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Notations & Abbreviations

N Set of all Natural numbers.

Z+ N ∪ {0}.

Nn {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.

Zn+ {t = (t1, . . . , tn) : ti ∈ Z+, i = 1, . . . , n}.

z (z1, . . . , zn) ∈ Cn.

zk zk11 . . . zknn .

|k| k1 + . . .+ kn.

(T1, . . . , Tn) n-tuple of commuting operators on Hilbert spaces.

Tk T k11 . . . T knn .

Dn {z : |zi| < 1, i = 1, . . . , n}.

Bn {z :
∑n

i=1 |zi|2 < 1}.

E , E∗ Hilbert spaces.

O(Ω, E) The set of all holomorphic functions on Ω ⊆ Cn to E .

O(Bn,B(E , E∗)) The set of all B(E , E∗)-valued holomorphic functions on Bn.

A(Bn) Ball algebra.

H∞(Dn) The set of all bounded analytic functions on Dn.
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Introduction

A very general and fundamental problem in the theory of bounded linear operators

on Hilbert spaces is to find invariants and representations of commuting families of

isometries.

In the case of single isometries this question has a complete and explicit answer: If V

is an isometry on a Hilbert space H, then there exists a Hilbert space Hu and a unitary

operator U on Hu such that V on H and[
S ⊗ IW 0

0 U

]
∈ B((l2(Z+)⊗W)⊕Hu),

are unitarily equivalent, where

W = kerV ∗,

is the wandering subspace for V and S is the shift operator on l2(Z+) [66]. This funda-

mental result is due to J. von Neumann [81] and H. Wold [110] (see Theorem 1.2.1 for

more details).

In one hand, unitary operators are completely determined by the representing spectral

measure. And, on the other hand, given n ∈ N∪{∞}, there exists precisely one Hilbert

space E , up to unitary equivalence, of dimension n (here all Hilbert spaces are assumed

to be separable), and given a Hilbert space E , there exists precisely one shift operator,

up to unitary equivalence, of multiplicity dim E on some Hilbert space H. Therefore,

multiplicity is the only (numerical) invariant of a shift operator. Note that shift operators

are special class of isometries, and moreover, the defect operator of a shift determines

the multiplicity of the shift.

Now we turn to tuples of commuting isometries on Hilbert spaces. It is remarkable

that tractable invariants (whatever it means including the possibilities of numerical and

analytical invariants) of commuting pairs of isometries are largely unknown. We stress

on the fact that the case of pairs of commuting isometries itself is more subtle, and is

directly related to the commutant lifting theorem [51] (in terms of an explicit, and then

unique solution), invariant subspace problem [70] and representations of contractions on

Hilbert spaces in function Hilbert spaces [79]. For instance:

(a) Let S be a closed joint (Mz1 ,Mz2)-invariant subspace ofH2(D2), the Hardy space over

the bidisc D2. Then (Mz1 |S ,Mz2 |S) on S is a pure (see Chapter 3) pair of commuting

3



4 Introduction

isometries. Classification of such pairs of isometries is largely unknown (see Rudin

[94, 93]).

(b) Let T be a contraction on a Hilbert space H. Then there exists a pair of commuting

isometries (V1, V2) on a Hilbert space K such that T and PkerV ∗2
V1|kerV ∗2

are unitarily

equivalent (see Bercovici, Douglas and Foias [18]).

(c) The celebrated Ando dilation theorem (see Ando [9]) states that a commuting pair

of contractions dilates to a commuting pair of isometries. Again, the structure of Ando’s

pairs of commuting isometries is largely unknown.

(d) Contrary to the simpler structure of shift invariant subspaces of the one variable

Hardy space, structure of invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, is

quite complicated. For example (see Rudin [94, 93]): There exist invariant subspaces

S1 and S2 for (Mz1 ,Mz2) on H2(D2) such that (i) S1 is not finitely generated, and (ii)

S2 ∩H∞(D2) = {0}.

In this thesis, we aim at exploring the structure of tuples of commuting isometries.

We present a number of results concerning tuples of commuting isometries. The main

contributions of this thesis are:

1. Berger, Coburn and Lebow pairs: An explicit version of Berger, Coburn and Lebow’s

classification result for pure pairs of commuting isometries in the sense of an ex-

plicit recipe for constructing pairs of commuting isometric multipliers with precise

coefficients. We describe a complete set of (joint) unitary invariants and com-

pare the Berger, Coburn and Lebow’s representations with other natural analytic

representations of pure pairs of commuting isometries. We also study the defect

operators of pairs of commuting isometries.

2. Invariant subspaces of shift operators on the Hardy space over the unit polydisc:

We give a complete characterization of invariant subspaces for (Mz1 , . . . ,Mzn)

on the Hardy space H2(Dn) over the unit polydisc Dn in Cn, n > 1. In partic-

ular, this yields a complete set of unitary invariants for invariant subspaces for

(Mz1 , . . . ,Mzn) on H2(Dn). As a consequence, we classify a large class of n-tuples

of commuting isometries.

3. Pairs of projections and commuting isometries: It is known that a commuting Berger,

Coburn and Lebow pair of isometries (V1, V2) on a Hilbert space H is uniquely

associated to an orthogonal projection P and a unitary U on a Hilbert space E
(and vice versa). In this case, the “defect operator” of (V1, V2), say T , is given by

the difference of orthogonal projections on E :

T = UPU∗ − P.
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Here, we aim to determine whether irreducible commuting pairs of isometries

(V1, V2) can be built up from compact operators T on E such that T is a dif-

ference of two orthogonal projections. The answer to this question is sometimes

in the affirmative and sometimes in the negative.

The range of constructions of (V1, V2) presented here also yields examples of a

number of concrete pairs of commuting isometries.

Let us now explain the setting and the content of this thesis in more detail. We begin

with the construction of the classical Wold-von Neumann decomposition of isometric

operators on Hilbert spaces. Here our presentation is more algebraic and geared towards

the main theme of the thesis. First, recall that an isometry V on a Hilbert space H
is said to be pure, or a shift, if it has no unitary direct summand, or equivalently, if

lim
m→∞

V ∗m = 0 in the strong operator topology (see Halmos [66]).

Let V be an isometry on a Hilbert space H, and letW(V ) be the wandering subspace

[66] for V , that is,

W(V ) = H	 VH.

The classical Wold-von Neumann decomposition states the following: Let V be an isome-

try on a Hilbert space H. Then H decomposes as a direct sum of V -reducing subspaces

Hs(V ) =
∞
⊕
m=0

V mW(V ) and Hu(V ) = H	Hs(V ) and

V =

[
Vs 0

0 Vu

]
∈ B(Hs(V )⊕Hu(V )), (0.0.1)

where Vs = V |Hs(V ) is a shift operator and Vu = V |Hu(V ) is a unitary operator.

We will refer to this decomposition as the Wold-von Neumann orthogonal decompo-

sition of V . For any Hilbert space E , the E-valued Hardy space H2
E(D) is canonically

identified with the tensor product Hilbert space H2(D) ⊗ E . To simplify the notation,

we often identify H2(D)⊗ E with the E-valued Hardy space H2
E(D). The space of B(E)-

valued bounded holomorphic functions on D will be denoted by H∞B(E)(D). Finally, let

MEz (or simply Mz, if E is clear from the context) denote the multiplication operator by

the coordinate function z on H2
E(D). Then MEz is a shift operator and

W(MEz ) = E .

Let V be an isometry on H, and let H = Hs(V )⊕Hu(V ) be the Wold-von Neumann

orthogonal decomposition of V . Then (0.0.1) implies the existence of a (canonical)

unitary ΠV : Hs(V )⊕Hu(V )→ H2
W(V )(D)⊕Hu(V ) such that

ΠV

[
Vs 0

0 Vu

]
=

[
M
W(V )
z 0

0 Vu

]
ΠV .
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In particular, this implies that V is a shift operator if and only if V is unitarily equivalent

to MEz on H2
E(D), where dim E = dimW(V ). In the sequel we denote by (ΠV ,M

W(V )
z ),

or simply by (ΠV ,Mz), the Wold-von Neumann decomposition of the pure isometry V

in the above sense.

With these preparations, we are now ready to explain the main contribution of this

thesis.

Chapter 2: After a preliminary chapter on the basic notions of operator theory and

function theory, in Chapter 2, we first characterize and present an analytic description of

commutators of shift operators. Recall that if C is a bounded linear operator on H2
E(D)

for some Hilbert space E , then C ∈ {Mz}
′
, that is, CMz = MzC, if and only if (cf. [79])

C = MΘ

for some Θ ∈ H∞B(E)(D) and (MΘf)(w) = Θ(w)f(w) for all f ∈ H2
E(D) and w ∈ D.

Now let V be a pure isometry, and let C ∈ {V }′ . Let (ΠV ,Mz) be the Wold-von

Neumann decomposition of V , and let W = W(V ). Since ΠV CΠ∗V on H2
W(D) is the

representation of C on H and (ΠV CΠ∗V )Mz = Mz(ΠV CΠ∗V ), it follows that

ΠV CΠ∗V = MΘ,

for some Θ ∈ H∞B(W)(D). From this point of view, we prove:

Theorem 0.0.1. Let V be a pure isometry on H, and let C be a bounded operator

on H. Let (ΠV ,Mz) be the Wold-von Neumann decomposition of V . Set W = W(V ),

M = ΠV CΠ∗V and let

Θ(w) = PW(IH − wV ∗)−1C |W (w ∈ D).

Then CV = V C if and only if Θ ∈ H∞B(W)(D) and

M = MΘ.

Note that ‖wV ∗‖ = |w|‖V ‖ < 1 for all w ∈ D, and so it follows that the function

Θ defined above is a B(W)-valued holomorphic function in the unit disc D. However,

what is not guaranteed in general here is that the function Θ is in H∞B(W)(D). The above

theorem says that this is so if CV = V C.

Then we move to study a class of pairs of commuting isometries, namely, Berger,

Coburn and Lebow pairs of commuting isometries.

A pair of commuting isometries (V1, V2) on H is said to be pure if V := V1V2 is a shift

(that is, a pure isometry). By a BCL triple (after Berger, Coburn and Lebow [20]) we

mean an ordered triple (E , U, P ) which consists of a Hilbert space E , a unitary operator

U and an orthogonal projection P on E . By a BCL pair (again, after Berger, Coburn
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and Lebow [20]) we mean a commuting pair of isometries (V1, V2) on some Hilbert space

H such that V1V2 is a shift operator.

In [20], Berger, Coburn, and Lebow established the following characterization: A pair

of commuting isometries (V1, V2) on a Hilbert space H is a BCL pair if and only if there

exists a BCL triple (E , U, P ) such that (V1, V2) and (MΦ1 ,MΦ2) on H2
E(D) are unitarily

equivalent, where

Φ1(z) = U∗(P + zP⊥) and Φ2(z) = (P⊥ + zP )U,

for all z ∈ D and P⊥ denotes the orthogonal projection I − P .

Note that the representations of V1 and V2 on H2
E(D) are analytic Toeplitz opera-

tors corresponding to one degree operator-valued polynomials. We prove the following

explicit representations of BCL pairs.

Theorem 0.0.2. Let (V1, V2) be a BCL pair on H. Suppose W = H 	 V1V2H and

Wj =W(Vj) = H	 VjH, j = 1, 2. Then the BCL representation of (V1, V2) is given by

(MΦ1 ,MΦ2) on H2
W(D), where

Φ1(z) = U∗(PW2 + zP⊥W2
) and Φ2(z) = (P⊥W2

+ zPW2)U,

and

U =

[
V2|W1 0

0 V ∗1 |V1W2

]
:

W1

⊕
V1W2

→
V2W1

⊕
W2

,

is a unitary operator on W.

Note that the above result yields an explicit representations of the auxiliary operators

U and P . Moreover, we prove that:

Theorem 0.0.3. Let (V1, V2) and (Ṽ1, Ṽ2) be two pure pairs of commuting isometries

on H and H̃, respectively. Then (V1, V2) and (Ṽ1, Ṽ2) are unitarily equivalent if and only

if (V1|W2 , V
∗

2 |V2W1) and (Ṽ1|W̃2
, Ṽ ∗2 |Ṽ2W̃1

) are unitarily equivalent.

In other words, the pair {V1|W2 , V
∗

2 |V2W1} is a complete set of unitary invariants of

BCL pairs.

Then we turn to analytic representations of those pairs of commuting isometries

(V1, V2) for which both V1 and V2 are shift operators. Given such a pair (V1, V2) on

some Hilbert space H, let (ΠV ,Mz) denote the Wold-von Neumann decomposition of

V = V1V2. Then ΠV Vi = MΦiΠV for all i = 1, 2. Now applying Theorem 0.0.1 to

V1 ∈ {V2}′, we find unitary operator ΠV1 : H → H2
W1

(D) such that ΠV1V2 = MΘV2
ΠV1 ,

where ΘV2 ∈ H∞B(W1)(D) is an inner multiplier and

ΘV2(z) = PW1(IH − zV ∗1 )−1V2|W1 (z ∈ D).
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Similarly, we have unitary map ΠV2 : H → H2
W2

(D) and inner multiplier ΘV1 ∈ H∞B(W2)(D).

We prove the following:

Theorem 0.0.4. Let (V1, V2) be a pair of commuting isometries on H. Let i, j ∈ {1, 2}
and i 6= j. If Vi is a pure isometry, then

Π̃i = ΠViΠ
∗
V ∈ B(H2

W(D), H2
Wi

(D)),

is a unitary operator,

Π̃iM
W
z = MzΘVj

Π̃i, Π̃∗iM
Wi
z = MΦiΠ̃

∗
i ,

and

Π̃i(S(·, w)η) = (IWi − w̄zΘVj (z))
−1PWi [IH + z(I − zV ∗i )−1V ∗i ]η,

for all w ∈ D and η ∈ W, where

ΘVj (z) = PWi(IH − zV ∗i )−1Vj |Wi

for all z ∈ D. Moreover

Π̃∗i (S(·, w)ηi) = (IW − Φi(z)w̄)−1ηi,

for all w ∈ D and ηi ∈ Wi.

And, as a corollary, we have:

Corollary 0.0.5. Let (V1, V2) be a BCL pair on a Hilbert space H. If (MΦ1 ,MΦ2) is

the BCL representation of (V1, V2), then MΦ1 and MΦ2 are pure isometries,

Π̃1MΦ2 = MΘV2
Π̃1, Π̃2MΦ1 = MΘV1

Π̃2,

Π̃ = Π̃2Π̃∗1 : H2
W1

(D)→ H2
W2

(D) is a unitary operator, and

Π̃MW1
z = MΘV1

and MΘV2
= MW2

z Π̃.

Moreover, for each w ∈ D and ηj ∈ Wj, j = 1, 2,

Π̃(S(·, w)η1) = (IW2 − w̄ΘV1(z))−1PW2(IH − zV ∗2 )−1η1,

and

Π̃∗(S(·, w)η2) = (IW1 − w̄ΘV2(z))−1PW1(IH − zV ∗1 )−1η2.

The final section of Chapter 2 concerns some basic observation about defect operators

of pairs of commuting isometries. Recall that the defect operator C(V1, V2) of a pair of

commuting isometries (V1, V2) is the following self-adjoint operator

C(V1, V2) = I − V1V1
∗ − V2V2

∗ + V1V2V1
∗V2
∗.
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We prove that:

Theorem 0.0.6. Let (V1, V2) be a pair of commuting isometries on H. Then the fol-

lowing are equivalent:

(a) C(V1, V2) ≥ 0.

(b) V2W1 ⊆ W1.

(c) (V1, V2) is doubly commuting.

(d) C(V1, V2) is a projection.

(e) The fringe operator F2 is an isometry.

We prove a pair of definite results concerning negative defect operators:

Theorem 0.0.7. Let (V1, V2) be a pair of commuting isometries on H. Suppose that V1

or V2 is pure. Then C(V1, V2) ≤ 0 if and only if C(V1, V2) = 0.

Theorem 0.0.8. Let (V1, V2) be a pair of commuting isometries on H. Suppose that

dimWj <∞ for some j ∈ {1, 2} . Then C(V1, V2) ≤ 0 if and only if C(V1, V2) = 0.

Chapter 3: Let E be a Hilbert space, H2
E(Dn+1), n ≥ 1, denotes the E-valued Hardy

space over the unit polydisc Dn in Cn, and let (Mz1 , . . . ,Mzn+1) denotes the commuting

tuple of multiplication operators by the coordinate functions on H2
E(Dn+1). Here we

present a complete characterization of invariant subspaces for (Mz1 , . . . ,Mzn+1). Given

a pair of Hilbert spaces E and E∗, we will denote by H∞B(E,E∗)(D) (or simply H∞B(E)(D) if

E = E∗) the Banach algebra of B(E , E∗)-valued bounded analytic functions on D.

We first use the doubly commutativity property of the multiplication tuple onH2
E(Dn+1)

to reduce the invariant subspace problem in one variable as follows:

Theorem 0.0.9. Let E be a Hilbert space. Then (Mz1 ,Mz2 . . . ,Mzn+1) on H2
E(Dn+1)

and (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily equivalent, where

En = H2(Dn)⊗ E ,

and κi ∈ H∞B(En)(D) is the constant function

κi(w) = Mzi ∈ B(En),

for all w ∈ D and i = 1, . . . , n.

In the light of above reduction, we present the following classification of invariant

subspaces:

Theorem 0.0.10. Let E be a Hilbert space, S ⊆ H2
En(D) be a closed subspace, and let

W = S	zS. Then S is invariant for (Mz,Mκ1 , . . . ,Mκn) if and only if (MΦ1 , . . . ,MΦn)
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is an n-tuple of commuting shifts on H2
W(D) and there exists an inner function Θ ∈

H∞B(W,En)(D) such that

S = ΘH2
W(D),

and

κiΘ = ΘΦi,

where

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n.

Furthermore, the multiplier Φi can be represented as

Φi(w) = PWMΘ(IH2
W (D) − wM∗z )−1M∗ΘMκi |W ,

for all w ∈ D and i = 1, . . . , n.

A well known consequence of the Beurling, Lax and Halmos theorem (cf. page 239,

Foias and Frazho [51]) implies that a closed subspace S ⊆ H2
E(D) is invariant for Mz if

and only if S ∼= H2
F (D) for some Hilbert space F with

dim F ≤ dim E .

More specifically, if S is a closed invariant subspace of H2
E(D) and if W = S 	 zS,

then the pure isometry Mz|S on S and Mz on H2
W(D) are unitarily equivalent, and

dim W ≤ dim E . The above theorem sets the stage for a similar result.

Corollary 0.0.11. Let E be a Hilbert space, and let S ⊆ H2
En(D) be a closed invariant

subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D). Let W = S 	 zS, and

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W (w ∈ D),

for all i = 1, . . . , n. Then (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S and (Mz,MΦ1 , . . . ,MΦn) on

H2
W(D) are unitarily equivalent.

We also prove that the representation of a invariant subspace, as in Theorem 0.0.10,

is unique:

Theorem 0.0.12. In the setting of Theorem 0.0.10, if S = Θ̃H2
W̃(D) and κiΘ̃ = Θ̃Φ̃i

for some Hilbert space W̃, inner function Θ̃ ∈ H∞B(W̃)
(D) and shift MΦ̃i

on H2
W̃(D),

i = 1, . . . , n, then there exists a unitary operator (constant in z) τ :W → W̃ such that

Θ = Θ̃τ,

and

τΦi = Φ̃iτ,
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for all i = 1, . . . , n.

Let E and Ẽ be Hilbert spaces, and let En = H2(Dn) ⊗ E and Ẽn = H2(Dn) ⊗ Ẽ .

Let S and S̃ be closed invariant subspaces of the multiplication tuples on H2
En(D) and

H2
Ẽn

(D), respectively. We say that S and S̃ are unitarily equivalent, and write S ∼= S̃, if

there exists a unitary map U : S → S̃ such that

UMz|S = Mz|S̃U and UMκi |S = Mκi |S̃U,

for all i = 1, . . . , n. We prove that the multipliers {Φi}ni=1 is a complete set of unitary

invariants of invariant subspaces:

In the final section of this chapter we present a geometric proof of the following

dimensional inequality:

Theorem 0.0.13. Let E1 and E2 be Hilbert spaces and let X : H2
E1(Dn) → H2

E2(Dn) be

an isometry. If

XME1zi = ME2zi X,

for all i = 1, . . . , n, then

dim E1 ≤ dim E2.

We believe that the above result (possibly) follows from the boundary behavior of

bounded analytic functions following the classical case n = 1. Here, however, we take

a shorter approach than generalizing the classical theory of bounded analytic functions

on the unit polydisc.

Chapter 4: In this chapter, we return to the idea of defect operators of pairs of com-

muting isometries. Consider the BCL pair

V1 = (IH2(D) ⊗ P +Mz ⊗ P⊥)(IH2(D) ⊗ U∗),

V2 = (IH2(D) ⊗ U)(Mz ⊗ P + IH2(D) ⊗ P⊥).

An easy computation reveals that the defect operator of (V1, V2) is given by

C(V1, V2) = PC ⊗ (UPU∗ − P ) = PC ⊗ (P⊥ − UP⊥U∗),

and hence,

C(V1, V2)|zH2(D)⊗E = 0 and ran C(V1, V2) ⊆ C⊗ E .

Thus it suffices to study C(V1, V2) only on (zH2(D) ⊗ E)⊥ = C ⊗ E . In summary, if

(V1, V2) is a BCL pair on H2
E(D), then the block matrix of C(V1, V2) with respect to the

orthogonal decomposition H2
E(D) = zH2

E(D)⊕ E is given by

C(V1, V2) =

[
0 0
0 P⊥ − UP⊥U∗

]
.
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If (V1, V2) is clear from the context, then we define

C := C(V1, V2)|E = P⊥ − UP⊥U∗.

Note that C, being the difference of a pair of projections, is a self-adjoint contraction.

In addition, if it is compact, then clearly its spectrum lies in [−1, 1] and the non-zero

elements of the spectrum are precisely the non-zero eigen values of C. In this case, for

each eigen value λ of C, we denote by Eλ the eigen space corresponding to λ, that is

Eλ = ker(C − λIE).

Moreover, we have (see [69, Lemma 4.2]): If C is compact, then for each non-zero eigen

value λ of C in (−1, 1), −λ is also an eigen value of C and

dimEλ = dimE−λ.

Consequently, one can decompose (kerC)⊥ as

(kerC)⊥ = E1 ⊕ (⊕
λ
Eλ)⊕ E−1 ⊕ (⊕

λ
E−λ),

where λ runs over the set of positive eigen values of C lying in (0, 1). With respect

to the above decomposition of (kerC)⊥, the non-zero part of C, that is, C|(kerC)⊥ , the

restriction of C to (kerC)⊥, has the following block diagonal operator matrix form

C|(kerC)⊥ =



IE1 0 0 0

0
⊕
λ

λIEλ 0 0

0 0 −IE−1 0

0 0 0
⊕
λ

(−λ)IE−λ


and consequently, the matrix representation of C|(kerC)⊥ , with respect to a chosen or-

thonormal basis of (kerC)⊥, is unitarily equivalent to the diagonal matrix given by

[C|(kerC)⊥ ] =


Il1 0 0 0

0 D 0 0

0 0 −Il′1 0

0 0 0 −D


where l1 = dimE1, l′1 = dimE−1, D =

⊕
λ

λIkλ , Ik denotes the k× k identity matrix for

any positive integer k and

kλ = dimEλ = dimE−λ.

