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Set of all Natural numbers.

Nu {0}.
{k=(k1,...,kn):kieNi=1,...,n}
{t=(t1,...,tn) : ti €Zy,i=1,...,n}.
(z1,...,2n) € C™.

zfl...szb".

ki + ...+ ky.

n-tuple of commuting operators on Hilbert spaces.

TF .. Tk

{z:]z|<1,i=1,...,n}.

{z: 20 Jal” <1}

Hilbert spaces.

The set of all holomorphic functions on @ C C™ to £.

The set of all B(E, &E)-valued holomorphic functions on B™.
Ball algebra.

The set of all bounded analytic functions on D™.






Introduction

A very general and fundamental problem in the theory of bounded linear operators
on Hilbert spaces is to find invariants and representations of commuting families of

isometries.

In the case of single isometries this question has a complete and explicit answer: If V'
is an isometry on a Hilbert space H, then there exists a Hilbert space H, and a unitary
operator U on H, such that V on H and

S®Ly 0

. - € B(IX(Zy) @ W) @ Ha),

are unitarily equivalent, where
W = ker V*,

is the wandering subspace for V and S is the shift operator on [?(Z.) [66]. This funda-
mental result is due to J. von Neumann [81] and H. Wold [110] (see Theorem 1.2.1 for

more details).

In one hand, unitary operators are completely determined by the representing spectral
measure. And, on the other hand, given n € NU {co}, there exists precisely one Hilbert
space &, up to unitary equivalence, of dimension n (here all Hilbert spaces are assumed
to be separable), and given a Hilbert space £, there exists precisely one shift operator,
up to unitary equivalence, of multiplicity dim € on some Hilbert space H. Therefore,
multiplicity is the only (numerical) invariant of a shift operator. Note that shift operators
are special class of isometries, and moreover, the defect operator of a shift determines
the multiplicity of the shift.

Now we turn to tuples of commuting isometries on Hilbert spaces. It is remarkable
that tractable invariants (whatever it means including the possibilities of numerical and
analytical invariants) of commuting pairs of isometries are largely unknown. We stress
on the fact that the case of pairs of commuting isometries itself is more subtle, and is
directly related to the commutant lifting theorem [51] (in terms of an explicit, and then
unique solution), invariant subspace problem [70] and representations of contractions on

Hilbert spaces in function Hilbert spaces [79]. For instance:

(a) Let S be a closed joint (M., , M., )-invariant subspace of H?(ID?), the Hardy space over
the bidisc D?. Then (M, |s, M.,|s) on S is a pure (see Chapter 3) pair of commuting

3



4 Introduction

isometries. Classification of such pairs of isometries is largely unknown (see Rudin
[94, 93]).

(b) Let T" be a contraction on a Hilbert space H. Then there exists a pair of commuting
isometries (Vi, V2) on a Hilbert space I such that 7" and Py, vy V1| ker vy are unitarily

equivalent (see Bercovici, Douglas and Foias [18]).

(c) The celebrated Ando dilation theorem (see Ando [9]) states that a commuting pair
of contractions dilates to a commuting pair of isometries. Again, the structure of Ando’s

pairs of commuting isometries is largely unknown.

(d) Contrary to the simpler structure of shift invariant subspaces of the one variable
Hardy space, structure of invariant subspaces for (M,,,..., M, ) on H?(D"), n > 1, is
quite complicated. For example (see Rudin [94, 93]): There exist invariant subspaces
Sy and Sy for (M., M,,) on H?(D?) such that (i) Sy is not finitely generated, and (ii)
S N H*(D?) = {0}.

In this thesis, we aim at exploring the structure of tuples of commuting isometries.
We present a number of results concerning tuples of commuting isometries. The main

contributions of this thesis are:

1. Berger, Coburn and Lebow pairs: An explicit version of Berger, Coburn and Lebow’s
classification result for pure pairs of commuting isometries in the sense of an ex-
plicit recipe for constructing pairs of commuting isometric multipliers with precise
coefficients. We describe a complete set of (joint) unitary invariants and com-
pare the Berger, Coburn and Lebow’s representations with other natural analytic
representations of pure pairs of commuting isometries. We also study the defect

operators of pairs of commuting isometries.

2. Invariant subspaces of shift operators on the Hardy space over the unit polydisc:
We give a complete characterization of invariant subspaces for (M;,,...,M,,)
on the Hardy space H?(D") over the unit polydisc D" in C*, n > 1. In partic-
ular, this yields a complete set of unitary invariants for invariant subspaces for
(M,,,...,M,,) on H>(D"). As a consequence, we classify a large class of n-tuples

of commuting isometries.

3. Pairs of projections and commuting isometries: It is known that a commuting Berger,
Coburn and Lebow pair of isometries (V1,V2) on a Hilbert space H is uniquely
associated to an orthogonal projection P and a unitary U on a Hilbert space &
(and vice versa). In this case, the “defect operator” of (Vi,V3), say T, is given by

the difference of orthogonal projections on &:

T=UPU*—P.
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Here, we aim to determine whether irreducible commuting pairs of isometries
(V1,V2) can be built up from compact operators 7' on £ such that T is a dif-
ference of two orthogonal projections. The answer to this question is sometimes

in the affirmative and sometimes in the negative.

The range of constructions of (Vi,V2) presented here also yields examples of a

number of concrete pairs of commuting isometries.

Let us now explain the setting and the content of this thesis in more detail. We begin
with the construction of the classical Wold-von Neumann decomposition of isometric
operators on Hilbert spaces. Here our presentation is more algebraic and geared towards
the main theme of the thesis. First, recall that an isometry V on a Hilbert space H
is said to be pure, or a shift, if it has no unitary direct summand, or equivalently, if

lim V*™ = 0 in the strong operator topology (see Halmos [66]).

m— 00

Let V' be an isometry on a Hilbert space #H, and let W(V') be the wandering subspace
[66] for V, that is,
WWV)=HcSVH.

The classical Wold-von Neumann decomposition states the following: Let V be an isome-

try on a Hilbert space H. Then H decomposes as a direct sum of V-reducing subspaces
Hs(V) = E?OV"‘W(V) and H, (V) =H o Hs(V) and

Vs 0
0 Vi

€ B(Hs(V) ® Hu(V)), (0.0.1)

where Vs = V|3, (v) is a shift operator and Vi, = V[, (v) is a unitary operator.

We will refer to this decomposition as the Wold-von Neumann orthogonal decompo-
sition of V. For any Hilbert space £, the £-valued Hardy space Hg(D) is canonically
identified with the tensor product Hilbert space H%(D) ® £. To simplify the notation,
we often identify H?*(D) ® & with the £-valued Hardy space HZ(D). The space of B(&)-
valued bounded holomorphic functions on D will be denoted by Hpe) (D). Finally, let
M f (or simply M., if £ is clear from the context) denote the multiplication operator by

the coordinate function z on HZ(D). Then M¢ is a shift operator and

W(ME) = E.

Let V be an isometry on #, and let H = H(V) @ H, (V') be the Wold-von Neumann
orthogonal decomposition of V. Then (0.0.1) implies the existence of a (canonical)
unitary Iy : Hs(V) & Hy(V) — HI%V(V) (D) & Hu(V) such that

o
0V

Ve 0
0 Vi

Iy = IIy.




6 Introduction

In particular, this implies that V' is a shift operator if and only if V' is unitarily equivalent
to M¢ on H3(D), where dim & = dimW(V). In the sequel we denote by (Ily, MZW(V)),
or simply by (Ily, M), the Wold-von Neumann decomposition of the pure isometry V'

in the above sense.

With these preparations, we are now ready to explain the main contribution of this

thesis.

Chapter 2: After a preliminary chapter on the basic notions of operator theory and
function theory, in Chapter 2, we first characterize and present an analytic description of
commutators of shift operators. Recall that if C' is a bounded linear operator on HZ(D)
for some Hilbert space &, then C' € {M,}', that is, CM, = M,C, if and only if (cf. [79])

C = Meg

for some © € Hp (D) and (Mo f)(w) = O(w) f(w) for all f € HZ(D) and w € D.

Now let V be a pure isometry, and let C' € {V}'. Let (IIy, M.) be the Wold-von
Neumann decomposition of V, and let W = W(V). Since Iy CIL}, on H{,(D) is the
representation of C' on H and (Ily CII}, ) M, = M, (I CII},), it follows that

Iy CII;, = Mo,

for some © € Hgf(’w) (D). From this point of view, we prove:

Theorem 0.0.1. Let V' be a pure isometry on H, and let C be a bounded operator
on H. Let (Ily, M) be the Wold-von Neumann decomposition of V. Set W = W(V),
M =11y C1I3, and let

O(w) = Pw(Iy — wV*)_lc lw (w e D).

Then CV =V C if and only if © € Hg()W) (D) and
M = M.

Note that [[wV*|| = |w|||V] < 1 for all w € D, and so it follows that the function
© defined above is a B(W)-valued holomorphic function in the unit disc D. However,
what is not guaranteed in general here is that the function © is in Hy,,, (D). The above
theorem says that this is so if CV =V C.

Then we move to study a class of pairs of commuting isometries, namely, Berger,

Coburn and Lebow pairs of commuting isometries.

A pair of commuting isometries (Vi, V2) on H is said to be pure if V := V1 V5 is a shift
(that is, a pure isometry). By a BCL triple (after Berger, Coburn and Lebow [20]) we
mean an ordered triple (£, U, P) which consists of a Hilbert space £, a unitary operator

U and an orthogonal projection P on £. By a BCL pair (again, after Berger, Coburn
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and Lebow [20]) we mean a commuting pair of isometries (V1, V2) on some Hilbert space
H such that V7 V5 is a shift operator.

In [20], Berger, Coburn, and Lebow established the following characterization: A pair
of commuting isometries (V1, V) on a Hilbert space H is a BCL pair if and only if there
exists a BCL triple (€, U, P) such that (V4,V2) and (Mg,, Mg,) on HZ(D) are unitarily

equivalent, where
®y(2) =U*(P+2Pt) and ®y(z) = (P +2P)U,

for all z € D and Pt denotes the orthogonal projection I — P.

Note that the representations of V; and V5 on Hg(ID)) are analytic Toeplitz opera-
tors corresponding to one degree operator-valued polynomials. We prove the following

explicit representations of BCL pairs.

Theorem 0.0.2. Let (V1,Va) be a BCL pair on H. Suppose W = H © V1VoH and
W; =W(V;) =Ho V;H, j=1,2. Then the BCL representation of (Vi, V) is given by
(Mg, , Mg,) on HZ,(D), where

®1(2) = U*(Pw, + 2Pyy,) and ®a(z) = (Pyy, + 2Pw,)U,

and
Wi VaWi
‘/2 |W1 0
= 0 vl e - & ,
1 1ViWs Viy W,

s a unitary operator on W.

Note that the above result yields an explicit representations of the auxiliary operators

U and P. Moreover, we prove that:

Theorem 0.0.3. Let (Vi, V) and (Vi,Va) be two pure pairs of commuting isometries
on H and H, respectively. Then (Vi,Va) and (V1, V) are unitarily equivalent if and only
if Vilwsys Vo' lvaw, ) and (V1|W2, ‘72*\172);\,1) are unitarily equivalent.

In other words, the pair {Vi|w,, V5'lvuw, } is a complete set of unitary invariants of
BCL pairs.

Then we turn to analytic representations of those pairs of commuting isometries
(V1, Vo) for which both V; and V4 are shift operators. Given such a pair (Vi,V32) on
some Hilbert space H, let (IIy, M) denote the Wold-von Neumann decomposition of
V = ViVa. Then IIyV; = Mg, Ily for all « = 1,2. Now applying Theorem 0.0.1 to
Vi € {Va}', we find unitary operator Iy, : # — Hy, (D) such that ITy, Vo = Me,, Ty;,
where Oy, € H E,‘EWI)(]D)) is an inner multiplier and

O, (2) = Py, (I — V) Vo, (2 € D).



8 Introduction

Similarly, we have unitary map ITy, : H — H. %,2 (D) and inner multiplier Oy, € H g’(()WQ) (D).
We prove the following:

Theorem 0.0.4. Let (V1,V3) be a pair of commuting isometries on H. Let i,j € {1,2}
and i # j. If V; is a pure isometry, then

[l; = Iy, IT;, € B(H3,(D), Hyy, (D)),
s a unitary operator,
ﬁzM;/v = Zer ﬁi7 ﬁ;kMzVVZ — M(I)l.ﬁj;’

and

Ti(S(, w)n) = (Iw, = @20, (2)) ™ Pl + (1 = 2V7) 7V,
for allw € D and n € W, where
Ov;(2) = Pw, (I = 2V;") "' Vjlw,
for all z € D. Moreover
I (S(, w)m) = (Iw — ®i(2)w) " 'mi,
for allw € D and n; € W;.

And, as a corollary, we have:

Corollary 0.0.5. Let (V1,V2) be a BCL pair on a Hilbert space H. If (Mg,, Ms,) is
the BCL representation of (V1,Va), then Mg, and Mg, are pure isometries,

I, My, = Me,, Iy, Tl2Ma, = Me,, 11y,
IT = II,IT; Hj, (D) — H%b (D) is a unitary operator, and
MM = Me,,  and  Me,, = M)¥11.

Moreover, for each w € D and n; € Wj, j = 1,2,

H(S('v w)nl) = (IW2 — WOy, (Z))_lpwz (IH - ZVQ*)_lnlv

and

I (S(-, w)nz) = (Iw, — WO, (2)) ' Py, (Ig — 2Vi") "o

The final section of Chapter 2 concerns some basic observation about defect operators
of pairs of commuting isometries. Recall that the defect operator C(Vy, V) of a pair of

commuting isometries (V1, Va) is the following self-adjoint operator

C(Vi, Vo) =1 —-ViVi* = WLVa" + VWLV 1",
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We prove that:

Theorem 0.0.6. Let (Vi,V2) be a pair of commuting isometries on H. Then the fol-
lowing are equivalent:

(a) C(V1,Va) > 0.

(b) VoW, CW.

(¢c) (V1,Va) is doubly commuting.

(d) C(V1,Va) is a projection.

(e) The fringe operator Fy is an isometry.

We prove a pair of definite results concerning negative defect operators:

Theorem 0.0.7. Let (V1,V3) be a pair of commuting isometries on H. Suppose that V3
or Va is pure. Then C(Vi,V2) <0 if and only if C(V1,Va) = 0.

Theorem 0.0.8. Let (V1,V32) be a pair of commuting isometries on H. Suppose that
dimW; < oo for some j € {1,2} . Then C(V1,V2) <0 if and only if C(V1,V2) = 0.

Chapter 3: Let £ be a Hilbert space, H(D"), n > 1, denotes the £-valued Hardy
space over the unit polydisc D" in C", and let (M ,..., M., ) denotes the commuting
tuple of multiplication operators by the coordinate functions on HZ(D"*1). Here we
present a complete characterization of invariant subspaces for (M.,,...,M,, ). Given

a pair of Hilbert spaces £ and &, we will denote by Hpy ¢ S*)(D) (or simply H B(E) (D) if
& = &,) the Banach algebra of B(E, £,)-valued bounded analytic functions on D.

We first use the doubly commutativity property of the multiplication tuple on Hg (D+1)

to reduce the invariant subspace problem in one variable as follows:

Theorem 0.0.9. Let £ be a Hilbert space. Then (M,,,M,, ..., M, ) on HZD"t1)

) Zn+1

and (My, My, ,..., My, ) on Hgn (D) are unitarily equivalent, where
En=H*D") QE,
and K; € Hg‘zgn)(ID)) is the constant function
ki(w) = M, € B(&),
forallweD andi=1,...,n.

In the light of above reduction, we present the following classification of invariant

subspaces:

Theorem 0.0.10. Let £ be a Hilbert space, S C Hgn (D) be a closed subspace, and let
W =8628. Then S is invariant for (M, My, , ..., Mg, ) if and only if (Mg, ..., Ms,)
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1s an n-tuple of commuting shifts on H%V(]D)) and there exists an inner function © €
HY (D) such that

BOW,ER)
S = ©H3,(D),
and
/ﬂ@ = @(I)i,
where

®;(w) = Py(Is — wPs M) ' M, |w,

forallweD andi=1,...,n.

Furthermore, the multiplier ®; can be represented as
®i(w) = PwMe (2 () — wM2) ™ MEM, |w,

foralweDandi=1,...,n.

A well known consequence of the Beurling, Lax and Halmos theorem (cf. page 239,
Foias and Frazho [51]) implies that a closed subspace S C HZ(D) is invariant for M, if
and only if S = H%(D) for some Hilbert space F with

dim F < dim &.

More specifically, if S is a closed invariant subspace of HZ(D) and if W = § & z8,
then the pure isometry M,|s on & and M, on H)%V(ID)) are unitarily equivalent, and

dim W < dim £. The above theorem sets the stage for a similar result.
Corollary 0.0.11. Let £ be a Hilbert space, and let S C Hgn (D) be a closed invariant
subspace for (M, My,,..., My, ) on Hgn (D). Let W =S 628, and

®;(w) = Pw(ls —wPsM}) "' My lw  (w e D),

foralli=1,...,n. Then (M|s, My,|s,...,Mg,|s) on S and (M., Ms,,...,Ms,) on
H3,(D) are unitarily equivalent.

We also prove that the representation of a invariant subspace, as in Theorem 0.0.10,
is unique:

Theorem 0.0.12. In the setting of Theorem 0.0.10, if S = (:)H%}(]D)) and ;0 = O,
for some Hilbert space W, inner function © & HB(VV) (D) and shift Mg, on H%/(]D)),

i=1,...,n, then there exists a unitary operator (constant in z) T: W — W such that

and
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foralli=1,...,n.

Let £ and € be Hilbert spaces, and let &, = H*(D") ® € and &, = H(D") ® £.
Let S and S be closed invariant subspaces of the multiplication tuples on Hgn (D) and
H?n (D), respectively. We say that S and S are unitarily equivalent, and write S = S, if
there exists a unitary map U : § — S such that

UM.|s = M,|sU and UM,,|s = My,|sU,

for all i = 1,...,n. We prove that the multipliers {®;}" | is a complete set of unitary

invariants of invariant subspaces:

In the final section of this chapter we present a geometric proof of the following

dimensional inequality:

Theorem 0.0.13. Let & and & be Hilbert spaces and let X : H§1 (D™) — H§2 (D™) be
an isometry. If
XME = e x,

foralli=1,...,n, then
dim51 S dim 52.

We believe that the above result (possibly) follows from the boundary behavior of
bounded analytic functions following the classical case n = 1. Here, however, we take
a shorter approach than generalizing the classical theory of bounded analytic functions

on the unit polydisc.

Chapter 4: In this chapter, we return to the idea of defect operators of pairs of com-

muting isometries. Consider the BCL pair

Vi = (Ig2p) ® P+ M, ® PH)(I 2y @ U”),
Va = (I () @ U) (M, © P+ Iypapy ® P).

An easy computation reveals that the defect operator of (V1,V5) is given by
C(V1,Va) = Pc ® (UPU* — P) = Pc ® (Pt —UP*U"),

and hence,
C(V1,Va)l.i2yge =0 and  ran C(V1,V2) CC®E.

Thus it suffices to study C(Vi,Vz2) only on (zH?(D) ® £)* = C ® £. In summary, if
(V1, V2) is a BCL pair on H3(D), then the block matrix of C(V4, V2) with respect to the
orthogonal decomposition HZ(D) = zHZ(D) & £ is given by

0 0

CVLV) =1 pi_pypiy-
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If (Vi1, V3) is clear from the context, then we define
C:=C(Vi,W)|e = Pt —UP*U".

Note that C, being the difference of a pair of projections, is a self-adjoint contraction.
In addition, if it is compact, then clearly its spectrum lies in [—1, 1] and the non-zero
elements of the spectrum are precisely the non-zero eigen values of C'. In this case, for

each eigen value A of C, we denote by E) the eigen space corresponding to A, that is
Ey =ker(C — \g).

