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Chapter 1

Introduction

This thesis concerns problems related to the ramification behaviour of the branched Ga-

lois covers of smooth projective connected curves defined over an algebraically closed

field of positive characteristic. Our first main problem is the Inertia Conjecture pro-

posed by Abhyankar in 2001. We will show several new evidence for this conjecture.

We also formulate a certain generalization of it which is our second problem, and we

provide evidence for it. We give a brief overview of these problems in this introduction

and reserve the details for Chapter 4.

Let k be an algebraically closed field, and U be a smooth connected affine k-curve.

Let U ⊂ X be the smooth projective completion. An interesting and challenging prob-

lem is to understand the étale fundamental group π1(U). We only consider this as a

profinite group up to isomorphism, and so the base point is ignored. When k has char-

acteristic 0, it is well known that this group is the profinite completion of the topological

fundamental group. In particular, it is a free profinite group, topologically generated by

2g + r − 1 elements where g is the genus of X, and r is the number of points in X − U.

But when k has prime characteristic p > 0, these statements are no longer true. The full

structure of π1(U) is not known in this case. Now onward, assume that k has charac-

teristic p > 0. By the definition of π1(U), the set πA(U) of isomorphic classes of finite

(continuous) group quotients of π1(U) is in bijective correspondence with the finite Ga-

lois étale covers of U. For a finite group G, let p(G) denote the subgroup of G generated

1



2 Chapter 1. Introduction

by all its Sylow p-subgroups. In 1957 Abhyankar conjectured on what groups can occur

in the set πA(U).

Conjecture 1.1 (Abhyankar’s Conjecture on the affine curves; [2, Section 4.2]). Let X

be a smooth projective connected curve of genus g over an algebraically closed field

k of characteristic p > 0. Let r ≥ 1, and B be a finite set of closed points in X. Set

U B X − B. Then a finite group G occurs as the Galois group of an étale cover V → U

of smooth connected k-curves if and only if G/p(G) is generated by at most 2g + r − 1

elements.

The above conjecture is now a Theorem due to the works of Serre, Raynaud and

Harbater ([27], [25], [12]). Since π1(U) is not a topologically finitely generated group,

it is important to note that to understand the structure of π1(U), it is merely not enough

to know the set πA(U), rather one also needs to know how these groups fit together in

the inverse system defining π1(U).

Conjecture 1.1 says that when U is the affine k-line A1, πA(A1) is the set of isomor-

phic classes of the quasi p-groups G (a finite group G is said to be a quasi p-group if

G is generated by all its Sylow p-subgroups, i.e. G = p(G)). So for a quasi p group G,

the question is to understand the inertia groups over ∞ in a connected G-Galois étale

cover of A1. In contrast to characteristic 0 where all the inertia groups are cyclic of or-

der equal to the ramification index, these inertia groups have a complicated structure in

general. By studying the branched covers of P1 given by explicit equations Abhyankar

posed the following conjecture, now known as the Inertia Conjecture (IC).

Conjecture 1.2 (IC, [4, Section 16]). Let G be a finite quasi p-group. Let I be a sub-

group of G which is an extension of a p-group P by a cyclic group of order prime-to-p.

Then there is a connected G-Galois cover of P1 étale away from ∞ such that I occurs

as an inertia group at a point over∞ if and only if the conjugates of P in G generate G.

The special case of the above conjecture when I is a p-group is known as the Purely

Wild Inertia Conjecture (PWIC).
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Conjecture 1.3 (PWIC). Let G be a finite quasi p-group. A p-subgroup P of G occurs

as the inertia group at a point above ∞ in a connected G-Galois cover of P1 branched

only at∞ if and only if the conjugates of P generate G.

One can see that the condition on the inertia groups is necessary. The other direction,

namely whether one can realize each possible subgroup I of G as an inertia group at a

point above ∞ in a connected G-Galois cover of P1 branched only at ∞, remains wide

open at the moment. We only know the evidence for this conjecture in a few cases (see

[8], [23], [22], [20], [17] and Section 4.2 for more details).

Our results from [10] and [9] give new evidence for the Inertia Conjecture, specially

for the Alternating groups. We discuss the main results in Section 4.4. In [10] we also

showed that the ‘minimal jump problem’ (Question 4.7) for the Alternating groups has

an affirmative answer when the Sylow p-subgroups of the inertia groups are generated

by p-cycles.

Our second problem, introduced in [9], asks a general question motivated by the

Inertia Conjecture. Set B B X − U. This question concerns the kind of inertia groups

which occur over a point in B in a Galois étale cover of U with a fixed Galois group. As

the tame fundamental group of U is also not well understood at the moment, the question

assumes the existence of a tower of a certain tame Galois covers, and asks about the

existence of an appropriate Galois cover dominating the tower so that the necessary

conditions are satisfied. In [9] this problem was called Q[r, X, B,G] (see Section 4.3).

Here we state two special cases of this question for which we have obtained several

positive results.

Question 1.4 (Question 4.10; Q[r, X, B,G]). Let r ≥ 1 be an integer, X be a smooth

projective connected k-curve, and let B B {x1, · · · , xr} be a set of closed points in X.

Let G be a finite group, P1, · · · , Pr be (possibly trivial except for P1) p-subgroups of G.

Set H B 〈PG
i |1 ≤ i ≤ r〉. Assume that either of the following holds.

1. G = 〈PG
1 , · · · , P

G
r 〉;

2. H = 〈PH
1 , · · · , P

H
r 〉.
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For 1 ≤ i ≤ r, let Ii be a subgroup of G which is an extension of the p-group Pi by a

cyclic group of order prime-to-p such that there is a connected G/H-Galois cover ψ of

X étale away from B and Ii/Ii ∩ H occurs as an inertia group above xi, 1 ≤ i ≤ r. Does

there exist a connected G-Galois cover φ of X étale away from B dominating the cover

ψ such that Ii occurs as an inertia group above the point xi ∈ B ?

Using formal patching and studying the branched covers of curves given by the ex-

plicit equations, we obtain some affirmative answers to the above question which are

listed in Section 4.4. One special case of the above question is when X = P1 which

we pose as the Generalized Inertia Conjecture (GIC, Conjecture 4.15). Even more spe-

cializing to the case when the inertia groups are the p-groups, we pose the Generalized

Purely Wild Inertia Conjecture (GPWIC, Conjecture 4.18). We see that for the groups

for which the PWIC is already established, the GPWIC is also true.

The structure of the thesis is as follows. Chapter 2 contains the essential notation and

some definition which are used throughout this thesis. Chapter 3 contains the basics of

the ramification theory, its application to the theory of covers of curves, the definition

of the étale fundamental group and its related quotients, and the basics of formal patch-

ing. We describe our main problems of this thesis along with a detailed motivation for

them and the statements of our main results in Chapter 4. The auxiliary results which

pave the way to prove our main results is the content of Chapter 5. Among them, Sec-

tion 5.1 and Section 5.2 contain the results which are related to the understanding of

the ramification behaviour of covers. In Section 5.3 we recall some well known results

and techniques which are helpful to reduce the inertia groups. One of the most impor-

tant sections of this thesis is Chapter 6 which concerns the construction of the Galois

covers using some explicit equations and the formal patching technique. In Section 6.1

we follow [9] to construct the two point branched Galois covers of P1 with Alternating

or Symmetric Galois groups. Moreover, we show that the Galois étale covers of the

affine line with these groups which were studied by Abhyankar are the special cases

of our construction. Section 6.2 contains the results on the construction of the Galois

covers using the formal patching technique. Chapter 7 contains the proofs of our main

results. In Section 7.1 we give an overview of the strategies of the proofs. In Section 7.2
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we prove that the PWIC (Conjecture 4.4) is true for any product of certain Alternating

groups. Section 7.3 contains the proof of the IC (Conjecture 4.3) for certain Alternating

groups. The Generalized Purely Wild Inertia Conjecture (Conjecture 4.18) is the object

of study in Section 7.4. The last section concerns some evidence towards the general

question (Question 4.10).





Chapter 2

Notation and Convention

• All rings in this thesis are commutative rings with the identity element and all

algebras are unitary.

• For an integral domain A, denote its quotient field or field of fractions by QF(A).

For any prime ideal p in A, let Ap denote the localization of A with respect to

the multiplicative set A − p. We denote the completion of the local ring Ap at

its maximal ideal pAp by Âp. If K = QF(A), K̂p denotes the quotient field of

Âp. Denote the residue field of A at p by k(p). So k(p) = QF(A/p) = Ap/pAp =

Âp/pÂp.

• For a scheme X and a point x ∈ X, let OX,x denote the local ring at x with the

maximal ideal mx. The complete local ring at x, namely the completion of the

local ring OX,x with respect to mx is denoted by ÔX,x. When x is an integral point,

KX,x denotes the fraction field of ÔX,x.

• Throughout this thesis, p denotes a prime, k denotes an algebraically closed field

of characteristic p, and all the k-curves considered will be smooth connected

curves, unless otherwise specified. Chapter 5 onward we will require p to be

an odd prime.

• All the Alternating and Symmetric groups considered will be of degree ≥ 5.

7



8 Chapter 2. Notation and Convention

• For a finite group G, p(G) denotes the subgroup of G generated by all the Sylow

p-subgroups of G. It is a characteristic subgroup of G which is also the maximal

normal subgroup of index coprime to p.

• For a finite group G and a subgroup I of G, we say that the pair (G, I) is realizable

if there exists a connected G-Galois cover of P1 branched only at ∞ such that I

occurs as an inertia group above ∞. In this case G is necessarily a quasi p-group

i.e. G = p(G).

• For a finite group G and a subgroup H of G, we let HG denote the set of conjugates

of H in G. 〈HG〉 denotes the subgroup of G generated by all the conjugates of H

in G.



Chapter 3

Preliminaries

3.1 Local Ramification Theory

The ramification theory for a Noetherian normal domain is standard in the literature (see

[26], [6]). In this section, we briefly recall the notion and basic definitions related to the

ramification theory that will be used throughout this thesis. Notation from Chapter 2

will be frequently used without further mention.

Let A ⊂ B be any ring extension. Let q be a prime ideal in B. Let p = p ∩ A. This is

equivalent to q containing the ideal pB, and we say that the prime ideal q in B lies over

the prime ideal p in A, denoted by q|p. So Bq is naturally an Ap-algebra.

Definition 3.1. Let A be an integral domain, and B be a reduced ring. Let Q(B) denotes

the total ring of fractions of B. An extension A ⊂ B of rings is said to be generically

separable if the corresponding extension Q(B)/QF(A) is a separable extension, and no

non-zero element of A become a zero divisor in B.

Definition 3.2. Let A ⊂ B be an extension of rings.

1. Let q be a prime ideal in B and p = q ∩ A. Then q is said to be unramified in the

extension B/A if pBq = qBq, and Bq/pBq is a separable field extension of Ap/pAp.

In this case we also say that Bq/Ap is an unramified extension.

9



10 Chapter 3. Preliminaries

2. The extension B/A is said to be unramified if every prime ideal of B is unramified

in B/A and for any prime ideal p of A, there are only finitely many prime ideals q

of B with p = q ∩ A.

Note that when A is an integral domain and B is a reduced ring, q is the nilradical in

B if and only if p = A∩q is the zero ideal in A. In this case, Ap = QF(A) and Bq = Q(B)

with pQ(B) = qQ(B). So q is unramified over p if and only if the extension A ⊂ B is

generically separable.

Consider the following setup. Let A be a Noetherian normal domain with quotient

field K. Let L be a finite separable field extension of K. Let B be the integral closure of

A in L. Then B is a finitely generated A-module, hence is a Noetherian normal domain

with quotient field L. Also B is generically separable over A. For the rest of this section,

we consider the following assumption.

Let q be a non-zero prime ideal in B with p = q ∩ A, and the finite field extension

k(q)/k(p) is a separable extension.

Consider the complete local rings B̂q and Âp which are the completions at their re-

spective maximal ideals. Let K̂p = QF(Âp) and L̂q = QF(B̂q). As L/K is a finite

separable extension, by [26, Page 31, Chapter II, Section 3, Corollary 3], L̂q/K̂p is also

a separable field extension. Since the completion homomorphism is flat, Bq/Ap is an

unramified extension if and only if B̂q/Âp is an unramified extension. We also recall the

definitions of the decomposition and the inertia groups.

Definition 3.3. Let A be a Noetherian normal domain with quotient field K. Let L/K

be a Galois field extension with Galois group G. Let B be the integral closure of A in L.

Let q be a prime idea in B and p = q ∩ A.

1. The decomposition group at q is defined to be the subgroup Dq B {g ∈ G|g(q) ⊂ q}

of G. It is the setwise stabilizer of the prime q in G.

2. The inertia group at q is defined to be the subgroup Iq B {g ∈ G|g(b) − b ∈

q for all b ∈ q} of Dq.
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Note that in the above situation, the separable field extension L̂q/K̂p is also Galois

with Galois group Dq. If q′ is another prime ideal of B lying over p, then Dq and Dq′ are

two conjugate subgroups of G.

A more detailed understanding of the above definitions can be obtained when A is

a Dedekind domain, i.e. A is an integrally closed Noetherian domain in which every

non-zero prime ideal is maximal.

In what follows, we assume that A is a Dedekind domain.

Then B is also a Dedekind domain. Consider the unique decomposition of the ideal

pB in B given by

pB =
∏
q|p

q
eq . (3.1.1)

For q lying over p, the integer eq ≥ 1 is called the ramification index of q in the extension

L/K. By Definition 3.2, q is unramified if and only if eq = 1.

Definition 3.4. The prime q is said to be ramified in the extension L/K if eq > 1.

Since B is a Dedekind domain and q is a non-zero ideal, Bq is a discrete valuation

ring. Note that the eq is the valuation of the ideal pB. The residue degree fq of q in the

extension L/K is defined to be the degree of the extension k(q)/k(p). By [26, Page 14,

Chapter I, Section 4, Proposition 10], the ring B/pB is an A/p-algebra isomorphic to∏
q|p B/qeq , and

deg(L/K) =
∑
q|p

eq fq. (3.1.2)

For the rest of this section, we additionally assume that L/K is a finite Galois exten-

sion, that is, consider the following situation.

• Let A be a Dedekind domain with quotient field K. Let L/K be a finite Galois field

extension with Galois group G. Let B be the integral closure of A in L. Let q be a
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non-zero prime ideal in B with p = q ∩ A, and the finite field extension k(q)/k(p)

is a separable extension.

So the residue extension k(q)/k(p) is also a normal extension, and hence it is a Galois

extension. For any non-zero prime p of A, G acts transitively on the set of primes q in

B lying over p. So the integers eq and fq depend only on p, and we denote them by ep

and fp, respectively. If there are gp many primes of B lying over p, Equation (3.1.2)

becomes

deg(L/K) = ep fpgp. (3.1.3)

Since the decomposition group Dq is the stabilizer subgroup in G of q, by the Orbit-

Stabilizer Theorem, gp is the index of Dq in G. Consider the epimorphism of groups

ε : Dq → Aut(k(q)/k(p)) given as follows. For g ∈ Dq, b ∈ B with image b̄ ∈ k(q),

ε(g)(b̄) = gb. Then the inertia group Iq is the kernel of the homomorphism ε. In

particular, we have the following.

Remark 3.5. If the residue degree is 1, Dq = Iq.

Finally, note that q is unramified if and only if eq = 1. This is equivalent to the q-adic

valuation of the ideal pBq being 1. This in turn is equivalent to the group Iq being trivial.

Another insight on the ramification criterion is given in terms of the different ideal.

Consider the trace map Tr : L → K which is a surjective K-linear homomorphism.

The codifferent CL/K is defined as the fractional ideal {x ∈ L|Tr(xB) ⊂ A}. Then B ⊂

CL/K and it is the maximal sub-B-module C in L such that Tr(C) ⊂ A. Since A is

a Dedekind domain, so is B. Also CL/K is non-zero. So CL/K has an inverse in the

multiplicative group of non-zero fractional ideals of B. The different DL/K is defined to

be the inverse fractional ideal {x ∈ L|xCL/K ⊂ B}. Then DL/K is an ideal of B. By [26,

Page 53, Chapter III, Section 5, Theorem 1], we have the following useful result which

determines precisely when a prime of B is ramified.

Theorem 3.6 ([26, Page 53, Chapter III, Section 5, Theorem 1]). Under the above

notation, let q be a prime ideal of B and let p = q ∩ A. Then q is unramified in the

extension L/K if and only if q does not contain the different ideal DL/K .
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We recall the definition of the higher ramification groups. Let v denote the q-adic val-

uation which is the discrete valuation on B̂q with respect to which it is a complete local

ring. As noted earlier, the residue field extension k(q)/k(p) is a finite Galois extension,

and L̂q/K̂p is a Galois extension with Dq as the Galois group.

Definition 3.7. Let π be a local parameter of the discrete valuation ring B̂q. The lower

indexed ramification filtration {Gi}i≥−1 at q is defined to be

Gi B {g ∈ Dq|g(π) ≡ π (mod πi+1)}.

Equivalently, Gi = {g ∈ Dq|v(g(π) − π) ≥ i + 1} is the subgroup of Dq which acts

trivially on the quotient ring B̂q/πi+1. Note that G−1 = Dq, G0 = Iq, and the filtration is

a ([26, Page 63, Chapter IV, Section 1, Proposition 1]) decreasing filtration by normal

subgroups such that Gi is the trivial group for large i. We also refer to the groups Gi

as the higher ramification groups. Using the above definition, we can compute the

valuation of the different ideal DL/K at q as follows.

Proposition 3.8 (Hilbert’s Different formula, [26, Page 64, Chapter IV, Section 1,

Proposition 4]). Let DL/K be the different ideal of the extension L/K. Then

v(DL/K) = Σ∞i=0(|Gi| − 1).

Remark 3.9. The above result shows that v(DL/K) = 0 if and only if the prime q does

not contain the ideal DL/K , which by Theorem 3.6, is equivalent to q being unramified

in the extension L/K.

We summarize some more useful properties of the higher ramification groups fol-

lowing [26, Chapter IV, Section 2]. The multiplicative group U B B̂q−qB̂q of invertible

elements of B̂q has a filtration given by U (0) B U, U (i) B 1 + qi for i ≥ 1. By [26, Page

66, Chapter IV, Section 2, Proposition 6], the quotient U (0)/U (1) is the same as the mul-

tiplicative group k(q)× of k(q), and for i ≥ 1 the group U (i)/U (i+1) is (non-canonically)

isomorphic to the additive group of k(q). For i ≥ 0, define a group homomorphism

Θi : Gi/Gi+1 → U i/U i+1
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given by Θi(gGi+1) = g(π)/πU i+1, where π is a uniformizer of Bq. By [26, Page 67,

Chapter IV, Section 2, Proposition 7], for each i ≥ 0, Θi is a monomorphism. In par-

ticular, G0/G1 is a cyclic group isomorphic to a subgroup of roots of unity contained in

k(q) under Θ0, and so its order is coprime to the characteristic of k(q). The following

determines the structure of the inertia groups which is of utmost importance to us.

Theorem 3.10. Under the above notation the following hold.

1. Let k(q) be of characteristic 0. Then G1 is the trivial group, and G0 is a cyclic

group.

2. Let k(q) be of characteristic p > 0. Then the quotient G0/G1 is a cyclic group of

order prime-to-p, and for each i ≥ 1, Gi/Gi+1 is an abelian group, which is either

trivial or is an elementary abelian p-group. In particular, G1 is a p-group, and

G0 = G1 o (G0/G1).

The following yields a useful conjugation result.

Proposition 3.11 ([26, Page 69, Chapter IV, Section 2, Proposition 9]). For α ∈ G0,

τ ∈ Gi/Gi+1 and i ≥ 0, we have

Θi(ατα−1) = Θ0(αi) · Θi(τ).

We end this section by by recalling the definition of the upper indexed ramification

filtration of the decomposition group Dq. First extend the definition of Gi as follows.

For any real number u ≥ −1, set Gu B Gi where i is the smallest integer ≥ 1. Then we

have a continuous, piece wise linear, increasing function

α(u) =

∫ u

0

dt
[G0 : Gt]

. (3.1.4)

It can be seen that this function α is a homeomorphism from [−1,∞) to itself. Let β be

the inverse map. Define the upper numbering of the ramification groups as

Gv B Gβ(v). (3.1.5)
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Definition 3.12. A lower jump at q is defined to be an integer i ≥ 0 such that Gi+1 , Gi.

An upper jump at q is defined to be a real number v such that Gv , Gv+ε for all ε > 0.

3.2 Covers of Curves and Ramification Theory

In this section, we recall the basic notion and properties of the covers of a curve. We

will also see the associated ramification theoretic properties.

A morphism ψ : Y → X of schemes is said to be generically separable if there is an

open affine cover {Ui = Spec(Ri)} of X such that each extension Ri ⊂ OY(ψ−1(Ui)) of

domains is generically separable (see Definition 3.1).

Definition 3.13. Let X be a scheme. A cover of X is defined to be a finite generically

separable surjective morphism Y → X of schemes. We say that the cover is connected

(respectively, normal) if X and Y are both connected (respectively, a normal scheme).

In practice, we will mostly consider the covers of regular integral curves, and hence

the covers will be normal.

Definition 3.14. Let ψ : Y → X be a normal cover. We say that a closed point y ∈ Y is

unramified over ψ(x) if extension ÔY,y/ÔX,ψ(x) of complete local rings is unramified (cf.

Definition 3.2). We say that the cover ψ is unramified if every closed point y ∈ Y is

unramified.

Note that since ψ is generically separable, the generic points are always unramified

in the sense of Definition 3.2. Recall that an étale morphism of a scheme is defined

to be a flat, unramified morphism of finite type. We will use étale cover to mean that

the morphism is a finite, étale morphism. The following well known result shows that

when X is either a regular curve or a surface and when Y is normal, any finite morphism

Y → X is flat (for example, see the proof of [11, Proposition 4(b)]).

Lemma 3.15. Let A ⊂ B be an extension of Noetherian domains, either A is of dimen-

sion 1 or both A and B are of dimension 2. Let A be a regular ring, and B be a normal

domain which is finitely generated as an A-module. Then B is flat over A.
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Proof. When A is of dimension 1, it is also normal being regular. So A is a Dedekind

domain. Since B is also an integral domain, it is torsion-free over A and hence is flat.

Now assume that A and B are of dimension 2. Consider a maximal ideal m of A. Set

C B B ⊗A Am. By [5, Theorem 3.7], projdimAm(C) + depthAm(C) = depth(Am). Since C

is normal of dimension 2, it is Cohen-Macaulay, and hence both the depths are equal to

2. So C is free over Am and hence B is flat over A. �

Now we define a Galois cover of a scheme. The automorphism group Aut(Y/X) of a

cover ψ : Y → X is the group of automorphisms σ of Y such that φ ◦ σ = φ.

Definition 3.16. Let G be a finite group. A G-Galois cover is a cover Y → X of schemes

together with an inclusion ρ : G ↪→ Aut(Y/X) such that G acts simply transitively on

each generic geometric fibre.

When X is a connected integral scheme, the inclusion ρ is necessarily an isomor-

phism. If the inclusion ρ is not specified, we simply say that the cover Y → X is Galois

with group G. We will see shortly some examples (Example 3.23, 3.24) of Galois covers

of the projective line.

Now onward, let k be an algebraically closed field of characteristic p > 0. Let X be

a smooth projective k-curve, and k(X) be its function field. Let ψ : Y → X be a cover

of smooth connected projective k-curves. Note that for any affine open subset U ⊂ X,

OX(U) is a Dedekind domain.

By Definition 3.13, the extension k(Y)/k(X) of function fields is a finite separable

extension. Let x ∈ X be a closed point, and let y ∈ ψ−1(x) ⊂ Y . In this context we

say that the point y lies over x. Let mx and my denote the unique maximal ideal of the

complete discrete valuation rings ÔX,x and of ÔY,y, respectively. Then ÔY,y is the integral

closure of the ring ÔX,x in KY,y. Also note that KY,y is equal to the compositum k(Y) ·KX,x

of fields. So the field extension KY,y/KX,x is a finite separable extension. Since X is a

curve over the field k, by Lemma 3.15, the covering morphism ψ is flat. So y is un-

ramified over x is equivalent to the finite morphism ψ being étale at y. The ramification

index of y over x is defined to be the integer e(y|x) B emy (see Equation (3.1.1)). By
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Definition 3.4 and by the discussion in Section 3.1, y is unramified over x if e(y|x) = 1

and is ramified when e(y|x) > 1.

Definition 3.17. Under the above notation, if y is ramified over x, we also say the x is

a branched point. The branch locus of the cover φ is defined to be the set of branched

points in X. We also say that the cover φ is étale away from a subset B in X if the branch

locus of the cover φ is contained in the set B.