Summarising the foregoing observations, one obtains the following [69, Theorem 4.3]:
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Theorem 0.0.14. With the notations as above, if the defect operator C(V1, V2) is com-

pact, then its non-zero part is unitarily equivalent to the diagonal block matrix
Il1 0 0 0

0 D 0 0

0 0 −Il′1 0

0 0 0 −D

 (0.0.2)

This chapter concerns the reverse direction of Theorem 0.0.14: Given an operator T

on E of the form (0.0.2), construct, if possible, a BCL pair (V1, V2) such that C|(kerC)⊥ ,

the non-zero part of C(V1, V2), is unitarily equivalent to T .

Now we note that in view of the constructions of simple blocks in [69, Section 6],

one can always construct a reducible BCL pair (V1, V2) such that the non-zero part of

C(V1, V2) is equal to T (see [69, Theorem 6.7]). This consideration leads us to raise the

following natural question:

Question 1. Given a compact block operator T ∈ B(E) of the form (0.0.2), does there

exist an irreducible BCL pair (V1, V2) on the Hilbert space H2
E(D) such that the non-

zero part of the defect operator C(V1, V2) is equal to T (that is, ranC(V1, V2) = E and

C(V1, V2)|E = T )?

The above question also has been framed in [69, page 18].

We first prove that the answer to the above question is not necessarily always in the

affirmative:

Theorem 0.0.15. Let E be a finite-dimensional Hilbert space and let T on E be a

compact block matrix of the form (0.0.2), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 .

If

dimE1(T ) 6= dimE−1(T ),

then it is not possible to find a BCL pair (V1, V2) (reducible or irreducible) on H2
E(D)

such that the non-zero part of the defect operator C(V1, V2) is equal to T .

This result motivated us to investigate the cases where the answer to the aforemen-

tioned question, Question 1, is in the affirmative. To this end, we prove that:
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Theorem 0.0.16. Let E be a finite-dimensional Hilbert space, and let T ∈ B(E) be of

the form (0.0.2), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 .

Assume that dimE1(T ) = dimE−1(T ). Then, in each of the following two cases, there

exists an irreducible BCL pair (V1, V2) on H2
E(D) such that the non-zero part of the defect

operator C(V1, V2) is given by T .

(i) T has at least two distinct positive eigen values,

(ii) T has only one positive eigen value lying in (0, 1) with dimension of the corre-

sponding eigen space being at least two.

Moreover, (iii) if 1 is the only positive eigen value of T , then it is not possible to construct

such an irreducible pair (V1, V2) unless dimE1(T ) = 1.

We also deal with the case when E is infinite-dimensional: If E is infinite dimensional

Hilbert space, then Question 1 is in the affirmative in the case when

dimE1(T ) = dimE−1(T ),

or

dimE1(T ) = dimE−1(T )± 1.

The second and third chapters of this thesis is based on the published papers [75]

and [74], respectively. The fourth chapter is based on the preprint [39].



Chapter 1

Preliminaries

In this chapter we introduce the necessary notation, set up definitions and recall some

classical results.

1.1 Hardy space

We begin with a brief introduction of Hardy space. Our presentation is motivated by

[96]. The Hardy space H2(D) over D is the set of all power series

f =
∞∑
m=0

amz
m, (am ∈ C),

such that

‖f‖H2(D) := (
∞∑
m=0

|am|2)
1
2 <∞.

Let f =

∞∑
m=0

amz
m ∈ H2(D). It is obvious that

∞∑
m=0

|w|m < ∞ for each w ∈ D. This

and
∞∑
m=0

|am|2 <∞ readily implies that
∞∑
m=0

amw
m converges absolutely for each w ∈ D.

In other words, f =
∑∞

m=0 amz
m is in H2(D) if and only if f is a square summable

holomorphic function on D.

Now, for each w ∈ D one can define a complex-valued function S(·, w) : D→ C by

(S(·, w))(z) =
∞∑
m=0

w̄mzm. (z ∈ D),

Since
∞∑
m=0

|w̄m|2 =
∞∑
m=0

(|w|2)m =
1

1− |w|2
,

15
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it follows that S(·, w) ∈ H2(D) for all w ∈ D and

‖S(·, w)‖H2(D) =
1

(1− |w|2)
1
2

(w ∈ D).

Moreover, if f =
∞∑
m=0

amz
m ∈ H2(D) and w ∈ D, then

f(w) =

∞∑
m=0

amw
m = 〈

∞∑
m=0

amz
m,

∞∑
m=0

w̄mzm〉H2(D) = 〈f, S(·, w)〉H2(D).

Therefore, the vector S(·, w) ∈ H2(D) reproduces the value of f ∈ H2(D) at w ∈ D. In

particular,

(S(·, w))(z) = 〈S(·, w), S(·, z)〉H2(D) =
∞∑
m=0

zmw̄m = (1− zw̄)−1 (z, w ∈ D).

The function S : D× D→ C defined by

S(z, w) = (1− zw̄)−1, (z, w ∈ D)

is called the Szegő or Cauchy-Szegő kernel of D. Consequently, H2(D) is a reproducing

kernel Hilbert space with kernel function S.

The next goal is to show that the set {S(·, w) : w ∈ D} is total in H2(D), that is,

span{S(·, w) : w ∈ D} = H2(D).

To see this notice that the reproducing property of the Szegő kernel yields

f(w) = 〈f, S(·, w)〉H2(D),

for all f ∈ H2(D) and w ∈ D. Now the result follows from the fact that f ⊥ S(·, w) for

f ∈ H2(D) and for all w ∈ D if and only if f = 0. It also follows that for each w ∈ D,

the evaluation map evw : H2(D)→ C defined by

evw(f) = f(w), (f ∈ H2(D))

is continuous.

Now we recall some of the most elementary properties of Mz on H2(D). Observe first

that

〈z(zk), z(zl)〉H2(D) = 〈zk+1, zl+1〉H2(D) = δk,l = 〈zk, zl〉H2(D). (k, l ∈ N)
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Using the fact that the set {zm : m ∈ N} is total in H2(D), the previous equality implies

that the multiplication operator Mz on H2(D) defined by

(Mzf)(w) = wf(w), (f ∈ H2(D), w ∈ D)

is an isometric operator, that is,

M∗zMz = IH2(D).

Moreover

〈M∗z zk, zl〉 = 〈zk, zl+1〉 = δk,l+1 = δk−1,l = 〈zk−1, zl〉,

for all k ≥ 1 and l ∈ N. Also it follows that 〈M∗z 1, zl〉H2(D) = 0. Consequently,

M∗z z
k =

{
zk−1 if k ≥ 1;

0 if k = 0.

It also follows that

〈(IH2(D) −MzM
∗
z )S(·, w),S(·, z)〉 = 〈S(·, w),S(·, z)〉 − 〈M∗z S(·, w),M∗z S(·, z)〉

= S(z, w)− zw̄S(z, w) = 1

= 〈PCS(·, w),S(·, z)〉,

where PC is the orthogonal projection of H2(D) onto the one-dimensional subspace of

all constant functions on D. Therefore,

IH2(D) −MzM
∗
z = PC.

To compute the kernel, ker(Mz − wIH2(D))
∗ for w ∈ D, note that

M∗z S(·, w) = M∗z (1 + w̄z + w̄2z2 + · · · ) = w̄ + w̄2z + w̄3z2 + · · · = w̄(1 + w̄z + w̄2z2 + · · · )

= w̄S(·, w).

On the other hand, if M∗z f = w̄f for some f ∈ H2(D) then

f(0) = PCf = (IH2(D) −MzM
∗
z )f = (1− zw̄)f,

that is, f = f(0)S(·, w). Consequently, M∗z f = w̄f if and only if f = λS(·, w) for some

λ ∈ C. That is,

ker(Mz − wIH2(D))
∗ = {λS(·, w) : λ ∈ C}.

In particular, ∨
w∈D

ker(Mz − wIH2(D))
∗ = H2(D).

The following theorem summarizes the above observations.
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Theorem 1.1.1. Let H2(D) denote the Hardy space over D and Mz denote the multi-

plication operator by the coordinate function z on H2(D). Then, the following properties

hold:

(i) The set {S(·, w) : w ∈ D} is total in H2(D).

(ii) The evaluation map evw : H2(D) → C defined by evw(f) = f(w) is continuous

for each w ∈ D.

(iii) σp(M
∗
z ) = D and ker(Mz − wIH2(D))

∗ = {λS(·, w) : λ ∈ C}.

(iv) f(w) = 〈f, S(·, w)〉H2(D) for all f ∈ H2(D) and w ∈ D.

(v)IH2(D) −MzM
∗
z = PC.

(vi)
∨
w∈D ker(Mz − wIH2(D))

∗ = H2(D).

Finally, let E be a Hilbert space. In what follows, H2
E(D) stands for the Hardy space

of E-valued analytic functions on D. Moreover, by virtue of the unitary U : H2
E(D) →

H2(D)⊗ E defined by

zmη 7→ zm ⊗ η, (η ∈ E ,m ∈ N)

the vector valued Hardy space H2
E(D) will be identified with the Hilbert space tensor

product H2(D)⊗ E . The reproducing kernel of H2
E(D) is given by

(z, w)→ S(z, w)IE (z, w ∈ D).

Note that

UMEz = (Mz ⊗ IE)U,

where MEz denotes the multiplication operator by the coordinate function z on H2
E(D),

that is

(MEz f)(w) = wf(w) (f ∈ H2
E(D), w ∈ D).

Therefore, MEz on H2
E(D) and Mz ⊗ IE on H2(D) ⊗ E are unitarily equivalent. If E is

clear from the context, then we will denote MEz simply by Mz.

For a more extensive treatment of the Hardy space and related topics, the reader is

referred to the books by Sz.-Nagy and Foias [79], Rosenblum and Rovnyak [92], Radjavi

and Rosenthal [89] and Halmos [64].

1.2 Isometries and shift operators

Let V be an isometry on a Hilbert space H, that is, V ∗V = IH. A closed subspace

W ⊆ H is said to be wandering subspace for V if V kW ⊥ V lW for all k, l ∈ N with

k 6= l, or equivalently, if V mW ⊥ W for all m ≥ 1. An isometry V on H is said to be a

unilateral shift or shift if

H =
⊕
m≥0

V mW,
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for some wandering subspace W for V .

For a shift V on H with a wandering subspace W we have

H	 VH =
(⊕
m≥0

V mW
)
	
(
V (
⊕
m≥0

V mW)
)

=
(⊕
m≥0

V mW
)
	
(⊕
m≥1

V mW
)

=W.

In other words, the wandering subspace of a shift is unique and is given by

W = kerV ∗ = H	 VH.

The dimension of the wandering subspace of a shift is called the multiplicity of the shift.

The classical Wold-von Neumann decomposition theorem ([110], see also page 3 in

[79]) states that every isometry on a Hilbert space is either a shift, or a unitary, or a

direct sum of shift and unitary:

Theorem 1.2.1. (Wold-von Neumann decomposition) Let V be an isometry on H. Then

H admits a unique decomposition H = Hs ⊕ Hu, where Hs and Hu are V -reducing

subspaces of H and V |Hs is a shift and V |Hu is unitary. Moreover,

Hs =
∞⊕
m=0

V mW and Hu =
∞⋂
m=0

V mH,

where W = ran(I − V V ∗) = kerV ∗ is the wandering subspace for V .

Proof. Let W = ran(I − V V ∗) be the wandering subspace for V and

Hs :=

∞⊕
m=0

V mW.

Consequently, Hs is a V -reducing subspace of H and that V |Hs is an isometry. Further-

more

Hu := H⊥s =
( ∞⊕
m=0

V mW
)⊥

=
∞⋂
m=0

(V mW)⊥.

We observe now that I−V V ∗ is an orthogonal projection, hence V l(I−V V ∗)V ∗l is also

an orthogonal projection and

V l(I − V V ∗)V ∗l = (V l(I − V V ∗))(V l(I − V V ∗))∗,

for all l ≥ 0. Thus we obtain

ranV l(I − V V ∗) = ran
(
(V l(I − V V ∗))(V l(I − V V ∗))∗

)
= ranV l(I − V V ∗)V ∗l,



20 Chapter 1. Preliminaries

and hence

(V lW)⊥ = (V lran(I − V V ∗))⊥ = (ranV l(I − V V ∗))⊥

= (ranV l(I − V V ∗)V ∗l)⊥ = ran(I − V l(I − V V ∗)V ∗l)

= ran[(I − V lV ∗l)⊕ V l+1V ∗ l+1] = ran(I − V lV ∗l)⊕ ranV l+1

= (V lH)⊥ ⊕ V l+1H = kerV ∗l ⊕ V l+1H,

for all l ≥ 0. Consequently, we have

Hu =
∞⋂
m=0

(kerV ∗m ⊕ V m+1H
)

=
∞⋂
m=0

V mH.

Uniqueness of the decomposition readily follows from the uniqueness of the wandering

subspace W for V . This completes the proof.

Note that V is a shift if and only if Hs = H, which is equivalent to the fact that

SOT − lim
k→∞

V ∗k = 0.

Therefore, an isometry V is shift if and only if SOT − lim
k→∞

V ∗k = 0. We will sometimes

call a shift as pure isometry.

We now prove that shift operators are simply the multiplication operators Mz on

vector-valued Hardy spaces. Let V be an isometry on H, and let H = Hs ⊕Hu be the

Wold-von Neumann orthogonal decomposition of V . Define

ΠV : Hs ⊕Hu → H2
W(D)⊕Hu

by

ΠV (V mη ⊕ f) = zmη ⊕ f (m ≥ 0, f ∈ Hu).

Then ΠV is a unitary and

ΠV

[
Vs 0

0 Vu

]
=

[
M
W(V )
z 0

0 Vu

]
ΠV ,

that is, V on H and

[
MWz 0

0 Vu

]
on H2

W(D)⊕Hu are unitarily equivalent. In particular,

if V is a shift, then Hu = {0} and hence

ΠV V = MWz ΠV .

Therefore, an isometry V onH is a shift operator if and only if V is unitarily equivalent to

MWz on H2
W(D). Moreover, we note that dimW = dim(H	VH) is the only (numerical)

unitary invariant of V (or MWz ).
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1.3 Multipliers and invariant subspaces

Let E1 and E2 be two Hilbert spaces. We will denote by H∞B(E1,E2)(D) the set of all maps

Θ : D→ B(E1, E2) such that

ΘH2
E1(D) ⊆ H2

E2(D).

Elements of H∞B(E1,E2)(D) are called multipliers.

The following characterization is well known and classical. However, the proof pre-

sented below, borrowed from [97], seems new and short.

Theorem 1.3.1. Let E1 and E2 be two Hilbert spaces and let X ∈ B(H2(D)⊗E1, H
2(D)⊗

E2). Then

X(Mz ⊗ IE1) = (Mz ⊗ IE2)X,

if and only if X = MΘ for some Θ ∈ H∞B(E1,E2)(D).

Proof. Let X ∈ B(H2(D)⊗ E1, H
2(D)⊗ E2) and X(Mz ⊗ IE1) = (Mz ⊗ IE2)X. If ζ ∈ E2

and w ∈ D then

(Mz ⊗ IE1)∗[X∗(S(·, w)⊗ ζ)] = X∗(Mz ⊗ IE2)∗(S(·, w)⊗ ζ) = w̄[X∗(S(·, w)⊗ ζ)],

that is,

X∗(S(·, w)⊗ ζ) ∈ ker(Mz ⊗ IE1 − wIH2(D)⊗E1)∗.

This and the fact that ker(Mz − wIH2(D))
∗ =< S(·, w) > readily implies that

X∗(S(·, w)⊗ ζ) = S(·, w)⊗X(w)ζ, (w ∈ D, ζ ∈ E2)

for some linear map X(w) : E2 → E1. Moreover,

‖X(w)ζ‖E1 =
1

‖S(·, w)‖H2(D)
‖X∗(S(·, w)⊗ ζ)‖H2(D)⊗E1 ≤

‖S(·, w)‖H2(D)

‖S(·, w)‖H2(D)
‖X‖‖ζ‖E2 ,

for all w ∈ D and ζ ∈ E2. Therefore X(w) is bounded and Θ(w) := X(w)∗ ∈ B(E1, E2)

for each w ∈ D. Thus

X∗(S(·, w)⊗ ζ) = S(·, w)⊗Θ(w)∗ζ (w ∈ D, ζ ∈ E2).

In order to prove that Θ(w) is holomorphic we compute

〈Θ(w)η, ζ〉E2 = 〈η,Θ(w)∗ζ〉E1 = 〈S(·, 0)⊗ η,S(·, w)⊗Θ(w)∗ζ〉H2(D)⊗E1

= 〈X(S(·, 0)⊗ η),S(·, w)⊗ ζ〉H2(D)⊗E2 . (η ∈ E1, ζ ∈ E2)

Since w 7→ S(·, w) is anti-holomorphic, we conclude that w 7→ Θ(w) is holomorphic.

Hence Θ ∈ H∞B(E1,E2)(D) and X = MΘ.
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Conversely, let Θ ∈ H∞B(E1,E2)(D). For f ∈ H2(D)⊗ E1 and w ∈ D this implies that

(zΘf)(w) = wΘ(w)f(w) = Θ(w)wf(w) = (Θzf)(w).

So MΘ intertwines the multiplication operators which completes the proof.

As an application of the Neumann-Wold decomposition theorem and the above char-

acterization of multipliers, we now prove the classical Beurling-Lax-Halmos Theorem.

Theorem 1.3.2. (Beurling-Lax-Halmos Theorem) Let S be an Mz invariant subspace

of Hardy space H2
E(D). Then there exists a Hilbert space F and a unitary operator

U : H2
F (D)→ S such that

UMz = (Mz|S)U.

Moreover, dimF ≤ dimE and there exists an inner multiplier Θ ∈ H∞B(F ,E)(D) such

that MΘ : H2
F (D) → H2

E(D) is an isometric multiplier and S = ΘH2
F (D). The inner

multiplier Θ is unique upto a unitary right factor, that is, if S = Θ̃H2
F̃ (D) for some

Hilbert space F̃ and an inner function Θ̃ ∈ H∞
B(F̃ ,E)

(D), then Θ = Θ̃τ for some unitary

operator τ in B(F , F̃).

Proof. Let V = Mz|S . Clearly, V is an isometry on S and

∞⋂
n=0

V nS ⊆
∞⋂
n=0

V nH = {0},

which implies that V is a shift on S. By Theorem 1.2.1, it follows that

S =

∞⊕
m=0

V mF ,

where F = ran(I − V V ∗). Then

U : H2
F (D)→ S =

∞⊕
n=0

V nF ,

defined by U(zkη) = V kη, for all η ∈ F and k ≥ 0, is the desired unitary. Now assume

that iS : S → H2
E(D) is the natuarl inclusion map. Then

Ũ := iS ◦ U : H2
F (D)→ H2

E(D),

defines an isometry. Moreover

ranŨ = raniS = S,

and ŨMFz = MEz Ũ . By Theorem 1.3.1, it then follows that Ũ = MΘ for some inner

multiplier Θ ∈ H∞B(F ,E)(D). The dimension inequality follows from the well known
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boundary behaviour of bounded analytic functions (or see Chapter 3 Theorem 3.6.1 for

an independent and geometric proof). The uniqueness part of Θ is left to the reader.

1.4 Hardy space over the polydisc

Let n ≥ 1, and let Dn be the open unit polydisc in Cn. The Hardy space H2(Dn) over

Dn is the Hilbert space of all holomorphic functions f on Dn such that

‖f‖H2(Dn) =

(
sup

0≤r<1

∫
Tn
|f(reiθ1 , . . . , reiθn)|2 dθ

) 1
2

<∞,

where dθ is the normalized Lebesgue measure on the torus Tn, the distinguished bound-

ary of Dn. It is well known that H2(Dn) is a reproducing kernel Hilbert space corre-

sponding to the Szegö kernel Sn on Dn, where

Sn(z,w) =

n∏
i=1

(1− ziw̄i)−1 (z,w ∈ Dn).

Clearly

S−1
n (z,w) =

∑
0≤|k|≤n

(−1)|k|zkw̄k,

where |k| =
∑n

i=1 ki and 0 ≤ ki ≤ 1 for all i = 1, . . . , n. Here we use the notation z

for the n-tuple (z1, . . . , zn) in Cn. Also for any multi-index k = (k1, . . . , kn) ∈ Zn+ and

z ∈ Cn, we write zk = zk11 · · · zknn .

Let E be a Hilbert space, and let H2
E(Dn) denote the E-valued Hardy space over Dn.

Then H2
E(Dn) is the E-valued reproducing kernel Hilbert space with the B(E)-valued

kernel function

(z,w) 7→ Sn(z,w)IE (z,w ∈ Dn).

Like the one variable Hardy space, in the sequel, by virtue of the canonical unitary U

from H2
E(Dn) to H2(Dn)⊗ E defined by

U(zkη) = zk ⊗ η (k ∈ Zn+, η ∈ E),

we will identify the vector valued Hardy space H2
E(Dn) with the tenor product Hilbert

space H2(Dn) ⊗ E . Let (Mz1 , . . . ,Mzn) denote the n-tuple of multiplication operators

on H2
E(Dn) by the coordinate functions {zi}ni=1, that is,

(Mzif)(w) = wif(w),

for all f ∈ H2
E(Dn), w ∈ Dn and i = 1, . . . , n. It is well known and easy to check that

‖Mzif‖ = ‖f‖,
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and

‖M∗mzi f‖ → 0,

as m→∞ and for all f ∈ H2
E(Dn), that is, Mzi defines a shift (see the definition of shift

below) on H2
E(Dn), i = 1, . . . , n. If n > 1, then it also follows easily that

MziMzj = MzjMzi ,

and

M∗ziMzj = MzjM
∗
zi ,

for all 1 ≤ i < j ≤ n. Therefore, (Mz1 , . . . ,Mzn) is an n-tuple of doubly commuting

shifts on H2
E(Dn).

Note that

U(zk11 · · · z
kn
n ) = zk1 ⊗ · · · ⊗ zkn ,

for all k1, . . . , kn ∈ Z+, defines a unitary map Ũ from H2(Dn) to H2(D)⊗ · · · ⊗H2(D),

the n-fold Hilbert space tensor product of H2(D). Moreover

UMzi =
(
IH2(D) ⊗ · · · ⊗ IH2(D) ⊗ Mz︸︷︷︸

ithplace

⊗IH2(D) ⊗ · · · ⊗ IH2(D)

)
U,

for all i = 1, . . . , n. One can now easily verify all the above mentioned properties of Mzi ,

i = 1, . . . , n. This along with the other canonical identification of Mzi on H2
E(Dn) with

Mzi ⊗ IE on H2(Dn)⊗ E will be used throughout the rest of the thesis.



Chapter 2

Pairs of Commuting Isometries

2.1 Introduction

The main purpose of this chapter is to explore and relate various natural representations

of a large class of pairs of commuting isometries on Hilbert spaces. The geometry

of Hilbert spaces, the classical Wold-von Neumann decomposition for isometries, the

analytic structure of the commutator of the unilateral shift, and the Berger, Coburn

and Lebow [20] representations of pure pairs of commuting isometries are the main

guiding principles for our study. The Berger, Coburn and Lebow theorem states that:

Let (V1, V2) be a pair of commuting isometries on a Hilbert space H, and let V = V1V2

be a shift (or, a pure isometry - see Section 2). Then there exist a Hilbert space W, an

orthogonal projection P and a unitary operator U on W such that

Φ1(z) = U∗(P + zP⊥) and Φ2(z) = (P⊥ + zP )U (z ∈ D),

are commuting isometric multipliers inH∞B(W)(D), and (V1, V2, V ) onH and (MΦ1 ,MΦ2 ,Mz)

on H2
W(D) are unitarily equivalent (see Bercovici, Douglas and Foias [18] for an elegant

proof).