Moreover, we have (see [69, Lemma 4.2]): If C' is compact, then for each non-zero eigen

value A of C'in (—1,1), —\ is also an eigen value of C' and
dimE)\ == dimE,)\.
Consequently, one can decompose (ker ) as

(kerC)" = E1 @ (©E\) & B @ (2E-),

where A runs over the set of positive eigen values of C' lying in (0,1). With respect
to the above decomposition of (ker C')*, the non-zero part of C, that is, C’(kerc)J_, the

restriction of C' to (ker C')*, has the following block diagonal operator matrix form

Ig, 0 0 0
0 Prm, 0 0
C = A
|(kerC’)J- 0 0 —IE,l 0
0 0 0 PMNe_,
L A J

and consequently, the matrix representation of C|e,¢)r, With respect to a chosen or-

thonormal basis of (ker C)*, is unitarily equivalent to the diagonal matrix given by

L, 0 0 0
0 D 0 0
C =
[ ’(kerC)i] 0 0 _Il’l 0
0O 0 0 -D

where [} = dimFE}, I} = dimFE_;, D = @ My, , 1), denotes the k x k identity matrix for

A
any positive integer k and

ky =dimFE, = dimFE_.

Summarising the foregoing observations, one obtains the following [69, Theorem 4.3]:
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Theorem 0.0.14. With the notations as above, if the defect operator C(Vy,Va) is com-

pact, then its non-zero part is unitarily equivalent to the diagonal block matrix

L, 0 0 0
0 D 0 0

(0.0.2)
0 0 —I, 0

o 0 0 -D

This chapter concerns the reverse direction of Theorem 0.0.14: Given an operator T’
on & of the form (0.0.2), construct, if possible, a BCL pair (V1, V2) such that C| eyt
the non-zero part of C'(Vy, V2), is unitarily equivalent to 7.

Now we note that in view of the constructions of simple blocks in [69, Section 6],
one can always construct a reducible BCL pair (V1, V2) such that the non-zero part of
C(V1,Va) is equal to T (see [69, Theorem 6.7]). This consideration leads us to raise the

following natural question:

Question 1. Given a compact block operator T € B(E) of the form (0.0.2), does there
exist an irreducible BCL pair (Vi,Va) on the Hilbert space H3(D) such that the mon-
zero part of the defect operator C(Vi,Va) is equal to T (that is, ranC'(Vy, Vo) = € and
CVi,W)|le=T)?

The above question also has been framed in [69, page 18].

We first prove that the answer to the above question is not necessarily always in the

affirmative:

Theorem 0.0.15. Let £ be a finite-dimensional Hilbert space and let T on £ be a
compact block matriz of the form (0.0.2), that is,

Liime,cry 0 0 0
T 0 D 0 0
0 0 —Igme_ 7 0

0 0 0 -D

If
dim B\ (T) # dim E_(T),

then it is mot possible to find a BCL pair (V1,V5) (reducible or irreducible) on HZ(D)
such that the non-zero part of the defect operator C(Vi,Va) is equal to T.

This result motivated us to investigate the cases where the answer to the aforemen-

tioned question, Question 1, is in the affirmative. To this end, we prove that:
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Theorem 0.0.16. Let € be a finite-dimensional Hilbert space, and let T € B(E) be of
the form (0.0.2), that is,

Liime () 0 0 0
T— 0 D 0 0
0 0 —Ilgime_ 1) 0

0 0 0 -D

Assume that dimE1(T) = dimE_1(T). Then, in each of the following two cases, there
exists an irreducible BCL pair (Vi,Va) on HZ(D) such that the non-zero part of the defect
operator C(V1,Va) is given by T.

(i) T has at least two distinct positive eigen values,

(i) T has only one positive eigen value lying in (0,1) with dimension of the corre-

sponding eigen space being at least two.

Moreover, (iii) if 1 is the only positive eigen value of T, then it is not possible to construct

such an irreducible pair (Vi,Va) unless dimEy(T) = 1.

We also deal with the case when £ is infinite-dimensional: If £ is infinite dimensional

Hilbert space, then Question 1 is in the affirmative in the case when
dimE1 (T) = dlmEfl(T),

or
dimE; (T) = dimE_1(T) + 1.

The second and third chapters of this thesis is based on the published papers [75]
and [74], respectively. The fourth chapter is based on the preprint [39].



Chapter 1
Preliminaries

In this chapter we introduce the necessary notation, set up definitions and recall some

classical results.

1.1 Hardy space

We begin with a brief introduction of Hardy space. Our presentation is motivated by
[96]. The Hardy space H?(D) over D is the set of all power series

f= Z amz"™, (am € C),
m=0

such that

o0

1
1 flz2 ) = (Z lam|?)? < oco.

m=0

[e.e] oo
Let f = Z amz™ € H*(D). Tt is obvious that Z |w|™ < oo for each w € D. This

o0 o

and Z |am|2 < oo readily implies that Z amw™ converges absolutely for each w € D.
m=0 m=0

In other words, f = Y°°_ an2z™ is in H?(D) if and only if f is a square summable

holomorphic function on D.

Now, for each w € D one can define a complex-valued function S(-,w) : D — C by

(SC,w)(z) =Y a™".  (z€D),

m=0
Since
o o 1
S ™= (jw)m = T
m=0 m=0 1- ’w|

15
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it follows that S(-,w) € H?(D) for all w € D and

1
IS(s w) || g2y = m (weD).

Moreover, if f = Z amz™ € H*(D) and w € D, then

m=0
= Z apw™ Z am 2™ w™2") g2y = (f, S w)) g2y
m=0 m=0

Therefore, the vector S(-,w) € H?(D) reproduces the value of f € H?(D) at w € D. In

particular,

(S(-,w))(2) = (S(-,w), S(-, = Mam=(1-zw)"  (z,weD).

m=0

The function S : D x D — C defined by
S(z,w) = (1 — zw) ™1, (z,w e D)

is called the Szegd or Cauchy-Szegd kernel of D. Consequently, H?(D) is a reproducing

kernel Hilbert space with kernel function S.

The next goal is to show that the set {S(-,w) : w € D} is total in H?(D), that is,
span{S(-,w) : w € D} = H*(D).
To see this notice that the reproducing property of the Szeg6 kernel yields
f(w) = (f,S(,w)) 2y,

for all f € H*(D) and w € D. Now the result follows from the fact that f 1 S(-,w) for
f € H?(D) and for all w € D if and only if f = 0. It also follows that for each w € D,
the evaluation map ev, : H*(D) — C defined by

evy (f) = f(w), (f € H*(D))

is continuous.

Now we recall some of the most elementary properties of M, on H2(ID). Observe first
that

(2(), 2()) 2y = ("1 2 ey = k0 = (28, N ey (K, LEN)
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Using the fact that the set {z™ : m € N} is total in H2(ID), the previous equality implies
that the multiplication operator M, on H?(D) defined by

(M. f)(w) = wf(w),  (f € H*D),w e D)
is an isometric operator, that is,
M;Mz == IH2(]D))'

Moreover
(Mz2F, 21y = (2%, 27 = 640 = 1y = (2571, 21,
for all k > 1 and [ € N. Also it follows that (M1, zl>H2(D) = 0. Consequently,
A ik > 1
® 0 if k= 0.
It also follows that
<(IH2(ID)) - MZM;)S(v ’U)), S(7 Z)> = <S(7 w)’ S(a Z)> - <M:S(’ w)a M:S(v Z)>
=S(z,w) — zwS(z,w) =1
= (P(CS(v UJ), 8(7 Z)>a

where Pr is the orthogonal projection of H?(D) onto the one-dimensional subspace of

all constant functions on . Therefore,
IHQ(D) - .1\42«]\4;< - P(C.
To compute the kernel, ker(M, — wIHz(D))* for w € D, note that

MIS(,w) = MF(1 4wz + 022% 4 -+ ) =0 + w2 + 032% + - = w(1 + 0wz + w22 +---)
= wS(-,w).

On the other hand, if M} f = wf for some f € H?(D) then

f(0) = Pcf = (Ig2my — M.MZ)f = (1 - zw)f,

that is, f = f(0)S(-, w). Consequently, M} f = wf if and only if f = AS(:, w) for some
A € C. That is,
ker(M, — wlp2p))* = {AS(-,w) : A € C}.

In particular,
\/ ker(M, — wlpep))* = H*(D).
weD

The following theorem summarizes the above observations.
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Theorem 1.1.1. Let H*(D) denote the Hardy space over D and M, denote the multi-
plication operator by the coordinate function z on H*(D). Then, the following properties
hold:

(i) The set {S(-,w) : w € D} is total in H*(D).

(i) The evaluation map evy, : H*(D) — C defined by evy,(f) = f(w) is continuous
for each w € D.

(i) op(M7) =D and ker(M, — wlp2p))* = {AS(-,w) : A € C}.

(iv) f(w) = (f,S(-,w)) g2y for all f € H*(D) and w € D.

(U)IH2(]D)) — MZMZ* = P(C.

(vi) \ yep ker(M. — wIHz(D))* = H?(D).

Finally, let £ be a Hilbert space. In what follows, H g (D) stands for the Hardy space
of E-valued analytic functions on . Moreover, by virtue of the unitary U : HZ(D) —
H?(D) ® £ defined by

2" 2" en, (ne & ,meN)

the vector valued Hardy space HZ(D) will be identified with the Hilbert space tensor
product H*(D) ® €. The reproducing kernel of H3(D) is given by

(z,w) = S(z,w)l¢ (z,w € D).

Note that
UME = (M, ® Ig)U,

where M¢ denotes the multiplication operator by the coordinate function z on H 2(D),
that is
(MZ f)(w) = wf(w) (f € HE(D),w € D).

Therefore, M¢ on H%(D) and M, ® Ig on H?(D) ® £ are unitarily equivalent. If £ is
clear from the context, then we will denote M Zg simply by M,.

For a more extensive treatment of the Hardy space and related topics, the reader is
referred to the books by Sz.-Nagy and Foias [79], Rosenblum and Rovnyak [92], Radjavi
and Rosenthal [89] and Halmos [64].

1.2 Isometries and shift operators

Let V be an isometry on a Hilbert space H, that is, V*V = Iy. A closed subspace
W C H is said to be wandering subspace for V if VW 1 VW for all k,l € N with
k # 1, or equivalently, if VW 1 W for all m > 1. An isometry V on H is said to be a
unilateral shift or shift if

n=Evmw,

m>0
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for some wandering subspace W for V.
For a shift V on H with a wandering subspace W we have

HovH=(DVvw)e (V@ vw) = (@vw)e (@vmw)=w.

m>0 m>0 m>0 m>1

In other words, the wandering subspace of a shift is unique and is given by
W=kerV*=HoVH.

The dimension of the wandering subspace of a shift is called the multiplicity of the shift.

The classical Wold-von Neumann decomposition theorem ([110], see also page 3 in
[79]) states that every isometry on a Hilbert space is either a shift, or a unitary, or a

direct sum of shift and unitary:

Theorem 1.2.1. (Wold-von Neumann decomposition) Let V' be an isometry on H. Then
H admits a unique decomposition H = Hs ® Hy, where Hs and H, are V-reducing
subspaces of H and V |y, is a shift and V |y, is unitary. Moreover,

He = é VW and H, = ﬁ V™H,
m=0 m=0

where W = ran(I — VV*) = ker V* is the wandering subspace for V.

Proof. Let W = ran(I — VV*) be the wandering subspace for V' and
e =P VW,
m=0

Consequently, Hs is a V-reducing subspace of 1 and that V|4, is an isometry. Further-

more

Ho=HE= (P VW) = (V" W)*.
m=0 m=0

We observe now that I —VV* is an orthogonal projection, hence V(I —VV*)V* is also

an orthogonal projection and
VII —VvVHVH = (VHT = V) (VI = VYV,
for all [ > 0. Thus we obtain

ranV' (I — VV*) = ran((V(I = VV*)(VH(I — VV*))*) = ranV (I — VV*)V*,
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and hence
VW)t = (Viran(I — VV*)* = (ranV! (I — VV*))*
= (ranV'{(I — VV*)V*HE = ran(I — VI(T — VV*)V*)
= ran[(I — V'V*) @ VPV = van(T — VIV @ ranV!
= (V'H)T @ VIT'H = kerV* @ VT,

for all [ > 0. Consequently, we have

My =[] keeV" @ VHH) = (| VA
m=0 m=0

Uniqueness of the decomposition readily follows from the uniqueness of the wandering

subspace W for V. This completes the proof. O
Note that V is a shift if and only if Hs = H, which is equivalent to the fact that
SOT — lim V** = 0.

k—o0

Therefore, an isometry V is shift if and only if SOT — lim V** = 0. We will sometimes

. . k—o0
call a shift as pure isometry.

We now prove that shift operators are simply the multiplication operators M, on
vector-valued Hardy spaces. Let V' be an isometry on H, and let H = H; & H, be the

Wold-von Neumann orthogonal decomposition of V. Define
My : Hs © Hy — Hiy(D) © Hy
by
Iy(V™'ne f)=2"n& f (m=0,f€Hd).

Then IIy is a unitary and

Ve 0

I
Vo v,

HV7

[ g
0V

ABEN
that is, V. on H and | ~ Vv on H,(D) & H, are unitarily equivalent. In particular,

u

if V' is a shift, then H, = {0} and hence
IV = My,

Therefore, an isometry V on H is a shift operator if and only if V' is unitarily equivalent to
MY on HZ,(D). Moreover, we note that dim W = dim(H & V'H) is the only (numerical)

unitary invariant of V' (or MV).
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1.3 Multipliers and invariant subspaces

Let & and & be two Hilbert spaces. We will denote by Hg‘(’gl 52)(11))) the set of all maps
© : D — B(&1, &) such that
OHZ (D) C HE, (D).

Elements of Hl??&,cfz)(]l)) are called multipliers.

The following characterization is well known and classical. However, the proof pre-

sented below, borrowed from [97], seems new and short.

Theorem 1.3.1. Let & and & be two Hilbert spaces and let X € B(H?*(D)®&1, H*(D)®
&2). Then
X(M,®I¢)=(M,®Ig,)X,

if and only if X = Mg for some © € Hlofc()51 52)(ID)).

Proof. Let X € B(H?(D) ® &, H*(D) ® &) and X (M, ® Ig,) = (M, ® Ig,) X. If { € &
and w € D then

(Mz & 151)*[X*(S('7w) b2y C)] = X*(Mz ® Igz)*(S('v w) b2y C) = 'U_J[X*(S(, w) @ C)]v

that is,
X*(S(,w) @) € ker(M, @ Ig, — wlg2myge, )"

This and the fact that ker(M, — wlg2mpy)* =< S(-,w) > readily implies that
X*(S(,’U})®C) :S(,w)®X(w)C, (’U)ED,CG(C/’Q)

for some linear map X (w) : & — &;. Moreover,

ISC; W)l 2o

» )
X - X(S(, . < Xll¢less

IS¢ w)ll g2

for all w € D and ¢ € &. Therefore X (w) is bounded and O(w) := X (w)* € B(&, &)
for each w € D. Thus

XSG w) @) =S(,w) @ O(w)™¢ (weD, ¢ e &)
In order to prove that ©(w) is holomorphic we compute

(©(w)n, C>52 =(n, Q(w)*<>€1 = (S(-,0) ®n,S(-,w) ® G(w)*C>H2(]D))®€1
= (X(S(-,0) ®@n),S(w) ® O p2)ge,- (1€ &1, € € &)

Since w + S(-,w) is anti-holomorphic, we conclude that w — O(w) is holomorphic.

Hence © € ch’;’c()&,gz)(D) and X = Me.
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Conversely, let © € Hy 52)(}1))). For f € H?(D) ® & and w € D this implies that

(20f)(w) = wO(w) f(w) = O(w)wf(w) = (Ozf)(w).
So Mg intertwines the multiplication operators which completes the proof. O

As an application of the Neumann-Wold decomposition theorem and the above char-

acterization of multipliers, we now prove the classical Beurling-Lax-Halmos Theorem.

Theorem 1.3.2. (Beurling-Lax-Halmos Theorem) Let S be an M, invariant subspace
of Hardy space HE(D) Then there exists a Hilbert space F and a unitary operator
U: H%(D) — S such that

UM, = (M;|s)U.

o0

Moreover, dimF < dim& and there exists an inner multiplier © € HB(J-‘,E)(D) such
that Mg : H%(D) — HZ(D) is an isometric multiplier and S = OH%(D). The inner
multiplier © is unique upto a unitary right factor, that is, if S = (:)H;(D) for some
Hilbert space F and an inner function © € H;O(ﬁg) (D), then © = O1 for some unitary
operator T in B(F,F).

Proof. Let V = M,|s. Clearly, V is an isometry on & and
o oo
(v"sc () V'H = {0},
n=0 n=0

which implies that V is a shift on S. By Theorem 1.2.1, it follows that

S=PVv"r,
m=0
where F = ran(I — VV*). Then

U:HzD)—»S=PV"F,
n=0

defined by U(zFn) = V¥n, for all n € F and k > 0, is the desired unitary. Now assume
that is : S — HZ(D) is the natuarl inclusion map. Then

U:=isoU: H-(D) — HZ(D),
defines an isometry. Moreover
ranl = ranig = S,

and ﬁMZ]: = MZSU By Theorem 1.3.1, it then follows that U = Mg for some inner
multiplier © € H]C_;),‘E]__ £) (D). The dimension inequality follows from the well known



1.4. Hardy space over the polydisc 23

boundary behaviour of bounded analytic functions (or see Chapter 3 Theorem 3.6.1 for

an independent and geometric proof). The uniqueness part of O is left to the reader. [

1.4 Hardy space over the polydisc

Let n > 1, and let D" be the open unit polydisc in C*. The Hardy space H?(D") over
D™ is the Hilbert space of all holomorphic functions f on D™ such that

0 i0n |2 %

HfHH?(]D)n) = ( sup / |f(re™t . .. re')] d@) < 00,
0<r<1 n

where df is the normalized Lebesgue measure on the torus T", the distinguished bound-

ary of D". Tt is well known that H?(D") is a reproducing kernel Hilbert space corre-

sponding to the Szego kernel S,, on D", where

n

Sn(z,w) = [[(1 = zw)™"  (z,weD").

i=1
Clearly
Sl (zw) = S (—1) Mk,
0<k|<n
where |k| = Y7 ki and 0 < k; <1 for all i = 1,...,n. Here we use the notation z
for the n-tuple (z1,...,2,) in C". Also for any multi-index k = (k1,...,k,) € Z7 and
z € C", we write 2 = zfl coegln

Let &£ be a Hilbert space, and let H2(D") denote the £-valued Hardy space over D".
Then HZ(D") is the E-valued reproducing kernel Hilbert space with the B(&)-valued
kernel function

(z,w) = Sy(z,w)lg (z,w € D").

Like the one variable Hardy space, in the sequel, by virtue of the canonical unitary U
from HZ(D") to H?(D") ® € defined by

Uizkp)=2Fen  (keZl,neé),

we will identify the vector valued Hardy space H2(D") with the tenor product Hilbert
space H?2(D") ® €. Let (M,,,..., M, ) denote the n-tuple of multiplication operators
on HZ(D") by the coordinate functions {z;}?,, that is,

(M, f)(w) = w; f(w),
for all f € Hg(]D)"), weD” and i =1,...,n. It is well known and easy to check that

M 1| = (£



24 Chapter 1. Preliminaries

and
[MZ™ Il = 0,

as m — oo and for all f € HZ(D"), that is, M., defines a shift (see the definition of shift
below) on HZ(D"), i =1,...,n. If n > 1, then it also follows easily that

MZZ‘MZ]' = MZjMZZ‘a

and
M»:z sz = MZJ’ M»:z ’

for all 1 < i < j < n. Therefore, (M,,,...,M,,) is an n-tuple of doubly commuting
shifts on H2(D").
Note that

U(zlfl--~zk”):zk1®---®zk",

n

for all k1,...,k, € Z,, defines a unitary map U from H2(D") to H?(D) ® - -- ® H(D),
the n-fold Hilbert space tensor product of H?(ID). Moreover

Ule - (IH2(D)®®IH2(D)® Mz ®IH2(]D)®®IH2(]D)))U7
ithplace
foralli=1,...,n. One can now easily verify all the above mentioned properties of M,

it =1,...,n. This along with the other canonical identification of M, on Hg(]D)") with
M., ® Ig on H*(D") @ € will be used throughout the rest of the thesis.



