
Secret Sharing and its variants, Matroids,
Combinatorics

A thesis submitted to Indian Statistical Institute
in partial fulfillment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

Author:

Shion Samadder

Chaudhury

Supervisor:

Prof. Bimal Kumar Roy

Applied Statistics Unit
Indian Statistical Institute
203, B. T. Road, Kolkata,





To my Parents.





Acknowledgements

This thesis finally becomes a reality and takes its current shape with the kind

support of many individuals. I would like to extend my sincere thanks to all those who

have supported me through this journey.

My deepest gratitude goes first to my adviser Prof. Bimal Kumar Roy who expertly

guided me through my doctoral studies and who shared the excitement of five years

of discovery. His unwavering enthusiasm for secret sharing and matroids kept me con-

stantly engaged with my research and motivated me to look beyond these topics for

more combinatorial problems. He always gave me time for discussion from his busy

schedule and his personal generosity helped make my time at ISI enjoyable and explore

research problems with complete freedom. I hope to receive his guidance for many years

to come.

Indian Statistical Institute, Kolkata has provided me with a very nurturing research

environment. I would like to sincerely thank the professors of our division, the Ap-

plied Statistics Unit, Dr. Mridul Nandi, Prof. Subhamoy Maitra, Dr. Sushmita Ruj,

Prof. Palash Sarkar, Prof. Tapas Samanta and Dr. Gautam Paul for their constant

support, encouragement and the useful discussions I have had with them during the

course of my PhD. Special appreciation extends to my immediate senior Dr. Debolina

Ghatak whose mentoring and encouragement have been especially valuable and helped

sustain a positive atmosphere to conduct research. I am glad to have colleagues like Dip-

tendu Chatterjee, Anwesha Law , Sebati Ghosh and Pallavi Ghosh who have constantly

supported and helped me in various ways through these years. It was a great pleasure to

have association with my lab partners and juniors like Bishwajit Chakraborty, Suprita

Talnikar, Avishek Majumdar, Samir Kundu and Anandarup Roy who always made my

research life enjoyable.

It was a great experience to attend the courses of Prof. Subhamoy Maitra, Dr. Gau-

tam Paul, Prof. Palash Sarkar, Prof. Sandip Das, Prof. Dipti Prasad Mukherjee and

Prof. Bhargav Bhattacharya. Their teaching influenced me a lot. I am grateful to

Indian Statistical Institute for providing all the facilities and support required for my

research.

I would like to give special thanks to Prof. Kouichi Sakurai for hosting me at his

department at Kyushu University, Japan and Dr. Sabyasachi Dutta of the Department

of Computer Science, University of Calgary for their valuable collaboration, comments

and revisions of my papers. Their early insights initiated the initial part of this the-

i



sis. Dr. Dutta has been a constant support. He was fundamental in supporting me

throughout, specially during the stressful and difficult moments and helped me a lot

during my stay at Japan.

I am thankful to all the anonymous reviewers for their invaluable comments and

suggestions towards improving the quality of my thesis. I am also grateful to the PhD-

DSC committee of Indian Statistical Institute, Kolkata for their continuous support,

arranging regular evaluations of my research works and providing proper feedback.

Finally, I express my profound gratitude to my family. I would like to thank my

relatives, cousins and friends for their endless love and support. Words cannot express

how grateful I am to my parents whose love, blessings and sacrifices have sustained me

this far. A special thanks to my wife for her patience and continuous encouragement.

Date: 20th December, 2020.

ii



Contents

1 Introduction 1

1.1 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main Goal of Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Main problems of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Low-complexity Secret Sharing . . . . . . . . . . . . . . . . . . 4

1.4.2 Variants of Quantum Secret Sharing Schemes . . . . . . . . . . 7

1.4.3 Embedding hard functions in secret sharing schemes . . . . . . . 7

1.5 On Matroids and Non-perfect Secret Sharing . . . . . . . . . . . . . . . 8

1.6 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 A note on intervals in Hales-Jewett Theorem . . . . . . . . . . . 9

2 Literature Survey 11

2.1 Classical Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Dynamic Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Evolving Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Secret Sharing in AC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Secure Computation against moderately complex adversaries . . . . . . 16

2.6 Quantum Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Quantum Hierarchical Secret Sharing . . . . . . . . . . . . . . . . . . . 18

2.8 Randomized Decision Tree Complexity . . . . . . . . . . . . . . . . . . 19

2.9 Quantum Query Complexity . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Secret Sharing and Matroids . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Intervals in the Hales-Jewett Theorem . . . . . . . . . . . . . . . . . . 22

3 Secret Sharing in AC0 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



3.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Error-correcting codes . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Main results and technical details . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 A dynamic robust secret sharing scheme in AC0 . . . . . . . . . 30

3.3.2 Evolving secret sharing in AC0 . . . . . . . . . . . . . . . . . . 37

3.4 Comparison with existing schemes . . . . . . . . . . . . . . . . . . . . . 39

4 Perpetual Secret Sharing Scheme from Fractional Cascading 45

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Technical Details : Fractional Cascading based Dynamic Secret Sharing 49

4.3 Share distribution, redistribution schemes and share size . . . . . . . . 55

4.3.1 Share distribution and redistribution schemes . . . . . . . . . . 55

4.3.2 Redistribution Schemes . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Proof outline for redistribution schemes . . . . . . . . . . . . . . 56

4.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Comparison with existing schemes . . . . . . . . . . . . . . . . . . . . . 59

5 A Quantum Evolving Secret Sharing Scheme 63

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Quantum Evolving Secret Sharing Scheme . . . . . . . . . . . . . . . . 65

5.2.1 Main Construction . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Secret recovery and measurement schemes . . . . . . . . . . . . 72

5.2.3 Correctness and Privacy . . . . . . . . . . . . . . . . . . . . . . 74

5.2.4 Sizes of the generations, dimensions of shares . . . . . . . . . . 76

5.2.5 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.6 Error-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

iv



6 A Quantum Hierarchical Secret Sharing Scheme - Further Studies 83

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Warm-up: Comparmented, Uniform threshold access sets . . . . 86

6.2.2 Main construction : Hierarchical Threshold Access Structures 88

6.3 Generalization to other schemes . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Weighted threshold access structures . . . . . . . . . . . . . . . 98

6.3.2 Uniform multipartite access structures . . . . . . . . . . . . . . 101

6.3.3 Partially hierarchical access structures . . . . . . . . . . . . . . 103

6.3.4 Quasi-threshold multipartite access structures . . . . . . . . . . 106

6.3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Embedding Hard Functions in Secret Sharing Schemes 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Resilience from lower bounds on quantum query algorithms . . . . . . . 111

7.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.1 Randomized decision tree complexity . . . . . . . . . . . . . . . 114

7.4 Main results and technical details . . . . . . . . . . . . . . . . . . . . . 115

7.4.1 Connecting Secret sharing & Randomized decision tree complexity115

7.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.3 Algorithms, Proofs and Parameters . . . . . . . . . . . . . . . . 117

7.4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Generalized Matroid Ports and Non-Perfect Secret Sharing 123

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Preliminary Definitions and Results . . . . . . . . . . . . . . . . . . . . 123

8.2.1 Minimal non-ports . . . . . . . . . . . . . . . . . . . . . . . . . 127

v



8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.1 Generalized non-ports . . . . . . . . . . . . . . . . . . . . . . . 128

8.3.2 2-non ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.3 3-non ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.4 k-non ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Generalizing Ideal Multipartite Access Structures To The Non-Perfect

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.1 Multipartite Access Structures and Multipartite Matroids . . . . 134

8.4.2 Quasi-matroids and generalized ports . . . . . . . . . . . . . . . 134

9 A short note on intervals in Hales-Jewett Theorem 137

10 Conclusion 141

10.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.5 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.6 Ongoing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.6.1 Perpetual Secret Sharing - A Quantum Version . . . . . . . . . 145

10.7 Papers on which the thesis is based on . . . . . . . . . . . . . . . . . . 146

vi



Chapter 1

Introduction

The main focus of this thesis is secret sharing. Secret Sharing is a very basic and

fundamental cryptographic primitive. It is a method to share a secret by a dealer

among different parties in such a way that only certain predetermined subsets of parties

can together reconstruct the secret while some of the remaining subsets of parties can

have no information about the secret. Secret sharing was introduced independently by

Shamir [139] and Blakely [20]. What they introduced is called a threshold secret sharing

scheme. In such a secret sharing scheme the subsets of parties that can reconstruct a

secret are all those subsets whose cardinality is greater than a predetermined threshold.

In a latter work by Ito, Saito and Nishizeki [93], secret sharing schemes were constructed

where the subsets of parties who can reconstruct the secret did not have any concrete

mathematical description.

1.1 Illustrative Example

Secret sharing schemes mirror a real life scenario. Consider the following situation :

• A wealthy man (the dealer) keeps his money in a locker.

• He has four children (parties/participants) and gives them keys such that : Atleast

three of them has to co-operate (bring their keys together) to open the locker.

• None of the children can open the locker on their own.

• Even if two of them bring their keys together, still they cannot open the locker.

• The above mentioned condition is a description of a (3-out-of-4) threshold secret

1



2 Introduction

sharing scheme.

1.2 Formal Definition

Before going into the work that has been done in this thesis, we take a look at the

formal definition of secret sharing schemes. The definitions have been taken from the

survey of Amos Beimel [15].

Definition 1. Access structure : - For a set of parties P = {p1, . . . , pn}, a collection

of subsets A ⊆ 2P is said to be monotone if, B ∈ A and B ⊆ C =⇒ C ∈ A. An

access structure A is a monotone collection of non-empty subsets of P . A set A ∈ A,

A ⊆ P is called an authorized set and a set A /∈ A, A ⊆ P is called an unauthorized

set .

Definition 2. Distribution Scheme :- Given a domain of secrets K, a set of

random strings R and domains of shares K1, . . . , Kn, a distribution scheme is a pair

Σ = 〈Π, µ〉 where µ is a probability distribution on R and Π is a mapping

Π : K ×R −→ K1 × . . .×Kn.

Definition 3. Secret Sharing Scheme :- A secret sharing scheme consists of a

dealer, a set of parties P = {p1, . . . , pn} and an access structure A defined on P . The

dealer distributes a secret k ∈ K by choosing a random string r ∈ R according to µ,

computing a vector of shares Π(k, r) = (s1, . . . , sn) and privately communicating the

shares si to party pi. In addition, the following two conditions should be satisfied

1. Correctness :- Any authorized set of parties can reconstruct the secret. For
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each authorized set B ∈ A, B ⊆ P , there is a reconstruction function RECONB :∏
i|pi∈BKi −→ K such that for every secret k ∈ K,

Pr[RECONB(Π(k, r)B) = k] = 1

where Π(k, r)B is the restriction of Π(k, r) to its B-entries.

2. Perfect Privacy :- Every unauthorized set cannot learn any information about

the secret in the information theoretic sense. For any set F /∈ A, for every two

secrets a, b ∈ K and for every possible vector of shares 〈sj〉pj∈F :

Pr[Π(a, r)F = 〈sj〉pj∈F ] = Pr[Π(b, r)F = 〈sj〉pj∈F ].

Definition 4. Information ratio :- The information ratio of a secret sharing

scheme is the ratio between the maximum length of the shares and the length of the

secret.

The above definitions can be relaxed and can require that correctness holds with

very high probability and the statistical distance between Π(a, r)F and Π(b, r)F is small.

These relaxations are used heavily in this work.

1.3 Main Goal of Secret Sharing

The share size in their construction of Ito et al.[93] was Θ(2n/
√
n), where n is the

number of parties. The known constructions of secret sharing schemes for general access

structures have information ratio 2O(n) where n is the number of parties in the access
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structure making these constructions impractical. Hence one of the most important

goal of secret sharing is to reduce the share size. Proving/disproving the following

conjecture is the most important problem of secret sharing.

Conjecture [15]:- For every n ∈ N, there exists an ε > 0 and an access structure with n

parties such that every secret sharing scheme distributing secret among n parties has

share size 2εn.

No major progress has been made in this area inspite of considerable efforts.

1.4 Main problems of this thesis

Next we look at the main focus points of this thesis.

1.4.1 Low-complexity Secret Sharing

In this section we consider secret sharing schemes where the share and the reconstruction

procedures can be implemented using very low resources i.e., in a very low complexity

class. The complexity class under consideration is the class AC0 . This class consists

of families of circuits of constant depth and polynomial size with unbounded fanin OR

and AND gates. NOT gates are only allowed at the input.

Secret Sharing in AC0

The motivation to construct secret sharing schemes where the secret sharing and the

reconstruction procedures can be done in AC0 comes from the following :-
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1. General theme of randomized algorithms :- Improving performance at the price

of allowing some small probability of error.

2. Reducing the computational complexity of cryptographic primitives.

3. The existing constructions of dynamic and evolving secret sharing schemes prior

to our work not being AC0 implementable.

In classical secret sharing the number of parties is fixed, the dealer knows the access

structure beforehand and the access structure is also fixed. However in dynamic secret

sharing schemes the addition or deletion of parties is allowed, the access structure

might change with time and the dealer might go offline at a certain stage making

the old parties virtual dealers. All these are done without reconstructing the secret.

Evolving secret sharing schemes take one step further and allow an unbounded number

of new parties. Parties come on by one and share is given to the new parties without

any communication to the old parties. In a (k,∞)- evolving scheme, at any time any

k participants can reconstruct the secret. In a recently introduced generalization of

such schemes, evolving schemes with increasing thresholds were constructed where the

thresholds change with time and form an increasing sequence.

In our work we have obtained the following results in this respect [39] :

• Construction of an AC0-implementable (2,∞)-evolving scheme. The construction

is very simple and is perhaps of theoretical interest only as the construction cannot

be generalized to an AC0-implementable (k,∞)-evolving scheme.

• Since we are unable to construct (k,∞)-evolving schemes accommodating un-

bounded number of parties, we look at AC0 implementable dynamic schemes
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where only a bounded number of new parties can be accommodated. The con-

struction can be used in the dealer free situation and by simple modifications one

can have AC0 implementable dynamic schemes with hierarchical properties where

some parties have preference over the others.

The main tools that are used in the constructions are functions which are AC0 im-

plementable such as random permutations, approximate majority, good error-correcting

codes, pseudorandom generators, k-wise independent generators etc.

Secret Sharing via Dynamic Data Structures

In the constructions of evolving secret sharing schemes [99], [100] one finds an exponen-

tial amount of memory requirement. Also in the construction of the AC0 implementable

dynamic scheme [39], we can only accommodate a bounded number of new parties. To

overcome these, we introduce a new variant of secret sharing schemes we call Perpet-

ual Secret Sharing [40], [38] where the access structure evolves as per a dynamic data

structure. This results in the following advantages :

1. The scheme can accommodate an unbounded number of parties.

2. Negligible memory requirements.

3. Share sizes do not increase drastically as new parties arrive.

4. When number of parties become very large, the data structure helps in efficient

management of the parties like searching, addition and deletion of parties, pushing

a party up or down a hierarchical order and so on.
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1.4.2 Variants of Quantum Secret Sharing Schemes

Quantum Evolving Secret Sharing

Quantum secret sharing schemes to share and protect a quantum secret have been

extensively studied. Numerous schemes have have been constructed which can add or

delete participants. But prior to our work [37], a quantum secret sharing scheme which

can accommodate an unbounded number of participants was not considered. In this

direction we construct a quantum evolving secret sharing scheme. Our construction

uses quantum one-time pad and trap codes to generate random states and also to mask

the original quantum secret. The drawback of this construction is that the memory

requirement is exponential.

Quantum Secret Sharing - Other variants

Some modifications to the construction of the quantum evolving scheme results in a

quantum hierarchical scheme . Our constructed scheme has several advantages over the

existing schemes in literature. Using similar ideas we are able to construct quantum

versions of various multipartite access structures.

1.4.3 Embedding hard functions in secret sharing schemes

To obtain resilience in the secret sharing schemes, we embed a function with known

lower bound on the quantum query complexity in the share state[37]. By resilience we

mean that an adversary can share and modify a constant fraction of the shares and

even then the secret can be reconstructed by the parties. We prove that compared to
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coding theoretic methods, this results in reducing the dimension of the share state. This

method also works in the classical case where we use functions with known lower bound

on the randomized decision tree complexity . For our constructions the adversary is

infinitely powerful/not resource bounded.

1.5 On Matroids and Non-perfect Secret Sharing

In the context of secret sharing, the family of subsets of participants who can reconstruct

the secret are called qualified sets. Another family of the subsets of participants which

do not obtain any information about the secret are called forbidden sets. The sets that

are neither qualified nor forbidden can obtain partial information about the secret value.

A secret sharing scheme is perfect if the forbidden sets coincide with the unqualified

ones. In a non-perfect secret sharing scheme the length of some shares can be smaller

than the length of the secret value. The connection between matroids and secret sharing

was found in the Brickell-Davenport theorem [29] which states that every ideal perfect

secret sharing scheme defines a matroid, which is uniquely determined by the access

structure and the access structure is a port of this matroid. This result was generalized

to non-perfect schemes by O. Farràs and C. Padró [69] where non perfect schemes were

connected to quasi-matroids and generalized ports . A forbidden minor characterization

for them was given by Seymour [138] which has found many applications in the study of

secret sharing schemes and matroids. A forbidden minor characterization for generalized

ports can advance the study of non-perfect schemes and their relations with matroids.

We make the following contributions :

1. A forbidden minor characterization for generalized matroid ports.
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2. Connection between multipartite quasi-matroids, multipartite generalized ports

and the associated integer polymatroid.

1.6 Combinatorics

1.6.1 A note on intervals in Hales-Jewett Theorem

One of the main results in conbinatorics and Ramsey theory is the Hales-Jewett The-

orem. For m,n ∈ N, let [m]n denote the set of all n-letter words with alphabets from

[m] = {1, 2, . . . ,m}. For a word w ∈ [m]n, S ⊆ [n] and i ∈ [m], w(S, i) is obtained

from w by replacing the jth letter with i for all j ∈ S. A combinatorial line in [m]n is

defined as the set of words {w(S, 1), w(S, 2), . . . , w(S,m)} with the wildcard set S 6= φ.

The Hales-Jewett Theorem [86] says that for m, r ∈ N, there exists n ∈ N such that any

r-colouring of [m]n contains a monochromatic combinatorial line. In [53] the authors

asked the following question:

• Do there exist m ≥ 4, r ≥ 2 and c > 1, m, r, c ∈ N such that there are r-colourings of

[m]n containing no monochromatic combinatorial line whose wildcard set is the union

of at most cr intervals ?

We answer this question in the positive : There is a 5-colouring of [4]n containing no

combinatorial line whose wildcard set is the union of at most 25 intervals. If gcd((m−

1)(m− 2), cr) = 1, then the conjecture holds.
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Chapter 2

Literature Survey

In this chapter, we discuss the existing literature on secret sharing, low complexity

cryptography and secret sharing, different variants of secret sharing such dynamic secret

sharing, evolving secret sharing etc. as mentioned in Chapter 1. We also look at

the literature on AC0 circuits, randomized decision tree complexity, quantum secret

sharing and quantum query complexity. This chapter ends with the survey of some

combinatorial results related to the intervals in the Hales-Jewett Theorem.

2.1 Classical Secret Sharing

To begin this survey, we refer the reader to [15] for an excellent survey on secret sharing

schemes.

Secret sharing schemes were proposed independently by Shamir [139] and Blakley

[20] in 1979. They proposed schemes where any k (or more) out of n participants are

qualified to recover the secret with 1 < k ≤ n. The access structure is called a (k, n)-

threshold access structure where a subset of size greater than or equal to the threshold

value k is deemed to be qualified. Both schemes were fairly efficient in terms of the size

of the shares and computational complexity. Later, Ito et al. [93] showed the possibility

of constructing secret sharing schemes given any monotone (general) access structures.

However, their generic constructions resulted in exponentially large share sizes. Later,

11
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Karchmer et al. [96] provided scheme with share size is polynomial in the monotone

span program complexity. A major objective in the area of secret sharing is to minimize

the share size.

In classical secret sharing schemes it is generally assumed that the number of par-

ticipants and the access structure is known in advance.

2.2 Dynamic Secret Sharing

Many secret sharing schemes have been proposed where the access structure changes

over time. Dynamic secret sharing scheme allows, without reconstructing the shared

secret, to add or delete shareholders, to renew the shares, and to modify the conditions

for accessing the secret. This important primitive of redistributing the secret was

initially considered by Chen et al. [44], Frankel et al. [72] and Desmedt-Jajodia [59].

To describe a dynamic secret sharing scheme more formally, let us consider two sets

of participants P and P ′ containing n and n′ many participants respectively. Let us

suppose that each participant Pj in P has received a share sj of the secret value s. ΓP

denote the access structure that specifies which subsets of P are authorized to recover

the secret s from their shares. The goal of redistribution is that without the help of the

original dealer, the participants in P ′ will receive the shares of s in accordance with

a possibly different access structure ΓP ′ . In the protocol, the participants in P act

like virtual dealers, while participants in P ′ are the ones who receive shares. A notable

difference between evolving secret sharing and dynamic secret sharing is – in the former,

dealer is present through out and he distributes new shares to joining parties.

Nojoumian-Stinson [124] proposed unconditionally secure share re-distribution schemes,
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in absence of a dealer, based on a previously existing VSS protocol of Stinson-Wei [146].

In their construction, they have assumed less than one-fourth of participants behave

dishonestly and also that the number of participants is fixed throughout. Their work

was improved upon by the work of Desmedt-Morozov [60] who relaxed the proportion of

dishonest participants to one-third of the total population and also allowed the number

of participants to change.

A related primitive viz. sequential secret sharing (SQS) was introduced by Nojoumian-

Stinson [125] as an application of dynamic threshold schemes. In this new primitive,

different (but related) secrets with increasing thresholds are shared among a set of play-

ers who have different levels of authority. Subsequently, each subset of the players can

only recover the secret in their own level. Finally, the master secret will be revealed if

all the secrets in the higher levels are first recovered.