Since k(Y)/k(X) is an separable extension, the branch locus of the cover φ is a finite

set of closed points in X. Since k is algebraically closed, k(my) = k = k(mx). By

Equation (3.1.2),

deg(k(Y)/k(X)) =
∑

y∈φ−1(x)

e(y|x),

and e(y|x) is equal to the degree of the field extension KY,y/KX,x.

Now we deal with the Galois covers of smooth projective k-curves.

Definition 3.18. Let ψ : Y → X be a cover of smooth projective connected k-curves. Let

L/k(X) be the Galois closure of the finite extension k(Y)/k(X) of function fields, and Z

be the smooth projective connected k-curve with function field L. The Galois closure

of ψ is defined to be the connected Galois cover Z → X, the normalization of X in L.

Let φ : Z → X be the Galois closure of ψ with Galois group G. It is well-known ([22,

Lemma 4.2]) that the branch locus for the covers ψ and φ are the same. We denote it by

B. Let x ∈ B. Then G acts transitively on the set φ−1(x), the set of points in Z lying over

x. In view of Definition 3.3, we have the following.

Definition 3.19. Let z ∈ Z be a point lying above x. Let πz be a local parameter of the

discrete valuation ring OZ,z. The inertia group Iz at z in the cover φ is the subgroup of G

which acts by the identity on OZ,z/πz � ÔZ,z/πz.

Since k is an algebraically closed field, the residue degree is one. By Remark 3.5,

the decomposition group Dmz = Iz. For two points z and z′ in Z lying above x, the

groups Iz and Iz′ are conjugates in G. So up to conjugacy, we can talk about the inertia

group above x which we denote by Ix. By Theorem 3.10, the inertia group Ix is of



18 Chapter 3. Preliminaries

the form P o Z/m for some p-group P and m coprime to p. As in Definition 3.7,

there are lower indexed and upper indexed filtrations of the inertia group Iz, denoted

by {Iz,i}i≥0 and {Ia
z }a∈[−1,∞), respectively. So if πz be a uniformizer of OZ,z, Iz,i = {g ∈

Iz|g(πz) ≡ πz mod πi+1
z } and Ia

z B Iz,β(a), where β is the the inverse of the map α given by

Equation (3.1.4). By Theorem 3.10, Iz,1 is the p-group p(Iz).

Definition 3.20. Under the above notation we define the following.

1. The purely wild part of Iz is defined to be the subgroup Iz,1 = p(Iz).

2. If Iz = p(Iz) is non-trivial, we say that the ramification at z is purely wild.

3. We say that the ramification at z is tame if (|Iz|, p) = 1, and is wild otherwise.

4. A lower (respectively, upper) jump at z is defined to be a lower (respectively,

upper) jump at the prime mz (cf. Definition 3.12).

5. The conductor is defined to be the minimal integer h ≥ 1 such that Iz,h+1 is the

trivial group. If |Ix| = pm, p - m, the upper jump is defined to be σ B h/m.

Note that the conductor is the highest jump in the lower indexed ramification filtra-

tion. The lower and the upper jumps behave as follows with respect to the formation of

subgroups and quotients.

Proposition 3.21 ([26, Chapter IV]). Let z ∈ φ−1(x) ⊂ Z and let I denote the inertia

group at z. Let J be a subgroup of I. Then Ji = Ii for all i ≥ 0. If J is a normal subgroup

of I, then (I/J)v = IvJ/J for all v ≥ −1. Moreover, if J = I j for some j ≥ 0, (I/J)i = Ii/J

for i ≤ j and is trivial otherwise.

The ramification divisor associated to the cover φ is defined to be the Weil divisor

Dφ = Σz∈Zvz(Dz/x)z on Z, where Dz/x is the different ideal DKY,y/KX,x and vz is the mz-adic

valuation on ÔY,y. Using the Hilbert’s different formula (Proposition 3.8), the Riemann

Hurwitz formula associates the genus of the curves with the degree of the ramification

divisor.
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Proposition 3.22 (Riemann Hurwitz formula). Let φ : Z → X be a G-Galois cover of

smooth projective connected k-curves. Let Z has genus gZ and X has genus gX. For a

point z ∈ Z, let {Iz,i}i≥0 be the lower indexed ramification filtration of the inertia group

at z. Then

2gZ − 2 = |G|(2gX − 2) + deg(Dφ) = |G|(2gX − 2) + Σz∈ZΣ∞i=0(|Iz,i| − 1).

The following well known examples of Galois covers of P1 shows the ramification

theoretic properties discussed above.

Example 3.23. (Artin-Schrier Covers) Let p be a prime, h be coprime to p. Let k be

an algebraically closed field of characteristic p. Let f (x) ∈ k[x] be a polynomial of

degree h, and α be a root of the polynomial g(x, y) = yp − y − f (x) in a splitting field

over k(x). Then the Z/p-Galois field extension L = k(x)[α]/k(x) corresponds to a Z/p-

Galois cover φ : Y → P1 of smooth projective connected k-curves, where k(Y) = L.

For a choice τ of a generator of Z/p, the Z/p-action is given by τ(α) = α + 1. The

y-derivative of the polynomial g(x, y) is −1 , 0. So the cover φ is unramified over

A1 = Spec(k[x]). From the equation g(x, y) = 0 it follows that vx=∞(y−1) = h. So φ

is totally ramified over ∞. Let π be a uniformizer of ÔY,(y=∞), and let v∞ denote the

corresponding valuation. After possibly a change of variable, we have π = y−1/h and

ÔY,(y=∞) = k[[y−1/h]]. The τ action on y−1 is given by

τ(y−1) =
1

y + 1
=

y−1

1 + y−1 =
πh

1 + πh .

So v∞(τ(π) − π) = v∞(−1
hπ

h+1 + · · · ) = h + 1, and hence the conductor at ∞ is equal to

h. Furthermore, using The Riemann Hurwitz formula (Proposition 3.22), Y has genus
(h−1)(p−1)

2 .

Example 3.24. (Kummer Cover) Let p be a prime, and n be coprime to p. Consider the

cover φ : Y → P1
x corresponding to the extension

k(x) ↪→ k(x)[y]/(yn − x).
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Since x is given in terms of y, Y � P1
y . Then φ is a connected Z/n = 〈σ〉-Galois cover

with the action given byσ(y) = ζny, where ζn is an nth root of unity in k. The y-derivative

of g(x, y) B yn − x is given by nyn−1. Thus g(x, y) and its y-derivative have a common

root if and only (x, y) = (0, 0). So φ is étale away from {0,∞}. When n = 1, φ is a the

identity map of P1. So let n > 1. Since vx(y) = n = vx−1(y−1), φ is totally ramified over

the points 0 and∞.

We end this section with the following useful definition mentioned in Chapter 2.

Definition 3.25. For a finite group G and a subgroup I of G, we say that the pair (G, I)

is realizable if there exists a connected G-Galois cover of P1 branched only at ∞ such

that I occurs as an inertia group above∞.

In this case, G is necessarily a quasi p-group, that is, G = p(G) (see Chapter 2 for

notation).

3.3 Étale Fundamental Group

In this short section, we recall the notion of the étale fundamental group of a connected

scheme and some of its important quotients. Let U be a connected scheme, and Ω be

an algebraically closed field. Let ū : Spec(Ω) → U be a geometric point. Consider the

functor

Fū : ( finite étale covers of U)→ finite sets

which to any finite étale cover f : V → U of schemes associates the set of geometric

points v̄ : Spec(Ω)→ V such that f ◦ v̄ = ū.

Definition 3.26. Let U be a connected scheme, and let ū : Spec(Ω)→ U be a geometric

point. The étale fundamental group π1(U, ū) is defined to be the automorphism group

of the functor Fū.
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It follows that π1(U, ū) is a profinite group, and for any finite étale cover V → U, the

set Fū(V) is a finite set with a continuous π1(U, ū)-action. So the functor Fū factors as

Fū : ( finite étale covers of U)→ finite π1(U, ū) − sets→ finite sets,

where the later functor is the forgetful functor. One important result is that Fū induces

an equivalence of categories between the category of finite étale covers of U and the

category of finite sets equipped with a continuous π1(U, ū)-action. For a different choice

of the geometric point ū′, the groups π1(U, ū) and π1(U, ū′) are isomorphic up to an inner

automorphism of either of the groups. So we can talk of the group π1(U), up to its

isomorphism class as a profinite group, without considering the base point. It can also

be shown that the profinite group π1(U) is the inverse limit

π1(U) = lim
←−−

Aut(V/U)

where V varies over all connected finite Galois étale covers V → U. So any continuous

finite quotient G of π1(U) corresponds to a connected Galois étale cover of U with

group G. When the surjective homomorphism π1(U) � G is specified, there is an

isomorphism G → Aut(V/U) associated to the étale Galois cover.

We are interested in the case when U is a smooth affine connected curve over an

algebraically closed field k. There is a unique smooth projective connected k-curve X

containing U. Also any étale cover V → U extends uniquely to a cover Y → X of

smooth connected projective k-curves. The cover Y → X need not be étale, and its

branch locus is contained in X − U. Conversely, given any cover φ : Y → X of smooth

connected projective k-curves which is étale away from a finite set B of closed points in

X, the cover φ : φ−1(X − B) → X − B is a connected étale cover of curves. With this in

view, we recall some important quotients of the étale fundamental group in this setup.

Definition 3.27. Let U be a smooth connected curve over an algebraically closed field k

of characteristic p > 0. Let X be the smooth projective completion of U. Set B B X−U.
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1. The tame fundamental group πt
1(U) is defined to be the inverse limit

πt
1(U) B lim

←−−
Aut(φ−1(U)/U)

where φ varies over all the connected finite Galois covers φ : Y → X which are

étale away from B and are tamely ramified over B.

2. The prime-to-p fundamental group πp′

1 (U) is defined to be the inverse limit

π
p′

1 (U) B lim
←−−

Aut(V/U)

where V varies over all connected finite Galois étale covers V → U whose Galois

group has order prime-to-p.

3. The pro-p fundamental group is defined to be the inverse limit lim
←−−

Aut(V/U)

where V varies over all connected finite Galois étale covers V → U whose Galois

group is a p-group.

Note that πp′

1 (U) is the maximal prime-to-p quotient of the group π1(U). It is clear

from the definition that πt
1(U), πp′

1 (U) and π
p
1(U) are quotients of π1(U), and further-

more, πp′

1 (U) is a quotient of πt
1(U).

3.4 Formal Patching

In this section, we recall the notion of formal patching for covers of schemes. As a

consequence of the Riemann Existence Theorem ([1, page 332, Exposé XII, Theorem

5.1]), covers of smooth connected complex algebraic curves can be constructed by a

cut and paste method in analytic topology. However, this method is not applicable over

a more general field (for example, over an algebraically closed field k of characteristic

p > 0) because the Zariski topology is too week to patch covers defined over its vast

open sets. To this end, one works with schemes over k[[t]], and uses formal geometry.

One such patching result is [11, Theorem 1]. Using this technique together with a

Lefschetz type result we can eventually construct Galois covers of k-curves with the
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required type of Galois group and inertia groups. Although this technique works with

a certain generality, we only consider patching over the base ring k[[t]] for a field k.

We start by recalling this patching technique following [18]. Consider the following

notation.

Notation 3.28. Let X be an integral scheme. Let M(X) denote the category of coher-

ent sheaves of OX-modules, and P(X) denote the subcategory of M(X) consisting of

projective coherent OX-modules. LetA(X) andAP(X) be the category of coherent OX-

algebras which are the full subcategories ofM(X) and P(X), respectively. By S(X) and

SP(X) we denote the categories of generically separable (cf. Section 3.2) locally free

sheaves of OX-algebras which lie in M(X) and in P(X), respectively, as OX-modules.

For any finite group G, G(X) and GP(X) denote the corresponding subcategories of

G-Galois OX-algebras.

Let k be any field. Consider the power series ring R B k[[t]] in one variable over

k. An R-curve is defined to be a scheme X together with a flat proper morphism

X → Spec(R) whose geometric fibres are reduced connected curves. We work with

the following setup.

Let T ∗ be a regular irreducible projective R-curve with the closed fibre T 0. Let

S 0 ⊂ T 0 be a non-empty finite set of closed points that contains all the singular points

of T 0.

For any affine open subset U of the regular affine curve T 0 − S 0, consider an affine

open subset Ũ of T ∗ whose closed fibre is U. Set U∗ to be the t-adic completion of

Ũ. The definition of U∗ is independent of the choice of Ũ. For a point s ∈ S 0, let

KT ∗,s denote the function field of ÔT ∗,s. So Spec(KT ∗,s) is the the t-adic completion of

Spec(ÔT ∗,s) − s.

Definition 3.29. The module patching problem M̄ for the pair (T ∗, S 0) consists of the

following data.

1. for every irreducible component U of T 0 − S 0, a finite OU∗-module MU ;

2. for every point s ∈ S 0, a finite ÔT ∗,s-module Ms;
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3. (patching data) for each point s ∈ S 0 and each irreducible component U of T 0−S 0

whose closure in T ∗ contains s, a KT ∗,s-module isomorphism

µs,U : MU ⊗OU∗ KT ∗,s → Ms ⊗ÔT∗ ,s
KT ∗,s.

A module patching problem M̄ for (T ∗, S 0) as above can be summarized with the

following diagram.

OU∗

��

// KT ∗,s

��

KT ∗,s

��

ÔT ∗,s

��

oo

MU
// MU ⊗OU∗ KT ∗,s

∼

µs,U
// Ms ⊗ÔT∗ ,s

KT ∗,s Ms
oo

Definition 3.30. A morphism between patching problems M̄ = ({MU}, {Ms}, {µU,s}) and

M̄′ = ({M′
U}, {M

′
s}, {µ

′
U,s}) is defined to be a collection of morphisms MU → M′

U and

Ms → M′
s of ÔU∗ and ÔT ∗,s-modules respectively, which are compatible with the KT ∗,s-

module isomorphisms.

Now consider the category M(T ∗, S 0) of module patching problems. Similarly we

define the categories P(T ∗, S 0), A(T ∗, S 0) and so on. There is a natural base change

functor

βM,S 0 : M(T ∗)→M(T ∗, S 0).

Similarly there are base change functors for P(T ∗, S 0), A(T ∗, S 0) and so on, which

we denote by replacing the subscriptM in β accordingly. The following are the main

results of formal patching.

Theorem 3.31. Let T ∗ be a regular irreducible projective R = k[[t]]-curve with the

closed fibre T 0. Let S 0 ⊂ T 0 be a non-empty finite set of closed points containing all the

singular points of T 0. Then the following hold.

1. ([16, Theorem 3.2.12]) The base change functor βM,S 0 : M(T ∗) → M(T ∗, S 0) is

an equivalence of categories. The same result holds for the functors βA,S 0 and

βG,S 0 for any finite group G.
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2. ([18, Theorem 1]) The base change functors βP,S 0 , βAP,S 0 and βGP,S 0 for any finite

group G are equivalences of categories.

Corollary 3.32 ([18, Corollary to Theorem 1]). Under the hypothesis of Theorem 3.31

with U = T 0 − S 0, suppose that YU → U∗ and for each s ∈ S 0, Ys → Spec(ÔT ∗,s)

are normal (respectively, normal G-Galois for a finite group G) covers. Also assume

that for each s ∈ S 0, there is an isomorphism (respectively, isomorphism as G-Galois

covers) YU ×U∗ Spec(KT ∗,s) � Ys ×Spec(ÔT∗ ,s)
Spec(KT ∗,s). Then there is a unique normal

cover (respectively, a normal G-Galois cover) Y → T ∗ the induces the given covers,

compatible with the given isomorphisms.

Remark 3.33. Note that by Lemma 3.15, the covers YU → U∗ and Ys → Spec(ÔT ∗,s)

corresponds to elements inAP(U∗) and inAP(Spec(ÔT ∗,s)) respectively.

Corollary 3.32 generalizes the following result from [11].

Corollary 3.34 ([11, Proposition 4(b)]). Let X be a smooth projective connected curve

over a field k and x ∈ X be a closed point. Let U = X − x = Spec(A). Suppose that

Y1 → Spec(A[[t]]) and Y2 → Spec(ÔX,x[[t]]) are normal (respectively, normal G-Galois

for a finite group G) covers. Assume that there is an isomorphism (G-Galois equivariant

isomorphism) between the induced covers over Spec(KX,x[[t]]). Then there is a unique

normal cover (respectively, a normal G-Galois cover) Y → X ×k k[[t]] the induces Y1

and Y2 compatibly with the given isomorphism over Spec(KX,x[[t]]).

Using formal patching, Harbater showed that the wild part of the inertia groups of a

given cover can be increased.

Theorem 3.35 ([15, Theorem 3.6], [11, Theorem 2]). Let G be a finite group, H be a

subgroup of G, and let ψ : Y → X be an H-Galois cover of smooth connected projective

curves over an algebraically closed field k of characteristic p > 0 which is étale away

from a finite non-empty set B = {x1, · · · , xr} of closed points in X. For 1 ≤ i ≤ r, let

Ii = Pi o Ei occurs as an inertia group above xi for a p-group Pi and a cyclic group Ei

of order prime-to-p. For each i, suppose that I′i = P′i o Ei is a subgroup of G such that

P′i is a p-group containing Pi. Then there is a normal G-Galois cover φ : Z → X étale
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away from B such that I′i occurs as an inertia group above xi and φ dominates the cover

ψ. Moreover, if G = 〈H, I′1, · · · , I
′
r〉, the cover φ is a connected cover.

We end this section by an explicit construction of T ∗ which will be used later.

Remark 3.36. Let k be an algebraically closed field of characteristic p > 0. Let X be

a smooth projective connected k-curve. Let T be the blow-up of X × P1
t at the point

(x, t = 0). The total transform T 0 of the zero locus of (t = 0) consists of two irreducible

components, a copy of X and the exceptional divisor P1
y meeting at the point τ. Let T ∗

be the formal completion of T along T 0. So T ∗ is an irreducible projective k[[t]]-curve

whose closed fibre is T 0. The rational functions x + y and t define morphisms T → P1

which we denote by π(x + y) and π(t), respectively. Consider the finite generically

separable map (π(x+y), π(t)) : T → P1
z ×P

1
t . So we have a cover T ∗ → P1

z ×Spec(k[[t]]).

Also T in a neighborhood of τ is given by the equation t = xy. So T̂ ∗ = Spec(ÔT ∗,τ) =

Spec(k[[x, y]][t]/(t − xy)) = Spec(k[[x, y]]).



Chapter 4

Main Problems

4.1 Motivating Problems

For a detail historic motivation behind the conjectures posed by Abhyankar, see [17]. In

this section, we present some of these conjectures and results which motivate our main

problems. These are related to the structure of the étale fundamental group of a smooth

connected affine curve.

Let k be an algebraically closed field, and U be a smooth connected affine k-curve.

Let U ⊂ X be the smooth projective completion. Suppose that X has genus g, and B B

X − U consists of r ≥ 1 closed points. We consider the étale fundamental group π1(U)

(see Definition 3.26) as a profinite group, ignoring the base point. First assume that k is

a field of characteristic 0. Then it is known (using localization and Lefschetz theorems)

that the structure of π1(U) is independent of the base field, and π1(U) is isomorphic to

the profinite completion of the topological fundamental group Π B π
top
1 (U(C)) of the

topological space of the C-points of U. More precisely, by [1, XIII, Corollary 2.12],

π1(U) is the profinite group Π̂ on 2g + r generators a1, · · · , ag, b1, · · · , bg, c1, · · · , cr

which satisfy
∏g

i=1[ai, bi]
∏r

j=1 c j = 1. Thus π1(U) is a free profinite group which is

topologically finitely generated by 2g + r − 1 elements. So π1(U) is determined by its

finite quotients. A finite group G occurs as a Galois group of a connected étale cover of

U if and only if it is generated by at 2g + r − 1 elements. In particular, π1(A1
C) = {1}.

27
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For the rest of the chapter assume that k has characteristic p > 0.

It can be seen from Example 3.23 that the above results are no longer true. In fact,

by the Artin Schreier theory, there are infinitely many linearly disjoint connected Z/p-

Galois étale covers of U, and consequently, the étale fundamental group of a smooth

connected affine curve in positive characteristic is never finitely generated. One of the

fundamental problem in arithmetic geometry is to understand the structure of the group

π1(U). The full structure of π1(U) is not known in this case. [1, XIII, Corollary 2.12]

describes the following results for certain quotients (see Definition 3.27) of π1(U) given

as follows.

1. πt
1(U) is a quotient of Π̂ and hence is a finitely generated profinite group.

2. πp′

1 (U) is isomorphic to the maximal prime-to-p quotient of the group Π̂.

We note that although the tame fundamental group πt
1(U) is a finitely generated

group, its structure is not understood in general. More precisely, we do not know all

the finite groups that occur as the Galois groups of tamely ramified connected Galois

covers of U.

Another aspect of the study of π1(U) is to understand the set πA(U) of isomorphism

classes of finite (continuous) group quotients of π1(U), or equivalently, the groups which

occur as the Galois groups of connected étale covers of U. Although this set does not

determine the full structure of π1(U) (this group not being finitely generated), it gives

some idea of the possible Galois étale covers of U. As before, for any finite group G we

denote the maximal quasi p-subgroup of G by p(G). It is generated by all elements of p-

power order. In 1957 Abhyankar conjectured (known as Abhyankar’s Conjecture on the

affine curves, [2]) on what groups can occur in the set πA(U), which is now a Theorem.

The forward direction of the conjecture follows from the work of Grothendieck. The

backward direction was shown to be true by Serre (for solvable groups and U as the

affine line, [27]), Raynaud (for general groups and U = A1, [25]), Harbater (general

case, [12, Theorem 6.2]).

Theorem 4.1 (Abhyankar’s Conjecture on the affine curves; [2, Section 4.2]). Let X

be a smooth projective connected curve of genus g over an algebraically field k of
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characteristic p > 0. Let r ≥ 1 and B be a finite set of closed points in X. Set U B X−B.

Then a finite group G occurs as the Galois group of an étale cover V → U of smooth

connected k-curves if and only if G/p(G) is generated by at most 2g + r − 1 elements.

The following is a special case of the above result.

Theorem 4.2 (Abhyankar’s Conjecture on the affine line; [25, Corollary 2.2.2]). Over

an algebraically closed field k of characteristic p > 0, there is a Galois cover Y → P1

of smooth connected projective k-curves branched only at∞ with group G if and only if

G is a quasi p-group, i.e. G = p(G).

4.2 The Inertia Conjecture

In this section, we state one of our main problems, the Inertia Conjecture, which is a

more refined statement about the local ramification behaviour of the connected Galois

étale covers of A1.

As before, let k be an algebraically closed field of characteristic p > 0. Theorem 4.2

provides a classification of all the finite groups that occur as the Galois groups of the

connected étale covers of the affine line, namely the quasi p-groups. The next natural

question is that given a quasi p-group G, what are the inertia groups that occur over

∞ in a G-Galois covers of P1 étale away from ∞? Abhyankar’s study of the branched

covers of P1 given by explicit equations led him to the following conjecture, known as

the Inertia Conjecture (IC).

Conjecture 4.3 (IC, [4, Section 16]). Let G be a finite quasi p-group. Let I ⊂ G be

an extension of a p-group P by a cyclic group of order prime-to-p. Then there is a

connected G-Galois cover of P1 étale away from ∞ such that I occurs as an inertia

group at a point over∞ if and only if the conjugates of P in G generate G.

A special case of the above conjecture is when I is a p-group. This is known as the

Purely Wild Inertia Conjecture (PWIC).
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Conjecture 4.4 (PWIC). Let G be a finite quasi p-group. A p-subgroup P of G occurs

as the inertia group at a point above ∞ in a connected G-Galois cover of P1 branched

only at∞ if and only if the conjugates of P generate G.

The forward direction of the IC (Conjecture 4.3), namely, if such a cover exists, then

the conjugates of the p-subgroup P in G generate G, can be solved using the fact that the

tame fundamental group of the affine k-line is trivial. So the question remains whether

for each possible subgroup I of G which satisfy the necessary conditions of Conjecture

4.3, the pair (G, I) is realizable (cf. Definition 3.25).

Using a formal patching technique, Harbater has shown (Theorem 3.35) that the

purely wild part of the inertia groups can be enlarged. In particular, the PWIC is true

when P is a Sylow p-subgroup of G. As a consequence, the PWIC is true for any quasi

p-group whose order is strictly divisible by p.

In general, the IC has been proved to be true only in a few cases (see [8], [23], [22],

[20], [10] and [17] for more details) and even the PWIC remains wide open at this

moment. Previously the following affirmative results were known.

Theorem 4.5. The IC is true for the following groups G.