Chapter 2

Pairs of Commuting Isometries

2.1 Introduction

The main purpose of this chapter is to explore and relate various natural representations
of a large class of pairs of commuting isometries on Hilbert spaces. The geometry
of Hilbert spaces, the classical Wold-von Neumann decomposition for isometries, the
analytic structure of the commutator of the unilateral shift, and the Berger, Coburn
and Lebow [20] representations of pure pairs of commuting isometries are the main
guiding principles for our study. The Berger, Coburn and Lebow theorem states that:
Let (V1, V2) be a pair of commuting isometries on a Hilbert space H, and let V = V1 V3
be a shift (or, a pure isometry - see Section 2). Then there exist a Hilbert space W, an

orthogonal projection P and a unitary operator U on W such that
®1(2) = U*(P+ zPt) and ®y(z) = (P +2P)U (2 €D),

are commuting isometric multipliers in Hg‘gw) (D), and (V4, V2, V) on H and (Me,, Mg,, M.,)
on H},(D) are unitarily equivalent (see Bercovici, Douglas and Foias [18] for an elegant

proof).
Recall that, given a Hilbert space H and a closed subspace S of H, Ps denotes the

orthogonal projection of H onto §. We also set

Pg = I, — Ps.

In this chapter we give a new and more concrete treatment, in the sense of explicit
representations and analytic descriptions, to the structure of pure pairs of commuting
isometries. More specifically, we provide an explicit recipe for constructing the isometric
multipliers (®;(z), P2(z)), and the operators U and P involved in the coefficients of
®; and Py (see Theorems 2.3.2 and 2.3.3). Then we compare the Berger, Coburn and
Lebow representations with other possible analytic representations of pairs of commuting

isometries.

25
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In Section 6, we analyze defect operators for (not necessarily pure) pairs of commuting
isometries. We provide a list of characterizations of pairs of commuting isometries with
positive defect operators. Our results hold in a more general setting with somewhat
simpler proofs (see Theorem 2.6.5 for instance) than the one considered by He, Qin
and Yang [69]. Moreover, we prove that for a large class of pure pairs of commuting
isometries the defect operator is negative if and only if the defect operator is the zero

operator.

The chapter is organized as follows. In Section 2 we prove a representation theorem
for commutators of shifts. In Section 3 we discuss some basic relationships between
wandering subspaces for commuting isometries, followed by a new and explicit proof of
the Berger, Coburn and Lebow characterizations of pure pairs of commuting isometries.
Section 4 is devoted to a short discussion about joint unitary invariants of pure pairs of
commuting isometries. Section 5 ties together the explicit Berger, Coburn and Lebow
representation and other possible analytic representations of a pair of commuting isome-
tries. Then, in Section 6, we present a general theory for pairs of commuting isometries
and analyze the defect operators. Concluding remarks, future directions and a close
connection of our consideration with the Sz.-Nagy and Foias characteristic functions for

contractions are discussed in Section 7.

This chapter is based on the published paper [75].

2.2 Commutators of shifts

Let V be an isometry on H, and let H = H (V) @ Hu(V) be the Wold-von Neumann
orthogonal decomposition of V' (see Chapter 1, Theorem 1.2.1). Define

My : Ho(V) © Hu(V) = Hiypy(D) © Hu(V)
by
Oy(V™e f)=z2"naf (m=0,neWV), feHi(V)).

Then IIy is a unitary and

Ve 0

i
Vio v,

IIy.

MM
B 0 V.,

In particular, if V' is a shift, then H, (V) = {0} and hence
Iy V = MYy,

Therefore, an isometry V on H is a shift operator if and only if V' is unitarily equivalent
to Mt on HZ(D), where dim & = dim W(V)).
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In the sequel we denote by (ITy, MZW(V)), or simply by (IIy/, M), the Wold-von Neumann

decomposition of the pure isometry V' in the above sense.

Let € be a Hilbert space, and let C' be a bounded linear operator on HZ(ID). Then
C € {M.}, that is, CM, = M,C, if and only if (cf. [79])

C = Mg

for some © € Hg(’g)(]])) and (Mo f)(w) = O(w) f(w) for all f € HZ(D) and w € D.

Now let V be a pure isometry, and let C € {V}. Let (IIy;, M) be the Wold-von
Neumann decomposition of V, and let W = W(V). Since IIyCII}, on Hy,(D) is the
representation of C' on ‘H and (IIy CIIL}, ) M, = M, (I1yyCII},), it follows that

Iy CII;, = Mo,

for some © € H g()W) (D). The main result of this section is the following explicit repre-

sentation of ©.

Theorem 2.2.1. Let V be a pure isometry on H, and let C be a bounded operator
on H. Let (Ily, M) be the Wold-von Neumann decomposition of V. Set W = W(V),
M = 1Iy CIL3, and let

O(w) = Py(Iy —wV*)IC |w (w € D).

Then

if and only if © € Hgf(’w) (D) and
M = Mg.

Proof. Let h € H. One can express h as h = Zanm, for some 1, € W, m > 0 (as
m=0

H = ?éovmW). Applying Py V* to both sides and using the fact that W = W(V) =
ker V*, we obtain n; = PyV*h for all I > 0. This implies, for any h € H,

h=>Y_ V"PyV*h. (2.2.1)

m=0

Now let C'V = VC. Then there exists a bounded analytic function © € Hp;

ow) (D) such
that II,CII}, = Mg. For each w € D and 1 € W we have

O(w)n = (Men)(w)
= (Ily CTIjn) (w)
= (IIy Cn)(w),
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as IIj,n = 7. Since in view of (2.2.1)

Cn= )Y _ V"PyV*"Cn,

m=0

it follows that

O(w)y = (y (> _ V" PyV*"Cn))(w)

m=0

(D MI(PwV*"Cn))(w)

Therefore
O(w) = Py(Iy —wV*)'Clyy  (weD),

as required. Finally, since the sufficient part is trivial, the proof is complete. ]

Note that in the above proof we have used the standard projection formula (see, for
o0

example, Rosenblum and Rovnyak [92]) Iy = SOT — ZVWPWV*T”. It may also be

m=0

observed that |[wV™*| = |w|||V|| < 1 for all w € D, and so it follows that the function
© defined in Theorem 2.2.1 is a B(W)-valued holomorphic function in the unit disc D.
However, what is not guaranteed in general here is that the function © is in H E?W) (D).
The above theorem says that this is so if CV = V.

2.3 Berger, Coburn and Lebow representations

This section is devoted to a detailed study of Berger, Coburn and Lebow’s representa-
tion of pure pairs of commuting isometries. Our approach is different and yields sharper
results, along with new proofs, in terms of explicit coefficients of the one variable poly-
nomials associated with the class of pure pairs of commuting isometries. Before dealing
more specifically with pure pairs of commuting isometries we begin with some general

observations about pairs of commuting isometries.

Let (V1,V2) be a pair of commuting isometries on a Hilbert space H. In the sequel,

we will adopt the following notations:
V= Vl‘/27

W=W({V)=WWV) =HeVH,
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and
Wi=WV)=HeVH  (j=1.2).

A pair of commuting isometries (V7, V2) on H is said to be pure if V' is a pure isometry.

The following useful lemma on wandering subspaces for commuting isometries is

simple.

Lemma 2.3.1. Let (V1,V2) be a pair of commuting isometries on a Hilbert space H.
Then
W=W; & ViWs = VoW & W,

and the operator U on W defined by
U(m @ Vinz) = Vo @ 2,
for mi € Wy and n2 € Wh, is a unitary operator. Moreover,
PyV; =ViPy, (i #j).
Proof. The first equality follows from
[—VV* = (I - WViVy) @ Vil — V) Vy = Va(l — ViVi)Vs @ (I - VaVy).

The second part directly follows from the first part, and the last claim follows from
(I =VV*)V;=V,(I = V;V}) for all i # j. This concludes the proof of the lemma. [

Let (V4,V3) be a pure pair of commuting isometries on a Hilbert space H, and let

(ITy, M) be the Wold-von Neumann decomposition of V. Since
VVi=ViV (i=1,2),

there exist isometric multipliers (that is, inner functions [79]) ®; and ®2 in H Bow) (D)
such that
Iy V; = M, Iy, (i =1,2).

In other words, (Mg,, Mg,) on Hz,(D) is the representation of (V4, V5) on H. Following
Berger, Coburn and Lebow [20], we say that (Mg, , Ms,) is the BCL representation of
(V1,Va), or simply the BCL pair corresponding to (Vi, V3).

We now present an explicit description of the BCL pair (Mg, , Mg, ).

Theorem 2.3.2. Let (V1,Va) be a pure pair of commuting isometries on a Hilbert space
H, and let (Mg,, Mg,) be the BCL representation of (Vi,Va). Then

@1(2) = ‘/1|W2 D V2*|V2W1Zv (I)2(Z) = VQ|W1 D V1*|V1W2Z7

for all z € D.
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Proof. Let nin W = VoW, @& W, and let w € D. Then there exist 1 € Wi and ny € Ws
such that n = Vom @ n2. Then Vin = V1 4+ Ving, and hence

@y (w)n = (Mg,n)(w) = (y Villyn)(w) = (Hy Vin)(w) = My Vi + Iy Vinz)(w).
This along with the fact that Viny € W (see Lemma 2.3.1) gives

Q1 (w)n = (M Iy + Ving)(w)
= (M.m + Vinz)(w)
=wn1 + Vine
= wVyn+ Vine,

for all w € D. Therefore

®1(2) = Vilwm, @ Vo lvom 2,
for all z € D, as Wy = Ker(V5). The representation of @ follows similarly. O

In the following, we present Berger, Coburn and Lebow’s version of representations
of pure pairs of commuting isometries. This yields an explicit representations of the
auxiliary operators U and P (see Section 1). The proof readily follows from Lemma
2.3.1 and Theorem 2.3.2.

Theorem 2.3.3. Let (V1,V2) be a pure pair of commuting isometries on H. Then the
BCL pair (Mg, , Mg,) corresponding to (Vi,Va) is given by

©1(2) = U(Pw, + 2Py,),

and
Oy(2) = (Pyy, + 2Pwy)U,
where
Wi VaWi
Vs 0
U — 2|0W1 V*| ® N ® 7
1 IViWs ViV W,

is a unitary operator on W.

Therefore, (Vi,Va,V1V2) on H and (Me,, Me,, M)V) on HZ,(D) are unitarily equiv-
alent, where W is the wandering subspace for V = V; V5.

2.4 Unitary invariants

In this short section we present a complete set of joint unitary invariants for pure pairs

of commuting isometries. Recall that two commuting pairs (71, Ty) and (T3, T) on H
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and H, respectively, are said to be (jointly) unitarily equivalent if there exists a unitary
operator U : H — H such that UT; = TjU for all j =1,2.

First we note that, by virtue of Theorem 2.9 of [18], the orthogonal projection Py,
and the unitary operator U on W, as in Theorem 2.3.3, form a complete set of (joint)
unitary invariants of pure pairs of commuting isometries. More specifically: Let (Vi, V2)
and (f/l, Vg) be two pure pairs of commuting isometries on H and H, respectively. Let
W, be the wandering subspace for Vj, j = 1,2. Then (Vi,Va) and (Vi, Va) are unitarily

equivalent if and only if

VQ‘W1 0
0 V1*|V1W2

(

f/ -
7PW2) and ([ 2|W1

are unitarily equivalent.

In addition to the above, the following unitary invariants are also explicit. The proof
is an easy consequence of Theorem 2.3.2. Here we will make use of the identifications
of A on H3,(D) and AM, on Hj, (D) with Ipzp) ® A on H*(D) ® W and M, ® A on
H?(D) ® W, respectively, where A € B(W) (see Section 2).

Theorem 2.4.1. Let (V,Va) and (Vi,Va) be two pure pairs of commuting isometries
on H and H, respectively. Then (V1,Va) and (‘71, ffg) are unitarily equivalent if and only
if Vilwss V' lvaw, ) and (V1]W2, ‘72*\‘72);\,1) are unitarily equivalent.

Proof. Let (Mg,, Mgp,) and (Mg , Mg, ) be the BCL pairs corresponding to (V1, V2) and
(f/l, ‘72), respectively, as in Theorem 2.3.2. Let C; = Vi|y, and Cy = V5|y,w, be the
coefficients of ®;. Similarly, let C; and Cy be the coefficients of ®;.

Now let Z : W — W be a unitary such that 7205 = C'jZ, j=1,2. Then

Mo, = Iy ® C1 + M, ® Cy
= Iy ® Z°C1Z + M, ® Z*Co Z
= (Ip2(p) © Z°) 2y © C1 + M. ® Ca)(Iy2p) ® 2)
= (In2m) ® Z*) My, (I () ® Z).

Because Mg, = Mg M, and Mg = M&;MZ, it follows that (Mg, , Me,) and (Mg , Mg, )

are unitarily equivalent, that is, (V1,V2) and (f/l, 172) are unitarily equivalent.

To prove the necessary part, let (Mg,, Ms,) and (Mg , Mz ) are unitarily equivalent.
Then there exists a unitary operator X : H3,(D) — H%}(D) [92] such that

XMy, =My X (j=1,2).

Since
XMWY = XMy, My, = My XX*My X = Mz My X = MPVX,
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there exists a unitary operator Z : W — W such that
X =TIgmp) ® Z.
This and X Mg, = Mz X implies that
(It2m) ® Z) Iy ® C1 + M, @ Ca) = (Ipppy ® C1 + M, @ Co) (I () ® 2).

Hence (C4,Cy) and (C4,Cs) are unitarily equivalent. This completes the proof of the

theorem. O

Observe that the set of joint unitary invariants {Vi|w,, V5 |vam, }, as above, is as-
sociated with the coefficients of ®; of the BCL pair (Mg,, Ms,) corresponding to
(V1,Va). Clearly, by duality, a similar statement holds for the coefficients of ®y as
well: {Va|lw,, Vi¥lviw, } is a complete set of joint unitary invariants for pure pairs of

commuting isometries.

2.5 Pure isometries

In this section we will analyze pairs of commuting isometries (Vi, V2) such that either
V1 or V5 is a pure isometry, or both V4 and V5 are pure isometries. We begin with a
concrete example which illustrates this particular class and also exhibits its complex

structure.

Let S be a joint (M;,, M.,)-invariant closed subspace of H?(D?), that is, M.,S C S.
Set
V]-:sz‘g (j=1,2).

It follows immediately that Vj is a pure isometry and ViVa = V5V7, and hence (V1,Va)

is a pair of commuting pure isometries on S.

If we assume, in addition, that (V1,V2) is doubly commuting (that is, Vi*Va = VLV),
then it follows that (Vi,Vs2) on S and (M,,, M,,) on H?(D?) are unitarily equivalent.
See Slocinski [106] for more details. In general, however, the classification of pairs of
commuting isometries, up to unitary equivalence, is complicated and very little seems
to be known. For instance, see Rudin [93] for a list of pathological examples (also see
Qin and Yang [88]).

We now turn our attention to the general problem. Let (Vi,V3) be a pair of com-
muting isometries on H, and let Vi be a pure isometry. Then, in particular, V = V1V,
is a pure isometry, and hence (V7,V5) is a pure pair of commuting isometries. Since
ViVo = VoVi, by Theorem 2.2.1, it follows that

Iy, Va = Mo, Tlv;, (2.5.1)
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where Oy, € Hyy, )(]D)) is an inner multiplier and
Ov,(2) = Py (I — 2V{") Vol (2 € D).

Let (Mg, , Ms,) be the BCL pair (see Theorem 2.3.3) corresponding to (Vi, V2), that is,
IIy'V; = Mg, Ily for all ¢ =1,2. Set

I, = Iy, 11},

Then TI; : HZ,(D) — H12/v1 (D) is a unitary operator such that Iy My, = MV'II; and

ﬁ1M¢2 = M9V21:[1. Therefore, we have the following commutative diagram:

1% g2 2,(D)

o

Hy, (D)

where (Mg, , Mp,) on HE,(D) and (MM, Me,,) on ngvl (D) are the representations of
(‘/17 ‘/2) on H

We now proceed to settle the non-trivial part of this consideration: An analytic de-
scription of the unitary map II;. To this end, observe first that since Iy, Vi = My,

(2.5.1) gives
Iy, V = M Me,, Tly,.

Then
] w _ * Wi %
LM, =11y, VII, = M, M@VQHVJ_IV,

that is,
MY = (MM Me,, ). (2.5.2)

Let n € W. By Equation (2.2.1) we can write n = ZVl Py, Vi'™n. Therefore

m=0

(HV177) Z 1_IVlvl PW1V1 )( )

m=0

= (D MI"Pw, Vi) (w)

which yields

ﬁﬂ] = HV1H>kV77 = HV1n = Z Zm(Pwl Vl*mn)ﬂ

m=0
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that is
n = Py, [Ty + 2(Iy — 2V7) 'V,

for all n € W. It now follows from (2.5.2) that

[1(2™n) = (20v, ()™ Pwy [T + (I — 2Vi) " Vi,

o
for all m > 0, and so, by S(-, w)n = szu_}mn, it follows that
m=0

I (S( w)n) =T (> 2™a@™n)
m=0
= (Iw, — 020w, (2)) ™ P, [Ty + 2(Iy — 2V7) 7'V,

for all w € D and € W. Finally, from MY = Mg, I} and [in = n for all
m € Wi, it follows that II}(2™n;) = Mg:m for all m > 0, and hence

(S, w)m) = (Iw — @1(2)w) "'my,

for all w € D and n; € Wy.

We summarize the above observations in the following theorem.

Theorem 2.5.1. Let (V1,Va) be a pair of commuting isometries on H. Let i,j € {1,2}
and © # j. If V; is a pure isometry, then

is a unitary operator,
I MY

z

= Mo, IL;, I MY = Mg 1T,

and

(S, w)n) = (I, — w20, (2)) ™ Pw, [y + 2(1 — 2V7) "V,

for allw € D and n € W, where
Ov,(2) = Pw, Iy — 2V;*) " Wjlw,
for all z € D. Moreover
I3 (S(,w)m) = (I — @y(2)@) 'y

for allw € D and n; € W;.
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Note that the inner multipliers Oy, € H ggwj)(ﬂ)) above satisfy the following equali-
ties:
Iy, Vi = Mo, Iy,

Now let (V4, V3) be a pair of commuting isometries such that both V; and V5 are pure

isometries. The above result leads to an analytic representation of such pairs.

Corollary 2.5.2. Let (V1,V2) be a pair of commuting pure isometries on a Hilbert space
H. If (M,, Ms,) is the BCL representation corresponding to (Vi1,Va), then Mg, and

Mg, are pure isometries,
I, Mg, = Moy, I, TaMs, = Me,, Ty,
IT = II,1T; - Hy, (D) — H3, (D) is a unitary operator, and
MM = Me,, 11 and TMe,, = M¥11.

Moreover, for each w € D and n; € Wj, j = 1,2,

(S, w)m) = (I, — WO, (2)) ™ P, (I — 2V5") "',

and

I(S(, w)ie) = (Dyy, — 0O, (2)) ™ Py (T — 2Vi") ™'
Proof. A repeated application of Theorem 2.5.1 yields

ﬁ1M<I>2 = ﬁlMSIk)l (M<1>1M‘1>2)
= I, Mg, MY
= (M) 1L MY
g (Mg/\}l)*Mz@Vzﬁl,

that is, ﬁ1M<p2 = M@V2ﬁ1 and similarly ﬁqu;l = M9v1ﬁ2- For m1 € Wi, we have
Hy,m = Py, (I — 2V5) " tny. Since ﬁ’{m =y and IIj;n; =y, it follows that

Iy = Mamy = Ty, Iy = My,
that is IIn; = Py, (I — 2Vy)~1n1. Now using the identity (zn) = Me,, I, we have

II(2™n1) = O, (2)" Py, (Ig — 2V5') ',

o
for all m > 0 and n; € Wy. Finally S(-, w)n = Zwmzmm gives
m=0

T(S(, wym) = (Iw, — wOw; (2)) ™ Py, (I — 2V5) " Hip.
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The final equality of the corollary follows from the equality

IT*(2"n2) = O, (2)™ (IT*12) = Ovy (2)™ P, (I — 2Vi) " 'a,
for all m > 0 and ny € Ws. This concludes the proof. ]

In the final section, we will connect the analytic descriptions of II; and II, as in
Theorem 2.5.1 with the classical notion of the Sz.-Nagy and Foias characteristic functions

of contractions on Hilbert spaces [79].