2.3 Evolving Secret Sharing

Komargodski et al. [99] introduced evolving secret sharing schemes where the secret

holder a.k.a dealer does not know the number (or any upper bound) of participants that

would participate in the protocol. Theoretically speaking, number of participants could

be potentially infinite and the definition of the access structure may change as a function

of time – a subset is declared to be qualified when the last participant who completes

the set has arrived. The authors considered the scenario when players participate one

at a time (in a sequential manner) and each player receives its share from the dealer.

Main challenge in designing such a protocol is that the dealer cannot update the shares

that he has already distributed. The authors [99] showed that for every evolving access
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structure there exists a generic secret sharing scheme with 2t−1 as the share size of

the tth incoming participant. They also constructed (k,∞)-threshold evolving secret

sharing scheme for a fixed threshold value k with share size (k − 1) log t +O(log log t)

of the tth participant. Furthermore, they have provided an evolving 2-threshold scheme

which is nearly optimal in the share size of the tth participant viz. logt+O(loglogt).

Komargodski and Paskin-Cherniavsky [100] constructed evolving dynamic threshold

schemes such that share size of the tth participant isO(t4 log t) bits. Moreover, they used

AMD codes to generically transform such evolving threshold schemes to robust schemes.

Robustness of a secret sharing scheme means the correct secret is reconstructed even if

some of the participants maliciously hand in tampered shares during the reconstruction

process.

Later, Beimel and Othman [16] constructed evolving (a, b) ramp scheme with share

size O(1) defined as follows : Let 0 < a < b < 1. Any set of participants whose

maximum participant is the i-th participant and contains at least ai participants can

reconstruct the secret; however, we only require that any set such that all its prefixes

are not a b-fraction of the participants should not get any information on the secret.

2.4 Secret Sharing in AC0

The motivation to study secret sharing schemes that can be implemented by constant-

depth circuits comes from two different sources. First, most well-known secret sharing

schemes require computations that can not be implemented by constant-depth circuits

(i.e. AC0 circuits). For example, Shamir’s scheme in [139] requires linear algebraic com-

putations over finite field and hence cannot be computed in AC0. Secondly, the visual
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secret sharing schemes introduced by Naor and Shamir [120] require only computation

of OR function which can be implemented by AC0 circuit.

AC0 is the complexity class which consists of all families of circuits having constant

depth and polynomial size. The gates in those circuits are NOT, AND, OR, where AND

gates and OR gates have unbounded fan-in. Integer addition and subtraction are com-

putable in AC0, but multiplication is not. It is also well known that calculating the

parity of an input cannot be decided by any AC0 circuits. For any circuit C, the size of

C is denoted by size(C) and the depth of C is denoted by depth(C). Recently, a lot of

research [7, 8, 3, 13] have been done focusing on possibilities of obtaining cryptographic

primitives in low complexity classes e.g. AC0 or NC1. We will later describe some

primitives that are needed for our constructions.

A recent work by Bogdanov et al. [23] considers the question whether there exists

secret sharing scheme such that both share generation algorithm and secret reconstruc-

tion algorithm are computable in AC0.

They considered a variant of threshold secret sharing scheme, known as ramp schemes

where any k participants learn nothing about the secret but when all n participants

collaborate together, they are able to reconstruct the secret. The scheme is called

ramp because unlike classical secret sharing scheme there is a gap between the privacy

threshold viz. k and reconstructability threshold viz. n. Their construction connects

the idea of approximate degree of a function with the privacy threshold of a secret shar-

ing scheme. Existing literature on the approximate degree lower bounds gives several

secret sharing schemes in AC0. Their schemes however achieve large privacy threshold

k = Ω(n) when the alphabet size is 2poly(n) and achieve k = Ω(
√
n) for binary alphabets.

The work of Bogdanov et al. [23] was followed up by a work of Cheng et al. [47] who
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achieved privacy threshold k = Ω(n) with binary alphabets by allowing negligible pri-

vacy error. They have also considered robustness of the schemes in presence of honest

majority with privacy threshold Ω(n), privacy error 2−n
Ω(1)

and reconstruction error

1
poly(n)

.

2.5 Secure Computation against moderately com-

plex adversaries

The traditional cryptographic approach has been based on computational tasks which

are easy for honest parties to perform and hard for the adversary. We have also seen

a notion of moderately hard problems being used to attain certain security properties.

Degwekar et al. [57] show how to construct certain cryptographic primitives in NC1

[resp. AC0] which are secure against all adversaries in NC1 [resp. AC0]. Ball et al. [13]

present computational problems which are ”moderately hard” on average. Continuing

in this line Campanelli and Gennaro [36] prove that it is possible to construct secure

computation primitives that are secure against moderately complex adversaries. They

present definitions and constructions for the task of fully homomorphic encryption and

Verifiable Computation in the fine-grained model. For possible applications of AC0

secret sharing to secure broadcasting in presence of external adversaries we refer to

Section 7.3 of [47].
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2.6 Quantum Secret Sharing

Quantum secret sharing schemes[11, 51, 78, 111, 162] have been extensively studied

using various tools, gates and techniques of quantum computation such as graph states,

Bell states, GHZ- states, quantum teleportation[98, 106] etc. In a variant of secret

sharing known as threshold secret sharing, the access structure (collection of all the

qualified sets) consists of those sets whose cardinality is greater than a fixed number k.

These schemes are denoted as (k, n)-schemes, where n is the total number of participants

and k is the threshold. Quantum threshold secret schemes(QTSS) were studied in

[14, 128, 131] and many more. The purpose of quantum secret sharing is twofold : 1.

protecting classical information, 2. protecting quantum information. As noted by the

authors in [131] sharing the quantum state is more difficult than sharing the classical

information. So the quantum secret sharing schemes that share the quantum state are

much fewer than the ones that share the classical information.

Some variants of secret sharing schemes allow to add or delete participants, to renew

the shares, and to modify the conditions for accessing the secret. In the literature

classical variants of these schemes are known by names such as dynamic, proactive,

online secret sharing schemes etc. Quantum versions of these schemes were studied in

[62, 92, 108, 129] and many more. Such constructions have certain limitations. For

example, the dealer needs to know the number of new participants before-hand and

the dealer also needs to know the set of qualified participants before handing out new

shares.

Our construction uses repeatedly a (t, n)-quantum threhold secret sharing scheme

[128, 131].
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2.7 Quantum Hierarchical Secret Sharing

In this section, our focus is on hierarchical and multipartite access structures. In-

formally, multipartite access structures are those for which parties are grouped into

different disjoint sets. The secret is shared among the participants and to reconstruct

the secret, participants come from different groups with different properties to recon-

struct the secret. Examples of these different properties can be 1. each group can

have a different threshold, 2. participants need to arrive from at least a certain num-

ber of groups and many more. An important subclass of such secret sharing schemes

is the hierarchical secret sharing scheme. Roughly, the groups of the participants are

ordered and without the consent of participants higher in the hierarchy, the secret

cannot be reconstructed. Hierarchical secret schemes are well-studied in the classical

domain. For many of the hierarchical and multipartite access structures, ideal secret

sharing schemes have been constructed.(Ideal secret sharing schemes are those where

the share size equals the secret size). Also these access structures have been shown to

be connected to a rich class of combinatorial structures known as matroids and poly-

matroids. For more on classical hierarchical secret sharing schemes we refer the reader

to [17, 68, 97, 147, 148, 157, 161].

The quantum counterpart of hierarchical secret sharing schemes was studied in [153],

where secret was distributed to three distant participants asymmetrically(participants

have different powers to recover the sender’s secret). In [154] the authors propose a mul-

tiparty asymmetric quantum secret sharing scheme with a multipartite-entanglement

channel and classical communications. The scheme involves two grades of agents

G1 = {Bob1, Bob2, ..., Bobm} and G2 = {Charlie1, Charlie2, ..., Charlien}. For get-
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ting boss’s (Alice’s) secret state, one of Bobs needs the collaboration of the other Bobs

and any one of Charlies, while one of Charlies needs the collaboration of all the other

m+ n− 1 agents. A quantum hierarchical scheme was realized with a six-photon clus-

ter state in [156]. Here a quantum secret is distributed to five distant agents who are

divided into two grades. Two agents are in the upper grade and three agents are in

the lower grade. An agent of the upper grade only needs the collaboration of two of

the other four agents for getting the secret, while an agent of the lower grade needs the

collaboration of all the other four agents. In [12] and [159] hierarchical quantum secret

sharing schemes were proposed with a eight-cubit cluster state and two four-cubit clus-

ter states respectively. Here also secret was distributed to two groups of parties with

different hierarchies. Further studies of such hierarchical schemes were carried out in

[117, 141] which added dynamism to the scheme where new parties could be added or

deleted over time.

2.8 Randomized Decision Tree Complexity

A randomized decision tree A on n variables is a distribution over all deterministic

decision tree algorithms on n variables. Given an input x, the algorithm first samples

a deterministic tree B ∈R A uniformly random, and then evaluates B(x). The cost

of a randomized algorithm A on input x, denoted in also by C(A, x), is the expected

number of input bits queried by A on x. Let P δ
f be the set of randomized decision tree

algorithms computing f with error at most δ. The two-sided bounded error randomized

complexity of f with error δ ∈ [0, 1/2) is

Rδ(f) = minA∈P δfmaxx∈{0,1}
nC(A, x).
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We write R(f) for R0(f). Two functions for which exact values or bounds on the

randomized complexity are known are the NANDh and the recursive majority function,

3MAJh. NANDh is the complete binary tree of height h with NAND gates, where the

inputs are at the n = 2h leaves. Following is a well known result from [144].

Theorem 2.8.1. (Snir [144]) R(NANDh) ∈ O(nc) where c = log2(1+
√

33
4

) ≈ 0.753.

Let MAJ(x) be the Boolean majority function. The recursive majority function

3MAJh is defined recursively on n = 3h variables, for every h ≥ 0. For h ≥ 0, let x be

an input of length n and let x(1), x(2), x(3) be the first, second, and third n
3

variables of

x. Then

3MAJh(x) = MAJ(3MAJh−1(x(1)), 3MAJh−1(x(2)), 3MAJh−1(x(3)))

In other words, 3MAJh is defined by the read-once formula on the complete ternary tree

Th of height h in which every internal node is a majority gate. We identify the leaves

of Th from left to right with the integers 1, . . . , 3h. We have a well known result from

[112],

Theorem 2.8.2. (Magniez et al. [112]) For all δ ∈ [0, 1
2
], we have (1

2
− δ) · 2.57143h ≤

Rδ(3MAJh) ≤ (1.007) · 2.64944h.

2.9 Quantum Query Complexity

Given a Boolean function f : {0, 1}n → {0, 1}, suppose x = x1x2 . . . xn ∈ {0, 1}n is

an input of f (xi denotes i-th bit). A quantum query algorithm for f computes f(x),

given queries to the bits of x. Quantum queries are made to an oracle which is defined
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as Ox |i, b〉 = |i, b⊕ xi〉. A T -query quantum algorithms is a sequence of unitaries

UTOxUT−1Ox...OxU0 where Ui’s are fixed unitaries and Ox depends on x. The algorithm

can be described as starting from a fixed state |φ0〉, it performs a sequence of unitaries

as mentioned previously to obtain the final state |φx〉 = UTOxUT−1Ox...OxU0 |φ0〉. The

state |φx〉 is measured with a 0 − 1 positive operator-valued measurement and the

measurement result is regarded as the output of the algorithm. Let m(x) denotes the

measurement result of |φx〉. If ∀x,

Pr[m(x) = f(x)] ≥ 1− ε,

where ε < 1
2
, then the quantum query algorithm is said to compute f(x) with bounded

error ε. If the error ε = 0, then f(x) is computed exactly. The quantum query complexity

of a function f is the number of queries that an optimal quantum algorithm should make

in the worst case to compute f . It is denoted by Qε(f) and in the exact setting it is

denoted by QE(f). For more on quantum query complexity we refer the reader to

[5, 4, 6, 45, 105, 134].

2.10 Secret Sharing and Matroids

A secret sharing scheme is a method to distribute a secret value into shares among

participants in such a way that only some qualified subsets of participants are able

to recover the secret value from their shares. This family of subsets of participants

are called qualified sets. Another family of the subsets of participants which do not

obtain any information about the secret are called forbidden sets. The sets that are

neither qualified nor forbidden can obtain partial information about the secret value. A
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secret sharing scheme is perfect if the forbidden sets coincide with the unqualified ones.

In a non-perfect secret sharing scheme the length of some shares can be smaller than

the length of the secret value. The connection between matroids and secret sharing

was found in the Brickell-Davenport theorem [29] which states that every ideal perfect

secret sharing scheme defines a matroid, which is uniquely determined by the access

structure and the access structure is a port of this matroid. This result was generalized

to non-perfect schemes by O. Farràs and C. Padró [69] where non perfect schemes were

connected to quasi-matroids and generalized ports. Matroid ports were introduced by

Lehman [107] and a forbidden minor characterization for them was given by Seymour

[138] which has found many applications in the study of secret sharing schemes and

matroids. A forbidden minor characterization for generalized ports can advance the

study of non-perfect schemes and their relations with matroids. The reader is referred

to [15],[73], [114], [145] for surveys on secret sharing schemes, the connections between

secret sharing schemes matroids and polymatroids, to [127] for a textbook on the theory

of matroids and to [21], [18], [64], [65], [67], [103] for more on non-perfect secret sharing

schemes and matroids.

2.11 Intervals in the Hales-Jewett Theorem

The Hales-Jewett Theorem [86] says that for m, r ∈ N, there exists n ∈ N such that any

r-colouring of [m]n contains a monochromatic combinatorial line. In [53], the authors

proved the following : For any n ∈ N and any odd r > 1, there is an r-colouring of [3]n

with no monochromatic combinatorial line whose wildcard set is the union of less than

r intervals. In [53], the authors asked a question on the existence of monochromatic
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combinatorial lines which we answer in chapter 9.
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Chapter 3

Secret Sharing in AC0

3.1 Introduction

All the classical secret sharing schemes assume that the number of participants as well

as the access structure are fixed from the very beginning. An access structure is called

an evolving access structure if the number of participants can grow without any bound

and be potentially infinite with the possibility that the access sets are also changing over

time. Existing classical methodology fails to provide a secret sharing scheme when the

access structure is evolving. Some recent works have put forward secret sharing schemes

for evolving access structures. In a recent development researchers have considered

the problem of minimizing the computational complexity of cryptographic primitives

and some recent positive results confirm the possibility of secret sharing with minimal

computational complexity. More precisely, secret sharing with added randomness is

possible with both share-generation algorithm and reconstruction algorithms are in the

complexity class AC0.

Hence the goal of this chapter is to bring these two together to construct AC0

implementable secret sharing schemes which can add new participants over time.

25
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3.1.1 Our Contribution

We construct dynamic secret sharing schemes and evolving schemes keeping the secret

sharing and the reconstruction procedures in the complexity class AC0. Our main

idea is to use new share redistribution schemes based on good error-correcting codes

[49, 47], and pseudorandom generators to give shares to the new nodes being added to

a secret sharing scheme. The number of nodes is time-dependent and throughout the

whole process (lifetime) of accommodating new nodes and share redistribution, secrecy

of original data is maintained.

• Our first goal is to construct a dynamic AC0 secret sharing scheme which can

include new parties into the system even when the dealer is absent after generating

shares of the old parties. To this end, using a secret redistribution scheme and by

suitably modifying the scheme of [47], we construct a robust secret sharing scheme which

can accommodate a bounded number of new parties. The advantage of redistribution

here is that alphabet size need not be increased to accommodate new parties. The

downside is, we can only add a bounded number of them.

• Next we construct a (2,∞) evolving secret sharing scheme in AC0 where we can

accommodate unbounded number of storage nodes but collective shares from any two

nodes can reconstruct the secret. This theoretical result shows that threshold secret

sharing with unbounded number of parties is possible with constant depth circuits and

this can be of independent interest also. The generalization to an AC0-implementable

(k,∞) evolving scheme is left as an open question.
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3.2 Preliminaries

AC0 complexity class. AC0 is the complexity class which consists of all families of

circuits having constant depth and polynomial size. The gates in those circuits are

NOT, AND, OR, where AND gates and OR gates have unbounded fan-in. Integer addition

and subtraction are computable in AC0, but multiplication is not. It is also well known

that calculating the parity of an input cannot be decided by any AC0 circuits. For

any circuit C, the size of C is denoted by size(C) and the depth of C is denoted by

depth(C). Recently, a lot of research [7, 8, 3, 13] have been done focusing on possibilities

of obtaining cryptographic primitives in low complexity classes e.g. AC0 or NC1. We

will later describe some primitives that are needed for our constructions.

Statistical Distance. The statistical distance between two random variables X and

Y over Σn for some alphabet Σ, is SD(X;Y ) which is defined as follows,

SD(X;Y ) =
1

2

∑
a∈Σn

|Pr[X = a] = Pr[Y = a]|.

Definition 5. (Ramp Secret Sharing Scheme) A (k, l, n) ramp secret sharing scheme

with k < l ≤ n, on a set of n participants is such that any subset of participants of size

greater than equal to l can recover the secret whereas, any subset of size less than k has

no information about the secret.

Definition 6. (Evolving Secret Sharing Scheme [99]) Let A = {At}t∈N be an evolving

access structure. A secret sharing scheme S for A consists of a pair of algorithms

(SHARE,REC). SHARE is a probabilistic algorithm and REC is a deterministic

algorithm which satisfy the following:
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1. SHARE(s,Π
(s)
1 ,Π

(s)
2 , . . . ,Π

(s)
t−1) gets as input a secret s from the domain of secrets

S and the secret shares of participants 1, 2, . . . , t− 1 and outputs the share of the

tth participant viz. Π
(s)
t .

2. (Correctness) For every secret s ∈ S, every t ∈ N and every qualified set B ∈ At,

it must hold that Pr[Rec({Π(s)
i }i∈B, B) = s] = 1.

3. (Security) For every t ∈ N and every forbidden set B /∈ At and for any two

distinct secrets s1 6= s2 in S, it must hold that the two distributions {Π(s1)
i }i∈B

and {Π(s2)
i }i∈B are identical.

Secret sharing scheme in AC0 [23]. Let Σ denote set of alphabets. Two distribu-

tions µ and ν over Σn are called k-wise indistinguishable if for all subsets S ⊂ [n] of size

k, the projections µ|S and ν|S of µ and ν to the coordinates in S are identical. Thus,

while sharing the secret bit 0 (resp. 1) if sampling is done using µ (resp. ν) then we

see a direct connection to the fact that any k participants gain no information about

the secret bit. However, if there is a function f : Σn → {0, 1} which can tell apart

the distributions then f can be thought of as a reconstruction function. Of course, the

gap between the privacy threshold k and the reconstructability threshold n makes the

scheme a ramp scheme. The definition is as follows.

Definition 7. (AC0 Secret Sharing [23]) An (n, k, r) bit secret sharing scheme with

alphabet Σ, reconstruction function f : Σr −→ {0, 1} and reconstruction advantage α

is a pair of k-wise indistinguishable distributions µ and ν over Σn such that for every

subset S of size r we have Pr[f(µ|S) = 1]− Pr[f(ν|S) = 1] ≥ α.

Minsky-Papert CNF function. The sharing function, Share, used in AC0 construc-

tions in the literature is based on the CNF function given by Minsky-Papert [116]. This
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scheme can share one bit among n participants, with binary alphabet, privacy threshold

Ω(n1/3) and perfect reconstruction.

Random Permutation. It is well-known that random permutation is in AC0. For

any n ∈ N, a permutation over [n] is defined to be a bijective function π : [n]→ [n].

K-wise independent generators. A construction of K-wise independent generators

based on unique neighbour expander graphs were proposed by Guruswami-Smith [82].

A set of n random variables, X1, . . . , Xn, is said to be k-wise independent(and uniform)

if any k of them are independent(and uniformly distributed). For any r, n, k ∈ N,

a function g : {0, 1}r → Σn is a k-wise (uniform) independent generator, if for the

uniform distribution U on {0, 1}r, the random variables g(U) = {Y1, . . . , Yn} are k-wise

independent (and uniform).

Expander Graphs. A bipartite graph G with N left vertices, M right vertices is a

(K,A) vertex expander if for all sets S ⊆ [N ] of at most K vertices, the neighborhood

N(S) = {u|∃v ∈ S : (u, v) ∈ E} is of size at least A∆|S|.

3.2.1 Error-correcting codes

In coding-theoretic terms, the goal of secret sharing is to encode a secret S into a

sequence Y1, . . . , Yn such that S can be recovered from the encoding and moreover for

any i1, . . . , it ∈ [n], the sequence Yi1 , . . . , Yit has the same distribution. In this light

Shamir’s scheme can be seen as following : a secret S is appended with t uniformly

random and independent elements from a suitable finite field and the result is encoded

using a Reed Solomon code of length n and dimension t + 1. Using coding-theoretic
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properties one can prove that Shamir’s scheme is in a sense robust. In this work we

consider the optimal robust error-correcting codes/secret sharing scheme Cheng et al.

[47]. The scheme of [47] is described in Section 3.3.1 and is AC0 implementable.

Definition 8 (Robust secret sharing in AC0 [47]). For a secret x, if Y denotes the share

string Share(x) then for any adversary observing d shares and arbitrarily changing

those values to transform the sharing string from Y to Y ′, the probability of correctly

reconstructing the original secret is Pr[Rec(Y ′) = x] ≥ 1− η.

3.3 Main results and technical details

In this section we present our main constructions with technical details. First we show

how to construct a dynamic secret sharing scheme implementable in AC0 where the

existing shareholders accommodate new participant into the system and generate its

share without the help of dealer. Our construction also achieves robustness thanks to

the underlying basic scheme [47]. Second we give an AC0 construction of evolving secret

sharing scheme with reconstructability threshold 2 that can accommodate infinitely

many parties. In this construction, we assume the dealer to be present to generate new

shares. One of the basic differences between these constructions is that in dynamic

secret sharing some or all of the old shares are modified whereas, in the evolving case

no old shares are changed.

3.3.1 A dynamic robust secret sharing scheme in AC0

Our construction of a dynamic secret sharing scheme is based on that of Cheng et al.

[47]. We modify their scheme to accommodate new parties. For the ease of understand-
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ing we first briefly describe their construction.