Recall that, given a Hilbert space H and a closed subspace S of H, PS denotes the

orthogonal projection of H onto S. We also set

P⊥S = IH − PS .

In this chapter we give a new and more concrete treatment, in the sense of explicit

representations and analytic descriptions, to the structure of pure pairs of commuting

isometries. More specifically, we provide an explicit recipe for constructing the isometric

multipliers (Φ1(z),Φ2(z)), and the operators U and P involved in the coefficients of

Φ1 and Φ2 (see Theorems 2.3.2 and 2.3.3). Then we compare the Berger, Coburn and

Lebow representations with other possible analytic representations of pairs of commuting

isometries.

25
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In Section 6, we analyze defect operators for (not necessarily pure) pairs of commuting

isometries. We provide a list of characterizations of pairs of commuting isometries with

positive defect operators. Our results hold in a more general setting with somewhat

simpler proofs (see Theorem 2.6.5 for instance) than the one considered by He, Qin

and Yang [69]. Moreover, we prove that for a large class of pure pairs of commuting

isometries the defect operator is negative if and only if the defect operator is the zero

operator.

The chapter is organized as follows. In Section 2 we prove a representation theorem

for commutators of shifts. In Section 3 we discuss some basic relationships between

wandering subspaces for commuting isometries, followed by a new and explicit proof of

the Berger, Coburn and Lebow characterizations of pure pairs of commuting isometries.

Section 4 is devoted to a short discussion about joint unitary invariants of pure pairs of

commuting isometries. Section 5 ties together the explicit Berger, Coburn and Lebow

representation and other possible analytic representations of a pair of commuting isome-

tries. Then, in Section 6, we present a general theory for pairs of commuting isometries

and analyze the defect operators. Concluding remarks, future directions and a close

connection of our consideration with the Sz.-Nagy and Foias characteristic functions for

contractions are discussed in Section 7.

This chapter is based on the published paper [75].

2.2 Commutators of shifts

Let V be an isometry on H, and let H = Hs(V ) ⊕ Hu(V ) be the Wold-von Neumann

orthogonal decomposition of V (see Chapter 1, Theorem 1.2.1). Define

ΠV : Hs(V )⊕Hu(V )→ H2
W(V )(D)⊕Hu(V )

by

ΠV (V mη ⊕ f) = zmη ⊕ f (m ≥ 0, η ∈ W(V ), f ∈ Hu(V )).

Then ΠV is a unitary and

ΠV

[
Vs 0

0 Vu

]
=

[
M
W(V )
z 0

0 Vu

]
ΠV .

In particular, if V is a shift, then Hu(V ) = {0} and hence

ΠV V = MW(V )
z ΠV .

Therefore, an isometry V on H is a shift operator if and only if V is unitarily equivalent

to MEz on H2
E(D), where dim E = dimW(V ).
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In the sequel we denote by (ΠV ,M
W(V )
z ), or simply by (ΠV ,Mz), the Wold-von Neumann

decomposition of the pure isometry V in the above sense.

Let E be a Hilbert space, and let C be a bounded linear operator on H2
E(D). Then

C ∈ {Mz}
′
, that is, CMz = MzC, if and only if (cf. [79])

C = MΘ

for some Θ ∈ H∞B(E)(D) and (MΘf)(w) = Θ(w)f(w) for all f ∈ H2
E(D) and w ∈ D.

Now let V be a pure isometry, and let C ∈ {V }′ . Let (ΠV ,Mz) be the Wold-von

Neumann decomposition of V , and let W = W(V ). Since ΠV CΠ∗V on H2
W(D) is the

representation of C on H and (ΠV CΠ∗V )Mz = Mz(ΠV CΠ∗V ), it follows that

ΠV CΠ∗V = MΘ,

for some Θ ∈ H∞B(W)(D). The main result of this section is the following explicit repre-

sentation of Θ.

Theorem 2.2.1. Let V be a pure isometry on H, and let C be a bounded operator

on H. Let (ΠV ,Mz) be the Wold-von Neumann decomposition of V . Set W = W(V ),

M = ΠV CΠ∗V and let

Θ(w) = PW(IH − wV ∗)−1C |W (w ∈ D).

Then

CV = V C,

if and only if Θ ∈ H∞B(W)(D) and

M = MΘ.

Proof. Let h ∈ H. One can express h as h =
∞∑
m=0

V mηm, for some ηm ∈ W, m ≥ 0 (as

H =
∞
⊕
m=0

V mW). Applying PWV
∗l to both sides and using the fact that W = W(V ) =

kerV ∗, we obtain ηl = PWV
∗lh for all l ≥ 0. This implies, for any h ∈ H,

h =
∞∑
m=0

V mPWV
∗mh. (2.2.1)

Now let CV = V C. Then there exists a bounded analytic function Θ ∈ H∞B(W)(D) such

that ΠV CΠ∗V = MΘ. For each w ∈ D and η ∈ W we have

Θ(w)η = (MΘη)(w)

= (ΠV CΠ∗V η)(w)

= (ΠV Cη)(w),
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as Π∗V η = η. Since in view of (2.2.1)

Cη =
∞∑
m=0

V mPWV
∗mCη,

it follows that

Θ(w)η = (ΠV (
∞∑
m=0

V mPWV
∗mCη))(w)

= (
∞∑
m=0

Mm
z (PWV

∗mCη))(w)

=

∞∑
m=0

wm(PWV
∗mCη)

= PW(IH − wV ∗)−1Cη.

Therefore

Θ(w) = PW(IH − wV ∗)−1C|W (w ∈ D),

as required. Finally, since the sufficient part is trivial, the proof is complete.

Note that in the above proof we have used the standard projection formula (see, for

example, Rosenblum and Rovnyak [92]) IH = SOT−
∞∑
m=0

V mPWV
∗m. It may also be

observed that ‖wV ∗‖ = |w|‖V ‖ < 1 for all w ∈ D, and so it follows that the function

Θ defined in Theorem 2.2.1 is a B(W)-valued holomorphic function in the unit disc D.

However, what is not guaranteed in general here is that the function Θ is in H∞B(W)(D).

The above theorem says that this is so if CV = V C.

2.3 Berger, Coburn and Lebow representations

This section is devoted to a detailed study of Berger, Coburn and Lebow’s representa-

tion of pure pairs of commuting isometries. Our approach is different and yields sharper

results, along with new proofs, in terms of explicit coefficients of the one variable poly-

nomials associated with the class of pure pairs of commuting isometries. Before dealing

more specifically with pure pairs of commuting isometries we begin with some general

observations about pairs of commuting isometries.

Let (V1, V2) be a pair of commuting isometries on a Hilbert space H. In the sequel,

we will adopt the following notations:

V = V1V2,

W =W(V ) =W(V1V2) = H	 V1V2H,
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and

Wj =W(Vj) = H	 VjH (j = 1, 2).

A pair of commuting isometries (V1, V2) onH is said to be pure if V is a pure isometry.

The following useful lemma on wandering subspaces for commuting isometries is

simple.

Lemma 2.3.1. Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.

Then

W =W1 ⊕ V1W2 = V2W1 ⊕W2,

and the operator U on W defined by

U(η1 ⊕ V1η2) = V2η1 ⊕ η2,

for η1 ∈ W1 and η2 ∈ W2, is a unitary operator. Moreover,

PWVi = ViPWj (i 6= j).

Proof. The first equality follows from

I − V V ∗ = (I − V1V
∗

1 )⊕ V1(I − V2V
∗

2 )V ∗1 = V2(I − V1V
∗

1 )V ∗2 ⊕ (I − V2V
∗

2 ).

The second part directly follows from the first part, and the last claim follows from

(I − V V ∗)Vi = Vi(I − VjV ∗j ) for all i 6= j. This concludes the proof of the lemma.

Let (V1, V2) be a pure pair of commuting isometries on a Hilbert space H, and let

(ΠV ,Mz) be the Wold-von Neumann decomposition of V . Since

V Vi = ViV (i = 1, 2),

there exist isometric multipliers (that is, inner functions [79]) Φ1 and Φ2 in H∞B(W)(D)

such that

ΠV Vi = MΦiΠV (i = 1, 2).

In other words, (MΦ1 ,MΦ2) on H2
W(D) is the representation of (V1, V2) on H. Following

Berger, Coburn and Lebow [20], we say that (MΦ1 ,MΦ2) is the BCL representation of

(V1, V2), or simply the BCL pair corresponding to (V1, V2).

We now present an explicit description of the BCL pair (MΦ1 ,MΦ2).

Theorem 2.3.2. Let (V1, V2) be a pure pair of commuting isometries on a Hilbert space

H, and let (MΦ1 ,MΦ2) be the BCL representation of (V1, V2). Then

Φ1(z) = V1|W2 ⊕ V ∗2 |V2W1z, Φ2(z) = V2|W1 ⊕ V ∗1 |V1W2z,

for all z ∈ D.
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Proof. Let η inW = V2W1⊕W2, and let w ∈ D. Then there exist η1 ∈ W1 and η2 ∈ W2

such that η = V2η1 ⊕ η2. Then V1η = V η1 + V1η2, and hence

Φ1(w)η = (MΦ1η)(w) = (ΠV V1Π∗V η)(w) = (ΠV V1η)(w) = (ΠV V η1 + ΠV V1η2)(w).

This along with the fact that V1η2 ∈ W (see Lemma 2.3.1) gives

Φ1(w)η = (MzΠV η1 + V1η2)(w)

= (Mzη1 + V1η2)(w)

= wη1 + V1η2

= wV ∗2 η + V1η2,

for all w ∈ D. Therefore

Φ1(z) = V1|W2 ⊕ V ∗2 |V2W1z,

for all z ∈ D, as W2 = Ker(V ∗2 ). The representation of Φ2 follows similarly.

In the following, we present Berger, Coburn and Lebow’s version of representations

of pure pairs of commuting isometries. This yields an explicit representations of the

auxiliary operators U and P (see Section 1). The proof readily follows from Lemma

2.3.1 and Theorem 2.3.2.

Theorem 2.3.3. Let (V1, V2) be a pure pair of commuting isometries on H. Then the

BCL pair (MΦ1 ,MΦ2) corresponding to (V1, V2) is given by

Φ1(z) = U∗(PW2 + zP⊥W2
),

and

Φ2(z) = (P⊥W2
+ zPW2)U,

where

U =

[
V2|W1 0

0 V ∗1 |V1W2

]
:

W1

⊕
V1W2

→
V2W1

⊕
W2

,

is a unitary operator on W.

Therefore, (V1, V2, V1V2) on H and (MΦ1 ,MΦ2 ,M
W
z ) on H2

W(D) are unitarily equiv-

alent, where W is the wandering subspace for V = V1V2.

2.4 Unitary invariants

In this short section we present a complete set of joint unitary invariants for pure pairs

of commuting isometries. Recall that two commuting pairs (T1, T2) and (T̃1, T̃2) on H
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and H̃, respectively, are said to be (jointly) unitarily equivalent if there exists a unitary

operator U : H → H̃ such that UTj = T̃jU for all j = 1, 2.

First we note that, by virtue of Theorem 2.9 of [18], the orthogonal projection PW2

and the unitary operator U on W, as in Theorem 2.3.3, form a complete set of (joint)

unitary invariants of pure pairs of commuting isometries. More specifically: Let (V1, V2)

and (Ṽ1, Ṽ2) be two pure pairs of commuting isometries on H and H̃, respectively. Let

W̃j be the wandering subspace for Ṽj , j = 1, 2. Then (V1, V2) and (Ṽ1, Ṽ2) are unitarily

equivalent if and only if

(

[
V2|W1 0

0 V ∗1 |V1W2

]
, PW2) and (

[
Ṽ2|W̃1

0

0 Ṽ ∗1 |Ṽ1W̃2

]
, PW̃2

)

are unitarily equivalent.

In addition to the above, the following unitary invariants are also explicit. The proof

is an easy consequence of Theorem 2.3.2. Here we will make use of the identifications

of A on H2
W(D) and AMz on H2

W(D) with IH2(D) ⊗ A on H2(D) ⊗W and Mz ⊗ A on

H2(D)⊗W, respectively, where A ∈ B(W) (see Section 2).

Theorem 2.4.1. Let (V1, V2) and (Ṽ1, Ṽ2) be two pure pairs of commuting isometries

on H and H̃, respectively. Then (V1, V2) and (Ṽ1, Ṽ2) are unitarily equivalent if and only

if (V1|W2 , V
∗

2 |V2W1) and (Ṽ1|W̃2
, Ṽ ∗2 |Ṽ2W̃1

) are unitarily equivalent.

Proof. Let (MΦ1 ,MΦ2) and (MΦ̃1
,MΦ̃2

) be the BCL pairs corresponding to (V1, V2) and

(Ṽ1, Ṽ2), respectively, as in Theorem 2.3.2. Let C1 = V1|W2 and C2 = V ∗2 |V2W1 be the

coefficients of Φ1. Similarly, let C̃1 and C̃2 be the coefficients of Φ̃1.

Now let Z :W → W̃ be a unitary such that ZCj = C̃jZ, j = 1, 2. Then

MΦ1 = IH2(D) ⊗ C1 +Mz ⊗ C2

= IH2(D) ⊗ Z∗C̃1Z +Mz ⊗ Z∗C̃2Z

= (IH2(D) ⊗ Z∗)(IH2(D) ⊗ C̃1 +Mz ⊗ C̃2)(IH2(D) ⊗ Z)

= (IH2(D) ⊗ Z∗)MΦ̃1
(IH2(D) ⊗ Z).

BecauseMΦ2 = M∗Φ1
Mz andMΦ̃2

= M∗
Φ̃1
Mz, it follows that (MΦ1 ,MΦ2) and (MΦ̃1

,MΦ̃2
)

are unitarily equivalent, that is, (V1, V2) and (Ṽ1, Ṽ2) are unitarily equivalent.

To prove the necessary part, let (MΦ1 ,MΦ2) and (MΦ̃1
,MΦ̃2

) are unitarily equivalent.

Then there exists a unitary operator X : H2
W(D)→ H2

W̃(D) [92] such that

XMΦj = MΦ̃j
X (j = 1, 2).

Since

XMWz = XMΦ1MΦ2 = MΦ̃1
XX∗MΦ̃2

X = MΦ̃1
MΦ̃2

X = MW̃z X,
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there exists a unitary operator Z :W → W̃ such that

X = IH2(D) ⊗ Z.

This and XMΦ1 = MΦ̃1
X implies that

(IH2(D) ⊗ Z)(IH2(D) ⊗ C1 +Mz ⊗ C2) = (IH2(D) ⊗ C̃1 +Mz ⊗ C̃2)(IH2(D) ⊗ Z).

Hence (C1, C2) and (C̃1, C̃2) are unitarily equivalent. This completes the proof of the

theorem.

Observe that the set of joint unitary invariants {V1|W2 , V
∗

2 |V2W1}, as above, is as-

sociated with the coefficients of Φ1 of the BCL pair (MΦ1 ,MΦ2) corresponding to

(V1, V2). Clearly, by duality, a similar statement holds for the coefficients of Φ2 as

well: {V2|W1 , V
∗

1 |V1W2} is a complete set of joint unitary invariants for pure pairs of

commuting isometries.

2.5 Pure isometries

In this section we will analyze pairs of commuting isometries (V1, V2) such that either

V1 or V2 is a pure isometry, or both V1 and V2 are pure isometries. We begin with a

concrete example which illustrates this particular class and also exhibits its complex

structure.

Let S be a joint (Mz1 ,Mz2)-invariant closed subspace of H2(D2), that is, MzjS ⊆ S.

Set

Vj = Mzj |S (j = 1, 2).

It follows immediately that Vj is a pure isometry and V1V2 = V2V1, and hence (V1, V2)

is a pair of commuting pure isometries on S.

If we assume, in addition, that (V1, V2) is doubly commuting (that is, V ∗1 V2 = V2V
∗

1 ),

then it follows that (V1, V2) on S and (Mz1 ,Mz2) on H2(D2) are unitarily equivalent.

See Slocinski [106] for more details. In general, however, the classification of pairs of

commuting isometries, up to unitary equivalence, is complicated and very little seems

to be known. For instance, see Rudin [93] for a list of pathological examples (also see

Qin and Yang [88]).

We now turn our attention to the general problem. Let (V1, V2) be a pair of com-

muting isometries on H, and let V1 be a pure isometry. Then, in particular, V = V1V2

is a pure isometry, and hence (V1, V2) is a pure pair of commuting isometries. Since

V1V2 = V2V1, by Theorem 2.2.1, it follows that

ΠV1V2 = MΘV2
ΠV1 , (2.5.1)
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where ΘV2 ∈ H∞B(W1)(D) is an inner multiplier and

ΘV2(z) = PW1(IH − zV ∗1 )−1V2|W1 (z ∈ D).

Let (MΦ1 ,MΦ2) be the BCL pair (see Theorem 2.3.3) corresponding to (V1, V2), that is,

ΠV Vi = MΦiΠV for all i = 1, 2. Set

Π̃1 = ΠV1Π∗V .

Then Π̃1 : H2
W(D) → H2

W1
(D) is a unitary operator such that Π̃1MΦ1 = MW1

z Π̃1 and

Π̃1MΦ2 = MΘV2
Π̃1. Therefore, we have the following commutative diagram:

H ΠV //

ΠV1 ""

H2
W(D)

Π̃1

��

H2
W1

(D)

where (MΦ1 ,MΦ2) on H2
W(D) and (MW1

z ,MΘV2
) on H2

W1
(D) are the representations of

(V1, V2) on H.

We now proceed to settle the non-trivial part of this consideration: An analytic de-

scription of the unitary map Π̃1. To this end, observe first that since ΠV1V1 = MW1
z ΠV1 ,

(2.5.1) gives

ΠV1V = MW1
z MΘV2

ΠV1 .

Then

Π̃1M
W
z = ΠV1VΠ∗V = MW1

z MΘV2
ΠV1Π∗V ,

that is,

Π̃1M
W
z = (MW1

z MΘV2
)Π̃1. (2.5.2)

Let η ∈ W. By Equation (2.2.1) we can write η =

∞∑
m=0

V m
1 PW1V

∗m
1 η. Therefore

(ΠV1η)(w) = (

∞∑
m=0

ΠV1V
m

1 PW1V
∗m

1 η)(w)

= (
∞∑
m=0

Mm
z PW1V

∗m
1 η)(w)

=

∞∑
m=0

wm(PW1V
∗m

1 η),

which yields

Π̃1η = ΠV1Π∗V η = ΠV1η =
∞∑
m=0

zm(PW1V
∗m

1 η),
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that is

Π̃1η = PW1 [IH + z(IH − zV ∗1 )−1V ∗1 ]η,

for all η ∈ W. It now follows from (2.5.2) that

Π̃1(zmη) = (zΘV2(z))mPW1 [IH + z(IH − zV ∗1 )−1V ∗1 ]η,

for all m ≥ 0, and so, by S(·, w)η =
∞∑
m=0

zmw̄mη, it follows that

Π̃1(S(·, w)η) = Π̃1(
∞∑
m=0

zmw̄mη)

= (IW1 − w̄zΘV2(z))−1PW1 [IH + z(IH − zV ∗1 )−1V ∗1 ]η,

for all w ∈ D and η ∈ W. Finally, from Π̃∗1M
W1
z = MΦ1Π̃∗1 and Π̃∗1η1 = η1 for all

η1 ∈ W1, it follows that Π̃∗1(zmη1) = Mm
Φ1
η1 for all m ≥ 0, and hence

Π̃∗1(S(·, w)η1) = (IW − Φ1(z)w̄)−1η1,

for all w ∈ D and η1 ∈ W1.

We summarize the above observations in the following theorem.

Theorem 2.5.1. Let (V1, V2) be a pair of commuting isometries on H. Let i, j ∈ {1, 2}
and i 6= j. If Vi is a pure isometry, then

Π̃i = ΠViΠ
∗
V ∈ B(H2

W(D), H2
Wi

(D)),

is a unitary operator,

Π̃iM
W
z = MzΘVj

Π̃i, Π̃∗iM
Wi
z = MΦiΠ̃

∗
i ,

and

Π̃i(S(·, w)η) = (IWi − w̄zΘVj (z))
−1PWi [IH + z(I − zV ∗i )−1V ∗i ]η,

for all w ∈ D and η ∈ W, where

ΘVj (z) = PWi(IH − zV ∗i )−1Vj |Wi

for all z ∈ D. Moreover

Π̃∗i (S(·, w)ηi) = (IW − Φi(z)w̄)−1ηi,

for all w ∈ D and ηi ∈ Wi.
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Note that the inner multipliers ΘVi ∈ H∞B(Wj)
(D) above satisfy the following equali-

ties:

ΠVjVi = MΘVi
ΠVj .

Now let (V1, V2) be a pair of commuting isometries such that both V1 and V2 are pure

isometries. The above result leads to an analytic representation of such pairs.

Corollary 2.5.2. Let (V1, V2) be a pair of commuting pure isometries on a Hilbert space

H. If (MΦ1 ,MΦ2) is the BCL representation corresponding to (V1, V2), then MΦ1 and

MΦ2 are pure isometries,

Π̃1MΦ2 = MΘV2
Π̃1, Π̃2MΦ1 = MΘV1

Π̃2,

Π̃ = Π̃2Π̃∗1 : H2
W1

(D)→ H2
W2

(D) is a unitary operator, and

Π̃MW1
z = MΘV1

Π̃ and Π̃MΘV2
= MW2

z Π̃.

Moreover, for each w ∈ D and ηj ∈ Wj, j = 1, 2,

Π̃(S(·, w)η1) = (IW2 − w̄ΘV1(z))−1PW2(IH − zV ∗2 )−1η1,

and

Π̃∗(S(·, w)η2) = (IW1 − w̄ΘV2(z))−1PW1(IH − zV ∗1 )−1η2.

Proof. A repeated application of Theorem 2.5.1 yields

Π̃1MΦ2 = Π̃1M
∗
Φ1

(MΦ1MΦ2)

= Π̃1M
∗
Φ1
MWz

= (MW1
z )∗Π̃1M

W
z

= (MW1
z )∗MzΘV2

Π̃1,

that is, Π̃1MΦ2 = MΘV2
Π̃1 and similarly Π̃2MΦ1 = MΘV1

Π̃2. For η1 ∈ W1, we have

ΠV2η1 = PW2(IH − zV ∗2 )−1η1. Since Π̃∗1η1 = η1 and Π∗V η1 = η1, it follows that

Π̃η1 = Π̃2η1 = ΠV2Π∗V η1 = ΠV2η1,

that is Π̃η1 = PW2(IH− zV ∗2 )−1η1. Now using the identity Π̃(zη1) = MΘV1
Π̃η1, we have

Π̃(zmη1) = ΘV1(z)mPW2(IH − zV ∗2 )−1η1,

for all m ≥ 0 and η1 ∈ W1. Finally S(·, w)η1 =

∞∑
m=0

w̄mzmη1 gives

Π̃(S(·, w)η1) = (IW2 − w̄ΘV1(z))−1PW2(IH − zV ∗2 )−1η1.
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The final equality of the corollary follows from the equality

Π̃∗(zmη2) = ΘV2(z)m(Π̃∗η2) = ΘV2(z)mPW1(IH − zV ∗1 )−1η2,

for all m ≥ 0 and η2 ∈ W2. This concludes the proof.

In the final section, we will connect the analytic descriptions of Π̃1 and Π̃2 as in

Theorem 2.5.1 with the classical notion of the Sz.-Nagy and Foias characteristic functions

of contractions on Hilbert spaces [79].