2.6 Defect Operators

Throughout this section, we will mostly work on general (not necessarily pure) pairs of
commuting isometries. Let (V1, V2) be a pair of commuting isometries on a Hilbert space
H. The defect operator C(Vi,Va) of (Vi,Va) (cf. [63, 69]) is defined as the self-adjoint
operator

C(Vi, Vo) = I — ViVi* — VaVo® + ViVaVi* V™,

Recall from Section 3 that given a pair of commuting isometries (Vi,V2), we write
V =V1V5, and denote by

W =W(Vj) =ker V' = HO VjH,

the wandering subspace for Vj, j = 1,2. The wandering subspace for V' is denoted by
W. Finally, we recall that (see Lemma 2.3.1) W = W) @ ViWsy = VoW, & Wy, This
readily implies

Py = Pw, & Py,w, = Puuw, @ Pw,. (2.6.1)

The following lemma is well known to the experts, but for the sake of completeness

we provide a proof of the statement.

Lemma 2.6.1. Let (V1,Va) be a commuting pair of isometries on H. Then Hs(V') and

Hu(V') are Vj-reducing subspaces,
Hy(Vj) € Hs(V), and Hu(V;) 2 Hu(V),
for all j =1,2.

Proof. For the first part we only need to prove that Hs(V) is a Vi-reducing subspace.
Note that since (see Lemma 2.3.1) ViW C W @ VW, it follows that

ViVITW C VW e VW) C He(V),
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for all m > 0. This clearly implies that ViHs(V) C Hs(V). On the other hand, since
VI'W =W, C W and

VIVTW =V H VW) C VT W e VW),

it follows that V;*Hs(V) C Hs(V). To prove the second part of the statement, it is

enough to observe that
VIUH = V" (V3" H) = Vo (V" H) € VI"H, V3" !,
for all m > 0, and as n — oo
Vi"h — 0, or Vi""h — 0= V*""h — 0,
for any h € ‘H. This concludes the proof of the lemma. O

The following characterizations of doubly commuting isometries will prove important

in the sequel.

Lemma 2.6.2. Let (V1,V3) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(i) (V1,V3) is doubly commuting.

(ii) VoW C W.

(11i) ViWa C Wh.

Proof. Since (i) implies (ii) and (iii), by symmetry we only need to show that (ii) im-
plies (i). Let VoW, C Wy. Let H = Hs(V) & Hyu(V) be the Wold-von Neumann
orthogonal decomposition of V' (see Theorem 1.2.1). Then H4(V') and H, (V) are joint
(V1, Va)-reducing subspaces, and the pair (V1ly, (v, V2ln, ) on Hy is doubly commut-

ing, because Vj\Hu(V), 7 = 1,2, are unitary operators, by Lemma 2.6.1. Now it only
remains to prove that Vi*Vo = V3V)* on H (V). Since

(Vl*VZ . V2V1*)Vm — Vl*VmVQ . ‘/2V1*Vm — melv22 o ‘/22me1 — 07

it follows that V*Vo — VoV = 0 on V™W for all m > 1. In order to complete the proof
we must show that V"V = VoV on W. To this end, let n = n; & Vine € W for some
m € Wy and ng € Ws. Then

VitVa(m @ Vinz) = Vi'Vam + Vi'VaViny = Vang,
as VoW € Wy, and on the other hand

V2V1*(771 ©® V1772) = V2V1*771 + ‘/2‘/1*‘/1772 = V2772.
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This completes the proof. O

The key of our geometric approach is the following simple representation of defect

operators.
Lemma 2.6.3. C(V,Va) = Py, — Py, = Pw, — Puyw,-
Proof. The result readily follows from (2.6.1) and
CVi,Vo) =T -ViVi")+ (I —-WWKL)—-UI-VV)
= Py, + Py, — Py

O

The final ingredient to our analysis is the fringe operator F>. The notion of fringe
operators plays a significant role in the study of joint shift-invariant closed subspaces
of the Hardy space over D? (see the discussion at the beginning of Section 5). Given

a pair of commuting isometries (V1,V2) on H, the fringe operators F; € B(Ws2) and
Fy € BOW),) are defined by

Fy = Pw,Vjlw, (i # )
Of particular interest to us are the isometric fringe operators. Note that
E5Fy = Py, V5 Py, Valw, .
Lemma 2.6.4. The fringe operator Fo» on W is an isometry if and only if VolW; C Wi.
Proof. As Ly, — F5Fy = Ly, — Py, V5" Py, Valw,, (2.6.1) implies that
Ly, — F5 Fy = Py, V5 Py, Valwy, -

Then F5 Fy = Iy, if and only if Py,w, Valw, = 0, or, equivalently, if and only if VoW, L
ViWe = Wf, by Lemma 2.3.1. This completes the proof. O

Therefore, the fringe operator Fy is an isometry if and only if the pair (V1, V) is

doubly commuting.
We are now ready to formulate a generalization of Theorem 3.4 in [69] by He, Qin

and Yang. Here we do not assume that (V1,V3) is pure.

Theorem 2.6.5. Let (V1,V2) be a pair of commuting isometries on H. Then the fol-

lowing are equivalent:
(a) C(Vl,VQ) > 0.
(b) VoW C Ws.
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(c) (Vi,Va) is doubly commuting.
(d) C(V1,V3) is a projection.

(e) The fringe operator Fy is an isometry.

Proof. The equivalences of (a) and (b), (b) and (c), and (b) and (e) are given in Lemma
2.6.3, Lemma 2.6.2 and Lemma 2.6.4, respectively. The implication (c) implies (d)
follows from

C(V1,V2) = Pw, Pw, = Py, Py,

Clearly (d) implies (a). This completes the proof. O

We now prove that for a large class of pairs of commuting isometries negative defect

operator always implies the zero defect operator.

Theorem 2.6.6. Let (V1,V5) be a pair of commuting isometries on H. Suppose that V3
or Vi is pure. Then C(Vi,Va) <0 if and only if C(V1,V2) = 0.

Proof. With out loss of generality assume that V5 is pure. If C'(V,V2) < 0, then by
Lemma 2.6.3, we have Py, < Py,y,, or, equivalently

Wi C VoW,

and hence
Wi C V"W C V™,

for all m > 0. Therefore
Wi= A W"Wic N V"H = {0},

as Vo is pure. Hence Wy = {0} and VoW, = {0}. This gives C(V1,Va) = Py, — Pyywy, =
0. 0

The same conclusion holds if we allow dim W; < oo for some j € {1, 2}.

Theorem 2.6.7. Let (V1,V2) be a pair of commuting isometries on H. Suppose that
dim W; < oo for some j € {1,2}. Then C(Vi,Va) <0 if and only if C(Vi,Va) = 0.

Proof. We may suppose that dim Wy < oo. Let C(V3,V32) < 0. Since Wy C VoW; and
V5 is an isometry, it follows that
Wy = VoW

Hence C(V1,V2) = Pw, — Py,w, = 0. This completes the prove. O

The same conclusion also holds for positive defect operators.
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2.7 Concluding Remarks

As pointed out in the introduction, a general theory for pairs of commuting isometries
is mostly unknown and unexplored (however, see Popovici [86]). In comparison, we
would like to add that a great deal is known about the structure of pairs (and even
of n-tuples) of commuting isometries with finite rank defect operators (see [29], [27],
[28]). A complete classification result is also known for n-tuples of doubly commuting
isometries (cf. [53], [106], [96]). It is now natural to ask whether the present results for
pure pairs of commuting isometries can be extended to arbitrary pairs of commuting
isometries (see [43] and [52] for closely related results). Another relevant question is to
analyze the joint shift invariant subspaces of the Hardy space over the unit bidisc [3]

from our analytic and geometric point of views.

We conclude this chapter by inspecting a connection between the Sz.-Nagy and Foias
characteristic functions of contractions on Hilbert spaces [79] and the analytic represen-
tations of ﬁl and ﬁg as described in Theorem 2.5.1.

Let T be a contraction on a Hilbert space H. The defect operators of T', denoted by
D7+ and Drp, are defined by

Dpe = (I = TTHY?, Dy = (I —-1*T)"2.

The defect spaces, denoted by Dy« and Dp, are the closure of the ranges of Dp+ and
Dr, respectively. The characteristic function [79] of the contraction T' is defined by

07(z) = [-T + 2Dy« (I — 2T*) ' Drl]lp, (2 €D).

It follows that Oy € E?DT,DT*)(D) [79]. The characteristic function is a complete
unitary invariant for the class of completely non-unitary contractions. This function
is also closely related to the Beurling-Lax-Halmos inner functions for shift invariant
subspaces of vector-valued Hardy spaces. For a more detailed discussion of the theory
and applications of characteristic functions we refer to the monograph by Sz.-Nagy and
Foias [79].

Now let us return to the study of pairs of commuting isometries. Let (V7, Va) be a pair

of commuting isometries on H. We compute

Py, [T + 2(Ig — 2Vi) 7 Vi llw = [P, + 2Py (I — 2V7) 7 Vil
= [Ty = ViV + 2P, (I, — 2V7) 'Vl
= Iy + [ Vi + 2Py, (In — 2V7) 7'V .

Since V"W = W, it follows that

(Vi + 2Pw, (Ing — 2Vi) 7'V [ = [= Vi + 2Dy (Iy — ZW)ADV;HDV; (Vi lw)-
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Therefore, setting
Oviva(2) = [=Vi + 2Dy (I3 — ZV1*)_1DV2*”DV2*, (2.7.1)
for z € D, we have
Py, [y + 2(Iy — le*)_lvl*”W = Iw + 0v;, v, (2)V1' |,

for all z € D. Therefore, if V; is a pure isometry, then the formula for II; in Theorem

2.5.1(i) can be expressed as

L (8(7 w)n) = (IW1 - w@‘/é (Z))_lpVVl [IW + 0V1,V2 (Z)V1*|W]77

for all w € D and € W. Similarly, if V5 is a pure isometry, then the formula for Iy in

Theorem 2.5.1 (ii) can be expressed as

HQ(S('7 w)ﬁ) = (IWQ - ,J)@VI (Z))_IPWQ [IW + 9V2,V1 (Z)V2*|W]7I,
for all w € D and n € W, where
Ovsvi (2) = [=Va + 2Dy (I = 2V5) ™ Dyyllp,.. (2.7.2)

for all z € .
It is easy to see that Oy, v, (z) € B(W;, W) for all z € D and i # j.

Note that since the defect operator Dy, = 0, the characteristic function 6y, of Vj,
j = 1,2, is the zero function. From this point of view, it is expected that the pair
of analytic invariants {6y, v, : i # j} will provide more information about pairs of

commuting isometries.

Subsequent theory for pairs of commuting contractions and a more detailed connection
between pairs of commuting pure isometries (V1,V2) and the analytic invariants {6y, v, :
i # j} as defined in (2.7.1) and (2.7.2) will be exhibited in more details in future occasion.






Chapter 3

Characterization of Invariant

subspaces in the polydisc

3.1 Introduction

An important problem in multivariable operator theory and function theory of several
complex variables is the question of a Beurling type representations of joint invariant
subspaces for (M,,,..., M, ) on the Hardy space H2(D"), n > 1. The main obstacle
here seems to be the subtleties of the theory of holomorphic functions in several complex
variables. This problem is compounded by another difficulty associated with the complex
(and mostly unknown) structure of n-tuples, n > 1, of commuting isometries on Hilbert

spaces.

In this chapter, we answer the above question by providing a complete list of natural
conditions on closed subspaces of H?(D"). Here we use the analytic representations of
shift invariant subspaces, representations of Toeplitz operators on the unit disc, geometry
of tensor product of Hilbert spaces and identification of bounded linear operators under

unitary equivalence to overcome such difficulties.

As motivation, recall that if n = 1, then the celebrated Beurling theorem [21] (also
see Theorem 1.3.2) says that a non-zero closed subspace S of H%(D) is invariant for M,

if and only if there exists an inner function § € H*°(ID) such that
S = 0H?*(D).

Note also that it follows (or the other way around) in particular from the above repre-
sentation of S that
S©628 =6C,

and so

S= & 2™S0:S8).

m=0

43



44 Chapter 3. Characterization of Invariant subspaces in the polydisc

One may now ask whether an analogous characterization holds for invariant subspaces
for (M,,,...,M,,) on H>(D"), n > 1. However, Rudin’s pathological examples (see
Rudin [93], page 70) indicates that the above Beurling type properties does not hold
in general for invariant subspaces for (M,,,..., M, ) on H?(D"), n > 1: There exist
invariant subspaces Sy and S for (M.,, M,,) on H?(D?) such that

(1) S is not finitely generated, and
(2) S N H>(D?) = {0}.

In fact, Beurling type invariant subspaces for (M,,,..., M, ) on H?(D"), n > 1, are
rare. They are closely connected with the tensor product structure of the Hardy space

(or the product domain D™).

Therefore, the structure of invariant subspaces for
(M,,...,M,,) on H*(D"), n > 1,

is quite complicated. The list of important works in this area include the papers by
Agrawal, Clark, and Douglas [3], Ahern and Clark [6], Douglas and Yan [47], Douglas,
Paulsen, Sah and Yan [45], Guo [59, 58], Fang [49], Guo, Sun, Zheng and Zhong [61],
Rudin [94], Guo and Yang [63], Izuchi [71], Mandrekar [77] etc. (also see the references

therein).
In this paper, first, we represent H2(D"*!), n > 1, by the H?(D")-valued Hardy
space H}%IQ (Dn)(]D)). Under this identification, we prove that

(M, M,,,..., M, )on H*D"),

Y Zn+1

corresponds to
(M, Mgy, -+ » Myg,) on Hpa oy (D),

where k; € HEC(’HQ(DH))(D), i = 1,...,n, is a constant as well as simple and explicit
B(H?(D"))-valued analytic function (see Theorem 3.2.1, or part (i) of Theorem 3.1.1 be-
low). Then we prove that a closed subspace S C H %IQ(DW) (D) is invariant for (M, M., . ..
if and only if S is of Beurling [21], Lax [73] and Halmos [66] type and the corresponding
Beurling, Lax and Halmos inner function solves, in an appropriate sense, n operator

equations explicitly and uniquely.

Recall that two m-tuples, m > 1, of commuting operators (Ai,...,A,) on H and
(Bi,...,Bp) on K are said to be unitarily equivalent if there exists a unitary operator
U:H — K such that UA; = B;U foralli=1,...,m.

We now summarize the main contents, namely, Theorems 3.2.1 and 3.2.2 restricted

to the scalar-valued Hardy space case, of this paper in the following statement.

?M'ﬁ?n)
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Theorem 3.1.1. Let n be a natural number, and let H, = H?(D"). Let k; € Hg(’Hn)(D)
denote the B(H,,)-valued constant function on D defined by

ml(w) = Mzi S B(Hn),
for allw € D, and let M, denote the multiplication operator on H?{n (D) defined by
Mmf = "Qif7

for all f € Hi,n (D) and i = 1,...,n. Then the following statements hold true:
(i) (M., M., ..., M., ) on H*(D"*') and (M., My,,..., My,) on Hf (D) are uni-

° Zn+1
tarily equivalent.
(ii) Let S be a closed subspace of H%{n (D), and let W =S & 2S. Then S is invariant
for (M, My, ..., My, ) if and only if (Ms,, ..., Ms,) is an n-tuple of commuting shifts
on HE,(D) and there exists an inner function © € ch(’W’Hn)(ID)) such that

S = OH(D),

and
KJi@ = @(I)i,

where
®;(w) = Py(Is — wPs M) M. |y,

forallweDandi=1,....,n

The representation of S, in terms of W, © and { Mg, }?_,, in part (ii) above is unique
in an appropriate sense (see Theorem 3.4.2). Furthermore, the multiplier ®; can be
represented as

®i(w) = PwMe (2 () — wM2) ™ MEM, |w,

for allw e D and i = 1,...,n. For a more detailed discussion on the analytic functions
{®;} , on D we refer to Remarks 3.2.1 and 3.2.3.

As an immediate application of Theorem 3.1.1 we have (see Corollary 3.2.3): If
S C H%{n (D) is a closed invariant subspace for (M, My,,..., My, ), then the tuples
(M.|s, My,ls, ..., Myx,|s) on S and (M., Ms,, ..., Ms,) on HZ,(D) are unitarily equiv-
alent, where W = § & 2§ and

®;(w) = Py(Is — wPsM) ™ M. |y,

for all w € D and ¢ = 1,...,n. Our approach also yields a complete set of unitary
invariants for invariant subspaces: The n-tuples of commuting shifts (Mg, ,..., Mg, ) on
H%V (D) is a complete set of unitary invariants for invariant subspaces for (M, M, , ..., M,, )

on HIQJTL (D) (see Theorem 3.5.1 for more details).
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We also contribute to the classification problem of commuting tuples of isometries on
Hilbert spaces. On the one hand, n-tuples of commuting isometries play a central role
in multivariable operator theory and function theory, whereas, on the other hand, the
structure of n-tuples, n > 1, of commuting isometries on Hilbert spaces is complicated.
In Corollary 3.2.3, as a byproduct of our analysis, we completely classify n-tuples of
commuting isometries of the form (M,|s, My,|s,. .., Msx,|s) on S, where S is a closed
invariant subspace for (M., My, , ..., My,) on Hz (D).

This chapter is organized as follows. In Section 2, we prove the central result of
this chapter - representations of invariant subspaces of vector-valued Hardy spaces over
polydisc. In Section 3 we study and analyze the model tuples of commuting isometries.
Section 4 complements the main results on representations of invariant subspaces and
deals with the uniqueness part. In Section 5 we give some applications related to the
main theorems. The final section of this chapter is devoted to a dimension inequality

which is relevant to the present context and of independent interest.

This chapter is based on the published paper [74].

3.2 Main results

Let € be a Hilbert space, and consider the vector-valued Hardy space HZ(D"!). Our
strategy here is to identify M,, on HZ(D"™!) with the multiplication operator M, on
the HZ(D™)-valued Hardy space on the disc D. Then we show that under this identifi-
cation, the remaining operators {M.,,..., M., } on HZ(D"™!) can be represented as
the multiplication operators by n simple and constant B(H2(D"))-valued functions on

. For this we need a few more notations.

For each Hilbert space L, for the sake of notational ease, define
L,=HD" L.
When £ = C, we simply write £,, = H,,, that is,
H, = H*(D").
Also, for each i = 1,...,n, we define
kei(w) =M, @ I,

for all w € D, and write

RLi = Ri,
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when L is clear from the context. It is evident that r; € Hg, | (D) is a constant function
and My, on Hz (D), defined by

Mmf = ’{if (f € Hzn(]D)))a

is a shift on HZ (D) foralli=1,...,n.