Overview of the construction of Cheng et al. [47]

For a short random seed R, it is shared using the one-in-a-box function [116] to get n

shares with privacy threshold k0. R and a k-wise independent generator are used to

generate an n-bit string Y . To share a secret X, Y ⊕X is computed. To reconstruct

the secret, all the n parties are used to reconstruct R, compute Y and then compute

X. This whole procedure can be computed in AC0. To boost the privacy threshold

and make the scheme robust the authors took the following steps:

(a) The parties are divided into blocks of size O(log2n).

(b) For each block a secret sharing scheme based on asymptotically “good” error-

correcting codes is applied to obtain O(log2 n) shares.

(c) These shares are further divided into O(log n) smaller blocks of size O(log n) each

and a random permutation of these smaller blocks is applied. By increasing the alpha-

bet size we can store each block together with its index permutation as one share.

The security of the scheme is argued in the following manner – if the adversary sees

a constant fraction of the shares, since a random permutation is applied, the adversary

learns each block with some constant probability. By using a Chernoff type bound

combined with the fact that there are two levels of blocks, it can be ensured that the

number of shares the adversary learns is below the privacy threshold of the larger block

and thus the adversary actually learns nothing.

In Fig. 3-1 we sketch the main steps of the share generation algorithm of [47]. The

scheme uses random permutations, k-wise independent generators and asymptotically
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good error correcting codes. The notations that were used (and we also use the same)

in [47] are described below.

Notations. For any n, k,m ∈ N with k,m ≤ n, alphabets Σ0,Σ, let (Share,Rec) be a

k-out-of-n secret sharing scheme with share alphabet Σ, message alphabet Σ, message

length m. Let (ShareC , RecC) be an (nC , kC) secret sharing scheme from Lemma 3.13 of

[47] with alphabet Σ, message length mC , where mC = δ0nC , kC = δ1nC , nC = O(log n)

for some constants δ0 and δ1. For any constant a ≥ 1, γ ∈ (0, 1], [47] constructs a

(n1 = O(na), k1 = Ω(n1)) secret sharing scheme (Share1, Rec1) with share alphabet

Σ× [n1], message alphabet Σ, message length m1 = Ω(n1).

Dynamic construction. When a new party arrives, we take the following steps

(1) Add it in any of the larger blocks. Adding a new party in the larger block keeps

the size of the block O(log2 n).

(2) Generate share for the new party.

(3) Store the additional information e.g. the generation of the new party and to which

block it is added multiples times.

(4) Divide the share into O(log n) blocks of size O(log n) each and proceed by applying

the random permutation as before.

The share generation and reconstruction algorithms for the basic dynamic scheme

accommodating just one new party are described in Fig. 3-2 and Fig. 3-3 respectively.

Notice that we assume “centralized passive adversary model” where the parties under

adversarial control follow the protocol but are interested in gaining information that

they are not supposed to.

Discussions on the correctness & security. We sketch an overview of the correct-
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1. The share generation algorithm is a function Share1 : Σm1 →
(Σ× [n1])n1 .

2. Let n̄ = Θ(na−1) with large enough constant factor.

3. (Independent generator step) Let gτ : Σmn̄
0 → Σm1 be l-wise

independent generator where l = Ω(mn̄ log |Σ0|
log |Σ| )1−γ.

4. For a secret x ∈ Σm1 , draw a string r = (r1, . . . , rn̄) uniformly
from Σmn̄

0 .

5. Write y = (ys, yg), where ys = (Share(r1), . . . , Share(rn)) ∈
(Σn)n̄ and yg = gτ (r)⊕ x ∈ Σm1 .

6. Get ŷs ∈ (ΣmC )ns from ys by parsing ys,i in blocks each having
length mC for every i ∈ [n̄], where ns = d n

mC
en̄.

7. Get ŷg ∈ (ΣmC )ng from yg by parsing yg to blocks each having
length mC , where ng = dm1

mC
e.

8. Compute

(ShareC(ŷs,1), ..., ShareC(ŷs,ns), ShareC(ŷg,1), ..., ShareC(ŷg,ng))

and parse it as y1 = (y11, . . . , y1n1), where n1 = (ns + ng)nC .

9. (Generate a random permutation) π : [n1] → [n1] and apply it
on y1 to get the desired output π(y1) = Y .

Figure 3-1: The share generation algorithm of Cheng et al. [47]
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• Share generation of an arriving party

1. Before the arrival of a new party, the old parties hold shares as
generated in Fig. 3-1.

2. Generate a share S(T ) for the new participant T by the following
algorithm

• Select two random parties from the old set of parties, say
A,B

• Parse shares of A and B as (A1, A2) and (B1, B2) respec-
tively.

• New share of A is (B1, A2) and the old share is deleted.

• Share of B remains (B1, B2).

• Share of the new party T is (A1, B1).

3. This changes the shares string Y to Ytemp (due to the change to
share of party A.)

4. Concatenate S(T ) to Ytemp to get Y ′temp

5. Store the relevant information multiple times.

6. Apply a random permutation σT on the elements of the string
Y ′temp to get the output YT (= σT (Y ′temp)).

Figure 3-2: Share generation algorithm for the basic dynamic scheme in the
passive adversary model.
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• Reconstruction algorithm

1. Compute the inverse permutation σ−1
T (Y )to get Y ′temp.

2. Remove S(T ) from Y ′temp to get Ytemp.

3. Using S(T ), restore the original shares of the corresponding old
parties and recover the string Y .

4. Compute the inverse permutation π−1(Y ) to get y1.

5. Compute RecC on all the elements of y1 to get ys and yg.

6. Apply Rec on every entry of ys to get r.

7. Output gτ (r)⊕ yg.

Figure 3-3: Reconstruction algorithm for the basic dynamic scheme.

ness and security properties here. Full details can be found in the Appendix. From

the above algorithms it is easy to see the correctness – that is, n1 + 1 shares together

can reconstruct the secret. However, if n1 out of the n1 + 1 parties are chosen, they

do not have complete information about the secret since the share of a party A has

been changed. The dealer, at the beginning, can give an ordering to the parties and

include the information multiple times O(log2 n)) in the shares. When a new party

arrives the old shares are modified according to the order of the old parties. In the

absence of dealer the parties modify their shares according to the order themselves. As

a trade off we assume that a little storage is available to keep the information of the

order of the shares. Combined with [47], all the remaining operations are AC0 imple-

mentable and the scheme is robust. Hence we have constructed a robust dynamic AC0

implementable secret sharing scheme. In this construction the share size is exponential.

This robustness of this scheme follows from the usage of error-correcting codes. The

size of the outer and the inner levels are O(log2 n) and O(log n) respectively. To be
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AC0 implementable, size of the outer block must be O(log2 n). Hence our scheme can

accommodate upto O(log2 n) new parties for each block.

We have the following theorem. A discussion on proof can be found in the Appendix

at the end of this chapter.

Theorem 3.3.1. For any n,m ∈ N, m ≤ n, any ε, η ∈ [0; 1] and any constant

a ≥ 1,α ∈ (0; 1], if there exists an explicit (n′ = O(na log n); (1 − α)n′ = k′) secret

sharing scheme in AC0 with share alphabet Σ × [n′], message alphabet Σ0, message

length Ω(mna−1), adaptive privacy error O(na−1)(ε + 2−Ω(k))) and reconstruction er-

ror O(na−1η), then, assuming a predefined order on the participants and a small stor-

age to keep the information of the order of the participants, there exists an explicit

(n′ + O(log3 n); (1 − α)n′) dynamic secret sharing scheme with adaptive privacy er-

ror O(na−1)(ε + 2−Ω(k))) and reconstruction error O(na−1η). The share and message

alphabet and the message length of the new participants remain the same.

Accommodating more parties

To accommodate more parties we may divide them into more equal sized blocks. A =

{A1, A2, A3, . . . , Af} and B = {B1, B2, B3, . . . , Bf}. We can modify the shares of A as

{B1, A2, A3, B4, . . .} and give the share of t as {A1, B2, B3, . . .} or {A1, B2, A3, . . .} and

so on. Ours is a code based secret sharing scheme, so the number of blocks must be

more than the distance of the code.
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3.3.2 Evolving secret sharing in AC0

We now give a construction which shows that an AC0 secret sharing is possible for an

evolving access structure where any two participants are qualified to reconstruct the

secret whereas any one participant is unable to get any information about the secret bit.

This result shows the possibility to include an unbounded number of participants in a

secret sharing scheme where both the share generation algorithm and reconstruction

algorithm are in AC0.

Suppose the secret bit is s ∈ {0, 1}. Let (Share+, Rec+) be a 2-out-of-2 threshold

secret sharing scheme which can be obtained using the techniques of [23]. Applying this

(Share+, Rec+) algorithm multiple times, we show how the dealer prepares the shares

for the participants.

Figure 3-5 gives a pictorial depiction of share generation process for (2,∞) access

structure. Vertically shaded regions show the outputs of the basic (2-out-of-2) Share+

algorithm run independently every time with the fixed secret bit s as input.

• The reconstruction algorithm is simple. When two participants come together

they produce only the corresponding shares that connects them. Details are given in

the following theorem.

Theorem 3.3.2. There exists a (2,∞)-secret sharing scheme implementable in AC0

for which the share size of the t-th participant is linear in t.

Proof. It is easy to see the share size of the tth participant is linear in t. The proposed

scheme runs the basic (2-out-of-2) AC0 secret sharing scheme (independently) multiple

times. So both the sharing and reconstruction phases can be implemented by AC0
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• Share Generation

1. The dealer first applies Share+ algorithm on s and outputs
(s1

1, s
2
1).

• Participant 1 receives s1
1 as its share.

2. When participant 2 arrives, the dealer obtains (s2
2, s

3
2) ←−

Share+(s) by an independent run.
• Share of 2 is (s2

1, s
2
2) and dealer stores s3

2.

3. In general, for t ≥ 3, share of the t-th participant consists of

• the first t− 2 entries of the share of (t− 1)th participant

• stt−1 [which is obtained as the second entry of the output
of Share+(s) (independently) run for the (t− 1)th time to
generate shares of participant t− 1]

• the random string stt which is the first entry of (stt, s
t+1
t )

←− Share+(s) run for the t-th time.

Figure 3-4: Share generation algorithm for (2,∞)-evolving access structure.

circuits.

To prove that any two participants can recover the secret let us suppose that par-

ticipants i and j collaborate with each other. Without loss of generality, let i > j. We

observe that participant j has sjj and it can collaborate with participant j+ 1 (who has

sj+1
j ) to recover the secret. Recall that, (sjj, s

j+1
j ) ←− Share+(s) when run for the j-th

time. Since share of participant i includes sj+1
j , we have the proof.

The share generation algorithm ensures the secrecy of the scheme.

Remark 1. We observe that to improve the information rate of the scheme if we start

with l bit secrets and assume the existence of a basic 2-out-of-2 AC0 secret sharing

scheme (for l bit secret) with negligible privacy error as in [47]. It is not very hard

to see that the above construction gives a secret sharing sharing scheme with the same
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Figure 3-5: Step-construction of (2,∞) secret sharing scheme in AC0.

privacy error as the basic one.

Example 1. (Yet another example)

Let us consider a star-graph based access structure where the internal vertex is fixed but

the number of leaves changes/increases over time. A minimal qualified set is defined by

two vertices which has an edge between them. More precisely, {fixed internal node, any leaf}

constitutes a minimal qualified set. Let (Share+, Rec+) be a 2-out-of-2 AC0 imple-

mentable threshold secret sharing scheme. The dealer runs Share+(s) (one time) to

output (s1, s2). Dealer assigns s1 to the internal node and stores s2. Whenever, a new

leaf is added, the dealer assigns s2 to the leaf.

Discussion. At this point, it is not clear to the authors whether it is possible to

construct other evolving threshold secret sharing schemes implementable in AC0. Any

possibility (or, impossibility) results is worth pursuing in future.

3.4 Comparison with existing schemes

Upon drawing comparisons with existing schemes in the literature, we observe the

following : none of the existing dynamic schemes are AC0 implementable. Another
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advantage of our scheme is in the simplicity. New shares can be generated by simple

manipulations of the share strings followed by random permutations. This avoids alge-

braic operations such as Lagrange’s interpolations which are not AC0 implementable.

Note that depending on the choice of participants whose shares are modified, our scheme

can be modified to make it into a hierarchical scheme and into many versions of multi-

partite schemes. The constructions are not difficult and we leave them for an expanded

future version where we present AC0 implementable constructions of various cases of

multipartite secret sharing schemes which can accommodate new participants over time.

The main drawback of the scheme (Fig. 2 and Fig. 3) is that it can accommodate only

a bounded number of new participants. We have attempted to overcome this drawback

to construct an AC0 implementable (2,∞) scheme. Ours is the first construction of

an evolving secret sharing scheme which can accommodate potentially infinitely many

participants over time. But our method cannot be generalized to construct AC0 im-

plementable scheme for general (k,∞)-scheme for higher values k as there are more

combinations of participants. Hence we leave that as an open problem.

Appendix A : Security Proof outlines of Theorem

3.3.1

Theorem 3.4.1. Share1 and Rec1 can be computed by AC0 circuits.

Proof. We know that construction 1 can be done in AC0. The extra functions that we

are computing during adding a new participant are :

1. Generating the share S(T ) of the new participant. This can be done in AC0 since
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copying and concatenating string are AC0-implementable operations.

2. Concatenating the share S(T ) to y1. This operation can be done in AC0.

3. Applying a random permutation which is in AC0.

For the reconstruction procedure, in our construction, the functions which we are com-

puting other than those of [47] are

1. Inverse permutation σ−1
T .

2. Restoring the original shares of the old participants.

3. Deleting the shares of some of the old participants.

Now the inverse permutation can be computed in AC0. Restoring the share involves

dividing a share into two halves and concatenating to the half of another share. Clearly

this whole operation can be done in AC0. The remaining deletion operation can be

done in AC0 too. Hence the Share1 and Rec1 functions can be computed in AC0.

Theorem 3.4.2. Let the error during reconstruction of (Share; Rec) be η , then the

error during reconstruction of (Share1, Rec1) is n′ = n̄η.

Proof. The reconstruction is done in two phases. First the shares of the new participants

are used to restore the shares of the old participants. Next the old participants are

used to reconstruct the secret. Although we need all the participants to reconstruct the

secret, in the second phase it is the old participants who actually recover the secret.

Hence our reconstruction error is essentially same as that of [47]. The proof is a simple

application of the union bound in probability.



42 Secret Sharing in AC0

Note : We stipulated that the adversary does not have any information regarding

the order of the participants. So, from the adversary’s point the old participants whose

shares are modified when a new participant arrives is completely random and the share

of the new participant is independent of the previous shares. Hence concatenating the

share of the new participant does not affect the privacy of our scheme. Coupling this

with the random permutation effectively results only in an increase in the length of the

string. Hence our construction does not affect the privacy of the original scheme of

Fig.1.

The overall effect is that the adversary only sees an increase in the number of

repeated alphabets. Since the adversary sees only a constant fraction of shares, due to

the repetitions and random permutations, it cannot infer any information about the

secret. The details are given next.

In order to show privacy, the following Chernoff Bound is needed.

Negative Correlation.

Binary random variables X1, X2, . . . , Xn are said to be negatively correlated if for any

subset I of [n],

Pr[∧i∈I(Xi = 1)] ≤
∏
i∈I

Pr[Xi = 1]

and

Pr[∧i∈I(Xi = 0)] ≤
∏
i∈I

Pr[Xi = 0]

.

Theorem 3.4.3. (Negative Correlation Chernoff Bound) Let X1, X2, ..., Xn be random

variables which are negatively correlated with X =
∑n

i=1Xi, µ = E(X). Then
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1. for any δ ∈ (0, 1), P r[X ≤ (1− δ)µ] ≤ e−δ
2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ

2µ/3.

2. for any d ≥ 6µ, Pr[X ≥ d] ≤ 2−d.

Here we mention two lemmas regarding random permutations using which we can

show the privacy of our scheme. For exact statements and proofs of these lemmas we

refer the reader to Lemmas 3.7 and 3.8 of [47].

Lemma 3.4.4. [47] Given π a random permutation of [n]. For any pair of sets S,W ⊆

[n], let u = |W |
n
|S|. The following items hold.

1. for any δ ∈ (0, 1), P r[|π(S) ∩W | ≤ (1 − δ)µ] ≤ e−δ
2µ/2 and Pr[|π(S) ∩W | ≥

(1 + δ)µ] ≤ e−δ
2µ/3.

2. for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.

Lemma 3.4.5. [47] Let π be a random permutation of [n]. Let W ⊆ [n] with |W | = γn.

Let δ be constant δ ∈ (0, 1). Let t, l ∈ N+ such that tl ≤ 0.96
1+0.96

γn. Let S be a collection

of subsets {S1, ..., Sl} such that for each i ∈ [l], the sets Si ⊆ [n] are disjoint and

|Si| = t. Finally, let Xi be the indicator random variable such that Xi = 1 is the

event |π(Si) ∩ Wj| ≥ (1 + δ)γt. Taking X =
∑

i∈[l]Xi, we have for any d ≥ 0,

Pr[X ≥ d] ≤ e−2d+(e2−1)e−ω(γt)l
.

Using the above lemmas one can show privacy of the secret sharing scheme as follows.

Lemma 3.4.6. [47] Let Σ be a set of alphabets and let n, k ∈ N with k ≤ n. Given a

distribution X = (X1, ..., Xn) over Σn, let Y be the distribution obtained by the action

of π−1 on X where π : [n] → [n] is a random permutation. If an adaptive adversary

observes a set of coordinates W with |W | = k then YW is the same distribution Y[k].
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Note : This lemma essentially says that due to the random permutation the adversary

observing a constant fraction of the secret cannot learn anything about the secret.

Utilizing the above-mentioned lemmas we have the following theorem estimating

the parameters in our case.

Theorem 3.4.7. Let n,m ∈ N, with m ≤ n, ε, η ∈ [0; 1] and constant a ≥ 1,α ∈ (0; 1].

Suppose we have an explicit (n′ = O(nalogn); (1 − α)n′) secret sharing scheme com-

putable in AC0 with share alphabet Σ × [n′], message alphabet Σ0, message length

Ω(mna−1), adaptive privacy error O(na−1)(ε+2−Ω(k))) and reconstruction error O(na−1η),

then, assuming a predefined order on the participants and a small storage to keep the in-

formation of the order of the participants, an explicit (n′+O(log3n); (1−α)n′) dynamic

secret sharing scheme with privacy error O(na−1)(ε + 2−Ω(k))) (adaptive) and error of

reconstruction O(na−1η) can be constructed.



Chapter 4

Perpetual Secret Sharing Scheme from

Fractional Cascading

In chapter 3 we constructed an AC0 implementable dynamic secret sharing scheme and

another AC0 implementable (2,∞) evolving scheme. The constructed evolving scheme

cannot be generalized to a general (k,∞) scheme and the dynamic scheme can only

accommodate a bounded number of new parties. In this regard, we introduce the idea

of perpetual secret sharing [40] – a combination of evolving and dynamic secret sharing

in which some (not all) old shares are changed to generate new shares and an infinite

number of parties can be accommodated in the system. Two important features of

our construction are – the dealer does not have to use a huge memory (unlike evolv-

ing schemes which use exponential amount of memory) and also that our scheme is

implementable by AC0 circuits. AC0 is the lowest complexity class in which share

distribution and secret reconstruction is possible. This makes our scheme more imple-

mentable. To this end we use a dynamic data structure technique known as fractional

cascading [41, 42] to accommodate, distribute and renew shares among parties. We

note that such data structures are not only used to accommodate new parties, but this

data structure takes an active part in how the shares of old parties are redistributed and

given to new parties and are helpful in keeping the complexity of the computations very

low. In the concluding section we indicate how to use other dynamic data structures

45
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such as Tango trees etc. to produce different access structures which can accommodate

new parties. Such dynamic versions of data structures also help to delete parties, push

a party up or down a hierarchical order which are in turn helpful to construct dynamic

or evolving versions of hierarchical secret sharing schemes, multipartite secret sharing

schemes and more. Hence we can achieve long term confidentiality of such dynamic

schemes with low computation resources. In order to achieve this we also introduce a

new formal definition for secret redistribution.

The main contribution of this chapter can be summarized as follows.

1. We construct a secret sharing scheme which can accommodate an unspecified and

unbounded number of parties keeping the share and the reconstruction process in

the complexity class AC0.

2. The construction utilizes fractional cascading to organize and pre-process the

parties. The access structure is determined by this data structure.

4.1 Preliminaries

We only mention the most relevant definitions and refer the reader to appropriate

references for the commonly used definitions. For the formal definition of secret sharing

we refer the reader to [139, 20, 93]. For evolving secret sharing schemes we refer the

reader to the works of Komargodski et al. [99, 100, 16]. We begin with our formal

definition for secret redistribution.

Secret Redistribution. We introduce the following definition.
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Definition 9. An (n, k)-redistribution scheme consists of two groups of parties of sizes

n and k, P1, . . . , Pn and Q1, . . . , Qk respectively. The parties P1, . . . , Pn have predefined

shares as per some secret sharing scheme. A redistribution scheme modifies the shares

of P1, . . . , Pn to compute n+ k new shares such that:

1. Original shares of P1, . . . , Pn are deleted.

2. New n + k shares are distributed among all the n + k parties P1, . . . , Pn and

Q1, . . . , Qk.

3. All parties P1, . . . , Pn and Q1, . . . , Qk combining can reconstruct the original shares

of P1, . . . , Pn.

4. parties P1, . . . , Pn cannot use original shares before the reconstruction stage.

5. parties P1, . . . , Pn themselves cannot obtain original shares from new shares.

Notation : (n, k)-redistribution scheme is denoted by the pair

(Redist
(n,k)
GEN ,Redist

(n,k)
REC). The algorithm Redist

(n,k)
GEN generates n + k new shares from n

old shares and Redist
(n,k)
REC combines new shares to output old shares.

Redistribution schemes are constructed using pseudo-random generators or by coding

theoretic techniques combined with random permutations. More details are given in

section 4.3.