2.6 Defect Operators

Throughout this section, we will mostly work on general (not necessarily pure) pairs of

commuting isometries. Let (V1, V2) be a pair of commuting isometries on a Hilbert space

H. The defect operator C(V1, V2) of (V1, V2) (cf. [63, 69]) is defined as the self-adjoint

operator

C(V1, V2) = I − V1V1
∗ − V2V2

∗ + V1V2V1
∗V2
∗.

Recall from Section 3 that given a pair of commuting isometries (V1, V2), we write

V = V1V2, and denote by

Wj =W(Vj) = kerV ∗j = H	 VjH,

the wandering subspace for Vj , j = 1, 2. The wandering subspace for V is denoted by

W. Finally, we recall that (see Lemma 2.3.1) W = W1 ⊕ V1W2 = V2W1 ⊕ W2. This

readily implies

PW = PW1 ⊕ PV1W2 = PV2W1 ⊕ PW2 . (2.6.1)

The following lemma is well known to the experts, but for the sake of completeness

we provide a proof of the statement.

Lemma 2.6.1. Let (V1, V2) be a commuting pair of isometries on H. Then Hs(V ) and

Hu(V ) are Vj-reducing subspaces,

Hs(Vj) ⊆ Hs(V ), and Hu(Vj) ⊇ Hu(V ),

for all j = 1, 2.

Proof. For the first part we only need to prove that Hs(V ) is a V1-reducing subspace.

Note that since (see Lemma 2.3.1) V1W ⊆W ⊕ VW, it follows that

V1V
mW ⊆ V m(W ⊕ VW) ⊆ Hs(V ),
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for all m ≥ 0. This clearly implies that V1Hs(V ) ⊆ Hs(V ). On the other hand, since

V ∗1W =W2 ⊆ W and

V ∗1 V
mW = V m−1(V2W) ⊆ V m−1(W ⊕ VW),

it follows that V ∗1 Hs(V ) ⊆ Hs(V ). To prove the second part of the statement, it is

enough to observe that

V mH = V m
1 (V m

2 H) = V m
2 (V m

1 H) ⊆ V m
1 H, V m

2 H,

for all m ≥ 0, and as n→∞

V ∗n1 h→ 0, or V ∗n2 h→ 0⇒ V ∗nh→ 0,

for any h ∈ H. This concludes the proof of the lemma.

The following characterizations of doubly commuting isometries will prove important

in the sequel.

Lemma 2.6.2. Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.

Then the following are equivalent:

(i) (V1, V2) is doubly commuting.

(ii) V2W1 ⊆ W1.

(iii) V1W2 ⊆ W2.

Proof. Since (i) implies (ii) and (iii), by symmetry we only need to show that (ii) im-

plies (i). Let V2W1 ⊆ W1. Let H = Hs(V ) ⊕ Hu(V ) be the Wold-von Neumann

orthogonal decomposition of V (see Theorem 1.2.1). Then Hs(V ) and Hu(V ) are joint

(V1, V2)-reducing subspaces, and the pair (V1|Hu(V ), V2|Hu(V )) on Hu is doubly commut-

ing, because Vj |Hu(V ), j = 1, 2, are unitary operators, by Lemma 2.6.1. Now it only

remains to prove that V ∗1 V2 = V2V
∗

1 on Hs(V ). Since

(V ∗1 V2 − V2V
∗

1 )V m = V ∗1 V
mV2 − V2V

∗
1 V

m = V m−1V 2
2 − V 2

2 V
m−1 = 0,

it follows that V ∗1 V2 − V2V
∗

1 = 0 on V mW for all m ≥ 1. In order to complete the proof

we must show that V ∗1 V2 = V2V
∗

1 on W. To this end, let η = η1 ⊕ V1η2 ∈ W for some

η1 ∈ W1 and η2 ∈ W2. Then

V ∗1 V2(η1 ⊕ V1η2) = V ∗1 V2η1 + V ∗1 V2V1η2 = V2η2,

as V2W1 ⊆ W1, and on the other hand

V2V
∗

1 (η1 ⊕ V1η2) = V2V
∗

1 η1 + V2V
∗

1 V1η2 = V2η2.
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This completes the proof.

The key of our geometric approach is the following simple representation of defect

operators.

Lemma 2.6.3. C(V1, V2) = PW1 − PV2W1 = PW2 − PV1W2.

Proof. The result readily follows from (2.6.1) and

C(V1, V2) = (I − V1V1
∗) + (I − V2V2

∗)− (I − V V ∗)

= PW1 + PW2 − PW .

The final ingredient to our analysis is the fringe operator F2. The notion of fringe

operators plays a significant role in the study of joint shift-invariant closed subspaces

of the Hardy space over D2 (see the discussion at the beginning of Section 5). Given

a pair of commuting isometries (V1, V2) on H, the fringe operators F1 ∈ B(W2) and

F2 ∈ B(W1) are defined by

Fj = PWiVj |Wi (i 6= j).

Of particular interest to us are the isometric fringe operators. Note that

F ∗2F2 = PW1V
∗

2 PW1V2|W1 .

Lemma 2.6.4. The fringe operator F2 on W1 is an isometry if and only if V2W1 ⊆ W1.

Proof. As IW1 − F ∗2F2 = IW1 − PW1V
∗

2 PW1V2|W1 , (2.6.1) implies that

IW1 − F ∗2F2 = PW1V
∗

2 PV1W2V2|W1 .

Then F ∗2F2 = IW1 if and only if PV1W2V2|W1 = 0, or, equivalently, if and only if V2W1 ⊥
V1W2 =W⊥1 , by Lemma 2.3.1. This completes the proof.

Therefore, the fringe operator F2 is an isometry if and only if the pair (V1, V2) is

doubly commuting.

We are now ready to formulate a generalization of Theorem 3.4 in [69] by He, Qin

and Yang. Here we do not assume that (V1, V2) is pure.

Theorem 2.6.5. Let (V1, V2) be a pair of commuting isometries on H. Then the fol-

lowing are equivalent:

(a) C(V1, V2) ≥ 0.

(b) V2W1 ⊆ W1.
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(c) (V1, V2) is doubly commuting.

(d) C(V1, V2) is a projection.

(e) The fringe operator F2 is an isometry.

Proof. The equivalences of (a) and (b), (b) and (c), and (b) and (e) are given in Lemma

2.6.3, Lemma 2.6.2 and Lemma 2.6.4, respectively. The implication (c) implies (d)

follows from

C(V1, V2) = PW1PW2 = PW2PW1 .

Clearly (d) implies (a). This completes the proof.

We now prove that for a large class of pairs of commuting isometries negative defect

operator always implies the zero defect operator.

Theorem 2.6.6. Let (V1, V2) be a pair of commuting isometries on H. Suppose that V1

or V2 is pure. Then C(V1, V2) ≤ 0 if and only if C(V1, V2) = 0.

Proof. With out loss of generality assume that V2 is pure. If C(V1, V2) ≤ 0, then by

Lemma 2.6.3, we have PW1 ≤ PV2W1 , or, equivalently

W1 ⊆ V2W1,

and hence

W1 ⊆ V2
mW1 ⊆ V2

mH,

for all m ≥ 0. Therefore

W1 =
∞
∩
m=0

V2
mW1 ⊆

∞
∩
m=0

V2
mH = {0},

as V2 is pure. HenceW1 = {0} and V2W1 = {0}. This gives C(V1, V2) = PW1−PV2W1 =

0.

The same conclusion holds if we allow dim Wj <∞ for some j ∈ {1, 2}.

Theorem 2.6.7. Let (V1, V2) be a pair of commuting isometries on H. Suppose that

dim Wj <∞ for some j ∈ {1, 2}. Then C(V1, V2) ≤ 0 if and only if C(V1, V2) = 0.

Proof. We may suppose that dim W1 < ∞. Let C(V1, V2) ≤ 0. Since W1 ⊆ V2W1 and

V2 is an isometry, it follows that

W1 = V2W1.

Hence C(V1, V2) = PW1 − PV2W1 = 0. This completes the prove.

The same conclusion also holds for positive defect operators.
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2.7 Concluding Remarks

As pointed out in the introduction, a general theory for pairs of commuting isometries

is mostly unknown and unexplored (however, see Popovici [86]). In comparison, we

would like to add that a great deal is known about the structure of pairs (and even

of n-tuples) of commuting isometries with finite rank defect operators (see [29], [27],

[28]). A complete classification result is also known for n-tuples of doubly commuting

isometries (cf. [53], [106], [96]). It is now natural to ask whether the present results for

pure pairs of commuting isometries can be extended to arbitrary pairs of commuting

isometries (see [43] and [52] for closely related results). Another relevant question is to

analyze the joint shift invariant subspaces of the Hardy space over the unit bidisc [3]

from our analytic and geometric point of views.

We conclude this chapter by inspecting a connection between the Sz.-Nagy and Foias

characteristic functions of contractions on Hilbert spaces [79] and the analytic represen-

tations of Π̃1 and Π̃2 as described in Theorem 2.5.1.

Let T be a contraction on a Hilbert space H. The defect operators of T , denoted by

DT ∗ and DT , are defined by

DT ∗ = (I − TT ∗)1/2, DT = (I − T ∗T )1/2.

The defect spaces, denoted by DT ∗ and DT , are the closure of the ranges of DT ∗ and

DT , respectively. The characteristic function [79] of the contraction T is defined by

θT (z) = [−T + zDT ∗(I − zT ∗)−1DT ]|DT (z ∈ D).

It follows that θT ∈ H∞B(DT ,DT∗ )(D) [79]. The characteristic function is a complete

unitary invariant for the class of completely non-unitary contractions. This function

is also closely related to the Beurling-Lax-Halmos inner functions for shift invariant

subspaces of vector-valued Hardy spaces. For a more detailed discussion of the theory

and applications of characteristic functions we refer to the monograph by Sz.-Nagy and

Foias [79].

Now let us return to the study of pairs of commuting isometries. Let (V1, V2) be a pair

of commuting isometries on H. We compute

PW1 [IH + z(IH − zV ∗1 )−1V ∗1 ]|W = [PW1 + zPW1(IH − zV ∗1 )−1V ∗1 ]|W
= [IH − V1V

∗
1 + zPW1(IH − zV ∗1 )−1V ∗1 ]|W

= IW + [−V1 + zPW1(IH − zV ∗1 )−1]V ∗1 |W .

Since V ∗1W =W2, it follows that

[−V1 + zPW1(IH − zV ∗1 )−1]V ∗1 |W = [−V1 + zDV ∗1
(IH − zV ∗1 )−1DV ∗2

]|DV ∗2 (V ∗1 |W).
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Therefore, setting

θV1,V2(z) = [−V1 + zDV ∗1
(IH − zV ∗1 )−1DV ∗2

]|DV ∗2 , (2.7.1)

for z ∈ D, we have

PW1 [IH + z(IH − zV ∗1 )−1V ∗1 ]|W = IW + θV1,V2(z)V ∗1 |W ,

for all z ∈ D. Therefore, if V1 is a pure isometry, then the formula for Π̃1 in Theorem

2.5.1(i) can be expressed as

Π̃1(S(·, w)η) = (IW1 − w̄ΘV2(z))−1PW1 [IW + θV1,V2(z)V ∗1 |W ]η.

for all w ∈ D and η ∈ W. Similarly, if V2 is a pure isometry, then the formula for Π̃2 in

Theorem 2.5.1 (ii) can be expressed as

Π̃2(S(·, w)η) = (IW2 − w̄ΘV1(z))−1PW2 [IW + θV2,V1(z)V ∗2 |W ]η,

for all w ∈ D and η ∈ W, where

θV2,V1(z) = [−V2 + zDV ∗2
(IH − zV ∗2 )−1DV ∗1

]|DV ∗1 , (2.7.2)

for all z ∈ D.

It is easy to see that θVi,Vj (z) ∈ B(Wj ,W) for all z ∈ D and i 6= j.

Note that since the defect operator DVj = 0, the characteristic function θVj of Vj ,

j = 1, 2, is the zero function. From this point of view, it is expected that the pair

of analytic invariants {θVi,Vj : i 6= j} will provide more information about pairs of

commuting isometries.

Subsequent theory for pairs of commuting contractions and a more detailed connection

between pairs of commuting pure isometries (V1, V2) and the analytic invariants {θVi,Vj :

i 6= j} as defined in (2.7.1) and (2.7.2) will be exhibited in more details in future occasion.





Chapter 3

Characterization of Invariant

subspaces in the polydisc

3.1 Introduction

An important problem in multivariable operator theory and function theory of several

complex variables is the question of a Beurling type representations of joint invariant

subspaces for (Mz1 , . . . ,Mzn) on the Hardy space H2(Dn), n > 1. The main obstacle

here seems to be the subtleties of the theory of holomorphic functions in several complex

variables. This problem is compounded by another difficulty associated with the complex

(and mostly unknown) structure of n-tuples, n > 1, of commuting isometries on Hilbert

spaces.

In this chapter, we answer the above question by providing a complete list of natural

conditions on closed subspaces of H2(Dn). Here we use the analytic representations of

shift invariant subspaces, representations of Toeplitz operators on the unit disc, geometry

of tensor product of Hilbert spaces and identification of bounded linear operators under

unitary equivalence to overcome such difficulties.

As motivation, recall that if n = 1, then the celebrated Beurling theorem [21] (also

see Theorem 1.3.2) says that a non-zero closed subspace S of H2(D) is invariant for Mz

if and only if there exists an inner function θ ∈ H∞(D) such that

S = θH2(D).

Note also that it follows (or the other way around) in particular from the above repre-

sentation of S that

S 	 zS = θC,

and so

S =
∞
⊕
m=0

zm(S 	 zS).

43
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One may now ask whether an analogous characterization holds for invariant subspaces

for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1. However, Rudin’s pathological examples (see

Rudin [93], page 70) indicates that the above Beurling type properties does not hold

in general for invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1: There exist

invariant subspaces S1 and S2 for (Mz1 ,Mz2) on H2(D2) such that

(1) S1 is not finitely generated, and

(2) S2 ∩H∞(D2) = {0}.

In fact, Beurling type invariant subspaces for (Mz1 , . . . ,Mzn) on H2(Dn), n > 1, are

rare. They are closely connected with the tensor product structure of the Hardy space

(or the product domain Dn).

Therefore, the structure of invariant subspaces for

(Mz1 , . . . ,Mzn) on H2(Dn), n > 1,

is quite complicated. The list of important works in this area include the papers by

Agrawal, Clark, and Douglas [3], Ahern and Clark [6], Douglas and Yan [47], Douglas,

Paulsen, Sah and Yan [45], Guo [59, 58], Fang [49], Guo, Sun, Zheng and Zhong [61],

Rudin [94], Guo and Yang [63], Izuchi [71], Mandrekar [77] etc. (also see the references

therein).

In this paper, first, we represent H2(Dn+1), n ≥ 1, by the H2(Dn)-valued Hardy

space H2
H2(Dn)(D). Under this identification, we prove that

(Mz1 ,Mz2 , . . . ,Mzn+1) on H2(Dn+1),

corresponds to

(Mz,Mκ1 , . . . ,Mκn) on H2
H2(Dn)(D),

where κi ∈ H∞B(H2(Dn))(D), i = 1, . . . , n, is a constant as well as simple and explicit

B(H2(Dn))-valued analytic function (see Theorem 3.2.1, or part (i) of Theorem 3.1.1 be-

low). Then we prove that a closed subspace S ⊆ H2
H2(Dn)(D) is invariant for (Mz,Mκ1 , . . . ,Mκn)

if and only if S is of Beurling [21], Lax [73] and Halmos [66] type and the corresponding

Beurling, Lax and Halmos inner function solves, in an appropriate sense, n operator

equations explicitly and uniquely.

Recall that two m-tuples, m ≥ 1, of commuting operators (A1, . . . , Am) on H and

(B1, . . . , Bm) on K are said to be unitarily equivalent if there exists a unitary operator

U : H → K such that UAi = BiU for all i = 1, . . . ,m.

We now summarize the main contents, namely, Theorems 3.2.1 and 3.2.2 restricted

to the scalar-valued Hardy space case, of this paper in the following statement.
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Theorem 3.1.1. Let n be a natural number, and let Hn = H2(Dn). Let κi ∈ H∞B(Hn)(D)

denote the B(Hn)-valued constant function on D defined by

κi(w) = Mzi ∈ B(Hn),

for all w ∈ D, and let Mκi denote the multiplication operator on H2
Hn

(D) defined by

Mκif = κif,

for all f ∈ H2
Hn

(D) and i = 1, . . . , n. Then the following statements hold true:

(i) (Mz1 ,Mz2 . . . ,Mzn+1) on H2(Dn+1) and (Mz,Mκ1 , . . . ,Mκn) on H2
Hn

(D) are uni-

tarily equivalent.

(ii) Let S be a closed subspace of H2
Hn

(D), and let W = S 	 zS. Then S is invariant

for (Mz,Mκ1 , . . . ,Mκn) if and only if (MΦ1 , . . . ,MΦn) is an n-tuple of commuting shifts

on H2
W(D) and there exists an inner function Θ ∈ H∞B(W,Hn)(D) such that

S = ΘH2
W(D),

and

κiΘ = ΘΦi,

where

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n

The representation of S, in terms ofW, Θ and {MΦi}ni=1, in part (ii) above is unique

in an appropriate sense (see Theorem 3.4.2). Furthermore, the multiplier Φi can be

represented as

Φi(w) = PWMΘ(IH2
W (D) − wM∗z )−1M∗ΘMκi |W ,

for all w ∈ D and i = 1, . . . , n. For a more detailed discussion on the analytic functions

{Φi}ni=1 on D we refer to Remarks 3.2.1 and 3.2.3.

As an immediate application of Theorem 3.1.1 we have (see Corollary 3.2.3): If

S ⊆ H2
Hn

(D) is a closed invariant subspace for (Mz,Mκ1 , . . . ,Mκn), then the tuples

(Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S and (Mz,MΦ1 , . . . ,MΦn) on H2
W(D) are unitarily equiv-

alent, where W = S 	 zS and

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n. Our approach also yields a complete set of unitary

invariants for invariant subspaces: The n-tuples of commuting shifts (MΦ1 , . . . ,MΦn) on

H2
W(D) is a complete set of unitary invariants for invariant subspaces for (Mz,Mκ1 , . . . ,Mκn)

on H2
Hn

(D) (see Theorem 3.5.1 for more details).
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We also contribute to the classification problem of commuting tuples of isometries on

Hilbert spaces. On the one hand, n-tuples of commuting isometries play a central role

in multivariable operator theory and function theory, whereas, on the other hand, the

structure of n-tuples, n > 1, of commuting isometries on Hilbert spaces is complicated.

In Corollary 3.2.3, as a byproduct of our analysis, we completely classify n-tuples of

commuting isometries of the form (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S, where S is a closed

invariant subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D).

This chapter is organized as follows. In Section 2, we prove the central result of

this chapter - representations of invariant subspaces of vector-valued Hardy spaces over

polydisc. In Section 3 we study and analyze the model tuples of commuting isometries.

Section 4 complements the main results on representations of invariant subspaces and

deals with the uniqueness part. In Section 5 we give some applications related to the

main theorems. The final section of this chapter is devoted to a dimension inequality

which is relevant to the present context and of independent interest.

This chapter is based on the published paper [74].

3.2 Main results

Let E be a Hilbert space, and consider the vector-valued Hardy space H2
E(Dn+1). Our

strategy here is to identify Mz1 on H2
E(Dn+1) with the multiplication operator Mz on

the H2
E(Dn)-valued Hardy space on the disc D. Then we show that under this identifi-

cation, the remaining operators {Mz2 , . . . ,Mzn+1} on H2
E(Dn+1) can be represented as

the multiplication operators by n simple and constant B(H2
E(Dn))-valued functions on

D. For this we need a few more notations.

For each Hilbert space L, for the sake of notational ease, define

Ln = H2(Dn)⊗ L.

When L = C, we simply write Ln = Hn, that is,

Hn = H2(Dn).

Also, for each i = 1, . . . , n, we define

κL,i(w) = Mzi ⊗ IL,

for all w ∈ D, and write

κL,i = κi,
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when L is clear from the context. It is evident that κi ∈ H∞B(Ln)(D) is a constant function

and Mκi on H2
Ln(D), defined by

Mκif = κif (f ∈ H2
Ln(D)),

is a shift on H2
Ln(D) for all i = 1, . . . , n.

Now we return to the invariant subspaces of H2
E(Dn+1). First we identify H2

E(Dn+1)

with H2(D)⊗ En by the natural unitary map Û : H2
E(Dn+1)→ H2(D)⊗ En defined by

Û(zk11 zk22 · · · z
kn+1

n+1 η) = zk1 ⊗ (zk21 · · · z
kn+1
n η),

for all k1, . . . , kn+1 ≥ 0 and η ∈ E . Then it is clear that

ÛMz1 = (Mz ⊗ IEn)Û .

Moreover, a simple computation shows that

ÛMz1+i = (IH2(D) ⊗Ki)Û ,

where Ki is the multiplicational operator Mzi on En, that is

Ki = Mzi ,

for all i = 1, . . . , n. Therefore, the tuples (Mz1 ,Mz2 , . . . ,Mzn+1) on H2
E(Dn+1) and

(Mz ⊗ IEn , IH2(D) ⊗ K1, . . . , IH2(D) ⊗ Kn) on H2(D) ⊗ En are unitarily equivalent. We

further identify H2(D) ⊗ En with the En-valued Hardy space H2
En(D) by the canonical

unitary map Ũ : H2(D)⊗ En → H2
En(D) defined by

Ũ(zk ⊗ η) = zkη,

for all k ≥ 0 and η ∈ En. Clearly

Ũ(Mz ⊗ IEn) = MzŨ .

Now for each i = 1, . . . , n, define the constant B(En)-valued (analytic) function on D by

κi(z) = Ki,

for all z ∈ D. Then κi ∈ H∞B(En)(D), and the multiplication operator Mκi on H2
En(D),

defined by

(Mκi(z
mη))(w) = wm(Kiη),

for all m ≥ 0, η ∈ En and w ∈ D, is a shift on H2
En(D). It is now easy to see that

Ũ(IH2(D) ⊗Ki) = MκiŨ .
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for all i = 1, . . . , n. Finally, by setting

U = Ũ Û ,

it follows that U : H2
E(Dn+1)→ H2

En(D) is a unitary operator and

UMz1 = MzU,

and

UMz1+i = MκiU,

for all i = 1, . . . , n. This proves the vector-valued version of the first half of the statement

of Theorem 3.1.1:

Theorem 3.2.1. Let E be a Hilbert space. Then (Mz1 ,Mz2 . . . ,Mzn+1) on H2
E(Dn+1)

and (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily equivalent, where κi ∈ H∞B(En)(D) is

the constant function

κi(w) = Mzi ∈ B(En),

for all w ∈ D and i = 1, . . . , n.

Now we proceed to prove the remaining half of Theorem 3.1.1 in the vector-valued

Hardy space setting. Let S ⊆ H2
En(D) be a closed invariant subspace for (Mz,Mκ1 , . . . ,Mκn)

on H2
En(D). Set

V = Mz|S ,

and

Vi = Mκi |S ,

for all i = 1, . . . , n. Clearly, (V, V1, . . . , Vn) is a commuting tuple of isometries on S.