Now we return to the invariant subspaces of H2(D"™!). First we identify HZ(D"t1)
with H?(D) @ &, by the natural unitary map U : HZ(D"*!) — H?(D) ® &, defined by

U125 - i) = 29 @ (22 - 2fmm),
for all k1,...,kpr1 > 0 and n € £. Then it is clear that
UM,, = (M. ®Ig,)U.
Moreover, a simple computation shows that
UM.,,, = (Iy2py ® K;)U,
where K; is the multiplicational operator M,, on &,, that is

Ki = Mzia

for all i = 1,...,n. Therefore, the tuples (M., M,,,..., M, ,,) on HZ(D" ") and

’ Zn+1
(M. @ Ig,, Ig2py ® K1, ..., Ig2py @ Ky,) on H?*(D) ® &, are unitarily equivalent. We
further identify H?*(D) ® &, with the &,-valued Hardy space Hz (D) by the canonical
unitary map U : H2(D) ® &, — Hz (D) defined by

U(z* @n) = 2",
for all K > 0 and n € &,. Clearly
UM, ®Ig,) = M.U.
Now for each i = 1,...,n, define the constant B(&,)-valued (analytic) function on D by
ki(z) = K;,

for all z € D. Then ; € Hge (D), and the multiplication operator My, on Hz (D),
defined by
(M, (2"n)) (w) = w™ (Kin),

for all m > 0, n € &, and w € D, is a shift on Hgn (D). It is now easy to see that

U(IHz(]D)) ® K;) = M,,U.
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for all ¢ =1,...,n. Finally, by setting
U=UU,

it follows that U : HZ(D"*!) — HZ (D) is a unitary operator and

UM, = M,U,
and
UM, ,, = MU,
forall? =1,...,n. This proves the vector-valued version of the first half of the statement

of Theorem 3.1.1:

Theorem 3.2.1. Let £ be a Hilbert space. Then (M,,,M,, ..., M, ) on HZD"*1)
and (M, M,,,...,M,,) on Hgn(]D)) are unitarily equivalent, where k; € nggn)(ID)) 18
the comstant function

ki(w) = M, € B(&,),
forallweD andi=1,...,n.
Now we proceed to prove the remaining half of Theorem 3.1.1 in the vector-valued

Hardy space setting. Let S C H gn (D) be a closed invariant subspace for (M, My, , ..., My,)
on HZ (D). Set

V = M,s,
and
Vi = My,|s,
for all i = 1,...,n. Clearly, (V,V1,...,V,) is a commuting tuple of isometries on S.

Note that if f € S, then

Vi flls = 1Ps M fllls

< IM iz o

that is, V;, ¢ = 1,...,n, is a shift on &, and similarly V is also a shift on S. Let
W =S8 © VS denote the wandering subspace for V', that is

W =kerV*
= ker PsM?,

and let IIy : & — H,(D) be the Wold-von Neumann decomposition of V on S (see

Section 2). Then IIy is a unitary operator and

Iy V = M,Ily.
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Since
VVi=V;V,

applying Theorem 2.2.1 in Chapter 2 to V;, we obtain
Iy Vi = Mg, 11y,

where
®;(w) = Py (Is — wV*) V|,

for all w € D, ®; € Hyy, (D), Mg, is a shift on H,(D) since V; is a shift on S and

i =1,...,n. Now since IIy is unitary, we obtain that
Iy, M, = VIIy,
and
I3, V; = Mg 115,
for alli =1,...,n. Finally, if we let is denote the inclusion map is : S — Hgn (D), then

Is : HY,(D) — Hgn (D) is an isometry, where
s = is o IT},.
Clearly 1IsII = igis. This implies that
ran IIs = ran ig,

and so
ran [Ig = S.

Now, using isV = M.is and igV; = M,;is, we have

HSMZ = MZHS7
and

HsMe, = My, 1ls,
for all i =1,...,n. From the first equality it follows that there exists an inner function
© € Hgyy €n)(D) such that

g = Me.

This and the second equality implies that

lii@ = @(I)i,
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for all2=1,...,n. Moreover, ran IIs = § yields
S = 0H3, (D).
To prove that (Mg,, ..., Mg, ) is a commuting tuple, observe that

Mg, Mg, Ty = Mg, Ty V;
= Ly ViV
=1y V;V;
= Mg; Mo Iy,
and so

Mo, Mg, = Mo, Mo,

for all 4,5 = 1,...,n. For the converse, let us begin by observing that if S = @H%V(]D))

for some inner function © € Hy,,, Sn)(D)’ then S is invariant for M, and
PsM?*Ps = PsM?.

In particular
PSM:‘S = PSM: € B(S),

and so {®q,...,P,} is a well-defined set of B(W)-valued analytic functions on D. Fur-

thermore, if (Mg, , ..., Mg, ) is an n-tuple of commuting shifts on H,(D) (so, in particu-
lar, ®; € ch(’w) (D) forall: =1,...,n. See Remark 3.2.1) and x,0 = ©®;, then it follows

obviously that ;S C S for all i = 1,...,n, that is, S is invariant for (M,,,..., My, ).
This proves the last part of Theorem 3.1.1 in the vector-valued Hardy space setting:

Theorem 3.2.2. Let £ be a Hilbert space, S C Hgn (D) be a closed subspace, and let
W =S86zS. Then S is invariant for (M, My, , ..., Mg, ) if and only if (Ms,, ..., Ms,)
is an n-tuple of commuting shifts on H%V(D) and there exists an inner function © €
H (D) such that

BOW,En)
S = OHj)(D),
and
Iii@ = @(I)l,
where

®i(w) = Pw(ls — wPsM:)™ My |w,

forallweDandi=1,...,n.

A few remarks are in order.

Remark 3.2.1. Note that since ||wPsM}|| <1 for allw € D, the BOV)-valued function
®,, as defined in the above theorem, is analytic on D. Here the boundedness condition (or

the shift condition) on Mg, on H{,(D) assures that ®; € Hihw) (D) foralli=1,...,n.
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Remark 3.2.2. Clearly, one obvious necessary condition for a closed subspace S of
Hgn (D) to be invariant for (M, My, , ..., My,) is that S is invariant for M., and, con-
sequently

S = OH}(D),

1s the classical Beurling, Lax and Halmos representation of S, where W = S © 28 is
the wandering subspace for M,|s and © € Hg?W,Sn)(D) is the (unique up to a unitary
constant right factor; see Section 4) Beurling, Lax and Halmos inner function. More-
over, since k;S C S, another condition which is evidently necessary (by Douglas’s range
inclusion theorem) is that

Iii@ = @Fl,

or some'; € B(H2,(D)), i =1,...,n. In the above theorem, we prove that T'; is explicit,
f w ) 9 p p
that is

I;=9; ¢ Hg‘éw)(ID)),

foralli=1,...,n, and (I'1,...,I',) is an n-tuple of commuting shifts on H%V(]D)) This
is probably the most non-trivial part of our treatment to the invariant subspace problem

in the present setting.

Remark 3.2.3. Let £ be a Hilbert space, and let S C Hgn (D) be a closed invariant
subspace for (M, My,,..., My, ) on Hgn (D). Let W, © and

{(I)i}?:l C Hz%?w,gn)(D)a
be as in Theorem 3.2.2. Now it follows from Ps = MgM that
PsM;™ = Mg M;™M§,

for all m > 0. Hence the equality
(Is —wPsM;)™' = Y " w™PsM:™,
m=0

yields
(Is —wPsMZ) ™" = Me (I3 (n) — wMZ) ™ M,

so that
®i(w) = PwMe (2 () — wMZ) ™ MEM, |w,

forallweD andi=1,...,n.

A well known consequence of the Beurling, Lax and Halmos theorem (cf. page 239,
Foias and Frazho [51]) implies that a closed subspace S C HZ(D) is invariant for M, if
and only if S = H%(D) for some Hilbert space F with

dim F < dim €.
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More specifically, if S is a closed invariant subspace of HZ(D) and if W = § & z8,
then the pure isometry M,|s on & and M, on H)%V(ID)) are unitarily equivalent, and

dim W < dim £. The above theorem sets the stage for a similar result.

Corollary 3.2.3. Let £ be a Hilbert space, and let S C Hgn (D) be a closed invariant
subspace for (M, My,,..., My ) on Hgn (D). Let W =S 628, and

®;(w) = Pw(ls —wPsM}) "Myl (w € D),

foralli=1,...,n. Then (M|s, My,|s,...,Mg,|s) on S and (M., Ms,,...,Ms,) on
H3,(D) are unitarily equivalent.

Proof. Let W, © and {®;}, C Hpiy (D) be as in Theorem 3.2.2. Then it follows that
X : H,(D) — ©HE,(D) = S,

is a unitary operator, where
X = Mp.

It is now clear that X intertwines (M, Mg,, ..., Mg,) on H3,(D) and
(MZ|S7 Mm |Sa ceey Mnn|8)7
on S. This completes the proof of the corollary. O

Let £ be a Hilbert space, and let § C Hgn (D) be an invariant subspace for M,.
Then S = OHY,(D), where W = S & 28 and © € Hg?w,gn)(ﬂ)) is the Beurling, Lax
and Halmos inner function. A natural question arises in connection with Remark 3.2.2:
Under what additional condition(s) on © is S also invariant for (M,,,...,My,)? An
answer to this question directly follows, with appropriate reformulation, from Theorem

3.2.2 and Remark 3.2.3:

Theorem 3.2.4. Let £ be a Hilbert space, and let S C Hgn (D) be an invariant subspace
for M, on Hgn(]D)) Let S = OHZ,(D), where W =86 28 and © € Hgw Sn)(]D)) is the

Beurling Lax and Halmos inner function. Set
0i(w) = PwMe (2 () — wMZ) ™ MEM, |w,

forallw € D and i =1,...,n. Then S is invariant for (My,,..., M) if and only if
(Mg, ,...,Mg,) on HE,(D) is an n-tuple of commuting shifts, and

I{i@ = @(I)l,

foralli=1,...,n. Moreover, in this case, (M,|s, Myx,|s, ..., Mg,|s) onS and (M., Mg, , ...

on HE,(D) are unitarily equivalent.
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Thus the n-tuples of commuting shifts

(Mg, , ..., Mg,) on H(D),

o0

for Hilbert spaces £ and inner multipliers {®;}!* ; C H B(2) (D), yielding invariant sub-
spaces of vector-valued Hardy spaces over D"*! are distinguished among the general

n-tuples of commuting shifts by the fact that
®;(w) = Pe(Is —wPsM) ™ 'M,.|;  (weD),
where S = ©HZ(D) for some inner function © € HE?E,Sn)(D>’ and
Kk;© = 09P,,

foralli =1,...,n. Moreover, in view of Remark 3.2.3, the above condition is equivalent
to the condition that

@i(w) = Py Mo (I ) — wMZ) ™ Mg M by,
for some inner function © € Hy . En)(ID)) such that
Iii@ = @q)z,

foralli=1,...,n.

3.3 Representations of model isometries

In connection with Theorem 3.2.1 (or part (i) of Theorem 3.1.1), a natural question
arises: Given a Hilbert space £, how to identify Hilbert spaces F and B(F)-valued multi-
pliers {U}" , C Hgi 7 (D) such that (M., My,, ..., My, ) on H%n (D) and (M, My, ..., M,,)
on H gn (D) are unitarily equivalent. More generally, given a Hilbert space &£, character-
ize (n + 1)-tuples of commuting shifts on Hilbert spaces that are unitarily equivalent to

(M., My,,...,M,) on Hgn(n)).

This question has a simple answer, although a rigorous proof of it involves some
technicalities. More specifically, the answer to this question is related to a numerical
invariant, the rank of an operator associated with the Szegt kernel on D"+, First,

however, we need a few more definitions.

Let (T1,...,T,) be an m-tuple of commuting contractions on a Hilbert space H.

Define the defect operator [63] corresponding to (T4, ...,Ty,) as

Sl (Thyeo o Tn) = Y (“)MTf - Ty T,
0<[k|<m
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where 0 < k; < 1,4 =1,...,m. This definition is motivated by the representation of the
Szego kernel on the polydisc D™ (see Chapter 2). We say that (771,...,T,,) is of rank p
(p € NU{o0}) if

rank [S. 1Ty, ..., T)] = p,

and we write
rank (71,...,T) = p.

The defect operators plays an important role in multivariable operator theory (cf. [58, 63]
and also see Chapter 2 and Chapter 4). For instance, if £ is a Hilbert space, then the
defect operator of the multiplication operator tuple (M., ,...,M,,) on HZ(D") is given
by
Sp (M., ... Ms,) = Przpny ® I,
where Ppz2pn) denotes the orthogonal projection of H 2(D"™) onto the one dimensional
space of constant functions. Furthermore, as is evident from the definition (and also see
the proof of Theorem 3.2.1), the defect operator for (M., My, , ..., M,,) on HZ (D) is
given by
S;il(MZ, My, ...,M, )= P2y @ Przpn) @ 1.

In particular,

dim & =rank (M,, My,,..., My, ) =rank (M,,,..., M, ).

Now let £ and K be Hilbert spaces, and let (V,Vi...,V,) be an (n + 1)-tuple of
commuting shifts on K. Suppose that (V,V;...,V,) and (M,, M,,,...,M,,) on K and
Hgn (D), respectively, are unitarily equivalent. In this case, it is necessary that M, on
Hgn (D) and V' on K are unitarily equivalent. As VV; = V;V and V;V; = V;V; for all
i,7 = 1,...,n, Theorem 2.2.1 implies that (V,Vi,...,V,) and (M., Mg,,...,Mg,) on
H%V (D) are unitarily equivalent, where W = K & VK, and

®;(2) = Pw(Ic — 2V*) 'Vilw,

for all z € D and i = 1,...,n. Since (M, My,,...,M,,) on HZ (D) is doubly com-
muting, another necessary condition is that (V,Vi,...,V,,) is doubly commuting. In
particular, V*V; = V;V*, and so

for all m > 0 and @ = 1,...,n. Using V*™|yy, = 0 for all m > 1, this implies that
®;(z) = PwVi|w for all z € D. Again using VV;* = V*V, we have

Vill =VV*) = (I = VVI)V,,
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for all ¢ = 1,...,n. This implies that W is a reducing subspace for V;, and hence we
obtain
that is, ®; is a constant shift-valued function on D for all i« = 1,...,n. This observation

leads to the following proposition:

Proposition 3.3.1. Let (V,Vi,...,V,) be an (n+ 1)-tuple of doubly commuting shifts
on some Hilbert space H. Let W =H S VH, and let

(I)i(Z)ZVHW (i:1,...,n),

for all z € D. Then W is reducing for Vi, i = 1,...,n, and (V,V1,...,V,) and
(M., Mg,,...,Ms,) on H},(D) are unitarily equivalent.

In particular, if £ is a Hilbert space and (M, Mg,,..., Mg,) on H2(D), for some

{®;}",CH ) (D), is a tuple of doubly commuting shifts, then

®,(z) = 0,(0) (z e D),

that is, ® is a constant function for all ¢ = 1,...,n.

Now we return to (V, V; ..., V,), which in turn is an (n+1)-tuple of doubly commuting
shifts on H. For simplicity of notation, set Uy =V, Ujy1 =V, foralli=1,... n, and
let

D=ran S, (V,Vi,..., V) = N ker U7

is the wandering subspace for (V,V1,...,V,) (cf. [96]). From here, one can use the fact
that (cf. Theorem 3.3 in [96])
H= @ UFD,

kezt!
to prove that the map I' : H — H3(D"™!) defined by
LUk =2 (keZi™ neD),
is a unitary and
TU; = M, T,

for all i = 1,...,n + 1. Therefore, (V,Vi,...,V,) on H and (M.,,..., M. . ) on
H%(]D)”“) are unitarily equivalent. In addition, if £ is a Hilbert space, and

dim& =rank (V,V1,...,V,) (=dimD),

then it follows that (see the equivalence of (ii) and (v) of Theorem 3.3 in [96]) (M., ,..., M., )
on H3(D"™) and (M., ,..., M., ) on HZ(D"™!) are unitarily equivalent. But then The-
orem 3.2.1 yields immediately that (M., , ..., M,, ) on H3(D" ") and (M, My,, ..., M,,)

on HZ (D) are unitarily equivalent. This gives the following:
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Theorem 3.3.2. In the setting of Proposition 3.3.1 the following hold: (V,Vi,...,Vy)
onH, (M., Ms,,...,Ms,) on H},(D), and (M., My, ,...,My,) on HZ (D) are unitarily

equivalent, where &€ is a Hilbert space and

dim € = rank (V,V1,...,V,).

Therefore, an (n + 1)-tuple of doubly commuting shift operators

(MZ7M¢17'~-7M¢ )7

is completely determined by the numerical invariant rank (M,, Mg,,..., Mg, ):

Corollary 3.3.3. Let £ and F be Hilbert spaces. Let (M., My,,...,Mg,) be an (n +
1)-tuple of commuting shifts on H%(D). Then (M., My,,...,My,) on H%(D) and
(M, My,,...,My,) on HZ (D) are unitarily equivalent if and only if

(M, My,,...,My,)
1s doubly commuting and

dim € = rank (M., My,, ..., My,).

The above corollary should be compared with the uniqueness of the multiplicity of

shift operators on Hilbert spaces [66].

3.4 Nested invariant subspaces and uniqueness

Now we proceed to the description of nested invariant subspaces of H gn (D). Let &1 and

Sy be two closed invariant subspaces for
(M., My,,...,M,,) on HZ (D).
Let W; = S; © 285, and let
®;i(w) = Py, (Is, — wPs, M)~ My |,

forall we D, j=1,2,and ¢ = 1,...,n. Hence by Theorem 3.2.2 there exists an inner

function ©; € H ;;()Wj Sn)(D) such that

Sj = ©;Hyy, (D),

and
lii@j = @j@jﬂ', (3.4.1)



3.4. Nested invariant subspaces and uniqueness 57

forall j=1,2, andi=1,...,n. Now, let
Sl QSQ,

that is
O1 3y, (D) C ©2H), (D).

Then there exists an inner multiplier ¥ € Hy),, ) (D) [51] such that
O = O20.
Using this in (3.4.1), we get

VP ; = 01D,

= Kk;01
== IQZ‘(")Q\I’
= 029y, V¥,
and so
VP ; = Py, W,
for all i =1,...,n. On the other hand, given two invariant subspaces S; = @jH%vj (D),

j=12, for (M., M,,,...,M,) on Hgn (D) described as above, if there exists an inner
multiplier ¥ € H gc(’wl W2)(ID)) such that ©; = ©9¥, then it readily follows that S; C Ss.
We state this in the following theorem:

Theorem 3.4.1. Let £ be a Hilbert space, and let S; = @1H$V1 (D) and Sg = @zH)%VQ (D)
be two invariant subspaces for (M, My, , ..., My, ) on Hgn (D). Let

®;i(w) = Py, (Is, — wPs, M)~ My, |w,,

forallw e D, j = 1,2, andi = 1,...,n. Then & C S if and only if there exists
an inner multiplier ¥ € HEC(’WI W2)(]D)) such that ©1 = ©2¥ and Y®1; = ®o;V for all

1=1,...,n.

We now proceed to prove the uniqueness of the representations of invariant subspaces
as described in Theorem 3.2.2. Let £ be a Hilbert space, and let § be an invariant
subspace for (M, My, , ..., M,) on H (D). Let S = ©Hj,(D) and

Hi@:@fbi (i:L...,n),

in the notation of Theorem 3.2.2. Now assume that © € H g()VNV) (D) is an inner function,

for some Hilbert space W, and
— Or2
S= @HW(]D)).
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Also assume that
/ﬁ;i(:) = (:)Ci)l,

for some shift Mii on H?;V (D) and i = 1,...,n. Then as an application of the uniqueness
of the Beurling, Lax and Halmos inner functions (cf. Theorem 2.1 in page 239 [51] and
also Theorem 1.3.2 in Chapter 1) to

OHE, (D) = OHZ,(D),
we get
© =0T,

for some unitary operator (constant in z) 7 : W — W. Then, the previous line of

argument shows that

for all ¢ = 1,...,n. This proves the uniqueness of the representations of invariant

subspaces in Theorem 3.2.2.

Theorem 3.4.2. In the setting of Theorem 3.2.2, if S = (:)H%V(D) and k0 = OD;
for some Hilbert space W, inner function © € HOOW) (D) and shift Mg, on H%/(]D)),

B(
i=1,...,n, then there exists a unitary operator (constant in z) T : W — W such that
O = Or,
and
T®; = By,

foralli=1,...,n.

3.5 Applications

In this section, first, we explore a natural connection between the intertwining maps on
vector-valued Hardy space over D and the commutators of the multiplication operators
on the Hardy space over D"*!. Then, as a noteworthy added benefit to our approach,
we compute a complete set of unitary invariants for invariant subspaces of vector-valued
Hardy space over D", We also test our main results on invariant subspaces unitarily
equivalent to Hgn (D). As a by-product, we obtain some useful results about the structure

of invariant subspaces for the Hardy space. We begin with the following definition.