1. ([8, Theorem 1.2]) p ≥ 5 and G is Ap or PS L2(p).

2. ([22, Theorem 1.2]) p ≡ 2 (mod 3) is an odd prime and G = Ap+2.

The following is the first existence result for covers of the affine line whose inertia

groups are strictly contained in a Sylow p-subgroup.

Theorem 4.6 ([23, Corollary 3.6]). Let p ≥ 7. Suppose l is a prime such that PS L2(l)

has order divisible by p. If I is cyclic of order pr or dihedral of order 2pr with 1 ≤ r ≤

vp(|PS L2(l)|), the pair (G, I) is realizable.

Other examples of the realization of the inertia groups can be found in [20, Section

4].
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Another related open problem is the ‘minimal upper jump problem’ ([7]). Let G be

a quasi p, transitive permutation group of degree d, and suppose that φ : Y → P1 is a

G-Galois cover of smooth connected projective k-curves branched only at ∞ such that

P o Z/m occurs as an inertia group over∞ where P � Z/p and (p,m) = 1. If the upper

jump for this cover over∞ is σ, by [24, Theorem 2.2.2], for any i ≥ 1 with p - (σ+ i)m,

there is a connected G-Galois étale cover of the affine line such that P o Z/m occurs as

an inertia group above∞ and the upper jump is σ + i. One can see that for a cover φ as

above to exist, σ has a certain form that will be made explicit in Theorem 5.9(3). This

imposes a lower bound on the possible upper jumps for the above kind of covers when

G and P are fixed. The “minimal possible upper jump” problem asks whether for G and

P as above (i.e. G = 〈PG〉) this lower bound is attained for a suitable G-Galois étale

cover of the affine line with the inertia group above∞ of the form P o Z/m for some m

coprime to p.

Question 4.7. Let G be a quasi p group which is a transitive permutation group of

degree d = p + t, t ≥ 1, and P � Z/p be a p-cyclic subgroup of G such that the pair

(G, P) is realizable. Does there exist a connected G-Galois étale cover of the affine line

which realizes the minimal possible upper jump?

Such questions were studied and answered for a few cases in [7].

Remark 4.8. For G = Ap+t with P = 〈(1, · · · , p)〉, the above question combined with

Theorem 5.9(3) asks the existence of a connected Ap+t-Galois étale cover of the affine

line such that P is the Sylow p-subgroup of an inertia group above ∞ and the upper

jump over∞ is given by

σ =


d+1
p−1 if p|t

d
p−1 otherwise.

By [7, Corollary 2.2], the above question has an affirmative answer for p + 2 ≤ d < 2p

with (p, d) , (7, 9).
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4.3 Generalizations of the Inertia Conjecture

In this section, we pose certain questions which generalize the Inertia Conjecture (Con-

jecture 4.3). Although we will study these generalizations for p > 2, in this section, let

p be any prime. We consider the following notation for the rest of this section.

Notation 4.9. Let r ≥ 1, X be a smooth projective connected k-curve, G be a finite

group. Let B = {x1, · · · , xr} ⊂ X be a set of closed points in X. Let P1, · · · , Pr be

p-subgroups of G, possibly trivial. Define a subnormal series {H j} j≥0 of G inductively

as follows.

H0 B G, H j+1 B 〈P
H j

i |1 ≤ i ≤ r〉 ⊂ G.

Then each H j is a normal subgroup (normal quasi p-subgroup if Pi is non-trivial for

some i) of H j−1 containing all the Pi’s. Since G is a finite group, there is a minimal

non-negative integer l such that H j = Hl for all j ≥ l.

Under the above notation, let φ : Z → X be a connected G-Galois cover étale away

from B such that Ii occurs as an inertia group above xi, 1 ≤ i ≤ r. Set Y0 B X. Since H1

is a normal subgroup of G, the cover φ factors through a connected G/H1-Galois cover

ψ1 : Y1 → X étale away from B such that Ii/Ii ∩ H1 occurs as an inertia group above xi,

1 ≤ i ≤ r. Inductively for 1 ≤ j ≤ l, the H j−1-Galois cover Z → Y j−1 factors through a

connected H j−1/H j-Galois cover ψ j : Y j → Y j−1 étale away from B. Moreover, if yi, j is

a point of Y j lying above xi, then Ii ∩H j−1/Ii ∩H j occurs as an inertia group above yi, j−1

in the cover ψ j, 1 ≤ i ≤ r. So φ is the composition of a tower

Z // Yl
ψl
// Yl−1

ψl−1
// · · ·

ψ2
// Y1

ψ1
// Y0 = X,

where ψ j : Y j → Y j−1 is an H j−1/H j-Galois cover of smooth projective connected k-

curves for 1 ≤ j ≤ l. Also note that l is the minimal non-negative integer such that

Hl = 〈PHl
i |1 ≤ i ≤ r〉.

We ask whether the converse is also true.

Question 4.10 (Q[r, X, B,G]). Let r, X, G and B = {x1, · · · , xr} ⊂ X be as in Notation

4.9. For 1 ≤ i ≤ r, let Ii ⊂ G be an extension of a p-group Pi (possibly trivial) by a
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cyclic group of order prime-to-p such that there is a tower

Yl
ψl
// Yl−1

ψl−1
// · · ·

ψ2
// Y1

ψ1
// Y0 B X

of covers of smooth projective connected k-curves with l and H j as in Notation 4.9,

ψ j : Y j → Y j−1 is an H j−1/H j-Galois cover, and if yi, j is a point of Y j lying above xi, then

Ii ∩ H j−1/Ii ∩ H j occurs as an inertia group above yi, j−1 in the cover ψ j, 1 ≤ i ≤ r. Let

ψ : Yl → X denote the composite morphism.

Does there exist a connected G-Galois cover φ of X, étale away from B, dominating

the cover ψ such that Ii occurs as an inertia group above the point xi for 1 ≤ i ≤ r ?

First consider the following two examples that will help us make some observations

on the necessity of the conditions we impose in the above question.

Example 4.11. Take r = 1, X as an elliptic curve with origin 0, B = {0}, P1 as the trivial

group, G = I1 = Z/m where m is coprime to p. Then H1 is the trivial group. Since there

is a connected Z/m-Galois étale cover of X, we have G/H = Z/m ∈ πt
A(X − B). From

the Riemann Hurwitz formula (Proposition 3.22) we obtain

2gY − 2 = m(2 − 2) +
m
m

(m − 1).

So m must be an odd integer. Thus if m is an even integer, there is no Z/m-Galois

connected cover Y → X étale away from {0} over which it is totally ramified.

Example 4.12. Let H be the elementary abelian group H = 〈τ1〉 × · · · × 〈τp〉 � Z/p ×

· · · × Z/p of p-exponent p. Then 〈σ〉 � Z/p acts on H via the action of σ on the set

{1, · · · , p} as an element of S p. Consider the wreath product G = H o 〈σ〉 � Z/p o Z/p.

Take X to be an an ordinary elliptic curve E with origin 0. Take r = 1, P = I = 〈τ1〉.

Then H1 = H, and H2 = P. There is a unique connected G/H � Z/p-Galois étale

cover ψ1 : Y1 B E → E. Now assume that there is a connected G-Galois cover Y → E

dominating ψ1 such that P occurs as an inertia group over 0. As observed before, the

connected H1-Galois cover Y → Y1 factors via an étale Galois cover Y2 → Y1 = E with

group H1/H2 which is an elementary abelian group of order pp−1, a contradiction since

the pro-p étale fundamental group πp
1(E) of E is a free profinite group on one generator.
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We have the following preliminary observations.

Remark 4.13. We note the following in Question 4.10.

1. Since p(Ii) = Pi ⊂ Hl for all i, the cover ψ and each of the Galois covers ψi are

tamely ramified.

2. For 1 ≤ j ≤ l, let B j−1 ⊂ Y j−1 be the brunch locus of the cover ψ j, 1 ≤ j ≤ l. Then

H j−1/H j ∈ π
t
A(Y j−1 − B j−1). But only assuming this, we get a negative answer to

the above question as seen from Example 4.11. So we need the hypothesis about

the existence of the cover ψ j’s with the given ramification behavior.

3. Example 4.12 shows that only assuming the existence of ψ j’s for j < l, we get a

negative answer to Question 4.10.

4. When all the p-groups Pi are trivial, taking φ = ψ gives the affirmative answer to

the question.

In what follows, we assume that P1 is non-trivial.

So H j is a non-trivial normal quasi p-subgroup of H j−1 for 1 ≤ j ≤ l. We make the

following observations when X = P1 and l ∈ {0,∞}.

Remark 4.14. Let X = P1. If each Ii ⊂ Hl, then ψ is the identity map P1 → P1 as there

is no non-trivial étale cover of P1. So l = 0, i.e. G = H0 = 〈PG
i |1 ≤ i ≤ r〉, and G must

be a quasi p-group. This holds in particular, when all the Ii’s are p-groups. Also note

that if l = 1 and ψ1 is a two point branched Galois cover of P1 (so in particular, r = 2),

by the Riemann Hurwitz formula, ψ is the Z/n-Galois Kummer cover of P1 branched at

{x1, x2} which is totally ramified above these points.

With the above remark, a special case of Question 4.10 (i.e. Q[r,P1, B,G] with each

Ii ⊂ Hl or equivalently l = 0) is the following which we pose as the Generalized Inertia

Conjecture (GIC).

Conjecture 4.15 (GIC). Let r ≥ 1, G be a finite quasi p-group. For 1 ≤ i ≤ r, let

Ii ⊂ G be an extension of a p-group Pi by a cyclic group of order prime-to-p such that
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G = 〈PG
1 , · · · , P

G
r 〉. Let B = {x1, · · · , xr} be a set of closed points in P1. Then there is

a connected G-Galois cover of P1 étale away from B such that Ii occurs as an inertia

group above the point xi for 1 ≤ i ≤ r.

Remark 4.16. As in the case of Question 4.10, we again allow Pi’s to be trivial for

2 ≤ i ≤ r. Note that r = 1 is the unsolved direction of the IC (Conjecture 4.3).

Remark 4.17. Under the notation and the hypothesis of Question 4.10, we can ask the

following weaker questions.

1. (Q[r, X, B,G]weak) Does there exist a connected G-Galois cover φ of X étale away

from B such that Ii occurs as an inertia group above xi, 1 ≤ i ≤ r? (Here we drop

the condition on φ to dominate the cover ψ).

2. (Q[r, X,G]) Do there exist a set B′ = {x′1, · · · , x
′
r} of closed points in X and a

connected G-Galois cover φ of X étale away from B′ such that Ii occurs as an

inertia group above x′i , 1 ≤ i ≤ r?

Note that when the ψ j’s in Question 4.10 are uniquely determined, Q[r, X, B,G]weak

is equivalent to Q[r, X, B,G]. This holds for the two cases in Example 4.11. Later we

will see some partial answer to Question 4.10 for l ∈ {0, 1} as the application of the

formal patching technique and by constructing covers given by the explicit equations.

When the inertia groups Ii are p-groups Pi we have the following special case of the

GIC which we see as a generalization of the PWIC (Conjecture 4.4).

Conjecture 4.18 (GPWIC or Generalized Purely Wild Inertia Conjecture). Let r ≥ 1,

and G be a finite quasi p-group. Let P1, · · · , Pr be non-trivial p-subgroup of G such

that G = 〈PG
1 , · · · , P

G
r 〉. Let B = {x1, · · · , xr} be a set of closed points in P1. Then there

is a connected G-Galois cover of P1 étale away from B such that Pi occurs as an inertia

group above the point xi for 1 ≤ i ≤ r.

4.4 Main Results

In this section, we briefly mention our main results. As before, p denotes an odd prime.

Our first result from [10] is the following evidence for the PWIC.
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Theorem 4.19 ([10, Corollary 7.11]). Let u ≥ 1 be an integer. For 1 ≤ i ≤ u, let

di = p or di > p be coprime to p. Then the PWIC (Conjecture 1.3) is true for the group

Ad1 × · · · × Adu . Moreover, for any p-group P, the PWIC is true for Ad1 × · · · × Adu × P.

This is a consequence of realizing the inertia group generated by a p-cycle for an

étale Alternating group cover of the affine line (Corollary 7.3) together with the follow-

ing result.

Theorem 4.20 ([10, Theorem 7.6]). Let G1, G2 be two perfect quasi p-groups. Let

τ ∈ G1 and σ ∈ G2 be of order p and pr for some r respectively. Let P1 = 〈τ〉 ≤ G1,

P2 = 〈σ〉 ≤ G2. Assume that the pairs (G1, P1) and (G2, P2) are realizable (cf. Definition

3.25). Then there exists 1 ≤ a ≤ p − 1 such that for I B 〈(τa, σ)〉 ≤ G1 × G2, the pair

(G1 ×G2, I) is also realizable.

By Remark 7.12, a similar result to Theorem 4.19 is also true for any product of

simple non-abelian quasi p-groups. Moreover, using explicit covers we show that we

have affirmative answer to the minimal jump problem (Question 4.7) for G = Ad and

P = 〈(1, · · · , p)〉 (see Corollary 6.15). These results are embodied in Section 6.1, Sec-

tion 6.2 and Section 7.2.

In [9], we introduced Question 4.10. In order to study this question for covers of

the projective line with Alternating or Symmetric group as Galois groups, we studied

the covers given by explicit affine equations and obtained crutial results using formal

patching. These are the contents of Section 6.1 and Section 6.2. Using these technique,

we can produce evidence towards the IC (Conjecture 4.3) in the following cases (see

Section 7.3).

Theorem 4.21 (Theorem 7.15, 7.16, 7.17, 7.19). For an odd prime p ≡ 2 (mod 3), the

IC is true for the groups Ap+1, Ap+3 and Ap+4. When p ≡ 2 (mod 3), 4 - (p + 1) and

p ≥ 11, the IC is true for Ap+5.

The result for Ap+1 is of special interest since before [9], there was no example of an

Ap+1-Galois étale cover of the affine line such that the tame part of the inertia group at a

point above∞ is non-trivial.
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In Section 7.4 we show that for the groups for which the PWIC is already known to

be true, the GPWIC is also true. Namely, we prove the following result.

Theorem 4.22 (Corollary 7.26). Let G be a quasi p-group, P1, · · · , Pr are p-subgroups

of G for some r ≥ 1 such that G = 〈PG
1 , · · · , P

G
r 〉. Let B B {x1, · · · , xr} be a set of closed

points in P1. There is a connected G-Galois cover of P1 étale away from B such that Pi

occurs as an inertia group above xi where G is one of the following groups.

1. G is a p-group;

2. G has order strictly divisible by p;

3. G = G1 × · · · × Gu where each Gi is either a simple Alternating group of degree

d ≥ p, where d = p or (d, p) = 1 or PS L2(p) or a p-group or a simple non-

abelian group of order strictly divisible by p.

We also show that the GPWIC holds for a certain product of groups if it holds for

individual groups. This generalizes [20, Corollary 4.6].

Theorem 4.23 (Theorem 7.24). Let G1 and G2 be two finite quasi p-groups such that

they have no non-trivial quotient in common. If the GPWIC is true for the groups G1

and G2, then the GPWIC is also true for G1 ×G2.

Finally, in Section 7.5 we study Q[r, X, B,G] (Question 4.10) and the generalizations

of the Inertia Conjecture. We obtain the following result towards Q[2,P1, {0,∞},G].

Theorem 4.24 (Theorem 7.36, 7.39, 7.40). For r = 2, X = P1, Question 4.10 has

an affirmative answer when G is an extension of a p-group by a cyclic group of order

prime-to-p or when p ≡ 2 (mod 3), G = S p or S p+1 and both P1 and P2 are non-trivial.

We also have the similar results for the groups S p+2 and S p+3 with more restrictions

on p. We obtain the following result for r = 1 and X any curve of genus ≥ 1, an

affirmative result towards Q[1, X, {∗}, S d].

Theorem 4.25 (Corollary 7.34). Let p be an odd prime and let X be any smooth pro-

jective k-curve of genus ≥ 1. Then for r = 1, Question 4.10 has an affirmative answer

for the group S p and when p ≡ 2 (mod 3) for the groups S p+1, S p+2, S p+3, S p+4.
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The above theorem is a corollary to Proposition 7.30 which suggests that the answer

to Question 4.10 which is related to the understanding of the structure of the group

π1(X−B) has a close connection with the IC, the tame fundamental group πt
1(X \B) and

the group theoretic behavior of the Galois groups.

In Section 6.2 we also obtain some generalizations of the previously known results.

In particular, Corollary 6.22 generalizes a patching result [25, Theorem 2.2.3] of Ray-

naud which was an important step towards proving Abhyankar’s conjecture on the affine

line (Theorem 4.2). Another such generalization is Theorem 6.26 of [15, Theorem 2.1,

Theorem 4.1] which solved the split quasi p embedding problem.
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Useful Results towards the Main

Problems

5.1 Group Theoretic Results

Our main problems concern the elements of the normalizer of a certain (inertia) sub-

group inside our (Galois) group of interest. To understand these, we need some group

theoretic results. The following results are useful to decide which subgroups of Ad or of

a product of Alternating groups are potentially inertia subgroups. A special case (r = 1

and d < 2p) of the following proposition can be found in [22, Lemma 4.13, Lemma

4.14].

Proposition 5.1 ([10, Proposition 2.1]). Let p be a prime, d ≥ p. Let τ be an element of

order p in the Symmetric group S d. Let τ = Πr
i=1τi be the disjoint cycle decomposition

of τ with τ1, · · · , τr disjoint p-cycles and rp ≤ d. For σ ∈ S d let Supp(σ) denote

the support of σ. Then there exists an element θ ∈ Sym(Supp(τ)) ∩ NS d (〈τ〉) of order

p − 1 such that conjugation by θ is a generator of Aut(〈τ〉). Moreover, let H′ B {σ ∈

Sym(Supp(τ))|στiσ
−1 = τ j for 1 ≤ i, j ≤ r}. Then NS d (〈τ〉) = 〈θ,H′〉 × H, where H is

the Symmetric group on the set {1, · · · , d} \ Supp(τ).

In particular, if β ∈ NS d (〈(1, · · · , p)〉) has order prime-to-p, then β = θiω for some

integer 1 ≤ i ≤ p − 1 and an element ω ∈ H = Sym({p + 1, · · · , d}).

39
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Proof. For a p-cycle τ′ in S p, the normalizer NS p(〈τ
′〉) is the affine general linear group

AGL(1, p) of order p(p − 1) and has an element of order p − 1. Diagonally embedding

S p in Sym(Supp(τ)) we obtain an element θ of order p − 1 in Sym(Supp(τ)). Then

θ normalizes 〈τ〉 and the conjugation by θ has order p − 1. Since τ is of order p,

the full automorphism group of 〈τ〉 is generated by θ. So the natural homomorphism

NSym(Supp(τ))(〈τ〉) → Aut(〈τ〉) is a surjection whose kernel is the centralizer of 〈τ〉 in

Sym(Supp(τ)). Observe that the centralizer of 〈τ〉 in Sym(Supp(τ)) is H′. So NS d (〈τ〉) =

〈θ,H′〉 × H. �

Notation 5.2. Let u ≥ 1, and G = G1 × · · · × Gu where each Gi is a finite group. For

g ∈ G, let g = (g(i))1≤i≤u, and set S (g) = {1 ≤ i ≤ u|g(i) , 1}. Set l(g) = |S (g)|. For

λ ⊆ {1, · · · , u}, let Hλ B Πi∈λGi and let πλ : G � Hλ be the projection.

Lemma 5.3 ([10, Lemma 2.3]). Let u ≥ 1 be an integer, G = G1 × · · · ×Gu, where each

Gi is a simple non-abelian quasi p-group. Let Q be a p-subgroup whose conjugates

generate G. Then there are elements g1, · · · , gr in Q for some r ≥ 1 satisfying the

following properties. Set S ≤ j B ∪
j
i=1S (gi), 1 ≤ j ≤ r.

1. S ≤r = {1, · · · , u}, l(g1) ≥ · · · ≥ l(gr) and for all 1 ≤ i, j ≤ r, S (gi) ∩ S (g j) , ∅.

2. For all 1 ≤ i ≤ r, HS ≤i is generated by the conjugates of 〈g1, · · · , gi〉.

3. For any subset {i1, · · · , it} ⊂ {1, · · · , r} and any integers 1 ≤ ai1 , · · · , ait ≤ p − 1,

l(g
ai1
i1
· · · gait

it
) ≤ max1≤ j≤tl(gi j).

4. For each 1 ≤ i ≤ r, ord(g( j)
i ) = p for some 1 ≤ j ≤ u.

Proof. Choose g1 ∈ Q such that l(g1) ≥ l(g) for all g ∈ Q. If l(g1) = u then set r = 1,

and note that conditions (1) and (3) are trivially satisfied. Condition (2) holds because

G j’s are simple groups. Inductively define gi as follows. For i ≥ 1, if S ≤i , {1, · · · , u},

choose gi+1 among g ∈ Q with S (g) ∩ (S ≤i)c , ∅ such that l(gi+1) is maximal. The

inclusion S ≤i ⊂ S ≤i+1 implies l(gi) ≥ l(gi+1). Since G j’s are all simple non-abelian

groups, the conjugates of 〈g1, · · · , gi〉 generate HS ≤i . For j ≤ i − 1, l(gig j) ≤ l(g j) and

hence S (gi)∩S (g j) , ∅. Condition (3) follows by the choice of g j’s to maximize l(g j)’s.



5.2. Ramification Theory for some special type of Covers 41

Finally for condition (4), note that if pk+1 is the least order of g( j)
i for various j’s

among the non-trivial g( j)
i , then replacing gi by gpk

i we obtain the result. �

Remark 5.4. In the above lemma, if 1 ≤ u ≤ p, then r = 1, i.e. there exist g ∈ Q such

that S (g) = {1, · · · , u}. Also note that we can take each l(gi) ≥ p.

The following lemma follows from the fact that the abelianization of a quasi p-group

is a p-group.

Lemma 5.5 ([10, Lemma 2.5]). Let G be a finite quasi p-group. Then the following are

equivalent.

1. G is perfect (i.e. G equals its commutator subgroup).

2. There is no nontrivial homomorphism from G to Z/p.

3. There is no nontrivial homomorphism from G to any p-group.

5.2 Ramification Theory for some special type of Covers

In this section, we obtain more precise ramification properties of the Galois covers of

the projective line when the group is a transitive subgroup of a Symmetric group. Let

d ≥ p be an integer. Let G be a transitive subgroup of S d. Let φ : Z → X be a G-Galois

cover of smooth projective connected k-curves. Consider the subgroup S d−1 of S d fixing

the element 1. Set H B G ∩ S d−1. Then φ factors as a composite of covers

Z // Y
ψ
// X

where Z → Y is a connected H-Galois cover, and ψ : Y → X is a degree-d cover of

smooth connected projective k-curves. Note that φ is the Galois closure of the cover ψ.

Let x ∈ X be a branched point. Let I = P o Z/m occurs as an inertia group above x

where P is a p-group and (m, p) = 1. We will work with the following setup.

P is a p-cyclic group generated by the p-cycle τ B (1, · · · , p).



42 Chapter 5. Useful Results towards the Main Problems

Let β ∈ Z/m be an element of order m. We have I = NI(〈τ〉) ⊆ NG(〈τ〉) = NS d (〈τ〉) ∩

G. By Proposition 5.1, β = θiω for an element θ ∈ Sym(Supp(τ)) = S p of order p − 1,

ω ∈ NS d (〈τ〉) ∩ Sym({p + 1, · · · , d}) and 1 ≤ i ≤ p − 1. We study some invariants of the

action of the group 〈β〉 on the p-cyclic group P.

Consider the group homomorphism

g : 〈β〉 → Aut (〈τ〉), g(β) : τ 7→ βτβ−1.

Let m′ be the order of ker(g) = {β j|β j commutes with τ}. This is the prime-to-p part of

the center of I, known as the central part of the tame ramification. Set m′′ B m
m′ . Then

ker(g) = 〈βm′′〉 is the subgroup acting trivially on 〈τ〉. Also observe that Im(g) has order

m′′ in Aut(〈τ〉), and m′′ is called the faithful part of the tame ramification. Let h be the

conductor for the inertia group I. Applying the conjugation relation from Proposition

3.11 and from the structure of the group I, we obtain the following result.

Lemma 5.6 ([10, Lemma 2.6]). Under the above notation, m′ = (h,m) and ord(θi) =

m′′.

Proof. Set γ B (h,m). Applying Proposition 3.11 to the conjugation of τ by β
m
γ and

βm′′ , we get that β
m
γ τβ−

m
γ = τ and βm′′h = 1. So m′′ divides m

γ
= m′m′′

γ
and m′m′′ divides

m′′h. So γ divides m′ and m′ divides (h,m) = γ. Thus γ = m′.

