θ), and assume that θ̃∗n

a.s.−→ θ̃, as n→∞.

(iii) 1
n logRn(θ) is stochastically equicontinuous on compact subsets of Θ.

(iv) For all θ in such compact subsets,

lim
n→∞

1

n
logRn(θ) = h(θ), almost surely. (6.A1.1)

(v) The prior π on Θ is proper.

Then (6.6.18) holds.

Proof. Note that

1

n
log

∫
Gn
Rn(θ)π(θ)dθ ≤ 1

n
log

(
sup
θ∈Gn

Rn(θ)

)
+

1

n
log π(Gn)

= sup
θ∈Gn

1

n
logRn(θ) +

1

n
log π(Gn)

=
1

n
logRn(θ̃∗n) +

1

n
log π(Gn). (6.A1.2)

231
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Since by condition (ii), θ̃∗n
a.s.−→ θ̃ as n→∞, for any ε > 0, there exists n0(ε) ≥ 1 such

that for n ≥ n0(ε),

θ̃∗n ∈ (θ̃ − ε, θ̃ + ε), almost surely. (6.A1.3)

Conditions (iii) and (iv) validate the stochastic Ascoli lemma, and hence, for any

compact subset G of Θ that contains (θ̃ − ε, θ̃ + ε),

lim
n→∞

sup
θ∈G

∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ = 0, almost surely.

Hence, for any ξ > 0, for all θ ∈ G, almost surely,

1

n
logRn(θ) ≤ −h(θ) + η ≤ −h(Θ) + η, for sufficiently large n. (6.A1.4)

Since G contains (θ̃ − ε, θ̃ + ε), which, in turn contains θ̃∗n for sufficiently large n, due to

(6.A1.3), it follows from (6.A1.4), that for any ξ > 0,

1

n
logRn(θ̃∗n) ≤ −h(Θ) + η, for sufficiently large n. (6.A1.5)

The proof follows by combining (6.A1.2) and (6.A1.5), and noting that 1
n log π(Gn) < 0

for all n ≥ 1, since 0 < π(Gn) < 1 for proper priors.

6.A2 Proof of Theorem 47

Our proof uses concepts that are broadly similar to that of Theorem 10 of Chandra and

Bhattacharya (2020a). Here we shall provide the proof for 1
n logR

(1)
n (θ) since that for

1
n logR

(2)
n (θ) is exactly the same. For notational convenience, we denote 1

n logR
(1)
n (θ) by

1
n logRn(θ), h1(θ) by h(θ), θ̃1 by θ̃ and Θ1 by Θ.

Since h(θ) is convex, θ̃ must be an interior point of Θ. Hence, there exists a compact
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set G ⊂ Θ such that θ̃ is interior to G. From convergence (6.6.43) which is also uniform

on compact sets, it follows that

lim
n→∞

sup
θ∈G

∣∣∣∣ 1n logRn(θ) + h(θ)

∣∣∣∣ = 0. (6.A2.1)

For any η > 0, we define

Nη(θ̃) = {θ : ‖θ̃ − θ‖ < η}; N ′η(θ̃) = {θ : ‖θ̃ − θ‖ = η}; Nη(θ̃) = {θ : ‖θ̃ − θ‖ ≤ η}.

Note that for sufficiently small η, Nη(θ̃) ⊂ G. Let H = inf
θ∈N ′η(θ̃)

h(θ). Since h(θ) is

minimum at θ = θ̃, H > 0. Let us fix an ε such that 0 < ε < H. Then by (6.A2.1), for

large enough n all θ ∈ N ′η(θ̃),

1

n
logRn(θ) < −h(θ) + ε < −h(θ̃) + ε. (6.A2.2)

Since by (6.6.43) 1
n logRn(θ̃) > −h(θ̃) − ε for sufficiently large n, it follows from this

and (6.A2.2) that
1

n
logRn(θ) <

1

n
logRn(θ̃) + 2ε, (6.A2.3)

for sufficiently large n. Since 0 < ε < H is arbitrary, it follows that for all θ ∈ N ′η(θ̃), for

large enough n,
1

n
logRn(θ) <

1

n
logRn(θ̃), (6.A2.4)

which shows that for large enough n, the maximum of 1
n logRn(θ) is not attained at the

boundary N ′η(θ̃). Hence, the maximum must occur in the interior of Nη(θ̃) when n is

sufficiently large. That the maximizer is unique is guaranteed by Theorem 44. Hence,

the result is proved.



7
A Bayesian Multiple Testing Paradigm

for Model Selection in Inverse

Regression Problems

7.1 Introduction

As already mentioned, model selection in inverse regression setups is non-existent in

the statistical literature. In this regard, we considered Bayes and pseudo-Bayes factors

for such purpose in Chapters 5 and 6, respectively. Notably, although the Bayes factor

approach is arguably the most principled and coherent approach to model comparison,

they are usually difficult to compute in practice and suffer from numerical instability.

Moreover, they are well-known to suffer from the so-called Lindley’s paradox. The cross-

validation idea proposed by Geisser and Eddy (1979) is to replace the marginal density of

234
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the entire dataset in Bayes factors with products of cross-validation densities of individual

data points. This constitutes the pseudo-Bayes factors which are computationally

far simpler and numerically much more stable than the corresponding Bayes factors.

Furthermore, they are also immune to Lindley’s paradox. Recognizing the importance, in

Chapter 6 we established the asymptotic theory for pseudo-Bayes factors for both forward

and inverse parametric and nonparametric regression problems in a very general setup

that allows for dependent data and misspecified models, and showed that the results are

in agreement with our corresponding asymptotic theory of Bayes factors, established

in Chapter 5. We illustrated the pseudo-Bayes factor results with various theoretical

examples and simulation experiments for small samples that even include simultaneous

selection of models and covariates. However, the results of the simulation experiments,

although interesting and insightful, do leave the scope for further improvement. In

this chapter, we introduce and develop a novel Bayesian hypothesis testing formulation,

incorporating the principle of the IRD approach, for model and variable selection in

inverse regression setups. We show that this multiple testing strategy indeed provides

improvement upon the approach based on pseudo-Bayes factor.

The area of multiple hypotheses testing can be envisaged as a promising alternative

to Bayes factors for model selection if properly formulated, is expected to be very useful

in inverse model selection. Unfortunately, in spite of rising popularity of the multiple

testing paradigm for general testing problems, its applicability and utility in general

model selection problems remain yet to be thoroughly investigated. In the classical

multiple comparison context, Shimodaira (1998) use the sampling error of the Akaike

Information Criterion (AIC) to select a “confidence set of models” rather than a single

model. The method requires computation of standardized difference of AIC for every

pair of models. Since every pair of models is involved, clearly, for even a moderate

number of competing models the computation becomes infeasible, and reliability of the

proposed normal approximation need not be unquestionable in general situations. We
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are not aware of any other significant research on model selection in the multiple testing

framework. Furthermore, multiple testing based model selection in inverse setups has

not been hitherto even perceived.

In this chapter, for the first time ever, we propose and develop a Bayesian multiple

testing paradigm for inverse model selection problems. Our starting point is the inverse

reference distribution approach to Bayesian assessment of adequacy of inverse models

introduced by Bhattacharya (2013). In a nutshell, the inverse model adequacy assessment

idea is as follows. Given response data Y n = {y1, . . . , yn}, covariate data Xn =

{x1, . . . , xn}, and the Bayesian model for the data, consider the inverse leave-one-out

cross-validation setup where for each i = 1, . . . , n, xi needs to be predicted from the

rest of the data and the underlying Bayesian model. Letting x̃i denote the random

variable corresponding to xi when the latter is treated as unknown, the interest is

then in the cross-validation posteriors π(x̃i|Xn,−i,Y n); i = 1, . . . , n, where Xn,−i =

{x1, . . . , xi−1, xi+1, . . . , xn}. Letting X̃n = {x̃1, . . . , x̃n}, Bhattacharya (2013) considers

the ‘inverse reference distribution’ of some suitable discrepancy measure T (X̃n) where

x̃i ∼ π(·|Xn,−i,Y n); i = 1, . . . , n. If the observed discrepancy measure T (Xn) falls

within the desired 100(1 − α)% credible interval of T (X̃n) where α ∈ (0, 1), then

the underlying Bayesian model fits the data and not otherwise. Bhattacharya (2013)

provides a Bayesian decision theoretic formalization of the above idea and investigates its

theoretical and methodological properties, pointing out its advantages over existing ideas

on forward Bayesian model assessment. The encouraging results obtained in simulation

experiments and real data analyses reported in Bhattacharya (2013), Bhattacharya (2006)

and Mukhopadhyay and Bhattacharya (2013) demonstrate the worth of the inverse model

assessment idea using inverse reference distributions of appropriate discrepancy measures.

Typical examples of discrepancy measures are given, for any n-dimensional vector
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vn = (v1, . . . , vn), by

T1(vn) =

n∑
i=1

|vi − E(x̃i|Xn,−i,Y n)|√
V ar(x̃i|Xn,−i,Y n)

(7.1.1)

and

T2(vn) =
n∑
i=1

(vi − E(x̃i|Xn,−i,Y n))2

V ar(x̃i|Xn,−i,Y n)
. (7.1.2)

Since the inverse reference distribution approach turned out to be useful for assessing

adequacy of inverse models, it is natural to discern that such an approach would be

valuable even for inverse model selection. This very perception provided the motivation

for our Bayesian multiple testing approach to inverse model selection using inverse

reference distributions. The key idea is to embed all the competing inverse regression

models in a mixture setting to constitute a single model needed for multiple testing. In

simple terms, each hypothesis of the multiple testing procedure then essentially tests if

the inverse reference distribution of the corresponding inverse regression model gives high

posterior probability to appropriate regions containing the observed discrepancy measure

for the model, in addition to testing if the posterior model probability is sufficiently

high. The best inverse model is expected to have the highest posterior probability with

respect to the above and our multiple testing formalism is so designed that it renders

this idea precise with relevant coherent supports.

Our theoretical and methodological development deals with parametric and nonpara-

metric inverse competing models, allowing dependent data as well as misspecified models.

In this highly general framework we show that our multiple testing procedure almost

surely selects the best possible model, as the sample size tends tends to infinity. Here

“best” is in terms of the minimizer of the minimum Kullback-Leibler (KL) divergence

from the true model, concepts that will be subsequently clarified. Our investigation also

brings out the desirable results that the error rates, namely, relevant versions of the false
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discovery rate and the false non-discovery rate, asymptotically converge to zero almost

surely. Insightful theoretical results on asymptotic α-control of versions of the false

discovery rate and its impact on the convergence of versions of the false non-discovery

rate, are also presented.

Monte Carlo based computations of the model-specific posterior probabilities associated

with the inverse reference distributions proceed via fast and efficient Importance Re-

sampling Markov Chain Monte Carlo (IRMCMC) (Bhattacharya and Haslett (2007))

aided by Transformation based Markov Chain Monte Carlo (TMCMC) (Dutta and

Bhattacharya (2014)) for generation of MCMC samples from the cross-validation posterior

distributions having excellent mixing properties. The posterior model probabilities are

based on an efficient Gibbs sampling scheme that utilizes the forward pseudo-Bayes

factors for sampling from the relevant full conditional distributions of the model indices.