Note that if f ∈ S, then

‖V ∗mi f‖S = ‖PSM∗mκi f‖|S
≤ ‖M∗mκi f‖|H2

En (D),

that is, Vi, i = 1, . . . , n, is a shift on S, and similarly V is also a shift on S. Let

W = S 	 V S denote the wandering subspace for V , that is

W = kerV ∗

= kerPSM
∗
z ,

and let ΠV : S → H2
W(D) be the Wold-von Neumann decomposition of V on S (see

Section 2). Then ΠV is a unitary operator and

ΠV V = MzΠV .
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Since

V Vi = ViV,

applying Theorem 2.2.1 in Chapter 2 to Vi, we obtain

ΠV Vi = MΦiΠV ,

where

Φi(w) = PW(IS − wV ∗)−1Vi|W ,

for all w ∈ D, Φi ∈ H∞B(W)(D), MΦi is a shift on H2
W(D) since Vi is a shift on S and

i = 1, . . . , n. Now since ΠV is unitary, we obtain that

Π∗VMz = VΠ∗V ,

and

Π∗V Vi = MΦiΠ
∗
V ,

for all i = 1, . . . , n. Finally, if we let iS denote the inclusion map iS : S ↪→ H2
En(D), then

ΠS : H2
W(D)→ H2

En(D) is an isometry, where

ΠS = iS ◦Π∗V .

Clearly ΠSΠ∗S = iSi
∗
S . This implies that

ran ΠS = ran iS ,

and so

ran ΠS = S.

Now, using iSV = MziS and iSVj = Mκj iS , we have

ΠSMz = MzΠS ,

and

ΠSMΦi = MκiΠS ,

for all i = 1, . . . , n. From the first equality it follows that there exists an inner function

Θ ∈ H∞B(W,En)(D) such that

ΠS = MΘ.

This and the second equality implies that

κiΘ = ΘΦi,
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for all i = 1, . . . , n. Moreover, ran ΠS = S yields

S = ΘH2
W(D).

To prove that (MΦ1 , . . . ,MΦn) is a commuting tuple, observe that

MΦiMΦjΠV = MΦiΠV Vj

= ΠV ViVj

= ΠV VjVi

= MΦjMΦiΠV ,

and so

MΦiMΦj = MΦjMΦi ,

for all i, j = 1, . . . , n. For the converse, let us begin by observing that if S = ΘH2
W(D)

for some inner function Θ ∈ H∞B(W,En)(D), then S is invariant for Mz and

PSM
∗
zPS = PSM

∗
z .

In particular

PSM
∗
z |S = PSM

∗
z ∈ B(S),

and so {Φ1, . . . ,Φn} is a well-defined set of B(W)-valued analytic functions on D. Fur-

thermore, if (MΦ1 , . . . ,MΦn) is an n-tuple of commuting shifts on H2
W(D) (so, in particu-

lar, Φi ∈ H∞B(W)(D) for all i = 1, . . . , n. See Remark 3.2.1) and κiΘ = ΘΦi, then it follows

obviously that κiS ⊆ S for all i = 1, . . . , n, that is, S is invariant for (Mκ1 , . . . ,Mκn).

This proves the last part of Theorem 3.1.1 in the vector-valued Hardy space setting:

Theorem 3.2.2. Let E be a Hilbert space, S ⊆ H2
En(D) be a closed subspace, and let

W = S	zS. Then S is invariant for (Mz,Mκ1 , . . . ,Mκn) if and only if (MΦ1 , . . . ,MΦn)

is an n-tuple of commuting shifts on H2
W(D) and there exists an inner function Θ ∈

H∞B(W,En)(D) such that

S = ΘH2
W(D),

and

κiΘ = ΘΦi,

where

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n.

A few remarks are in order.

Remark 3.2.1. Note that since ‖wPSM∗z ‖ < 1 for all w ∈ D, the B(W)-valued function

Φi, as defined in the above theorem, is analytic on D. Here the boundedness condition (or

the shift condition) on MΦi on H2
W(D) assures that Φi ∈ H∞B(W)(D) for all i = 1, . . . , n.
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Remark 3.2.2. Clearly, one obvious necessary condition for a closed subspace S of

H2
En(D) to be invariant for (Mz,Mκ1 , . . . ,Mκn) is that S is invariant for Mz, and, con-

sequently

S = ΘH2
W(D),

is the classical Beurling, Lax and Halmos representation of S, where W = S 	 zS is

the wandering subspace for Mz|S and Θ ∈ H∞B(W,En)(D) is the (unique up to a unitary

constant right factor; see Section 4) Beurling, Lax and Halmos inner function. More-

over, since κiS ⊆ S, another condition which is evidently necessary (by Douglas’s range

inclusion theorem) is that

κiΘ = ΘΓi,

for some Γi ∈ B(H2
W(D)), i = 1, . . . , n. In the above theorem, we prove that Γi is explicit,

that is

Γi = Φi ∈ H∞B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . ,Γn) is an n-tuple of commuting shifts on H2
W(D). This

is probably the most non-trivial part of our treatment to the invariant subspace problem

in the present setting.

Remark 3.2.3. Let E be a Hilbert space, and let S ⊆ H2
En(D) be a closed invariant

subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D). Let W, Θ and

{Φi}ni=1 ⊆ H∞B(W,En)(D),

be as in Theorem 3.2.2. Now it follows from PS = MΘM
∗
Θ that

PSM
∗m
z = MΘM

∗m
z M∗Θ,

for all m ≥ 0. Hence the equality

(IS − wPSM∗z )−1 =

∞∑
m=0

wmPSM
∗m
z ,

yields

(IS − wPSM∗z )−1 = MΘ(IH2
W (D) − wM∗z )−1M∗Θ,

so that

Φi(w) = PWMΘ(IH2
W (D) − wM∗z )−1M∗ΘMκi |W ,

for all w ∈ D and i = 1, . . . , n.

A well known consequence of the Beurling, Lax and Halmos theorem (cf. page 239,

Foias and Frazho [51]) implies that a closed subspace S ⊆ H2
E(D) is invariant for Mz if

and only if S ∼= H2
F (D) for some Hilbert space F with

dim F ≤ dim E .
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More specifically, if S is a closed invariant subspace of H2
E(D) and if W = S 	 zS,

then the pure isometry Mz|S on S and Mz on H2
W(D) are unitarily equivalent, and

dim W ≤ dim E . The above theorem sets the stage for a similar result.

Corollary 3.2.3. Let E be a Hilbert space, and let S ⊆ H2
En(D) be a closed invariant

subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D). Let W = S 	 zS, and

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W (w ∈ D),

for all i = 1, . . . , n. Then (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S and (Mz,MΦ1 , . . . ,MΦn) on

H2
W(D) are unitarily equivalent.

Proof. Let W, Θ and {Φi}ni=1 ⊆ H∞B(W)(D) be as in Theorem 3.2.2. Then it follows that

X : H2
W(D)→ ΘH2

W(D) = S,

is a unitary operator, where

X = MΘ.

It is now clear that X intertwines (Mz,MΦ1 , . . . ,MΦn) on H2
W(D) and

(Mz|S ,Mκ1 |S , . . . ,Mκn |S),

on S. This completes the proof of the corollary.

Let E be a Hilbert space, and let S ⊆ H2
En(D) be an invariant subspace for Mz.

Then S = ΘH2
W(D), where W = S 	 zS and Θ ∈ H∞B(W,En)(D) is the Beurling, Lax

and Halmos inner function. A natural question arises in connection with Remark 3.2.2:

Under what additional condition(s) on Θ is S also invariant for (Mκ1 , . . . ,Mκn)? An

answer to this question directly follows, with appropriate reformulation, from Theorem

3.2.2 and Remark 3.2.3:

Theorem 3.2.4. Let E be a Hilbert space, and let S ⊆ H2
En(D) be an invariant subspace

for Mz on H2
En(D). Let S = ΘH2

W(D), where W = S 	 zS and Θ ∈ H∞B(W,En)(D) is the

Beurling Lax and Halmos inner function. Set

Φi(w) = PWMΘ(IH2
W (D) − wM∗z )−1M∗ΘMκi |W ,

for all w ∈ D and i = 1, . . . , n. Then S is invariant for (Mκ1 , . . . ,Mκn) if and only if

(MΦ1 , . . . ,MΦn) on H2
W(D) is an n-tuple of commuting shifts, and

κiΘ = ΘΦi,

for all i = 1, . . . , n. Moreover, in this case, (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S and (Mz,MΦ1 , . . . ,MΦn)

on H2
W(D) are unitarily equivalent.
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Thus the n-tuples of commuting shifts

(MΦ1 , . . . ,MΦn) on H2
L(D),

for Hilbert spaces L and inner multipliers {Φi}ni=1 ⊆ H∞B(L)(D), yielding invariant sub-

spaces of vector-valued Hardy spaces over Dn+1 are distinguished among the general

n-tuples of commuting shifts by the fact that

Φi(w) = PL(IS − wPSM∗z )−1Mκi |L (w ∈ D),

where S = ΘH2
L(D) for some inner function Θ ∈ H∞B(L,En)(D), and

κiΘ = ΘΦi,

for all i = 1, . . . , n. Moreover, in view of Remark 3.2.3, the above condition is equivalent

to the condition that

Φi(w) = PWMΘ(IH2
L(D) − wM∗z )−1M∗ΘMκi |W ,

for some inner function Θ ∈ H∞B(L,En)(D) such that

κiΘ = ΘΦi,

for all i = 1, . . . , n.

3.3 Representations of model isometries

In connection with Theorem 3.2.1 (or part (i) of Theorem 3.1.1), a natural question

arises: Given a Hilbert space E , how to identify Hilbert spaces F and B(F)-valued multi-

pliers {Ψ}ni=1 ⊆ H∞B(F)(D) such that (Mz,MΨ1 , . . . ,MΨn) onH2
Fn(D) and (Mz,Mκ1 , . . . ,Mκn)

on H2
En(D) are unitarily equivalent. More generally, given a Hilbert space E , character-

ize (n+ 1)-tuples of commuting shifts on Hilbert spaces that are unitarily equivalent to

(Mz,Mκ1 , . . . ,Mκn) on H2
En(D).

This question has a simple answer, although a rigorous proof of it involves some

technicalities. More specifically, the answer to this question is related to a numerical

invariant, the rank of an operator associated with the Szegö kernel on Dn+1. First,

however, we need a few more definitions.

Let (T1, . . . , Tm) be an m-tuple of commuting contractions on a Hilbert space H.

Define the defect operator [63] corresponding to (T1, . . . , Tm) as

S−1
m (T1, . . . , Tm) =

∑
0≤|k|≤m

(−1)|k|T k11 · · ·T
km
m T ∗k11 · · ·T ∗kmm ,
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where 0 ≤ ki ≤ 1, i = 1, . . . ,m. This definition is motivated by the representation of the

Szegö kernel on the polydisc Dm (see Chapter 2). We say that (T1, . . . , Tm) is of rank p

(p ∈ N ∪ {∞}) if

rank [S−1
m (T1, . . . , Tm)] = p,

and we write

rank (T1, . . . , Tm) = p.

The defect operators plays an important role in multivariable operator theory (cf. [58, 63]

and also see Chapter 2 and Chapter 4). For instance, if E is a Hilbert space, then the

defect operator of the multiplication operator tuple (Mz1 , . . . ,Mzn) on H2
E(Dn) is given

by

S−1
n (Mz1 , . . . ,Mzn) = PH2

c (Dn) ⊗ IE ,

where PH2
c (Dn) denotes the orthogonal projection of H2(Dn) onto the one dimensional

space of constant functions. Furthermore, as is evident from the definition (and also see

the proof of Theorem 3.2.1), the defect operator for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) is

given by

S−1
n+1(Mz,Mκ1 , . . . ,Mκn) = PH2

c (D) ⊗ PH2
c (Dn) ⊗ IE .

In particular,

dim E = rank (Mz,Mκ1 , . . . ,Mκn) = rank (Mz1 , . . . ,Mzn).

Now let E and K be Hilbert spaces, and let (V, V1 . . . , Vn) be an (n + 1)-tuple of

commuting shifts on K. Suppose that (V, V1 . . . , Vn) and (Mz,Mκ1 , . . . ,Mκn) on K and

H2
En(D), respectively, are unitarily equivalent. In this case, it is necessary that Mz on

H2
En(D) and V on K are unitarily equivalent. As V Vi = ViV and ViVj = VjVi for all

i, j = 1, . . . , n, Theorem 2.2.1 implies that (V, V1, . . . , Vn) and (Mz,MΦ1 , . . . ,MΦn) on

H2
W(D) are unitarily equivalent, where W = K 	 VK, and

Φi(z) = PW(IK − zV ∗)−1Vi|W ,

for all z ∈ D and i = 1, . . . , n. Since (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) is doubly com-

muting, another necessary condition is that (V, V1, . . . , Vn) is doubly commuting. In

particular, V ∗Vi = ViV
∗, and so

V ∗mVi = ViV
∗m,

for all m ≥ 0 and i = 1, . . . , n. Using V ∗m|W = 0 for all m ≥ 1, this implies that

Φi(z) = PWVi|W for all z ∈ D. Again using V V ∗i = V ∗i V , we have

Vi(I − V V ∗) = (I − V V ∗)Vi,
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for all i = 1, . . . , n. This implies that W is a reducing subspace for Vi, and hence we

obtain

Φi(z) = Vi|W ,

that is, Φi is a constant shift-valued function on D for all i = 1, . . . , n. This observation

leads to the following proposition:

Proposition 3.3.1. Let (V, V1, . . . , Vn) be an (n + 1)-tuple of doubly commuting shifts

on some Hilbert space H. Let W = H	 VH, and let

Φi(z) = Vi|W (i = 1, . . . , n),

for all z ∈ D. Then W is reducing for Vi, i = 1, . . . , n, and (V, V1, . . . , Vn) and

(Mz,MΦ1 , . . . ,MΦn) on H2
W(D) are unitarily equivalent.

In particular, if L is a Hilbert space and (Mz,MΦ1 , . . . ,MΦn) on H2
L(D), for some

{Φi}ni=1 ⊆ H∞B(L)(D), is a tuple of doubly commuting shifts, then

Φi(z) = Φi(0) (z ∈ D),

that is, Φ is a constant function for all i = 1, . . . , n.

Now we return to (V, V1 . . . , Vn), which in turn is an (n+1)-tuple of doubly commuting

shifts on H. For simplicity of notation, set U1 = V , Ui+1 = Vi for all i = 1, . . . , n, and

let

D = ran S−1
n+1(V, V1, . . . , Vn) =

n+1
∩
i=1

kerU∗i ,

is the wandering subspace for (V, V1, . . . , Vn) (cf. [96]). From here, one can use the fact

that (cf. Theorem 3.3 in [96])

H = ⊕
k∈Zn+1

+

UkD,

to prove that the map Γ : H → H2
D(Dn+1) defined by

Γ(Ukη) = zkη (k ∈ Zn+1
+ , η ∈ D),

is a unitary and

ΓUi = MziΓ,

for all i = 1, . . . , n + 1. Therefore, (V, V1, . . . , Vn) on H and (Mz1 , . . . ,Mzn+1) on

H2
D(Dn+1) are unitarily equivalent. In addition, if E is a Hilbert space, and

dim E = rank (V, V1, . . . , Vn) (= dimD),

then it follows that (see the equivalence of (ii) and (v) of Theorem 3.3 in [96]) (Mz1 , . . . ,Mzn+1)

onH2
D(Dn+1) and (Mz1 , . . . ,Mzn+1) onH2

E(Dn+1) are unitarily equivalent. But then The-

orem 3.2.1 yields immediately that (Mz1 , . . . ,Mzn+1) onH2
D(Dn+1) and (Mz,Mκ1 , . . . ,Mκn)

on H2
En(D) are unitarily equivalent. This gives the following:
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Theorem 3.3.2. In the setting of Proposition 3.3.1 the following hold: (V, V1, . . . , Vn)

on H, (Mz,MΦ1 , . . . ,MΦn) on H2
W(D), and (Mz,Mκ1 , . . . ,Mκn) on H2

En(D) are unitarily

equivalent, where E is a Hilbert space and

dim E = rank (V, V1, . . . , Vn).

Therefore, an (n+ 1)-tuple of doubly commuting shift operators

(Mz,MΦ1 , . . . ,MΦn),

is completely determined by the numerical invariant rank (Mz,MΦ1 , . . . ,MΦn):

Corollary 3.3.3. Let E and F be Hilbert spaces. Let (Mz,MΨ1 , . . . ,MΨn) be an (n +

1)-tuple of commuting shifts on H2
F (D). Then (Mz,MΨ1 , . . . ,MΨn) on H2

F (D) and

(Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily equivalent if and only if

(Mz,MΨ1 , . . . ,MΨn)

is doubly commuting and

dim E = rank (Mz,MΨ1 , . . . ,MΨn).

The above corollary should be compared with the uniqueness of the multiplicity of

shift operators on Hilbert spaces [66].

3.4 Nested invariant subspaces and uniqueness

Now we proceed to the description of nested invariant subspaces of H2
En(D). Let S1 and

S2 be two closed invariant subspaces for

(Mz,Mκ1 , . . . ,Mκn) on H2
En(D).

Let Wj = Sj 	 zSj , and let

Φj,i(w) = PWj (ISj − wPSjM∗z )−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n. Hence by Theorem 3.2.2 there exists an inner

function Θj ∈ H∞B(Wj ,En)(D) such that

Sj = ΘjH
2
Wj

(D),

and

κiΘj = ΘjΦj,i, (3.4.1)
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for all j = 1, 2, and i = 1, . . . , n. Now, let

S1 ⊆ S2,

that is

Θ1H
2
W1

(D) ⊆ Θ2H
2
W2

(D).

Then there exists an inner multiplier Ψ ∈ H∞B(W1,W2)(D) [51] such that

Θ1 = Θ2Ψ.

Using this in (3.4.1), we get

Θ2ΨΦ1,i = Θ1Φ1,i

= κiΘ1

= κiΘ2Ψ

= Θ2Φ2,iΨ,

and so

ΨΦ1,i = Φ2,iΨ,

for all i = 1, . . . , n. On the other hand, given two invariant subspaces Sj = ΘjH
2
Wj

(D),

j = 1, 2, for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) described as above, if there exists an inner

multiplier Ψ ∈ H∞B(W1,W2)(D) such that Θ1 = Θ2Ψ, then it readily follows that S1 ⊆ S2.

We state this in the following theorem:

Theorem 3.4.1. Let E be a Hilbert space, and let S1 = Θ1H
2
W1

(D) and S2 = Θ2H
2
W2

(D)

be two invariant subspaces for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D). Let

Φj,i(w) = PWj (ISj − wPSjM∗z )−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n. Then S1 ⊆ S2 if and only if there exists

an inner multiplier Ψ ∈ H∞B(W1,W2)(D) such that Θ1 = Θ2Ψ and ΨΦ1,i = Φ2,iΨ for all

i = 1, . . . , n.

We now proceed to prove the uniqueness of the representations of invariant subspaces

as described in Theorem 3.2.2. Let E be a Hilbert space, and let S be an invariant

subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D). Let S = ΘH2

W(D) and

κiΘ = ΘΦi (i = 1, . . . , n),

in the notation of Theorem 3.2.2. Now assume that Θ̃ ∈ H∞B(W̃)
(D) is an inner function,

for some Hilbert space W̃, and

S = Θ̃H2
W̃(D).
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Also assume that

κiΘ̃ = Θ̃Φ̃i,

for some shift MΦ̃i
on H2

W̃(D) and i = 1, . . . , n. Then as an application of the uniqueness

of the Beurling, Lax and Halmos inner functions (cf. Theorem 2.1 in page 239 [51] and

also Theorem 1.3.2 in Chapter 1) to

ΘH2
W(D) = Θ̃H2

W̃(D),

we get

Θ = Θ̃τ,

for some unitary operator (constant in z) τ : W → W̃. Then, the previous line of

argument shows that

τΦi = Φ̃iτ,

for all i = 1, . . . , n. This proves the uniqueness of the representations of invariant

subspaces in Theorem 3.2.2.

Theorem 3.4.2. In the setting of Theorem 3.2.2, if S = Θ̃H2
W̃(D) and κiΘ̃ = Θ̃Φ̃i

for some Hilbert space W̃, inner function Θ̃ ∈ H∞B(W̃)
(D) and shift MΦ̃i

on H2
W̃(D),

i = 1, . . . , n, then there exists a unitary operator (constant in z) τ :W → W̃ such that

Θ = Θ̃τ,

and

τΦi = Φ̃iτ,

for all i = 1, . . . , n.

3.5 Applications

In this section, first, we explore a natural connection between the intertwining maps on

vector-valued Hardy space over D and the commutators of the multiplication operators

on the Hardy space over Dn+1. Then, as a noteworthy added benefit to our approach,

we compute a complete set of unitary invariants for invariant subspaces of vector-valued

Hardy space over Dn+1. We also test our main results on invariant subspaces unitarily

equivalent toH2
En(D). As a by-product, we obtain some useful results about the structure

of invariant subspaces for the Hardy space. We begin with the following definition.

Let E and Ẽ be two Hilbert spaces. Let S and S̃ be invariant subspaces for the (n+1)-

tuples of multiplication operators on H2
En(D) and H2

Ẽn
(D), respectively. We say that S

and S̃ are unitarily equivalent, and write S ∼= S̃, if there is a unitary map U : S → S̃
such that

UMz|S = Mz|S̃U and UMκi |S = Mκi |S̃U,
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for all i = 1, . . . , n.

3.5.1 Intertwining maps

Recall that, given a Hilbert space E , there exists a unitary operator UE : H2
E(Dn+1) →

H2
En(D) (see Section 2) such that

UEMz1 = MzUE ,

and

UEMzi+1 = MκiUE ,

for all i = 1, . . . , n. Let F be another Hilbert space, and let X : H2
E(Dn+1)→ H2

F (Dn+1)

be a bounded linear operator such that

XMzi = MziX, (3.5.1)

for all i = 1, . . . , n+ 1. Set

Xn = UFXU
∗
E .

Then Xn : H2
En(D)→ H2

Fn(D) is bounded and

XnMz = MzXn and XnMκi = MκiXn, (3.5.2)

for all i = 1, . . . , n. Conversely, a bounded linear operator Xn : H2
En(D) → H2

Fn(D)

satisfying (3.5.2) yields a canonical bounded linear map X : H2
E(Dn+1) → H2

F (Dn+1),

namely

X = U∗FXnUE

such that (3.5.1) holds. Moreover, this construction shows that

X ∈ B(H2
E(Dn+1), H2

F (Dn+1))

is a contraction (respectively, isometry, unitary, etc.) if and only if

Xn ∈ B(H2
En(D), H2

Fn(D))

is a contraction (respectively, isometry, unitary, etc.).

For brevity, any map satisfying (3.5.2) will be referred to module maps.

3.5.2 A complete set of unitary invariants

Let E and Ẽ be Hilbert spaces, and let {Ψ1, . . . ,Ψn} ⊆ H∞B(E)(D) and {Ψ̃1, . . . , Ψ̃n} ⊆
H∞B(Ẽ)

(D). We say that {Ψ1, . . . ,Ψn} and {Ψ̃1, . . . , Ψ̃n} coincide if there exists a unitary
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operator τ : E → Ẽ such that

τΨi(z) = Ψ̃i(z)τ,

for all z ∈ D and i = 1, . . . , n.