Note that the conjugation by θ has order p − 1 (Proposition 5.1). Since θ also has

order p − 1, θ j commutes with τ if only if θ j is the identity element. Now, ω commutes

with τ. So the conjugation by β = θiω is the same as the conjugation by θi. Hence (θi)k

does not commute with τ for 0 < k < m′′, and (θi)m′′ commutes with τ. So m′′ is the

order of θi. �

By an analogous argument as in the proof of [17, Proposition 4.16], one obtains the

following result.

Lemma 5.7 ([9, Lemma 3.1]). Let d ≥ p, and G be a transitive subgroup of S d. Let

φ : Z → X be a G-Galois cover of smooth connected projective k-curves, and x ∈ X be
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a closed point. Let I occurs as an inertia group over x. Consider the subgroup S d−1 of

S d fixing the element 1. Set H B G ∩ S d−1. Let ψ : Y → X be the connected degree d

cover via which φ factors. Then the set ψ−1(x) in Y is in a bijective correspondence with

the set of orbits of the action of I on {1, · · · , d}. Moreover, for a point y ∈ ψ−1(x), the

ramification index of y over x is given by the length of the corresponding orbit.

Proof. As ψ has degree d, its fibres can be indexed by the numbers 1, · · · , d. After

labeling a point of Z in φ−1(x) to correspond to the identity coset of G/I, there is a

bijection between the sets G/I and φ−1(x). The left action of G on φ−1(x) is given by left

multiplication. The points of Y in ψ−1(x) correspond to the orbits of H on G/I (via left

action), which correspond to double cosets H\G/I. Since G is a transitive subgroup of

S d, the set of cosets H\G is in a bijection with {1, · · · , d} via the image of 1. So these

double cosets are given by the orbits of I acting on the right on {1, · · · , d}, which is the

first statement. For the moreover part, fix a point y ∈ ψ−1(x) ⊂ Y . Then y corresponds to

an orbit Iy of I acting on the right on {1, · · · , d}. By the Orbit-Stabilizer Theorem, we

have |Iy| = |I/StabI(y)|. But the later quantity is just the ramification index of y over∞.

So the lengths of the orbits correspond to the ramification indices. �

Lemma 5.8 ([9, Lemma 3.2]). Under the hypothesis of Lemma 5.7, we have the follow-

ing.

1. If ψ−1(x) consists of s points with the ramification indices n1, · · · , ns, where each

ni is coprime to p and
∑s

i=1 ni = d, then φ is tamely ramified over 0. If γ is

a generator of I, then the disjoint cycle decomposition of γ in S d consists of s

cycles of length n1, · · · , ns.

2. If d = p and ψ−1(x) consists of a unique point with the ramification index p, then I

is of the form I = 〈τ〉o〈θi〉 for a p-cycle τ and some 1 ≤ i ≤ p−1. If d ≥ p+1 and

ψ−1(x) consists of r + 1 points with the ramification indices p, m1, · · · , mr, where

each ml is coprime to p and
∑r

l=1 ml = d − p, then I is of the form I = 〈τ〉 o 〈θiω〉

for a p-cycle τ, 1 ≤ i ≤ p − 1, and an ω ∈ Sym({p + 1, · · · , d}) having a disjoint

cycle decomposition consisting of r cycles of length m1, · · · , mr. Here θ is as in

Proposition 5.1.
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Proof.

1. By Lemma 5.7, it is enough to show that p - |I|. Assume that p divides |I|. Let

τ ∈ p(I) be an element of order p. Then p(I) ⊂ H. Since ψ is tamely ramified

over x, for any g ∈ G, g−1τg ∈ g−1 p(I)g ⊂ H. But since G acts transitively on

{1, · · · , d}, for any i ∈ Supp(τ), there is a g ∈ G such that g−1τg does not fix 1, a

contradiction.

2. Let z ∈ φ−1(x) ⊂ Z having image y ∈ Y such that I is the inertia group at z. We

first claim that p2 - |I|. Assume on the contrary. Let τ ∈ p(I) ∩ H be an element

of order p. Since for any point y′ ∈ ψ−1(x), y′ , y, e(y′|x) is coprime to p, we

have g−1τg ∈ H for all g ∈ G. Again as in (1), we obtain a contradiction to our

assumption, and the claim follows.

Since |I| is divisible by p, p(I) is a p-cyclic group generated by an element τ =

τ1 · · · τa of order p, where τi are disjoint p-cycles in S d. By Proposition 5.1,

I = 〈τ, θi, σ〉 × 〈ω〉 for some 1 ≤ i ≤ p − 1, ω ∈ Sym({1, · · · , d} − Supp(τ)) and

σ ∈ Sym(Supp(τ)) of order prime-to-p. By Lemma 5.7, the fibre ψ−1(x) consists

of points with the ramification indices a1 p, · · · , at p, u1, · · · , ut′ , where aν and uη

are coprime to p.

So if d = p and ψ−1(x) consists of a unique point with the ramification index p,

then τ must be a p-cycle and I is of the form I = 〈τ〉o 〈θi〉 for some 1 ≤ i ≤ p− 1.

In the second case, τ is again a p-cycle, I = 〈τ〉o〈θiω〉 for some 1 ≤ i ≤ p−1, and

the disjoint cycle decomposition of ω in Sym({p + 1, · · · , d}) consists of r cycles

length m1, · · · , mr.

�

Using the above results and a technique used in [7, Proposition 1.3] (when p strictly

divides the order of G), we obtain the following result for a certain type of two point

branched Galois cover of the projective line P1. In Section 6.1 we will encounter such

covers. This result is important in deciphering their local ramification behaviour.



5.2. Ramification Theory for some special type of Covers 45

Theorem 5.9 ([9, Proposition 3.3]). Let p be a prime, t ≥ 0, d B p + t. Let G be a

transitive subgroup of S d. Let φ : Z → P1 be a G-Galois cover of smooth projective

connected k-curves. Consider the degree-d cover ψ : Y B Z/(G∩S d−1)→ P1 of smooth

projective connected k-curves where S d−1 is the subgroup of elements in S d fixing 1.

Assume that the following hold.

(i) There are exactly s points in ψ−1(0) with the ramification indices n1, · · · , ns such

that each ni is coprime to p and
∑s

i=1 ni = d;

(ii) when d = p, there is a unique point in Y lying over ∞ with ramification index p.

When d > p, there are exactly r + 1 points in ψ−1(∞) with the ramification indices

p, m1, · · · , mr such that each m j is coprime to p and
∑r

j=1 m j = t.

Then φ is tamely ramified over 0, and I = 〈(1, · · · , p)〉 o 〈θiω〉 occurs as an inertia

group over ∞ (θ, ω are as in Proposition 5.1, 0 ≤ i ≤ p − 1). If γ is a generator of

an inertia group over 0, the disjoint cycle decomposition of γ in S d consists of s cycles

of length n1, · · · , ns. If t = 0, ω is the trivial permutation. If t ≥ 1, the disjoint cycle

decomposition of ω in Sym(p + 1, · · · , d) consists of r cycles length m1, · · · , mr.

Moreover, if the cover φ is étale away from {0,∞}, we have the following.

1. ord(θi) = m′′ =
p−1

(p−1,2gY +s+r−1) where gY is the genus of Y;

2. the invariant m′ associated to the local extension above∞ is given by

m′ =


1 if t = 0

l.c.m. (m1,··· ,mr)
g.c.d( l.c.m. (m1,··· ,mr),m′′) if t ≥ 1;

3. the upper jump for any local extension above∞ is 2gY +s+r−1
p−1 .

Furthermore, |I| = pm, where m = m′m′′ = lcm(m′′, ord(ω)).

Proof. The structure of the inertia groups are the consequence of Lemma 5.8. Now

suppose that the cover φ is étale away from {0,∞}.
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Assume that t ≥ 1. We use the Riemann Hurwitz formula (Proposition 3.22) for

the two Galois covers φ and Z → Y . Let gZ be the genus of Z. For any local I-Galois

extension over∞ let h be the conductor and set |I| = pm. Also set N B lcm(n1, · · · , ns).

So for the G-Galois cover φ we have

2gZ − 2 = |G|(−2) +
|G|
N

(N − 1) +
|G|
pm

(pm − 1 + h(p − 1)).

Now let z ∈ Z is a point lying over y ∈ Y such that φ(z) = ∞. By Proposition 3.21,

e(z|y) =
pm
m j

with conductor for the local extension KZ,z/KY,y being h when e(y|∞) = m j,

and e(z|y) = m when e(y|∞) = p. Also for 1 ≤ i ≤ s, let zi ∈ Z is a point lying over

yi ∈ Y such that φ(zi) = 0. If e(yi|0) = ni, e(zi|yi) = N
ni

. So for the G ∩ S d−1-Galois cover

Z → Y we have

2gZ − 2 =
|G|
d

(2gY − 2) +

s∑
i=1

|G|ni

dN
(
N
ni
− 1) +

|G|
dm

(m− 1) +

r∑
j=1

|G|m j

dpm
(

pm
m j
− 1 + h(p− 1)).

Equating the above two equations, we obtain the upper jumpσ = h
m =

2gY +s+r−1
p−1 at∞. By

Lemma 5.6, m′′ is the smallest positive integer such that m′′σ is again an integer. Thus

m′′ =
p−1

(p−1,2gY +r+s−1) . As the order of θi is m′′ and m′m′′ = m = l.c.m. (ord (θi), ord (ω)),

(2) follows. A similar calculation shows the case for t = 0. �

Remark 5.10. Note that for any G-Galois cover of smooth projective connected k-

curves with G a transitive permutation group, the local behaviour at a tamely ramified

point or when the Sylow p-subgroup of an inertia group is generated by a p-cycle, a

similar structural result for the inertia groups holds, which is essentially a consequence

of Lemma 5.7. In this general setup, one argues as in the proof of Theorem 5.9 to obtain

the ramification invariants.

5.3 Reduction of Inertia Groups

In this section, we will see some results related to the normalized pullback of a Galois

cover. We recall the following result.
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Theorem 5.11 ([21]). Let Y1 → X and Y2 → X be Galois covers of smooth projective

connected k-curves. Let x ∈ X be a closed point, and y1 ∈ Y1, y2 ∈ Y2 be closed

points lying above x in the respective covers. Let W be the dominant component of the

normalization of the fibre product Y1 ×X Y2 containing the point w B (y1, y2). Then

W → X is a connected Galois cover with k(W) being the compositum k(Y1)k(Y2) of

fields over k(X), and the inertia group at the point w is the Galois group of the field

extension KW,w = KY1,y1 KY2,y2/KX,x. Here all the fields are considered as subfields of

KW,w. Moreover, if I is the inertia group at y1 over x and N is a normal subgroup of

I such that the fixed field KN
Y1,y1

is the same as the field extension KY2,y2 over KX,x, the

cover W → Y2 is a connected Gal(k(W)/k(Y2))-Galois cover and the inertia group at w

over y2 is the group N.

Proof. The statement about the Galois cover W → X is [21, Theorem 3.4], and the

moreover part is [21, Theorem 3.5]. �

As a consequence, the main result of [21] states that for a Galois cover with a perfect

Galois group (see Lemma 5.5) one can reduce the inertia group under certain condition.

Theorem 5.12 ([21, Theorem 3.7]). Let G be a perfect group, X → P1 be a G-Galois

cover of smooth projective connected k-curve étale away from ∞ such that I occurs as

an inertia group above ∞. Assume that P be a p-subgroup of I such that I1 ⊂ P ⊂ I2,

where Ii are the lower indexed higher ramification groups for I. Then there is a G-

Galois cover W → P1 of smooth projective connected k-curves étale away from∞ such

that P occurs as an inertia group above∞.

A similar well known result for the tame part of an inertia group is known as Ab-

hyankar’s Lemma ([1, page 279, Expose X, Lemma 3.6]). Before recalling one of its

refinements, let us set the following definitions.

For an integer n coprime to p, there is a unique connected Z/n-Galois cover ψ : Z �

P1 → P1 étale away from {0,∞} over which the cover is totally ramified, given by

Example 3.24. We will call this cover the [n]-Kummer cover.
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Definition 5.13. Let n be coprime to p. Let φ : Y → P1 be a connected cover of smooth

projective connected k-curves. Let W be a dominant component in the normalization of

Y ×P1 Z. We say that the cover W → Z is obtained by a pullback by the [n]-Kummer

cover.

Theorem 5.14 (Refined Abhyankar’s Lemma, [22, Lemma 4.1]). Let m, r1, r2 be co-

prime to p. Let ψ : Y → P1 be a G-Galois cover of smooth projective connected k-curves

étale away from {0,∞} such that ψ has ramification index r1 above 0 and I � Z/poZ/m

occurs as an inertia group above ∞ with conductor h. Assume that ψ and the [r2]-

Kummer cover are linearly disjoint. Then the pullback of φ by the [r2]-Kummer cover

is a G-Galois cover of P1 étale away from {0,∞} such that r1
(r1,r2) is the ramification

index above 0 and I′ ⊂ I of order pm
(m,r2)occurs as an inertia group above ∞ with con-

ductor hr2
(m,r2) . Moreover, if σ and σ′ are the upper jumps at ∞ for the covers ψ and φ,

respectively, then σ′ = r2σ.

The statement about the pullback of φ by the [r2]-Kummer cover is a the classical

statement of Abhyankar’s Lemma, which is a direct consequence of Theorem 5.11.

Using a similar argument we have the following result which will be used later.

Corollary 5.15. Let G ∈ {S d, Ad} for d ≥ p, and n be coprime to p. Let φ B Y → P1 be

a G-Galois cover of smooth projective connected k-curves étale away from {0,∞} such

that φ has ramification index n above 0 and I = Po〈β〉 occurs as an inertia group above

∞ for some p-subgroup P and β of order prime-to-p. Then the [n]-Kummer pullback of

φ is a connected Ad-Galois cover of P1 étale away from ∞ such that P o 〈βn〉 occurs as

an inertia group above∞.



Chapter 6

Construction of Covers via different

methods

The proof of the Abhyankar’s conjecture on the affine curves (Theorem 4.1) and the

attempts to study the Inertia Conjecture has so far produced several methods to con-

struct branched Galois covers of curves. One of such methods is to construct covers

by considering explicit affine equations. In a series of publications, Abhyankar con-

structed several such covers with the desired Galois groups by using the classification

results from the theory of finite groups. But the ramification behaviour of such covers

are mostly not well studied when the Galois groups have large order. In Section 6.1 we

continue the study of covers given by the explicit equations and are able to control the

ramification data much better using the local ramification theory together with group

theoretic results. Another method to construct covers is to use the formal patching tech-

niques introduced in Section 3.4. Starting with a certain Galois cover of a curve and by

constructing a family of local covers, one obtains a cover with a bigger Galois group

and potentially bigger inertia groups. In this line of study, the control over the local

extensions and the inertia groups is important. There are also other ways to obtain cov-

ers of curves, for example, using the reduction of a cover defined over a characteristic

0 field (see [8], [25]). As our main results do not use such constructions, we will not

discuss these methods in this thesis.

49
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Throughout this chapter, p denotes an odd prime.

6.1 Construction of Covers by Explicit Equations

In this section, we construct the Galois covers of the projective line by considering the

Galois closures of the finite covers given by some explicit affine equations. Our primary

interest is when the Galois groups are Alternating or Symmetric groups. In [3, Section

11], Abhyankar introduced some degree-d covers and showed that the Galois group of

the Galois closure of these covers are the Alternating groups Ad. But for d ≥ 2p, the

ramification behaviour remained not well studied. Our goal is to understand these local

behaviours completely. We completed this study in [10], and as a consequence, proved

the PWIC for any product of Alternating groups. In this thesis, we get these results as

some special cases of our study of the two point branched covers of the projective line,

done in [9].

More precisely, we consider the Galois closure of a finite degree-d (d ≥ p) cover

P1 → P1 étale away from {0,∞}. Any finite cover P1
y → P

1
x is given by an affine equation

of the form x f (y) − g(y) = 0 for some polynomials f (y) and g(y) in k[y] such that they

do not have any common zero. We impose a certain conditions on these polynomials so

that the resulting cover has the desired branch locus, inertia and Galois groups.

First consider the case d = p. We will consider the following assumption.

Assumption 6.1. Let s ≥ 2 be an integer. Let n1, · · · , ns be coprime to p such that

Σs
i=1ni = p. Let α1 = 0 and assume that there exist non-zero distinct elements α2, · · · , αs

in k so that the polynomial

s∑
i=1

ni

∏
j,i,1≤ j≤s

(y − α j) ∈ k[y] (6.1.1)

is a non-zero constant in k. In terms of the coefficients of this polynomial, the assump-

tion is equivalent to the existence of the non-zero distinct elements αi’s in k, 2 ≤ i ≤ s,
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such that for each 1 ≤ ν ≤ s − 2,

∑
2≤i1<···<is−ν−1≤s

 ∑
i∈{i1,··· ,is−ν−1}

ni

αi1 · · ·αis−ν−1 = 0.

Remark 6.2. Note that Assumption 6.1 is satisfied when s = 2 or s = 3. It is immediate

when s = 2. When s = 3, the assumption holds for the pair (α2, α3) = (1,−n2
n3

).

Now we construct some degree-p covers of P1.

Proposition 6.3 ([9, Proposition 3.6]). Let p ≥ 5 be a prime and s ≥ 2 be an integer.

Let n1, · · · , ns be coprime to p such that
∑s

i=1 ni = p. Let α1, · · · , αs be distinct elements

in k. Let ψ : Y → P1 be the degree-p cover given by the affine equation f̄ (x, y) = 0

where

f̄ (x, y) B
s∏

i=1

(y − αi)ni − x. (6.1.2)

Let φ : Z → P1 be the Galois closure of ψ with group G. Then the following hold.

1. G is a primitive subgroup of S p;

2. φ is tamely ramified with cyclic inertia group of order l.c.m.{n1, · · · , ns} over 0.

If γ is one of its generators, then γ has a disjoint cycle decomposition in S p with

cycle lengths n1, · · · , ns;

3. over ∞, the inertia group is of the form I = 〈(1, · · · , p)〉 o 〈θi〉 for some 1 ≤ i ≤

p − 1 and where θ is as in Proposition 5.1.

Additionally, if αi’s satisfy Assumption 6.1, then the cover φ is étale away from {0,∞}.

Also ord(θi) =
p−1

(p−1,s−1) , |I| =
p(p−1)

(p−1,s−1) , and the upper jump for any I-Galois local exten-

sion over∞ is given by s−1
p−1 .

Moreover, if there is a positive integer j such that γ j is a non-trivial cycle fixing ≥ 3

points in {1, · · · , p} or if p , 11, 23, p < {q
n−1

q−1 |q prime power , n ≥ 2}, and γ is not a

conjugate of θi for any 1 ≤ i ≤ p − 1,

G =


Ap, if γ is an even permutation

S p, if γ is an odd permutation.
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Proof. The polynomial f̄ (x, y) is linear and monic in x. So it is irreducible in k[y][x]

and hence in k(x)[y]. So G is a transitive subgroup of S p and hence it is a primitive

subgroup of S p. This proves (1).

From the equation f̄ (x, y) = 0 it follows that v(y−αi)(x) = ni for 1 ≤ i ≤ s and

v(y−1)(x−1) = p. Since Σini = p, we see that the fibre ψ−1(0) consists of s points in Y and

the ramification index at the point (y = αi) is given by ni. Also there is a unique point

in Y lying above ∞ at which the ramification index is p. Then (2) and (3) follow from

Theorem 5.9.

Now suppose that αi’s satisfy Assumption 6.1. The y-derivative of f̄ (x, y) is given

by

f̄y(x, y) =

s∏
i=1

(y − αi)ni−1

 s∑
i=1

ni

∏
j,i,1≤ j≤s

(y − α j)

 .
Let (a, b) be a common zero of f̄ and f̄y. Then a = 0 if ni > 1 for some i and there is no

common zero if ni = 1 for all 1 ≤ i ≤ s. So the cover ψ, and hence φ is étale away from

{0,∞}. By Theorem 5.9, the upper jump is s−1
p−1 , ord(θi) =

p−1
(p−1,s−1) . So |I| = p(p−1)

(p−1,s−1) .

Since G is a primitive subgroup of S p containing a p-cycle, under the additional hy-

pothesis on p and γ, G contains Ap by [19, Theorem 1.2]. So if γ is an odd permutation,

G = S p. Now let γ be an even permutation and assume that G = S p. Then the connected

Z/2-Galois cover Z/Ap → P
1 is étale away from ∞ and is tamely ramified above ∞, a

contradiction to the fact that πt
1(A1) is the trivial group. So if γ is an even permutation,

G = Ap. �

Remark 6.4. In [3, Section 20], Abhyankar introduced the following cover and calcu-

lated its Galois group. Consider the degree-p cover of P1 given by the affine equation

f̃ = 0 where f̃ (x, y) = yp − yt + x. Consider its Galois closure Ỹ → P1 with group G.

Abhyankar showed that for 2 ≤ t ≤ p − 3,

G =


S p, if t is even,

Ap, if t is odd.

This is a special case of Proposition 6.3.
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Now we construct covers of degree d ≥ p + 1. Similar to the previous case we

consider the following assumption.

Assumption 6.5. Let p be an odd prime, t ≥ 1 be coprime to p such that d B p + t ≥ 5.

Let r and s be two positive integers. Let n1, · · · , ns, m1, · · · , mr be coprime to p integers

such that Σs
i=1ni = p + t, Σr

l=1ml = t. Assume that there exist distinct elements α1, · · · ,

αs, β1, · · · , βr in k such that the polynomial

g(y) B
r∏

l=1

(y − βl)

 s∑
i=1

ni

∏
j,i,1≤ j≤s

(y − α j)

 − s∏
i=1

(y − αi)

 r∑
l=1

ml

∏
u,l,1≤u≤r

(y − βu)

 ∈ k[y]

(6.1.3)

is a non-zero constant in k.

Remark 6.6. In particular, if r = 1, setting β1 = 0, Assumption 6.5 says that there are

non-zero distinct elements αi in k, 1 ≤ i ≤ s, such that the polynomial

g(y) = y

 s∑
i=1

ni

∏
j,i,1≤ j≤s

(y − α j)

 − t
s∏

i=1

(y − αi) ∈ k[y] (6.1.4)

is a non-zero constant in k. In terms of coefficients, we need the αi’s to satisfy the

following condition for each 1 ≤ ν ≤ s − 1.

∑
1≤i1<···<is−ν≤s

(
ni1 + · · · + nis−ν

)
αi1 · · ·αis−ν = 0. (6.1.5)

When s = 1, setting α1 = 0, we also get a similar condition on the choice of βl’s.

Before proceeding to the construction of the covers, let us see some of the cases

where Assumption 6.5 is satisfied.

Lemma 6.7 ([9, Lemma 3.10]). Assumption 6.5 holds with a choice of distinct αi’s and

βl’s in the following cases.

1. s = 1 = r with (α1, β1) = (1, 0);

2. s = 2, r = 1 with (α1, α2, β1) = (1,−n1/n2, 0);

3. s = 1, r = 2 with (α1, β1, β2) = (0, 1,−m1/m2);
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4. s = 3, r = 1 with (α1, α2, α3, β1) = ( t+2
4 ,−

t−2
4 , 1, 0) where (p, t + 2) = 1 = (p, t − 2)

and n1 = p − 2, n2 = 2, n3 = t;

5. r = s = 2 with (α1, α2, β1, β2) = (1, n2−n1
2n2

, 0, t
2n2

) where ni ≡ mi mod p and n1 , n2

in k.

6. r = 1, s = d with β1 = 0 and αi’s such that 1 + yd =
∏d

i=1(y − αi).

Proof. It is easy to see that in each of the cases (1) − (5), the assigned values of αi’s

and βl’s are all distinct and they satisfy Assumption 6.5. Consider r = 1 and s = d.

Since yd + 1 is a separable polynomial over k[y], it has d distinct roots α1, · · · , αd

which are also non-zero. Also each ni = 1, and the y-derivative of 1 + yd is equal to

tyd−1 =
∑s

i=1
∏

j,i,1≤ j≤s(y − α j)). From Equation (6.1.3),

g(y) = y
∑

i

∏
j,i

(y − α j) − t
∏

i

(y − αi) = tyd − t − tyd = −t , 0

in k. By Remark 6.6, Assumption 6.5 is satisfied. �

The following result produces our main example of the S d-Galois or Ad-Galois two

point branched covers of P1.

Proposition 6.8 ([9, Proposition 3.11]). Let p be an odd prime such that d B p + t ≥ 5.

Let r and s be two positive integers. Let n1, · · · , ns, m1, · · · , mr be coprime to p such

that
∑s

i=1 ni = p + t,
∑r

l=1 ml = t. Let α1, · · · , αs, β1, · · · , βr are distinct elements in k.