Fractional Cascading. Fractional cascading was introduced by Chazelle and Guibas

[41]. It is a data structure technique used for iterative searching in a collection of k

ordered lists or catalogs. Suppose we have k ordered lists L1, ..., Lk such that |Li| ≤ n ∀

1 ≤ i ≤ k. The next step is to modify these lists as follows : Denote the modified lists as
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L̄1, ..., L̄k. Set L̄k = Lk and for each i, 1 ≤ i ≤ k−1, L̄i is obtained by merging (adding

elements at proper positions) Li with every other element of ¯Li+1. The next step is to

add connections (bridges/pointers) between these modified lists. For 1 ≤ i ≤ k − 1, if

an element in a list L̄i came from Li, add pointers to the two nearest elements in ¯Li+1.

In addition to this, add connections between the merged elements between L̄i and ¯Li+1.

These connections are helpful to find the ranges of the location of the required element

to be located. To search an element in the collection of catalogs, first a binary search

is done in the first modified list L̄1. If the element is not found, the connections are

used to locate the element in the next modified list L̄2 and so on. The advantage of

fractional cascading is that the operation takes O(log n+ k) time and O(n) space. For

our purpose, in addition to efficient iterative searching, this structure along with the

connections gives us a platform for redistributing secret. As shown in figure 1, secret is

redistributed along the connections. We refer the reader to [42] for more on fractional

cascading and its applications.

Perpetual Secret Sharing

Definition 10. A perpetual secret sharing scheme on an evolving access structure (an

access structure which adds new participants over time) is a secret sharing scheme with

the following conditions :

• The access structure evolves according to a dynamic data structure. This means

that at any time if a set of participants is connected to each other through con-

nections determined by the underlying data structure and the set of participants is

maximal(no other participant is connected to any of these participants), we shall

call such a set of participants a quasi-qualified set of participants who should be
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able to reconstruct a predetermined fraction of the secret. The quasi-qualified sets

can combine their partial fractions of the secret to reconstruct the original secret.

Remark 2. In our construction (see Fig 1.) we shall see that, a secret is divided

among participants of L1 and the secret is redistributed among the remaining partici-

pants in the catalogs L2, L3 and L4 along the connections. So the quasi-qualified sets

are {24, 23, 13, 11}, {64, 25, 26}, {65}, {80, 68, 44, 62, 66, 35, 46} and {93, 90, 87, 79, 81}.

Partial secrets are reconstructed by each of these subsets and finally the participants 24,

64, 65, 80 and 93 combine to reconstruct the original secret. Now as new participants

arrive, connections are updated and these quasi-qualified sets change/evolve over time.

Remark 3. In secret-sharing literature, qualified sets sets are those subsets of partici-

pants who can reconstruct the secret. So, quasi-qualified subsets are certain specialized

subsets of participants who can reconstruct a predetermined part of the secret.

4.2 Technical Details : Fractional Cascading based

Dynamic Secret Sharing

Pre-processing. We denote participants by positive integers and call them the weights

of these participants. Participants do not arrive in any order of their weights but they

are stored in the lists in increasing order. When a new participant arrives, it is added

to a suitable list and the share of certain (bounded number of) parties are changed.

Initially we set that each list can accommodate at most n participants.

Overview of our idea. Let us suppose that at any instance we have k ordered cata-

logs of participants in increasing order where each participant is denoted by a natural
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number called weight. The lists of parties are L1, ..., Lk. The first party x1
1 in the list

L1 is connected to all those parties in L2 whose weights are less than or equal to x1
1.

The second party x2
1 in L1 is connected to all those parties in L2 which have not been

previously connected and whose weights are less than or equal to x2
1 and so on. We

repeat the previous step for parties in L2 and L3 and so on. Note that initially, there

can be parties which are not connected to any other party. Each party along with the

connections in the list L1 is the root of a tree .

Let us suppose at this stage a new party with weight q arrives. If q < max(Lk),

insert q in Lk maintaining the order and update the connections between Lk−1 and Lk.

If q > max(Lk) and q < max(Lk−1), insert q in Lk−1 keeping the order and update the

connections between Lk−2, Lk−1 and Lk. If q > max(Lk−1) go to Lk−2 and so on. If

q > max(L1), add q to the end of L1.

In this structure, the lists will be called generations interchangeably keeping parity

with similar constructions in the literature [99, 100, 16]. They are based on range

of the weights of the parties. After certain time and adding participants when all

the generations are exhausted, the new party is added to L1. The sizes / ranges of

the previous generations are increased suitably and the process is repeated. As per

requirement one may also create a new generation and proceed.

Sharing secret : To share a secret S, first the secret is distributed among all the

parties of L1. As mentioned above, one party can be attached only to bounded many

parties in the next list. Hence each of the shares in L1 are distributed to bounded

many parties in L2 and so on along the connections. When new parties arrive, share
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is redistributed along the connections. parties in one list combine to reconstruct the

share of the previous list. Share sizes do not increase drastically due the nature of the

structure and pre-processing. The process is formalized in Algorithm 1.

Figure 4-1: Connecting parties among ordered lists.

Notation: Given k lists L1, L2, . . . , Lk each of size at most n. Each list is filled

with parties denoted by their weight in increasing order. Here size(Li) denotes the

number of parties in the list Li. Elements of the lists are denoted by Li[.]. To store the

connections, for each party maintain lists C(p,q)[.], where p, q denotes the list and the

position in the list respectively.
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Algorithm 1 Combining fractional cascading and secret sharing

1: procedure Creating initial connections
2: Initialize i = 1, j = 1, g = 1.
3: While i ≤ k − 1 do steps 4 to 8.
4: While j ≤ size(Li) do steps 5 to 7.
5: While g ≤ size(Li+1) do step 6.
6: If Li+1[g] ≤ Li[j] then add g to the list C(i,j) else increase g by 1.
7: Increase j by 1.
8: Increase i by 1.

9: procedure Accommodating new parties
10: New party denoted by its weight q is to be included.
11: If q < max(Lk), insert q in a proper position in Lk and update the connections

between Lk and Lk−1. Else check in Lk−1.
12: If q < max(Lk−1), insert q in a proper position in Lk−1 and update the connec-

tions between Lk−2 and Lk−1. Create new connections between Lk−1 and Lk. Else
check in Lk−2 and so on.

13: Repeat step with Lk−j until we reach L1.
14: Insert/Add q in a proper position in L1.

15: procedure Sharing secret to new party
16: Suppose party with weight q is added to the list Lj.
17: If j = 1 then,

1. Assign n as the current number of old parties in L1.

2. Run Redist
(n,1)
GEN to redistribute the shares of the old parties in L1 and give share

to the new party.

3. Modify shares of the next lists L2, ..., Lk via proper redistribution schemes.

18: If j > 1 then,

1. Locate the parent of q in the list Lj−1 and the other parties in Lj connected to
the same parent. Count all such old parties along with the parent and assign
the count as C.

2. Run Redist
(C,1)
GEN to redistribute the shares of the old parties and the parent in

Lj and Lj−1 respectively and give share to the new party q.

3. Modify shares along connected parties in the lists Lj+1, . . . , Lk via proper
redistribution schemes.
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Remark 4. Following this procedure we must delete the duplicate connections. This

may happen because from the algorithm an element in a list can be connected from two

distinct elements in the previous list. In such a case the connection from the party with

greater denomination is deleted.

Remark 5. It is clear from Fig. 4-1 that each of the quasi-qualified sets form a tree

and hence the whole structure becomes a forest. One more reason to consider such a

dynamic data structure / forest based construction is that different generations may

have different sizes. Also in many practical scenarios, one may need to add new parties

to an earlier generation as per hierarchical requirements. Our construction can support

such scenarios.

Share distribution.

1. Let us suppose that initially there are n many elements in the list L1. The dealer

can run an (n, n) scheme to generate n shares for L1. To keep the complexity

low, an AC0-scheme is used (details later).

2. If a party in L1 is connected to t parties in L2, use a (1, t)-redistribution scheme,

to redistribute shares among the parties in L2. Repeat the procedure for parties

in L2 and their connections in L3 and so on.

3. When new parties arrive, the connections are updated and shares are redistributed

as per the updated connections in the lists.

Secret Reconstruction. Parties in the last list Lk combine their share to reconstruct

the shares of the previous list Lk−1 and similarly the shares of the parties of the lists
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Lk−2, Lk−3 and so on are recovered until we reach the list L1. The parties of the list

L1 combine their shares to reconstruct the secret as per the reconstruction procedure

of the (n, n) secret sharing scheme.

Theorem 4.2.1. Quasi-qualified sets combining can reconstruct the secret. No other

subset of participants have any information about the secret.

Proof. In this scheme, whenever a new list is created, the shares of the parties in the

previous list gets modified. The parties in the last generation/list combine to form

the partial shares of the parties in the previous generation who in turn combine to

reconstruct the partial shares of the parties in the generation one level above and so

on. Hence the quasi-qualified sets combining can reconstruct the secret.(For correctness

of the secret redistribution scheme see section 4). Now consider any proper subset of

participants which is not a quasi-qualified set. Therefore there is at least one participant

in some list/generation which is not in this subset. By the reconstruction procedure,

the partial secret of that generation cannot be recovered and hence the original secret

cannot be recovered. For the proof that this subset has no information about the secret

see section 4.3.3.

Remark 6. From the above proof note that no participant is redundant to the system.

Hence essentially we have constructed an nt-out-of-nt secret sharing scheme where nt is

the total number of participants at time t and the quasi-qualified sets evolve as per the

underlying data structure. Hence we have constructed a perpetual secret sharing scheme

from fractional cascading.

Remark 7. Once the number of participants become very large we have the added

advantage of efficient searching. Using dynamic variants of fractional cascading we can
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delete participants from this scheme also.

4.3 Share distribution, redistribution schemes and

share size

In this section we the share distribution and redistribution schemes.

4.3.1 Share distribution and redistribution schemes

(n, n)-scheme. To generate shares for the list L1, we can use Shamir’s (n, n)-scheme.

But Shamir’s scheme is not AC0 computable. In such a case we can use the AC0 scheme

of [47]. While Shamir’s scheme is ideal and it implies less share size, the scheme of [47]

has exponential share size. The privacy threshold is Ω(n).

4.3.2 Redistribution Schemes

We first look at the definition of a random partition.

Definition 11. A random partition of a string into p parts is a random permutation

of the elements of the string followed by partitioning the string into p equal parts.

As an example let us suppose that the share S1
1 has to be redistributed into shares

S11
1 and S12

1 . There are two ways to do this. Firstly encode S1
1 using an (n, k)-code

where the operations can be done in AC0 [47]. Now partition the coded string into

three equal parts using a random partition to generate three shares S ′1, S11
1 and S12

1 .
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Secondly one may use a pseudorandom generator instead of codes to extend the message

and generate the shares S11
1 and S12

1 . The procedure for the (1, 2)-redistribution scheme

is formalized below.

Algorithm 2 Redistribution of secret shares

1: procedure Share Redistribution (Redist
(1,2)
GEN)

2: Encode(S) using a coding scheme to generate Enc(S).
3: Use random partition to split Enc(S) to S1, S2 and S3.
4: Keep S1 for old party whose share is being modified.
5: Distribute S2 and S3 to two new parties.

6: procedure Share Reconstruction (Redist
(1,2)
REC)

7: Input: S1, S2, S3

8: Concatenate S1, S2, S3 to get S1.
9: Apply inverse permutation on S1 to get Enc(S).
10: Output: Dec(Enc(S)) −→ S.

The same procedure can be generalized to case of a (1, k)-redistribution scheme. If

we use pseudorandom generators we use the following modified algorithm 3.

Algorithm 3 Redistribution using pseudorandom generators

1: procedure Share Redistribution (Redist
(1,k)
GEN)

2: Stretch S using a pseudorandom generator to get S̄.
3: Use a random permutation to permute the elements of S̄.
4: Split S̄ into k + 1 equal parts, S1, . . . , Sk+1.
5: Distribute S1, . . . , Sk+1.

4.3.3 Proof outline for redistribution schemes

Theorem 4.3.1. Algorithm 2 and 3 satisfy the properties 1-5 of redistribution schemes.

Proof. We note that these redistribution schemes of algorithms 2 and 3 follow Definition

9. Clearly the properties 1 − 4 of Definition 9 are satisfied. To see that property 5 is
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satisfied we recall the redistribution process. First the original shares of some particular

parties are concatenated to get a single string. This string is encoded via a coding

scheme to get an encoded string. Following this a random partition is applied. This is

the crucial step. A random partition is a random permutation of the elements of the

string followed by the division of the string into some equal parts. Due to the random

permutation an old party cannot distinguish between an old share and new share. Even

if a constant fraction of the string is observed, no information can be obtained from the

new string. For more details, we refer the reader to the Appendix at the end of this

chapter.

Remark 8. Since there are only finitely many permutations of a string of N elements,

we can order these permutations and embed the order of the permutation used in the

string for the parties to use during the reconstruction process. This adds a linear over-

head to the share size. Some other information we need to store are the size of the

partitions which adds a constant overhead to the share size.

Proof. (Continuation of proof of Theorem 4.2.1.) Suppose in a subset a participant

from a list is missing. Consider the participants in that list which have a common

parent participant in the previous list. For example in Fig. 1, 68 is the parent of 44, 62

and 66. By the construction of redistribution schemes, with the corresponding partition

missing, the remaining participants does not know the exact positions of the remaining

permuted elements and hence have no information about the complete string. In the

next higher list, by the similar argument, the participants have no information about

the partial secrets. Hence the whole effect is the any set which is not quasi-qualified

has no information about the secret and hence has no information about the original
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secret.

4.4 Complexity analysis

Theorem 4.4.1. The Share distribution, Redistribution and secret reconstruction can

be done by AC0 circuits.

Proof. The arriving parties are included in k lists. When a new party arrives , the total

number of connections that needs to be updated is k, since there are k-many lists. Also

the number of partitions into which the share has to be redistributed is bounded by

a constant. This constant depends on the initial values in the k lists. Hence we can

assume that there is a constant C, such that the total number of partitions needed to

redistribute a share is bounded above by C. To redistribute a share we use an (cn, n)-

error correcting code to encode the share[47] or use pseudorandom generators[83]. This

process can be done in AC0. Next we use a random permutation to permute the

elements of the extended string and then split the string into at most C parts. Both

these processes and hence the random partitions[115, 84, 150] can be achieved by AC0

circuits.

During reconstruction, the parties of one generation(list) combine to reconstruct

the share of the previous generation(list). This is done by concatenating the shares,

applying the inverse permutation and decoding the share. These are well-known facts

that all these processes can be done in AC0.
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4.5 Comparison with existing schemes

The two main advantages of our scheme over the evolving schemes of [99, 100] are

1. Our construction uses negligible amount of memory in comparison with both the

evolving schemes in literature.

2. Our construction is AC0 implementable while none of the existing dynamic or

evolving schemes are AC0 implementable.

3. Also instead of using fractional cascading we can use dynamic data structure

techniques such as tango trees and others to implement dynamic or evolving

versions of several other secret sharing schemes such as hierarchical secret sharing,

multipartite secret sharing and many more. So our construction is more efficient

and flexible than the existing ones. Also the use of data structures allow us to

search for parties and delete parties and these are particularly useful when the

number of parties become very large. Note that we do not increase the size of

the underlying field and hence the share size does not increase drastically as new

parties arrive.

Appendix -B

In this section we include the proof sketch of the fact that after applying a random

permutation, the original share cannot be distinguished from the permuted share.



60 Perpetual Secret Sharing Scheme from Fractional Cascading

Negative Correlation

Binary random variables X1, X2, ..., Xn are negative correlated if ∀I ∈ [n],

Pr[∧i∈I(Xi = 1)] ≤
∏
i∈I

Pr[Xi = 1]

and

Pr[∧i∈I(Xi = 0)] ≤
∏
i∈I

Pr[Xi = 0]

.

Theorem 4.5.1. (Negative Correlation Chernoff Bound). Let X1, X2, ..., Xn be nega-

tively correlated random variables with X =
∑n

i=1Xi, µ = E(X). Then

• for any δ ∈ (0, 1), P r[X ≤ (1− δ)µ] ≤ e−δ
2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ

2µ/3.

• for any d ≥ 6µ, Pr[X ≥ d] ≤ 2−d.

Here we mention two lemmas regarding random permutations using which we can

show the privacy of our scheme. For proofs of these lemmas we refer to Lemmas 3.7

and 3.8 of [47].

Lemma 4.5.2. Let π : [n]→ [n] be a random permutation. For any set S,W ⊆ [n], let

u = |W |
n
|S|. Then the following holds.

• for any δ ∈ (0, 1), P r[|π(S) ∩W | ≤ (1 − δ)µ] ≤ e−δ
2µ/2 and Pr[|π(S) ∩W | ≥

(1 + δ)µ] ≤ e−δ
2µ/3.

• for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.
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Lemma 4.5.3. Let : [n]→ [n] be a random permutation. For any W ⊆ [n] with |W | =

γn, any constant δ ∈ (0, 1), any t, l ∈ N+ such that tl ≤ 0.96
1+0.96

γn any S = S1, ..., Sl

such that ∀i ∈ [l], Si ⊆ [n] are disjoint sets and |Si| = t, let Xi be the indicator such

that Xi = 1 is the event |π(Si) ∩Wj| ≥ (1 + δ)γt. Let X =
∑

i∈[l] Xi. Then for any

d ≥ 0, Pr[X ≥ d] ≤ e−2d+(e2−1)e−ω(γt)l
.

Using the above lemmas one can show privacy of the secret sharing scheme as follows.

Lemma 4.5.4. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution

X = (X1, ..., Xn) over Σn, let Y = ((Xπ−1(1) ◦π−1(1)), ..., (Xπ−1(n) ◦π−1(n))) where π is

a random permutation over [n] → [n]. For any adaptive observation W with |W | = k,

YW is the same distribution as Y[k].

For the proof of this lemma we refer the reader to Lemma 3.10 of [47]. This lemma

essentially says that due to the random permutation the adversary observing a constant

fraction of the secret cannot learn anything about the secret.
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Chapter 5

A Quantum Evolving Secret Sharing

Scheme

In this chapter we construct an evolving quantum secret sharing scheme(EQSSS) which

can share and protect a secret quantum state. While we use well-studied methods

of [99, 100] to generate share for the new participant, to the best of knowledge of

the author, the quantum version of an evolving secret sharing scheme has not been

considered prior to our work [37].

Our construction uses repeatedly a (t, n)-QTSS scheme [128, 131]. We shall omit

the exact details of these constructions. Thus the contribution can be summarized as

follows.

• Our Contribution

1 : Construction of an evolving quantum secret sharing scheme (EQSSS) which shares

and protects a secret quantum state.

2 : Discussion of some possible ways to reduce the usage of quantum memory.

This chapter is more algorithmic in flavor but it poses some implementation challenges

which can of independent interest both to physicists and computer scientists alike. We

discuss these issues in the conclusion and future challenges section.

63
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5.1 Preliminaries

Evolving access structure [100]: An evolving access structure A ∈ 2N is a monotone

collection of subsets of the natural numbers such that for any t ∈ N, the collection of

subsets At = A ∩ [t] is an access structure.

Evolving Secret sharing scheme [100]: Let A = {At}t∈N be an evolving access

structure. Let S be a domain of secrets, where |S| ≥ 2. A secret sharing scheme S for

A and S consists of a pair of algorithms (SHARE;RECON). SHARE is probabilis-

tic sharing algorithm and RECON is a deterministic reconstruction algorithm which

realize the secret sharing scheme.

Dynamic thresholds [100]: A dynamic threshold access structure has a sequence

k1 ≤ k2 ≤ . . . of positive integers. For any t ∈ N, the set of qualified sets at time t

contains all those sets of cardinality at least kt. Of particular interest is the sequence

with kt = γ · t where γ ∈ (0, 1) is a fixed constant.

Quantum one-time pad - (QOTP)[50, 119]: The QOTP is a symmetric-key en-

cryption scheme. Key is generated classically by picking ai, bi ∈R {0, 1}. A sequence of

qubits is encrypted qubit-by-qubit by applying XaiZbi to the i-th qubit (X and Y are

Pauli Gates). Qubit-by-qubit decryption is done by applying XaiZbi to the i-th qubit.

Quantum one time pad provides information-theoretic security [31].

Trap Code[30, 32]: A trap code is a quantum message authentication code. It ensures

integrity of the data by combining a CSS code to spread out the data with the insertion

of check qubits (traps) at random locations, and a quantum one-time pad on the entire

state. Key generation is done by choosing a random permutation σ. Qubit-by-qubit
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encoding is done by applying E(a quantum error correcting(QECC) CSS code), ap-

pending traps: half |0〉 (the X-traps), half |+〉 (the Z-traps), permuting the qubits by

σ and applying a quantum one-time pad using the classical randomness in the key. To

decode, remove the quantum one-time pad, apply inverse permutation σ−1 and measure

X-traps in the computational basis and the Z-traps in the Hadamard basis. If they are

not in their original state, reject. Finally decode the QECC. The security of the trap

code depends on the distance d of the underlying QECC. For more on QECCs, we refer

the reader to [79, 80]. One may also use the Clifford code [2].

5.2 Quantum Evolving Secret Sharing Scheme

• We use dynamic thresholds(thresholds increase as new participants arrive) for our

scheme. A threshold is the minimum number of participants needed to be present in a

qualified set.

• The participants are first grouped into generations of sizes in an increasing order.

Generations are denoted by Gi, i = 1, 2, 3, . . . and their size is denoted by |Gi|. We set

|G1| < |G2| < |G3| < . . ..

• Participants arrive one by one and each arriving participant Bobj is assigned a gen-

eration. When a generation is exhausted, a new generation is created. A discussion on

the sizes of the generations is given in section 3.3.