Now let S ⊆ H2
En(D) and S̃ ⊆ H2

Ẽn
(D) be invariant subspaces for

(Mz,Mκ1 , . . . ,Mκn)

on H2
En(D), and H2

Ẽn
(D), respectively. Let S ∼= S̃. By Theorem 3.2.4, this implies that

(Mz,MΦ1 , . . . ,MΦn) on H2
W(D),

and (Mz,MΦ̃1
, . . . ,MΦ̃n

) on H2
W̃(D) are unitarily equivalent, where W = S 	 zS, W̃ =

S̃ 	 zS̃ and

Φi(w) = PW(IS − wPSM∗z )−1Mκi |W ,

and

Φ̃i(w) = PW̃(IS̃ − wPS̃M
∗
z )−1Mκi |W̃ ,

for all w ∈ D and i = 1, . . . , n. Let U : H2
W(D)→ H2

W̃(D) be a unitary map such that

UMz = MzU,

and

UMΦi = MΦ̃i
U,

for all i = 1, . . . , n. The former condition implies that

U = IH2(D) ⊗ τ,

for some unitary operator τ :W → W̃, and so the latter condition implies that

τΦi(z) = Φ̃i(z)τ,

for all z ∈ D and i = 1, . . . , n. Therefore {Φ1, . . . ,Φn} and {Φ̃1, . . . , Φ̃n} coincide.

To prove the converse, assume now that the above equality holds for a given unitary

operator τ : W → W̃. Obviously U = IH2(D) ⊗ τ is a unitary from H2
W(D) to H2

W̃(D).

Clearly UMz = MzU and UMΦi = MΦ̃i
U for all i = 1, . . . , n. So we have the following

theorem on a complete set of unitary invariants for invariant subspaces:

Theorem 3.5.1. Let E and Ẽ be Hilbert spaces. Let S ⊆ H2
En(D) and S̃ ⊆ H2

Ẽn
(D) be

invariant subspaces for (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) and H2

Ẽn
(D), respectively. Then

S ∼= S̃ if and only if {Φ1, . . . ,Φn} and {Φ̃1, . . . , Φ̃n} coincide.

Now, if we consider the Beurling, Lax and Halmos representations of the given in-

variant subspaces S and S̃ as

S = ΘH2
W(D),
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and

S̃ = Θ̃H2
W̃(D),

where Θ ∈ H∞B(W,En)(D) and Θ̃ ∈ H∞B(W̃,Ẽn)
(D), then, in view of Remark 3.2.3, the

multipliers in Theorem 3.5.1 can be represented as

Φi(w) = PWMΘ(IH2
W (D) − wM∗z )−1M∗ΘMκi |W ,

and

Φ̃i(w) = PW̃MΘ̃(IH2
W̃

(D) − wM∗z )−1M∗
Θ̃
Mκi |W̃ ,

for all w ∈ D and i = 1, . . . , n.

3.5.3 Unitarily equivalent invariant subspaces

Let E and F be Hilbert spaces, and let Xn : H2
En(D) → H2

Fn(D) be a module map. If

Xn is an isometry, then the closed subspace S ⊆ H2
Fn(D) defined by

S = Xn(H2
En(D)),

is invariant for (Mz,Mκ1 , . . . ,Mκn) on H2
Fn(D) and S ∼= H2

En(D). In other words,

the tuples (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S and (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are uni-

tarily equivalent. Conversely, let S ⊆ H2
Fn(D) be a closed invariant subspace for

(Mz,Mκ1 , . . . ,Mκn) on H2
Fn(D), and let S ∼= H2

En(D) for some Hilbert space E . Let

X̃n : H2
En(D)→ S be the unitary map which intertwines (Mz,Mκ1 , . . . ,Mκn) on H2

En(D)

and (Mz|S ,Mκ1 |S , . . . ,Mκn |S) on S. Suppose that iS : S ↪→ H2
Fn(D) is the inclusion

map. Then

Xn = iS ◦ X̃n,

is an isometry from H2
En(D) to H2

Fn(D), XnMz = MzXn, XnMκi = MκiXn for all

i = 1, . . . , n, and

ran Xn = S.

Therefore, if S ⊆ H2
Fn(D) is a closed invariant subspace for (Mz,Mκ1 , . . . ,Mκn) on

H2
Fn(D), then S ∼= H2

En(D), for some Hilbert space E , if and only if there exists an

isometric module map Xn : H2
En(D) → H2

Fn(D) such that S = Xn(H2
En(D)). Now, it

also follows from the discussion at the beginning of this section that X : H2
E(Dn+1) →

H2
F (Dn+1) (corresponding to the module map Xn) is an isometry and XMzi = MziX

for all i = 1, . . . , n. Then Theorem 3.6.1 tells us that

dim E ≤ dim F .

Therefore, we have the following theorem:

Theorem 3.5.2. Let E and F be Hilbert spaces, and let S ⊆ H2
Fn(D) be a closed

invariant subspace for (Mz,Mκ1 , . . . ,Mκn) on H2
Fn(D). Then S ∼= H2

En(D) if and only
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if there exists an isometric module map Xn : H2
En(D)→ H2

Fn(D) such that

S = XnH
2
En(D).

Moreover, in this case

dim E ≤ dim F .

Of particular interest is the case when F = C. In this case (see Section 2) the tensor

product Hilbert space Fn = H2(Dn)⊗ C is denoted by Hn, that is, Hn = H2(Dn).

Corollary 3.5.3. Let S ⊆ H2
Hn

(D) be a closed invariant subspace for (Mz,Mκ1 , . . . ,Mκn)

on H2
Hn

(D). Then S ∼= H2
Hn

(D) if and only if there exists an isometric module map

Xn : H2
Hn

(D)→ H2
Hn

(D) such that

S = Xn(H2
Hn(D)).

The above result, in the polydisc setting, was first observed by Agrawal, Clark and

Douglas (see Corollary 1 in [3]). Also see Mandrekar [77].

We now proceed to analyze doubly commuting invariant subspaces. Let F be a

Hilbert space, and let S ⊆ H2
Fn(D) be a closed invariant subspace for (Mz,Mκ1 , . . . ,Mκn)

on H2
Fn(D). Set

V = Mz|S ,

and

Vi = Mκi |S ,

for all i = 1, . . . , n. We say that S is doubly commuting if V ∗i Vj = VjV
∗
i for all 1 ≤ i <

j ≤ n.

Now let E be a Hilbert space, and suppose that H2
En(D) ∼= S. In view of Theorem 3.5.2

this implies that (V, V1, . . . , Vn) on S and (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily

equivalent. Because H2
En(D) is doubly commuting this immediately implies that S is

doubly commuting.

Conversely, let S be doubly commuting. From Theorem 3.2.4 we readily conclude

that (Mz,MΦ1 , . . . ,MΦn) on H2
W(D) and (V, V1, . . . , Vn) on S are unitarily equivalent.

Applying Theorem 3.3.2 with (Mz,MΦ1 , . . . ,MΦn) in place of

(Mz,MΨ1 , . . . ,MΨn),

we see that (V, V1, . . . , Vn) on S and (Mz,Mκ1 , . . . ,Mκn) on H2
En(D) are unitarily equiva-

lent, where E is a Hilbert space. Now, proceeding as in the proof of the necessary part of

Theorem 3.5.2 one checks that there exists a module isometry Xn : H2
En(D) → H2

Fn(D)

such that

ran Xn = S.
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This proves the following variant of Theorem 3.5.2:

Theorem 3.5.4. Let F be a Hilbert space. An invariant subspace S ⊆ H2
Fn(D) is doubly

commuting if and only if there exists a Hilbert space E and an isometric module map

Xn : H2
En(D)→ H2

Fn(D) such that

S = XnH
2
En(D).

Moreover, in this case

dim E ≤ dim F .

The above result, in the polydisc setting, was first observed by Mandrekar [77]. Also

this should be compared with the discussion prior to Corollary 3.2.3 on the application

of the classical Beurling, Lax and Halmos theorem to invariant subspaces of the Hardy

space over the unit disc.

3.6 An inequality on fibre dimensions

Given a Hilbert space E , the n-tuple of multiplication operators by the coordinate func-

tions zi, i = 1, . . . , n, on H2
E(Dn) is denoted by (MEz1 , . . . ,M

E
zn). Whenever E is clear

from the context, we will omit the superscript E . Clearly, one can regard E as a closed

subspace of H2
E(Dn) by identifying E with the constant E-valued functions on Dn.

In this Section, we aim to prove the following result:

Theorem 3.6.1. Let E1 and E2 be Hilbert spaces and let X : H2
E1(Dn)→ H2

E2(Dn) be an

isometry. If

XME1zi = ME2zi X,

for all i = 1, . . . , n, then

dim E1 ≤ dim E2.

We believe that the above result (possibly) follows from the boundary behavior of

bounded analytic functions following the classical case n = 1 (See end of this section).

Here, however, we take a shorter approach than generalizing the classical theory of

bounded analytic functions on the unit polydisc. We first prove the L2-version of the

above statement.

Theorem 3.6.2. Let E1 and E2 be Hilbert spaces and let X̃ : L2
E1(Tn)→ L2

E2(Tn) be an

isometry. If

X̃M
eiθj

= M
eiθj

X̃,

for all j = 1, . . . , n, then

dim E1 ≤ dim E2.
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Proof. By the triviality, we can assume that

m := dim E2 <∞.

Let {ηj}mj=1 be an orthonormal basis for E2. Since {ek : k ∈ Zn}, where

ek =

n∏
j=1

eikjθj (k ∈ Zn),

is an orthonormal basis for L2(Tn), this implies that {ekηj : k ∈ Zn, j = 1, . . . , n} is

an orthonormal basis for L2
E2(Tn). Let {fj : j ∈ J} be an orthonormal basis for X̃(E1),

where J is a subset of Z+. In view of the intertwining property of X̃, this implies that

{ekfj : k ∈ Zn, j ∈ J} is an orthonormal basis for

X̃(L2
E1(Tn)) ⊆ L2

E2(Tn),

and so, an orthonormal set in L2
E2(Tn). It follows from the Parseval’s identity that

dim E1 = dim(X̃E1)

=
∑
j∈J
‖fj‖2

=
∑
j∈J

m∑
l=1

∑
k∈Zn

|〈Mk
eiθηl, fj〉|

2

=
∑
j∈J

m∑
l=1

∑
k∈Zn

|〈ηl,Mk
eiθfj〉|

2

=
∑
j∈J

m∑
l=1

∑
k∈Zn

|〈ηl, ekfj〉|2,

on the one hand, and on the other, by Bessel’s Inequality,

m =
m∑
l=1

‖ηl‖2

≥
m∑
l=1

∑
j∈J

∑
k∈Zn

|〈ηl, ekfj〉|2.

This proves dim E1 ≤ m and completes the proof of the theorem.

Proof of Theorem 3.6.1: Define X̃ on {ekη : k ∈ Zn, η ∈ E1} by

X̃(ekη) = ekXη,
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for all k ∈ Zn and η ∈ E1. The intertwining property of the isometry X then gives

〈X̃(ekη), X̃(elζ)〉L2
E2

(Tn) = 〈ekη, elζ〉L2
E1

(Tn),

for all k, l ∈ Zn and η, ζ ∈ E1. Therefore this map extends uniquely to an isometry,

denoted again by X̃ from L2
E1(Tn) to L2

E2(Tn), such that

X̃M
eiθj

= M
eiθj

X̃,

for all j = 1, . . . , n. The result then easily follows from Theorem 3.6.2.

If X : H2
E1(Dn)→ H2

E2(Dn) is an isometry, and if XMzi = MziX for all i = 1, . . . , n,

then it is easy to see that

X = MΘ,

for some isometric multiplier Θ ∈ H∞B(E1,E2)(D
n) (that is, MΘ : H2

E1(Dn)→ H2
E2(Dn) is an

isometry). In the case n = 1, the conclusion of Theorem 3.6.1 follows from the boundary

behavior of bounded analytic functions on the open unit disc: MΘ is an isometry if and

only if Θ(eiθ) is isometry a.e. on T (cf. [79]). Unlike the proof of the classical case

n = 1, our proof does not use the boundary behavior of Θ.





Chapter 4

Pairs of projections and

commuting isometries

4.1 Introduction

Given n ∈ N∪{∞}, there exists precisely one Hilbert space E , up to unitary equivalence,

of dimension n (here all Hilbert spaces are assumed to be separable), and given a Hilbert

space E , there exists precisely one shift operator, up to unitary equivalence, of multi-

plicity dim E on some Hilbert space H. Therefore, multiplicity is the only (numerical)

invariant of a shift operator. Note that shift operators are special class of isometries,

and moreover, the defect operator of a shift determines the multiplicity of the shift.

Now we turn to commuting pairs of isometries. It is remarkable that tractable invari-

ants (whatever it means including the possibilities of numerical and analytical invariants)

of commuting pairs of isometries are largely unknown. However, in one hand, the notion

of defect operator associated with commuting pairs of isometries has some resemblance

to multiplicities (and hence defect operators) of shift operators. On the other hand,

the defect operator of a general pair of commuting isometries is fairly complex and not

completely helpful in dealing with the complicated structure of pair of isometries.

In this chapter we will restrict pairs of commuting isometries to Berger, Coburn

and Lebow pairs of isometries (which we call BCL pairs) resulting in somewhat more

tractable defect operators (see Section 4). Indeed, each BCL pair (V1, V2) is uniquely

associated with a triple (E , U, P ), where E is a Hilbert space and U is a unitary and P

is a projection (throughout, projection will always mean orthogonal projection) on E .

Moreover, in this case, the defect operator of (V1, V2) is given by (see (4.1.4))

C(V1, V2) = UPU∗ − P. (4.1.1)

Clearly, (UPU∗, P ) is a pair of orthogonal projections on E and hence, C(V1, V2) is a

self-adjoint contraction.

67
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In summary, given a BCL pair (V1, V2), up to unitary equivalence, there exists pre-

cisely one triple (E , U, P ), and given a triple (E , U, P ), there exists a pair of projections

(UPU∗, P ) such that the defect operator of (V1, V2), denoted by C(V1, V2), is the differ-

ence of the projections UPU∗ and P as in (4.1.1). In particular, the defect operator is a

self-adjoint contraction. If, in addition, the defect operator C(V1, V2) is compact, then

C(V1, V2)|(kerC(V1,V2))⊥ admits the following decomposition
I1 0 0 0

0 D 0 0

0 0 −I2 0

0 0 0 −D

 , (4.1.2)

where I1 and I2 are the identity operators and D is a positive contractive diagonal

operator. The goal of this chapter, largely, is to suggest the (missing) link between

compact differences of pairs of projections and BLC pairs. More specifically, given a

self-adjoint compact contraction T of the form (4.1.2) on a Hilbert space E , we are

interested in computing irreducible (that is, non-reducing - in an appropriate sense,

see Definition 4.1.3) BCL pairs (V1, V2) such that C(V1, V2)|(kerC(V1,V2))⊥ is equal (or

unitarily equivalent) to T . The complication involved in the range of our answers for

self-adjoint compact contractions will further indicate the delicate structure of BCL pairs

(let alone the general class of pairs of commuting isometries).

It is worthwhile to note that the geometric examples of concrete pairs of commuting

isometries out of our construction might be of independent interest. Indeed, despite its

importance, little is known about the structure of pairs of commuting isometries.

Our main motivation comes from the work of Berger, Coburn and Lebow [20] and

a question of He, Qin and Yang [69]. Moreover, one of the key tools applied here is a

projection formulae of Shi, Ji and Du [102] (more specifically, see Theorem 4.2.2).

Furthermore, we note, from a general point of view, that the concept of difference of

two projections on Hilbert spaces is an important tool in the theory of linear operators

(both finite and infinite dimensional Hilbert spaces). In this context, we refer to [11]

on products of orthogonal projections, [23, 54, 55] on isometries of Grassmann spaces,

[90] on C∗-algebras generated by pairs of projections, [7] invariant subspaces of pairs

of projections, [87] on differences of spectral projections and [13] on index of pairs of

projections. We refer the reader to [25] for a nice account on pairs of projections. Also

see [8, 10, 37, 64, 104, 105].

Let us now explain the setting and the content of this chapter in more detail. Let H
be a Hilbert space and let V be an isometry on H. The multiplicity of V is the number

rank (IH − V V ∗) ∈ N ∪ {∞}.
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The projection IH − V V ∗ is known as the defect operator associated with V which we

denote by

C(V ) = IH − V V ∗.

Recall that the defect operator of Mz on H2(D) is given by

C(Mz) = PC,

where PC denotes the projection of H2(D) onto C, the one dimensional subspace of

constant functions of H2(D). Consequently, for any Hilbert space E , the fact that

C(Mz ⊗ IE) = PC ⊗ IE ,

implies that the multiplicity of the shift Mz ⊗ IE on H2(D) ⊗ E is given by dimE .

Moreover, if V is a shift on a Hilbert space H, then V on H and Mz⊗IW on H2(D)⊗W
are unitarily equivalent, where

W = H	 VH = ranC(V ).

In particular, for Hilbert spaces E and Ẽ , Mz⊗IE on H2(D)⊗E and Mz⊗IẼ on H2(D)⊗Ẽ
are unitarily equivalent if and only if

dimE = dimẼ .

This also follows, in particular, from the fact that C(Mz ⊗ IE) = PC ⊗ IE .

By a BCL triple (after Berger, Coburn and Lebow [20]) we mean an ordered triple

(E , U, P ) which consists of a Hilbert space E , a unitary operator U and an orthogonal

projection P on E .

Now, let (V1, V2) be a pair of commuting isometries acting on the Hilbert space H.

We say that (V1, V2) is pure if V := V1V2 is a shift. In [20], Berger, Coburn, and Lebow

established the following model for pure pair of commuting isometries (also see Chapter

2):

Let (E , U, P ) be a BCL triple and suppose

V1 = (IH2(D) ⊗ P +Mz ⊗ P⊥)(IH2(D) ⊗ U∗),

V2 = (IH2(D) ⊗ U)(Mz ⊗ P + IH2(D) ⊗ P⊥).
(4.1.3)

One can easily check that

V1V2 = V2V1 = Mz ⊗ IE ,

that is, (V1, V2) is a commuting pair of pure isometries. Conversely, it is proved in [20]

that a pure pair of commuting isometries, up to unitary equivalence, is of the form

(4.1.3) for some BCL triple (E , U, P ).

We shall call (V1, V2), as given in (4.1.3), the BCL pair associated with the BCL
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triple (E , U, P ). Often we shall not explicitly distinguish between BCL pair (V1, V2), as

given in (4.1.3), and the corresponding BCL triple (E , U, P ).

The defect operator of a BCL pair (V1, V2) (or, a general pair of commuting isome-

tries), denoted C(V1, V2), is defined by

C(V1, V2) = IH2
E(D) − V1V

∗
1 − V2V

∗
2 + V1V2V

∗
1 V
∗

2 .

An easy computation reveals that

C(V1, V2) = PC ⊗ (UPU∗ − P ) = PC ⊗ (P⊥ − UP⊥U∗), (4.1.4)

and hence,

C(V1, V2)|zH2(D)⊗E = 0 and ran C(V1, V2) ⊆ C⊗ E .

Thus it suffices to study C(V1, V2) only on (zH2(D) ⊗ E)⊥ = C ⊗ E . In summary, if

(V1, V2) is a BCL pair on H2
E(D), then the block matrix of C(V1, V2) with respect to the

orthogonal decomposition H2
E(D) = zH2

E(D)⊕ E is given by

C(V1, V2) =

[
0 0
0 P⊥ − UP⊥U∗

]
.

If (V1, V2) is clear from the context, then we define

C := C(V1, V2)|E = P⊥ − UP⊥U∗.

Note that C, being the difference of a pair of projections, is a self-adjoint contraction.

In addition, if it is compact, then clearly its spectrum lies in [−1, 1] and the non-zero

elements of the spectrum are precisely the non-zero eigen values of C. In this case, for

each eigen value λ of C, we denote by Eλ the eigen space corresponding to λ, that is

Eλ = ker(C − λIE).

The following useful lemma is due to He, Qin and Yang [69, Lemma 4.2]:

Lemma 4.1.1. If C is compact, then for each non-zero eigen value λ of C in (−1, 1),

−λ is also an eigen value of C and

dimEλ = dimE−λ.

Consequently, one can decompose (kerC)⊥ as

(kerC)⊥ = E1 ⊕ (⊕
λ
Eλ)⊕ E−1 ⊕ (⊕

λ
E−λ), (4.1.5)

where λ runs over the set of positive eigen values of C lying in (0, 1). With respect

to the above decomposition of (kerC)⊥, the non-zero part of C, that is, C|(kerC)⊥ , the
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restriction of C to (kerC)⊥, has the following block diagonal operator matrix form

C|(kerC)⊥ =



IE1 0 0 0

0
⊕
λ

λIEλ 0 0

0 0 −IE−1 0

0 0 0
⊕
λ

(−λ)IE−λ


(4.1.6)

and consequently, the matrix representation of C|(kerC)⊥ , with respect to a chosen or-

thonormal basis of (kerC)⊥, is unitarily equivalent to the diagonal matrix given by

[C|(kerC)⊥ ] =


Il1 0 0 0

0 D 0 0

0 0 −Il′1 0

0 0 0 −D


where l1 = dimE1, l′1 = dimE−1, D =

⊕
λ

λIkλ , Ik denotes the k× k identity matrix for

any positive integer k and

kλ = dimEλ = dimE−λ.

Summarising the foregoing observations, one obtains the following [69, Theorem 4.3]:

Theorem 4.1.2. With the notations as above, if the defect operator C(V1, V2) is com-

pact, then its non-zero part is unitarily equivalent to the diagonal block matrix
Il1 0 0 0

0 D 0 0

0 0 −Il′1 0

0 0 0 −D

 (4.1.7)

Remark 4.1.1. (Word of caution) At this point we make it clear that throughout this

article, whenever we say “let T ∈ B(E) be of the form (4.1.7)”, or we write

“T =


Il1 0 0 0

0 D 0 0

0 0 −Il′1 0

0 0 0 −D

 ∈ B(E)′′,

we always mean that T is a compact self-adjoint operator on E such that the orthogonal

decomposition of E into eigen spaces of T is as given by (4.1.5), so that with respect

to this decomposition of E, T is represented by the block diagonal operator matrix form

as given by (4.1.6) and consequently, the matrix representation of T (with respect to an

ordered orthonormal basis of E) is unitarily equivalent to the diagonal matrix as given

by (4.1.7).
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This chapter concerns the reverse direction of Theorem 4.1.2: Given an operator T

on E of the form (4.1.7), construct, if possible, a BCL pair (V1, V2) such that C|(kerC)⊥ ,

the non-zero part of C(V1, V2), is unitarily equivalent to T . The following definition will

make the discussion more concise (in this context, see Lemma 4.2.1).

Definition 4.1.3. A BCL pair (V1, V2) corresponding to the BCL triple (E , U, P ) is said

to be irreducible if there is no non-trivial joint reducing subspace of U and P .

Now we note that in view of the constructions of simple blocks in [69, Section 6], one can

always construct a reducible BCL pair (V1, V2) such that the non-zero part of C(V1, V2)

is equal to T (see [69, Theorem 6.7]). This consideration leads us to raise the following

natural question:

Question 1. Given a compact block operator T ∈ B(E) of the form (4.1.7), does there

exist an irreducible BCL pair (V1, V2) on the Hilbert space H2
E(D) such that the non-

zero part of the defect operator C(V1, V2) is equal to T (that is, ran C(V1, V2) = E and

C(V1, V2)|E = T )?

The above question also has been framed in [69, page 18]. The purpose of this paper

is to shed some light on this question through some concrete constructions of BCL pairs.