Let £ and & be two Hilbert spaces. Let S and S be invariant subspaces for the (n+1)-
tuples of multiplication operators on H gﬂ (D) and Hggn (D), respectively. We say that S
and S are unitarily equivalent, and write S = S, if there is a unitary map U : § — S
such that

UM.|s = M.|sU and UM,,|s = M,,|sU,
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foralli=1,...,n.

3.5.1 Intertwining maps

Recall that, given a Hilbert space £, there exists a unitary operator Ug : H, g (D) —
HZ (D) (see Section 2) such that

U€Mz1 = MzUé'a
and
UgMZi+1 = MmUEa

foralli =1,...,n. Let F be another Hilbert space, and let X : H(D"™!) — H%(D"*!)

be a bounded linear operator such that
XM, =M,X, (3.5.1)

foralli=1,...,n+ 1. Set
X, =UrXU;.

Then X, : Hgn (D) — H%" (D) is bounded and
XoM, = M,X, and X,M,, = M, X, (3.5.2)

for all ¢ = 1,...,n. Conversely, a bounded linear operator X, : Hgn (D) — H%n (D)
satisfying (3.5.2) yields a canonical bounded linear map X : HZ(D""!) — HZ(D"t),
namely

X =UrX,Us
such that (3.5.1) holds. Moreover, this construction shows that
X € B(HZ(D"™), H3(D™1))
is a contraction (respectively, isometry, unitary, etc.) if and only if
X, € B(HE, (D), H, (D))
is a contraction (respectively, isometry, unitary, etc.).
For brevity, any map satisfying (3.5.2) will be referred to module maps.

3.5.2 A complete set of unitary invariants

Let & and € be Hilbert spaces, and let {Uy,...,¥,} C Hg‘zg)(]]])) and {\111, .. .,\i/n} C

Hg‘?g) (D). We say that {¥,...,¥,} and {¥y,...,¥,} coincide if there exists a unitary
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operator 7 : & — & such that
T\I/Z(Z) = @Z(Z)T,
forallzeDandi=1,...,n.

Now let S C Hgn (D) and S C H?n (D) be invariant subspaces for
(My,My,,...,My,)
on Hgn (D), and Hggn (D), respectively. Let S = S. By Theorem 3.2.4, this implies that
(M., Mg,,...,Ms,) on Hy(D),

and (M., Mg ..., Mg ) on H%}(]D)) are unitarily equivalent, where W = S © 28, W =
S © zS and
®;(w) = Py(Is — wPsM3) ™ My, w,

and

®i(w) = Py

(s — wPsM?) ™' M,,

’V\/v

forallweDandi=1,...,n. Let U: H,(D) — H%/(]D)) be a unitary map such that

UM, = M,U,
and
UMeo, = Mg U,
for all i =1,...,n. The former condition implies that
U= IHQ(]D)) X T,

for some unitary operator 7 : W — W, and so the latter condition implies that
T®;(2) = By(2)7,

for all z € D and i = 1,...,n. Therefore {®1,...,®,} and {®y,...,®,} coincide.
To prove the converse, assume now that the above equality holds for a given unitary
operator 7 : W — W. Obviously U = Iy2py ® 7 is a unitary from H3,(D) to H)%V(D)
Clearly UM, = M,U and UMy, = Mz U for all i =1,...,n. So we have the following

theorem on a complete set of unitary invariants for invariant subspaces:

Theorem 3.5.1. Let £ and £ be Hilbert spaces. Let S C Hgn (D) and S C Hg (D) be
invariant subspaces for (M, My,, ..., My, ) on HE (D) and Hgg (D), respectively. Then
S =S if and only if {®1,...,D,} and {®1,...,,} coincide.

Now, if we consider the Beurling, Lax and Halmos representations of the given in-
variant subspaces S and S as
§ = O}, (D),
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and
& A2
S = G)HW(]D)),

where © € HE?W,En)<D) and © € Hl(;o(w,én)(D)’ then, in view of Remark 3.2.3, the

multipliers in Theorem 3.5.1 can be represented as
Bi(w) = PrMo (I ) — wMZ) ™ ME M w,

and
®;(w) = pWMé(IH%(D) — wM}) " ME My, |y,

foralweDandi=1,...,n.

3.5.3 Unitarily equivalent invariant subspaces

Let £ and F be Hilbert spaces, and let X, : Hgn (D) — HJQ% (D) be a module map. If
X,, is an isometry, then the closed subspace S C H% (D) defined by

S = Xu(Hz (D)),

is invariant for (M, My,,..., M, ) on H%-n(]D)) and § = Hgn(D) In other words,
the tuples (M,|s, My, l|s,..., My, |s) on S and (M, My,,..., M, ) on Hgn(]D)) are uni-
tarily equivalent. Conversely, let & C H%n (D) be a closed invariant subspace for
(M, My,,...,M,,) on HJQETL(]D), and let S = Hgn(ID) for some Hilbert space £. Let
X, : Hgn (D) — S be the unitary map which intertwines (M, My, ..., My, ) on Hgn (D)
and (M.|s, My,|s, ..., My,|s) on S. Suppose that is : S < H% (D) is the inclusion
map. Then

Xn =is 0 Xy,

is an isometry from Hgn(]D)) to HJQ_-n(]D)), XM, = M, X,,, Xo,M,, = M,X, for all
i=1,...,n, and

ran X, = S.

Therefore, if § C H% (D) is a closed invariant subspace for (M., My, ..., My,) on
H%n (D), then & Hgn (D), for some Hilbert space &, if and only if there exists an
isometric module map X,, : HZ (D) — H%n (D) such that S = Xn(Hgn (D)). Now, it
also follows from the discussion at the beginning of this section that X : H3(D"™!) —
HZ(D"!) (corresponding to the module map X,,) is an isometry and XM,, = M, X
for all i = 1,...,n. Then Theorem 3.6.1 tells us that

dim &£ < dim F.

Therefore, we have the following theorem:

Theorem 3.5.2. Let £ and F be Hilbert spaces, and let S C Hg_-n(D) be a closed
invariant subspace for (M., My, ,...,My,) on Hz (D). Then S = HZ (D) if and only
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if there exists an isometric module map X, : Hgn (D) — H;_-n (D) such that
S = X,HZ (D).

Moreover, in this case

dim & < dim F.

Of particular interest is the case when F = C. In this case (see Section 2) the tensor
product Hilbert space F,, = H?(D") ® C is denoted by H,, that is, H, = H?(D").

Corollary 3.5.3. Let S C H%In (D) be a closed invariant subspace for (M., My, ..., M, )
on Hl%ln (D). Then S = HI2{n (D) if and only if there exists an isometric module map
X, : Hy (D) — HE (D) such that

S = Xu(Hf, (D).

The above result, in the polydisc setting, was first observed by Agrawal, Clark and
Douglas (see Corollary 1 in [3]). Also see Mandrekar [77].

We now proceed to analyze doubly commuting invariant subspaces. Let F be a
Hilbert space, and let S C H]%n (D) be a closed invariant subspace for (M, M,,, ..., M, )
on H;_-n (D). Set

V =M.s,

and
‘/’i == MI{Z' ’S?

forall i =1,...,n. We say that S is doubly commuting if V;*V; = V;V.* for all 1 <i <
Jj<n.

Now let £ be a Hilbert space, and suppose that H gn (D) = S. In view of Theorem 3.5.2
this implies that (V,V1,...,V,) on S and (M., M, ..., M, ) on HZ (D) are unitarily
equivalent. Because Hgn (D) is doubly commuting this immediately implies that S is

doubly commuting.
Conversely, let S be doubly commuting. From Theorem 3.2.4 we readily conclude
that (M., Ms,,..., Ms,) on H3,(D) and (V,V4,...,V,) on S are unitarily equivalent.
Applying Theorem 3.3.2 with (M, Ms,, ..., Ms,) in place of

(M37M‘I/17 s 7M‘I/n))

we see that (V,Vi,...,V,) on S and (M, My, ,..., M, )on Hgn (D) are unitarily equiva-
lent, where £ is a Hilbert space. Now, proceeding as in the proof of the necessary part of
Theorem 3.5.2 one checks that there exists a module isometry X,, : H, gn (D) — H%n (D)
such that

ran X,, = S.
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This proves the following variant of Theorem 3.5.2:

Theorem 3.5.4. Let F be a Hilbert space. An invariant subspace S C H;_-n (D) is doubly
commuting if and only if there exists a Hilbert space £ and an isometric module map
X, : H (D) — H% (D) such that

S =X, H (D).

Moreover, in this case
dim € < dim F.

The above result, in the polydisc setting, was first observed by Mandrekar [77]. Also
this should be compared with the discussion prior to Corollary 3.2.3 on the application
of the classical Beurling, Lax and Halmos theorem to invariant subspaces of the Hardy

space over the unit disc.

3.6 An inequality on fibre dimensions

Given a Hilbert space &, the n-tuple of multiplication operators by the coordinate func-
tions z;, i = 1,...,n, on HZ(D") is denoted by (M, ..., M¢ ). Whenever € is clear
from the context, we will omit the superscript £. Clearly, one can regard £ as a closed

subspace of H g (D™) by identifying £ with the constant £-valued functions on D".

In this Section, we aim to prove the following result:

Theorem 3.6.1. Let & and & be Hilbert spaces and let X : Hgl (D™) — H(%Q (D™) be an
isometry. If
XME = M2X,

foralli=1,...,n, then
dim51 < dim 52.

We believe that the above result (possibly) follows from the boundary behavior of
bounded analytic functions following the classical case n = 1 (See end of this section).
Here, however, we take a shorter approach than generalizing the classical theory of
bounded analytic functions on the unit polydisc. We first prove the L2-version of the

above statement.

Theorem 3.6.2. Let & and & be Hilbert spaces and let X : L<2€1 (T") — Lé (T™) be an
isometry. If
XM o, =M o X,
e J e

forallj=1,...,n, then
dimé’l S dim 82.
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Proof. By the triviality, we can assume that
m = dim & < 0o.

Let {n;}2, be an orthonormal basis for &. Since {ey, : k € Z"}, where
£ = H eikj@j (k c Zn)7
=1

is an orthonormal basis for L?(T"), this implies that {exn; -k e€Z" j=1,...,n}is
an orthonormal basis for Lé (T™). Let {f; : 5 € J} be an orthonormal basis for X (&),
where J is a subset of Z. In view of the intertwining property of X, this implies that
{exfj : k€ Z",j € J} is an orthonormal basis for

X(LZ,(T")) € LE,(T"),
and so, an orthonormal set in L(%Q (T™). It follows from the Parseval’s identity that

dim & = dim(X &)

= Il

jeJ

) ) WAL

j€J =1 keZr

ZZ > o Mo £

jeJ I=1 kezn

= ZZ Z |<77l76kfj>|27

jeJ I=1 kezn

on the one hand, and on the other, by Bessel’s Inequality,

m
Z ]|
.
222 2 limseufi)l
=1 jeJ keZ"
This proves dim & < m and completes the proof of the theorem. O

Proof of Theorem 3.6.1: Define X on {exn k€ Z",ne€ &} by

X (exn) = ex X1,
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for all k € Z™ and n € &;. The intertwining property of the isometry X then gives

<X(€kn)aX(elC)>L§2(T") = {exm, e1C) 1z (rm

for all k,l € Z™ and n,( € & . Therefore this map extends uniquely to an isometry,
denoted again by X from Lgl (T™) to Lé (T™), such that

XM o, =M o, X,
eJ e’J

for all j =1,...,n. The result then easily follows from Theorem 3.6.2. O
If X Hgl (D) — HgQ(]D”) is an isometry, and if XM,, = M, X foralli=1,...,n,

then it is easy to see that
X = Mo,

for some isometric multiplier © € HE‘ESL&)(D") (that is, Mg : Hgl (D") — ng (D™) is an
isometry). In the case n = 1, the conclusion of Theorem 3.6.1 follows from the boundary
behavior of bounded analytic functions on the open unit disc: Mg is an isometry if and
only if ©(e?) is isometry a.e. on T (cf. [79]). Unlike the proof of the classical case

n = 1, our proof does not use the boundary behavior of ©.






Chapter 4

Pairs of projections and

commuting isometries

4.1 Introduction

Given n € NU{oo}, there exists precisely one Hilbert space £, up to unitary equivalence,
of dimension n (here all Hilbert spaces are assumed to be separable), and given a Hilbert
space &, there exists precisely one shift operator, up to unitary equivalence, of multi-
plicity dim £ on some Hilbert space H. Therefore, multiplicity is the only (numerical)
invariant of a shift operator. Note that shift operators are special class of isometries,

and moreover, the defect operator of a shift determines the multiplicity of the shift.

Now we turn to commuting pairs of isometries. It is remarkable that tractable invari-
ants (whatever it means including the possibilities of numerical and analytical invariants)
of commuting pairs of isometries are largely unknown. However, in one hand, the notion
of defect operator associated with commuting pairs of isometries has some resemblance
to multiplicities (and hence defect operators) of shift operators. On the other hand,
the defect operator of a general pair of commuting isometries is fairly complex and not

completely helpful in dealing with the complicated structure of pair of isometries.

In this chapter we will restrict pairs of commuting isometries to Berger, Coburn
and Lebow pairs of isometries (which we call BCL pairs) resulting in somewhat more
tractable defect operators (see Section 4). Indeed, each BCL pair (V1, V2) is uniquely
associated with a triple (€, U, P), where £ is a Hilbert space and U is a unitary and P
is a projection (throughout, projection will always mean orthogonal projection) on &.

Moreover, in this case, the defect operator of (V1, V2) is given by (see (4.1.4))
C(V1,Va) =UPU* - P. (4.1.1)

Clearly, (UPU*, P) is a pair of orthogonal projections on £ and hence, C(V1,V5) is a

self-adjoint contraction.

67
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In summary, given a BCL pair (Vi, V3), up to unitary equivalence, there exists pre-
cisely one triple (£,U, P), and given a triple (£, U, P), there exists a pair of projections
(UPU*, P) such that the defect operator of (V1, V%), denoted by C(V7, V3), is the differ-
ence of the projections UPU* and P as in (4.1.1). In particular, the defect operator is a
self-adjoint contraction. If, in addition, the defect operator C'(Vj, V3) is compact, then

C(V1, V2)lker o1, 1))~ admits the following decomposition

L 0 0 0
0O D 0 0
, (4.1.2)
0 0 - 0
00 0 -D

where I; and Iy are the identity operators and D is a positive contractive diagonal
operator. The goal of this chapter, largely, is to suggest the (missing) link between
compact differences of pairs of projections and BLC pairs. More specifically, given a
self-adjoint compact contraction 7' of the form (4.1.2) on a Hilbert space £, we are
interested in computing irreducible (that is, non-reducing - in an appropriate sense,
see Definition 4.1.3) BCL pairs (V1,V2) such that C(Vi, V2)|wer o (vi,15))+ i equal (or
unitarily equivalent) to 7. The complication involved in the range of our answers for
self-adjoint compact contractions will further indicate the delicate structure of BCL pairs

(let alone the general class of pairs of commuting isometries).

It is worthwhile to note that the geometric examples of concrete pairs of commuting
isometries out of our construction might be of independent interest. Indeed, despite its

importance, little is known about the structure of pairs of commuting isometries.

Our main motivation comes from the work of Berger, Coburn and Lebow [20] and
a question of He, Qin and Yang [69]. Moreover, one of the key tools applied here is a
projection formulae of Shi, Ji and Du [102] (more specifically, see Theorem 4.2.2).

Furthermore, we note, from a general point of view, that the concept of difference of
two projections on Hilbert spaces is an important tool in the theory of linear operators
(both finite and infinite dimensional Hilbert spaces). In this context, we refer to [11]
on products of orthogonal projections, [23, 54, 55] on isometries of Grassmann spaces,
[90] on C*-algebras generated by pairs of projections, [7] invariant subspaces of pairs
of projections, [87] on differences of spectral projections and [13] on index of pairs of
projections. We refer the reader to [25] for a nice account on pairs of projections. Also
see [8, 10, 37, 64, 104, 105].

Let us now explain the setting and the content of this chapter in more detail. Let H

be a Hilbert space and let V' be an isometry on H. The multiplicity of V' is the number

rank (Iyy — VV™) € NU {o0}.
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The projection Iyy — VV™ is known as the defect operator associated with V' which we
denote by
C\V)=1Iy-VV™.

Recall that the defect operator of M, on H?(D) is given by
C(M;) = Fc,

where Pc denotes the projection of H2(D) onto C, the one dimensional subspace of

constant functions of H?(D). Consequently, for any Hilbert space £, the fact that
C(M,®I¢) = Pc® Ig,

implies that the multiplicity of the shift M, ® I¢ on H*(D) ® £ is given by dimé&.
Moreover, if V is a shift on a Hilbert space H, then V on H and M, ® Iy on H?(D)®@ W

are unitarily equivalent, where
W=HSVH=ranC(V).

In particular, for Hilbert spaces £ and £, M, ®I¢ on H*(D)®E and M,®1Iz on H?(D)®E

are unitarily equivalent if and only if
dim& = dimé.

This also follows, in particular, from the fact that C(M, ® I¢) = Pc ® I¢.

By a BCL triple (after Berger, Coburn and Lebow [20]) we mean an ordered triple
(€,U, P) which consists of a Hilbert space £, a unitary operator U and an orthogonal

projection P on £.

Now, let (Vi,V3) be a pair of commuting isometries acting on the Hilbert space H.
We say that (V1,V3) is pure if V := V4 V4 is a shift. In [20], Berger, Coburn, and Lebow
established the following model for pure pair of commuting isometries (also see Chapter
2):

Let (£,U, P) be a BCL triple and suppose

Vi = Iy © P+ M, ® PH) (T2 ® UY),

. (4.1.3)
Va = (Ig2m) @ U) (M. @ P + T2y @ P).

One can easily check that
ViVo =WV =M, ® g,

that is, (V1, V3) is a commuting pair of pure isometries. Conversely, it is proved in [20]
that a pure pair of commuting isometries, up to unitary equivalence, is of the form
(4.1.3) for some BCL triple (£,U, P).

We shall call (V1,V3), as given in (4.1.3), the BCL pair associated with the BCL
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triple (£,U, P). Often we shall not explicitly distinguish between BCL pair (V1, V2), as
given in (4.1.3), and the corresponding BCL triple (€,U, P).

The defect operator of a BCL pair (V1,V3) (or, a general pair of commuting isome-
tries), denoted C(V1, Va), is defined by

C(Vla ‘/2) = IH?(]D)) - Vlvl* — VQVQ* + V1V2‘/1*V2*.
An easy computation reveals that
C(V1,Va) = Pc ® (UPU* — P) = Pc ® (P+ —UP+U), (4.1.4)

and hence,
CV1,V2)m2myge =0 and ran C(Vi,V2) CC®E.

Thus it suffices to study C(Vi,Vz2) only on (zH?(D) ® £)* = C ® £. In summary, if
(V1,V3) is a BCL pair on H3(D), then the block matrix of C(V4, Va) with respect to the
orthogonal decomposition H2(D) = zHZ(D) & € is given by

0 0

CVLV) =1 pi_ypiy-

If (V1,V5) is clear from the context, then we define
C:=C(Vi,Wa)|lge = P+ —UP*U".

Note that C, being the difference of a pair of projections, is a self-adjoint contraction.
In addition, if it is compact, then clearly its spectrum lies in [—1,1] and the non-zero
elements of the spectrum are precisely the non-zero eigen values of C'. In this case, for

each eigen value A of C', we denote by E) the eigen space corresponding to A, that is
E) =ker(C — \g¢).