• An example : Suppose at time t we have 3 generations G1, G2, G3 with

|G1 = 3|, |G2| = 5, |G3| = 8.
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Let

1. G1 = {1(1,1), 2(2,2), 3(3,3)}.

2. G2 = {4(4,1), 5(5,2), 6(6,3), 7(7,4), 8(8,5)}.

3. G3 = {9(9,1), 10(10,2), 11(11,3), 12(12,4), 13(13,5), 14(14,6), 15(15,7)}.

Suppose a new participant arrives. Note that the generation G3 has not been exhausted

yet. So the new participant will be added to G3. The new participant is denoted as

16(16,8). The first subscript denotes the index of the participant since the beginning and

the second subscript denotes the index of the participant in the group G3. Now G3 is

exhausted. So when a new participant arrives, it will be assigned to a new generation

G4 and it will be denoted by 17(17,1) since it is the overall 17-th participant and the

first participant in G4.

• Sharing Secret : To share a secret, Alice shares the secret state to the generation G1,

a suitably modified secret to the second generation G2 and so on.

• To reconstruct the secret, participants start recovering the secrets of the generations

starting from the presently last generation. Then using the recovered secret, the secret

of the presently second-last generation is recovered and so on. This iterative process

goes on and stops with G3, ..., G2, ..., G1. When the first generation is reached, the

initial secret is recovered.

Reason to consider dynamic thresholds

Let us suppose that we have a (k, n) quantum threshold secret sharing scheme (QTSSS)

where a secret quantum state is shared among n participants and any k or more of those
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participants can reconstruct the secret. In [51], the authors show that due to the “no-

cloning theorem” it must hold that k > n/2, otherwise two disjoint sets of participants

can reconstruct the secret separately and can create two separate copies of the secret

quantum state which violates the “no-cloning theorem”. Hence this puts a barrier

for constructing the quantum version of an evolving threshold secret scheme [99]. In

[99], the authors construct a classical k-threshold evolving secret sharing scheme. Here

the participants arrive one by one and at any time any k-participants can reconstruct

the secret. However, while trying to share a quantum secret via this scheme, the “no-

cloning theorem” poses a barrier. At some time the total number of participants present

can become more than 2k and two disjoint copies of participants can reconstruct two

copies of the unknown quantum secret violating the “no-cloning theorem”. Hence we

consider dynamic thresholds as in [100], where not only the number of participants

increases with time but the thresholds increase with time. Taking a proper increasing

sequence of dynamic thresholds, we need to ensure that at any time t when the number

of participants is nt and the threshold is kt, we have

kt > nt/2.

Hence in the following construction we shall construct a quantum evolving secret sharing

scheme with dynamic thresholds to share a quantum secret.

5.2.1 Main Construction

The dealer Alice generates a sequence of unknown quantum states as secret |S〉 =

|φ1〉 , ..., |φm〉 , where |φi〉 = αi |0〉+βi |1〉, (i = 1, . . . ,m), to be shared among the parties.
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When a generation Gg begins, Alice recalls state |SA〉 for each tuple A = (c0, . . . , cg)

where 0 ≤ ci ≤ |Gi|, (i = 1, . . . , g). ci denotes the number of parties from generation

Gi who would take part in secret reconstruction procedure. A party in generation Gg

has two identities attached to it – (1) i, its index in generation Gg and (2) Id(i,g), the

index of the party since the start of the sharing process.

Notation: Denote the sharing and reconstruction procedure of a (k, n)-QTSS as

ShTh(k, n) (the sharing procedure) and RecTh(k, n)(the reconstruction procedure).

Notation: Denote the sharing and reconstruction procedure of the main quantum

evolving scheme as SHARE (the sharing procedure) and RECON(the reconstruction

procedure).

• Share distribution protocol: Suppose at the current time t, let there be g gen-

erations for which the shares are already distributed. To share the secret |S〉in the

generation Gg+1, Alice runs Algorithm 1. Define:

• For A = (c1, . . . , cg), define prev(A) := (c1, . . . , cg−1).

•
∣∣Sprev(A)

〉
:= |S〉 if g = 1.

•
∣∣Sprev(A)

〉
:=
∣∣S(c1,...,cg−1)

〉
if g > 1.

• Algorithm 1 : [SHARE |S〉]

1. For every tuple A = (c1, . . . , cg+1) do steps 2 TO 5.

2. For each cj, 1 ≤ j ≤ g + 1 do steps 3 TO 5.

3. Set Aj ← (c1, . . . , cj).
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4. If cj = 0, set
∣∣SAj〉← ∣∣Sprev(Aj)

〉
=
∣∣S(c1,...,cj−1)

〉
and Stop.

5. If cj > 0 do the following :

(a) Do Procedure: ShareinGen(
∣∣Sprev(Aj)

〉
, j) to share

∣∣Sprev(Aj)

〉
in generation

Gj.

(b) Get a random state
∣∣rAj〉 =

∣∣r(c1,...,cj)

〉
from Procedure: RandomShareGen(Aj, cj).

(c) Do Procedure: UpdateSecret(
∣∣Sprev(Aj)

〉
,
∣∣rAj〉) to get the state

∣∣SAj〉 which

will be used for the next generation

6. STOP.

1. Procedure: ShareinGen(
∣∣Sprev(Aj)

〉
, j)

2. For each party i ∈ Gj: do steps 3 to 4.

3. Share
∣∣Sprev(Aj)

〉
via a ShTh(kId(i,j)

− Σj−1
k=1ck, i) quantum threshold scheme to

get shares |Bob1〉 , ..., |Bobi〉.

4. For each p, 1 ≤ p ≤ i, give share |Bobp〉 to the p-th participant in the gener-

ation.

5. STOP.

1. Procedure: RandomShareGen(Aj, cj)

2. Prepare 2(g+ 1) traps: half |0〉 (the X-traps), half |+〉 (the Z-traps). Call the

state |Temp〉.

3. Permute |Temp〉 by a random permutation σ1 and call the resulting state
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∣∣rAj〉 =
∣∣r(c1,...,cj)

〉
.

4. Share
∣∣rAj〉 via an ShTh(cj, |Gj|) quantum threshold scheme among the par-

ticipants of generation Gj.

5. Return
∣∣rAj〉 to Algorithm 1.

6. STOP.

1. Procedure: UpdateSecret(
∣∣Sprev(Aj)

〉
,
∣∣rAj〉)

2. On
∣∣Sprev(Aj)

〉
apply E, an encoding operation for a quantum error correcting

CSS code to get the state
∣∣Stemp(A)

〉
.

3. To
∣∣Stemp(A)

〉
, append

∣∣rAj〉. Permute all the qubits according to a random

permutation σ2. Finally apply a quantum one-time pad using the classical

randomness in the key. Assign the resulting as
∣∣SAj〉 =

∣∣S(c1,...,cj)

〉
.

4. Return
∣∣SAj〉 to algorithm 1.

5. STOP.

• Secret reconstruction protocol: The reconstruction procedure is as follows: Let

us suppose that at time t, we have a qualified set At. For this set let participants come

from atmost g generations.

• Algorithm 2 : [RECON : Reconstruction from g generations]

1. Recall corresponding tuple A = (c1, ..., cg) for At with ci participants coming from

generation Gi, 1 ≤ i ≤ g and Gg is the last generation from where participants

arrive.
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2. Recover the states
∣∣r(c1)

〉
,
∣∣r(c1,c2)

〉
,...,
∣∣r(c1,...cg)

〉
by the reconstruction procedure of

the RecTh(ci, |Gi|) quantum threshold scheme.(1 ≤ i ≤ g)

3. Assign f ← number of participants out of the cg participants coming from the first

i participants.

4. In generation Gg recover
∣∣S(c1,...,cg−1)

〉
=
∣∣Sprev(A)

〉
via the reconstruction procedure

RecTh(kId(i,g)
− Σg−1

i=1 ci, i) quantum threshold scheme.

5. From
∣∣S(c1,...,cg−1)

〉
=
∣∣Sprev(A)

〉
and

∣∣r(c1,...cg)

〉
, recover the secret

∣∣S(c1,...,cg−2)

〉
=∣∣Sprev(prev(A))

〉
using Procedure:DecodeSecret(

∣∣Sprev(A)

〉
,
∣∣r(c1,...cg)

〉
).

6. Continuing in this way, recover the states
∣∣S(c1,...,cg−3)

〉
,
∣∣S(c1,...,cg−4)

〉
,..all the way

to
∣∣S(1)

〉
which is the secret |S〉.

7. STOP.

1. Procedure: DecodeSecret(
∣∣Sprev(A)

〉
, |rA〉).

2. On
∣∣S(c1,...,cg−1)

〉
remove the quantum one-time pad and apply the inverse per-

mutation σ−1
2 .

3. On the resulting state, replace the last 2m states by σ−1
1 (
∣∣r(c1,...cg)

〉
) to get∣∣Stemp(prev(A))

〉
.

4. Decode
∣∣Stemp(prev(A))

〉
using the quantum error correcting code to obtain

∣∣S(c1,...,cg−2)

〉
.

5. End Procedure: DecodeSecret
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5.2.2 Secret recovery and measurement schemes

The constructed scheme uses quantum threshold schemes as building blocks. In this

chapter we do not consider the problem of quantum threshold secret sharing, and simply

assume that it can be done when necessary [29,31]. Our scheme inherits the properties

of the underlying threshold schemes being used and hence the measurement schemes of

the overall quantum evolving secret sharing scheme is the same as the one used as the

underlying threshold scheme. We note that in our construction, the secret quantum

state is recovered by a recursive procedure, where the share reconstruction procedure

for the quantum threshold scheme is applied several times. Now since we are working

with quantum secrets instead of classical secrets, we work with underlying quantum

threshold schemes where the quantum secret is recovered by phase shift operations

combined with Lagrange’s interpolation [131] and avoid measurement based quantum

threshold schemes. This is due to the fact that after a measurement operation is done

we will find the system to be in one of these basis states, even though it may have been

in any state before the measurement. The only measurement operations we do are to

decode the trap code and to check the integrity of the share by inserting decoy states

while sending quantum data from Alice to the participants. Here the measurement

does not affect the quantum secret at any stage and hence the recursive procedure can

continue. In this section we briefly describe one such scheme [131] which can be used

as the underlying quantum threshold secret sharing scheme.
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Brief description of quantum threshold scheme [131] used as ShTh(k, n) and

RecTh(k, n)

• Distribution of private keys

1. Alice selects a polynomial f of degree k − 1 in an appropriate finite field and

evaluates the polynomial at n different xi’s.

2. Alice publishes the xi’s and shares the f(xi)’s to the n, participants via quantum

secure direct communication and this f(xi)’s are the private keys of the partici-

pants.

• Sharing quantum state

1. Alice generates the quantum states as secret |S〉 (see section 3.1).

2. Alice applies phase shift U(θ) on every quantum state in the sequence, where

U(θ) = cos(θ) |0〉 〈0| − sin(θ) |0〉 〈1|+ sin(θ) |1〉 〈0| cos(θ) |1〉 〈1|, where θ = 2π− S
N

with appropriately chosen S and N owing to security requirements of the system.

3. After applying the phase shift, Alice sends the sequence to one participant say

Bob1.

• Secret recovery

1. Bob1 performs phase-shift U(θ1) on every state in the sequence with θ1 = L1f(x1)
N

,

where L1 = Π1≤j≤k,j 6=1
xj

xj−x1
and sends the resulting sequence to Bob2.

2. Bob2 performs phase-shift U(θ2) on every state in the sequence with θ2 = L2f(x2)
N

,

where L2 = Π1≤j≤k,j 6=2
xj

xj−x2
and sends the resulting sequence to Bob3 and so on.
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3. After Bobk applies the phase shift U(θk), the resulting sequence is the required

recovered secret. For a detailed proof, we refer the reader to [131].

Measurement schemes used in the constructions

Measurements are used in two different cases in our construction.

1. Whenever secret is sent from the dealer Alice to the participants Bob’s or from

one participant to the other, decoy particles |0〉 , |1〉, |+〉 = |0〉+|1〉√
2

, |−〉 = |0〉+|1〉√
2

are inserted in the sequence for eavesdropping detection. The initial state and

the positions of these decoy particles are remembered by the sender. The receiver

measures these particles in the appropriate bases as announced by the sender and

the receiver announces the measurement results. The sender computes the error

rate by comparing the measurement results with the initial states. If the error

rates exceeds certain threshold, the process is aborted.

2. Measurements can be done for security of the system during the decoding process

of the trap code used in step 5 of Algorithm 2 and in the procedure DecodeSecret.

To decode a trap code, the X-traps are measured in the computational basis and

the Z-traps are measured in the Hadamard basis. If they are not in their original

state, they are rejected.

5.2.3 Correctness and Privacy

• Correctness of Algorithm 1 and 2 and the scheme. For g generations, Alice

has to maintain tuples (c1, ..., cg) for all combinations of the numbers of participants ar-

riving from each generation. The procedure ShareinGen takes the previous secret, and
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shares it among certain participants of the generation via a quantum threshold scheme

as per the dynammic threshold. The procedure RandomShareGen(j, cj) prepares the

random state
∣∣r(c1,...,cj)

〉
. This is done by mixing 2m |0〉 states and |1〉 states via a

random permutation σ1. This random permutation has to be shared classically for the

reconstruction procedure. Finally
∣∣r(c1,...,cj)

〉
is shared among all the parties of the cur-

rent generation via a quantum threshold scheme. Finally the procedure UpdateSecret

updates the secret
∣∣Sprev(A)

〉
using

∣∣r(c1,...cg)

〉
. First

∣∣Sprev(A)

〉
is encoded through a

QECC (CSS) and
∣∣r(c1,...cg)

〉
is appended to it. The resulting state is mixed via another

random permutation σ2 (shared classically) and a quantum one-time pad. Without

applying σ1, the state
∣∣r(c1,...cg)

〉
is not a random state which is required for security.

A qualified set of participants recovers the random states
∣∣r(c1)

〉
,
∣∣r(c1,c1)

〉
,...,

∣∣r(c1,...,cg)

〉
from each generation. Since the set is qualified, they satisfy the dynamic threshold

in the last generation Gg from which participants arrive. Hence they can recover the

state
∣∣Sprev(Ag)

〉
. Reconstruction follows from the reconstruction procedure of the quan-

tum threshold schemes used. Using
∣∣Sprev(Ag)

〉
and

∣∣r(c1,...,cg)

〉
, the participants recover∣∣Sprev(Ag−1)

〉
and so on all the way to

∣∣S(c1)

〉
which is the secret |S〉.

• Privacy of the scheme. A forbidden set has the following property – there exists

at least one generation form which sufficiently many participants as per the dynamic

thresholds do not arrive. The arriving participants of that particular generation cannot

reconstruct the corresponding
∣∣Sprev(A)

〉
by the security of the threshold scheme. Hence

they cannot remove the masking of the secret to reveal the secret of the previous

generation and finally cannot reconstruct the secret |S〉. Hence the construction is

private.

From the above discussion we have the following theorem:
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Theorem 1: The SHARE and RECON procedures construct a quantum evolving

secret sharing scheme which shares a quantum secret |S〉 among unbounded number of

participants with an increasing sequence of thresholds.

5.2.4 Sizes of the generations, dimensions of shares

The dimension of the share of a participant is estimated in three parts. From section

3.2.1, we shall assume that the dimension of the share resulting from the quantum

threshold schemes is same as the dimension of the secret. Also note that applying a

quantum one-time pad does not change the dimension. Let us suppose that a participant

is in generation Gg.

1. From procedure ShareinGen : The contribution in the dimension of the share from

this procedure is bounded by

(

g∏
j=1

|Gj|)× dim(shareGg),

where dim(shareGj) denotes the dimension of a share in generation Gg.

2. From procedure RandomShareGen : The second contribution in the dimension of

the share from this procedure is again bounded by

(

g∏
j=1

|Gj|)× dim(randomGg),

where dim(randomGg) denotes the denotes the dimension of a random state in

generation Gg.
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3. Estimates of dim(shareGg) and dim(randomGg) : From the procedure Ran-

domShareGen, the dimension of the random share is 2(g + 1) and from the pro-

cedure UpdateSecret the dimension of the share is bounded by Eg × 2g, where E

denotes the factor by which data is spread by the encoding CSS code.

By multiplying items 1,2 and 3, we find that the dimension of the share of a partici-

pant in generation Gg is bounded by O((
∏g

j=1 |Gj|)2×Eg× g2). Now if we take the size

of generation Gj to be 22j , then we have the dimension of the share of a participant in

generation Gg to be bounded by

O((

g∏
j=1

22j)2 × Eg × g2)

= O((2
∑g
j=1 2j)2 × Eg × g2)

= O((222g+1

)2 × Eg × g2).

Now if the overall index of a participant is t, then it belongs to the generation Gdlog log te.

Hence the dimension of the t-th participant is bounded by

O(t4 log t(log log t)2).

A reduction in the number of traps reduces the dimension to some extent.

5.2.5 Memory usage

The dealer Alice needs to maintain information for all the tuples. For g generations

there are
∏g

j=1(|Gj| + 1) tuples. For each of these tuples Alice needs to remember



78 A Quantum Evolving Secret Sharing Scheme

|Gj| random permutations σ1 per generation Gj. Again quantum memory is needed to

remember the random permutations σ2’s. Overall an exponential amount of quantum

memory is needed for this process. Moreover if decoy states are to be used for security,

the participants need to remember the positions where the decoy particles are inserted

which adds to the required memory.

Possible Improvements

• This construction can be generalized further to weighted schemes. Let us suppose

that the each participant in a generation Gg carries some weight wg. The condition

for being a qualified set is as follows: the weighted sum of the participants in a set

must be more than the current threshold. For this Alice instead of maintaining tuples

(c1, ..., cg), maintains tuples (w1c1, ..., wgcg) and with these tuples it proceeds with the

algorithms. The remaining construction is unchanged.

• The major drawback of this construction is the huge amount of quantum memory

needed by Alice for the tuples (c1, ...cg). But note the following: Suppose (c1, ..., cg)

is a tuple corresponding to a qualified set at time t. This means that Σg
i=1cg ≥ kt.

Consider another tuple (p1, ..., pg) at the same time such that pi ≥ ci ∀ i. This means

that the tuple (p1, ..., pg) is also qualified at time t. Hence it is enough to only main-

tain the tuple (min(c1), ...,min(cg)) such that Σg
i=1cg ≥ kt. This reduces the usage of

quantum memory to some extent. Also when the threshold is updated after some time

some qualified set may become unqualified. Hence the quantum memory needs to be

updated/ refreshed after some time. More on reducing quantum memory is discussed

in section 6.
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• The crucial idea of the construction is to divide the participants into several gen-

erations. Whenever too many participants arrive a new generation is created. Here

consider one way to reduce the number of tuples based on a simple combinatorial

observation. Let us suppose that we have g generations, G1, ..., Gg. The tuples are

of the form (c1, ..., cg). So the number of such tuples the dealer has to maintain is

(|G1|+ 1)× ...× (|Gg|+ 1). Suppose that the generations G1, ..., Gg are squashed into

one single generation G containing (G1| + ... + |Gg|) participants, then the dealer has

to maintain the tuple (C1). Clearly now the dealer has to maintain far less tuples than

in the previous case and the process may continue by adding participants to a new

generation G2. However the threshold conditions change. If we allow this change then

this method can reduce the usage of quantum memory to a considerable extent.

• Our method in section 4 also helps to reduce memory usage to a certain extent.

5.2.6 Error-tolerance

The security of the trap code depends on the distance d of the underlying QECC. It

is (2/3)d/2-secure against Pauli attacks, that is the probability (taken over all possible

permutations / QOTPs) that a fixed Pauli attack Q acts non-trivially on the logical

data without revealing an error in the traps is at most (2/3)d/2. The underlying code we

have used is a [[m, 1, d]]- quantum error-correcting CSS code. Hence for each participant

it can tolerate up to d-errors.
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5.2.7 Discussions

In [99] and [100], the authors construct classical threshold evolving secret sharing

schemes and evolving secret sharing schemes with dynamics thresholds respectively.

But through these schemes secret cannot be protected in a quantum environment. Our

construction overcomes this. As the authors note in [131] it is harder to construct

a secret sharing scheme which shares a quantum secret and our scheme can handle

quantum secrets. While the “no-cloning” theorem makes it impossible to construct a

fixed-threshold quantum evolving scheme sharing a quantum secret, there is no problem

to share a classical secret through a quantum evolving secret sharing scheme, for fixed

threshold or dynamic threshold. The fixed threshold quantum evolving scheme can be

taken as a special case of the dynamic case with all thresholds kt = k. Our scheme,

combined with superdense coding reduces the share size by half as compared to classical

evolving schemes for sharing classical secrets.

5.3 Comparison

In this section we draw comparisons of our scheme with some of the nearby construc-

tions of schemes which can accommodate new participants over. The main advantage

of this scheme compared to the existing quantum dynamic secret sharing schemes is

that without secret redistribution, we are able to accommodate unbounded number of

new participants. To the best of our knowledge no such construction so far can handle

this scenario. Decoy states have been used previously to achieve security against pop-

ular attacks such as intercept-and-resend attack, entangle-and-measure attack, man-
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in-the-middle attack, trojan horse attacks [128, 131] and resilience as in [113]. Since

we repeatedly use the cited quantum threshold schemes, our scheme inherits security

against such attacks.
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Chapter 6

A Quantum Hierarchical Secret Shar-

ing Scheme - Further Studies

In this chapter we construct a quantum hierarchical secret sharing scheme (QHSSS)

which can handle an arbitrary number of groups and different conditions for hierarchy.

Our construction follows the ideas of chapter 5 with suitable modifications, is flexible

and with slight modifications to the scheme, we are able to realise quantum versions of

weighted threshold access structures, uniform multipartite access structures and par-

tially hierarchical access structures. Quantum computation has grown tremendously

in the last two decades and we build on this progress by utilizing quantum threshold

schemes[14, 131, 128] and quantum error correcting codes repeatedly in our construc-

tion.

We cover a lot of access structures and to our best knowledge quantum schemes

for some of the access structures have not been constructed before. Hence this work

conducts an extensive study of quantum schemes for multipartite access structures.

6.1 Preliminaries

An access structure is multipartite if the participant set P can be partitioned into

several disjoint groups. Each group of participants has distinct properties and the

83
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shared secret is reconstructed according to those properties. We shall look at some

multipartite access structures.

• Let the set of participants P be partitioned into several groups Pi such that P =⋃m
i=1 Pi, where Pi’s are non-empty, and Pi

⋂
Pj = φ for any distinct i, j.