Thus, our entire computational methodology is fast and efficient, more so because each

hypothesis is associated with a single inverse model, and pairwise comparison as in

Shimodaira (1998) is ruled out.

Recalling that one of our objectives behind development of this multiple testing

paradigm is to obtain superior inverse model selection results compared to those obtained

in Chapter 6 using pseudo-Bayes factors, we apply our multiple testing formalism to the

same simulation experiments with the same datasets as in Chapter 6. The simulation

experiments consist of two sets. In one set small sample based selection among inverse

Poisson log regression and inverse geometric logit and probit regression is considered,

where the regressions are either linear or based on Gaussian processes. In the other set,

variable selection among two covariates is considered in addition to the aforementioned

inverse model selection problem. We conduct the experiments in both non-misspecified

and misspecified situations. Not only does our multiple testing procedure succeeds in

selecting the best inverse models and variables in all the cases, it significantly outperforms

the results yielded by the pseudo-Bayes factors.
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The rest of this chapter is structured as follows. In Section 7.2 we introduce and

develop our Bayesian multiple testing paradigm for inverse model selection. We progress

towards a general asymptotic theory by establishing in Section 7.3 the asymptotic

properties of the posterior probabilities of the alternative hypotheses. Asymptotic

optimality theory for our multiple testing procedure is then provided in Section 7.4,

followed by convergence theory of the measures of error in Section 7.5. In Section

7.6 we recommend some judicious modifications of the hypotheses to suit practical

implementation, and in Sections 7.7 and 7.8 we provide details on two sets of simulation

experiments with small samples involving Poisson and geometric linear and Gaussian

process regression for relevant link functions, the second set also including in addition the

problem of variable selection involving two covariates. Non-misspecified and misspecified

situations are addressed in both the simulation experiments. Finally, in Section 4.9, we

summarize our contributions and discuss selection of inverse models in the context of

two palaeoclimate reconstruction problems, recasting our previous results on inverse

model assessment in the current multiple testing context.

For theoretical purpose, we shall throughout assume that the space of covariates X is

compact, although such assumption is not necessary in practice.

7.2 A multiple testing framework for model selection in

inverse regression problems

Let us consider models Mk; k = 1, . . . ,K, from among which the best model needs to

be selected respecting the inverse perspective. In this work, we assume that 1 < K <∞.

We allow the provision that the true, data-generating model is not contained in the set

of models being considered. For k = 1, . . . ,K, let θk and Θk denote the parameter set

and the parameter space associated with model Mk. Let π(θk|Mk) denote the prior for

θk under model Mk.
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For our multiple testing treatise, we shall consider the second inverse regression setup

detailed in Section 6.2.4. As such, for n > 1 and m > 1, let Y nm be generated from the

marginal distribution of M0, the true model having parameters θ0 with prior π(θ0|M0)

on parameter space Θ0. Note that π(θ0|M0) may even be the point mass on some

element of Θ0. The dimensions of the parameter spaces Θ0,Θ1, . . . ,ΘK may all be

different. We shall consider the consistent prior for x̃i detailed in Section 4.4.

Now, for k = 1, . . . ,K, let f(Y nm|Xn, θk,Mk) denote the density of Y nm under

model Mk. We combine the competing models in the following mixture form:

f(Y nm|Xn, θ) =

K∑
k=1

pkf(Y nm|Xn, θk,Mk), (7.2.1)

where θ = (θ1, . . . , θK), 0 ≤ pk ≤ 1, for k = 1, . . . ,K and
∑K

k=1 pk = 1. Letting ζ denote

the allocation variable (model index), with P (ζ = k) = pk, note that f(Y nm|Xn, θ, ζ =

k) = f(Y nm|Xn, θk,Mk). Now let Θ̃k be a proper subset of Θk assumed to contain the

minimizer of the KL-divergence from the true model M0.

Let π(x̃i|θk,Mk) be the prior for x̃i given θk, underMk. This yields the familiar (see,

for example, Bhattacharya and Haslett (2007); see also Chapter 4) inverse cross-validation

posterior for x̃i given Xn,−i and Y nm given by

π(x̃i|Xn,−i,Y nm,Mk) =

∫
Θk

π(x̃i|θk,yi,Mk)dπ(θk|Xn,−i,Y nm).

However, if θk is restricted to Θ̃k, then we obtain the following Θ̃k-restricted inverse

cross-validation posterior for x̃i given Xn,−i and Y n:

π(x̃i|Xn,−i,Y nm,Mk, Θ̃k) =

∫
Θ̃k
π(x̃i|θk,yi,Mk)dπ(θk|Xn,−i,Y nm)

π(Θ̃k|Xn,−i,Y nm)
. (7.2.2)

In the misspecified situation, θ0 /∈ Θk, and θ̃k is the minimizer of the limiting KL-

divergence rate from M0. Thus, in the case of misspecification of θk, Bim(θ̃k)
a.s.−→ {x∗ik}
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as m → ∞, for some non-random x∗ik ( 6= xi), depending upon model Mk. In other

words, the prior distribution of x̃i given θ̃k and yi concentrates around x∗ik, as m→∞.

In Theorem 58 we show that the cross-validation posterior of x̃i also concentrates around

x∗ik. Note that x∗ik depends upon both θ̃k and θ0, apart from xi (and perhaps xj for

some j 6= i).

For any n-dimensional vector vn = (v1, . . . , vn), and for some c > 0, define

T
(k)
1 (vn) =

1

n

n∑
i=1

∣∣∣vi − E(x̃i|Xn,−i,Y nm,Mk, Θ̃k)
∣∣∣√

V ar(x̃i|Xn,−i,Y nm,Mk, Θ̃k) + c
. (7.2.3)

Similarly, let

T
(k)
2 (vn) =

1

n

n∑
i=1

(vi − E(x̃i|Xn,−i,Y nm,Mk, Θ̃k))
2

V ar(x̃i|Xn,−i,Y nm,Mk, Θ̃k) + c
. (7.2.4)

In (7.2.3) and (7.2.4), x̃i has the cross-validation posterior distribution (7.2.2), for

i = 1, . . . , n. The positive constant c is not only needed for asymptotics, it plays the role

of maintaining stability of the discrepancy measures when V ar(x̃i|Xn,−i,Y nm,Mk, Θ̃k)

is close to zero for some i ≥ 1. Various other measures of discrepancy can be defined (see

Bhattacharya (2013) for a discussion on such discrepancy measures; see also Mukhopad-

hyay and Bhattacharya (2013)), but for brevity we focus on these two measures in our

work.

For a given discrepancy measure T (k), let [˜̀knm, ũknm] denote the 100(1−α)% credible

interval for the posterior distribution of T (k)(X̃n) for any desired α ∈ (0, 1). In Theorem

61 we show that for any ε > 0, the posterior probability of the event

{
T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]

}
tends to one almost surely as m → ∞ and n → ∞. Here ak are positive constants

reflecting misspecification. If there is no misspecification, then ak = 0.
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With the above notions and ideas it seems reasonable to formulate the following

multiple testing problem for inverse model selection. For given ε > 0 and η > 0, and

given discrepancy measure T (k) associated with model Mk, for k = 1, . . . ,K, consider

testing

H0k : pk > 1− η, θk ∈ Θ̃k, T
(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]

versus

H1k : {pk ≤ 1− η}
⋃{

pk > 1− η, θk ∈ Θ̃c
k

}
⋃{

pk > 1− η, θk ∈ Θ̃k, T
(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]c

}
.

The positive constants ak in the hypotheses should be perceived as analogous to a1k and

a2k in (7.3.15) and (7.3.16).

However, the above multiple testing formulation depends upon the choice of η. More

importantly, even though the posterior probability of ζ = k̃ goes to 1 asymptotically for

the best modelMk̃, that of {pk > 1− η}, for any η > 0, does not tend to one for any prior

on (p1, . . . , pK). For example, for a Dirichlet prior with parameters (α1, . . . , αK), where

αk > 0 for k = 1, . . . ,K, the posterior distribution of (p1, . . . , pK) given ζ, the other

parameters and the data, is Dirichlet with parameters (α1+I(ζ = 1), . . . , αK+I(ζ = K)),

where for any k, I(ζ = k) = 1 if ζ = k and zero otherwise. Thus, even if ζ = k̃ with

posterior probability tending to one, asymptotically the posterior distribution of pk̃

does not converge to one. It is thus necessary to modify the above multiple testing

formulation, replacing the statements involving pk with those involving ζ. Specifically,

we re-write the hypotheses as follows:

H0k : ζ = k, θk ∈ Θ̃k, T
(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε] (7.2.5)
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versus

H1k : {ζ 6= k}
⋃{

ζ = k, θk ∈ Θ̃c
k

}
⋃{

ζ = k, θk ∈ Θ̃k, T
(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]c

}
.

(7.2.6)

Henceforth, unless stated otherwise, we shall refer to (7.2.5) and (7.2.6) for our multiple

testing purpose.

7.2.1 Further discussion of the multiple testing formulation

To select the best model from an inverse perspective we first need to choose a model

f(Y nm|Xn, θk̃,Mk̃) indexed by ζ = k̃ which has high marginal posterior probability.

But this is not enough as the inverse context is not reflected in this selection. Indeed,

such a selection is the same as in the forward context.

Thus, in addition to selecting such a k̃, we demand that for such model

T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]. (7.2.7)

This reflects the inverse perspective. We further demand that this holds for X̃n as-

sociated with some region Θ̃k̃ of the parameter space that contains the minimizer of

the KL-divergence of f(Y nm|Xn, θk̃,Mk̃) from the true model. The reason for this

is that Θ̃k̃ is the region that has the highest posterior probability, at least asymptoti-

cally, which we shall subsequently establish. Moreover, it follows from Chapter 4 that

π(θk|Xn,Y nm,Mk) and π(θk|Xn,−i,Y nm,Mk) are asymptotically the same for any

i ≥ 1, for any m ≥ 1. Hence the event (7.2.7) associated with Θ̃k̃ for k = k̃, is expected

to be reliable.

We shall also show that asymptotically the posterior probability of the best model,

ζ = k̃, tends to 1 almost surely. As already mentioned, here the notion the best model is
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with respect to minimization of the minimum KL-divergence rate from the true model.

We shall show that for this k̃, the posterior probability of H0k̃ goes to 1 asymptotically,

for any ε > 0 in (7.2.7). That is, asymptotically, only one inverse model, namely, the

best inverse model satisfying the conditions of H0k̃, will be selected.

It is useful to remark here that the KL-divergence rate referred to above is completely

in the forward sense, where all the xi; i ≥ 1, are assumed to be known. Hence, the

above arguments and our subsequent theoretical underpinnings show that the asymptotic

theory is dominated by the forward perspective. In fact, any consistent prior for x̃i would

asymptotically lead to the best forward model. However, the above can not be guaranteed

in any non-asymptotic sense. The model Mk̃ with high posterior probability of {ζ = k̃}

may have low posterior probability of T (k)(X̃n)−T (k)(Xn) ∈ [˜̀knm−ak−ε, ũknm−ak+ε],

which may result in overall lower posterior probability of H0k̃ compared to H0k for several

k 6= k̃. In such situations, Mk̃ will not be the best choice non-asymptotically. Thus, the

inverse perspective is particularly important in realistic, non-asymptotic situations. An

appropriate Bayesian multiple testing procedure is expected to yield the best possible

inference regarding inverse model selection in both asymptotic and non-asymptotic

situations, which we now devise.