We observe in Section 4.2 that the answer to the above question is not necessarily

always in the affirmative. In fact we show in Theorem 4.2.4 that given an operator T

on a finite-dimensional Hilbert space E of the form (4.1.7) with

dimE1(T ) 6= dimE−1(T ),

it is not possible to find any (reducible or irreducible) BCL pair on H2
E(D) with the

desired properties. This result motivated us to investigate the cases where the answer

to the aforementioned question, Question 1, is in the affirmative. Our first result to

this end is Theorem 4.3.2 in Section 4.3: Let E be a finite-dimensional Hilbert space,

T ∈ B(E) is of the form (4.1.7), and let

dimE1(T ) = dimE−1(T ).

If T has either at least two distinct positive eigen values or only one positive eigen value

lying in (0, 1) with dimension of the corresponding eigen space being at least two, then it

is always possible to construct such an irreducible BCL pair. On the other hand, if 1 is

the only positive eigen value of T , then it is not possible to construct such an irreducible

pair (V1, V2) unless dimE1(T ) = 1.

Finally, in Section 4.9 we deal with the case when E is infinite-dimensional. Our

main results of this section are Theorem 4.9.1 and Theorem 4.9.2. In Theorem 4.9.1 we

answer the Question 1 above in the affirmative in the case when

dimE1(T ) = dimE−1(T ),
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whereas Theorem 4.9.2 provides an affirmative answer to the Question 1 in the case when

dimE1(T ) = dimE−1(T )± 1.

What deserves special attention is that Theorem 4.9.2 points out a crucial difference

between the finite and infinite-dimensional cases: If T ∈ B(E) is of the form (4.1.7),

then the equality dimE1(T ) = dimE−1(T ) is a necessary condition for the existence of

an irreducible BCL pair (V1, V2) such that the non-zero part of C(V1, V2) is given by T ,

only when E is finite-dimensional.

This chapter is based on the preprint [39].

4.2 Question 1 is not affirmative

We begin by characterising joint reducing subspaces of BCL pairs.

Lemma 4.2.1. Let (V1, V2) be a BCL pair corresponding to the BCL triple (E , U, P ) and

let S be a closed subspace of H2
E(D). Then S is a joint reducing subspace for (V1, V2) if

and only if there exists a closed subspace Ẽ of E such that Ẽ is reducing for both U and

P and S = H2
Ẽ(D).

Proof. Let S be a closed subspace of H2
E(D) that is reducing for both V1 and V2. Then S

is reducing for Mz, and hence, there exists a closed subspace Ẽ of E such that S = H2
Ẽ(D).

Thus, it just remains to show that Ẽ is reducing for both U and P . Given η ∈ Ẽ , it

follows from the definitions of V1 and V2 as given by (4.1.3) that

V1η = PU∗η + (P⊥U∗η)z and V2η = UP⊥η + (UPη)z.

As S = H2
Ẽ(D) is invariant under V1 and V2, we must have that

PU∗η, P⊥U∗η, UP⊥η, UPη ∈ Ẽ .

Now PU∗η ∈ Ẽ and P⊥U∗η ∈ Ẽ together imply that

U∗(η) = PU∗η + P⊥U∗η ∈ Ẽ ,

so that Ẽ invariant under U∗. Similarly, UP⊥η ∈ Ẽ and UPη ∈ Ẽ together imply

that Ẽ invariant under U , showing that Ẽ is reducing for U . Since PU∗ and UP leave Ẽ
invariant, P (= (PU∗)(UP )) leaves Ẽ invariant. Thus Ẽ is reducing for P also, completing

the proof.

Now we set one of the key tools on pairs of projections for our consideration. In [102]

the authors analysed self-adjoint contractions on Hilbert spaces which are difference of

pairs of projections. Let A ∈ B(H) be a self-adjoint contraction. Then kerA, ker(A− I)
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and ker(A + I) are reducing subspaces of A and hence, H admits the following direct

sum decomposition:

H = kerA⊕ ker(A− I)⊕ ker(A+ I)⊕H0.

Recall that, if kerA = ker(A− I) = ker(A+ I) = {0}, then A is said to be in the generic

position (see Halmos [64]). Now assume that

H0 = K ⊕K,

for some Hilbert space K and suppose that with respect to the orthogonal decomposition

H = kerA⊕ ker(A− I)⊕ ker(A+ I)⊕K ⊕K,

the operator A has the following block diagonal form

A =


0

I

−I
D

−D

 (4.2.1)

where D ∈ B(K) is a positive contraction and without any confusion, we denote by I

the identity on any Hilbert space. In [102, Theorem 3.2] the authors proved that:

Theorem 4.2.2. With notations as above, A, as given by (4.2.1), is a difference of two

projections and moreover, if (P,Q) is a pair of projections such that A = P − Q, then

P,Q must be of the form

P = E ⊕ I ⊕ 0⊕ PU and Q = E ⊕ 0⊕ I ⊕QU

where E is a projection on kerA and PU and QU are projections in B(K ⊕ K) of the

form

PU =
1

2

[
I +D U(I −D2)

1
2

U∗(I −D2)
1
2 I −D

]
and

QU =
1

2

[
I −D U(I −D2)

1
2

U∗(I −D2)
1
2 I +D

]
where U ∈ B(K) is a unitary commuting with D.

In what follows, in the setting of the above theorem, we will be interested in the

case when kerA = {0}. Hence, the projections in the above theorem will be of the form

P = I ⊕ 0⊕ PU and Q = 0⊕ I ⊕QU . Moreover, with notations as above, we note that

if D ∈ B(K) is a positive scalar contraction, that is, D = λIK for some λ in (0, 1), then
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PU takes the form

PU =

[
1+λ

2 IK
√

1−λ2
2 U

√
1−λ2
2 U∗ 1−λ

2 IK

]
. (4.2.2)

Projections of this form will play a crucial role in the forthcoming considerations. Our

next lemma determines an orthonormal basis of the range of projections of slightly more

general type.

Lemma 4.2.3. Let H and K be Hilbert spaces and let U : H → K be a unitary operator.

For each λ ∈ (0, 1), define the projection P : H⊕K → H⊕K by

P =

[
1+λ

2 IH
√

1−λ2
2 U∗

√
1−λ2
2 U 1−λ

2 IK

]
.

If {ei : i ∈ Λ} is an orthonormal basis of H, then

{√1 + λ

2
ei ⊕

√
1− λ

2
Uei : i ∈ Λ

}
is an orthonormal basis of ranP .

Proof. Note that if x ∈ H and y ∈ K, then

P (x⊕ 0) =
1 + λ

2
x⊕
√

1− λ2

2
Ux = P

(
0⊕

√
1 + λ

1− λ
Ux
)
,

and hence, by duality

P (0⊕ y) =

√
1− λ2

2
U∗y ⊕ 1− λ

2
y = P

(√1− λ
1 + λ

U∗y ⊕ 0
)
.

Therefore

ranP = {P (x⊕ 0) : x ∈ H} = {P (0⊕ y) : y ∈ K}. (4.2.3)

If {ei : i ∈ Λ} is an orthonormal basis of H, then

‖P (ei ⊕ 0)‖ =

√
1 + λ

2
,

for all i ∈ Λ. A straightforward computation then shows that

{√1 + λ

2
ei ⊕

√
1− λ

2
Uei : i ∈ Λ

}
,

is an orthonormal basis of ranP .

With this terminology and notation in hand, we are now ready to state the main

result of this section, which shows that the answer to the Question 1 is not necessarily

always in the affirmative.
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Theorem 4.2.4. Let E be a finite-dimensional Hilbert space and let T on E be a compact

block matrix of the form (4.1.7), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 . (4.2.4)

If

dimE1(T ) 6= dimE−1(T ),

then it is not possible to find a BCL pair (V1, V2) on H2
E(D) such that the non-zero part

of the defect operator C(V1, V2) is equal to T .

Proof. Suppose that there exists a BCL triple (E , U, P ) such that the non-zero part of

the defect operator C = C(V1, V2) of the corresponding BCL pair (V1, V2) is equal to

T ∈ B(E), where T is as in (4.2.4). That is,

ranC = E , and C|E = T.

Then, since C|E = P⊥ − UP⊥U∗, it follows that

T = P⊥ − UP⊥U∗.

Let Λ = {λi : 1 ≤ i ≤ m} denote the (possibly empty) set of eigen values of T lying in

(0, 1). Now for each i = 1, . . . ,m, choose a unitary Vi : E−λi(T )→ Eλi(T ) and combine

these to construct a unitary

U :=
m
⊕
i=1

Vi :
( m
⊕
i=1

E−λi(T )
)
→
( m
⊕
i=1

Eλi(T )
)
.

Also note that

E = E1(T )⊕
( m
⊕
i=1

Eλi(T )
)
⊕ E−1(T )⊕

( m
⊕
i=1

E−λi(T )
)
.

Then, if we set

Ẽ := E1(T )⊕ E−1(T )⊕K ⊕K,

where

K =
m
⊕
i=1

Eλi(T ),

we obtain a unitary W : E → Ẽ defined by

W =


IE1(T ) 0 0 0

0 0 IE−1(T ) 0

0 IK 0 0

0 0 0 U

 .
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Next, we set T̃ := WTW ∗, P1 = WP⊥W ∗ and P2 = W (UP⊥U∗)W ∗. A simple compu-

tation shows that

T̃ = diag

[
IE1(T ) −IE−1(T )

m⊕
i=1

λiIEλi (T ) −
( m⊕
i=1

λiIEλi (T )

)]
.

Moreover, P1 and P2 are projections on Ẽ and

P1 − P2 = W (P⊥ − UP⊥U∗)W ∗ = WTW ∗ = T̃ .

Now an appeal to Theorem 4.2.2 shows that there is a unitary V on K commuting with
m⊕
i=1

λiIEλi (T ) such that

P1 = IE1(T ) ⊕ 0E−1(T ) ⊕ PV , P2 = 0E1(T ) ⊕ IE−1(T ) ⊕QV

where the projections PV and QV are given by

PV =


m⊕
i=1

(1 + λi
2

IEλi (T )

)
V
[ m⊕
i=1

((1− λ2
i )

1
2

2
IEλi (T )

)]
V ∗
[ m⊕
i=1

((1− λ2
i )

1
2

2
IEλi (T )

)] m⊕
i=1

(1− λi
2

IEλi (T )

)


and

QV =


m⊕
i=1

(1− λi
2

IEλi (T )

)
V
[ m⊕
i=1

((1− λ2
i )

1
2

2
IEλi (T )

)]
V ∗
[ m⊕
i=1

((1− λ2
i )

1
2

2
IEλi (T )

)] m⊕
i=1

(1 + λi
2

IEλi (T )

)
 .

We claim that PV and QV have the same rank. Indeed, a similar calculation, as in

(4.2.3), shows that

ranPV = {PV (x⊕ 0) : x ∈ K} and ranQV = {QV (0⊕ x) : x ∈ K}.

On the other hand, we can verify easily

ranPV 3 PV (x⊕ 0) 7→ QV (0⊕ x) ∈ ranQV ,

is a linear isomorphism and hence, ranks of PV and QV are the same. Note that

rankP1 = rankP⊥ = rank(UP⊥U∗) = rankP2.

Now since

rankP1 = dimE1(T ) + rankPV ,
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and

rankP2 = dimE−1(T ) + rankQV ,

we must have that dimE1(T ) = dimE−1(T ). Hence the proof follows.

4.3 E is finite-dimensional

In this section we deal with Question 1 and the case when E is finite-dimensional. Note

that, in view of Lemma 4.2.4, it is natural to ask that in case dimE1(T ) = dimE−1(T ),

whether it is always possible to construct an irreducible BCL pair (V1, V2) such that the

non-zero part of the defect operator of C(V1, V2) is exactly T . Theorem 4.3.2, the main

result of this section, settles the Question 1 completely.

We first introduce (following Shields [103]) the notion of weighted shift type operators.

Let H be a Hilbert space (finite or infinite-dimensional). If H is finite-dimensional, say

dim H = n, we let {ei : 1 ≤ i ≤ n} be an orthonormal basis of H and if H is infinite-

dimensional, we let {ei : i ∈ Z} be an orthonormal basis of H. Let S be a bounded

linear operator on H defined by

Sei = λiei+1 (i ∈ Z),

if H is infinite-dimensional, and

Sei =

λiei+1 if 1 ≤ i < n

λne1 if i = n,

in case H is finite-dimensional, where all the λi’s are non-zero complex numbers. We

call such operators (or matrices of such operators) as operators (respectively, matrices)

of weighted shift type. If H is finite-dimensional, note that the matrix of S with respect

to the orthonormal basis {e1, e2, · · · , en} is a generalised permutation matrix (that is, a

square matrix whose each row and each column has only one non-zero element) whose

only non-zero elements are the subdiagonal entries and the first entry of the last column,

that is the (1, n)-th entry.

Lemma 4.3.1. With the notations as above, for any i ∈ {1, 2, · · · , n}, {ei} is a cyclic

vector for S if H is finite-dimensional and if H is infinite-dimensional, for any i ∈ Z,

ei is a star-cyclic vector for S (that is, the linear span of {Snei, S∗nei : n ≥ 0} is dense

in H).

Proof. It is easy to check directly that

Sn = (
n∏
j=1

λj)IH,
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if H is finite-dimensional, and

SS∗ej = |λj−1|2ej (j ∈ Z),

if H is infinite-dimensional. Clearly this yields the desired result.

After these preparations we are ready to state and prove the main result of this

section. Before we proceed to state the theorem, it is necessary to point out at this

moment that if E = C2, the two-dimensional complex space and if T ∈ B(E) is of the

form (4.1.7) such that T has two eigen values λ and −λ where 0 < λ ≤ 1, then [69,

Example 6.6] constructs an irreducible BCL pair (V1, V2) on H2
E(D) such that the non-

zero part of C(V1, V2) is given by T , thus answering the Question 1 in the affirmative

in this case. The following theorem analyses all the remaining cases, thus settling the

Question 1 completely in the finite-dimensional case.

Theorem 4.3.2. Let E be a finite-dimensional Hilbert space, and let T ∈ B(E) be of

the form (4.1.7), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 .

Assume that dimE1(T ) = dimE−1(T ). Then, in each of the following two cases, there

exists an irreducible BCL pair (V1, V2) on H2
E(D) such that the non-zero part of the defect

operator C(V1, V2) is given by T .

(i) T has at least two distinct positive eigen values,

(ii) T has only one positive eigen value lying in (0, 1) with dimension of the corre-

sponding eigen space being at least two.

Moreover, (iii) if 1 is the only positive eigen value of T , then it is not possible to construct

such an irreducible pair (V1, V2) unless dimE1(T ) = 1.

The proof is divided in several steps (subsections) to detach the independent ideas

and constructions. Some of the constructions of these steps are also of independent

interest. We note that the above result also includes the case where dimE1(T ) = 0.

First, we note that in order to construct an irreducible BCL pair (V1, V2) on H2
E such

that V1V2 = Mz and the non-zero part of the defect operator C(V1, V2) is given by T ,

it suffices, by an appeal to Lemma 4.2.1 and the discussion preceding Lemma 4.1.1, to

construct a unitary U ∈ B(E) and a projection P ∈ B(E) such that U and P do not

have any common non-trivial reducing subspace and P⊥ − UP⊥U∗ = T .
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Let {λi : i ∈ Λ} denote the set of positive eigen values of T , where Λ is a finite

indexing set, say, Λ = {1, 2, · · · , n} with n ∈ N. Then the set of eigen values of T is

given by

σ(T ) = {±λi : i ∈ Λ}.

4.4 Orthonormal bases and the projection P

For each i ∈ Λ, let

ki := dimEλi(T ) = dimE−λi(T ),

and let Ui be a unitary from Eλi(T ) to E−λi(T ) which exists since dimEλi(T ) =

dimE−λi(T ). Let {eit : 1 ≤ t ≤ ki} be an orthonormal basis of Eλi(T ), i ∈ Λ. Then

{Uieit : t = 1, . . . , ki},

is an orthonormal basis of E−λi(T ), i ∈ Λ. It is evident that E has the following

orthogonal decomposition

E =
⊕
i∈Λ

(
Eλi(T )⊕ E−λi(T )

)
.

For each i ∈ Λ, define the projection Qi ∈ B(Eλi(T )⊕ E−λi(T )) by

Qi =

 1+λi
2 IEλi (T )

√
1−λ2i
2 U∗i√

1−λ2i
2 Ui

1−λi
2 IE−λi (T )

 .
It follows from Lemma 4.2.3 that {f it : t = 1, . . . , ki} is an orthonormal basis of ranQi,

where

f it :=

√
1 + λi

2
eit ⊕

√
1− λi

2
Uie

i
t,

for all t = 1, . . . , ki. Similarly, Lemma 4.2.3 applied to I − Qi yields an orthonormal

basis {f̃ it : t = 1, . . . , ki} of ranQ⊥i , where

f̃ it :=

√
1− λi

2
eit ⊕

(
−
√

1 + λi
2

)
Uie

i
t,

for all t = 1, . . . , ki. Consider the projection Q ∈ B(E) given by

Q =
⊕
i∈Λ

Qi

and set

P = Q⊥ ∈ B(E).
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Therefore, from the definition of P , it follows that⋃
i∈Λ

{f̃ it : t = 1, . . . , ki} and
⋃
i∈Λ

{f it : t = 1, . . . , ki}, (4.4.1)

are orthonormal bases of ranP and ranP⊥, respectively. Then, clearly

{f it , f̃ it : t = 1, . . . , ki},

is an orthonormal basis of Eλi(T ) ⊕ E−λi(T ), and hence, a simple computation, by

changing λi to −λi, shows that

{√1− λi
2

eit ⊕
√

1 + λi
2

Uie
i
t,

√
1 + λi

2
eit ⊕

(
−
√

1− λi
2

)
Uie

i
t : t = 1, . . . , ki

}
,

is also an orthonormal basis of Eλi(T )⊕ E−λi(T ), i ∈ Λ. Since√
1− λi

2
eit +

√
1 + λi

2
Uie

i
t =

√
1− λ2

i f
i
t − λif̃ it ,

and √
1 + λi

2
eit −

√
1− λi

2
Uie

i
t = λif

i
t +

√
1− λ2

i f̃
i
t ,

for all i and t, it follows that⋃
i∈Λ

{
√

1− λ2
i f

i
t ⊕

(
− λi

)
f̃ it , λif

i
t ⊕

√
1− λ2

i f̃
i
t : t = 1, . . . , ki}, (4.4.2)

is an orthonormal basis of E .

In summary, the sets in (4.4.1) are orthonormal bases of ranP and ranP⊥, respec-

tively and the set in (4.4.2) is that of E.

4.5 The unitary U for part (i)

We now proceed to construct the unitary U ∈ B(E) of the BCL triple (E , U, P ). Here

we assume that n ≥ 2, that is T has at least two positive eigen values. In this case, we

construct U on E as follows:

Define U on ranP⊥ by

Uf it =
√

1− λ2
i f

i
t ⊕ (−λi)f̃ it ,
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for all t = 1, . . . , ki and i = 1, . . . , n, and define U on ranP by

Uf̃ it =



λif
i
t+1 ⊕

(√
1− λ2

i

)
f̃ it+1 if 1 ≤ t < ki and 1 ≤ i ≤ n,

λi+1f
i+1
1 ⊕

(√
1− λ2

i+1

)
f̃ i+1

1 if t = ki and 1 ≤ i < n,

λ1f
1
1 ⊕

(√
1− λ2

1

)
f̃1

1 if t = kn and i = n.

The fact that U is unitary can easily be deduced from the definition of U itself by

observing that U carries an orthonormal basis of E to an orthonormal basis of E . With

respect to the decomposition E = ranP⊥ ⊕ ranP , let

U =

[
U11 U12

U21 U22

]
.

Then, with respect to the ordered orthonormal bases
n⋃
i=1

{f it : 1 ≤ t ≤ ki} of ranP⊥ and

n⋃
i=1

{f̃ it : 1 ≤ t ≤ ki} of ranP , a simple computation yields the following:

� U11 : ranP⊥ → ranP⊥ is represented by the diagonal matrix

diag
(√

1− λ2
1, . . . ,

√
1− λ2

1︸ ︷︷ ︸
k1 times

,
√

1− λ2
2, · · · ,

√
1− λ2

2︸ ︷︷ ︸
k2 times

, . . . ,
√

1− λ2
n, . . . ,

√
1− λ2

n︸ ︷︷ ︸
kn times

)
.

� U21 : ranP⊥ → ranP is represented by the invertible diagonal matrix

diag
(
−λ1, . . . ,−λ1︸ ︷︷ ︸

k1 times

,−λ2, . . . ,−λ2︸ ︷︷ ︸
k2 times

,−λn, . . . ,−λn︸ ︷︷ ︸
kn times

)
.

� Both U12 : ranP → ranP⊥ and U22 : ranP → ranP are represented by matrices of

weighted shift type (whose only non-zero elements are the subdiagonal entries and

the first entry of the last column, that is, the (1, dim(ranP ))-th entry). One can

easily verify that the (1, dim(ranP ))-th entry of U12 equals λ1 and the subdiagonal

of U12 is given by

λ1, . . . , λ1︸ ︷︷ ︸
k1 − 1 times

, λ2, . . . , λ2︸ ︷︷ ︸
k2 times

, λn, . . . , λn︸ ︷︷ ︸
kn times

,

whereas the (1,dim(ranP ))-th entry of U22 equals
√

1− λ2
1 and the subdiagonal

of U22 is given by√
1− λ2

1, · · · ,
√

1− λ2
1︸ ︷︷ ︸

k1 − 1 times

,
√

1− λ2
2, · · · ,

√
1− λ2

2︸ ︷︷ ︸
k2 times

, · · · ,
√

1− λ2
n, · · · ,

√
1− λ2

n︸ ︷︷ ︸
kn times

.
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4.6 The remaining details of part (i)

We first verify that P⊥−UP⊥U∗ = T . With respect to the decomposition E = ranP⊥⊕
ranP , let

T =

[
T11 T12

T21 T22

]
.

Note that verification of the fact P⊥ − UP⊥U∗ = T amounts to verifying the following

set of equations 

T11 = IranP⊥ − U11U
∗
11,

T12 = −U11U
∗
21,

T21 = −U21U
∗
11,

T22 = −U21U
∗
21.

(4.6.1)

Indeed, a simple computation shows that for each i, 1 ≤ i ≤ n,

Tf it = λ2
i f

i
t + λi

√
1− λ2

i f̃
i
t ,

and

T f̃ it = λi

√
1− λ2

i f
i
t − λ2

i f̃
i
t for 1 ≤ t ≤ ki,

from which it is now evident that with respect to the ordered orthonormal bases
n⋃
i=1

{f it :

1 ≤ t ≤ ki} of ranP⊥ and
n⋃
i=1

{f̃ it : 1 ≤ t ≤ ki} of ranP , all the operators Tij , i, j = 1, 2,

are represented by diagonal matrices. In fact, we have the following equalities

T11 = diag
(
λ2

1, . . . , λ
2
1︸ ︷︷ ︸

k1 times

, λ2
2, . . . , λ

2
2︸ ︷︷ ︸

k2 times

, . . . , λ2
n, · · · , λ2

n︸ ︷︷ ︸
kn times

)
,

and

T12 = T21 = diag
(
λ1

√
1− λ2

1, . . . , λ1

√
1− λ2

1︸ ︷︷ ︸
k1 times

, . . . , λn
√

1− λ2
n, · · · , λn

√
1− λ2

n︸ ︷︷ ︸
kn times

)
,

and finally,

T22 = diag
(
−λ2

1, . . . ,−λ2
1︸ ︷︷ ︸

k1 times

,−λ2
2, . . . ,−λ2

2︸ ︷︷ ︸
k2 times

, . . . ,−λ2
n, · · · ,−λ2

n︸ ︷︷ ︸
kn times

).