The following access structures are of interest:

•Weighted threshold access structure[118] : Each participant is assigned a weight

in such a way that the participants with the same weight belong to the same group and

a subset is qualified if and only if the weighted sum of its members is greater than some

given threshold.

• Compartmented access structures[142] : Each group (compartment) Pi (1 ≤ i ≤

m) has a threshold ti (1 ≤ i ≤ m) and the qualified subsets require all the m thresholds

are satisfied.

• Uniform threshold access structures[142] : Each group Pi (1 ≤ i ≤ m) has a

threshold ti (1 ≤ i ≤ m) and the qualified subsets require at least k (1 ≤ i ≤ m)

thresholds ti’s should be satisfied.

• Uniform multipartite access structures[90] : Every qualified subset comprises

at least t participants from no less than k (1 ≤ i ≤ m) groups.

• Hierarchical threshold access structures[142, 147] : All the participant groups

Pi’s (1 ≤ i ≤ m) are pairwise hierarchically comparable and the thresholds satisfy

t1 ≤ t2 ≤ ... ≤ tm. In fact, all the groups form a totally ordered set according to their

hierarchies. A participant at a lower level can be replaced by a higher level participant.
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• Quasi-threshold multipartite access structures[122] : Each group Pi has a

threshold ti (1 ≤ i ≤ m), and a special participant p is contained in some group,

w.l.o.g., P1. There are two cases such that the secret can be reconstructed, that is, a

set of at least t1 participants from P1\{p} is qualified; otherwise, a set contains at least

(t1−1) participants from P1\{p} and no less than k (1 ≤ k ≤ m−1) other groups that

achieve their thresholds are also qualified.

• Partially hierarchical access structures[70] : Hierarchical relationships among

groups can be seen as a star-like partial order, that is, there exists a higher level group

on the center node of a star, and the other groups are placed on the leaf nodes.

• In our constructions, we shall repeatedly use a (k, n) quantum threshold secret sharing

scheme(QTSS), which realizes a (k, n)-threshold access structure, where a quantum

secret is shared among n participants and any k or more participants can reconstruct

the secret and sets of participants with less than k participants have no information

about the secret.

• Notation : (k, n)-QTSSS denotes a k-out-of-n quantum threshold secret sharing

scheme. We shall not go into the exact details and constructions of these schemes and

refer the reader to [128, 131] for the details and security of these schemes.

To generate shares for the participants we shall use quantum one-time pad and trap

codes as in chapter 5.
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6.2 Technical Details

6.2.1 Warm-up: Comparmented, Uniform threshold access sets

The dealer/boss Alice generates a sequence of unknown quantum states as secret |S〉 =

|φ1〉 , ..., |φh〉 , where |φi〉 = αi |0〉 + βi |1〉, (i = 1, . . . , h), to be shared among the

participants. Suppose that the participants are grouped into disjoint sets P1, P2,...,Pm.

Compartmented access structures

Recall that each group (compartment) Pi (1 ≤ i ≤ m) has a threshold ti (1 ≤ i ≤ m)

and the qualified subsets require all the m thresholds are satisfied.

• Notation : (k, n)-QTSS denotes a k-out-of-n quantum threshold secret sharing

scheme.

• Notation : |Pi| denotes the number of participants in the group Pi.

Secret Sharing goes on in two stages :-

• Preparing share states:

1. Alice first prepares shares |S1〉,...,|Sm〉 from |S〉-via a (m,m)-QTSS.

2. For each |Si〉, (1 ≤ i ≤ m), Alice then prepares |Pi| states |S1
i 〉 , ...,

∣∣∣S|Pi|i

〉
via a

(ti, |Pi|)-QTSS.

3. Alice assigns the share
∣∣Sji 〉 to the j-th participant in the group Pi, (1 ≤ j ≤ |Pi|)

and (1 ≤ 1 ≤ m).
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• Secret Reconstruction:

1. For each i, (1 ≤ 1 ≤ m), ti participants in the group Pi reconstruct |Si〉 from the

shares |S1
i 〉 , ...,

∣∣∣S|Pi|i

〉
via the reconstruction procedure of the (ti, |Pi|)-QTSS.

2. After recovering all the |Si〉’s, the secret |S〉 can be reconstructed via the recon-

struction procedure of the (m,m)-QTSS.

Since an (m,m)-QTSS is used, all the thresholds ti’s must be satisfied and all the |Si〉’s

are required to reconstruct the secret |S〉. The correctness, privacy and the security of

the above scheme against popular quantum attacks follows from that of the (ti, |Pi|)-

QTSS and (m,m)-QTSS. More details are give in section 3.2.

Uniform threshold access structures

Recall that for this access structure at least k of the thresholds ti’s should be satisfied.

Hence instead of using an (m,m)-QTSS, Alice first prepares shares |S1〉,...,|Sm〉 from

|S〉-via a (k,m)-QTSS. Then she shares each |Si〉 in the group Pi via a (ti, |Pi|)-QTSS

as before. During the reconstruction procedure at least k of the |Si〉’s are required to

reconstruct the secret |S〉. Hence atleast k of the thresholds ti’s need to be satisfied.

Again the correctness and the security of the above scheme follows from that of the

(ti, |Pi|)-QTSS and (k,m)-QTSS. More details in section 6.2.2.
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6.2.2 Main construction : Hierarchical Threshold Access Struc-

tures

In a hierarchical threshold access structure all the participant groups Pi’s (1 ≤ i ≤ m)

are pairwise hierarchically comparable and the thresholds satisfy t1 ≤ t2 ≤ ... ≤ tm.

In fact, all the groups form a totally ordered set according to their hierarchies. Let

us suppose that the groups Pi’s are arranged in the following total hierarchical order

P1 ≥ P2 ≥ ... ≥ Pm. This means that the participants of the group P1 have higher

power over the participants of the group P2 and so on. In this construction we shall

mirror the following real world scenario : the lowest level of agents reconstruct some

state and send it to the next higher level of agents who in turn reconstructs a state and

sends it to next higher level of agents in the hierarchy and so on. Finally the highest

level agents collect the required states from the lower level agents and they reconstruct

the secret.

• Illustrative Example : Suppose we have three groups P1, P2 and P3. Let

P1 = {1, 2, 3, 4, 5} with threshold t1 = 3

and

P2 = {6, 7, 8, 9, 10, 11, 12} with threshold t2 = 5

and

P3 = {12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23} with threshold t2 = 7.

Condition for hierarchy : Atmost 5 participants can come from P1, atmost 7 par-
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ticipants can come from P2 and 11 from P3. So Alice maintains triples (p1, p2, p3) for

each combinations of the number of participants arriving from each group.

• To share a secret |S〉, Alice does the following :

For group P1.

1. Share |S〉 among the participants of P1.

2. Generate a random state |r1〉 .

3. Share |r1〉 in the group P1.

For group P2.

1. Generate |S1〉 = |S〉z |r1〉, where z represent the operations (using trap codes

and random permutations) to update |S〉 utilizing |r1〉 .

2. Share |S1〉 among the participants of P2.

3. Generate a random state |r2〉 and share it among the participants of P2.

For group P3.

1. Generate |S2〉 = |S1〉z |r2〉 = (|S〉z |r1〉)z |r2〉 .

2. Share |S2〉 among the participants of P3

• To reconstruct the secret,

1. Participants in group P3 recover |S2〉 .
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2. Participants in group P2 recover |r2〉 .

3. Using |S2〉 (= |S1〉z |r2〉) and |r2〉, |S1〉 is recovered.

4. Participants in group P1 recover |r1〉 .

5. Finally using |S1〉 (= |S〉z |r1〉) and |r1〉, the secret |S〉 is recovered.

The whole process is formalized below.

Share distribution protocol

From the groups Pi’s various combinations of number of participants may arrive to

present their shares. So Alice maintains tuples (p1, ..., pm), where each pi denotes the

number of participants from each group Pi. Hence 0 ≤ pi ≤ |Pi| (1 ≤ i ≤ m). Again

the dealer Alice generates a sequence of unknown quantum states as secret |S〉 =

|φ1〉 , ..., |φh〉 , where |φi〉 = αi |0〉 + βi |1〉, (i = 1, . . . , h), to be shared among the

participants. To share the secret |S〉, Alice runs Algorithm 1.

Define :

• For a tuple T = (p1, . . . , pk), define T−1 := (p1, . . . , pk−1), T−2 := (p1, . . . , pk−2) and

so on.

• For a tuple T = (p1, . . . , pk), |ST−1〉 := |S〉 if k = 1.

• For a tuple T = (p1, . . . , pk), |ST−1〉 :=
∣∣S(p1,...,pk−1)

〉
if k > 1.

Algorithm 1 : [Sharing secret |S〉]

1. For every tuple T = (p1, . . . , pm) do steps 2 TO 5.
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2. For each j, 1 ≤ j ≤ m do steps 3 TO 5.

3. Set Tj ← (p1, . . . , pj).

4. If pj = 0, set
∣∣STj〉← ∣∣∣ST−1

j

〉
=
∣∣S(p1,...,pj−1)

〉
.

5. If pj > 0 do the following :

(a) Share
∣∣∣ST−1

j

〉
in the group Pj. (Via algorithm 1a)

(b) Get a random state
∣∣rTj〉 =

∣∣r(p1,...,pj)

〉
and share it in the group Pj (Via

algorithm 1b)

(c) Update the secret state
∣∣∣ST−1

j

〉
using

∣∣rTj〉 to get the state
∣∣STj〉. (Via algo-

rithm 1c, this
∣∣STj〉 will be used for the next group Pj+1. )

6. STOP

Recall that tj is the threshold of the group Pj and pj is the number of paticipants

arriving from the group Pj.

Algorithm 1a : [Sharing
∣∣∣ST−1

j

〉
in group Pj]

1. For each participant i ∈ Pj: do steps 2 and 3.

2. Share
∣∣∣ST−1

j

〉
via a (max(tj, pj), i)-QTSS to get shares |Bob1〉 , ..., |Bobi〉.

3. For each p, 1 ≤ p ≤ i, give share |Bobp〉 to the p-th participant in the generation.

4. STOP.
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In the following algorithm 1b we generate a random state.

Algorithm 1b : [Get a random state
∣∣rTj〉 =

∣∣r(p1,...,pj)

〉
]

1. Prepare 2m traps: half |0〉 (the X-traps), half |+〉 (the Z-traps). Call the state

|Temp〉.

2. Permute |Temp〉 by a random permutation σ1. and call the resulting state
∣∣rTj〉 =∣∣r(p1,...,pj)

〉
.

3. Share
∣∣rTj〉 via a (tj, |Pj|)-QTSS among the participants of generation Pj.

4. Return
∣∣rTj〉.

5. STOP.

Finally in algorithm 1c, we update the secret for the next group.

Algorithm 1c :[Update the secret state
∣∣∣ST−1

j

〉
using

∣∣rTj〉]
1. On

∣∣∣ST−1
j

〉
apply E, an encoding operation for a quantum error correcting CSS

code to get the state |Scurrent〉.

2. To |Scurrent〉, append
∣∣rTj〉.

3. On the state obtained in step 2, permute all the qubits according to a random

permutation σ2 and finally apply a quantum one-time pad using the classical ran-

domness in the key. Assign the resulting as
∣∣STj〉 =

∣∣S(p1,...,pj)

〉
.

4. Return
∣∣STj〉.

5. STOP.
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Secret reconstruction protocol

Let us suppose that we have a qualified set Q. For this Q, we have the corresponding

tuple TQ = (p1, ..., pm), where the pi’s are the number of participants arriving from the

corresponding groups Pi’s. Since Q is a qualified set the pi’s satisfy pi ≥ ti for each i

(1 ≤ i ≤ m).

Algorithm 2 : [Secret Reconstruction from set Q]

1. Recall corresponding TQ = (p1, ..., pm) for Q with pi participants coming from the

group Pi, 1 ≤ i ≤ m.

2. Recover the random states
∣∣r(p1)

〉
,
∣∣r(p1,p2)

〉
,...,
∣∣r(p1,...pm)

〉
by the reconstruction pro-

cedure of (pi, |Pi|)-QTSS(1 ≤ i ≤ m).

3. In group Pm recover
∣∣S(p1,...,pm−1)

〉
=
∣∣ST−1

m

〉
via the reconstruction procedure of

the (tm, pm)-QTSS.

4. From
∣∣S(p1,...,pm−1)

〉
=
∣∣ST−1

m

〉
and

∣∣r(p1,..,pm)

〉
, recover the secret

∣∣S(p1,...,pm−2)

〉
=∣∣ST−2

m

〉
. (See algorithm 2a)

5. Continuing in this way, recover the states
∣∣S(p1,...,pm−3)

〉
,
∣∣S(p1,...,cm−4)

〉
,..all the way

to
∣∣S(1)

〉
which is the secret |S〉.

6. STOP.

In the following algorithm 2a, from the states
∣∣ST−1

m

〉
and |rTm〉, we recover the state∣∣ST−2

m

〉
=
∣∣S(p1,...,pm−2)

〉
.
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Algorithm 2a : [Secret recovery of previous group]

1. On
∣∣S(p1,...,pm−1)

〉
remove the quantum one-time pad and apply the inverse permu-

tation σ−1
2 .

2. On the resulting state, replace the last 2m states by σ−1
1 (
∣∣r(p1,...pm)

〉
) to get |Scurrent〉.

(See steps 1 and 2 of algorithm 1c.)

3. Decode |Scurrent〉 using the quantum error correcting code to obtain
∣∣S(p1,...,pm−2)

〉
.

4. STOP.

Description and correctness of algorithms 1,1(a,b,c) and 2,2a

In this section we prove the correctness and privacy of our scheme through the descrip-

tions of the algorithms.

•Correctness : We have groups of participants ordered as P1, ..., Pm. Alice maintains

tuples (p1, ..., pm) for all combinations of the numbers of participants which may arrive

from each group. Suppose Alice has a tuple (p1, ..., pm). For this combination, Alice

shares the secret |S〉 among the participants of the groups. For the group P1, Alice

shares the secret |S〉 among its participants(step 5a of algorithm 1, algorithm 1a).

Furthermore it generates a random state |rp1〉 corresponding to p1 and also shares it

among the participants of the group P1(step 5b of algorithm 1, algorithm 1b). For the

next group P2, Alice first updates the secret |S〉 using |rp1〉 to get a state |Sp1〉(step 5c

of algorithm 1, algorithm 1c) to be shared among the participants of P2. Again Alice

generates a random state and the process continues until all the groups have received

the shares. Both the secret state and the random state is shared among the participants
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via appropriate quantum threshold secret sharing schemes(QTSS). The random state

is prepared via appending equal number of |0〉 states and |+〉 and permuting them

using a random permutation σ1(algorithm 1b). Secret |S〉 is updated(algorithm 1c)

by first applying a quantum error correcting code(QECC) and appending it with the

random state obtained from algorithm 1b. To the resulting state a random permutation

is applied followed by a quantum one-time pad(QOTP) to get the updated secret.

During the reconstruction procedure, each group recovers its random shares(algorithm

2). Since we have taken a qualified set, the number of participants from each group

satisfy the thresholds and hence the group Pm can recover its secret
∣∣S(p1,...,pm−1)

〉
. Using

this
∣∣S(p1,...,pm−1)

〉
and the recovered random state

∣∣r(p1,...,pm)

〉
, algorithm 2a recovers the

state
∣∣S(p1,...,pm−2)

〉
and so on all the way to

∣∣S(p1)

〉
and the secret is reconstructed.

• Privacy : For privacy, we need a concrete characterization of forbidden sets for this

access structure and we need to prove that a forbidden set has no information about

the secret. In addition to this we shall prove that set which is not qualified cannot

reconstruct the secret. In view of this we set the following :

Forbidden sets for the hierarchical access structure: A set of participants A ⊆ P

is a forbidden set if the following condition is satisfied for all 1 ≤ i ≤ m:

|A ∩ Pi| < ti,

i.e., none of the thresholds ti’s are satisfied. Note that if we denote the collection of

all forbidden sets as ΓNO, then it is easy to check that the collection of sets 2P\ΓNO is

monotone.

Lemma 1: A forbidden set has no information about the secret.
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Proof : Let A be a forbidden set. So for each group of participants Pi, ≤ i ≤ m, the

number of participants present in A from Pi does not satisfy the threshold ti,1 ≤ i ≤ m.

Therefore for each i, by the underlying privacy of the (ti, pi)-QTSS, the participants

have no information about each of
∣∣∣ST−1

i

〉
, i.e., for every two secrets quantum secrets,

|S1〉 and |S2〉 and every possible vector of quantum shares 〈|sj〉〉pj∈A∩Pi ,

Pr[ΠA∩Pi(|S1〉 , |r〉) = 〈|sj〉〉pj∈A∩Pi ] = Pr[ΠA∩Pi(|S2〉 , |r〉) = 〈|sj〉〉pj∈A∩Pi ].....(1)

where probability is over the choice of random states |r〉. Now the groups of participants

Pi’s are disjoint and A is an arbitrary forbidden set. Hence by taking product over all

i in equation (1), we get that for every two secrets quantum secrets, |S1〉 and |S2〉 and

every possible vector of quantum shares 〈|sj〉〉pj∈A,

Pr[ΠA(|S1〉 , |r〉) = 〈|sj〉〉pj∈A] = Pr[ΠA(|S2〉 , |r〉) = 〈|sj〉〉pj∈A].....(2)

Thus from equation (2) we have privacy for our scheme.

From the remark after definiton 2, for sets which are not qualified there are no

requirements. However, we can prove the following:

Lemma 2: A set which is not qualified cannot reconstruct the secret.

Proof : Note that in our construction the group P1 has the highest level participants.

So if the participants in the highest level do not satisfy the threshold t1, they cannot

reconstruct the secret due the property of the QTSS. Let us suppose that the lowest

level from which participants arrive is Pm. So if those participants satisty the threshold

tm, they can recover the random state and the secret of the previous group Pm−1 and
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the process continues till they recover the secret. But suppose for some group Pj

(1 ≤ j < m), the threshold tj is not satisfied, the process stops as the updates secret

state of that group Pj cannot be recovered. In such a circumstance the reconstruction

process cannot proceed and the secret cannot be recovered.

Discussions

Note that the highest level participants can reconstruct the secret themselves. If the

participants of the group P2 want to recover the secret, at least t2 participants need

to produce their shares and they need to take the help of at least t1 participants of

the group P1 to reconstruct the secret. Continuing in this way, for the participants of

the group Pm, all the thresholds tm, ..., t1 should be satisfied to reconstruct the secret.

Also note that if the threshold of the group Pm is not satisfied but all others tm−1, ..., t1

are satisfied, then the participants of the group Pm−1 taking the help of the groups

Pm−2, ..., P1 can reconstruct the secret. This means that the group Pm can be replaced

by participants of the group Pm−1 and so on. While we have not imposed the condition

for increasing thresholds an extra step can be added to algorithm 1 which ensures that

the thresholds are in increasing order. Hence from the above discussion we have the

following theorem 1.

Theorem 1: Algorithms 1,1a,1b,1c along with algorithms 2,2a construct a quantum

hierarchical secret sharing scheme with secret |S〉 on groups P1, ..., Pm with thresholds

t1, ..., tm.
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Remarks

• Depending on the underlying QTSS scheme being used, the secret |S〉 can be a 2-level

or a d-level secret.

• Note that it is not necessary for Alice to maintain all the tuples (p1, ..., pm). Suppose

two tuples (p1, ..., pm) and (q1, ..., qm) represent two qualified sets. Then the following

tuple (min(p1, q1), ...,min(p1, q1)) also represents a qualified set. So for any qualified set

it is enough to maintain the tuple (t1, ..., tm), where the ti’s are the thresholds. Hence

this drastically reduces the use of quantum memory. But it is required to maintain the

tuples for unqualified sets because by our construction, starting from a group Pm, if

the updated secret of the group
∣∣ST−1

m

〉
is not recovered, then the final secret cannot be

recovered even if the maskings (random states) of the previous groups are revealed.

6.3 Generalization to other schemes

In this section, we discuss how to construct quantum secret sharing schemes several

multipartite access structures.

6.3.1 Weighted threshold access structures

In a weighted threshold access structure each participant is assigned a weight in such a

way that the participants with the same weight belong to the same group and a subset

is qualified if and only if the weight sum of its members is greater than some given

threshold. In this access structure there is no hierarchical relation among the groups.
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Let the disjoint groups be P1, ..., Pm with each participant in the group Pi having weight

wi (1 ≤ i ≤ m). Let the threshold be t. In this case Alice maintains tuples (p1, ..., pm)

where 0 ≤ pi ≤ |Pm|. A set of participants is qualified if the corresponding tuple

satisfies

Σm
i=1wipi ≥ t.

The secret sharing and the reconstruction algorithm is as follows :

Algorithm 3a : [Sharing secret |S〉]

1. For every tuple T = (p1, . . . , pm) do steps 2 TO 7.

2. If Σm
i=1wipi < t share random states among the participants of the groups.

3. If Σm
i=1wipi ≥ t do steps 4 to 7.

4. Count the number of pi’s such that pi > 0. Denote this number by C.

5. Prepare states |S1〉 , ..., |SC〉 from |S〉 via a (C,C)-QTSS.

6. For each pi such that pi > 0, share one unassigned state |Sj〉 in the group Pi via

a (pi, |Pi|)-QTSS.

7. For each pi such that pi = 0, share random states among the participants of the

group Pi.

8. STOP

Algorithm 3b : [Secret Reconstruction from a qualified set Q]
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1. Recall the corresponding tuple (p1, ..., pm).

2. Note the groups from which positive number of participants arrive i.e., pi > 0.

3. From the noted groups reconstruct the shares |S1〉 , ..., |SC〉 via the reconstruction

procedure of the corresponding (pi, |Pi|)-QTSS.

4. Reconstruct the share from |S1〉 , ..., |SC〉 via the reconstruction procedure of the

(C,C)-QTSS.