7.2.2 The Bayesian multiple testing procedure

Chandra and Bhattacharya (2019) proposed a novel Bayesian non-marginal testing

procedure for testing general dependent hypotheses. We first briefly discuss their method

and then consider a special case of their idea to be applied to inverse model selection

context.
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Let

dk =


1 if the k-th hypothesis is rejected;

0 otherwise;

rk =


1 if H1k is true;

0 if H0k is true.

Let Gk be the set of hypotheses (including hypothesis k) where the parameters are

dependent on the k-th hypothesis. In the new procedure, the decision of each hypothesis

is penalized by incorrect decisions regarding other dependent parameters. Thus a

compound criterion where all the decisions in Gk deterministically depends upon each

other. Define the following quantity

zk =


1 if Hdj ,j is true for all j ∈ Gk \ {k};

0 otherwise.

(7.2.8)

If, for any k ∈ {1, . . . ,K}, Gk = {k}, a singleton, then we define zk = 1. The notion of

true positives (TP ) are modified as the following

TP =
K∑
k=1

dkrkzk, (7.2.9)

The posterior expectation of TP is maximized subject to controlling the posterior

expectation of the error term

E =
K∑
k=1

dk(1− rkzk). (7.2.10)
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It follows that the decision configuration can be obtained by minimizing the function

ξ(d) = −
K∑
k=1

dkE(rkzk|Xn,Y nm) + λnm

K∑
k=1

dkE [(1− rkzk)|Xn,Y nm]

= −(1 + λnm)

K∑
k=1

dk

(
wknm(d)− λnm

1 + λnm

)
,

with respect to all possible decision configurations of the form d = {d1, . . . , dK}, where

λnm > 0, and

wknm(d) = E(rkzk|Xn,Y nm) = π
(
H1k ∩

{
∩j 6=k,j∈GkHdj ,j

} ∣∣Xn,Y nm

)
is the posterior probability of the decision configuration {d1, . . . , dk−1, 1, dk+1, . . . , dK}

being correct. Letting βnm = λnm/(1 + λnm), one can equivalently maximize

fβnm(d) =
K∑
k=1

dk (wknm(d)− βnm) (7.2.11)

with respect to d and obtain the optimal decision configuration.

Definition 56 Let D be the set of all m-dimensional binary vectors denoting all possible

decision configurations. Define

d̂ = arg max
d∈D

fβ(d)

where 0 < β < 1. Then d̂ is the optimal decision configuration obtained as the solution

of the non-marginal multiple testing method.

Note that in the definitions of both TP and E, di is penalized by incorrect decisions

in the same group. This forces the decisions to be jointly taken also adjudging other

dependent parameters.
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7.2.3 Specialization of the general multiple testing procedure to in-

verse model selection problems

In our inverse model selection problem note that since the modelsMk; k = 1, . . . ,K, are

independent, so are X̃n associated with the different models. Thus, the hypotheses are

dependent only through the relation
∑K

k=1 I(ζ = k) = 1. As we shall show, the posterior

probability of the event {ζ = k̃} converges to one a posteriori as the sample size tends to

infinity, irrespective of any other dependence among (I(ζ = 1), . . . , I(ζ = K)) induced

through (p1, . . . , pK). Hence, there is not enough reason to consider the hypotheses as

dependent. Thus, for our purpose, we simply set Gk = {k}. Consequently, (7.2.11) in

our case reduces to

fβnm(d) =
K∑
k=1

dk (vknm − βnm) , (7.2.12)

where

vknm = E(rk|Xn,Y nm) = π (H1k|Xn,Y nm) .

In this case, the optimal decision configuration d̂ is given by the following: for k =

1, . . . ,K,

d̂k =


1 if vknm > βnm;

0 otherwise.

(7.2.13)

Hence, although our formulation of the multiple hypothesis test for inverse model selection

is novel, the Bayesian procedure for testing parallels that of Müller et al. (2004) (see

also Guindani et al. (2009)), which is a special case of the general procedure proposed in

Chandra and Bhattacharya (2019).

7.2.4 Error measures in multiple testing

Storey (2003) advocated positive False Discovery Rate (pFDR) as a measure of Type-I

error in multiple testing. Let δ(d|Xn,Y nm) be the probability of choosing d as the
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optimal decision configuration given data (Xn,Y nm) when a given multiple testing

method is employed. Then pFDR is defined as:

pFDRnm = EY nm|Xn

[∑
d∈D

∑K
k=1 dk(1− rk)∑K

k=1 di
δ(d|Xn,Y nm)

∣∣∣∣δ(d = 0|Xn,Y nm) = 0

]
.

(7.2.14)

Analogous to Type-II error, the positive False Non-discovery Rate (pFNR) is defined

as

pFNRnm = EY nm|Xn

[∑
d∈D

∑K
k=1(1− dk)rk∑K
k=1(1− dk)

δ (d|Xn,Y nm)

∣∣∣∣δ (d = 1|Xn,Y nm) = 0

]
.

(7.2.15)

Under prior π(·), Sarkar et al. (2008) defined posterior FDR and FNR. The measures

are given as following:

posterior FDRnm = E

[∑
d∈D

∑K
k=1 dk(1− rk)∑K
k=1 dk ∨ 1

δ (d|Xn,Y nm)

∣∣∣∣Xn,Y nm

]
(7.2.16)

=
∑
d∈D

∑K
k=1 dk(1− vknm)∑K

k=1 dk ∨ 1
δ(d|Xn,Y nm); (7.2.17)

posterior FNRnm = E

[∑
d∈D

∑K
k=1(1− dk)rk∑K
k=1(1− dk) ∨ 1

δ (d|Xn,Y nm)

∣∣∣∣Xn,Y nm

]
(7.2.18)

=
∑
d∈D

∑K
k=1(1− dk)vknm∑K
k=1(1− dk) ∨ 1

δ(d|Xn,Y nm). (7.2.19)

Also under any non-randomized decision rule, δ(d|Xn,Y nm) is either 1 or 0 depending

on data (Xn,Y nm). Given (Xn,Y nm), we denote these error measures conditional on

the data by conditional FDR (cFDRnm) and conditional FNR (cFNRnm) respectively.

The positive Bayesian FDR (pBFDRnm) and FNR (pBFNRnm) are the expectations

of cFDRnm and cFNRnm respectively, with respect to the distribution of Y nm given

Xn.
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For our Bayesian purpose, we shall consider the Bayesian measures cFDRnm, pBFDRnm,

cFNRnm and pBFNRnm, and investigate their asymptotic properties. Chandra and

Bhattacharya (2019) and Chandra and Bhattacharya (2020a) particularly recommend

cFDRnm and cFNRnm, since they are conditioned on the observed data (Xn,Y nm)

and hence qualify as bona fide Bayesian measures.

Let us now proceed towards development of the asymptotic theory for our proposed

multiple testing strategy. The issue of misspecification will play a crucial role in this

context. Suppose that the true data-generating parameter θ0 is not contained in Θ, the

parameter space considered. This is a case of misspecification that we must incorporate in

our asymptotic theory. Indeed, we shall build a general asymptotic framework that allows

for possibly infinite-dimensional parameters, dependent data as well as misspecification.

In this regard, the approach presented in Shalizi (2009) seems to be very appropriate.

Before proceeding further, we first provide a brief overview of this approach, which we

conveniently exploit for our purpose.

7.3 Asymptotic properties of the posterior probabilities of

the alternative hypotheses

7.3.1 Posterior convergence to the best model

Theorem 57 Assume that for k = 1, . . . ,K, Mk satisfies conditions (S1)–(S6) of

Shalizi, and that the competing models as well as the true model have densities with

respect to some common σ-finite measure. Also assume that the posterior associated with

Mk is dominated by the prior, which is again absolutely continuous with respect to some

appropriate σ-finite measure, and that the priors satisfy π(θk|Mk) > 0 for all θk ∈ Θk.
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Let hk̃
(
Θk̃

)
= min{hk (Θk) : k = 1, . . . ,K}. Then for any m ≥ 1,

lim
n→∞

π(ζ = k|Xn,Y nm)
a.s.
=


1 if k = k̃

0 if k 6= k̃.

(7.3.1)

Proof. For any k1, k2 ∈ {1, . . . ,K}, let BF (nm)(Mk1 ,Mk2) denote the Bayes factor of

modelMk1 against modelMk2 . Then as a direct consequence of Theorem 25 of Chapter

5, the following holds for any m ≥ 1:

1

n
logBF (nm)(Mk,M0)→ −hk (Θk) , as n→∞, (7.3.2)

almost surely with respect to the true model M0. In the above, hk (Θk) corresponds to

(2.1.1), (2.A1.2) and (2.A1.3) for model Mk with parameter space Θk.

Now, since hk̃
(
Θk̃

)
= min{hk (Θk) : k = 1, . . . ,K}, it follows from (7.3.2) that as

n→∞, for any m ≥ 1,

1

n
logBF (nm)(Mk,Mk̃)→ −

[
hk (Θk)− hk̃

(
Θk̃

)]
,

so that as n→∞, for any m ≥ 1,

BF (nm)(Mk,Mk̃) =


1 if k = k̃

a.s.−→ 0, if k 6= k̃.

(7.3.3)

Now note that (see, for example, Liang et al. (2008))

π(ζ = k|Xn,Y nm, p1, . . . , pK) =
pkBF

(nm)(Mk,Mk̃)∑K
`=1 p`BF

(nm)(M`,Mk̃)
. (7.3.4)
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Hence it follows by applying (7.3.3) to (7.3.4) that the following holds:

lim
n→∞

π(ζ = k|Xn,Y nm, p1, . . . , pK)
a.s.
=


1 if k = k̃

0 if k 6= k̃.

(7.3.5)

Now note that π(ζ = k|Xn,Y nm) = E [π(ζ = k|Xn,Y nm, p1, . . . , pK)], the expectation

being over the posterior distribution of (p1, . . . , pK) given Xn and Y nm. Since π(ζ =

k|Xn,Y nm, p1, . . . , pK) ≤ 1 almost surely, it follows by uniform integrability and (7.3.5),

that

lim
n→∞

π(ζ = k|Xn,Y nm) = E [π(ζ = k|Xn,Y nm, p1, . . . , pK)]
a.s.
=


1 if k = k̃

0 if k 6= k̃.

7.3.2 Convergence of the cross-validation posteriors of x̃i

Theorem 58 For modelMk assume conditions (S1)–(S7) of Shalizi, and let the infimum

of hk(θk) over Θk̃ be attained at θ̃k ∈ Θ̃k, where θ̃k 6= θ0. Also assume that Θk and

Θ0 are complete separable metric spaces. Then, with the prior (4.4.1), under further

assumptions that π(x̃i|θk,yi,Mk) is contiuous in θk, f(yi|θ̃k, x̃i,Mk) is continuous in

x̃i, for i ≥ 1 and η̃k is a one-to-one function, the following holds:

lim
m→∞

lim
n→∞

π(x̃i ∈ V c
ik|Xn,−i,Y nm,Mk, Θ̃k) = 0, almost surely, (7.3.6)

for any neighborhood Vik of x∗ik.