Let ψ : Y → P1 be the degree-d cover given by the affine equation f (x, y) = 0 where

f (x, y) =

s∏
i=1

(y − αi)ni − x
r∏

l=1

(y − βl)ml . (6.1.6)

Let φ : Z → P1 be its Galois closure with group G.

1. Then G is a transitive subgroup of S d;

2. the cover φ is tamely ramified with cyclic inertia group generated by an element

γ ∈ G of order l.c.m.{n1, · · · , ns} over 0, whose disjoint cycle decomposition in S d

consists of s disjoint cycles of length n1, · · · , ns;.
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3. Over∞, the inertia group is of the form I = 〈(1, · · · , p)〉 o 〈θiω〉 for some 1 ≤ i ≤

p − 1, where θ is as in Proposition 5.1 and ω ∈ Sym({p + 1, · · · , d}) is a product

of r disjoint cycles of length m1, · · · , mr.

Additionally, if (α1, · · · , αs, β1, · · · , βr) satisfies Assumption 6.5, the cover φ is étale

away from {0,∞}. Also ord(θi) =
p−1

(p−1,r+s−1) , |I| = p × l.c.m{ord(θi), ord(ω)}, and the

upper jump for any I-Galois local extension over ∞ is given by r+s−1
p−1 . Moreover, if

t < p, G is a primitive subgroup of S d. Furthermore, if either there is a positive integer

j such that γ j is a non-trivial cycle fixing ≥ 3 points in {1, · · · , d} or if 3 ≤ t ≤ p − 1,

G =


Ad, if γ is an even permutation

S d, if γ is an odd permutation.

Proof. Since αi’s are distinct from βl’s by our assumption and the polynomial f (x, y) is

linear in x, it is irreducible in k(x)[y]. So G is a transitive subgroup of S d, proving (1).

From the equation f (x, y) = 0 we have v(y−αi)(x) = ni for 1 ≤ i ≤ s, v(y−βl)(x−1) = ml

for 1 ≤ l ≤ r and v(y−1)(x−1) = p. Since
∑

i ni = p + t the fibre ψ−1(0) consists of s

points in Y with the ramification index at the point (y = αi) given by ni, and also since∑
l ml = t, there are exactly r + 1 points in Y lying above ∞ with ramification indices

given by p, m1, · · · , mr. Then the description of the inertia groups above 0 and ∞

follows from Theorem 5.9.

Now suppose that Assumption 6.5 holds. The y-derivative of the polynomial f (x, y)

is given by

fy(x, y) =

s∏
i=1

(y − αi)ni−1

∑
i

ni

∏
j,i

(y − α j)

 − x
r∏

l=1

(y − βl)ml−1

∑
l

ml

∏
u,l

(y − βu)

 .
Let (a, b) be a common zero of f and fy. Then 0 = fy(a, b)

∏r
l=1(b − βl) = g(b)

∏
i(b −

αi)ni−1 (where g is the polynomial given by Equation (6.1.3)). Then a = 0 if ni ≥ 2 for

some i and there is no such common zero otherwise. So the cover ψ, and hence φ is
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étale away from {0,∞}. Again by Theorem 5.9, the upper jump is r+s−1
p−1 and ord(θi) =

p−1
(p−1,r+s−1) .

Since G is a transitive subgroup of S d containing the p-cycle τ which fixes t points

in {1, · · · , d} and t < p+t
2 , by [19, Remark 1.6], G is primitive.

Finally if some power of γ is a non-trivial cycle fixing ≥ 3 points or if 3 ≤ t ≤ p− 1,

by [19, Theorem 1.2], G contains Ad. The rest follows as in Proposition 6.3. �

From the above proposition, we deduce the following results which will be used

later.

Corollary 6.9 ([9, Corollary 3.12]). Let p be an odd prime, 3 ≤ t ≤ p − 2 be an odd

integer and d = p + t. Then there is a connected Ad-Galois étale cover of the affine line

such that I B 〈(1, · · · , p)〉 o 〈θ2(p + 1, · · · , d)〉 occurs as an inertia group at a point

above∞.

Proof. Take s = 2, r = 1, n1 = p + t − 1, n2 = 1 in Proposition 6.8. By Lemma 6.7(2),

Assumption 6.5 is satisfied. Since t is an odd integer, a (p + t − 1)-cycle is an even

permutation. By Proposition 6.8, there is a connected Ad-Galois cover of P1 branched

only at 0 and ∞, over 0 the inertia groups are generated by conjugates of a (p + t − 1)-

cycle in Ad and I occurs as an inertia group above∞. By Abhyankar’s Lemma ([1, page

279, Expose X, Lemma 3.6]), we obtain a connected Ad-Galois cover φ : Y → P1 étale

away from∞. Since t is odd, we have (p + t − 1, p − 1) = 1 = (p + t − 1, t). So I occurs

as an inertia group in the cover φ above∞. �

Corollary 6.10 ([9, Corollary 3.13]). Let p be an odd prime, 4 ≤ t ≤ p − 1 an integer

such that (t + 1, p − 1) = 1 = (t − 1, p + 1) and d = p + t. Then there is a connected

Ad-Galois étale cover of the affine line such that I B 〈(1, · · · , p)〉o〈θ2(p+1, · · · , d−1)〉

occurs as an inertia group at a point above∞.

Corollary 6.11 ([9, Corollary 3.13]). Let p ≡ 2 (mod 3) be an odd prime. Let 3 ≤ t ≤

p − 1 be an integer, d = p + t. Then there is a connected Ad-Galois étale cover of the

affine line such that I B 〈(1, · · · , p)〉 o 〈θ(t,p−1)(p + 1, · · · , d − 1)〉 occurs as an inertia

group at a point above∞.
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Proof. Take s = 2, r = 2, n1 = p + t − 1, n2 = 1, m1 = t − 1, m2 = 1 in Proposition 6.8.

By Lemma 6.7(5), Assumption 6.5 is satisfied. A (p+ t−1)-cycle is an odd permutation

if and only if t is an even integer. By Proposition 6.8, there is a connected G-Galois

cover of P1 branched only at 0 and∞, where G = Ad if t is odd and G = S d if t is even.

Over 0 the inertia groups are generated by conjugates of a (p + t − 1)-cycle in G and I

occurs as an inertia group above∞. After a pullback via the [p + t − 1]-Kummer cover

(cf. Definition 5.13) we obtain a connected Ad-Galois cover φ : Y → P1 étale away from

∞ such that I occurs as an inertia group in the cover φ above∞. �

Also as a consequence of Proposition 6.8, we can study the ramification behaviour

of the Alternating group covers introduced by Abhyankar. This was proved in [22,

Theorem 4.9] using a different method when t < p.

Proposition 6.12 ([10, Proposition 4.3]). Let p be an odd prime. Let d = p + t ≥ p + 2

such that (p, t) , (7, 2) and t be coprime to p. Consider the degree-d cover ψ : Y → P1

given by the affine Equation f (x, y) = 0 where

f (x, y) = yd + 1 − xyt. (6.1.7)

Let φ : Z → P1 be its Galois closure. Then φ is an Ad-Galois cover of smooth projective

connected k-curves branched only at∞ such that I = 〈(1, · · · , p)〉o〈θiω〉 (θ as in Propo-

sition 5.1) occurs as an inertia group above∞ where ω is the t-cycle (p + 1, · · · , p + t)

and ord(θi) =
p−1

(p−1,t+1) . Also |I| = p × l.c.m.{ p−1
(p−1,t+1) , t} and the upper jump for any

I-Galois local extension over∞ is given by d
p−1 .

Proof. By [3, Section 11], G = Ad and the cover φ is branched only at ∞. So the fibre

ψ−1(0) consists of d points all having ramification index one, and ψ−1(∞) consists of two

points with ramification indices p and t. Now the structure of an inertia group above∞

follows from Theorem 5.9. �

Remark 6.13. Note that the cover obtained in the above proposition has upper jump d
p−1

which is the minimal possible as described in Remark 4.8. So this gives an affirmative

answer to Question 4.7 for Ad, with d ≥ 2p + 1 coprime to p (the case d < 2p being

already done in [7, Corollary 2.2]) and P = 〈(1, · · · , p)〉.
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In view of the above remark, we introduce the following Ad-cover with d ≥ 2p

divisible by p.

Proposition 6.14 ([9, Proposition 6.1]). Let p be an odd prime, a ≥ 2 be an integer and

d = ap. Let 1 ≤ s ≤ d − p − 1 be coprime to p. Let ψ : Y → P1 be the degree-d cover

given by the affine equation f (x, y) = 0 where

f (x, y) = 1 + yd−s(y + 1)s − xyd−p−s(y + 1)s. (6.1.8)

Let φ : Z → P1 be its Galois closure. Then φ is an Ad-Galois cover of P1 branched only

at ∞ such that I = 〈τ〉 o 〈β〉 occurs as an inertia group at a point above ∞, where τ is

a p-cycle and β has order l.c.m.( p−1
(p−1,d+1) , s, d − p − s). Furthermore, it has upper jump

h
m = d+1

p−1 .

Proof. Let G be the Galois group of the cover φ. Since the polynomial f (x, y) is linear

in x, and the coefficient of x does not have any common factor with the terms devoid of

x, it is irreducible in k[y][x] and hence in k(x)[y]. So G is a transitive subgroup of S d.

Set h(y) B 1 + yd−s(y + 1)s. Then the y-derivative of f (x, y) is given by

fy(x, y) = h′(y) + sxyd−p−s−1(y + 1)s−1.

Assume that f and fy have a common zero (a, b). So fy(a, b) = 0 which implies that

h′(b) = −sabd−p−s−1(b + 1)s−1. Also since f (a, b) = 0, we have sh(b) + b(b + 1)h′(b) = 0.

But we see that sh(y) + y(y + 1)h′(y) = s , 0 in k[y], showing that f and fy cannot have

a common zero. Since the cover ψ is non-trivial, it is branched only above x = ∞. So

the fibre ψ−1(0) consists of d points all having ramification index one.

We can rewrite f (x, y) = 0 as

x−1 =
yd−p−s(y + 1)s

1 + yd−s(y + 1)s ;

x−1 =
((y + 1) − 1)d−p−s(y + 1)s

1 + ((y + 1) − 1)d−s(y + 1)s ;

x−1 =
y−p(y−1 + 1)s

y−d + (y−1 + 1)s .
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Thus v(y)(x−1) = d − p − s, v(y+1)(x−1) = s, and v(y−1)(x−1) = p. So there are exactly three

points in Y in the fibre of ψ above x = ∞ with ramification indices p, s and d − p − s.

Now apply Theorem 5.9 to obtain the result about the inertia groups above∞.

The cover φ factors via a connected G/〈〈τ〉G〉-Galois cover of P1 which is étale away

from ∞ and is tamely ramified over ∞. Since πt
1(A1) is trivial, G is generated by the

conjugates of τ. By [28, Lemma 4.4.4.], G is a primitive quasi p-subgroup of S d. Also

the p-cycle τ in G fixes (a − 1)p ≥ 3 points in {1, · · · , d}. So by Jordan’s Theorem [3,

pg 111], G = Ad. The ramification behaviour follows from Theorem 5.9. �

The following is a positive result towards the minimal jump problem (Question 4.7).

Corollary 6.15. For any d ≥ p + 2 with (p, d) , (7, 9), Question 4.7 has an affirmative

answer for the group Ad with P = 〈(1, · · · , p)〉.

Proof. For d < 2p, this is [7, Corollary 2.2]. Let d ≥ 2p. In view of Remark 4.8 we

want to prove that there is a connected Ad-Galois étale cover of the affine line such that

P is a Sylow p-group of an inertia group above∞ and the upper jump is

σ =


d+1
p−1 if p|t

d
p−1 otherwise.

Now the result follows from Proposition 6.12, Proposition 6.14 with s = d − p − 1. �

6.2 Construction of Covers by Formal Patching

In this section, we construct covers using the formal patching techniques (see Sec-

tion 3.4). Fix the following notation for the rest of this section.

Notation 6.16. Let R = k[[t]], K̃ = k((t)), U = Spec(k[[x−1]]). Let b be the closed point

of U. For any k-algebra A with K = QF(A) and any k-scheme W, let WA B W ×k A,

WK B WA ×A K, and for any closed point w ∈ W, wA B w ×k A, wK B wA ×A K. For an

R-scheme V , let V0 denote the closed fiber of V → Spec(R).
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The following two results ([10, Lemma 3.2, Lemma 3.3]) are of great importance.

Given a Galois cover φ : Y → X of smooth projective connected k-curves with inertia

group I at a point y ∈ Y and f (y) = x, we deform the local I-Galois cover at x to obtain

a new cover with desired local properties. We use Corollary 3.34 to first get a cover

over XR and then use a Lefschetz type principle to obtain Galois covers of X, again with

desired local behavior.

Lemma 6.17 ([10, Lemma 3.2]). Let G be a finite group, and X be an irreducible

smooth projective k-curve. Let I1 ⊂ I and H be subgroups of G such that G = 〈H, I〉.

Assume that there is an irreducible H-Galois cover φ : Y → X of connected smooth

projective k-curves branched only at a point x ∈ X, with inertia group I1 at a point

y in Y above x. Let UX,x = Spec(ÔX,x), KX,x = QF(ÔX,x) and L = QF(ÔY,y). Let bx

denote the closed point of UX,x. Let Z → UX,x,R be an irreducible I-Galois cover of

integral R-schemes totally ramified over bx,R such that the normalization of the pullback

of Z0 → UX,x to Spec(KX,x) is isomorphic to IndI
I1

Spec(L) as the I-Galois covers of

Spec(KX,x). Then there is a normal G-Galois cover V → XR of irreducible R-curves

such that the following hold.

1. V → XR is étale away from xR with inertia group I above xR;

2. V ×XR UX,x,R � IndG
I Z and if X′ = X \ {x} then V ×XR X′R � IndG

H Y ′R where

Y ′ = φ−1(X′);

3. the closed fibre V0 is connected and the normalization of the pullback of V0 → X

to Spec(KX,x) is isomorphic to IndG
I1

Spec(L) as G-Galois cover of Spec(KX,x).

Proof. Consider the trivial deformation Y ′R → X′R of the H-Galois cover Y ′ → X′.

Taking a disjoint union of [G : H]-copies of Y ′R we obtain a (disconnected) normal G-

Galois cover W1 B IndG
H Y ′R → X′R, in which the stabilizers of the components are the

conjugates of H in G. Now taking a disjoint union of [G : I]-copies of Z, we obtain a

(disconnected) normal G-Galois branched cover W2 B IndG
I Z → UX,x,R, in which the

stabilizers of the components are the conjugates of I in G. We want to show that there

exists a G-Galois cover V → XR such that the following diagram commutes.
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X′R

Y ′R

W1

XR

V

UX,x,R

Z

W2

H

G∃

I

G G

The fibre of W0
1 over Spec(KX,x) is given by IndG

H IndH
I1

Spec(L) and that of W0
2 over

Spec(KX,x) is given by IndG
I IndI

I1
Spec(L). Since both of these covers are indexed by

the left cosets of I1 in G, we can choose an isomorphism between these fibers that is

compatible with the indexing, and hence with the G-action. Since the pullbacks of

W1 → X′R and W2 → UX,x,R to Spec(KX,x,R) are étale, by [1, I, Corollary 6.2], they

are trivial deformations of the pullbacks of W0
1 → X′ and W0

2 → UX,x to Spec(KX,x).

So the above isomorphism lifts uniquely to a G-isomorphism W1 ×X′R KX,x,R � W2 ×UX,x,R

KX,x,R over Spec(KX,x,R). By Corollary 3.34, there exists a unique normal G-Galois cover

V → XR such that V ×XR X′R � W1 and V ×XR UX,x,R � W2 as covers of X′R and UX,x,R,

respectively. Since W2 has branch locus xR and W1 is étale, V → XR has branch locus

{xR}. Also since Z → UX,x,R is totally ramified above bx,R, we have Gal(V ×XR (KX,x ⊗k

K̃))/(KX,x ⊗k K̃)) = Gal(Z ×UX,x,R (KX,x ⊗k K̃))/(KX,x ⊗k K̃)) = I. So the inertia group

above xR is I. Finally, since the the stabilizers of the identity components of W1 → X′R

and of W2 → UX,x,R are H and I, respectively, the stabilizer of the identity component

of V → XR is 〈H, I〉 = G. So V is irreducible. �

Lemma 6.18 ([10, Lemma 3.3]). Let X be an irreducible smooth projective k-curve,

and x ∈ X be a closed point. Let UX,x = Spec(ÔX,x) and KX,x = QF(ÔX,x). Let bx denote

the closed point of UX,x. For 1 ≤ i ≤ r, let Gi be a finite group, and Ii be a subgroup

of Gi. Assume that for each 1 ≤ i ≤ r, there is an Ii-Galois cover φi : S̃ i → UX,x,k[t]

of integral schemes with branch locus bx,k[t] over which it is totally ramified. For those

closed points β ∈ A1
t where the fiber S̃ i,β of S̃ i → A

1
t is integral, let M(i)

β /KX,x denote

the field extension corresponding to the cover S̃ i,β → UX,x at t = β. For 1 ≤ i ≤ r, let

Zi B S̃ i×UX,x,k[t] UX,x,R, and Vi → XR be a normal Gi-Galois cover of irreducible R-curves

étale away from xR with inertia group Ii above xR such that Vi×XR UX,x,R � IndGi
Ii

Zi. Then
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there is an open dense subset V of A1
t such that for all closed points (t = β) in V the

following holds. For each 1 ≤ i ≤ r, there is a Gi-Galois cover Wi → X branched only

at x with inertia group Ii at a point in Wi above x such that the local Ii-Galois extension

corresponding to the formal neighbourhood at that point is M(i)
β /KX,x.

Proof. Let 1 ≤ i ≤ r. Consider the Gi-Galois covers f (i) : Vi ×XR UX,x,R → UX,x,R and

g(i) : IndGi
Ii

Zi → UX,x,R. Since f (i) and g(i) are finite morphisms and are Gi-Galois covers,

the isomorphism Vi ×XR UX,x,R � IndGi
Ii

Zi is equivalent to a Gi-equivariant isomorphism

of coherent sheaves f (i)
∗ (OVi×XR UX,x,R) and g(i)

∗ (OIndGi
Ii

Zi
) over UX,x,R, and hence it is defined

locally by matrices involving only finitely many functions over UX,x,R. So there exists a

finite type k[t]-algebra A ⊂ R having smooth connected spectrum E = Spec(A) and for

each 1 ≤ i ≤ r, an irreducible Gi-Galois cover πi : Fi → XA branched only over xE with

inertia group Ii above xE, together with an isomorphism Fi ×XA UX,x,A � IndGi
Ii

S̃ i ×UX,x,k[t]

UX,x,A such that Fi ×A R � Vi, and the fibre over each closed point of E is irreducible

and non-empty. So for each point e ∈ E and for each 1 ≤ i ≤ r, F̃i,e → X ×k {e} � X

is a Gi-Galois cover étale away from x with inertia group Ii above x, where F̃i,e is

the normalization of the fibre Fi,e = π−1
i (X ×k {e}). Since the ring map k[t] → A is also

injective, the finite type map E → A1
t is flat and dominant. So the image of E inA1

t is an

open dense set which is ourV. Now for every point β ∈ Vwith preimage eβ ∈ E and for

each 1 ≤ i ≤ r, the corresponding fibre Wi B F̃i,eβ → X is a Gi-Galois cover branched

only at x, and the Ii-Galois extension corresponding to the formal neighborhood of a

point in Wi lying above x is M(i)
β /KX,x. �

Remark 6.19. Note that Lemma 6.17 and Lemma 6.18 can be easily generalized to the

case with branch locus containing more than one point.

The following result gives a deformation of local extensions with pre-assigned spe-

cial fibres.

Lemma 6.20 ([9, Lemma 4.2]). Let I be an extension of a p-group by a cyclic group

of order m, p - m. Let I1 and I2 be two subgroups of I such that |I1|/|p(I1)| = m =

|I2|/|p(I2)|. For i = 1, 2, assume that Vi → S be a connected Ii-Galois cover which

is totally ramified over s. Then there is a connected I-Galois cover V → S × A1
u of
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integral schemes with branch locus s × A1
u over which it is totally ramified such that

V ×S×A1
u

S × {u = 1} � IndI
I1

V1 and V ×S×A1
u

S × {u = −1} � IndI
I2

V2 as I-Galois covers

over S .

Proof. Let i ∈ {1, 2}. Then Vi = Spec(Ai) for a complete discrete valuation ring Ai

with residue field k and let Li be the field of fractions of Ai. After a change of variable

we assume that Lp(I)
i = K′ = k((T )) where the extension K′/K is given by T m = t.

The trivial deformation of the cover Spec(K′)→ Spec(K) is the connected Z/m-Galois

cover Spec(K′[u])→ Spec(K[u]) of integral K-curves. Now the compositions

IndI
I1

Spec(L1)→ Spec(K′)→ Spec(K) = Spec(K[u]) ×k (u = 1),

IndI
I2

Spec(L2)→ Spec(K′)→ Spec(K) = Spec(K[u]) ×k (u = −1)

are (possibly disconnected) I-Galois covers. By applying [14, Proposition 3.11] with

Γ = I, G = µm, X as the affine u-line over K and X′ as the closed subset of X consisting

of the points (u = 1) and (u = −1), we obtain a connected p(I)-Galois cover V ′ → A1
K′

of integral curves such that the composition f : V ′ → A1
K is a connected I-Galois cover

and such that V ′ ×A1
u

(u = 1) � IndI
I1

Spec(L1) and V ′ ×A1
u

(u = −1) � IndI
I2

Spec(L2) as

I-Galois covers of Spec(K). Take V to be the normalization of S × A1
u in the function

field of V ′. Then the cover V → S × A1
u satisfies the stated properties. �

Using the above lemma and formal patching technique, we obtain the following

result which produces Galois covers with bigger Galois and inertia groups starting from

a certain Galois covers with a compatibility on the tame parts of the inertia groups.

Theorem 6.21 ([9, Theorem 4.3]). Let G be a finite group, I ⊂ G be an extension of

a p-group by a cyclic group of order m, p - m. Let G1, G2 be subgroups of G. Let X

be a smooth projective connected k-curve, and f1 : Y1 → X be a connected G1-Galois

cover étale away from B1 ⊂ X. Assume that there is a closed point x ∈ B1 such that

an inertia group I1 over x is contained in the group I above. For x1 , x in B1, let

Jx1 occurs as an inertia group above x1. Also assume the existence of a connected G2-

Galois cover f2 : Y2 → P
1 étale away from a set B2 ⊂ P

1 such that 0 ∈ B2 and an
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inertia group I2 above 0 is contained in I. For points y , 0 in B2, let I′y occurs as an

inertia group above y. Assume further that the subgroups I1 and I2 of I are such that

|I1/p(I1)| = m = |I2/p(I2)|. If G = 〈G1,G2, I〉, then there is subset B0 ⊂ X disjoint from

B1 together with a bijection η : B0
∼
−→ B2 − {0} and a connected G-Galois cover of X

étale away from B1 t B0 such that I occurs as an inertia group above x, for x1 , x in

B1, Jx1 occurs as an inertia group above x1 and for x0 in B0, I′η(x0) occurs as an inertia

group above x0.

Proof. Let y1 ∈ Y1 with f1(y1) = x such that I1 is the Galois group of the field ex-

tension KY1,y1/KX,x. Also let y2 ∈ Y2 be a point lying above ∞ such that I2 is the

Galois group of the field extension KY2,y2/k((x)). We identify ÔX,x with k[[x]]. Then

taking V1 = Spec(ÔY1,y1) → Spec(k[[x]]) and V2 = Spec(ÔY2,y2) → Spec(k[[x]]) in

Lemma 6.20 we obtain a connected I-Galois cover g : V → Spec(k[[x]][u]) of inte-

gral schemes with branch locus x × A1
u over which it is totally ramified and such that

V ×Spec(k[[x]][u]) Spec(k[[x]]) × {u = 1} � IndI
I1

V1 and V ×Spec(k[[x]][u] Spec(k[[x]]) × {u =

−1} � IndI
I2

V2 as I-Galois covers over Spec(k[[x]]). Then the cover f1 and the I-Galois

cover g satisfy the hypothesis of Lemma 6.17 and by Lemma 6.18, there is an open

dense set W1 ⊂ A
1
u such that for all closed point (u = β) in W1 the following holds.