The following useful lemma is due to He, Qin and Yang [69, Lemma 4.2]:

Lemma 4.1.1. If C' is compact, then for each non-zero eigen value X of C in (—1,1),

—\ is also an eigen value of C' and
dimEy = dimE_y.
Consequently, one can decompose (ker ) as
(kerC)t = E1 ® <§B ENOE_ 1@ (e; E_y), (4.1.5)

where A runs over the set of positive eigen values of C' lying in (0,1). With respect

to the above decomposition of (ker C)*, the non-zero part of C, that is, Cl(ker )L, the
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restriction of C' to (ker C)*, has the following block diagonal operator matrix form

[ I, 0 0 0 ]
0 Prm, 0 0
|(ker )+ 0 0 Iy, 0 ( )
0 0 0 PENIe,
L A i

and consequently, the matrix representation of C'e, )1, With respect to a chosen or-

thonormal basis of (ker C)*, is unitarily equivalent to the diagonal matrix given by

L, 0 0 0
0 D 0 0

C =

[ ’(kerC’)i] 0 0 _Ilfl 0
0O 0 0 -D

where I3 = dimFy, I = dimE_q, D = @ My, , 1), denotes the k x k identity matrix for

A
any positive integer k and

ky = dimFE) = dimFE_ .
Summarising the foregoing observations, one obtains the following [69, Theorem 4.3]:

Theorem 4.1.2. With the notations as above, if the defect operator C(Vy,Va) is com-

pact, then its non-zero part is unitarily equivalent to the diagonal block matrix

L, 0 0 0
oD 00 (4.1.7)
0 0 ~I, 0

0o 0 0 -D

Remark 4.1.1. (Word of caution) At this point we make it clear that throughout this
article, whenever we say “let T € B(E) be of the form (4.1.7)7, or we write

L, 0 0 0
qo| 0D 00 pen
0 0 1, 0

0o 0 0 -D

we always mean that T is a compact self-adjoint operator on £ such that the orthogonal
decomposition of &€ into eigen spaces of T is as given by (4.1.5), so that with respect
to this decomposition of £, T is represented by the block diagonal operator matriz form
as given by (4.1.6) and consequently, the matrix representation of T (with respect to an

ordered orthonormal basis of £) is unitarily equivalent to the diagonal matrix as given

by (4.1.7).
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This chapter concerns the reverse direction of Theorem 4.1.2: Given an operator T’
on & of the form (4.1.7), construct, if possible, a BCL pair (V1, V2) such that C|er )t
the non-zero part of C(Vq,V5), is unitarily equivalent to T'. The following definition will

make the discussion more concise (in this context, see Lemma 4.2.1).

Definition 4.1.3. A BCL pair (V1,Va) corresponding to the BCL triple (€,U, P) is said

to be irreducible if there is no non-trivial joint reducing subspace of U and P.

Now we note that in view of the constructions of simple blocks in [69, Section 6], one can
always construct a reducible BCL pair (Vi, V2) such that the non-zero part of C'(V1, V2)
is equal to T' (see [69, Theorem 6.7]). This consideration leads us to raise the following

natural question:

Question 1. Given a compact block operator T € B(E) of the form (4.1.7), does there
exist an irreducible BCL pair (Vi,Va) on the Hilbert space H3(D) such that the non-
zero part of the defect operator C(Vi,Va) is equal to T (that is, ran C(V1,Va) = £ and
CWV,WVa)le=T)?

The above question also has been framed in [69, page 18]. The purpose of this paper

is to shed some light on this question through some concrete constructions of BCL pairs.

We observe in Section 4.2 that the answer to the above question is not necessarily
always in the affirmative. In fact we show in Theorem 4.2.4 that given an operator T’

on a finite-dimensional Hilbert space £ of the form (4.1.7) with
dimE: (T) # dimE_ (T),

it is not possible to find any (reducible or irreducible) BCL pair on HZ(D) with the
desired properties. This result motivated us to investigate the cases where the answer
to the aforementioned question, Question 1, is in the affirmative. Our first result to
this end is Theorem 4.3.2 in Section 4.3: Let &£ be a finite-dimensional Hilbert space,
T € B(€) is of the form (4.1.7), and let

dimE (T) = dimE_ (7).

If T has either at least two distinct positive eigen values or only one positive eigen value
lying in (0, 1) with dimension of the corresponding eigen space being at least two, then it
is always possible to construct such an irreducible BCL pair. On the other hand, if 1 is
the only positive eigen value of T, then it is not possible to construct such an irreducible
pair (V1, V2) unless dimFE, (T) = 1.

Finally, in Section 4.9 we deal with the case when & is infinite-dimensional. Our
main results of this section are Theorem 4.9.1 and Theorem 4.9.2. In Theorem 4.9.1 we

answer the Question 1 above in the affirmative in the case when

dimE1 (T) = dimE_1 (T),
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whereas Theorem 4.9.2 provides an affirmative answer to the Question 1 in the case when
dimEy(T) = dimE_(T) + 1.

What deserves special attention is that Theorem 4.9.2 points out a crucial difference
between the finite and infinite-dimensional cases: If T € B(€) is of the form (4.1.7),
then the equality dim F1(T") = dim E_1(T) is a necessary condition for the existence of
an irreducible BCL pair (V1, V2) such that the non-zero part of C'(Vi,V3) is given by T,

only when & is finite-dimensional.

This chapter is based on the preprint [39].

4.2 Question 1 is not affirmative

We begin by characterising joint reducing subspaces of BCL pairs.

Lemma 4.2.1. Let (V1,V3) be a BCL pair corresponding to the BCL triple (£,U, P) and
let S be a closed subspace of H3(D). Then S is a joint reducing subspace for (Vi,Va) if
and only if there exists a closed subspace € of € such that € is reducing for both U and
P and S = Hg(]D))

Proof. Let S be a closed subspace of HZ(D) that is reducing for both V; and V5. Then S
is reducing for M, and hence, there exists a closed subspace £ of £ such that S = HE(ID))
Thus, it just remains to show that £ is reducing for both U and P. Given n € &, it
follows from the definitions of V; and V5 as given by (4.1.3) that

Vin = PU*n+ (PU*n)z and Van=UPtn+ (UPy)=.
As S = ng (D) is invariant under V; and Vs, we must have that
PU*n, PrU*n, UP n, UPy € €.
Now PU*n € € and P-U*n € € together imply that
U*(n) = PU*n+ PtU*n e &,

so that & invariant under U*. Similarly, UP1y € £ and UPn € & together imply
that € invariant under U, showing that & is reducing for U. Since PU* and UP leave &
invariant, P(= (PU*)(U P)) leaves £ invariant. Thus & is reducing for P also, completing
the proof. O

Now we set one of the key tools on pairs of projections for our consideration. In [102]
the authors analysed self-adjoint contractions on Hilbert spaces which are difference of
pairs of projections. Let A € B(H) be a self-adjoint contraction. Then ker A, ker(A —1I)
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and ker(A + I) are reducing subspaces of A and hence, H admits the following direct

sum decomposition:
H =ker A ker(A—I)@ker(A+I)® Ho.

Recall that, if ker A = ker(A—1I) = ker(A+ 1) = {0}, then A is said to be in the generic

position (see Halmos [64]). Now assume that
Ho=KaK,
for some Hilbert space K and suppose that with respect to the orthogonal decomposition
H=kerAd ker(A—I)@ker(A+I)d K&K,

the operator A has the following block diagonal form

A= —I (4.2.1)

where D € B(K) is a positive contraction and without any confusion, we denote by I

the identity on any Hilbert space. In [102, Theorem 3.2] the authors proved that:

Theorem 4.2.2. With notations as above, A, as given by (4.2.1), is a difference of two
projections and moreover, if (P,Q) is a pair of projections such that A = P — Q, then
P, Q must be of the form

P=E@I®00P; and Q=Ea001®Qu

where E is a projection on ker A and Py and Qu are projections in B(K @ K) of the

form i
1 I+D  U(I-D?:2
Psz 2y L
2| U*(I—D?):z I-D
and |-
1 I1—-D U(I — D?)2
QU:7 % o1
2| U*(I - D*:> I+ D

where U € B(K) is a unitary commuting with D.

In what follows, in the setting of the above theorem, we will be interested in the
case when ker A = {0}. Hence, the projections in the above theorem will be of the form
P=1®0® Py and Q =06 I & Qu. Moreover, with notations as above, we note that
if D € B(K) is a positive scalar contraction, that is, D = A for some A in (0, 1), then
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Py; takes the form
14+ VI=N2
1P Xy

= 2 _
\/12)\ U* 12)\I’C

Py (4.2.2)

Projections of this form will play a crucial role in the forthcoming considerations. Our
next lemma determines an orthonormal basis of the range of projections of slightly more

general type.

Lemma 4.2.3. Let H and K be Hilbert spaces and let U : H — K be a unitary operator.
For each A € (0,1), define the projection P: H &K — H & K by

142 VIA2
2Ty 7-U*

U B

P:

If {e; :i € A} is an orthonormal basis of H, then

{\/1;)\6,'@\/¥Uei:i€A}

18 an orthonormal basis of ranP.

Proof. Note that if x € H and y € K, then

1+ A V1= I+ A
Plz®0) = —"ve > Um_P<0@ ﬁUa;),
and hence, by duality
1—X2_ 1—A 1—X_,
P(O@y)—TUy@Ty—P< mUy@O).
Therefore
ranP ={P(z®0):z e H} ={P(0y) :y € K}. (4.2.3)

If {e; : i € A} is an orthonormal basis of H, then

1+ A
1Pl @ 0)ll = /=

for all ¢ € A. A straightforward computation then shows that

{\/1—'2—/\61-@\/1;/\Uei:i61\},

is an orthonormal basis of ranP. O

With this terminology and notation in hand, we are now ready to state the main
result of this section, which shows that the answer to the Question 1 is not necessarily

always in the affirmative.
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Theorem 4.2.4. Let £ be a finite-dimensional Hilbert space and let T on € be a compact
block matrix of the form (4.1.7), that is,

Liime () 0 0 0
T= v D 0 0 (4.2.4)
0 0 —Ilgime_ 1) 0
0 0 0 -D

If
dim Er(T) # dimE_1(T),

then it is not possible to find a BCL pair (V1,V2) on HZ(D) such that the non-zero part
of the defect operator C(Vy,Va) is equal to T'.

Proof. Suppose that there exists a BCL triple (£, U, P) such that the non-zero part of
the defect operator C' = C(Vi, V3) of the corresponding BCL pair (V1, V2) is equal to
T € B(£), where T is as in (4.2.4). That is,

ranC =&, and Clg =T.
Then, since C|g = P+ — UP+U*, it follows that
T =Pt -UPtU".

Let A = {\; : 1 <i < m} denote the (possibly empty) set of eigen values of T' lying in
(0,1). Now for each i = 1,...,m, choose a unitary V; : E_y.(T) — E,(T") and combine

these to construct a unitary

S

I
INS>E

=

(& ) - (

1=

Z By (T)) :

1=

Also note that
E=EiT) @ (& Ex(T)) 0 Ea(M) o ( & ET).

i=1 i=1 ¢

Then, if we set

where
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Next, we set T := WITW*, P, = WPLW* and P, = W(UP+U*)W*. A simple compu-

tation shows that
T = diag Ipyry —Ie_ (1) @ )‘iIEAi(T) - ( GB )\iIE)\i(T))] :
i=1 i=1

Moreover, P, and P» are projections on £ and
P, — Py =W(Pt —UPUYW* = WTW* =
Now an appeal to Theorem 4.2.2 shows that there is a unitary V on K commuting with
m
@ Ailg, (1) such that
P =1Ig 1) ®0p_ 1)@ Pv, Po=0g ) @I (1) ® Qv

where the projections Py and @y are given by

S m) VB )
i=1

and
e B )
vV = m 1 m
(" AQQIEm)] D (5 mm)

We claim that Py and @y have the same rank. Indeed, a similar calculation, as in
(4.2.3), shows that

ranPy = {Py(z®0):2 € K} and ranQy ={Qv(0dx):z € K}.
On the other hand, we can verify easily
ranPy 3 Py(x @ 0) — Qv (0 ® z) € ranQy,
is a linear isomorphism and hence, ranks of Py and Qv are the same. Note that
rankP; = rank Pt = rank(U PLU*) = rankP;.

Now since
rank P, = dimFE (T) 4 rank Py,
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and
rankPy = dimE_;(T') + rankQy,

we must have that dimFE;(7T") = dim E_;(T"). Hence the proof follows. O

4.3 £ is finite-dimensional

In this section we deal with Question 1 and the case when &£ is finite-dimensional. Note
that, in view of Lemma 4.2.4, it is natural to ask that in case dimFE;(T) = dimE_(T),
whether it is always possible to construct an irreducible BCL pair (V3, V2) such that the
non-zero part of the defect operator of C(Vy,V5) is exactly T'. Theorem 4.3.2, the main

result of this section, settles the Question 1 completely.

We first introduce (following Shields [103]) the notion of weighted shift type operators.
Let H be a Hilbert space (finite or infinite-dimensional). If # is finite-dimensional, say
dim H = n, we let {e; : 1 < i < n} be an orthonormal basis of X and if H is infinite-
dimensional, we let {e; : i € Z} be an orthonormal basis of . Let S be a bounded

linear operator on H defined by
Se; = )\ieH_l (Z S Z),
if H is infinite-dimensional, and

)\iei—H fl1<i<n
Sei =
Aper  ifi=mn,

in case H is finite-dimensional, where all the A;’s are non-zero complex numbers. We
call such operators (or matrices of such operators) as operators (respectively, matrices)
of weighted shift type. If H is finite-dimensional, note that the matrix of S with respect
to the orthonormal basis {e1, e, - ,e,} is a generalised permutation matrix (that is, a
square matrix whose each row and each column has only one non-zero element) whose
only non-zero elements are the subdiagonal entries and the first entry of the last column,
that is the (1,n)-th entry.

Lemma 4.3.1. With the notations as above, for any i € {1,2,--- ,n}, {e;} is a cyclic
vector for S if H is finite-dimensional and if H is infinite-dimensional, for any i € Z,
e; is a star-cyclic vector for S (that is, the linear span of {S™e;, S*e; : n > 0} is dense

Proof. 1t is easy to check directly that

s = ([T A5

J=1
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if H is finite-dimensional, and
SS*ej = |Ni1le; (€ ),
if ‘H is infinite-dimensional. Clearly this yields the desired result. O

After these preparations we are ready to state and prove the main result of this
section. Before we proceed to state the theorem, it is necessary to point out at this
moment that if £ = C2, the two-dimensional complex space and if T € B(E) is of the
form (4.1.7) such that T has two eigen values A and —\ where 0 < A < 1, then [69,
Example 6.6] constructs an irreducible BCL pair (V4, V2) on HZ(D) such that the non-
zero part of C'(V,V3) is given by T, thus answering the Question 1 in the affirmative
in this case. The following theorem analyses all the remaining cases, thus settling the

Question 1 completely in the finite-dimensional case.

Theorem 4.3.2. Let £ be a finite-dimensional Hilbert space, and let T € B(E) be of
the form (4.1.7), that is,

Liimey ) 0 0 0
T 0 D 0 0
0 0 —Ilgimp_ 7 0

0 0 0 -D

Assume that dimEy(T) = dimE_1(T). Then, in each of the following two cases, there
exists an irreducible BCL pair (V1,Va) on HZ(D) such that the non-zero part of the defect
operator C(V1,V3) is given by T.

(i) T has at least two distinct positive eigen values,

(i) T has only one positive eigen value lying in (0,1) with dimension of the corre-

sponding eigen space being at least two.

Moreover, (iii) if 1 is the only positive eigen value of T, then it is not possible to construct

such an irreducible pair (Vi,Va) unless dimEy(T) = 1.

The proof is divided in several steps (subsections) to detach the independent ideas
and constructions. Some of the constructions of these steps are also of independent

interest. We note that the above result also includes the case where dimE;(7") = 0.

First, we note that in order to construct an irreducible BCL pair (V, V3) on Hg such
that V1Vo = M, and the non-zero part of the defect operator C(Vy, Vs) is given by T,
it suffices, by an appeal to Lemma 4.2.1 and the discussion preceding Lemma 4.1.1, to
construct a unitary U € B(&) and a projection P € B(E) such that U and P do not

have any common non-trivial reducing subspace and P+ — UP+U* =T.
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Let {\; : ¢ € A} denote the set of positive eigen values of T, where A is a finite
indexing set, say, A = {1,2,--- ,n} with n € N. Then the set of eigen values of T is
given by

o(T)={£N i€ A}

4.4 Orthonormal bases and the projection P

For each i € A, let
ki == dimE\,(T) = dimE_,(T),

and let U; be a unitary from E),(T) to E_y,(T) which exists since dimFEj,(T) =
dimE_,(T). Let {e: 1 <t < k;} be an orthonormal basis of Ej(T), i € A. Then

{Uieiit:L...,k‘i},

is an orthonormal basis of E_y,(T), ¢ € A. It is evident that £ has the following

orthogonal decomposition

£=P (E,\l.(T) ® E_Ai(T)).

€A
For each i € A, define the projection Q; € B(E\,(T) & E_,(T)) by

1+ V127 o
IE‘/\'(T) 2 i

2 K3
Qi= —

% 1*)\1'
5— Ui 5L E_», (D)

It follows from Lemma 4.2.3 that {f{ : ¢ =1,...,k;} is an orthonormal basis of ran Q;,

. [T+ N 11—\ .
ftz = 5 26%@ 5 ! ief‘/,

for all t = 1,...,k;. Similarly, Lemma 4.2.3 applied to I — @); yields an orthonormal
basis {ff :t=1,...,k} of ran Qi, where

where

. 1— N 1+ X
N €t@<—

2 2 )Uiei’

forall t =1,...,k;. Consider the projection Q € B(E) given by

Q=pa

IS

and set
P=Q"' ¢ B(E).
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Therefore, from the definition of P, it follows that

U{ﬁt:L?kl} and U{ftZtZLakz}a (441)

LISN 1€EA
are orthonormal bases of ranP and ranP=, respectively. Then, clearly
{fifi-t=1,... Kk},

is an orthonormal basis of Ej,(T) @ E_y,(T), and hence, a simple computation, by
changing \; to —\;, shows that

[1—Xi [14+ A i 1+ N [1—X\ i
{ 5 e; @ TUieu Tet@(_ 5 )Uiet:tzl,...,ki},

is also an orthonormal basis of Ey,(T) & E_»,(T),i € A. Since

-\ 1+ X\

5 el + 5 Ueh =\/1 = N2fl — \iff,
and
T+ N 1—XN . . -
A g Uief = Nifi +1/1- N2
2 2
for all 7 and ¢, it follows that
U= X0 (=) Mo 1= A2 f e =1, ki), (4.4.2)

€A
is an orthonormal basis of £.

In summary, the sets in (4.4.1) are orthonormal bases of ranP and ranP~, respec-
tively and the set in (4.4.2) is that of €.

4.5 The unitary U for part (i)

We now proceed to construct the unitary U € B(E) of the BCL triple (€,U, P). Here
we assume that n > 2, that is T" has at least two positive eigen values. In this case, we

construct U on & as follows:

Define U on ranP~ by

Ufl =1 = [l & (=\)ff,
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forallt=1,...,k;andi=1,...,n, and define U on ran P by

'A,-fgﬂ@(m—Ag)fgﬂ if1<t<kandl <i<n,

. NS @ (1= X)) I it = kiand1 < i<,
fle (VIZX)f if t = kyandi = n.

The fact that U is unitary can easily be deduced from the definition of U itself by

observing that U carries an orthonormal basis of £ to an orthonormal basis of £. With

respect to the decomposition €& = ranP+ @ ranP, let

Ui U2
U1 Uz

n
Then, with respect to the ordered orthonormal bases U{ fi:1<t<k} of ranPt and
i=1

n
U{ ftl : 1 <t <k;} of ranP, a simple computation yields the following:
i=1

e Uy : ranPt — ranP+ is represented by the diagonal matrix

diag(w/l—)\%,...,\/1—)\%,\/1—)\3,---,\/1—/\g,...,\/l—/\%,...,\/1—)\%).

k., times

k1 times ko times
e Uy : ranPt — ranP is represented by the invertible diagonal matrix

diag(—)\l, U WU O VA W .,—)\n).