Proof. By the hypotheses, (2.1.2) holds, from which it follows that for any ε > 0, and

for any m ≥ 1,

lim
n→∞

π(Nck,ε|Xn,−i,Y nm,Mk) = 0, (7.3.7)
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where Nk,ε = {θk : hk(θk) ≤ hk (Θk) + ε}.

Now, by hypothesis, the infimum of hk(θk) over Θk is attained at θ̃k ∈ Θk, where

θ̃k 6= θ0. Then by (7.3.7), the posterior of θk given Xn,−i and Y nm, concentrates around

θ̃k, the minimizer of the limiting KL-divergence rate from the true distribution. Formally,

given any neighborhood Uk of θ̃k, the set Nk,ε is contained in Uk for sufficiently small

ε. It follows that for any neighborhood Uk of θ̃k, π(Uk|Xn,−i,Y nm,Mk) → 1, almost

surely, as n→∞. Since Θk is a complete, separable metric space, it follows that (see,

for example, Ghosh and Ramamoorthi (2003), Ghosal and van derVaart (2017))

π(·|Xn,−i,Y nm,Mk)
w−→ δθ̃k(·), almost surely, as n→∞, for any m ≥ 1. (7.3.8)

In the above, δθ̃k(·) denotes point mass at θ̃k.

Now since Θ̃c
k ⊂ Θk, hk

(
Θ̃c
k

)
> hk (Θk). Hence, from (2.1.2) it follows that for any

m ≥ 1,

π
(
θk ∈ Θ̃c

k|Xn,Y nm,Mk

)
a.s.−→ 0, as n→∞. (7.3.9)

Also note that since π(x̃i|θk,yi,Mk) is continuous in θk by assumption, it follows

by Scheffe’s theorem that any probability associated with π(x̃i|θk,yi,Mk) is contin-

uous in θk (see Lemma 18 of Chapter 4). Hence, for any neighborhood Vik of x∗ik,

the probability π(x̃i ∈ V c
ik|θk,yi,Mk) is continuous in θk. Moreover, since it is a

probability, it is bounded. Hence, by the Portmanteau theorem, weak convergence of

π (θk|Xn,−i,Y nm,Mk), and (7.3.9) it holds almost surely that

π(x̃i ∈ V c
ik|Xn,−i,Y nm,Mk) =

∫
Θ̃k
π(x̃i ∈ V c

i |θk,yi,Mk)dπ(θk|Xn,−i,Y nm,Mk)

π
(

Θ̃k|Xn,−i,Y nm,Mk

)
a.s.−→ π(x̃i ∈ V c

ik|θ̃k,yi,Mk), as n→∞, for any m ≥ 1.

That π(x̃i ∈ V c
ik|θ̃k,yi,Mk)

a.s.−→ 0, as m→∞, follows in the same way as the proof of

Theorem 21 of Chapter 4 by replacing θ0 with θ̃k.
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7.3.3 Posterior convergence of the discrepancy measures

Theorem 59 Under the conditions of Theorem 58, the following holds for any ε > 0:

π
(
T (k)(X̃n) > ε|Xn,Y mn,Mk, Θ̃k

)
a.s−→ 0, as m→∞, n→∞, (7.3.10)

where T (k) = T
(1)
k or T

(2)
k .

Proof. For i ≥ 1, Theorem 58 implies almost sure weak convergence of the i-th

cross-validation posterior of x̃i for model Mk to δx∗ik , as m → ∞ and n → ∞. This

is equivalent to convergence in (cross-validation posterior) distribution of x̃i to the

degenerate quantity x∗ik, almost surely. Degeneracy guarantees that this is equivalent

to convergence in probability, almost surely. In other words, with respect to the cross-

validation posterior distribution of x̃i for model Mk, almost surely, as m→∞, n→∞,

x̃i
P−→ x∗ik. (7.3.11)

Now note that T (k)(X̃n) is an average of n terms, the i-th term being
|x̃i−E(x̃i|Xn,Y mn,Mk,Θ̃k)|√
V ar(x̃i|Xn,Y mn,Mk,Θ̃k)+c

or its square. Since x̃i ∈ X for i ≥ 1 and X is compact, (7.3.11) and uniform integrability

entails that

lim
m→∞

lim
n→∞

E
(
x̃i|Xn,Y mn,Mk, Θ̃k

)
a.s.
= x∗ik; (7.3.12)

lim
m→∞

lim
n→∞

V ar
(
x̃i|Xn,Y mn,Mk, Θ̃k

)
a.s.
= 0. (7.3.13)

It follows from (7.3.12) and (7.3.13) that with respect to the cross-validation posterior

distribution of x̃i for model Mk, almost surely, as m→∞, n→∞,∣∣∣x̃i − E (x̃i|Xn,Y mn,Mk, Θ̃k

)∣∣∣√
V ar

(
x̃i|Xn,Y mn,Mk, Θ̃k

)
+ c

P−→ 0, for all i ≥ 1. (7.3.14)
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Hence, by Theorem 7.15 of Schervish (1995) (page 398), it follows that with respect to

the cross-validation posterior distributions of {x̃i; i ≥ 1}, for model Mk, almost surely,

as m→∞, n→∞,

T (k)(X̃n)
P−→ 0,

which is equivalent to (7.3.10).

Theorem 60 Assume the conditions of Theorem 59. Also assume that for i ≥ 1, x∗ik

is a continuous function of {x1, x2, . . . , xi−1, xi, xi+1, . . . , xi+`}, for some non-negative

integer `. Then there exist positive constants a1k and a2k such that

lim
m→∞

lim
n→∞

T
(k)
1 (Xn) = a1k; (7.3.15)

lim
m→∞

lim
n→∞

T
(k)
2 (Xn) = a2k. (7.3.16)

Proof. It follows from (7.3.12) and (7.3.13) that

T
(k)
1 (Xn)

a.s−→ lim
n→∞

1

n
√
c

n∑
i=1

|xi − x∗ik| ; (7.3.17)

T
(k)
2 (Xn)

a.s−→ lim
n→∞

1

nc

n∑
i=1

(xi − x∗ik)
2 . (7.3.18)

Now, by our assumption, x∗ik is a continuous function of {x1, x2, . . . , xi−1, xi, xi+1, . . . , xi+`},

for some non-negative integer `. Hence, letting uik = xi − x∗ik, it follows by Riemann

sum convergence that

lim
n→∞

1

n
√
c

n∑
i=1

|xi − x∗ik| = c−
1
2 |X̃k|−1

∫
X̃k
|u|du; (7.3.19)

lim
n→∞

1

nc

n∑
i=1

(xi − x∗ik)
2 = c−1|X̃k|−1

∫
X̃k
u2du, (7.3.20)

where X̃k is the appropriate compact co-domain of uik induced by the transformation
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uik = xi − x∗ik and the original compact covariate space X , and |X̃k| stands for the

Lebesgue measure of X̃k.

Since the right hand sides of (7.3.19) and (7.3.20) are well-defined positive quantities,

the proof follows by combining (7.3.17) – (7.3.20).

Theorem 61 Assume the conditions of Theorem 60. Then the following holds for any

ε > 0, where T (k) = T
(k)
1 or T

(k)
2 and respectively, ak = a1k or a2k:

lim
m→∞

lim
n→∞

π

(
T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]c

∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
a.s.
= 0.

(7.3.21)

Proof. First, observe that since for i = 1, . . . , n, x̃i ∈ X almost surely, where X

is compact,
|x̃i−E(x̃i|Xn,Y mn,Mk,Θ̃k)|√
V ar(x̃i|Xn,Y mn,Mk,Θ̃k)+c

are almost surely uniformly bounded. Hence,

T
(k)
1 (X̃n) and T

(k)
2 (X̃n) are almost surely bounded. Consequently, using (7.3.10) of

Theorem 59 and uniform integrability it follows that

lim
m→∞

lim
n→∞

E
(
T

(k)
1 (X̃n)|Xn,Y nm,Mk, Θ̃k

)
a.s
= 0; (7.3.22)

lim
m→∞

lim
n→∞

E
(
T

(k)
2 (X̃n)|Xn,Y nm,Mk, Θ̃k

)
a.s
= 0; (7.3.23)

lim
m→∞

lim
n→∞

V ar
(
T

(k)
1 (X̃n)|Xn,Y nm,Mk, Θ̃k

)
a.s
= 0; (7.3.24)

lim
m→∞

lim
n→∞

V ar
(
T

(k)
2 (X̃n)|Xn,Y nm,Mk, Θ̃k

)
a.s
= 0. (7.3.25)

The limits (7.3.22) – (7.3.25) imply that

lim
m→∞

lim
n→∞

˜̀
knm

a.s
= 0; (7.3.26)

lim
m→∞

lim
n→∞

ũknm
a.s
= 0. (7.3.27)

Due to (7.3.26) and Theorem 60, given any ε > 0, for sufficiently large m and n,



256
7.3. ASYMPTOTIC PROPERTIES OF THE POSTERIOR PROBABILITIES OF

THE ALTERNATIVE HYPOTHESES

˜̀
knm − ak + T (k)(Xn)− ε < 0. Since T (k)(X̃n) > 0 with probability one, we thus have

lim
m→∞

lim
n→∞

π

(
T (k)(X̃n) > ˜̀

knm − ak + T (k)(Xn)− ε
∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
a.s
= 1.

(7.3.28)

Also, due to (7.3.27) and Theorem 60, given any ε > 0, for sufficiently large m and n,

ũknm − ak + T (k)(Xn) + ε > 0. Hence, given any ε > 0, for sufficiently large m and n,

we have by Markov’s inequality,

π

(
T (k)(X̃n) > ũknm − ak + T (k)(Xn) + ε

∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
<
(
ũknm − ak + T (k)(Xn) + ε

)−2

×
[
V ar

(
T (k)(X̃n)|Xn,Y nm,Mk, Θ̃k

)
+
{
E
(
T (k)(X̃n)|Xn,Y nm,Mk, Θ̃k

)}2
]
.

(7.3.29)

Taking limits of both sides of (7.3.29) and using (7.3.22) – (7.3.25) we obtain

lim
m→∞

lim
n→∞

π

(
T (k)(X̃n) > ũknm − ak + T (k)(Xn) + ε

∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
a.s
= 0.

(7.3.30)

Combining (7.3.28) and (7.3.30) yields

lim
m→∞

lim
n→∞

π

(
T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]

∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
= lim

m→∞
lim
n→∞

π

(
T (k)(X̃n) > ˜̀

knm − ak + T (k)(Xn)− ε
∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
− lim
m→∞

lim
n→∞

π

(
T (k)(X̃n) > ũknm − ak + T (k)(Xn) + ε

∣∣∣∣Xn,Y nm,Mk, Θ̃k

)
a.s
= 1,

thus proving (7.3.21).
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Remark 62 In all the examples provided in Chapter 6, it has been shown that the

conditions of Theorem 60 are satisfied. Hence, Theorem 61 holds for all the examples

presented in Chapter 6.

7.3.4 Convergence of the posterior probabilities of H1k

Theorem 63 Assume that for k = 1, . . . ,K, Mk satisfies conditions (S1)–(S7) of

Shalizi, and that the competing models as well as the true model have densities with

respect to some common σ-finite measure. Also assume that the posterior associated with

Mk is dominated by the prior, which is again absolutely continuous with respect to some

appropriate σ-finite measure, and that the priors satisfy π(θk|Mk) > 0 for all θk ∈ Θk.