One can now easily verify the equations of (4.6.1), proving that P⊥ − UP⊥U∗ = T .

We now show that the BCL pair (V1, V2) corresponding to the BCL triple (E , U, P ) is

irreducible, that is, we prove that there is no non-trivial joint (U,P )-reducing subspace

of E . Let S be a non-zero joint (U,P )-reducing subspace of E . We show that S = E .
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First notice that

S = S1 ⊕ S2,

where S1 = P⊥S and S2 = PS. Since S is non-zero, one of the spaces S1, S2 must be

non-zero. Assume that S1 is non-zero. We assert that in order to prove that S = E , it

suffices to show that S1 = ranP⊥ for if S1 = ranP⊥, then the observation that

U21(S1) ⊆ S2,

and the fact that U21 is a linear isomorphism of ranP⊥ onto ranP together imply that

U21(S1) = U21(ranP⊥) = ranP ⊆ S2,

so that S2 = ranP and consequently, S = E . It follows easily from the definitions of the

operators U12 and U21 that the operator U12U21 is indeed an operator of weighted shift

type on ranP⊥ (with respect to the ordered orthonormal basis
n⋃
i=1

{f it : t = 1, . . . , ki} of

ranP⊥). As U12U21 leaves S1 invariant, in order to prove that S1 = ranP⊥, it suffices

to prove, by virtue of Lemma 4.3.1, that some f it belongs to S1.

The fact that S is invariant under U immediately implies that S1 is invariant under

U11. Since U11 is a diagonalizable operator on ranP⊥ with eigen values {
√

1− λ2
i : 1 ≤

i ≤ n}, we have

ranP⊥ =
n⊕
i=1

(
E√

1−λ2i
(U11)

)
,

and we also observe that {f it : t = 1, . . . , ki} is a basis of E√
1−λ2i

(U11). Let x ∈ S1 be a

non-zero element. Then

x =

n∑
i=1

xi

with xi ∈ E√
1−λ2i

(U11). Now the fact that S1 is invariant under U11 implies that xi

indeed lies in S1 for each i. Choose j ∈ {1, . . . , n} such that xj 6= 0. Note that

xj =

kj∑
t=1

αtf
j
t ,

where αjt , 1 ≤ t ≤ kj , are all scalars. Let t0 be the largest value of t, 1 ≤ t ≤ kj , such

that αt0 6= 0. A little computation, using the definition of U12 and U21, yields that

(U12U21)kj−t0+1(f js ) ∈ E√
1−λ2j

(U11),

for s < t0 and (U12U21)kj−t0+1(f jt0) is a non-zero scalar multiple of f j+1
1 or f1

1 according

as j < n or j = n. Consequently

(U12U21)kj−t0+1(xj) = y + z,
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with

y ∈ E√
1−λ2j

(U11),

and z( 6= 0) is a scalar multiple of f j+1
1 or f1

1 according as j < n or j = n. Thus

z ∈ E√
1−λ2j+1

(U11) or E√
1−λ21

(U11),

according as j < n or j = n. Since U12U21 leaves S1 invariant and xj ∈ S1, it follows

that y + z ∈ S1 and since S1 is invariant under U11, we conclude that both y, z ∈ S1.

Note that z ∈ S1 is equivalent to saying that exactly one of f j+1
1 and f1

1 belongs to

S1. Thus it follows that S1 = ranP⊥ and hence, S = E . A similar proof shows that if

S2 6= 0, then also S = E . Thus there is no non-trivial joint (U,P )-reducing subspace of

E , completing the proof.

4.7 Proof of part (ii)

We now study the case when T has only one positive eigen value lying in (0, 1) such that

the dimension of the corresponding eigen space is at least 2. Thus, in this case, the set

of eigen values of T is given by

σ(T ) = {±λ1},

with 0 < λ1 < 1 and

dimEλ1(T ) = dimE−λ1(T ) ≥ 2.

Let α 6= 1 be a complex number with |α| = 1. Construct a unitary U : E → E as follows:

Define U on ranP⊥ by

Uf1
t =

α
(

(
√

1− λ2
1)f1

1 ⊕ (−λ1)f̃1
1

)
if t = 1,

(
√

1− λ2
1)f1

t ⊕ (−λ1)f̃1
t if 2 ≤ t ≤ k1,

and on ranP by

Uf̃1
t =

λ1f
1
t+1 ⊕ (

√
1− λ2

1)f̃1
t+1 if 1 ≤ t < k1,

λ1f
1
1 ⊕ (

√
1− λ2

1)f̃1
1 if t = k1.

As before, with respect to the decomposition E = ranP⊥ ⊕ ranP , let

U =

[
U11 U12

U21 U22

]
.

With respect to the ordered orthonormal bases {f1
t : 1 ≤ t ≤ k1} of ranP⊥ and {f̃1

t :

1 ≤ t ≤ k1} of ranP , it follows easily from the definition of U that
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� U11 : ranP⊥ → ranP⊥ is represented by the diagonal matrix

diag
(
α
√

1− λ2
1,
√

1− λ2
1, . . . ,

√
1− λ2

1︸ ︷︷ ︸
k1 − 1 times

)
,

� U21 : ranP⊥ → ranP is represented by the invertible diagonal matrix

diag
(
− αλ1,−λ1, . . . ,−λ1︸ ︷︷ ︸

k1 − 1 times

)
,

� both U12 : ranP → ranP⊥ and U22 : ranP → ranP are represented by matrices

of weighted shift type and one can easily verify that the (1,dim(ranP ))-th entry

of U12 equals λ1 and the subdiagonal of U12 is given by

λ1, · · · , λ1︸ ︷︷ ︸
k1 − 1 times

,

whereas the (1, dim(ranP ))-th entry of U22 equals
√

1− λ2
1 and the subdiagonal

of U22 is given by √
1− λ2

1, . . . ,
√

1− λ2
1︸ ︷︷ ︸

k1 − 1 times

.

Proceeding along the same line of argument as in Subsection 4.6, one can easily see that

in this case also there is no non-trivial joint (U,P )-reducing subspace of E .

4.8 Proof of part (iii)

Finally, we deal with the case when 1 is the only positive eigen value of T . Then, with

respect to the decomposition

E = E1(T )⊕ E−1(T ),

the operator T admits the following diagonal representation

T =

[
IE1(T ) 0

0 −IE−1(T )

]
.

Suppose U is a unitary on E and P is a projection on E such that

P⊥ − UP⊥U∗ = T.
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An appeal to Theorem 4.2.2 immediately implies that with respect to the decomposition

E = E1(T )⊕ E−1(T ), P⊥ and UP⊥U∗ must be of the form

P⊥ =

[
IE1(T ) 0

0 0

]
and UP⊥U∗ =

[
0 0

0 IE−1(T )

]
.

It is clear from the forms of P⊥ and UP⊥U∗ that U carries E1(T ) (resp., E−1(T )) onto

E−1(T ) (resp., E1(T )). Thus, U has the block operator matrix form

U =

[
0 A

B 0

]
,

where A : E−1(T )→ E1(T ) and B : E1(T )→ E−1(T ) are unitaries. Thus, if

dimE1(T ) = dimE−1(T ) = 1,

then there is no non-trivial joint (U,P )-reducing subspace of E . Now assume that

dimE1(T ) = dimE−1(T ) ≥ 2.

Let v ∈ E be an eigen vector of U and let Uv = αv where, α, of course, has modulus

one. Write v = v1 + v2 with v1 ∈ E1(T ), v2 ∈ E−1(T ). It then follows from Uv = αv

that Av2 = αv1, Bv1 = αv2. Consider the subspace

W = span{v1} ⊕ span{v2}.

One can easily verify that W is reducing for U also. Thus, W is a non-zero proper joint

(U,P )-reducing subspace of E . This completes the proof of part (iii) of Theorem 4.3.2.

4.9 E is infinite-dimensional

This section deals with the case when E is infinite-dimensional. We aim to show that

given an operator T ∈ B(E) of the form (4.1.7) such that either

dimE1(T ) = dimE−1(T ) (may be zero also),

or

dimE1(T ) = dimE−1(T )± 1,

then one can construct an irreducible BCL pair on H2
E(D) with the desired properties.

Our first result, namely Theorem 4.9.1, treats the case when dimE1(T ) = dimE−1(T ).
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Theorem 4.9.1. Let E be an infinite-dimensional Hilbert space and let T ∈ B(E) be of

the form (4.1.7), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 .

Suppose that dimE1(T ) = dimE−1(T ). Then there exists an irreducible BCL pair (V1, V2)

on H2
E(D) such that the non-zero part of C(V1, V2) is equal to T .

Proof. The proof proceeds, to some extent, along the line of argument as that of Theorem

4.3.2. However, at any rate, some detail is necessary. Let

σ(T ) = {λn : n ∈ N}.

Choose a bijection g : Z → N so that the set of eigen values of T is expressed as

{λg(n) : n ∈ Z}. Define

kn := dimEλn(T ) = dimE−λn(T ).

Let Un denote a unitary from Eλn(T ) to E−λn(T ), and let {ent : 1 ≤ t ≤ kn} be an

orthonormal basis of Eλn(T ), n ∈ N. Then {Unent : 1 ≤ t ≤ kn} is an orthonormal basis

of E−λn(T ), n ∈ N. Clearly E has the orthogonal decomposition

E =
⊕
n∈N

(
Eλn(T )⊕ E−λn(T )

)
=
⊕
n∈Z

(
Eλg(n)(T )⊕ E−λg(n)(T )

)
.

Let n ∈ N. As in the proof of Theorem 4.3.2, define a projection Qn ∈ B(Eλn(T ) ⊕
E−λn(T )) by

Qn =

 1+λn
2 IEλn (T )

√
1−λ2n
2 U∗n√

1−λ2n
2 Un

1−λn
2 IE−λn (T )

 .
Then {fnt : 1 ≤ t ≤ kn} and {f̃nt : 1 ≤ t ≤ kn} are orthonormal bases of ranQn and

ranQ⊥n , respectively, where

fnt :=

√
1 + λn

2
ent ⊕

√
1− λn

2
Une

n
t

and

f̃nt :=

√
1− λn

2
ent ⊕

(
−
√

1 + λn
2

)
Une

n
t .
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Finally, consider the projection Q ∈ B(E) given by

Q =
⊕
n∈N

Qn

and set P = Q⊥. It follows immediately from the definition of P that⋃
n∈N
{fnt : 1 ≤ t ≤ kn} and

⋃
n∈N
{f̃nt : 1 ≤ t ≤ kn},

are orthonormal bases for ranP⊥ and ranP , respectively. Define the unitary U : E → E
by specifying

U(f
g(n)
t ) =

√
1− λ2

g(n)f
g(n)
t ⊕

(
− λg(n)

)
f̃
g(n)
t ,

for all 1 ≤ t ≤ kg(n) and

U(f̃
g(n)
t ) =

λg(n)f
g(n)
t+1 ⊕

√
1− λ2

g(n)f̃
g(n)
t+1 if 1 ≤ t < kg(n),

λg(n+1)f
g(n+1)
1 ⊕

√
1− λ2

g(n+1)f̃
g(n+1)
1 if t = kg(n),

where n ∈ Z. With respect to the decomposition E = ranP⊥ ⊕ ranP , let

U =

[
U11 U12

U21 U22

]
.

With respect to the ordered orthonormal bases
⋃
n∈Z{f

g(n)
t : 1 ≤ t ≤ kg(n)} of ranP⊥

and
⋃
n∈Z{f̃

g(n)
t : 1 ≤ t ≤ kg(n)} of ranP , it is clear from the definition of U that U11 as

well as U21 are represented by diagonal matrices whereas U12U21 is an operator of the

weighted shift type.

Now let S be a non-zero joint (U,P )-reducing subspace of E . Decompose S as

S = S1 ⊕ S2,

where S1 = P⊥(S) and S2 = P (S). Assume, without loss of generality, that S1 is non-

zero. Similar argument as in the proof of Theorem 4.3.2 in Subsection 4.6 shows that in

order to prove that S = E , it suffices to show that S1 = ranP⊥. Since S1 reducing for

U12U21, to prove that S1 = ranP⊥, it is enough to show, by an appeal to Lemma 4.3.1,

that some basis vector f
g(n)
t belongs to S1.

Note that for each n ∈ Z,
√

1− λ2
g(n) is an eigen value of U11 with {fg(n)

t : 1 ≤ t ≤ kg(n)}
being an orthonormal basis for E√

1−λ2
g(n)

(U11) and hence, ranP⊥ has the following

orthogonal decomposition

ranP⊥ = ⊕n∈ZE√
1−λ2

g(n)

(U11).
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Let 0 6= x ∈ S1. Then

x =
∑
n∈Z

xg(n)

with xg(n) ∈ E√
1−λ2

g(n)

(U11). Since S1 is reducing for U11, an appeal to the spectral

theorem immediately yields that xg(n) indeed lies in S1 for each n. Choose n such that

xg(n) 6= 0 and let

xg(n) =

kg(n)∑
t=1

αtf
g(n)
t ,

where αt, 1 ≤ t ≤ kg(n), are all scalars. If t0 is the largest value of t, 1 ≤ t ≤ kg(n), such

that αt0 6= 0, similar argument as in the proof of Theorem 4.3.2 in Subsection 4.6 shows

that

(U12U21)kg(n)−t0+1(fg(n)
s ) ∈ E√

1−λ2
g(n)

(U11),

for s < t0 and

(U12U21)kg(n)−t0+1(f
g(n)
t0

),

is a non-zero scalar multiple of f
g(n+1)
1 from which we conclude, proceeding again along

the same line of argument as in the proof of Theorem 4.3.2 in Subsection 4.6, that

f
g(n+1)
1 ∈ S1, completing the proof.

The next theorem analyses the case when dimE1(T ) = dimE−1(T )± 1.

Theorem 4.9.2. Let E be an infinite-dimensional Hilbert space and let T ∈ B(E) be of

the form (4.1.7), that is,

T =


IdimE1(T ) 0 0 0

0 D 0 0

0 0 −IdimE−1(T ) 0

0 0 0 −D

 .

Suppose that

dimE1(T ) = dimE−1(T )± 1.

Then there exists an irreducible BCL pair (V1, V2) on H2
E(D) such that the non-zero part

of C(V1, V2) is equal to T .

Proof. Assume, without loss of generality, that dimE−1(T ) = dimE1(T ) + 1. Further,

assume that dimE1(T ) > 0, that is, 1 is an eigen value of T . Set λ0 = 1 and let the set

of positive eigen values of T lying in (0, 1) be given by {λn : n ∈ N}. Then the set of

eigen values of T is given by {±λn : n ≥ 0}. We use the same notations as in the proof

of Theorem 4.9.1 so that for each n ∈ N, kn = dimEλn(T ), {ent : 1 ≤ t ≤ kn} represents
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an orthonormal basis of Eλn(T ) and for 1 ≤ t ≤ kn, fnt and f̃nt are defined by

fnt =

√
1 + λn

2
ent +

√
1− λn

2
Une

n
t and f̃nt =

√
1− λn

2
ent −

√
1 + λn

2
Une

n
t ,

where Un denotes a unitary operator from Eλn(T ) to E−λn(T ). Finally, let k0 =

dimE1(T ) so that dimE−1(T ) = k0 + 1 and let

{f0
t : 1 ≤ t ≤ k0} and {f̃0

t : 1 ≤ t ≤ k0 + 1}

denote orthonormal bases of E1(T ) and E−1(T ), respectively. This implies that{
f0
t : 1 ≤ t ≤ k0

}⋃{
f̃0
t : 1 ≤ t ≤ k0 + 1

} ⋃
n∈N

{
fnt , f̃

n
t : 1 ≤ t ≤ kn

}
is an orthonormal basis of E . As usual, our goal is to construct a projection P and a

unitary U on E such that P⊥ − UP⊥U∗ = T and there is no non-trivial joint (U,P )-

reducing subspace of E . Consider the orthogonal projection P ∈ B(E) such that an

orthonormal basis of ranP is given by{
f̃0
t : 1 ≤ t ≤ k0 + 1

} ⋃
n∈N

{
f̃nt : 1 ≤ t ≤ kn

}
.

Consequently, {
f0
t : 1 ≤ t ≤ k0

} ⋃
n∈N

{
fnt : 1 ≤ t ≤ kn

}
is an orthonormal basis of ranP⊥. Let us consider the unitary U : E → E defined as

follows: For each n ≥ 1, define

Ufnt =


√

1− λ2
nf

n
t+1 ⊕

(
− λn

)
f̃nt+1 if 1 ≤ t < kn;√

1− λ2
n−1f

n−1
1 ⊕

(
− λn−1

)
f̃n−1

1 if t = kn;

and

Uf̃nt =

λnfnt+1 ⊕
√

1− λ2
nf̃

n
t+1 if 1 ≤ t < kn;

λn+1f
n+1
1 ⊕

√
1− λ2

n+1f̃
n+1
1 if t = kn;

and finally,

U(f0
t ) = f̃0

t+1 if 1 ≤ t ≤ k0;

U(f̃0
t ) = f0

t if 1 ≤ t ≤ k0;

U(f̃0
k0+1) = λ1f

1
1 +

√
1− λ2

1f̃
1
1 .
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Then it is easy to check that P⊥−UP⊥U∗ = T . Now, with respect to the decomposition

E = ranP⊥ ⊕ ranP , let

U =

[
U11 U12

U21 U22

]
.

It follows from the definition of U that

U11(f0
t ) = 0, for 1 ≤ t ≤ k0;

U11(fnt ) = (
√

1− λ2
n)fnt+1, for n ≥ 1, 1 ≤ t < kn;

U11(fnkn) = (
√

1− λ2
n−1)fn−1

1 , for n ≥ 1.

A little computation shows that

U∗11(f0
t ) = 0, for 1 ≤ t ≤ k0;

U∗11(fnt+1) = (
√

1− λ2
n)fnt , for n ≥ 1, 1 ≤ t < kn;

U∗11(fn1 ) = (
√

1− λ2
n)fn+1

kn+1
, for n ≥ 1;

and consequently,

U∗11U11(f0
t ) = 0, for 1 ≤ t ≤ k0;

U∗11U11(fnt ) = (1− λ2
n)fnt , for n ≥ 1, 1 ≤ t < kn;

U∗11U11(fnkn) = (1− λ2
n−1)fnkn , for n ≥ 1.

Thus, we see that U∗11U11 is a digonalizable operator on ranP⊥ with eigen values {1−λ2
n :

n ≥ 0}. Clearly, {
f0
t : 1 ≤ t ≤ k0

}⋃{
f1
k1

}
,

is an orthonormal basis for E0(U∗11U11) = E1−λ20(U∗11U11), and{
fnt : 1 ≤ t < kn

}⋃{
fn+1
kn+1

}
,

is an orthonormal basis of E1−λ2n(U∗11U11) for all n ≥ 1.

Let S be a non-trivial joint (U,P )-reducing subspace of E . Then

S = S1 ⊕ S2,

where S1 = P⊥(S) and S2 = P (S). Assume, without loss of generality, that S1 is

non-zero and let 0 6= x ∈ S1. Let

x =
⊕
n≥0

xn,

where xn ∈ E1−λ2n(U∗11U11) for all n ≥ 0. Since S1 is reducing for U∗11U11, we must have

that xn ∈ S1 for each n ≥ 0. Let n0 be the smallest non-negative integer such that
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xn0 6= 0. First assume that n0 ≥ 1 and let

xn0 =

kn0−1∑
t=1

αn0
t f

n0
t + βfn0+1

kn0+1,

where β, αn0
t (1 ≤ t < kn0) are all scalars. If αn0

t = 0 for all t, 1 ≤ t < kn0 , then clearly

β 6= 0 and hence, fn0+1
kn0+1 ∈ S1. If αn0

t are not all zero, let t0 be the maximum value of

t, 1 ≤ t < kn0 , such that αn0
t 6= 0. Then one can easily see that

S1 3 U
kn0−t0
11 (xn0) = an element in span{fn0

1 , · · · , fn0
kn0−1} ⊕ α

n0
t0

(1− λ2
n0

)
kn0−t0

2 fn0
kn0

∈ E1−λ2n0
(U∗11U11)⊕ E1−λ2n0−1

(U∗11U11),

and consequently, fn0
kn0
∈ S1. Now assume that n0 = 0 and let

x0 =

k0∑
t=1

α0
t f

0
t + βf1

k1 ,

where β and α0
t , 1 ≤ t ≤ k0, are all scalars. Note that if β 6= 0, then U∗11x0 6= 0 and

U∗11x0 = β
√

1− λ2
1f

1
k1−1 or β

√
1− λ2

1f
2
k2 ,

depending on whether k1 > 1 or k1 = 1 and thus, S1 contains either f1
k1−1 or f2

k2

according as k1 > 1 or k1 = 1. Suppose now that β = 0 and let t0 = max{t : α0
t 6= 0}.

A simple computation shows that

S 3 U2(k0−t0)+2(x0) = an element in span{f0
1 , · · · , f0

k0}+ α0
t0(λ1f

1
1 +

√
1− λ2

1f̃
1
1 )

and hence, f̃1
1 ∈ S2. Since

U(f̃1
1 ) = λ1f

1
2 +

√
1− λ2

1f̃
1
2 or λ2f

2
1 +

√
1− λ2

2f̃
2
1 ,

according as k1 > 1 or k1 = 1, we have that either f1
2 or f2

1 belongs to S1. Thus we

conclude that fnt ∈ S1 for some n ≥ 1 and 1 ≤ t ≤ kn. It is easy to see that

U(P⊥U)(kn−t)+kn−1+···+k2+k1(fnt ) = a non-zero scalar multiple of f̃0
1

and hence, f̃0
1 ∈ S. Since S is invariant under U , applying U repeatedly on f̃0

1 we see

that

{f0
t : 1 ≤ t ≤ k0}

⋃
{f̃0
t : 1 ≤ t ≤ k0 + 1}
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is contained in S. Again, using the definition of U and P , a simple computation shows

that

(PU)t(f̃0
k0+1) = a non-zero scalar multiple of f̃1

t for 1 ≤ t ≤ k1,

(PU)k1+k2+···+kn−1+t (f̃0
k0+1) = a non-zero scalar multiple of f̃nt for n > 1, 1 ≤ t ≤ kn,

and since S is reducing for both U and P , it follows immediately that S contains⋃
n∈N
{f̃nt : 1 ≤ t ≤ kn}.

Finally, we observe that

(P⊥U)(f̃0
k0+1) = a non-zero scalar multiple of f1

1 ,

(P⊥U)(f̃nt ) = a non-zero scalar multiple of fnt+1 for 1 ≤ t < kn, n ≥ 1,

(P⊥U)(f̃nkn) = a non-zero scalar multiple of fn+1
1 for n ≥ 1.

Since S is (U,P )-reducing and contains {f̃0
k0+1}

⋃
n∈N{f̃nt : 1 ≤ t ≤ kn}, it follows that

S contains ⋃
n∈N
{fnt : 1 ≤ t ≤ kn}.

As an immediate consequence of all these observations, we conclude that S indeed con-

tains the orthonormal basis of E given by

{f0
t : 1 ≤ t ≤ k0}

⋃
{f̃0
t : 1 ≤ t ≤ k0 + 1}

⋃
n∈N
{fnt , f̃nt : 1 ≤ t ≤ kn},

and hence, S = E , finishing the proof of this case. The proof for the case when 1 is not

an eigen value of T , that is, k0 = 0, works in the same way.
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[54] Gehér P.G. and Šemrl P., Isometries of Grassmann spaces, II, Adv. Math. 332

(2018), 287–310.
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