There is a connected H1 B 〈G1, I〉-Galois cover h1 : Z1 → X étale away from B1 such

that there is a point z1 ∈ Z1 above x for which Spec(ÔZ1,z1) is equal to the fibre of the

cover g : V → Spec(k[[x]][u]) over (u = β) as I-Galois covers over Spec(k[[x]]), and for

any point x1 , x in B1, Jx1 occurs as an inertia group above x1. Similarly, the covers f2

and g satisfy the hypothesis of Lemma 6.17 and by Lemma 6.18, there is an open dense

setW2 ⊂ A
1
u such that for all closed point (u = α) inW2 the following holds. There is

a connected H2 B 〈G2, I〉-Galois cover h2 : Z2 → P
1 étale away from B2 such that there

is a point z2 ∈ Z2 above 0 for which Spec(ÔZ2,z2) as an I-Galois cover of Spec(k[[x]])

is equal to the fibre of g over (u = α). We fix a closed point (u = a) in W1 ∩ W2

and consider the corresponding covers h1 : Z1 → X and h2 : Z2 → P
1 as above. Then

Spec(ÔZ1,z1) and Spec(ÔZ2,z2) are isomorphic I-Galois covers of Spec(k[[x]]).

Let T ∗ (see Remark 3.36 for an explicit construction of T ∗) be a regular irreducible

projective R-curve with generic fibre XK together with a cover T ∗ → P1
R and whose
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closed fibre T ′ is the union of two irreducible components X and P1
y meeting at a point η

and such that the complete local ring of T ∗ at η is given by ÔT ∗,τ = k[[x, y]][t]/(t− xy) �

k[[x, y]]. Now consider the trivial deformation Spec(ÔZ2,z2[y]) → Spec(k[[x]][y]). Let

N̂∗ B Spec(ÔZ2,z2[y])×Spec(k[[x]][y])Spec(k[[x, y]]). Let X−x = Spec(A), Z1−z1 = Spec(B1)

and Z2 − z2 = Spec(B2). Then the hypothesis of [12, Proposition 2.3] is satisfied with

the covers W
′∗
1 = Spec(B1[[t]]) → X

′∗
1 = SpecA[[t]] and W

′∗
2 = Spec(B2[[t]]) → X

′∗
2 =

Spec(k[y−1][[t]]) induced by h1 and h2, respectively, and with the isomorphisms

N̂∗ ×Spec(k[[x,y]]) Spec(KX,x[[t]]) � Spec(KZ1,z1) and

N̂∗ ×Spec(k[[x,y]]) Spec(k((y))[[t]]) = Spec(KZ2,z2).

By [12, Proposition 2.3], there is an irreducible normal G-Galois cover h∗ : V∗ → T ∗

such that V∗ ×T ∗ X
′∗
1 � IndG

H1
W
′∗
1 , V∗ ×T ∗ X

′∗
2 � IndG

H2
W
′∗
2 and V∗ ×T ∗ ÔT ∗,η � IndG

I N̂∗ as

G-Galois covers. Consider the generic fibre h0 : V0 → XK of the cover h∗. Then there

is a set B0 ∈ X disjoint from B1 together with a set bijection η : B0
∼
−→ B2 − {0} such

that h0 is étale away from {x′K |x
′ ∈ B1 t B0}, I occurs as an inertia group above xK , for

x1 , x in B1, Jx1 occurs as an inertia group above x1,K and for x0 in B0, I′η(x0) occurs as

an inertia group above x0,K . Since Z1 ×R K, Z2 ×R K and T ×R K are smooth over K,

V0 is also smooth over K. Also since T ′ is generically smooth and the cover V∗ → T ∗

is generically unramified, the closed fibre V∗ ×T ∗ T ′ → T ′ of h∗ is generically smooth.

Now the result follows by [12, Corollary 2.7]. �

By induction on n and using the above theorem, we obtain the following result which

generalizes a patching result by Raynaud ([25, Theorem 2.2.3]). This result allows us

to construct Galois covers with certain control on the inertia groups from covers with

smaller Galois groups. As an application (Lemma 7.14) of it, we will see that we can

restrict ourselves to a fewer cases of proving the IC.

Corollary 6.22 ([9, Corollary 4.4]). Let n ≥ 2 be an integer. Let G be a finite group,

I ⊂ G be an extension of a p-group by a cyclic group of order m, p - m. For 1 ≤ i ≤ n,

let Gi be a subgroup of G, Ii ⊂ Gi be a subgroup of I with |Ii/p(Ii)| = m and such that

the following hold.
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1. X is a smooth projective connected k-curve with a connected G1-Galois cover

f : Y → X étale away from B ⊂ X. Assume that I1 occurs as an inertia group

above a point x ∈ B. For x′ , x in B let Jx′ occurs as an inertia group above x′.

2. For each 2 ≤ i ≤ n, the pair (Gi, Ii) is realizable.

If G = 〈G1, · · · ,Gn, I〉, there is a connected G-Galois cover Z → X étale away from B

such that I occurs as an inertia group above x, and for x′ , x in B, Jx′ occurs as an

inertia group above x′.

For our next result, let us fix the following notation.

Notation 6.23. Let G1, G2 be two finite groups, X a smooth projective connected k-

curve. Let B ⊂ X be a finite set of closed points. Assume that for i = 1, 2, there is a

connected Gi-Galois cover fi : Yi → X étale away from B such that a p-group (possibly

trivial) Px,i occurs as the inertia group above x ∈ B. For each x ∈ B, let Qx be a p-

group (possibly trivial), and for i = 1, 2, let Nx,i be a normal subgroup of Px,i such that

Px,i/Nx,i � Qx.

The following result shows that in the setup of the above notation, certain kind of

field extensions can be realized as local extensions by the Galois covers for both the

groups G1 and G2. This will be used to show that the GPWIC is true for certain product

of groups.

Lemma 6.24 ([9, Lemma 4.6]). Assume that Notation 6.23 hold. Then for i = 1, 2,

there is a connected Gi-Galois cover Zi → X étale away from B such that Px,i occurs

as an inertia group above x ∈ B and such that there is a point zi ∈ Zi over x with

KNx,1
Z1,z1

/KX,x � KNx,2
Z2,z2

/KX,x as Qx-Galois extensions of KX,x.

Proof. Let x ∈ B, i = 1, 2. Without loss of generality, we may assume that all the

groups Px,i and Qx are non-trivial. Let yi ∈ Yi with fi(yi) = x such that Px,i is the Galois

group of the field extension KYi,yi/KX,x. Take I1 = I2 = I = Qx and Vi = Spec(ÔNx,i
Yi,yi

)

in Lemma 6.20. Then we obtain a connected Qx-Galois cover V → Spec(ÔX,x) × A1
u

of integral schemes with branch locus x × A1
u over which it is totally ramified such that
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V ×A1
u
{u = 1} � V1 and V ×A1

u
{u = −1} � V2 as Qx-Galois covers over Spec(ÔX,x). By

[14, Theorem 3.11], there is a connected Px,i-Galois cover gi : Wi → Spec(ÔX,x)×A1
u of

integral schemes dominating V → Spec(ÔX,x)×A1
u such that the fibre of g1 over (u = 1)

is Spec(ÔY1,y1) and the fibre of g2 over (u = −1) is Spec(ÔY2,y2). Then by Lemma 6.17,

there are connected Gi-Galois covers of XR satisfying the hypothesis of Lemma 6.18.

Using Remark 6.19, for each x ∈ B, i ∈ {1, 2}, choose a dense open setWx,i ⊂ A
1
u and

fix a closed point in Wx,1 ∩Wx,2. Then for i = 1, 2, there is a connected Gi-Galois

cover Zi → X étale away from B such that Px,i occurs as an inertia group above x ∈ B

and such that there is a point zi ∈ Zi over x with KNx,1
Z1,z1

/KX,x � KNx,2
Z2,z2

/KX,x as Qx-Galois

extensions. �

We recall and restate the following theorem due to Harbater which will be used

throughout the sections.

Theorem 6.25 ([13, Corollary to Patching Theorem]). Let r ≥ 1 be an integer. Let

G be a finite group, G1 and G2 be two subgroups of G such that G = 〈G1,G2〉. Let

X be a smooth projective connected k-curve. Let B be a finite set of closed points of

X containing a point x0. Let B′ B {η0, · · · , ηr} be a set of distinct points of P1. Let

a ∈ G1 ∩G2 be an element of order prime-to-p. Assume that

1. there is a connected G1-Galois cover f : Y → X étale away from B such that Ix

occurs as an inertia group above x ∈ B and Ix0 = 〈a〉;

2. there is a connected G2-Galois cover g : W → P1 étale away from B′ such that Ji

occurs as an inertia group above ηi, 1 ≤ i ≤ r, and such that J0 = 〈a−1〉.

Then there is a set B′′ = {x1, · · · , xr−1} of closed points of X disjoint from B and a

connected G-Galois cover of X étale away from BtB′′ such that Ix occurs as an inertia

group above x ∈ B \ {x0}, Jr occurs as an inertia group above x0 and Ji occurs as an

inertia group above xi, 1 ≤ i ≤ r − 1.

In [15], a special case of the following result appeared that also solves the split quasi

p embedding problem.
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Theorem 6.26 ([9, Theorem 4.8]). Let G be a finite group, ψ : Y → X be a smooth

connected G-Galois cover. Let x0 ∈ X be a closed point. Let Γ be a finite group

generated by G and a quasi p-group H such that there is a p-subgroup P of H which

is normalized by G and such that the pair (H, P) is realizable. Then there is a Γ-Galois

cover φ : Z → X of smooth projective connected k-curves dominating the cover ψ such

that the following hold.

1. For a closed point x , x0, if Ix occurs as an inertia group at a point over x for the

cover ψ, then Ix also occurs as an inertia group at a point over x for the cover φ;

2. if I0 occurs as an inertia group at a point above x0 for the cover ψ, I0P occurs as

an inertia group at a point above x0 for the cover φ;

3. the covers Z/〈HΓ〉 → X and Y/(G∩ 〈HΓ〉)→ X are isomorphic as Γ/〈HΓ〉-Galois

covers of X.

Proof. By [15, Theorem 2.1, Theorem 4.1], the above conclusion holds when P is re-

placed by a Sylow p-subgroup of H which is normalized by G. But the same proof

works under our hypothesis with the additional assumption that there is a connected

H-Galois étale cover of the affine line such that P occurs as an inertia group above

∞. �



Chapter 7

Proofs of the Main Results

7.1 Strategy of the proofs

In Section 7.2 one of the main results is Theorem 7.6. This theorem proves that given

two prefect quasi p-groups G1 and G2, 〈τi〉 = Pi ⊂ Gi where τ1 has order p and τ2

has order pa for some a ≥ 1 such that the pairs (G1, P1) and (G2, P2) are realizable, the

pair (G1 × G2, 〈(τb
1, τ2)〉) is also realizable for some 1 ≤ b ≤ p − 1. To prove this, we

first deform both the G1-Galois and G2-Galois étale covers of the affine line suitably to

obtain respective covers whose compositum is a G1×G2-Galois étale cover of the affine

line such that P1 × P2 occurs as an inertia group over ∞ and there is an upper jump

at 1 in the upper indexed ramification filtration. Then we use Theorem 5.12 to reduce

inertia. We also obtain several connected Ad-Galois covers of the affine line given by the

explicit equations from Section 6.1. Applying the above result to these covers together

with a patching result of Raynaud ([25, Theorem 2.2.3]), we obtain in Corollary 7.11

that the PWIC is true for any product of Alternating groups, each of degree p or coprime

to p.

In Section 7.3 we show evidence towards the IC (Conjecture 4.3). For each Ad,

p + 1 ≤ d ≤ 2p − 1, we figure out the potential candidates I for the inertia groups using

a group theoretic result (Proposition 5.1). Then we show that it is enough to prove that

only a fewer suitable pairs (Ad, I) are needed to be realized in order to prove the IC.

69
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This is done by using a formal patching result (Corollary 6.22). Then we treat each

individual d and use results from Section 6.1 to construct covers given by the explicit

affine equations.

The results supporting GPWIC in Section 7.4 are proved using formal patching tech-

nique developed in Section 6.2 together with induction. In the last section affirmative

answer to the general question is provided in some special cases using the construc-

tion of covers via explicit equations from Section 6.1, formal patching technique from

Section 6.2, and results from Section 7.4 and Section 7.3.

7.2 Purely Wild Inertia Conjecture for Product of Al-

ternating Groups

The content of this section is in the paper [10]. Fix an odd prime p throughout this

section. Our objective is to prove the PWIC (Conjecture 4.4) for any finite product of

simple quasi p Alternating groups Ad. Note that Ad is quasi p if and only if d ≥ p. Let

P be a p-subgroup in Ad whose conjugates in Ad generate Ad. Since we only consider

the simple groups Ad, for any element τ ∈ P, the conjugates of 〈τ〉 in Ad generate Ad.

In view of Theorem 3.35, to prove the PWIC for Ad, it is enough to prove that for

any element τ in Ad of order p, the pair (Ad, 〈τ〉) is realizable (Definition 3.25). Since

for a Galois cover Z → P1 branched only at∞, the inertia groups that occur over∞ are

conjugate to each other, it suffices to consider the elements τ up to conjugation. Without

loss of generality, any such element is of the form τ = τ1 · · · τa for some a ≥ 1 with

ap ≤ d and for 1 ≤ i ≤ a, τi is the p-cycle ((i − 1)p + 1, · · · , ip). We first prove that for

d ≥ p and for any p-group in Ad containing the p-cycle (1, · · · , p), the pair (Ad, P) is

realizable (Corollary 7.3). This is done by studying the covers introduced by Abhyankar

(Proposition 6.12). In particular, this proves that the PWIC is true for the groups Ad,

p ≤ d ≤ 2p − 1, which is well known due to an application of Abhyankar’s Lemma

(Theorem 5.14) to Raynaud’s proof of the Abhyankar’s Conjecture on the affine line

(Theorem 4.2). Using this result together with a result about a product of Alternating

groups obtained using formal patching technique, we will prove for any a ≥ 1 and
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1 ≤ r ≤ a the existence of a certain Aap+1-Galois étale cover of the affine line such that

〈τ1 · · · τr〉 occurs as an inertia group above∞. Finally, another application of the formal

patching shows that the PWIC is true for any product of Alternating groups of degree p

or of degree coprime to p.

In the following, we prove that for d ≥ p, the pair (Ad, 〈τ〉) is realizable where τ is a

p-cycle. Since the PWIC holds for d ≤ 2p, we may assume that d ≥ 2p.

Theorem 7.1 ([10, Corollary 4.4]). Let d = p + t ≥ 2p, p - t. Then for any p-cycle τ

the pair (Ad, 〈τ〉) is realizable.

Proof. Consider the degree d cover ψ : Y → P1 given by the affine Equation f (x, y) = 0

where f (x, y) is given by Equation (6.1.7). Let φ : Z → P1 be its Galois closure. By

Proposition 6.12, φ is an Ad-Galois étale connected cover of P1 branched only at∞ such

that the Sylow p-subgroup of an inertia group above∞ is generated by a p-cycle. Now

the result follows by applying Abhyankar’s Lemma (Theorem 5.14) to this cover. �

Theorem 7.2 ([10, Corollary 4.5]). Let d = ap for some integer a ≥ 1. Then for any

p-cycle τ the pair (Ad, 〈τ〉) is realizable.

Proof. We may assume that a ≥ 2. Consider the Ad+1-Galois cover φ : Z → P1 branched

only at ∞, which is the Galois closure of the degree-d cover ψ : Y → P1 given by the

affine Equation f (x, y) = 0 where f (x, y) = yd+1 + 1 − xyd−p+1. By Proposition 6.12,

〈(1, · · · , p)〉o〈β〉 occurs as an inertia group above∞where β = θiω (cf. Proposition 5.1)

has order m = l.c.m.( p−1
(p−1,d+1) , d − p + 1). Consider the Ad-Galois cover ε : Z → Y � P1.

By Lemma 5.7, this cover has branch locus {0,∞}with respective inertia groups of order
pm

d−p+1 and m above them. Also the Sylow p-subgroup of an inertia group above y = 0

is generated by a p-cycle. By Corollary 5.15, the pullback of ε under the [m]-Kummer

cover is a connected Ad-Galois cover of P1 branched only at ∞ such that 〈(1, · · · , p)〉

occurs as an inertia group above∞. �

Applying Theorem 3.35 to the above results we obtain the following.

Corollary 7.3 ([10, Corollary 4.7]). Let P be a p-subgroup of Ad containing a p-cycle.

Then the pair (Ad, P) is realizable.
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The following result shows that to prove the PWIC for Ad, d ≥ p, it is enough to

prove the conjecture for the cases d ≡ 0 and 1 (mod p).

Proposition 7.4 ([10, Proposition 4.9]). Let r ≥ 2 be an integer. Assume that the pair

(Arp+1, 〈τ〉) is realizable where τ is the product of r disjoint p-cycles in Arp+1. Then for

any d ≥ rp + 1, the pair (Ad, 〈τ〉) is realizable.

Proof. This is an immediate consequence of Raynaud’s result [25, Theorem 2.2.3] with

Gi = Alt(Supp(τ) ∪ {i}) and Q = Qi = 〈τ〉 for i ∈ {1, · · · , d} \ Supp(τ). �

The next two results use formal patching results from Section 6.2 to construct a

G1 × G2-Galois cover of P1 from the given G1-Galois and G2-Galois covers such that

the inertia group over ∞ is smaller than the one obtained from the fiber product of the

two covers. This will be used to construct a product of Alternating group covers with a

certain cyclic p-group as the inertia group. In view of Lemma 5.3 and Theorem 3.35,

this is exactly what we need.

Lemma 7.5 ([10, Lemma 5.1]). Let G1, G2 be two quasi p-groups, P1 and P2 be p-

subgroups of G1 and G2 respectively. Assume that the pairs (G1, P1) and (G2, P2) are

realizable, and let Q1 and Q2 be index-p subgroups of P1 and P2 respectively. Assume

that the local P1/Q1 and P2/Q2 Galois extensions are given by the Artin-Schreier poly-

nomials f0 = Z p
1 −Z1 − f (x0) and g0 = Z p

2 −Z2 − g(x0) respectively, where x0 is the local

parameter of P1 at∞. Assume that ordx0(g) and ordx0( f ) are different and not multiples

of p. For α ∈ k, let

fα = Zp − Z − (1 − α) f (x0) − αg(x0) − αx−1
0 and gα = Zp − Z − (1 + α)g(x0) + α f (x0)

be polynomials over k((x0)). Let Mα/k((x0)) and Nα/k((x0)) be the corresponding Z/pZ-

Galois extensions. Then there is a dense open subset V of A1
t such that for all closed

points (t = α) in V, there exist a P1-Galois extension M̃α/k((x0)) and a P2-Galois

extension Ñα/k((x0)) which are realized by the pairs (G1, P1) and (G2, P2) respectively.

Moreover Mα = M̃Q1
α , Nα = M̃Q2

α for all α ∈ V.
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Proof. Let U = Spec(k[[x0]]), R = k[[t]]. Let A B k((x0))[t][Z]/( ft), where ft(Z) =

Zp − Z − (1 − t) f (x0) − tg(x0) − tx−1
0 ∈ k((x0))[t][Z] and B B k((x0))[t][Z]/(gt), where

gt(Z) = Z p − Z − (1 + t)g(x0) + t f (x0) ∈ k((x0))[t][Z]. We have the maps φ′
A1

t
: S ′ B

Spec(A) → Spec(k((x0))[t]) and ψ′
A1

t
: T ′ B Spec(B) → Spec(k((x0))[t]). Let φA1

t
: S →

U ×k A
1
t and ψA1

t
: T → U ×k A

1
t be the normalization maps in A and B respectively. Let

φR : S R → UR and ψR : TR → UR be their pullbacks under the map UR → U×kA
1
t . Then

the normalization of the closed fibre of φR and ψR correspond to the field extensions

M0/k((x0)) and N0/k((x0)) respectively. The covers φR and ψR are branched only at the

R-valued point x0 = 0 since it is the only pole of the functions ft and gt in R[[x0]].

By [14, Theorem 3.11], there exist connected P1-Galois and P2-Galois étale covers

Φ′
A1

t
: S̃ ′ → Spec(k((x0))[t]) and Ψ′

A1
t
: T̃ ′ → Spec(k((x0))[t]) dominating φ′

A1
t

and ψ′
A1

t

respectively. Taking normalization of U ×k A
1
t in the function fields of S̃ ′ and T̃ ′, we

obtain P1-Galois and P2-Galois covers ΦA1
t
: S̃ → U ×k A

1
t and ΨA1

t
: T̃ → U ×k A

1
t

dominating φA1
t

and ψA1
t

respectively. One also obtains ΦR and ΨR which dominate φR

and ψR by pull backs.

So by Lemma 6.17, there are G1-Galois and G2-Galois covers of P1
R satisfying the

hypothesis of Lemma 6.18. So there is a dense open subset V of A1
t such that for all

points (t = α) in V, the extension M̃α/k((x0)) is realized by the pair (G1, P1), and the

extension Ñα/k((x0)) is realized by the pair (G2, P2). �

Theorem 7.6 ([10, Theorem 5.2]). Let G1, G2 be two perfect quasi p-groups. Let τ ∈

G1 and σ ∈ G2 be of order p and pr for some r respectively. Let P1 = 〈τ〉 ≤ G1,

P2 = 〈σ〉 ≤ G2. Assume that the pairs (G1, P1) and (G2, P2) are realizable. Then there

exists 1 ≤ a ≤ p − 1 such that for I B 〈(τa, σ)〉 ≤ G1 ×G2, the pair (G1 ×G2, I) is also

realizable.

Proof. Let φi : Yi → P
1 be a Gi-Galois cover of P1 branched only at∞with inertia group

Pi above∞ and the first lower jump hi above∞, for i = 1, 2. As usual it can be arranged

that h2 < h1 and the first upper jump of the P2-extension is at least 2 ([24, Theorem

2.2.2]). Let N2 be the index p subgroup of P2. Let the local P1-Galois and P2/N2-Galois

extensions be given by the Artin-Schreier polynomials f0 = Z p
1 −Z1− f (x0) ∈ k((x0))[Z1]

and g0 = Z p
2−Z2−g(x0) ∈ k((x0))[Z2] respectively where x0 is a local parameter at∞. By
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Lemma 7.5, there is a dense open subsetV ofA1
t such that for all points (t = α) inV, the

extension Mα/k((x0)) given by the polynomial fα = Z p−Z− (1−α) f (x0)−αg(x0)−αx−1
0

is realized by the pair (G1, P1), and the extension Nα/k((x0)) given by the polynomial

gα = Zp − Z − (1 + α)g(x0) + α f (x0) is dominated by a P2-Galois extension Ñα/k((x0))

which is realized by the pair (G2, P2). So there is an α , 0, 1 such that the points (t = α)

and (t = α − 1) both lie in V. Let Xi → P
1 be the corresponding Gi-Galois covers of

the affine line with inertia groups Pi above ∞, and ηi be points in Xi over ∞ such that

KX1,η1 = Mα and KX2,η2 = Ñα−1.

Let a1 ∈ Mα be a root of fα and a2 ∈ Nα−1 be a root of gα−1. So a1 − a2 is a root

of the Artin-Schreier equation Z p − Z + αx−1
0 = 0. Since −vx0(((1 − α) f (x0) + αg(x0) +

αx−1
0 )− (αg(x0)− (α−1) f (x0))) = 1, by Theorem [20, Proposition 3.1], the compositum

M = MαÑα is a Q = Z/p × Z/pr-Galois extension with the first lower jump at 1, and

Q1 = Q, Q2 = Gal(M/k((x0))(a1 − a2)) � Z/pr.

Let X be the dominant connected component of the normalization of X1 ×P1 X2 con-

taining the point η := (η1, η2). Then Θ : X → P1 is a G1 × G2-Galois cover branched

only above∞ with the local extension KX,η/KP1,∞ is given by M/k((x0)), and the inertia

subgroup Q has a lower jump at 1. Since G1 and G2 are perfect, G1 ×G2 is also perfect,

and so by [21, Theorem 3.7], there is a G1 × G2-Galois cover of the affine line with

inertia group above ∞ given by I = Gal(M/k((x0))(a1 − a2)) in G. Now the projec-

tion maps from G1 × G2 restricted to I surjects onto Gal(Mα/k((x0))) = P1 = 〈τ〉 and

Gal(Ñα−1/k((x0))) = P2 = 〈σ〉. So I is of the form 〈(τa, σ)〉 for some 1 ≤ a ≤ p − 1. �

Remark 7.7. Note that as in Lemma 7.5, in the above theorem we may take P1 and P2

to be arbitrary p-subgroups of G1 and G2, and the same proof shows that (G1 × G2, I)

is realizable for a subgroup I of P1 × P2 of index p. Also observe that a finite product of

groups preserves the properties of being quasi p and perfect. In particular, if G = Adi ,

di ≥ p, i = 1, 2, then the hypothesis of Theorem 7.6 is satisfied.