Let hk̃
(
Θk̃

)
= min{hk (Θk) : k = 1, . . . ,K}. Then

lim
m→∞

lim
n→∞

vknm
a.s.
=


1 if k 6= k̃

0 if k = k̃.

(7.3.31)

Proof. First, let k 6= k̃. Then

vknm = π (ζ 6= k|Xn,Y nm) + π
(
ζ = k, θk ∈ Θ̃c

k|Xn,Y nm

)
+ π

(
ζ = k, θk ∈ Θ̃k, T

(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]c
∣∣∣∣Xn,Y nm

)
.

(7.3.32)

Since k 6= k̃, it follows due to (7.3.1) that for any m ≥ 1, as n→∞,

π (ζ 6= k|Xn,Y nm) = π
(
ζ = k̃|Xn,Y nm

)
+
∑
j 6=k,k̃

π (ζ 6= k|Xn,Y nm)
a.s.−→ 1. (7.3.33)
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Using (7.3.1) again it follows that for any m ≥ 1,

π
(
ζ = k, θk ∈ Θ̃c

k|Xn,Y nm

)
≤ π (ζ = k|Xn,Y nm)

a.s.−→ 0, as n→∞ (7.3.34)

and

π

(
ζ = k, θk ∈ Θ̃k, T

(k)(X̃n)− T (k)(Xn) ∈ [˜̀knm − ak − ε, ũknm − ak + ε]c
∣∣∣∣Xn,Y nm

)
≤ π (ζ = k|Xn,Y nm)

a.s.−→ 0, as n→∞. (7.3.35)

Results (7.3.33), (7.3.34) and (7.3.35) imply that if k 6= k̃, then for any m ≥ 1,

vknm
a.s.−→ 1, as n→∞. (7.3.36)

Now let us obtain the limit of vknm when k = k̃. By (7.3.1),

π
(
ζ 6= k̃|Xn,Y nm

)
a.s.−→ 0, as n→∞. (7.3.37)

For any m ≥ 1, using (7.3.9) we obtain

π
(
ζ = k̃, θk̃ ∈ Θ̃c

k̃
|Xn,Y nm

)
≤ π

(
θk̃ ∈ Θ̃c

k̃
|Xn,Y nm

)
a.s.−→ 0, as n→∞. (7.3.38)
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Now note that

π

(
ζ = k̃, θk̃ ∈ Θ̃k̃, T

(k̃)(X̃n)− T (k̃)(Xn) ∈ [ ˜̀̃knm − ak̃ − ε, ũk̃nm − ak̃ + ε]c
∣∣∣∣Xn,Y nm

)
= π

(
ζ = k̃|Xn,Y nm

)
× π

(
θk̃ ∈ Θ̃k̃, T

(k̃)(X̃n)− T (k̃)(Xn) ∈ [ ˜̀̃knm − ak̃ − ε, ũk̃nm − ak̃ + ε]c
∣∣∣∣Xn,Y nm, ζ = k̃

)
≤ π

(
T (k̃)(X̃n)− T (k̃)(Xn) ∈ [ ˜̀̃knm − ak̃ − ε, ũk̃nm − ak̃ + ε]c

∣∣∣∣Xn,Y nm, ζ = k̃

)
a.s.−→ 0, as m→∞, n→∞, due to (7.3.21). (7.3.39)

From (7.3.37), (7.3.38) and (7.3.39) it follows that

vk̃nm
a.s.−→ 0, as m→∞, n→∞. (7.3.40)

The limits (7.3.36) and (7.3.40) show that (7.3.31) holds.

7.4 Asymptotic optimality theory for our multiple testing

procedure

Let hk̃
(
Θk̃

)
= min{hk (Θk) : k = 1, . . . ,K}. Also let us define d̃ = (d̃1, . . . , d̃K), where

d̃k =


1 if k 6= k̃

0 if k = k̃.

(7.4.1)

Definition 64 A multiple testing method for the inverse model selection is said to be

asymptotically optimal for which

lim
m→∞

lim
n→∞

δ(d̃|Xn,Y nm)
a.s.
= 1.



260
7.4. ASYMPTOTIC OPTIMALITY THEORY FOR OUR MULTIPLE TESTING

PROCEDURE

Recall the constant βnm in (7.2.11), which is the penalizing constant between the error E

and true positives TP . For consistency of the non-marginal procedure, we need certain

conditions on βn, which we state below. These conditions will also play important roles

in the asymptotic studies of the different versions of FDR and FNR that we consider.

(A1) We assume that the sequence βnm is neither too small nor too large, that is,

β = lim inf
m≥1,n≥1

βnm > 0; (7.4.2)

β = lim sup
m≥1,n≥1

βnm < 1. (7.4.3)

With this conditions we propose and prove the following results.

Theorem 65 Let δ(·|Xn,Y nm) denote the decision rule given data Xn and Y nm.

Assume the conditions of Theorem 63 and condition (A1) on βnm. Then the decision

procedure is asymptotically optimal.

Proof. Due to (A1), given ε1 > 0, there exist m0 ≥ 1 and n0 ≥ 1 such that for m ≥ m0

and n ≥ n0,

0 < β − ε1 < βnm < β + ε1 < 1. (7.4.4)

By (7.3.31), for any 0 < ε2 < 1− β − ε1, for k 6= k̃, there exist mk ≥ 1 and nk ≥ 1 such

that for m ≥ mk and n ≥ nk,

vknm > 1− ε2 > β + ε1. (7.4.5)

Also, for 0 < ε3 < β − ε1, there exist mk̃ ≥ 1 and nk̃ ≥ 1 such that for m ≥ mk̃ and

n ≥ nk̃,

vk̃nm < ε3 < β − ε1. (7.4.6)



261 7.5. ASYMPTOTIC THEORY OF THE ERROR MEASURES

Let m̃ = max{m0,m1, . . . ,mK} and ñ = max{n0, n1, . . . , nK}. Then it can be seen from

(7.4.4), (7.4.5) and (7.4.6) that for m ≥ m̃ and n ≥ ñ the following hold almost surely:

vknm > βnm, if k 6= k̃; (7.4.7)

vknm < βnm, if k = k̃. (7.4.8)

Using (7.4.7) and (7.4.8) in (7.2.13) shows that for m ≥ m̃ and n ≥ ñ,

d̂k =


1 if k 6= k̃;

0 if k = k̃.

(7.4.9)

In other words, almost surely, d̂ = d̃ for m ≥ m̃ and n ≥ ñ. This completes the proof.

Remark 66 Since δ(·|Xn,Y nm) is an indicator function, the following also holds:

lim
m→∞

lim
n→∞

EY nm|Xn

[
δ(d̃|Xn,Y nm)

]
= 1.

7.5 Asymptotic theory of the error measures

7.5.1 Convergence of versions of FDR and FNR

Theorem 67 Assume the conditions of Theorem 63 and condition (A1) on βnm. Then

lim
m→∞

lim
n→∞

cFDRnm
a.s.
= 0; (7.5.1)

lim
m→∞

lim
n→∞

pBFDRnm = 0. (7.5.2)

Proof. From (7.2.17) observe that

cFDRnm =

∑K
k=1 d̃k(1− vknm)∑K

k=1 d̃k ∨ 1
δ(d̃|Xn,Y nm)+

∑
d6=d̃∈D

∑K
k=1 dk(1− vknm)∑K

k=1 dk ∨ 1
δ(d|Xn,Y nm)

(7.5.3)
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The proof of Theorem 65 shows that there exist m̃ ≥ 1 and ñ ≥ 1 such that δ(d̃|Xn,Y nm) =

1 almost surely for m ≥ m̃ and n ≥ ñ. This, combined with (7.5.3) shows that for

m ≥ m̃ and n ≥ ñ, almost surely,

cFDRnm =

∑K
k=1 d̃k(1− vknm)∑K

k=1 d̃k ∨ 1
=

∑
k 6=k̃(1− vknm)

K − 1
. (7.5.4)

Applying (7.3.31) to the right most side of (7.5.4) shows that

cFDRnm
a.s.−→ 0, as m→∞, n→∞,

establishing (7.5.1).

Since cFDRnm < 1 almost surely, (7.5.2) follows from (7.5.1) by uniform integrability.

Theorem 68 Assume the conditions of Theorem 63 and condition (A1) on βnm. Then

lim
m→∞

lim
n→∞

cFNRnm
a.s.
= 0; (7.5.5)

lim
m→∞

lim
n→∞

pBFNRnm = 0. (7.5.6)

Proof. It follows from (7.2.19) and the proof of Theorem 65 that there exist m̃ ≥ 1 and

ñ ≥ 1 such that for m ≥ m̃ and n ≥ ñ, almost surely,

cFNRnm =

∑K
k=1(1− d̃k)vknm∑K
k=1(1− d̃k) ∨ 1

δ(d̃|Xn,Y nm) +
∑

d6=d̃∈D

∑K
k=1(1− dk)vknm∑K
k=1(1− dk) ∨ 1

δ(d|Xn,Y nm)

=

∑K
k=1(1− d̃k)vknm∑K
k=1(1− d̃k) ∨ 1

= vk̃nm. (7.5.7)

Application of (7.3.31) to the right most side of (7.5.7) yields

cFNRnm
a.s.−→ 0, as m→∞, n→∞,
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establishing (7.5.5).

Again, (7.5.6) follows from (7.5.5) by uniform integrability, since cFNRnm is almost

surely bounded above by one.

7.5.2 Convergence of versions of FNR when versions of FDR are α-

controlled

Theorem 69 Assume the conditions of Theorem 63. Then α = K−1 is the only

asymptotic FDR control possible in the sense that there exist sequences βnm → 0 as

m→∞ and n→∞ such that the following hold:

lim
m→∞

lim
n→∞

cFDRnm
a.s.
= K−1; (7.5.8)

lim
m→∞

lim
n→∞

pBFDRnm = K−1. (7.5.9)

Proof.

It follows from Chandra and Bhattacharya (2019) (see also Chandra and Bhattacharya

(2020a)) that pBFDRnm is continuous and decreasing in βnm, for any given m ≥ 1 and

n ≥ 1. Hence, the maximum error given any m ≥ 1 and n ≥ 1 occurs when βnm = 0.

Hence, in this case, for any given m ≥ 1 and n ≥ 1, for our multiple testing procedure

we must maximize
∑K

k=1 dkvknm with respect to d. This of course yields d̂k = 1, for

k = 1, . . . ,K. For this decision d̂, we obtain using (7.3.31):

cFDRnm =

∑K
k=1 d̂k(1− vknm)∑K

k=1 d̂k ∨ 1
=

∑K
k=1(1− vknm)

K

a.s.−→ K−1, as m→∞, n→∞.

(7.5.10)

Uniform integrability and (7.5.10) shows that when βnm = 0 for any m ≥ 1 and n ≥ 1,

pBFDRnm → K−1, as m→∞, n→∞. (7.5.11)
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Now consider any sequence βnm that yields any decision d̂ such that d̂k̃ = 1 almost

surely, for sufficiently large m and n. Note that d̂k̃ = 1 can occur only if vk̃nm > βnm.