5. STOP.

• Correctness: Alice maintains tuples (p1, ..., pm). If the weighted threshold condi-

tion is satisfied Alice counts (C) the number of groups from which positive number

of participants arrive. Secret sharing goes on in two stages. First Alice prepares C

states |S1〉 , ..., |SC〉 by using a (C,C)-quantum threshold scheme. These states are

shared among the groups from which positive number of participants arrive via (pi, |Pi|)-

quantum threshold schemes. To reconstruct the secret the corresponding groups recon-

struct the shares |S1〉 , ..., |SC〉 and finally the secret |S〉. Clearly by the construction,

sets which are not qualified cannot reconstruct the secret.

• Privacy: A forbidden set in this access structure is the a set whose corresponding

tuple (p1, ..., pm) satisfies Σm
i=1wipi < t. It is easy to check than the complement of the

collection of all the forbidden sets is a monotone collection. By step (ii) of algorithm

3a, we have shared random states among the participants of the groups. Hence by the

definition of privacy, a forbidden has no information about the secret state.

From the above discussion we have the following theorem.
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Theorem 2: Algorithms 3a and 3b construct a quantum secret sharing scheme for

weighted threshold access structures with secret |S〉 on groups P1, ..., Pm with weights

w1, ..., wm and threshold t.

• Remarks : Again it is possible to reduce quantum memory in the following way : For

two tuples (p1, ..., pm) and (q1, ..., qm) both of which represent qualified sets and satisfies

the condition qi ≥ pi ∀ i (1 ≤ i ≤ m), the tuple (q1, ..., qm) can be replaced by the tuple

(p1, ..., pm).

6.3.2 Uniform multipartite access structures

Here we have the condition that every qualified subset comprises at least t participants

from no less than k groups. As in the previous constructions : Let the disjoint groups be

P1, ..., Pm. Alice maintains tuples (p1, ..., pm) where 0 ≤ pi ≤ |Pm|. A set of participants

is qualified if the corresponding tuple satisfies

Σm
i=1pi ≥ t

and

|{Pi : (1 ≤ i ≤ m)&pi > 0}| ≥ k.

The secret sharing and the reconstruction algorithm is as follows :

Algorithm 4a : [Sharing secret |S〉]

1. For every tuple T = (p1, . . . , pm) do steps 2 TO 7.

2. Count the number of pi’s such that pi > 0. Denote this number by C.
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3. If (Σm
i=1pi < t) OR (C < k) share random states among the participants of the

groups.

4. If (Σm
i=1pi ≥ t) AND (C ≥ k) do steps 5 to 7 .

5. Prepare states |S1〉 , ..., |SC〉 from |S〉 via a (C,C)-QTSS.

6. For each pi such that pi > 0, share one unassigned state |Sj〉 in the group Pi via

a (pi, |Pi|)-QTSS.

7. For each pi such that pi = 0, share random states among the participants of the

group Pi.

8. STOP

Algorithm 4b : [Secret Reconstruction from a qualified set Q]

1. Recall the corresponding tuple (p1, ..., pm).

2. Note the groups from which positive number of participants arrive i.e., pi > 0.

3. From the noted groups reconstruct the shares |S1〉 , ..., |SC〉 via the reconstruction

procedure of the corresponding (pi, |Pi|)-QTSS.

4. Reconstruct the secret from |S1〉 , ..., |SC〉 via the reconstruction procedure of the

(C,C)-QTSS.

5. STOP.

• Correctness: Alice checks the conditions for a qualified set and shares the secret in

two stages as in the construction for weighted threshold access structures. Correctness

is evident from the algorithms 4a and 4b.
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• Privacy: A forbidden set in this access structure is a set for which the corresponding

tuple satisfies (Σm
i=1pi < t) OR (C < k).Clearly the complement of the collection of

forbidden sets is monotone and by the step (iii) of algorithm 4a, we have privacy for

our scheme.

Theorem 3: Algorithms 4a and 4b construct a quantum secret sharing scheme for uni-

form multipartite access structures with secret |S〉 on groups P1, ..., Pm with participant

threshold t and group threshold k.

• Remarks : Again it is possible to reduce the number of tuples to be maintained as in

the previous constructions.

6.3.3 Partially hierarchical access structures

Hierarchical relationships among groups can be seen as a star-like partial order, that

is, there exists a higher level group on the center node of a star, and the other groups

are placed on the leaf nodes. Let the disjoint groups be P1, ..., Pm with P1 being the

central higher level group. The conditions for being a qualified set are as follows :

1. Participants in P1 satisfying a threshold t′1 can reconstruct the secret.

2. Atleast t1 (but less than t′1) participants from P1 combining with atleast t partic-

ipants from no less than k of the remaining groups can reconstruct the secret.

Alice maintains tuples (p1, ..., pm) where 0 ≤ pi ≤ |Pm|. The secret sharing and the

reconstruction algorithm is as follows :

Algorithm 5a : [Sharing secret |S〉]
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1. For every tuple T = (p1, . . . , pm) do steps 2 TO 9.

2. If pi ≥ t′1, share |S〉 in group P1 via a (t′1, |P1|)-QTSS and share random states to

the remaining participants.

3. Count the number of pi’s such that pi > 0 (2 ≤ i ≤ m). Denote this number by

C.

4. If (t1 ≤ p1 < t′1) AND (Σm
i=2pi ≥ t) AND (C ≥ k) do steps 5 to 9.

5. Prepare states |S1〉 , |S2〉 from |S〉 via a (2, 2)-QTSS.

6. Share |S1〉 in group P1 via a (t1, |P1|)-QTSS.

7. Prepare states |S2
2〉 , ..., |S2

C〉 from |S2〉 via a (C,C)-QTSS.

8. For each pi (i ≥ 2) such that pi > 0, share one unassigned state
∣∣Sj2〉 in the group

Pi via a (pi, |Pi|)-QTSS.

9. For the remaining pi such that pi = 0, share random states among the participants

of the group Pi.

10. STOP

Algorithm 5b : [Secret Reconstruction from a qualified set Q]

1. Recall the corresponding tuple (p1, ..., pm).

2. If p1 ≥ t′1, reconstruct |S〉 by the reconstruction procedure of the (t′1, |P1|)-QTSS.

3. If t1 ≤ p1 < t′1 do steps 4 to 8.
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4. Note the groups from which positive number of participants arrive i.e., pi > 0

(i ≥ 2).

5. From the noted groups reconstruct the shares |S2
2〉 , ..., |S2

C〉 via the reconstruction

procedure of the corresponding (pi, |Pi|)-QTSS.

6. Reconstruct the share |S2〉 from |S2
2〉 , ..., |S2

C〉 via the reconstruction procedure of

the (C,C)-QTSS.

7. Reconstruct |S1〉 from the group P1 by the reconstruction procedure of the (t′1, |P1|)-

QTSS.

8. From |S1〉 and |S2〉, reconstruct the secret |S〉 by the reconstruction procedure of

the (2, 2)-QTSS.

9. STOP.

•Correctness and Privacy : Alice checks the conditions for a qualified set and shares

the secret in three stages. First she shares states to the participants of the highest level

P1 according to the threshold t1. Then Alice checks the remaining conditions for a

qualified set. From the secret |S〉, Alice prepares two states |S1〉 , |S2〉 via a (2, 2)-

QTSS. Finally Alice shares |S1〉 in the group P1 and |S2〉 in the remaining groups as

per the threshold conditions. Secret reconstruction and privacy are evident from the

algorithms 5a and 5b.

Theorem 4: Algorithms 5a and 5b construct a quantum secret sharing scheme for

partially hierarchical access structures with secret |S〉 on groups P1, ..., Pm with P1, the

highest level group with threshold t′i. From the remaining groups t participants from
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no less than k groups combining with ti participants of group P1 can reconstruct the

secret.

6.3.4 Quasi-threshold multipartite access structures

Each group Pi has a threshold ti (1 ≤ i ≤ m), and a special participant p is contained in

some group, w.l.o.g., P1. There are two cases such that the secret can be reconstructed,

that is, a set of at least t1 participants from P1\{p} is qualified; otherwise, a set contains

at least (t1 − 1) participants from P1\{p} and no less than k (1 ≤ k ≤ m − 1) other

groups that achieve their thresholds are also qualified.

This scheme can be constructed by a combination of above-mentioned partially hierar-

chical, uniform multipartite and the uniform threshold access structures. We omit the

exact construction to avoid unnecessary repetitions.

6.3.5 Security

The security of our scheme depends on the underlying quantum threshold scheme being

used. For (t, n) quantum threshold secret sharing schemes in the literature [128, 131]

the authors have shown security against popular quantum attacks such as intercept-

and-resend attack, entangle-and-measure attack, man-in-the-middle attack and trojan

horse attack. Since our construction uses such (t, n) quantum schemes as a building

block, our schemes inherit security against such attacks. In addition to this the use

of error-correcting codes gives certain resilience to our scheme. If the distance of the

error-correcting code used is d, then even if d shares are tampered, the secret can be

correctly recovered.
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6.4 Comparison

In this section we draw comparisons of our construction with some recent constructions

of hierarchical information splitting schemes. One advantage of our work is the simplic-

ity of the constructions. Another advantage of our construction is the ability to handle

arbitrary number of groups and participants. For example in [153] the authors mention

that a more general hierarchical quantum information splitting scheme should involve

more than three parties and it will be much more complicated and cannot be obtained

by directly generalizing their scheme. Clearly our constructed scheme overcomes this.

In [154] a multiparty hierarchical quantum information splitting scheme is proposed,

where the agents are divided into two grades (G1 and G2) and the number of agents

in both grades can be arbitrary in principle. The agents of grade G1 have a larger

authority (or power) than the ones of grade G2 to recover the sender’s secret state.

In comparison to this construction our construction can handle arbitrary number of

groups of participants. Again the scheme of [160] constructs a hierarchical scheme for

a specific number of parties. In [130] the authors use different classical bits strings as

secrets of different levels, while in our constructions(Algorithms 1,2),we need only a

single quantum secret |S〉 and different updates of this secret is shared among different

levels. Since classical operations are not used we need to use trap codes and random

permutations for the z operations. Also depending on the underlying threshold secret

sharing schemes being used we can share any level quantum secret in the hierarchical

scheme. So in every sense our scheme is a general hierarchical scheme. Finally another

notable advantage of our schemes lie in their flexibility. We have seen the main con-

struction can be very easily modified to construct quantum schemes for other access
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structures. We cover a lot of access structures and to our best knowledge, quantum

schemes for some of the access structures have not been constructed previously.



Chapter 7

Embedding Hard Functions in Secret

Sharing Schemes

7.1 Introduction

In this chapter we construct secret sharing schemes which are robust against an external

adversary who can observe and change a fraction of the share strings. The ideas and

techniques of this paper can be applied to the constructed schemes of chapters 3 and

4 and in a variant of secure broadcasting in the presence of external adversary with

a certain constraint, i.e., the adversary can only see and modify some fraction of the

communicated messages. The main technique utilized in this chapter is to embed

functions with known bounds on their randomized decision tree complexity in the share

strings.

In the context of quantum secret sharing we consider the resilience (defined below) of

our schemes in chapters 5 and 6 against an adversary/ eavesdropper who can query and

modify a bounded number of the states. This is done by embedding decoy states which

are outputs of functions with known lower bounds on their quantum query complexity.

Quantum query complexity is the optimal number of queries that a quantum algo-

rithm makes to compute a function. The use of quantum query complexity of Boolean

109



110 Embedding Hard Functions in Secret Sharing Schemes

functions in this context is new to our work.

7.1.1 Our Contribution

1. Achieving resilience of the constructed evolving scheme using functions with

bounded quantum query complexity. Utilizing quantum query complexity is ad-

vantageous in reducing share size against bounded leakage as compared to similar

existing ones.

2. To reduce share size as compared to that of [47], we propose a new technique to

embed a function with known randomized decision tree complexity in the string

generated by the method of [47]. We see that the scheme is robust against an ad-

versary who can see and modify a fraction of the share strings. All the operations

in our construction are AC0 implementable.

3. We apply the above technique to make a fine-grained analysis of secret sharing

schemes i.e., analysis of share sizes when the adversary is moderately powerful

(computationally bounded). As mentioned before we discuss the applicability of

our technique in the context of secure broadcasting.

We achieve security even if the function whose output we are embedding in the

share string is known to the adversary.
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7.2 Resilience from lower bounds on quantum query

algorithms

For a quantum secret |S〉, let |YS〉 denote a share. Consider an adversary who can make

d quantum queries to get a state |Y 1
d 〉 and/or can also modify d shares to transform

|Y 〉 to |Y 2
d 〉. The following two items are generally considered.

1. |Y 1
d 〉 is independent of the secret |S〉.

2. Pr[Rec(|Y i
d 〉 = |S〉)] ≥ 1− η for some η ∈ (0, 1), ∀i = {1, 2}.

Item 2 is generally called resilience/ robustness. To make resilient schemes one idea is

to share an encoding of the secret by a QECC instead of sharing the secret [113]. Since

we use CSS codes in our construction, it already gives our scheme certain resilient/

robustness capabilities. Our main focus is to achieve item 1 by utilizing lower bounds

on quantum query complexity of certain functions.

• Quantum Query Complexity. Given a Boolean function f : {0, 1}n → {0, 1},

suppose x = x1x2 . . . xn ∈ {0, 1}n is an input of f (xi denotes i-th bit). A quantum

query algorithm for f computes f(x), given queries to the bits of x. Quantum queries

are made to an oracle which is defined as Ox |i, b〉 = |i, b⊕ xi〉. A T -query quantum

algorithms is a sequence of unitaries UTOxUT−1Ox...OxU0 where Ui’s are fixed unitaries

and Ox depends on x. The algorithm can be described as starting from a fixed state

|φ0〉, it performs a sequence of unitaries as mentioned previously to obtain the final

state |φx〉 = UTOxUT−1Ox...OxU0 |φ0〉. The state |φx〉 is measured with a 0− 1 positive

operator-valued measurement and the measurement result is regarded as the output of
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the algorithm. Let m(x) denotes the measurement result of |φx〉. If ∀x,

Pr[m(x) = f(x)] ≥ 1− ε,

where ε < 1
2
, then the quantum query algorithm is said to compute f(x) with bounded

error ε. If the error ε = 0, then f(x) is computed exactly. The quantum query complexity

of a function f is the number of queries that an optimal quantum algorithm should make

in the worst case to compute f . It is denoted by Qε(f) and in the exact setting it is

denoted by QE(f). For more on quantum query complexity we refer the reader to

[5, 4, 6, 45, 105, 134].

• Achieving Resilience. To make a scheme resilient against quantum queries, we

perform the following operations to the shares
∣∣r(n1,...,ng)

〉
. In short we denote the state

as |r〉. For the following algorithms recall the Algorithm 1 of chapter 5.

• Algorithm 3 : Embed a function

1. On the state |r〉 obtained in Step 3 of Procedure: RandomShareGen, apply a

function with a known lower bound on the quantum query complexity to get the

state |r〉 |f(r)〉.

2. Embed |f(r)〉 as decoy states in random positions in |r〉 to get the state |rf〉.

3. On |rf〉 the random permutation σ1 and proceed as in Procedure:RandomShareGen.

4. STOP.

To remove the embedded function outputs/decoy states we do the following algo-

rithm
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• Algorithm 4 : Remove decoy states

1. Apply inverse permutation σ−1
1 to get |rf〉.

2. Locate and collect decoy states in |rf〉 to get the state |r〉 |fr〉.

3. STOP.

• Correctness of algorithms 3 and 4. The idea is to take the state |r〉, apply

a Boolean function to it and embed the output as decoy states at random positions

inside |r〉. To see that the above technique works in this case, we first ensure that the

number of queries the adversary makes is less than the lower bound on the quantum

query complexity of the embedded function being used. In a recent work of Bun et

al. [34], the authors showed that for “k-distinctness function” lower bound on the

quantum query complexity is Ω(n3/4−1/(2k)). We embed the k-distinctness function as

f and stipulate that the eavesdropper makes at most dnt(< Ω(n
3/4−1/(2k)
t )) queries at

time t. By the definition of quantum query complexity, the adversary cannot compute

and locate the functional valued decoy states. Note that after the decoy states are

embedded, the state is appended with the secret state and a random permutation is

applied followed by a quantum one-time pad. Since the state |r〉 needs to be separated

from the secret state of one generation to recover the secret of the previous generation,

without correctly computing the decoy states this is not possible. Hence the adversary/

eavesdropper learns no information about the secret. • The embedded function can be

made public and even then the adversary cannot learn any information about the secret,

• only a constant number of decoy states is enough to give us security which reduce

the overall dimensions of the shares and makes security easier to achieve, • this method

also helps to reduce the amount of quantum memory to a considerable extent (due to



114 Embedding Hard Functions in Secret Sharing Schemes

the constant number of decoy states used).

7.3 Preliminaries

We shall assume basic definitions on secret sharing and related concepts. The tools

needed for our constructions are, secret sharing, AC0 circuits/complexity class[9], [139],

near optimal error-correcting codes [49], statistical distance, k-wise independent gen-

erators [23], randomized decision tree complexity [9] and some properties of Boolean

functions [33]. We mainly adopt the notations and definitions of [23], [47].

7.3.1 Randomized decision tree complexity

Our main contribution is based on the randomized decision tree complexity of a Boolean

function. We briefly describe it here.

A randomized decision tree A on n variables is a distribution over all deterministic

decision tree algorithms on n variables. Given an input x, the algorithm first samples

a deterministic tree B ∈R A uniformly random, and then evaluates B(x). The cost

of a randomized algorithm A on input x, denoted in also by C(A, x), is the expected

number of input bits queried by A on x. Let P δ
f be the set of randomized decision tree

algorithms computing f with error at most δ. The two-sided bounded error randomized

complexity of f with error δ ∈ [0, 1/2) is

Rδ(f) = minA∈P δfmaxx∈{0,1}
nC(A, x).

We write R(f) for R0(f). A function for which bound on the randomized complexity

is known is the recursive majority function, 3MAJh.
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Let MAJ(x) be the Boolean majority function. The recursive majority function

3MAJh is defined recursively on n = 3h variables, for every h ≥ 0. For h ≥ 0, let x be

an input of length n and let x(1), x(2), x(3) be the first, second, and third n
3

variables of

x. Then

3MAJh(x) = MAJ(3MAJh−1(x(1)), 3MAJh−1(x(2)), 3MAJh−1(x(3)))

In other words, 3MAJh is defined by the read-once formula on the complete ternary tree

Th of height h in which every internal node is a majority gate. We identify the leaves

of Th from left to right with the integers 1, . . . , 3h. We have a well known result from

[112],

Theorem 7.3.1. (Magniez et al. [112]) For all δ ∈ [0, 1
2
], we have (1

2
− δ) · 2.57143h ≤

Rδ(3MAJh) ≤ (1.007) · 2.64944h.

7.4 Main results and technical details

7.4.1 Connecting Secret sharing & Randomized decision tree

complexity

The Randomized decision tree complexity of a Boolean function measures the ex-

pected number of queries a randomized decision tree makes on an input to decide the

output of the function. So if an adversary sees less bits than the randomized complexity

of a function then with high probability it cannot determine the output of the function.

With this idea we do the following steps :
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• Do steps 1 to 7 of Algorithm 4. For each of the blocks, compute the 3MAJh of

each of the bits of the block.

• Embed the function outputs of each block in random locations of the respective

blocks.

As for Algorithm 4, if the adversary observes a specified fraction of the string,

then on an average it observes the same specified fraction of the blocks. By ensuring

the fraction to be less than a specified bound, we can ensure that in some blocks the

adversary sees less the number of expected bits (the randomized decision tree complexity

of the function) required to compute/decide the output of the embedded function.

Hence it cannot decide which bit is the output bit. Since the function bits go into the

ShareGenC computation, it forms a part of the share. By our construction, the secret

can be recovered only when the function outputs are deleted. We can thereby conclude

that since the adversary cannot differentiate the share bits from the function output

bits, it cannot learn any information about the secret even if the embedded function is

known to the adversary.

3MAJh can be computed by AC0 circuits. Using this function removes the necessity

to compute the random permutations which in turn reduces the size of the share string

as we no longer have to store all the indices multiple times. Just storing the random

locations of the function output is enough for our purpose. If the adversary modifies

some of the shares, we can use asymptotically good error correcting codes to ensure

robustness.



Main results and technical details 117

7.4.2 Notation

We recall the notations of chapter 3. For any n, k,m ∈ N with k,m ≤ n, alphabets

Σ0,Σ, let (ShareGen,Reconst) be an (n, k) secret sharing scheme with share alphabet

Σ0, message alphabet Σ, message length m. In our case we use Boolean alphabets. Let

(ShareGenC ,ReconstC) be an (nC , kC) secret sharing scheme from Lemma 3.13 of [47]

with alphabet Σ, message length mC , where mC = δ0nC , kC = δ1nC and nC = O(log n)

for some constants δ0 and δ1. For any constant a ≥ 1, γ ∈ (0, 1], the paper by Cheng

et al. [47] constructs the following (n1 = O(na), k1 = Ω(n1)) secret sharing scheme

(ShareGen1,Reconst1) with share alphabet Σ× [n1], message alphabet Σ, message length

m1 = Ω(n1). For clarity we include this as Algorithm 4 as described in [47].

7.4.3 Algorithms, Proofs and Parameters

We shall suitably modify Algorithm 4 to embed “hard” outputs. For brevity we denote

share by share. The reconstruction algorithm after embedding 3MAJh is formalized in

Algorithm 6. The correctness of our constructions is mentioned among theorems 7.4.2,

7.4.3 and 7.4.4.

Theorem 7.4.1. The algorithms 5 and 6 can be implemented by AC0 circuits.

Proof. 3MAJh can be computed by AC0 circuits. Also embedding a bit at a random

position in a string can also be implemented by AC0 circuits. All the remaining oper-

ations such as random permutation, approx. majority, concatenation, partition etc. are

AC0-implementable. The error-correcting codes used in the constructions are also in

AC0. Hence the sharing the secret and the reconstruction in algorithms 4,5 and 6 can
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Algorithm 4 Basic Construction of [47]

1: procedure Share Generation (ShareGen1)
2: ShareGen1 : Σm1 → (Σ× [n1])n1 .
3: n̄ = Θ(na−1) with large enough constant factor.