We are now ready to prove the wild part of the Inertia Conjecture for the Alternating

groups of degree d where d = p or d ≥ p + 1 is coprime to p.

Theorem 7.8 ([10, Theorem 5.4]). Let a ≥ 1 be an integer and 1 ≤ r ≤ a. For 1 ≤ i ≤ r

consider the p-cycle τi B ((i−1)p + 1, · · · , ip) and set τ B τ1 · · · τr ∈ Aap+1. Then there
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is a connected Aap+1-Galois étale cover of the affine line such that the p-cyclic group

〈τ〉 occurs as an inertia group above∞.

Proof. For 1 ≤ i ≤ a set S i B {(i − 1)p + 1, · · · , ip}. For 1 ≤ i ≤ r and 1 ≤ j ≤ r − 1 set

Hi j B


Alt(S j) � Ap, if i , j

Alt(S i ∪ {ap + 1}) � Ap+1, if i = j.

Also for 1 ≤ i ≤ r set

Hir B


Alt({(r − 1)p + 1, · · · , ap}) � A(a−r+1)p, if 1 ≤ i ≤ r − 1

Alt({(r − 1)p + 1, · · · , ap + 1}) � A(a−r+1)p+1, if i = r.

For 1 ≤ i ≤ r set Gi B Hi1 × · · · × Hir ⊂ Aap+1. Now by Corollary 7.3, each of

the pairs (Hi j, 〈τ j〉) is realizable. Since any two p-cycles in an Alternating group are

conjugates, by Theorem 7.6, for each 1 ≤ i ≤ r, the pair (Gi, 〈(τ1, · · · , τr)〉) is also

realizable. Note that Gi ∩ 〈τ〉 = 〈(τ1, · · · , τr)〉 for each i. Set G B 〈{Gi}1≤i≤r〉 ⊂ Aap+1.

Then G is a transitive subgroup of Aap+1 by construction. Since each Hi j is generated by

p-cycles, so is G. Also G contains the 3-cycle (1, 2, 3) ∈ H11. So by [28, Lemma 4.4.4],

G = Aap+1. So by [25, Theorem 2.2.3] there is a connected Aap+1-Galois étale cover of

the affine line such that 〈τ〉 occurs as an inertia group above∞. �

Applying Proposition 7.4 to Theorem 7.8, we obtain the following results.

Corollary 7.9 ([10, Corollary 5.5]). Let d = p or d ≥ p + 1 be coprime to p. Then the

wild part of the Inertia Conjecture holds for Ad.

Corollary 7.10 ([10, Corollary 5.6]). Let d = ap, a ≥ 2, τi’s be as in Theorem 7.8 for

1 ≤ i ≤ r with 1 ≤ r ≤ a − 1. Then the pair (Ad, 〈τ1 · · · τr〉) is realizable.

Corollary 7.11 ([10, Corollary 5.7]). Let u ≥ 1 be an integer. For 1 ≤ i ≤ u, let di = p

or di > p be coprime to p. Then the wild part of the Inertia Conjecture is true for the
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group G B Ad1 × · · · × Adu . Moreover, if Q is any p-group, the wild part of the Inertia

Conjecture is true for G × Q.

Proof. Let P be a p-subgroup of G whose conjugates generate G. There exist g1, · · · , gr

in P satisfying conditions (1)-(4) of Lemma 5.3. The case r = 1 will be proved by

the induction on u. Let πi : G � Adi and π : G → Ad2 × · · · × Adu be the projection

maps. So there exists a cyclic subgroup P′ = 〈g1〉 of P such that π1(P′) = 〈τ〉 ≤

Ad1 is a cyclic group of order p, π(P′) is a cyclic p-group with generator σ, say, and

πi(P′) are nontrivial subgroups for all i. By the induction hypothesis on u the pair

(Ad2×· · ·×Adu , π(P′)) is realizable and (Ad1 , 〈τ〉) is realizable by Corollary 7.9. Moreover

P′ = 〈(τ, σ)〉 and τ is of order p. Now by Theorem 7.6, (Ad1 × · · · × Adu , I) is realizable

where I = 〈(τa, σ)〉 for some 1 ≤ a ≤ p − 1. But there is an automorphism of Ad1

which sends τ to τa. Hence (Ad1 × · · · × Adu , P
′) is realizable. Finally by Harbater’s

result [11, Theorem 2], (Ad1 × · · · × Adu , P) is realizable. Now for r ≥ 2, in the Notation

5.2 of Lemma 5.3, let Hi = HS (gi). By r = 1 case, the pairs (Hi, 〈gi〉) are realizable for

1 ≤ i ≤ r. Now the result follows from [25, Theorem 2.2.3]. The moreover part follows

from [20, Corollary 4.6]. �

Remark 7.12. For 1 ≤ i ≤ u, let Gi be a non-abelian simple quasi p-group whose order

is strictly divisible by p. Then the same argument of Corollary 7.11 shows that that the

wild part of the Inertia Conjecture is also true for the group G = G1 × · · · ×Gu.

7.3 The Inertia Conjecture for Alternating Groups

In this section, we prove the IC (Conjecture 4.3) for some Alternating groups following

[9]. Recall that the IC was proved to be true for Ap ([8, Theorem 1.2]) and when p ≡ 2

(mod 3) for Ap+2([22, Theorem 1.2]). We show that when p ≡ 2 (mod 3) the IC is

true for the groups Ap+1, Ap+3 and Ap+4, and with some extra condition on p the IC is

also true for Ap+5. The covers will be constructed using the results and techniques from

Section 6.1.

Throughout this section τ denote the p-cycle (1, · · · , p) in S p.
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In view of Proposition 5.1, to prove the IC for Ad, p < d < 2p, we need to prove that

there is a connected Ad-Galois étale cover of the affine line such that I = 〈τ〉 o 〈θiω〉

occurs as an inertia group above∞ for every 1 ≤ i ≤ p− 1 and ω ∈ Sym({p + 1, · · · , d})

such that θiω is an even permutation. Note that for θiω ∈ Ad, i an even integer if and

only if ω is an even permutation. Now we make some observations which reduces the

proof of the IC to the realization of the pair (Ad, I) to a fewer cases.

Remark 7.13. Since 〈θiω〉 = 〈θ(i,p−1)ω〉, it is enough to consider the i’s dividing p − 1.

Also using Abhyankar’s Lemma ([1, XIII, Proposition 5.2]), it is enough to prove for

the cases where I is a maximal inertia group in the sense of [17, Section 4.9].

In fact, the following result shows that it is enough to consider the more restricted

cases when ω acts on the set {p + 1, · · · , d} either with one fixed point or without any

fixed point, provided the IC is true for the Alternating groups of lower degree.

Lemma 7.14 ([9, Lemma 5.2]). Let p be an odd prime, p+1 ≤ d ≤ 2p−1. Assume that

the pair (Ad, I) is realizable for a subgroup I ⊂ Ad which fixes ≥ 1 points in {1, · · · , d}.

Then for all d′ ≥ d, the pair (Ad′ , I) is also realizable.

In particular, to prove the IC for Ad, p + 2 ≤ d ≤ 2p − 1, it is enough to prove that

the IC is true for each Au, p ≤ u ≤ d − 2, and that the pair (Ad, I) is realizable for each

I ⊂ NAd (〈τ〉) such that I fixes 0 or 1 point in the set {1, · · · , d}.

Proof. This is a direct consequence of Corollary 6.22 with Gi = Alt(Supp(I) ∪ S i) for

every set S i ⊂ {1, · · · , d′} \ Supp(I) of size d − |Supp(I)|. The second statement follows

from the first one. �

We are now ready to prove that the IC is true for certain Alternating groups.

Theorem 7.15 ([9, Theorem 5.3]). Let p ≡ 2 (mod 3) be an odd prime. Then the IC is

true for the group Ap+1.

Proof. By Remark 7.13, it is enough to prove that the pair (Ap+1, I) is realizable for

I = 〈τ〉 o 〈θ2〉. Set s = 3, r = 1, n1 = p − 2, n2 = 2, n3 = 1. By Lemma 6.7(4),



78 Chapter 7. Proofs of the Main Results

Assumption 6.5 holds for the choice (α1, α2, α3, β1) = (3/4, 1/4, 1, 0). Let ψ : Y → P1

be the degree-(p + 1) cover given by the affine equation

Π3
i=1(y − αi)ni − xy = 0. (7.3.1)

Let φ : Z → P1 be the Galois closure of the cover ψ with Galois group G. Then by

Proposition 6.8, G is a primitive subgroup of S p+1 and the cover φ is étale away from

{0,∞} such that 〈(1, · · · , p− 2)(p− 1, p)〉 occurs as an inertia group over 0 and 〈τ〉o 〈θ〉

occurs as an inertia group over ∞. Since p − 2 is odd, G contains the transposition

(p − 1, p) and since G also contains the p-cycle τ, by [28, Lemma 4.4.3], G = S p+1.

After the pullback of φ under the [2(p−2)]-Kummer cover we obtain a connected Ap+1-

Galois étale cover of the affine line such that I occurs as an inertia group above∞. �

Theorem 7.16 ([9, Theorem 5.3]). Let p ≡ 2 (mod 3) be an odd prime. Then the IC is

true for the group Ap+3.

Proof. When p ≡ 2 (mod 3), by Abhyankar’s Lemma it is enough to prove that there

is a connected Ap+3-Galois cover of P1 étale away from∞ such that I = 〈τ〉o 〈β〉 occurs

as an inertia group at a point above∞ where β is of the form β = θ2(p + 1, p + 2, p + 3)

or β = θ(p + 1, p + 2). These are immediate from Corollary 6.9 and Corollary 6.11. �

Theorem 7.17 ([9, Theorem 5.4]). Let p ≡ 2 (mod 3) be an odd prime. Then the IC is

true for the group Ap+4.

Proof. Let p ≡ 2 (mod 3) be an odd prime. By Abhyankar’s Lemma, to prove the IC

for Ap+4 it is enough to prove that there is a connected Ap+4-Galois cover of P1 étale away

from∞ such that I = 〈τ〉o〈β〉 occurs as an inertia group at a point above∞where β is of

the form β = θ(p+1, p+2) or β = θ2(p+1, p+2, p+3) or β = θ(p+1, p+2, p+3, p+4).

Since the IC is true for Ap+2, by Lemma 7.14, the pair (Ap+4, 〈τ〉 o 〈θ(p + 1, p + 2)〉)

is realizable.

Now fix an element w3 ∈ k such that w2
3 = 3. Then for s = 2, r = 2, n1 = p+2, n2 = 2,

m1 = 3, m2 = 1, Assumption 6.5 holds for the choice (α1, α2, β1, β2) = ( 1+w3
4 , 1−w3

4 , 0, 1).
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So we can apply Proposition 6.8 to obtain a connected S p+4-Galois cover of P1 étale

away from {0,∞} such that 〈(1, · · · , p + 2)(p + 3, p + 4)〉 occurs as an inertia group

above 0 and 〈τ〉 o 〈θ(p + 1, p + 2, p + 3)〉 occurs as an inertia group above ∞. After a

[2(p+2)]-Kummer pullback we obtain a connected Ap+4-Galois étale cover of the affine

line such that 〈τ〉 o 〈θ2(p + 1, p + 2, p + 3)〉 occurs as an inertia group above∞.

In the last case, fix an element w2 ∈ k such that w2
2 = 2. Then for s = 3, r =

1, n1 = p − 2, n2 = n3 = 3, Assumption 6.5 holds for the choice (α1, α2, α3, β1) =

(1, 1+w2
3 , 1−w2

3 , 0). By Proposition 6.8, there is a connected Ap+4-Galois cover of P1 étale

away from {0,∞} such that 〈(1, · · · , p− 2)(p− 1, p, p + 1)(p + 2, p + 3, p + 4)〉 occurs as

an inertia group above 0 and 〈τ〉o 〈θ(p+1, p+2, p+3, p+4)〉 occurs as an inertia group

above∞. So by Abhyankar’s Lemma, the pair (Ap+4, 〈τ〉o 〈θ(p + 1, p + 2, p + 3, p + 4)〉)

is realizable. �

Lemma 7.18 ([9, Lemma 5.6]). When p ≡ 2 (mod 3) is a prime > 5, the pair (Ap+5, Ii)

is realizable for 2 ≤ i ≤ 5, where I2 = 〈τ〉o〈θ(p+1, p+2)〉, I3 = 〈τ〉o〈θ2(p+1, p+2, p+

3)〉, I4 = 〈τ〉o 〈θ(p+1, p+2, p+3, p+4)〉, I5 = 〈τ〉o 〈θ2(p+1, p+2, p+3, p+4, p+5)〉.

Additionally if 4 - (p + 1), the pair (Ap+5, 〈τ〉 o 〈θ(p + 1, p + 2)(p + 3, p + 4, p + 5)〉) is

also realizable.

Proof. Let p ≡ 2 (mod 3) be a prime > 5. Since the IC is true for Ap+2 ([22, Theorem

1.2]) and for Ap+3 (Theorem 7.16), by Lemma 7.14 the first two cases follow.

Now we consider the realization of I4 as an inertia group. Fix w2/3 ∈ k such that

w2
2/3 = 2/3. Then for s = 2, r = 2, n1 = p + 2, n2 = 3, m1 = 4, m2 = 1, Assumption 6.5

holds for the choice (α1, α2, β1, β2) = (1−3w2/3

5 ,
1+2w2/3

5 , 0, 1). So we can apply Proposition

6.8 to obtain a connected Ap+5-Galois cover of P1 étale away from {0,∞} such that

〈(1, · · · , p + 2)(p + 3, p + 4, p + 5)〉 occurs as an inertia group above 0 and 〈τ〉 o 〈θ(p +

1, p + 2, p + 3, p + 4)〉 occurs as an inertia group above∞. By Abhyankar’s Lemma, the

pair (Ap+5, I4) is realizable.

For the next case, when (5, p − 1) = 1, the pair (Ap+5, I5) is realizable by Corollary

6.9. So let (5, p − 1) = 5. Fix w7 ∈ k such that w2
7 = 7. Then for s = 3, r = 1,

n1 = p−2, n2 = 6, n3 = 1, m1 = 5, Assumption 6.5 holds for the choice (α1, α2, α3, β1) =
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(w7+1
2 , w7−1

6 , 2, 0). By Proposition 6.8, there is a connected S p+5-Galois cover of P1 étale

away from {0,∞} such that 〈(1, · · · , p − 2)(p − 1, p, p + 1, p + 2, p + 3, p + 4)〉 occurs

as an inertia group above 0 and 〈τ〉 o 〈θ(p + 1, p + 2, p + 3, p + 4, p + 5)〉 occurs as

an inertia group above ∞. Since (p − 1, 5) = 5, we have (p − 2, 5) = 1. So after a

[6(p−2)]-Kummer pullback we obtain a connected Ap+5-Galois étale cover of the affine

line such that I5 occurs as an inertia group above∞.

Now we consider the last case with the additional assumption (p + 1, 4) = 2. Set

s = 2 = r, m1 = 2, m2 = 3, n1 = n2 =
p+5

2 . Choose an element w3 ∈ k such that w2 = 3.

Then for (α1, α2, β1, β2) = (3+2w3
5 , 3−2w3

5 , 0, 1), Assumption 6.5 holds. So we can apply

Proposition 6.8 to obtain a connected Ap+5-Galois cover of P1 branched only at 0 and

∞ such that 〈(1, · · · , p+5
2 )( p+5

2 + 1, · · · , p + 5)〉 occurs as an inertia groups above 0 and

I = 〈τ〉 o 〈θ(p + 1, p + 2)(p + 3, p + 4, p + 5)〉) occurs as an inertia group at a point over

∞. Then using Abhyankar’s Lemma we see that the pair (Ap+5, I) is realizable. �

Using the above lemma and Abhyankar’s Lemma ([1, XIII, Proposition 5.2]), we

conclude the following result.

Theorem 7.19 ([9, Theorem 5.7]). Let p ≡ 2 (mod 3) be a prime ≥ 17 such that

(p + 1, 4) = 2. Then the IC is true for the group Ap+5.

7.4 Towards the Generalized Purely Wild Inertia Con-

jecture

In this section, we see some affirmative results for the GPWIC (Conjecture 4.18) and

some of the weaker cases following [9]. Let G be a quasi p-group, P1, · · · , Pr be

non-trivial p-subgroups of G for some r ≥ 1 such that G = 〈PG
1 , · · · , P

G
r 〉. Let B =

{x1, · · · , xr} be a set of closed points in P1. Then the GPWIC says that there is a con-

nected G-Galois cover of P1 étale away from B such that Pi occurs as an inertia group

above the point xi. We use these notation throughout this section. We will use results

from Section 6.2 for the proofs. Let us start with the following group theoretic observa-

tion.
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Lemma 7.20. Let G be a p-group, r ≥ 1 be an integer. Let P1, · · · , Pr be p-subgroups

of G such that G = 〈PG
1 , · · · , P

G
r 〉. Then G = 〈P1, · · · , Pr〉.

Proof. The result holds for an abelian p-group G. So assume that G is non-abelian.

Then the Frattini subgroup Φ(G) of G is non-trivial. Consider the Frattini quotient

G � G/Φ(G). Under this epimorphism, Pi has image Pi/Pi ∩ Φ(G), and G/Φ(G) =

〈(Pi/Pi ∩ Φ(G))G/Φ(G)|1 ≤ i ≤ r〉. Since G/Φ(G) is elementary abelian, G/Φ(G) =

〈P1/P1 ∩Φ(G), · · · , Pr/Pr ∩Φ(G)〉. Thus G = 〈P1, · · · , Pr,Φ(G)〉 = 〈P1, · · · , Pr〉 since

Φ(G) is the set of non-generators of G. �

Theorem 7.21 ([9, Theorem 7.2]). The GPWIC holds for every p-group.

Proof. By Lemma 7.20, G = 〈P1, · · · , Pr〉. We proceed via induction on r. The

pair (Pr, Pr) is realizable. By the induction hypothesis there is a connected G1 B

〈P1, · · · , Pr−1〉-Galois cover of P1 étale away from {x1, · · · , xr−1} such that Pi occurs

as an inertia group above the point xi for 1 ≤ i ≤ r − 1. Now the result follows from

Theorem 6.25. �

Theorem 7.22 ([9, Theorem 7.3]). The GPWIC holds for any quasi p-group G whose

order is strictly divisible by p. In particular, it holds for Alternating groups Ad with

p ≤ d ≤ 2p − 1 and for PS L2(p) when p is an odd prime ≥ 5.

Proof. Since p2 - |G|, each Pi is a p-cyclic Sylow p-subgroup of G. Since G is a quasi

p-group, for each i, G = 〈PG
i 〉. We proceed by induction on r. By Raynaud’s proof of

the Abhyankar’s Conjecture on the affine line ([25, Corollary 2.2.2]), the pair (G, Pr) is

realizable. Now we argue as in the proof of Theorem 7.21. �

Theorem 7.23 ([9, Theorem 7.4]). Let u ≥ 1 be an integer. Let G = G1× · · ·×Gu where

each Gi is either a non-abelian simple quasi p-group of order strictly divisible by p or

a simple Alternating group of degree coprime to p. Then the GPWIC is true for G.

Proof. For any subset Λ ⊆ {1, · · · , u}, set HΛ B Πλ∈ΛGλ and let πΛ : G → HΛ be the

projection. For each 1 ≤ i ≤ r, consider the set αi consisting of j ∈ {1, · · · , u} such that

π j(Pi) is non-trivial. Since Gi’s are simple non-abelian groups, the conjugates of παi(Pi)



82 Chapter 7. Proofs of the Main Results

in Hαi generate Hαi . We proceed via induction on r. If r = 1, by [10, Remark 5.8,

Corollary 5.4], the pair (G, P1) is realizable. So let r ≥ 2. By the induction hypothesis

there is a connected H∪r−1
i=1αi

-Galois cover of P1 étale away from {x1, · · · , xr−1} such that

Pi occurs as an inertia group above the point xi for 1 ≤ i ≤ r − 1. If H∪r−1
i=1αi

= G,

the result follows by [11, Theorem 2]. Otherwise, set S B {1, · · · , u} \ ∪r−1
i=1αi. Since

∪1≤i≤rαi = {1, · · · , u}, we must have S ⊂ αr. Again by [10, Remark 5.8, Corollary 5.7],

the pair (Hαr , Pr) is realizable. Then the result follows by applying Theorem 6.25 with

the groups H∪r−1
i=1αi

and Hαr . �

In the following, we show that the GPWIC is true for certain product of groups if it

is true for the individual groups.

Theorem 7.24 ([9, Theorem 7.5]). Let G1 and G2 be two finite quasi p-groups such that

they have no non-trivial quotient in common. If the GPWIC is true for the groups G1

and G2, then it is also true for G1 ×G2.

Proof. Set G B G1 ×G2 and let π j : G � G j denote the projections for j ∈ {1, 2}. Let

r ≥ 1, P1, · · · , Pr be non-trivial p-subgroups of G such that G = 〈PG
1 , · · · , P

G
r 〉. Then

for each 1 ≤ i ≤ r, both of the groups π1(Pi) and π2(Pi) cannot be trivial. For 1 ≤ i ≤ r,

by the Goursat’s lemma, there is p-group Qi (possibly trivial), normal subgroups N j,i

of π j(Pi) such that π j(Pi)/N j,i � Qi and Pi � π1(Pi) ×Qi π2(Pi). Let Q′i be a common

quotient of π1(Pi) and π2(Pi) such that Qi is a quotient of Q′i . Then π1(Pi) ×Q′i π2(Pi) ⊂

π1(Pi)×Qi π2(Pi) and so by [11, Theorem 2], it is enough to consider Qi to be a maximal

common quotient of π1(Pi) and π2(Pi). Now G j = 〈π j(P1)G j , · · · , π j(Pr)G j〉. Let B =

{x1, · · · , xr} be a sets of closed points in P1. By the hypothesis, for j = 1, 2, there is a

connected G j-Galois cover f j : Y j → P
1 étale away from B such that π j(Pi) occurs as

an inertia group above the point xi ∈ B. By Lemma 6.24, for j = 1 and 2, there is a

connected G j-Galois cover Z j → P
1 étale away from B such that π j(Pi) occurs as an

inertia group above xi, 1 ≤ i ≤ r, and such that there is a point z j,i ∈ Z j over xi with

KN1,i
Z1,z1,i

/KP1,xi � KN2,i
Z2,z2,i

/KP1,xi as Qi-Galois extensions. Since Qi is a maximal common

quotient of π1(Pi) and π2(Pi), the extensions KZ1,z1,i/KP1,xi and KZ2,z2,i/KP1,xi are linearly

disjoint over KN1,i
Z1,z1,i

� KN2,i
Z2,z2,i

/KP1,xi . Let W be a dominant connected component of the
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normalization of Z1 ×P1 Z2. Since G1 and G2 have no common non-trivial quotient in

common, the cover Ψ : W → P1 is a connected G1 × G2-Galois cover. For a point

w = (z′1, z
′
2) in W with f j(z′j) = x the extension KW,w/KP1,x is the compositum of the

extension KZ1,z′1
/KP1,x with the extension KZ2,z′2

/KP1,x. So the cover Ψ is étale away from

B and π1(Pi) ×Qi π2(P2) = Pi occurs as an inertia group above xi. �

Remark 7.25. The above theorem generalizes [20, Corollary 4.6] where the result was

proved for a perfect group G1 and a p-group G2.

In the following, we summarize the results of this section.

Corollary 7.26 ([9, Theorem 1.7]). The GPWIC (Conjecture 4.18) is true for the fol-

lowing quasi p-groups G.

1. G is a p-group;

2. G has order strictly divisible by p;

3. G = G1 × · · · × Gu where each Gi is either a simple Alternating group of degree

d ≥ p, where d = p or (d, p) = 1 or a p-group or a simple non-abelian group of

order strictly divisible by p.

Now we will see some weaker results towards the GPWIC. Namely, when we allow

the branch locus sufficiently large or if we allow bigger inertia groups, there are suitable

covers with the prescribed ramification. We also show that when the group is Ad, it is

enough to add only one more branch point. Using Theorem 3.35, one can increase the

wild part of the inertia groups of a cover. In particular, let G be a quasi p-group, P1,

· · · , Pr be p-subgroups of G. Let Q1 be a Sylow p-subgroup of G containing P1. Let

B = {x1, · · · , xr} be a set of closed points of P1. Then there is a connected G-Galois

cover of P1 étale away from B such that Q1 occurs as an inertia group above x1, and Pi

occurs as an inertia group above xi for 2 ≤ i ≤ r. In the following, we show that with

the hypothesis of the GPWIC, the inertia groups can be taken as the Sylow p-subgroups

of the normal quasi p-groups 〈PG
i 〉.
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Proposition 7.27 ([9, Proposition 8.1]). Under the notation and hypothesis of Conjec-

ture 4.18, for each i, there is a p-subgroup Qi ⊃ Pi in 〈PG
i 〉 such that there is a connected

G-Galois cover of P1 étale away from B and Qi occurs as an inertia group above the

point xi for 1 ≤ i ≤ r.