Since vk̃nm
a.s.−→ 0 by (7.3.31), we must have βnm → 0 as m → ∞ and n → ∞ in such

cases. Also since vknm
a.s.−→ 1 for k 6= k̃ due to (7.3.31), it follows that d̂k = 1 almost

surely for large enough m and n, for k 6= k̃. Hence, the limits (7.5.10) and (7.5.11)

continue to hold in all cases such that d̂k̃ = 1, for sufficiently large m and n.

On the other hand, for any sequence βnm that yields any decision d̂ such that d̂k̃ = 0

almost surely for sufficiently large m and n, it is easily seen that cFDRnm
a.s.−→ 0 and

pBFDRnm → 0, as m→∞ and n→∞.

In other words, asymptotic control of cFDRnm and pBFDRnm is possible only at

α = K−1.

Theorem 70 Assume that either of cFDRnm or pBFDRnm is asymptotically controlled

at α = K−1. Then for sufficiently large m and n,

cBFNRnm
a.s.
= 0; (7.5.12)

pBFNRnm = 0. (7.5.13)

Proof. From the proof of Theorem 69, recall that for asymptotic control of cFDRnm or

pBFDRnm at α = K−1, we must obtain decision d̂ where d̂k = 1, for k = 1, . . . ,K, for

large enough m and n. Hence, (7.5.12) and (7.5.13) follow simply from the definitions of

cBFNRnm and pBFNRnm with d = d̂ for sufficiently large m and n.

Remark 71 Theorem 70 shows that cBFNRnm and pBFNRnm are exactly zero for

large enough m and n. Needless to mention, these are far stronger results than con-

vergence to zero in the limit. In other words, essentially in keeping with the classical

hypothesis testing paradigm, α-control of the Type-I error actually minimizes the Type-II

error for sufficiently large m and n.
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7.6 Modification of the multiple testing procedure for prac-

tical implementation

Note that the constants ak in (7.2.5) and (7.2.6), which depend upon the true parameter(s)

θ0, are unknown, since θ0 is unknown. The constants ak also depend upon θ̃k, the

minimizer of the KL-divergence of modelMk from the true model. Since the true model

itself is generally unknown, θ̃k is usually unknown. Estimation of these parameters need

not be reliable unless assumptions regarding the true model is accurate enough.

In practice, the considered models Mk; k = 1, . . . ,K, are expected to be carefully

chosen for final model selection so that misspecifications, if any, are not expected to

be severe. Hence, for finite samples, where the variability of T (k)(Xn), and hence the

desired credible intervals, are reasonably large, ak is not expected to play significant role.

In such cases, it makes sense to set ak = 0. Similarly, setting ε = 0 also makes sense.

Also in practice, one might set Θ̃k = Θk since accurate specification of a small set

containing θ̃k is not possible without knowledge of θ̃k. With these, for practical purposes

we re-formulate (7.2.5) and (7.2.6) as follows:

H0k : ζ = k, T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm] (7.6.1)

versus

H1k : {ζ 6= k}
⋃{

ζ = k, T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm]c
}
. (7.6.2)

We shall consider the above hypotheses for our applications.
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7.7 First simulation study: selection among Poisson and

geometric parametric and nonparametric inverse re-

gression models

For our simulation experiments we consider the same data and models considered in

Chapter 6 for the forward and inverse pseudo-Bayes factor illustration. Specifically, we

set n = m = 10 and generate data from relevant Poisson distribution with the log-linear

link function and consider modeling the data with Poisson and geometric distributions

with log, logit and probit links for linear regression as well as nonparametric regression

modeled by Gaussian process having linear mean function and squared exponential

covariance. We also consider variable selection in these setups with respect to two

different covariates.

Here we demonstrate that the forward and inverse pseudo-Bayes factor results obtained

in Chapter 6 for both the experiments involving model selection and variable selection

can be significantly improved with our inverse multiple testing framework.

Let us begin with the model selection framework. In this context, the details of the

true, data-generating distribution and the competing inverse regression models are the

same as in Chapter 6.8.1.

7.7.1 Implementation of our multiple testing procedure for inverse

model selection

We now briefly discuss our strategy for implementing our multiple testing procedure for hy-

potheses (7.6.1) and (7.6.2). We set Θ̃k to Θk, so we shall denote π(x̃i|Xn,−i,Y nm,Mk, Θ̃k)

by π(x̃i|Xn,−i,Y nm,Mk).
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Obtaining the posterior distributions of the discrepancy measures using

IRMCMC and TMCMC

For each competing model Mk; k = 1, . . . ,K, we obtain samples from the cross-

validation posterior distribution π(x̃i|Xn,−i,Y nm,Mk), for i = 1, . . . , n, using fast and

efficient IRMCMC. The key idea is to first generate realizations of size N from some

appropriate “importance sampling density” of the form π(x̃i∗ , θk|Xn,−i∗ ,Y nm,Mk), for

some i∗ ∈ {1, . . . , n} using TMCMC. Note that a major advantage of TMCMC over

regular MCMC is that it effectively reduces the dimensionality of the parameters to

a single dimension, thus drastically improving the acceptance rate and computational

speed, while ensuring good mixing properties at the same time. Appropriate choice of

i∗, which is equivalent to appropriate choice of the importance sampling density, has

been proposed in Bhattacharya and Haslett (2007). For i ∈ {1, . . . , n}, a sub-sample of

the realizations of θk (but not of x̃i∗) of size M (< N) is selected without replacement

with importance weights proportional to the ratio of π(x̃i, θk|Xn,−i,Y nm,Mk) and

π(x̃i∗ , θk|Xn,−i∗ ,Y nm,Mk). For each member θk of the sub-sampled realizations, R

realizations of x̃i are generated using TMCMC from π(x̃i|θk,Xn,−i,Y nm,Mk), to yield

a total of R×M realizations from π(x̃i|Xn,−i,Y nm,Mk).

In our examples, we generate 30, 000 TMCMC samples from π(x̃i∗ , θk|Xn,−i∗ ,Y nm,Mk)

of which we discard the first 10, 000 as burn-in, and re-sample 1000 θk-realizations without

replacement from the remaining 20, 000 realizations with importance weights propor-

tional to the ratio of π(x̃i, θk|Xn,−i,Y nm,Mk) and π(x̃i∗ , θk|Xn,−i∗ ,Y nm,Mk). For

each re-sampled θk-value, we generate 100 TMCMC realizations of x̃i. We discard the

first 10, 000 realizations of x̃i as burn-in for the first re-sampled θk-realization, and for

the subsequent θk-realizations, we set the final value of x̃i of the previous value of θk

as the initial value for x̃i given the current θk-value, and continue TMCMC without

any further burn-in. We thus obtain 1000× 100 = 100, 000 realizations of x̃i for each

i = 1, . . . , n. In all our examples, the above IRMCMC strategy, in conjunction with
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efficient implementation of additive TMCMC, has led to excellent mixing properties.

Using the 100, 000 IRMCMC samples, we obtain the posterior distribution of any

given discrepancy measure T (k)(X̃n).

Obtaining the posterior model probabilities using Gibbs sampling

To obtain the posterior distribution of ζ, we first need to specify a prior for (p1, . . . , pK).

We consider the Dirichlet prior with parameters (α1, . . . , αK), where αk > 0, for

k = 1, . . . ,K. Given ζ, the posterior distribution of (p1, . . . , pK) is again a Dirich-

let distribution with parameters (α1 + I(ζ = 1), . . . , αK + I(ζ = K)). In other words,

π(p1, . . . , pK |Xn,Y nm, ζ) ≡ Dirichlet(α1 + I(ζ = 1), . . . , αK + I(ζ = K)). (7.7.1)

Given (p1, . . . , pK), the posterior distribution of ζ is given by (7.3.4), which is a function

of the Bayes factors BF (nm)(Mk,Mk̃); k = 1, . . . ,K. In Chapter 6 we have shown

that the corresponding pseudo-Bayes factors PBF (nm)(Mk,Mk̃); k = 1, . . . ,K, have

the same asymptotic properties as the Bayes factors and are computationally far more

efficient. Moreover, unlike Bayes factors, pseudo-Bayes factors do not suffer from

Lindley’s paradox. Thus, it seems reasonable to replace BF (nm)(Mk,Mk̃) in (7.3.4) with

the corresponding PBF (nm)(Mk,Mk̃). In other words, we approximate the posterior

probability π(ζ = k|Xn,Y nm, p1, . . . , pK) as

π(ζ = k|Xn,Y nm, p1, . . . , pK) ≈
pkPBF

(nm)(Mk,Mk̃)∑K
`=1 p`PBF

(nm)(M`,Mk̃)
; k = 1, . . . ,K. (7.7.2)

Since the model probabilities are associated with the forward part, that is, where all the

covariate values are treated as fixed, we consider the forward, or the traditional pseudo-

Bayes factor in (7.7.2). In our examples, the values of PBF (nm)(Mk,Mk̃); k = 1, . . . ,K,

are already available from Chapter 6 who provide estimates of 1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,Mk)
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in the second last column of Table 6.8.1. Note that

1

n
logPBF (nm)(Mk,Mk̃) =

1

n

n∑
i=1

log π(yi1|Y nm,−i,Xn,Mk)−
1

n

n∑
i=1

log π(yi1|Y nm,−i,Xn,Mk̃).

Here k̃ = arg max
k=1,...,K

1
n

∑n
i=1 log π(yi1|Y nm,−i,Xn,Mk).

Using the full conditional distributions (7.7.1) and (7.7.2), we obtain 100, 000 real-

izations from the posterior distribution of (ζ, p1, . . . , pK) using Gibbs sampling, after

discarding the first 10, 000 iterations as burn-in.

Obtaining the posterior probabilities of the alternative hypotheses H1k

Note that for k = 1, . . . ,K, the posterior probability of H1k is given by

vknm = 1− π
(
ζ = k, T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm]

∣∣Xn,Y nm

)
= 1− π

(
ζ = k

∣∣Xn,Y nm

)
π
(
T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm]

∣∣ζ = k,Xn,Y nm

)
.

(7.7.3)

Once we obtain realizations from the posteriors of T (k)(X̃n) for k = 1, . . . ,K, and

(ζ, p1, . . . , pK), evaluation of the posterior probabilities of H1k, denoted by vknm; k =

1, . . . ,K, follows simply by Monte Carlo averaging associated with the two factors of

(7.7.3).

7.7.2 Results of the simulation experiment for model selection

Non-misspecified situation

It is clear that for this experiment, K = 6, when no misspecification is considered. We

set αk = 1; k = 1, . . . ,K, for the parameters of the Dirichlet prior for (p1, . . . , pK). That

is, we assume a uniform prior distribution for (p1, . . . , pK) on the simplex. We report our

results with respect to this prior, but our experiments with other values of (α1, . . . , αK)
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did not yield different results.