TV
k1 times ko times k, times

e Both Ujs : ranP — ranPt and U : ranP — ranP are represented by matrices of
weighted shift type (whose only non-zero elements are the subdiagonal entries and
the first entry of the last column, that is, the (1, dim(ranP))-th entry). One can
easily verify that the (1, dim(ranP))-th entry of Ujs equals A1 and the subdiagonal
of Uy is given by

)\la”-7)\17)\27-”7)\27/\71;---7/\71;

-~
ki1 — 1 times ko times k, times

whereas the (1, dim(ran P))-th entry of Us equals \/1 — A\{ and the subdiagonal
of Uy is given by

\/1—)\%,--~,\/1—)\%,\/1—)\3,---,\/1—)\3,---,\/1—)\%,---,\/1—)\%.

-~

k1 — 1 times ko times kn times
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4.6 The remaining details of part (i)

We first verify that P+ —UP+U* = T. With respect to the decomposition & = ranP+&

ranP, let
T Tio
To1 Tao

T:

Note that verification of the fact P+ — UP+U* = T amounts to verifying the following
set of equations

(71 = Lgnps — UnU3,

T2 = —UnUs,

Ty = —UaUfy,

Ty = —UnUs;.

(4.6.1)

Indeed, a simple computation shows that for each i, 1 <i < n,
Tfi = N fi+ /1= A2

and
Tfi = M/l — A2fi — A2fi for 1 <t <k,

from which it is now evident that with respect to the ordered orthonormal bases U{ fi
i=1

n
1 <t <k} of ranP* and U{ft’ :1 <t < k;} of ranP, all the operators Tj;, i,j = 1,2,

1=
are represented by diagonal matrices. In fact, we have the following equalities

TH:diag<A§,...,A%,A%,...,A%,...,Ai,--- ,Ai),

k1 times ko times kn times

and

Tio = Toy = diag(AH/l SV RIS VRS BED RN WV I CIRS W ng),

k1 times kn times

and finally,

Tyy = diag(—Ai,...,—Af,—Ag,...,—A%,...,—Ai,..- A2,
—_————
k1 times ko times k., times

One can now easily verify the equations of (4.6.1), proving that P+ — UPLU* =T.
We now show that the BCL pair (V3, V3) corresponding to the BCL triple (€,U, P) is

irreducible, that is, we prove that there is no non-trivial joint (U, P)-reducing subspace
of £. Let S be a non-zero joint (U, P)-reducing subspace of £. We show that S = £.
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First notice that
S=85§9 82,

where S} = P+S and S; = PS. Since S is non-zero, one of the spaces Si, Sy must be
non-zero. Assume that Sy is non-zero. We assert that in order to prove that S = &£, it
suffices to show that S; = ranP' for if S; = ranP~", then the observation that

U21(S1) C S,
and the fact that Us; is a linear isomorphism of ranP" onto ran P together imply that
U91(81) = Ugl(ranPJ‘) =ranP C S,

so that So = ranP and consequently, S = £. It follows easily from the definitions of the

operators Uqo and Us; that the operator UioUs; is indeed an operator of weighted shift
n

type on ranP* (with respect to the ordered orthonormal basis U{ flot=1,...,k} of

i=1
ran Pl). As Ui2Us leaves S; invariant, in order to prove that S; = ran P+, it suffices

to prove, by virtue of Lemma 4.3.1, that some f; belongs to Si.

The fact that S is invariant under U immediately implies that &; is invariant under
Uy1. Since Uy is a diagonalizable operator on ranPL with eigen values {4/1 — /\12 1<

i < n}, we have

ranP*+ = é (Em(Ull))a

i=1

and we also observe that {f :t=1,... k;} is a basis of E\/—(UH). Let x € S; be a

1-X2
n
=1

with z; € F M(UH). Now the fact that Sp is invariant under Uyq implies that x;
indeed lies in S; for each i. Choose j € {1,...,n} such that z; # 0. Note that

non-zero element. Then

ks
_ E J
l’] - atftv
t=1

where ag ,1 <t < kj, are all scalars. Let ¢y be the largest value of ¢, 1 <t < kj, such
that oy, # 0. A little computation, using the definition of Uz and Usy, yields that

(Ur2Ua)*5 =041 (f1) € E\/W(U“)?

for s <ty and (U12U21)k7'*t0+1(fg;) is a non-zero scalar multiple of ff“ or f} according

as j < n or j =n. Consequently

(U12U21)krt°+1(96j) =y+z,
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with

yek Un1),
i
and z(# 0) is a scalar multiple of ff“ or fl according as j < n or j = n. Thus

A Em(UH) or EM(UH),

according as j < n or j = n. Since U1aUs; leaves &; invariant and z; € &y, it follows
that y + z € S and since &7 is invariant under Uy1, we conclude that both y,z € S7.
Note that z € S; is equivalent to saying that exactly one of ff“ and f{ belongs to
Si. Thus it follows that S; = ran P+ and hence, S = £. A similar proof shows that if
Sy # 0, then also & = €. Thus there is no non-trivial joint (U, P)-reducing subspace of

&, completing the proof.

4.7 Proof of part (ii)

We now study the case when T has only one positive eigen value lying in (0, 1) such that
the dimension of the corresponding eigen space is at least 2. Thus, in this case, the set

of eigen values of T is given by
o(T) = {+\},

with 0 < Ay < 1 and
dimFE)y, (T) = dimE_,,(T) > 2.

Let a # 1 be a complex number with |a| = 1. Construct a unitary U : £ — &£ as follows:
Define U on ranP' by

o((VT= e (-x)f) fe=1,

Ufl = -
WA e i <<,

and on ranP by

Uftl: )\lft1+l@(v 1—A%)ﬂ1+1 1f1§t<k17
M ® (/1= f} if t = k.

As before, with respect to the decomposition £ = ran P+ @ ran P, let

Ui U2
U1 Uz

With respect to the ordered orthonormal bases {f} : 1 <t < ki} of ranPt and {f} :
1 <t <k} of ranP, it follows easily from the definition of U that
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e Uiy : ranP+ — ranP~ is represented by the diagonal matrix

diag(a\/l—)\%,\/1—A%,.--,ﬁ)v

~~

k1 — 1 times

e Uy : ranPt — ranP is represented by the invertible diagonal matrix

diag< QAL AL —)\1)7

k1 — 1 times

e both Ujs : ranP — ranPt and Usg : ranP — ranP are represented by matrices
of weighted shift type and one can easily verify that the (1,dim(ranP))-th entry
of Ujz equals A and the subdiagonal of Uz is given by

)\17"' a)\la

k1 — 1 times

whereas the (1,dim(ranP))-th entry of Uss equals \/1 — A? and the subdiagonal

of Usg is given by
\J1=A2 /1= )A2.

k1 — 1 times

Proceeding along the same line of argument as in Subsection 4.6, one can easily see that

in this case also there is no non-trivial joint (U, P)-reducing subspace of £.

4.8 Proof of part (iii)

Finally, we deal with the case when 1 is the only positive eigen value of T. Then, with

respect to the decomposition
E=E\(T)® E_((T),

the operator T" admits the following diagonal representation

T —

Ig, (1) 0
0 —Ig_ (1)

Suppose U is a unitary on £ and P is a projection on £ such that

pPt_uUpPtU*=T.
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An appeal to Theorem 4.2.2 immediately implies that with respect to the decomposition
£ =E((T)® E_{(T), P+ and UP-U* must be of the form

0 0
0 Ip_,(m)

It is clear from the forms of P+ and UPLU* that U carries F1(T) (resp., E_1(T)) onto
E_1(T) (resp., E1(T")). Thus, U has the block operator matrix form

Ig, (1)
0

Pt = and UPLU* =

0 A
B 0

U =

I

where A: E_1(T) — E1(T) and B : E1(T') — E_1(T) are unitaries. Thus, if
dimE(T) = dimFE_1(T) = 1,

then there is no non-trivial joint (U, P)-reducing subspace of £. Now assume that
dimE(T) = dimFE_1(T) > 2.

Let v € £ be an eigen vector of U and let Uv = av where, «, of course, has modulus
one. Write v = vy + vy with v € E1(T),vs € E_1(T). It then follows from Uv = av
that Ave = avy, Bv; = avy. Consider the subspace

W = span{v; } @ span{va}.
One can easily verify that W is reducing for U also. Thus, W is a non-zero proper joint

(U, P)-reducing subspace of £. This completes the proof of part (iii) of Theorem 4.3.2.

4.9 £ is infinite-dimensional

This section deals with the case when £ is infinite-dimensional. We aim to show that
given an operator T € B(€) of the form (4.1.7) such that either

dimFE;(T) = dimE_1(T) (may be zero also),

or
dimE (T) = dimE_1(T) + 1,

then one can construct an irreducible BCL pair on HZ(ID) with the desired properties.
Our first result, namely Theorem 4.9.1, treats the case when dimF;(7T") = dimE_ (7).
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Theorem 4.9.1. Let £ be an infinite-dimensional Hilbert space and let T € B(E) be of
the form (4.1.7), that is,

Liime () 0 0 0
T— 0 D 0 0
0 0 —Ilgime_ 1) 0

0 0 0 -D

Suppose that dimEy(T') = dimE_1(T'). Then there exists an irreducible BCL pair (V1, Va)
on HZ(D) such that the non-zero part of C'(V1,Va) is equal to T.

Proof. The proof proceeds, to some extent, along the line of argument as that of Theorem

4.3.2. However, at any rate, some detail is necessary. Let
o(T) ={\, :neN}L

Choose a bijection g : Z — N so that the set of eigen values of T is expressed as
{Agn) : n € Z}. Define

ky = dimE), (T) = dimE_y, (T).

Let U, denote a unitary from Ey (T) to E_y, (T), and let {e} : 1 < ¢ < k,} be an
orthonormal basis of E) (T'), n € N. Then {U,e}' : 1 <t < k,,} is an orthonormal basis
of E_),(T), n € N. Clearly £ has the orthogonal decomposition

£ =D (Br. (1) & B, (1)

neN

= @ (E&m (T) & E-x,, (T)>'

ne’

Let n € N. As in the proof of Theorem 4.3.2, define a projection @, € B(E\, (T) &
E_x,(T)) by

1+ 1-X2 -y
Q, = 2 IE}\n(T) 2 Un
n =
1-22 1-)\
2 Un QnIE—An(T)

Then {f* : 1 <t < k,} and {f" : 1 <t < k,} are orthonormal bases of ran Q,, and

ran Qf;, respectively, where

" [1+ A, 11—\, n
fi= 5 e; @ TUnet

. T—x T+
= e (- *’2 ") Ul

and




4.9. £ is infinite-dimensional 89

Finally, consider the projection @ € B(&) given by

Q:@Qn

neN

and set P = Q+. Tt follows immediately from the definition of P that

U 1<t <k} and | J{fF: 1<t <ka),

neN neN

are orthonormal bases for ranP* and ranP, respectively. Define the unitary U : £ — &
by specifying
U( tg(n)) =/1- )‘E(n)fiq(n) b <_ )‘g(n)>ftg(n)7

forall 1 <t < kg(n) and

(n) 1 .
U( ~g(n)) _ 9(N)fg ® )‘2 ft+1 if 1<t <kgn),

g(n+1) g(n+1)
Ag(nin) [ © /1= N /T if t = kg(n),

where n € Z. With respect to the decomposition € = ranP+ @ ranP, let

Ui Ure
U1 U2

With respect to the ordered orthonormal bases J,cz{f; m.1<t< kg(ny} of ranP+
and J,, ez 1 fi g(n 1<t < kg(n)} of ranP, it is clear from the definition of U that Uy; as
well as Uy are represented by diagonal matrices whereas U12Us; is an operator of the

weighted shift type.

Now let S be a non-zero joint (U, P)-reducing subspace of £. Decompose S as
S=85 68,

where S; = P1(S) and Sy = P(S). Assume, without loss of generality, that S; is non-
zero. Similar argument as in the proof of Theorem 4.3.2 in Subsection 4.6 shows that in
order to prove that S = &, it suffices to show that S; = ranPt. Since S; reducing for
Ui2Us1, to prove that S; = ranP~, it is enough to show, by an appeal to Lemma 4.3.1,

that some basis vector f; (n) belongs to S.

Note that for eachn € Z, , /1 — )\z(n) is an eigen value of Uy with {ff(n) (1<t < kgt

2
1=A0m)

being an orthonormal basis for E \/7(U11) and hence, ranP' has the following

orthogonal decomposition

ranP+ = @neZEW(UH)-
g(n
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Let 0 # x € §1. Then
r= ng(n)

with Ty(n) € FE (U11). Since S; is reducing for Ujq, an appeal to the spectral

1-)2
g(n)
theorem immediately yields that z,,) indeed lies in S; for each n. Choose n such that

Ty(n) # 0 and let
kg(n)

Lg(n) = Z O‘tfiq(n)y

t=1
where oy, 1 <t < kg, are all scalars. If ¢ is the largest value of ¢, 1 <t < kg, such
that ay, # 0, similar argument as in the proof of Theorem 4.3.2 in Subsection 4.6 shows
that

(U12Uny)Fato o1 (£9M) € | e (Un),

for s < tp and
(UlQUQl)kg(n) —to+1 (fi%(n))ﬁ

" from which we conclude, proceeding again along

is a non-zero scalar multiple of f{ (
the same line of argument as in the proof of Theorem 4.3.2 in Subsection 4.6, that

flg("Jrl) € &1, completing the proof. -

The next theorem analyses the case when dimF;(7T) = dimFE_(T") £ 1.

Theorem 4.9.2. Let £ be an infinite-dimensional Hilbert space and let T € B(E) be of
the form (4.1.7), that is,

Liimey) 0 0 0
T— 0 D 0 0
0 0 —Ilgimp_ 7 0

0 0 0 -D

Suppose that

Then there exists an irreducible BCL pair (V1,V2) on H3(D) such that the non-zero part
of C(V1,Va) is equal to T'.

Proof. Assume, without loss of generality, that dim E_;(T") = dim E1(T") + 1. Further,
assume that dim F4(T) > 0, that is, 1 is an eigen value of T. Set Ay = 1 and let the set
of positive eigen values of T" lying in (0,1) be given by {\, : n € N}. Then the set of
eigen values of T is given by {£\, : n > 0}. We use the same notations as in the proof
of Theorem 4.9.1 so that for each n € N, k,, = dim E) (T, {e} : 1 <t < k,,} represents
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an orthonormal basis of E), (T) and for 1 <t < ky,, f and fI* are defined by

I S W S W s W I W
ft:\/ 5 G +\/2Un€t and fi" = Ty G T TUnem

where U, denotes a unitary operator from E) (T') to E_, (T'). Finally, let ky =
dim F1(T) so that dim E_1(T') = ko + 1 and let

{f:1<t<ko} and {f):1<t<ko+1}
denote orthonormal bases of E(T) and E_;(T), respectively. This implies that

{f?:1§t§ko}U{f?:1§t§ko+1}U{fgl,ft":lgtgkn}

neN

is an orthonormal basis of £. As usual, our goal is to construct a projection P and a
unitary U on & such that P+ — UPLU* = T and there is no non-trivial joint (U, P)-
reducing subspace of £. Consider the orthogonal projection P € B(E) such that an

orthonormal basis of ran P is given by

{ﬂozlétékoﬂ}U{ﬂ":lgtgkn}.

neN

Consequently,

{ff:1§t§ko}u{ff:1gt§kn}

neN

is an orthonormal basis of ranP+. Let us consider the unitary U : £ — £ defined as

follows: For each n > 1, define

n \/Wfﬁﬂ@(*)‘n)ftﬂl if 1<t <ky;
i Ve S PG NT S,
and i
U= Mffin © V1= N2 [T o fISt<h
At fi @ /1= 22 it it =k
and finally,

U(f) = flo i 1<t < ko;
U(f)=rf>  if1<t< ko

Ufip1) = Mfi+ /1=
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Then it is easy to check that P+ —UPL+U* = T. Now, with respect to the decomposition
E = ranPt+ @ ranP, let

Unn Uiz
U Us

U =

It follows from the definition of U that

Ui (f)) =0, for 1 <t < ko;
Un(ff) = (V1= X)Ly, for n > 1,1 <t < ky;

Un(fy,) = (m) =1 for n > 1.

A little computation shows that

U (f2) =0, for 1 <t < ko;

Un(fi) = (V1= X2)f7, forn > 1,1 <t < ky;
TL
1)

U (f (V1—=A2) [, "+1 , forn >1;

and consequently,

UL UL (f) =0, for 1 <t < ko;
Ub Ui (f) = (1= X2)f1, forn > 1,1 <t < ky;
U Un(fi) = (L= X)) ff, forn > 1.

Thus, we see that U, U1 is a digonalizable operator on ran P* with eigen values {1—)2 :
n > 0}. Clearly,

{fr<e<w}U{m}
is an orthonormal basis for Eq(U;,U11) = Elf/\(z)(UflUn), and

{fﬁ:1§t<kn}u{fgnfl}

is an orthonormal basis of E,_yz (U;Ur1) for all n > 1.

Let S be a non-trivial joint (U, P)-reducing subspace of £. Then
S = Sl 2] 827

where §; = P*(S) and So = P(S). Assume, without loss of generality, that S is
non-zero and let 0 # z € S;1. Let
@

where x,, € El_/\% (U, Un1) for all n > 0. Since Sy is reducing for Uy U11, we must have
that x, € &1 for each n > 0. Let ng be the smallest non-negative integer such that
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Zn, # 0. First assume that ng > 1 and let

kng—1

_ no £no no+1
LTng = E o Jp o+ /BfknOJrl’
t=1

where 3, ;°(1 <t < ky,) are all scalars. If aj® = 0 for all ¢,1 <t < ky,, then clearly

B # 0 and hence, f,?otgl € S1. If o are not all zero, let ty be the maximum value of
0

t,1 <t < kp,, such that a;° # 0. Then one can easily see that

Kngy—t . kng —to
S12U;,° *(2n,) = an element in span{ f{"°,- -, ;?,?0_1} S ozg)o(l — AELO) % f;‘:o

€ By (UnUn)©® E17A%071(UT1U11)a

and consequently, f;‘:o € 51. Now assume that ng = 0 and let
ko
wo =Y ol f) + Bfi,
t=1
where 3 and o, 1 <t < ko, are all scalars. Note that if 3 # 0, then Uj;xo # 0 and

Ufyzo = /1 — )\%fél_l or B4/1 — )\%flfg,

depending on whether k; > 1 or k; = 1 and thus, &; contains either flgrl or fk22
according as k1 > 1 or k; = 1. Suppose now that 3 = 0 and let to = max{t : af # 0}.

A simple computation shows that
S 5 U2ko=10)+2(30) = an element in span{f{, -, fo.} +al (A fl +1/1 = A2 f})
and hence, fi € S,. Since
U(fi) = fa+/1=Mf2 or Xoff +1/1- 231,

according as k; > 1 or k; = 1, we have that either f} or fZ belongs to S;. Thus we
conclude that f;* € §; for some n > 1 and 1 <t < k,. It is easy to see that

U(PLU) k=t +knoatthathy(fn)y — 5 non-gzero scalar multiple of f?

and hence, f{) € S. Since § is invariant under U, applying U repeatedly on f{) we see
that

{1t <k} | J{:1<t<ko+1}
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is contained in §. Again, using the definition of U and P, a simple computation shows
that

PU)Y(f? = a non-zero scalar multiple of f} for 1 <t < ki,
ko+1 t

(PU)kthatthn1tt ~,80+1) = a non-zero scalar multiple of f* for n > 1,1 <t < ky,

and since § is reducing for both U and P, it follows immediately that S contains
UfP 1<t < k).
neN

Finally, we observe that

(PJ‘U)(]?,?OH) = a non-zero scalar multiple of fj,
(PLU)(f") = a non-zero scalar multiple of Jig for 1 <t <kyn>1,

(PLU)(f,?n) = a non-zero scalar multiple of f{"*! for n > 1.

Since S is (U, P)-reducing and contains {f,80+1} UneN{ft” : 1 <t <k}, it follows that

S contains

U 1<t <k}

neN

As an immediate consequence of all these observations, we conclude that S indeed con-

tains the orthonormal basis of £ given by

(1<t <ko}( J{f:1<t<ko+1} (JUT 1<t <k},
neN

and hence, § = &, finishing the proof of this case. The proof for the case when 1 is not

an eigen value of T, that is, kg = 0, works in the same way. O
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