Proof. We proceed by induction on r. When r = 1, it is the consequence of [11, The-

orem 2]. So let r ≥ 2. For 1 ≤ i ≤ r, let Qi be a Sylow p-subgroup of Hi = 〈PG
i 〉

containing Pi. Since Hi is a quasi p-group, Hi = 〈QHi
i 〉 and by the r = 1 case, the

pair (Hi,Qi) is realizable. By the induction hypothesis, we may assume that there is a

connected G1 B 〈H1, · · · ,Hr−1〉-Galois cover of P1 étale away from {x1, · · · , xr−1} and

Qi occurs as an inertia group above xi. If G1 = G, apply [11, Theorem 2]. Otherwise

the result follows by Theorem 6.25 with G2 = Hr. �

Proposition 7.28 ([9, Proposition 8.2]). Assume that the hypothesis and notation of

Conjecture 4.18 hold. For each 1 ≤ i ≤ r, let Ci B {Pi, j}1≤ j≤ti be the set of all conjugates

of Pi in G. Let ∅ , Ai ⊂ Ci such that G = 〈P|P ∈ Ai, 1 ≤ i ≤ r〉. Let l B Σi|Ai| and let

B = {xi, j|1 ≤ i ≤ r, Pi, j ∈ Ai} be a set of l closed points in P1 such that xi,1 = xi for each

i. Then there is a connected G-Galois cover of P1 étale away from B and Pi occurs as

an inertia group above the point xi, j ∈ B.

Proof. Since the inertia groups above a point in a connected Galois cover are conju-

gates, it is enough to prove that there is a connected G-Galois cover of P1 étale away

from B such that Pi, j occurs as an inertia group above the point xi, j ∈ B. We proceed

via induction on l. If l = 1 then G = P1 and the result follows. Let l ≥ 2. Fix an i0,

1 ≤ i0 ≤ r, and element Pi0, j0 in Ai0 . Then the pair (Pi0, j0 , Pi0, j0) is realizable. By the

induction hypothesis, we may assume that there is a connected G1 B 〈{Pi, j|1 ≤ i ≤

r, j ∈ Ai} − {Pi0, j0}〉-Galois cover of P1 étale away from B − {xi0, j0} and Pi, j occurs as an

inertia group above the point xi, j ∈ B for (i, j) , (i0, j0). Now use Theorem 6.25 with

G2 = Pi0, j0 . �

By the above proposition, if we allow enough number of branch points we can obtain

covers with the desired purely wild ramification. By Corollary 7.9, when d = p or when
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d ≥ p + 1 is coprime to p, the GPWIC holds for Ad. So assume that a ≥ 2 and d = ap.

The following result shows that in this case we only need one extra branched point.

Proposition 7.29 ([9, Proposition 8.3]). Let p be an odd prime, a ≥ 2 be an integer,

d = ap. Let r ≥ 1 be an integer and P1, · · · , Pr be non-trivial p-subgroups of Ad. Let

B = {x1, · · · , xr} be a set of closed points in P1 and let x0 ∈ P
1 be a closed point outside

B. Fix 1 ≤ i0 ≤ r. Then there is a connected Ad-Galois cover of P1 étale away from

B t {x0} such that Pi occurs as an inertia group above xi and Pi0 occurs as an inertia

group above x0.

Proof. We may assume that i0 = 1. By Theorem 3.10, it is enough to consider the case

r = 1 and when P1 = 〈τ〉 for an element τ of order p. Without loss of generality we

may assume that τ = τ1 · · · τv where τi is a the p-cycle ((i − 1)p + 1, · · · , ip), 1 ≤ i ≤ v.

By Corollary 7.10, we may assume that v = a.

For 1 ≤ i ≤ a, set Hi1 B Alt({(i − 1)p + 1, · · · , ip}). For 1 ≤ j ≤ a − 1 set

H j2 B Alt({( j − 1)p + 2, · · · , jp + 1}) and let Ha2 B Alt({(a − 1)p + 2, · · · , ap, 1}). For

i = 1, 2, set Gi B H1i × · · ·Hai ⊂ Ad. For 1 ≤ j ≤ a, consider the p-cycle σ j given

by σ j B (( j − 1)p + 2, · · · , jp + 1) for 1 ≤ j ≤ a − 1, σa B ((a − 1)p + 2, · · · , ap, 1).

Consider the element σ B σ1 · · ·σa in Ad of order p. By Theorem 7.23, the pairs

(G1, 〈(τ1, · · · , τa)〉) and (G2, 〈(σ1, · · · , σa)〉) are realizable. Set G B 〈G1,G2〉 ⊂ Ad.

Since each Hi j are generated by p-cycles, so is G. Also the 3-cycle (1, 2, 3) ∈ H11 is

contained in G. So by [28, Lemma 4.4.4], G = Ad. Since σ is a conjugate of τ in Ad, by

Theorem 6.25, there is a connected Ad-Galois cover of P1 étale away from {x0, x1} such

that 〈τ〉 occurs as an inertia group over x0 and over x1. �

7.5 Towards the General Question

In this section, we see some evidence for Q[r, X, B,G] (Question 4.10). The following

result is a consequence of the formal patching technique (Theorem 6.25).

Proposition 7.30 ([9, Proposition 9.1]). Let r ≥ 1, X be a smooth projective connected

k-curve, G be a finite group. Let B = {x1, · · · , xr} ⊂ X be a set of closed points in X.
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For 1 ≤ i ≤ r, let Ii be a subgroup of G which is an extension of a p-group Pi by a

cyclic group of order prime-to-p, and set H B 〈PG
i |1 ≤ i ≤ r〉. Assume that H has a

complement H′ in G. Suppose that the following hold.

1. There is a connected H′-Galois étale cover ψ : Z → X.

2. There is a connected H-Galois cover of P1 étale away from a set {η1, · · · , ηr} of

r-distinct points such that Ii occurs as an inertia group above the point ηi for

1 ≤ i ≤ r.

Then there is a connected G-Galois cover of X étale away from a set B′ = {x′1, · · · , x
′
r}

of closed points such that Ii occurs as an inertia group above the point x′i , 1 ≤ i ≤

r. Moreover, we can choose an i such that x′i = xi. Furthermore, if each (H, Ii) is

realizable, we can take x′i = xi for all 1 ≤ i ≤ r.

Proof. Since ψ is an unramified cover, each Ii ⊂ H. By the hypothesis, G/H is a sub-

group of G which together with H generates G. By Theorem 6.25, there is a connected

G-Galois cover of X étale away from B′ such that Ii occurs as an inertia group above

the point x′i for 1 ≤ i ≤ r and we can choose one 1 ≤ i ≤ r such that x′i = xi. For the last

assertion we use Theorem 6.25 inductively for r. �

Remark 7.31. Note that when (|G/H|, p) = 1, by the Schur-Zassenhaus Theorem, the

group H always has a complement in G.

The hypotheses of the above result assumes the existence of the unramified cover

ψ. In general, the unramified Galois covers of X are not well understood. But they are

known when the Galois group either has order prime-to-p or when the Galois group is

a p-group. Using these structures, we have the following result.

Corollary 7.32 ([9, Corollary 9.3]). Assume that the hypotheses of Question 4.10 hold.

Further suppose that one of the following holds.

1. (|G/H|, p) = 1 and the cover ψ is an étale G/H-Galois cover of X;
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2. G = H o H′ for some p-group H′ of rank s and X has p-rank ≥ s and ψ is an

étale H′-Galois cover of X.

Assume that each Ii ⊂ 〈PG
i 〉 and each pair (〈PG

i 〉, Ii) is realizable. Then for any set

B = {x1, · · · , xr} of closed points in X, there is a connected G-Galois cover of X étale

away from B such that Ii occurs as an inertia group above the point xi for 1 ≤ i ≤ r.

Remark 7.33. Note that the above results can be applied to the Question Q[r, X, B,G]

if there exists 0 ≤ j ≤ l such that H j is normal in G which has a complement in G, the

composite cover ψ j ◦ · · · ◦ ψ1 is étale, and each pair (〈PG
i 〉, Ii) is realizable.

Using the IC for the Alternating groups proved in Section 7.3, the above Corollary

implies the following result.

Corollary 7.34 (Q[1, X, {∗}, S d], [9, Corollary 9.5]). Let p be an odd prime and X be

any smooth projective k-curve of genus ≥ 1. Then for r = 1, Question 4.10 has an

affirmative answer for the group S p and when p ≡ 2 (mod 3) for the groups S p+1, S p+2,

S p+3, S p+4.

Proof. Let d = p or when p ≡ 2 (mod 3), d ∈ {p + 1, p + 2, p + 3, p + 4}. Set G = S d.

Let x ∈ X be a closed point, I ⊂ G be an extension of a p-group P by a cyclic group of

order prime-to-p. Then 〈PG〉 = Ad. Let ψ : Y → X be a connected Z/2-Galois cover of

X étale away from x. By the Riemann-Hurwitz formula, the ramification index above x

must be an odd integer. So ψ is étale everywhere and I ⊂ Ad. Now the result follows

from Corollary 7.32 applied to [8, Theorem 1.2], [22, Theorem 1.2] and Theorem 7.15–

Theorem 7.17. �

Again using the IC for the Alternating groups proved in Section 7.3 together with

formal patching technique, we have the following result towards the GIC (Conjecture

4.15).

Proposition 7.35 ([9, Proposition 9.6]). Let p ≥ 5 be a prime number. Let d = p or

when p ≡ 2 (mod 3), d ∈ {p + 1, p + 2, p + 3, p + 4}. Let r ≥ 1 be an integer. For

1 ≤ i ≤ r, let Ii be a subgroup of Ad which is an extension of a p-group Pi (possibly
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empty) by a cyclic group of order prime-to-p such that P1 is non-trivial, and if Pi is

trivial for some i, there is a 2 ≤ j ≤ r, j , i, such that Ii = I j. Then there exists a

connected Ad-Galois cover of P1 étale away from a set B = {x1, · · · , xr} of closed points

in P1 such that Ii occurs as an inertia group above xi, 1 ≤ i ≤ r. Moreover, if all the Ii

are equal whenever Pi is trivial, the set B can be chosen arbitrarily.

Proof. For Pi = {1} set Ai B {2 ≤ j ≤ r|Ii = I j}. For i such that Pi = {1}, let β be a

generator of Ii and by the Kummer theory there is a connected 〈β〉-Galois cover of P1

étale away from Ai which is totally ramified over each x j, j ∈ Ai. Now the result follows

by inductively applying Theorem 6.25 to the above covers and the covers obtained from

[8, Theorem 1.2], [22, Theorem 1.2] and Theorem 7.15–Theorem 7.17. �

Now onward, we study the general question for X = P1 and r = 2. We have the

following result when G = P o Z/n for a p-group P and n coprime to p.

Theorem 7.36 (Q[2,P1, {0,∞}, P o Z/n], [9, Theorem 9.7]). Let G = P o Z/n for a

p-group P and (p, n) = 1. Then Question 4.10 has an affirmative answer for G, P1 and

r = 2.

Proof. In view of Theorem 7.21 we may assume n ≥ 2. Let P1, P2 be two p-subgroups

of P where P1 is non-trivial and P2 is possible trivial and such that 〈PG
1 , P

G
2 〉 = P. For

i = 1, 2, let Ii = Pi o Z/mi. Let ψ : Y → P1 be a connected Z/n-Galois cover étale

away from {0,∞} such that Z/m1 occurs as an inertia group above 0 and Z/m2 occurs

as an inertia group above ∞. By the Riemann-Hurwitz formula, we have m1 = m2 = n

and ψ is the Z/n-Galois Kummer cover totally ramified over 0 and∞. By Remark 4.14,

it is enough to show that Question (A) has an affirmative answer. Note that since Ii

normalizes Pi, Z/n also normalizes Pi in G and so we have 〈PP
1 , P

P
2 〉 = P. By Lemma

7.20, P = 〈P1, P2〉. Consider the connected P1 o Z/n-Galois HKG cover ψ of P1 étale

away from {0,∞} which is totally ramified above ∞ and such that Z/n occurs as an

inertia group above 0 (Theorem 6.26). If P2 is the trivial group, G = P1oZ/n. Otherwise

apply [15, Theorem 3.6] to this cover to obtain the result. �
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In the rest of this thesis, we study some S d-Galois covers with X = P1 and r = 2.

These realization results are the evidence for the Question Q[2,P1, {0,∞}, S d]. When

P2 is the trivial group, we have seen some of the cases that can occur from studying

explicit equations (Section 6.1). The following result shows the existence of another

such cover with P2 = {1} and with the same tame part of the inertia groups over both

points as an application of Theorem 6.26 to [10, Corollary 5.5].

Corollary 7.37 ([9, Corollary 9.8]). Let p be an odd prime, d ≥ p be an integer such that

either d = p or (d, p) = 1. Let I be subgroup of S d which is an extension of a p-subgroup

P by a cyclic group of order prime-to-p whose generator is an odd permutation γ in S d.

Then there is a connected S d-Galois cover of P1 étale away from {0,∞} such that 〈γ〉

occurs as an inertia group at a point over 0 and I occurs as an inertia group at a point

over∞.

Proof. Set n B ord(γ). Consider the Z/n-Galois Kummer cover ψ : P1 → P1 totally

ramified over {0,∞} and étale everywhere else. By [10, Corollary 5.5], the pair (Ad, P) is

realizable. Now the result follows from Theorem 6.26 by taking Γ = S d = 〈Ad, 〈γ〉〉. �

Now onward, we consider the cases where P1 and P2 are both non-trivial subgroups

of S d, p ≤ d ≤ 2p − 1. Without loss of generality, we may assume that Pi = 〈τ〉

for i = 1, 2, where τ is the p-cycle (1, · · · , p). We prove that for 1 ≤ ji ≤ p − 1,

ωi ∈ Sym{p + 1, · · · , d} such that θ jiωi is an odd permutation, there is a connected S d-

Galois cover of P1 étale away from {0,∞} such that 〈τ〉 o 〈θ j1ω1〉 occurs as an inertia

group above 0 and 〈τ〉 o 〈θ j2ω2〉 occurs as an inertia group above∞. Similar to the case

of proving the IC for the Alternating groups, we make the following reduction steps.

Remark 7.38. Since 〈θi〉 = 〈θ(i,p−1)〉, it is enough to consider i|(p − 1). Also since

two elements in S d are conjugate if and only if they have the same cycle structure, by

Theorem 6.25, it is enough to show that there exists a γ ∈ S d so that the following

holds. For each 1 ≤ i ≤ p− 1 dividing p− 1 and ω ∈ Sym{p + 1, · · · , d} with θiω an odd

permutation, there is a connected S d-Galois cover of P1 étale away from {0,∞} such

that 〈γ〉 occurs as an inertia group above 0 and 〈τ〉 o 〈θiω〉 occurs as an inertia group

above∞.
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Theorem 7.39 ([9, Theorem 9.10]). Let p ≥ 5 be a prime. Let I1 B 〈τ〉 o 〈θ
i〉, I2 B

〈τ〉 o 〈θ j〉 be two subgroups of S p for some 1 ≤ i, j ≤ p − 1 odd integers. Then there

is a connected S p-Galois cover of P1 étale away from {0,∞} such that I1 occurs as an

inertia group above 0 and I2 occurs as an inertia group above∞.

Proof. By Remark 7.38, we need to show that for some odd permutation γ ∈ S p, for

each odd divisor i of p − 1, there is a connected S p-Galois cover of P1 étale away from

{0,∞} such that 〈γ〉 occurs as an inertia group above 0 and 〈τ〉 o 〈θiω〉 occurs as an

inertia group above∞.

Consider the degree p cover ψ : Y → P1 given by the affine equation f (x, y) = 0

where

f (x, y) = yp − y2 − x = 0.

Let φ : Ỹ → P1 be its Galois closure. By Remark 6.4, φ is a connected S p-Galois cover

of P1 étale away from {0,∞} such that the inertia groups over 0 are 2-cyclic groups

generated by transpositions and 〈τ〉 o 〈θ〉 occurs as an inertia group above∞. Since i is

odd, after the [i]-Kummer pullback of φ, we obtain a connected S p-Galois cover of P1

étale away from {0,∞} such that the inertia groups over 0 are 2-cyclic groups generated

by transpositions and 〈τ〉 o 〈θi〉 occurs as an inertia group above∞. �

Theorem 7.40 ([9, Theorem 9.11]). Let p ≡ 2 (mod 3) be an odd prime. Let I1 B

〈τ〉 o 〈θi〉, I2 B 〈τ〉 o 〈θ
j〉 be two subgroups of S p+1 for some 1 ≤ i, j ≤ p − 1 odd

integers. Then there is a connected S p+1-Galois cover of P1 étale away from {0,∞} such

that I1 occurs as an inertia group above 0 and I2 occurs as an inertia group above∞.

Proof. Consider the S p+1-Galois cover φ : Ỹ → P1 which is the Galois closure of the

degree-(p + 1) cover of P1 given by Equation (7.3.1). Then as in the proof of Theorem

7.15 the cover φ is étale away from {0,∞} such that 〈(1, · · · , p − 2)(p − 1, p)〉 occurs

as an inertia group above 0 and 〈τ〉 o 〈θ〉 occurs as an inertia group above ∞. After a

[p − 2]-Kummer pullback we obtain a connected S p+2-Galois cover of P1 étale away

from {0,∞} such that 〈(p−1, p)〉 occurs as an inertia group above 0 and 〈τ〉o 〈θ〉 occurs

as an inertia group above∞. Now we can argue as in the proof of Theorem 7.39. �
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Theorem 7.41 ([9, Theorem 9.12]). Let p ≡ 11 (mod 12) be a prime such that p is not

of the form l + 1 for any prime l ≥ 5. For i = 1, 2 let Ii B 〈τ〉 o 〈θ
jiωi〉 be a subgroup

of S p+2 for some 1 ≤ ji ≤ p − 1 and ωi ∈ Sym{p + 1, p + 2} such that θ jiωi is an odd

permutation. Then there is a connected S p+2-Galois cover of P1 étale away from {0,∞}

such that I1 occurs as an inertia group above 0 and I2 occurs as an inertia group above

∞.

Proof. Let p ≡ 11 (mod 12) or equivalently, p satisfies p ≡ 2 (mod 3) and p ≡ 3

(mod 4). Let γ be the (p + 1)-cycle (1, · · · , p + 1) in S p+2. By Remark 7.38, it is enough

to show that the following cases hold.

1. For each odd 1 ≤ i ≤ p − 1 dividing p − 1 there is a connected S p+2-Galois cover

of P1 étale away from {0,∞} such that 〈γ〉 occurs as an inertia group above 0 and

〈τ〉 o 〈θi〉 occurs as an inertia group above∞;

2. For each even 1 ≤ j ≤ p−1 dividing p−1 there is a connected S p+2-Galois cover

of P1 étale away from {0,∞} such that 〈γ〉 occurs as an inertia group above 0 and

〈τ〉 o 〈θ j(p + 1, p + 2)〉 occurs as an inertia group above∞.

First set s = 2 = r, n1 = p + 1, n2 = 1, m1 = 1, m2 = 1. Then by Lemma 6.7(3),

Assumption 6.5 holds. Consider the Galois cover φ1 of P1 which is the Galois closure

of the degree-(p + 2) cover of P1 given by the affine equation (6.1.6). By Proposition

6.8, φ1 is a connected Galois cover of P1 with group G1, a primitive subgroup of S p+2,

which is étale away from {0,∞} such that 〈γ〉 occurs as an inertia group above 0 and

since p ≡ 2 (mod 3), 〈τ〉 o 〈θ〉 occurs as an inertia group above∞.

Now let s = 2, r = 1, n1 = p + 1, n2 = 1. Then by Lemma 6.7(1) Assumption 6.5

holds. Consider the Galois cover φ2 of P1 which is the Galois closure of the degree-

(p + 2) cover of P1 given by Equation (6.1.6). By Proposition 6.8, φ2 is a connected

Galois cover of P1 with group G2, a primitive subgroup of S p+2, which is étale away

from {0,∞} such that 〈γ〉 occurs as an inertia group above 0 and 〈τ〉 o 〈θ2(p + 1, p + 2)〉

occurs as an inertia group above∞.
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The Galois groups G1 and G2 are primitive subgroup of S p+2 containing a p-cycle

which fixes 2 points in {1, · · · , p + 2} and a (p + 1)-cycle which fixes 1 point. Since p

is not of the form l + 1 for a prime l ≥ 5, by [Theorem 1.2][19], both G1 and G2 contain

Ap+2. Since γ is an odd permutation, Gi = S p+2 for i = 1, 2. Since i is an odd divisor

of p − 1, (p + 1, i) = 1. After an [i]-Kummer pullback of φ1 we obtain a connected

S p+2-Galois cover of P1 étale away from {0,∞} such that 〈γ〉 occurs as an inertia group

over 0 and 〈τ〉o 〈θi〉 occurs as an inertia group above∞. Since 4 - p, j/2 is odd. After a

[ j/2]-Kummer pullback of φ2 we obtain a connected S p+2-Galois cover of P1 étale away

from {0,∞} such that 〈γ〉 occurs as an inertia group over 0 and 〈τ〉 o 〈θ j(p + 1, p + 2)〉

occurs as an inertia group above∞. �

Theorem 7.42 ([9, Theorem 9.13]). Let p be a prime such that p ≡ 11 (mod 12). For

i = 1, 2 let Ii B 〈τ〉 o 〈θ
jiωi〉 be a subgroup of S p+3 for some 1 ≤ ji ≤ p − 1 and

ωi ∈ Sym{p + 1, p + 2, p + 3} such that θ jiωi is an odd permutation. Then there is a

connected S p+3-Galois cover of P1 étale away from {0,∞} such that I1 occurs as an

inertia group above 0 and I2 occurs as an inertia group above∞.

Proof. Let p ≡ 11 (mod 12). Consider the (p + 3)-cycle γ B (1, · · · , p + 3) in S p+3. In

view of Remark 7.38 we show that there is a connected S p+3-Galois cover of P1 étale

away from {0,∞} such that 〈γ〉 occurs as an inertia groups above 0 and I = 〈τ〉 o 〈β〉

occurs as an inertia group above∞where β is of the following: β = θi1 for all odd integer

i1|(p−1), β = θi2(p+1, p+2) for any even integer i2|(p−1) and β = θi3(p+1, p+2, p+3)

for all odd integer i3|(p − 1).

First set s = 1, r = 3, m1 = m2 = m3 = 1. Choose an element w ∈ k such

that w2 = p − 3. Then with the choice (α1, β1, β2, β3) = (0, 1, w−1
2 ,−w+1

2 ), Assumption

6.5 is satisfied. By Proposition 6.8 there is a connected S p+3-Galois cover of P1 étale

away from {0,∞} such that 〈γ〉 occurs as an inertia groups above 0 and since p ≡ 2

(mod 3), I = 〈τ〉 o 〈θ〉 occurs as an inertia group above ∞. Since i1|(p − 1) is odd and

(p − 1, p + 3) = (p − 1, 4) = 2, after an [i]-Kummer pullback we obtain the required

cover with β = θi1 .
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Now take s = 1, r = 2, m1 = 2, m2 = 1. Then by Lemma 6.7 for the choice

(α1, β1, β2) = (0, 1,−2) Assumption 6.5 is satisfied. By Proposition 6.8 there is a con-

nected S p+3-Galois cover of P1 étale away from {0,∞} such that 〈γ〉 occurs as an inertia

groups above 0 and I = 〈τ〉 o 〈θ2(p + 1, p + 2)〉 occurs as an inertia group above∞. As

p ≡ 3 (mod 4) and i2|(p−1) is even, (p+3, i2/2) = 1. After an [i2/2]-Kummer pullback

we obtain the required cover with β = θi2(p + 1, p + 2).

Finally, take s = 1 = r. Then by Lemma 6.7 Assumption 6.5 holds and by Proposi-

tion 6.8 there is a connected S p+3-Galois cover of P1 étale away from {0,∞} such that

〈γ〉 occurs as an inertia groups above 0 and I = 〈τ〉o 〈θ(p + 1, p + 2, p + 3)〉 occurs as an

inertia group above∞. Since i3 is an odd divisor of p − 1, via an [i3]-Kummer pullback

we obtain the required cover with β = θi3(p + 1, p + 2, p + 3). �
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