For n = m = 10, the cFDRnm and cFNRnm, for βnm ∈ [0.01, 0.99] are provided

in Figure 7.7.1. The red and green colours correspond to T
(k)
1 (X̃n) − T (k)

1 (Xn) and

T
(k)
2 (X̃n)− T (k)

2 (Xn), respectively. In the plots we denote these red and green coloured

cFDRs as cFDR1 and cFDR2, respectively. Similarly, cFNR1 and cFNR2 denote the red

and green coloured cFNRs. When T
(k)
1 (X̃n)−T (k)

1 (Xn) is considered, cFDRnm = 0.024

for βnm < 0.86 and equals 9.023 × 10−6 for βnm ≥ 0.86. On the other hand, for

T
(k)
2 (X̃n)−T (k)

2 (Xn), cFDRnm = 0.087 for 0.01 ≤ βnm < 0.48 and falls to 5.444× 10−5

for 0.48 ≤ βnm ≤ 0.99. In the first case, the multiple testing procedure selects H1k for

k = 1, . . . ,K when 0.01 ≤ βnm < 0.86. When 0.86 < βnm ≤ 0.99, the method selects

H0k̃ and H1k for k 6= k̃. Here k̃ corresponds to the true data-generating model, namely,

the Poisson log-linear regression model. In the second case, all the alternative hypotheses

are selected when 0.01 ≤ βnm < 0.48; the true null and remaining alternative hypotheses

are chosen for 0.48 ≤ βnm ≤ 0.99. Thus, for both the discrepancy measures, the correct

model is selected for appropriate values of βnm. However, cFDR2 falls close to zero

much faster than cFDR1, and from the point onwards where the true decision occurs,

cFNR2 is much lesser than cFNR1. These demonstrate that T
(k)
2 (X̃n)− T (k)

2 (Xn) is a

more efficient choice compared to T
(k)
1 (X̃n)− T (k)

1 (Xn).

Here is an important point regarding comparison with our multiple testing result

with that of inverse pseudo-Bayes factor reported in the last column of Table 6.8.1 of

Chapter 6. The column shows that the inverse pseudo-Bayes factor identifies the true

Poisson log-linear regression model as only the second best. However our multiple testing

procedure correctly identifies the true model as the best one, for appropriate values of

βnm.

It is also important to remark in this context that the posterior probabilities of

T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm] when k is the true model, is significantly smaller

than several other models. That the true model still turns out to be the best is due
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Figure 7.7.1: cFDRnm and cFNRnm as functions of βnm in the non-misspecified case.

to its much larger posterior model probability compared to the others. The point is

that even the true data-generating model need not have large posterior probabilities

associated with the inverse discrepancy measure, and if the corresponding posterior

model probability is not significantly large, then any other model can turn out to be the

best on the basis of its stronger inverse perspective.

Misspecified situation

Let us now consider the case of misspecification, that is, when the true Poisson log-

linear model is left out from consideration among the competing models. Thus, K = 5

in this case. The remaining setup is the same as in the non-misspecified scenario.

Figure 7.7.2 display the cFDRs and cFNRs for this situation, each associated with both

T
(k)
1 (X̃n)− T (k)

1 (Xn) and T
(k)
2 (X̃n)− T (k)

2 (Xn). In this case, for both the discrepancy

measures, the correct decision, namely, the null hypothesis for the Poisson log-Gaussian
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Figure 7.7.2: cFDRnm and cFNRnm as functions of βnm in the misspecified case.

process and the alternative hypotheses for the remaining models, is reached for relatively

large values of βnm. Indeed, cFDR1 = 0.002 for 0.01 ≤ βnm < 0.99 and 0.0003 for

βnm = 0.99 and cFDR2 = 0.020 for 0.01 ≤ βnm < 0.91 and 0.0003 for 0.91 ≤ βnm ≤ 0.99.

Again, T
(k)
2 (X̃n) − T (k)

2 (Xn) performs better than T
(k)
1 (X̃n) − T (k)

1 (Xn) in terms of

faster decrease of cFDRmn towards zero and lesser value of cFNRnm once the right

decision has been obtained.

Here the multiple testing procedure turns out to be consistent with both forward and

inverse pseudo-Bayes factor, since the last two columns of Table 6.8.1 of Chapter 6 show

that if the Poisson log-linear model is not considered among the competing models, then

the Poisson log-Gaussian process model is the best. Here the corresponding posterior

probability of T (k)(X̃n) − T (k)(Xn) ∈ [˜̀knm, ũknm] is higher than those of the other

models, in addition to higher posterior model probability.



273

7.8. SECOND SIMULATION STUDY: VARIABLE SELECTION IN POISSON AND
GEOMETRIC LINEAR AND NONPARAMETRIC REGRESSION MODELS WHEN

TRUE MODEL IS POISSON LINEAR REGRESSION

7.8 Second simulation study: variable selection in Pois-

son and geometric linear and nonparametric regres-

sion models when true model is Poisson linear regres-

sion

Here, the true and competing inverse regression models in the variable selection context,

are as described in Chapter 6.8.4.

7.8.1 Discrepancy measure and Dirichlet prior parameters for more

than one covariate

In models where both the covariates are considered, for any two n-dimensional vectors

v1n = (v11, . . . , v1n) and vn = (v21, . . . , v2n), letting vi = (v1i, v2i)
T , V n = (v1, . . . ,vn)

and denoting the posterior mean vector and covariance matrix of ũi = (x̃i, z̃i)
T by Ek(ũi)

and V ark(ũi) respectively, for i = 1, . . . , n, we set

T
(k)
3 (V n) =

1

n

n∑
i=1

(ṽi − Ek(ũi))T (V ark(ũi) + cI)−1 (ṽi − Ek(ũi)), (7.8.1)

where c > 0 and I is the identity matrix. Here Ek(ũi) and V ark(ũi) correspond to the

cross-validation posterior π(ũi|Xn,−i,Y nm,Mk).

In our experiment, as before we shall compare the results corresponding to T
(k)
1 (W̃ n)−

T
(k)
1 (W n) and T

(k)
2 (W̃ n)− T (k)

2 (W n), where W̃ n is either X̃n or Z̃n and W n is either

Xn or Zn. But for any inverse model that consists of both the covariates x and z, we

replace both T
(k)
1 (W̃ n)−T (k)

1 (W n) and T
(k)
2 (W̃ n)−T (k)

2 (W n) with T
(k)
3 (Ṽ n)−T (k)

3 (V n),

where ṽi = (x̃i, z̃i)
T , Ṽ n = (ṽ1, . . . , ṽn), vi = (xi, zi)

T and V n = (v1, . . . ,vn).

For models having both x and z as covariates, the corresponding discrepancy measures

T
(k)
3 (Ṽ n)− T (k)

3 (V n) are associated with joint cross-validation posterior distributions

of (x̃i, z̃i), and hence the corresponding posterior probabilities of the hypotheses are
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expected to be much smaller than posterior probabilities of the hypotheses of the models

with single covariates. We make amends for this by setting the parameters αk of the

Dirichlet prior for (p1, . . . , pK) for any model Mk with both covariates to be 5 times

that of the remaining parameters. So, in our case, we set αk = 5 for those k associated

with both the covariates, and set the remaining parameters to 1.

Note that in this experiment, K = 18, including the true inverse Poisson log-linear

regression model with both the covariates x and z. The implementation details remain

the same as described in Section 7.7.1.

7.8.2 Results of our multiple testing experiment for model and vari-

able selection

Non-misspecified situation

For n = m = 10, when the true model is Poisson with log-linear regression on both

the covariates x and z, Figure 7.8.1 shows cFDRnm and cFNRnm as functions of βnm.

In this case cFDR1 decreases towards zero slightly faster than cFDR2. The numerical

values of step functions cFDR1 and cFDR2 are provided as follows:

cFDR1 =



0.025 if 0.01 ≤ βnm < 0.67;

0.007 if 0.67 ≤ βnm < 0.91;

0.001 if 0.91 ≤ βnm < 0.99;

6.214× 10−7 if βnm = 0.99

(7.8.2)
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and

cFDR2 =



0.032 if 0.01 ≤ βnm < 0.67;

0.014 if 0.67 ≤ βnm < 0.80;

0.002 if 0.80 ≤ βnm < 0.98;

5.767× 10−6 if 0.98 ≤ βnm ≤ 0.99.

(7.8.3)

Note that the first change point for both cFDR1 and cFDR2 occurs at βmn = 0.67, and

at this point, we obtain the decision configuration that selects the null hypothesis of the

true, Poisson log-linear model with both covariates x and z, and alternative hypotheses

of all other models. For βmn < 0.67, for all the models, the alternative hypotheses are

selected. Thus, the first change point associated with both cFDR1 and cFDR2 yields

the correct decision configuration. The next change points βnm = 0.91 and βnm = 0.80

for cFDR1 and cFDR2 are associated with selecting the null hypothesis for the model

with the Poisson log-linear model with covariate x, in addition to the null hypothesis

of the true, Poisson log-linear model with both covariates x and z. The final change

points βnm = 0.99 and βnm = 0.98 yield the decision configurations that select the null

hypothesis for the model with the Poisson log-linear model with covariate z, in addition

to the previous null hypotheses. Thus, cFDR1 and cFDR2 behave quite consistently in

this example and there seems to be no obvious reason for preferring one discrepancy

measure to the other. Observe in Figure 7.8.1 that cFNR1 and cFNR2 are also quite

consistently behaved.

Again the important observation is that our multiple testing procedure seems to easily

identify the true inverse model, while neither forward nor inverse pseudo-Bayes factor

successfully identified the true inverse model, as shown in the last two columns of Table

6.8.2 of Chapter 6. The second and third best models, namely, the Poisson log-linear

model with covariate x and the Poisson log-linear model with covariate z, respectively,

are however, consistent with forward and inverse pseudo-Bayes factor results reported in
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Figure 7.8.1: cFDRnm and cFNRnm as functions of βnm in the non-misspecified situation of the model
and variable selection problem.

Chapter 6.

Again we find that the posterior probabilities of T (k)(X̃n)− T (k)(Xn) ∈ [˜̀knm, ũknm]

when k is the true model, is significantly smaller than most of the other models, but

its much higher posterior model probability compared to the others succeeds in making

it the winner. The above inverse posterior probabilities for the second and third best

models are also not higher than the remaining ones.

Misspecified situation

In the misspecified situation we leave out the true Poisson log-linear model with both

covariates x and z from among the competing models and implement our multiple testing

procedure to obtain the best possible inverse models among the remaining ones. Figure

7.8.2 summarizes the results of our implementation in this direction. Both cFDR1 and

cFDR2 yield the Poisson log-linear model with covariate x and the Poisson log-linear
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Figure 7.8.2: cFDRnm and cFNRnm as functions of βnm in the misspecified situation of the model and
variable selection problem.

model with covariate z as the best and the next best inverse models, corresponding to

the two change points observed in the graphs of cFDR1 and cFDR2. Recall that these

were the second and the third best models in the non-misspecified situation, showing

that our results for this misspecified case is very much coherent.

Observe that the best model in this case is detected by cFDR2 much earlier than

cFDR1, and its value falls close to zero much earlier than that of cFDR1 in the process.

The graphs for cFNR1 and cFNR2 shows that at points where the best and the next

best models are selected, cFNR2 is significantly smaller than cFNR1. Hence, in this

misspecified situation, T
(k)
2 is again a better performer than T

(k)
1 .
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7.9 Summary and discussion

In this chapter we propose and develop a novel Bayesian multiple testing formulation

for model and variable selection in inverse regression problems. Despite the relevance

and elegance of the asymptotic theory, the real importance of our contribution lies

in realistic, small sample situations where the inverse perspective of the competing

models are expected to be most pronounced. The fast and efficient computational

strategy that we employ for implementing our multiple testing procedure renders inverse

model selection straightforward in the realistic finite sample context. Interestingly, the

forward pseudo-Bayes factor also features in our computational methodology, lending

efficiency once it is available for the competing models. Most importantly, our simulation

experiments demonstrate that our Bayesian multiple testing procedure can improve upon

the results of both forward and inverse pseudo-Bayes factors.

Although we have exclusively considered the consistent prior for x̃i developed in

Chapter 4, at least for applications there is no bar to specifying any other sensible

prior for x̃i. Even though such priors need not lead to consistency of the inverse cross-

validation posteriors, acceptable finite-sample based Bayesian inference can be obtained

as in any other situations, for any n > 1 and m ≥ 1.

Although we shall consider applications of our multiple testing procedure to various

real data problems, let us present here some of our previous results on assessment of some

palaeoclimate reconstruction models using the inverse reference distribution approach of

Bhattacharya (2013) in the light of our new multiple testing strategy.

Vasko et al. (2000) reported a regular MCMC based inverse cross-validation exercise

for a data set comprising multivariate counts yi on m = 52 species of chironomid at

n = 62 lakes (sites) in Finland. The unidimensional xi denote mean July air temperature.

As species respond differently to summer temperature, the variation in the composition

provides the analyst with information on summer temperatures. This information is

exploited to reconstruct past climates from count data derived from fossils in the lake
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sediment; see Korhola et al. (2002). The Bayesian model is a Multinomial-Dirichlet

model for the species counts with a Gaussian response function of the species parameters.

However, Bhattacharya (2013) showed that the posterior probabilities associated with

the discrepancy measures T1 and T2 given by (7.1.1) and (7.1.2) were almost zero.

Bhattacharya (2006) proposed an improved Bayesian model for the same dataset, by

replacing the unimodal Gaussian response function with a Dirichlet process (Ferguson

(1973)) based mixture of Gaussian functions, which very flexibly allows unknown number

of climate preferences and tolerance levels for each species. Although this model brought

about marked improvement over that of Vasko et al. (2000) in terms of including

significantly more xi in the associated 95% highest posterior density credible intervals

of the cross-validation posteriors, the posterior probabilities associated with T1 and T2

were still almost zero. A much improved palaeoclimate model was finally postulated

by Mukhopadhyay and Bhattacharya (2013) by replacing the multinomial model with

zero-inflated multinomial to account for excess zero species counts typically present in

the data. The other features of the model are similar to that of Bhattacharya (2006).

Not only does this model far surpasses the previous models in terms of including the

percentage of xi in the corresponding 95% highest posterior density credible intervals

of the cross-validation posteriors (indeed, about 97% xi are included in the respective

intervals), inverse reference distributions for various discrepancy measures, including T1

and T2, comfortably contain the observed discrepancy measures in their respective 95%

highest posterior density credible intervals such that the relevant posterior probabilities

associated with the discrepancy measures are significantly large. Recast in our multiple

testing framework, the results show that irrespective of the posterior probabilities of the

aforementioned three Bayesian models, the multiple testing method would select the

model of Mukhopadhyay and Bhattacharya (2013) because of the overwhelming impact

of its inverse regression part compared to the other two competing models.

In Haslett et al. (2006) pollen data was used, rather than chironomid data. The
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training data consisted of 7815 observations of two climate variables and 14 species of

pollen. The model proposed by Haslett et al. (2006) is again a Multinomial-Dirichlet

distribution, but the two-dimensional response surface is based on lattice Gaussian

Markov Random Field (GMRF) (see, for example, Rue and Held (2005)) which is

responsible for creation of a very large number of parameters. Indeed, their model

consists of about 10, 000 parameters. The other limitations of this model are summarized

in Mukhopadhyay and Bhattacharya (2013). Applying the inverse reference distribution

approach to this model and data Bhattacharya (2004) (Chapter 7) obtained almost

zero posterior probability of the inverse part. In fact, he demonstrated that this model

overfits the pollen data; see also Mukhopadhyay and Bhattacharya (2013) who point

out that such overfit is the consequence of the very large number of parameters and

the GMRF assumption. The general zero-inflated Multinomial-Dirichlet model along

with the Dirichlet process based bivariate Gaussian mixture model for the response

functions proposed by Mukhopadhyay and Bhattacharya (2013) again turned out to

be very successful in handling this pollen based palaeoclimate data. While including

more than 94% of the two observed climate variables in their respective 95% highest

posterior density credible intervals, the inverse reference distributions well-captured the

observed discrepancy measures, so that again the posterior probability of the inverse

part turned out to be emphatically pronounced. Thus, recast in our multiple testing

paradigm, one can easily see that the zero-inflated Multinomial-Dirichlet model with the

Dirichlet process based response function would emerge the clear winner.
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8.1 Summary

As an important part of this thesis, we have attempted to clarify the differences between

the traditional inverse problems and the inverse regression problems. Although the so-

called “ill-posed” inverse problems, essentially on function estimation, occupy significantly

larger space in the literature compared to inverse regression problems, we have argued

that strictly speaking, only the latter class of problems can be regarded as authentic

inverse problems, and includes the traditional inverse problems as special cases when

learning unknown covariates as well as unknown functions are of interest.

Our investigation of Bayesian inverse regression has led to the conclusion that posterior

covariate consistency is not achievable for general priors. However, we have proved that

for judiciously chosen data-driven priors, covariate consistency holds. And this holds quite

generally, even for nonparametric Bayesian models involving unknown functions modeled

281
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by appropriate stochastic processes, the Gaussian process being the most popular. The

results and the detailed proofs in this regard that include rate of convergence and

misspecification of the underlying functions, are of independent interest as well, apart

from aiding the proofs on Bayesian covariate consistency in the LOO-CV setup. Bayesian

covariate consistency finds further utilization in our proof of consistency of the IRD

approach introduced in Bhattacharya (2013).

Asymptotic validity of the IRD approach to goodness-of-fit tests for Bayesian inverse

models is gratifying but as it is, the IRD method is incapable of handling inverse model

selection. The existing methods of model selection are not equipped with the ability

to make appropriate selection among inverse models. To deal with inverse model and

covariate selection, we began with the traditional, but arguably the most principled

approach to model selection, namely, the Bayes factor, and established its asymptotic

convergence properties in as much general terms as possible, without particular reference

to inverse regression. The setup and the asymptotic theory are valid even for inverse

model and covariate selection, as we clarified subsequently, in the context of pseudo-Bayes

factors. Indeed, we developed the general asymptotic theory of pseudo-Bayes factors for

both forward and inverse regression setups, and have shown that the final convergence

results are in agreement with our Bayes factor asymptotic results, for both forward and

inverse regression. This inheritance of the very desirable asymptotic properties of Bayes

factor is an welcome addition to its general usefulness, since in practice, pseudo-Bayes

factors already have some distinct advantages over Bayes factors in terms of alleviating its

theoretical inadequacies as well as significantly improving its computational inefficiency.

Considering the Bayes factor and pseudo-Bayes factor approaches to inverse model

selection, the essence of the IRD approach seems to be relegated to the background.

However, it returns with an important role in our new Bayesian multiple testing procedure

for inverse model selection. The discrepancy measures of the IRD approach, which

now feature in the hypotheses, play the pivotal role in our multiple testing strategy.
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Development of the asymptotic theory for this procedure required us to borrow strength

from our previous asymptotic theories of Bayes and pseudo-Bayes factors and covariate

consistency. Very importantly, our simulation experiments demonstrate that our Bayesian

multiple testing procedure can improve upon the results of both forward and inverse

pseudo-Bayes factors. Since there does not exist any other multiple testing method for

model or covariate selection in the inverse setup, these interesting properties seem to

make our Bayesian multiple testing strategy for inverse model and covariate selection all

the more important.

8.2 Future directions

8.2.1 Past climate reconstruction

Since palaeoclimate reconstruction has played a motivating role behind this thesis,

it is worth making a few remarks regarding applications of the methods developed

in this thesis to such problems. First, recall from Chapter 7.9 that using the IRD

approach, Bhattacharya (2013) (see also Bhattacharya (2004)) showed that the Bayesian

palaeoclimate model of Vasko et al. (2000) underfits the modern chironomid data while

the Bayesian model proposed in Haslett et al. (2006) overfits the modern pollen data, as

established in Bhattacharya (2004). Hence, based on the respective models, the Holocene

temperature reconstructions of Korhola et al. (2002) in northern Fennoscandia and

Glendalough palaeoclimate reconstructions of Haslett et al. (2006), are not unquestionable.

On the other hand, the general and flexible Bayesian semiparametric palaeoclimate

model proposed in Mukhopadhyay and Bhattacharya (2013) convincingly fits both the

modern chironomid and pollen data, as confirmed by the IRD approach. Hence, it

makes sense to reconstruct these past climates using the model of Mukhopadhyay and

Bhattacharya (2013). We anticipate that most past climate reconstructions reported in

the literature can be significantly improved upon using the aforementioned modeling
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approaches. Model and/or covariate selection, if necessary, can be reliably addressed by

our inverse pseudo-Bayes factor and inverse multiple testing approaches, as demonstrated

in Chapters 6 and 7. As noted in Chapter 7, the multiple testing approach is expected

to be particularly useful in this regard.

8.2.2 Function optimization

The class of inverse regression problems finds an unlikely candidate in function optimiza-

tion, thanks to the recent work of Roy and Bhattacharya (2020). We briefly clarify this

below.

Roy and Bhattacharya (2020) propose and develop a novel Bayesian algorithm for

optimization of functions whose first and second partial derivatives are available. Their

approach is to embed the underlying function, along with its derivatives, in a random

function scenario, driven by Gaussian processes and the induced derivative Gaussian

processes, the latter forming the crux of their methodology. In a nutshell, with data

consisting of suitable choices of input points in the function domain and their function

values, they first obtain the posterior derivative process corresponding to the original

Gaussian process. Then they construct the posterior distribution of the solutions

corresponding to setting random partial derivative functions to the null vector. This

posterior emulates the stationary points of the objective function. They consider a

uniform prior on the function domain having the constraints that the first partial

derivatives are reasonably close to the null vector and that the matrix of second order

partial derivatives is positive definite (for minimization problem, and negative definite for

maximization problem). Due to the prior constraints, the resultant posterior solutions

emulate the true optima even if the dataset is not large enough.

The inverse regression context is evident in the step where the posterior distribution

of the solutions corresponding to setting random partial derivative functions to the null

vector is considered. That is, denoting the vector of random partial derivatives by g′,
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here the interest lies in learning about the posterior distribution of {x : g′(x) = 0}.

The theory and methods in this novel function optimization premise has yielded quite

encouraging results, as reported in Roy and Bhattacharya (2020). It thus makes sense to

extend this idea to multi-objective optimization problems involving multiple objective

functions to be optimized simultaneously. Multi-objective optimization is important

in engineering, economics and logistics where optimal decisions need to be taken in

the presence of trade-offs between two or more conflicting objectives. Examples of

multi-objective optimization are minimizing cost while maximizing comfort while buying

a car, and maximizing performance while minimizing fuel consumption and emission of

pollutants of a vehicle. For details on multi-objective optimization, see Deb (2001).
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