4: gτ : Σmn̄
0 → Σm1 is the l-wise independent generator where l = Ω(mn̄log|Σ0|

log|Σ| )1−γ.

5: For secret x ∈ Σm1 , draw a string r = (r1, ..., rn̄) uniformly from Σmn̄
0 .

6: y = (ys, yg), where ys = (Share(r1), ..., Share(rn)) ∈ (Σn)n̄ and yg = gτ (r)⊕x ∈
Σm1 .

7: Get ŷs ∈ (ΣmC )ns from ys by parsing ys,i to be blocks each having length mC for
every i ∈ [n̄], where ns = d n

mC
en̄.

8: Get ŷg ∈ (ΣmC )ng from yg by parsing yg to be blocks each having length mC ,
where ng = dm1

mC
e.

9: Compute (ShareC(ŷs,1), .., ShareC(ŷs,ns), ShareC(ŷg,1), .., ShareC(ŷg,ng)) and
parse it to be y1 = (y11, ..., y1n1), where n1 = (ns + ng)nC .

10: (Generate a random permutation) π : [n1]→ [n1] apply it on y1 and this is the
output.

Algorithm 5 Embedding 3MAJh

1: procedure Embedding 3MAJh
2: Do steps 1− 7 of Algorithm 4.
3: Find the greatest integers hi & hjsuch that 3hi ≤ |ŷs,i| & 3hj ≤ |ŷs,j| for all i, j.
4: Truncate the strings ŷs,i and ŷs,j to lengths 3hi and 3hj respectively.
5: On the truncated strings compute 3MAJhi(ŷs,i) and 3MAJhj(ŷg,j) for

all i and j by recursively computing 3MAJh(x) = MAJ (3MAJh−1(x(1)),
3MAJh−1(x(2)), 3MAJh−1(x(3))) and storing the intermediate results.

6: Embed the computed 3MAJh’s to any random position inside each block of the
string obtained after step 2.

7: On the string obtained in step 6 compute:
(ShareGenC(ŷs,1), . . . . . . , ShareGenC(ŷs,ns), ShareGenC(ŷg,1), . . . , ShareGenC(ŷg,ng))
and parse it to be y1 = (y11, . . . , y1n1), where n1 = (ns + ng)nC .

8: y1 is the output.
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Algorithm 6 Reconstruction

1: procedure Reconstruction
2: Compute ReconstC .
3: Retrieve all the functional values from y1.
4: Delete all the functional values from y1. Denote the resulting string also by y1.
5: Get ys and yg.
6: Apply Reconst on every entry of ys to get r.
7: Output gτ (r)⊕ yg.

be implemented by AC0 circuits.

Theorem 7.4.2 (Robustness by embedding 3MAJh). An adversary which sees a frac-

tion (≤ 2.57h/2.3h) of the share string cannot compute the 3MAJh bits in the string.

Proof. From Theorem 7.3.1, R(3MAJh) ≥ 2.57h

2
. Theorem 7.3.1 implies that the

fraction of the string that the adversary has to observe in order to correctly compute

is greater than 2.57h/2.3h. Let us denote this fraction by f and suppose that the

fraction of the string the adversary sees is less than f . This means that on an average

the number queries that the adversary makes in each block is less than f which is

the expected number of bits needed to be queried to compute the 3MAJh function.

Since the function output bits are embedded in random positions inside the block, the

adversary cannot compute the function bits. Hence it cannot differentiate between the

function output bits and the other bits. Since the function bits go into the ShareC

computation, without identifying and deleting the function bits, the adversary cannot

learn any information about the secret. This makes the construction robust against

an adversary observing a fraction of the string. If the adversary modifies a fraction of

the shares then we can encode the outer block via asymptotically good error-correcting

codes and the secret can be reconstructed by the properties of the error-correcting codes

being used.
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Theorem 7.4.3. Algorithms 4, 5 and 6 generate an n-out-of-n-secret sharing scheme

i.e., n parties have to participate to recover the secret. The privacy threshold of the

secret sharing scheme thus obtained is Ω(n).

Proof. The changes that we make to algorithm 1 are done by embedding outputs of

certain functions in the blocks. The function inputs are the elements of the blocks itself.

Hence our modifications do not change the privacy threshold of the scheme constructed

by algorithm 1. Hence we construct an n-out-of-n secret sharing scheme with privacy

threshold Ω(n). However, the share size in our case is considerably lesser.

Theorem 7.4.4. The share size obtained by embedding the functions is less than that

obtained by using random permutations.

Proof. To keep constructions in AC0 in Algorithm 4 and to reconstruct the secret, one

needs approx. majority to recover indices from repeated bits. Approximate majority is

required since we need to store the indices multiple times due to the random permu-

tation. In our construction we do not use random permutation which in turn removes

the requirement to store multiple indices and compute approx. majority. Hence share

size is reduced to a considerable extent in our constructions.

7.4.4 Applications

A fine-grained analysis

The above technique can be utilized to do a fine-grained analysis of share sizes when the

adversary is computationally bounded. If we embed Parity in the share string, we can

achieve robustness against an AC0-powerful adversary since Parity cannot be computed
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by AC0 circuits. On the other hand if we embed MAJ (majority cannot be computed

by AC0[p]), we can attain robustness against AC0[p] adversary. But while Parity can be

computed in small blocks (since XOR is associative), MAJ cannot be computed in small

blocks. Hence we need more storage or embedding bits in the share string to compute

MAJ. This implies an increase in the share size in the case of an AC0[p] adversary as

compared to an AC0 adversary. It is known that AC0 ( AC0[p] as complexity classes.

This increase in the share size gives us a fine-grained analysis. We can similarly observe

increase in the share size while going higher up in the complexity ladder. For more on

complexity classes, we refer the reader to [9].

Secure broadcasting

In this model n parties have local inputs and they share a secret key. Then they

communicate over a public broadcast channel and finally each party computes a local

output, An external adversary upon seeing a fraction of the message cannot learn any

information about the secret. Also for any input, if the adversary corrupts a fraction

of the messages, the parties can reconstruct the secret with high probability. Assuming

that each party has access to local random bits, one can use secret sharing to the input

and broadcast the shares. Now if the adversary is allowed to see and corrupt more than

1/n of the messages, then the adversary may choose to observe the share of only one

party and the learn the input of that party. One way is to use random permutation

on the inputs so that the adversary does not know which message is from which party.

But as we have observed before that random permutation increases share size. In our

construction we have embedded outputs of functions with high randomized decision

tree complexity (high lower bound) in the inputs. Assuming an upper bound on the
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fraction of the string that the adversary can observe and modify, we can ensure by

embedding function outputs constant times in random positions in each share, that

the adversary sees less number of bits that is required to identify the function output.

Hence as compared to the random permutation construction of [47], our construction

reduces share size and hence the communication complexity.



Chapter 8

Generalized Matroid Ports and Non-

Perfect Secret Sharing

8.1 Introduction

Results In this chapter we make the following contributions :

1. A forbidden minor characterization for generalized matroid ports.

2. Applications of generalized ports.

3. A connection between multipartite quasi-matroids, multipartite generalized ports

and the associated integer polymatroid.

8.2 Preliminary Definitions and Results

In this chapter we shall use the definitions and notations as in [66] and [69].

• A polymatroid is a pair S = (Q, f) formed by a finite ground set Q and a rank function

f : P (Q)→ R satisfying the following properties.

• f(φ) = 0.

123
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• f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).

• f is submodular: f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X, Y ⊆ Q.

• A polymatroid is called integer if its rank function is integer-valued.

• A matroid M = (Q, r) is an integer polymatroid such that r({x}) ∈ {0, 1} for every

x ∈ Q.

• Notation : For subsets X, Y of Q, f(X|Y ) := f(X ∪ Y )− f(Y ).

• For a polymatroid S = (Q, f) and a set Z ⊆ Q, the polymatroids S\Z = (Q−Z, f\Z)

and S/Z = (Q − Z, f/Z) are defined, respectively, by f\Z(X) = f(X) and f/Z(X) =

f(X|Z). These are respectively known as deletion and contraction.

• Every polymatroid that can be obtained from S by repeatedly applying these op-

erations is called a minor of S. Every minor of S is of the form (S\Z1)/Z2 for some

disjoint sets Z1, Z2 ⊆ Q.

• The minors of a matroid are also matroids. The dual of a matroid M = (Q, r) is the

matroid M∗ = (Q, r∗) with r∗(X) = |X| − r(Q) + r(Q−X) for every X ⊆ Q. We have

M∗∗ = M . In addition, (M\Z)∗ = M∗/Z and (M/Z)∗ = M∗\Z for every Z ⊆ Q.

Let P be a finite set of participants, p0 /∈ P a special participant called the dealer,

and Q = P ∪ {p0}.

Definition 12. Matroid ports : Let S = (Q, f) be a polymatroid with f(p0) > 0 and

f({p0}|P ) = 0. The access structure Γp0(S) = (A,B) on P is defined by

• A = {A ⊆ P : f({p0}|A) = f({p0})},

• B = {B ⊆ P : f({p0}|B) = 0}.
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This is an access structure. If M is a matroid, then the access structure Γp0(M) is

perfect and it is called the port of the matroid M at the point p0.

Definition 13. Quasi-matroid[69]: A quasi-matroid is an integer polymatroid S =

(Q, f) such that there exists p0 ∈ Q with f({x}) = 1 for every x ∈ Q− {p0}.

Definition 14. A matroidM = (P ∪P0, r) is said to be P0 uniform [69] if r(P0) = |P0|

and r(X) = min{r(X ∪ P0), r(X − P0) + |X ∩ P0|}.

Now we are in a position to define generalized matroid ports.

Definition 15. Generalized matroid ports:[69] Let P and P0 be disjoint finite sets and

M = (P ∪ P0, r) be a matroid such that r(P0) = |P0| and r(P0|P ) = 0. Then the

generalized port of the matroid M at the set P0 is the access structure ΓP0(M) = (A,B)

defined by

• A = {A ⊆ P : r(P0|A) = r(P0)},

• B = {B ⊆ P : r(P0|B) = 0}.

Here we mention some properties of generalized matroid ports which will be required

later[66].

• The dual of a generalized matroid port is a generalized matroid port.

• If Γ = (A,B) is a connected generalized matroid port, then there exists a unique

quasi-matroid S such that Γ = Γp0(S).

Seymour gave a forbidden minor characterization of matroid ports [138]. In that

paper he used an alternate definition of matroid ports in terms of circuits given by

Lehman [107] and blockers and clutters which we discuss briefly.
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Definition 16. Matroid port:[138] If Ω is an element of a connected matroid M , then

the collection {C−{Ω} : Ω ∈ C ∈ C} where C is the collection of circuits of M is called

a matroid port.

A matroid is said to be connected if for every two distinct points there exists a

circuit containing those two ports. Clearly, all ports of a connected matroid are con-

nected. A connected matroid is determined by the circuits that contain some given

point. Therefore, if Γ is a connected matroid port, there exists a unique connected

matroid M with Γ = Γp0(M).

Definition 17. Clutter:[138] A clutter L is a collection of sets such that for A1, A2 ∈

L,A1 6⊂ A2.

Definition 18. Blocker:[138] The blocker of a clutter L, denoted by b(L) is the col-

lection of the minimal sets which have non-empty intersection with each member of

L.

Here we note that :-

• b(L) is a clutter.

• b(b(L)) = L.

Matroids can be described in terms of clutters and blockers as follows : Let V be

the set of vertices of L. For any set Z, L\Z is defined as {A ∈ L : A∩Z = Φ}, and L/Z

is the collection of minimal members of {A−Z : A ∈ L}. Then similar to the previous

definition it can be verified that b(L\Z) = b(L)/Z, and b(L/Z) = b(L)\Z. If Z1 and

Z2 are disjoint sets, then (L\Zl)/Z2 = (L/Z2)\Z1. A minor of L is a clutter which



Preliminary Definitions and Results 127

may be obtained from L by repeated use of the \, / operations. Any minor L′ of L is

expressible in the form (L\Z1)/Z2, where Z1, Z2 are disjoint and Z1 ∪ Z2 ∪ (V ′) = V .

The two definitions of matroid ports seen so far are equivalent due to the following

fact relating rank and circuits of a matroid :-

Lemma 8.2.1. Suppose M = (Q, r) is a matroid with rank function r, then a subset

X ⊆ Q is a circuit iff X is non-empty and for all x ∈ X, r(X − x) = |X| − 1 = r(X).

8.2.1 Minimal non-ports

Here we state the forbidden minor characterization of matroid ports due to Seymour

[138].

• Minor-minimal non-ports are P4, Q4, b(Q4) and Js, s ≥ 3. where

• P4 = {{1, 2}, {2, 3}, {3, 4}},

• Q4 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}},

• b(Q4) = {{1, 2}, {1, 3}, {2, 3, 4}} and

• Js = {{1, ..., s}} ∪ {{0, i} : i = 1, ..., s}(s ≥ 3).

Definition 19. If L is a clutter and A1, A2 ∈ L are distinct, L(A1, A2) is defined as

∩{A ∈ L : A ⊆ A1 ∪ A2}.

The following theorem was proved in [138],

Theorem 8.2.2. If L is a clutter, the following are equivalent:
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1. L is a port.

2. For A1, A2, A3 ∈ L and x ∈ A1 ∪ A3 − A2, there exists A ∈ L with A ⊆ (A3 ∪

(A1 ∪ A2 − L(A1, A2)))− {x}.

3. There do not exist A1, A2 ∈ L and B1, B2 ∈ b(L) and distinct x, y ∈ UL such that

A1 ∩B2 = A2 ∩B1 = A2 ∩B2 = {y} and A1 ∩B1 = {x, y}.

4. L has no minor P4, Q4, b(Q4) or Js, (s ≥ 3).

8.3 Results

ΓP0(M) is a clutter and clutters of this form are called generalized matroid ports. From a

previous observation that given a generalized matroid port there exists a quasi-matroid

whose port(corresponding to the element of rank different from 1) is equal to the given

generalized matroid port, we can conclude that the class of generalized ports is closed

under minors. We shall define a k-port where |P0| = k. It should be noted that when

considering minors of ports a k-port can contain a k − 1-port or k − 2-port and so on

as minors but not vice-versa. Hence in this way it makes sense to consider the problem

of finding minors which are not generalized matroid ports.

8.3.1 Generalized non-ports

• Note : For our results we shall only consider graphic matroids.

From the above discussion we can now classify the generalized non-ports as follows

: Since matroid ports are also generalized matroid ports where the set P0 has only one
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element the generalized non-ports are constructed by building up from P4, Q4, b(Q4)

and Js(s ≥ 3). We have noted before that a quasi-matroid is an integer polymatroid

where all but one element has rank one. The remaining element can be thought of as

an element with more weight. This motivates that when constructing generalized non-

ports, a set of elements are to be deleted. When the special element in the corresponding

quasi-matroid has rank one, it is a matroid and hence the non-ports are also generalized

non-ports.

Definition 20. A generalized k-port or a k-port is a generalized matroid port with

|P0| = k.

First we shall characterize 2-non ports and 3-non ports.

8.3.2 2-non ports

Theorem 8.3.1. The minimal 2-non ports are the following:-

1. The clutters which have

• {{1, 2}, {2, 3}, {3, 4}},

• {{1, 2}, {1, 3}, {1, 4}, {2, 3}},

• {{1, 2}, {1, 3}, {2, 3, 4}},

as minors with number of elements in the ground set 5,

2. The clutters which have {{1, ..., s}} ∪ {{0, i} : i = 1, ..., s}(s ≥ 3) as minor with

s+ 3 elements in the ground set.
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3. or a union of two non-ports as minors with the number of elements in the ground

set 6.

Proof. Suppose P0 is a set with two points. Since r(P0) = |P0|, P0 is an independent

set. Let C be a circuit containing P0. After deleting two elements from C, there can

be either of the two cases :

1. It can be a matroid port or can have a matroid port as a minor in which case

the number of elements in the ground set must be at least 5. (For example, in a

graphic matroid, deleting two adjacent edges from a cycle has the same effect as

deleting one edge from the cycle.) In this case the 2-non ports are same as the

non-ports.

2. It can have the union of two matroid ports as minor.(For example, in a graphic

matroid deleting two non-adjacent edges gives rise to two paths.) Hence the 2-non

ports are the disjoint union of two non-ports. After deleting two points from a

collection of circuits containing them, for a 2-non-port we must have either the

non-ports or a disjoint union of at least two non-ports as minors. The number of

elements in the matroid must be greater than or equal to 6.

8.3.3 3-non ports

Theorem 8.3.2. The minimal 3-non ports are :-

1. non-ports,
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2. non-ports as minors with number of elements in the ground set 5.

3. union of two non-ports with the number of elements in ground set 6,

4. union of three non-ports with the number of elements in ground set 7.

Proof. As in the case of 2-non-ports, when we delete three elements from a circuit C,

there are three cases :

1. It can have a matroid port as a minor. (For example, in a graphic matroid,

deleting three adjacent edges from a cycle has the same effect as deleting one

edge from the cycle.) In this case the 3-non ports are same as the non-ports.

2. It can have a 2-port as a minor.(For example in a graphic matroid the three edges

to be deleted can have two adjacent edges and a non-adjacent third edge) This

case is equivalent to the case of 2-non ports.

3. It can have the union of at least three matroid ports as minor. (As before, in a

graphic matroid the three edges to be deleted from a cycle can be non-adjacent).

Here the 3-non ports are the union of atleast three non-ports.

Again, deleting three elements from a collection of circuits containing them gives

rise to either of the above as minors. Also the number of elements in the matroid

must be greater than or equal to 7.

8.3.4 k-non ports

k-non ports(k ≥ 3) are characterized as follows :-
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Theorem 8.3.3. The minimal k-non ports are the non-ports,

1. non-ports as minors with number of elements in the ground set k + 1 and

2. for every i, 2 ≤ i ≤ k, the union of i non-ports with number of elements in the

ground set k + i.

Proof. Here we delete k elements from a circuit. Now a set of k elements can be

partitioned in p(k) ways, where p(k) is the partition number. (In the language of

graphs each partition corresponds to the adjacent edges in a circuit.) So we have p(k)

cases. Among the p(k) cases we have three notable ones.

1. The number of partitions is one. This case is equivalent to deleting one element

from a circuit. Hence here the minimal k-non ports are the minimal non-ports.

2. The number of partitions is k. (In a graphic matroid we delete k edges where

all are non-adjacent.) In this case there are k unions of matroid ports as minors.

Hence the minimal k-non ports are the disjoint union of k many non-ports.

3. Let the number of partitions be t with 1 < t < k. (In the cycle of a graphic

matroid, consider the edges in a partition to be adjacent and edges in different

partitions to be non-adjacent.) This case reduces to the case of t-non ports and

hence the minimal k-non ports are the t disjoint unions of non-ports. The number

of elements follow immediately.
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8.3.5 Applications

Here we point out some potential applications of the forbidden minor characterization.

Such a forbidden minor characterization can help in determining if an access structure

is a generalized port. For example in [69] , the following access structure was shown not

to be a generalized port. Our characterization gives an alternate proof. Further such

a characterization can prove to be uselful to find out optimal complexities of various

non-perfect secret sharing schemes.

The forbidden minor characterization of matroid ports was applied in using a method

called the independent sequence method [114] where characterizations of matroid ports

were obtained in terms of independent sequences and a complexity parameter of secret

sharing schemes. Using the forbidden minor characterization for generalized ports we

can hope to get similar results for generalized ports which is a future line of work.

8.4 Generalizing Ideal Multipartite Access Struc-

tures To The Non-Perfect Case

In this section we briefly consider multipartite access structures. In multipartite secret

sharing participants are distributed into separate classes as in hierarchical schemes. So

it makes sense to consider the non-perfect version of such schemes. We shall use the

connection between non-perfect schemes, generalized matroid ports and quasi-matroids.

Ideal multipartite access structures were considered in [66].
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8.4.1 Multipartite Access Structures and Multipartite Ma-

troids

• The m − partition Π = (X1, ..., Xm) of a set X is a partition of the set X into m

disjoint subsets, X = X1 ∪ ... ∪Xm.

• A permutation σ on X is a Π−permutation if the subsets Xi remain invariant under

σ, i.e., σ(Xi) = Xi for all i = 1, ...,m.

• A combinatorial object on X is m−partite if it is Π−partite for some m−partition

Π.

• A family Λ ⊆ P(X) of subsets of X is Π − partite if it remains invariant under the

action of σ, i.e., σ(Λ) = {σ(A) : A ⊆ Λ} = Λ for every Π-permutation σ on X.

8.4.2 Quasi-matroids and generalized ports

Given a matroid M = (P ∪ P0, r) such that r(P0) = |P0|, consider the polymatroid

M |P0 with ground set Q = P ∪ {p0} and rank function f defined by f(X) = r(X) and

f(X ∪ p0) = r(X ∪ P0) for every X ⊆ P . We observe that M |P0 is a quasi-matroid.

In addition, (M |P0)\{p0} = M\P0 and (M |P0)/p0 = M/P0. We shall make use of the

following observation in [66] : Let S = (Q, f) be a quasi-matroid. Then there exists

a unique P0-uniform matroid M = M(S) = (P ∪ P0, r) such that M(S)|P0 = S. Our

approach is to make use of this fact : given a multipartite quasi-matroid, we go to the

corresponding multipartite P0 uniform matroid and from there we go to the assiciated

integer polymatroid.
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Multipartite Quasi-matroids and multipartite gener-

alized ports

The following theorem is clear.

Theorem 8.4.1. Let M be a quasi-matroid with ground set Q. Consider a point p0 ∈ Q

and partitions Π = (P1, ..., Pm) and Π0 = ({p0}, P1, ..., Pm) of the sets P = Q − {p0}

and Q, respectively. Then the generalized matroid port Γp0(M) is Π-partite if and only

if the quasi-matroid M is Π0-partite.

For definitions in this sections, we refer the reader to [66]. Let Jm = {1, 2, ...,m}.

Now we make a connection between multipartite quasi-matroids and integer poly-

matroids.

Theorem 8.4.2. Let Π = (Q1, ..., Qm) be an m-partition of a set Q which is the ground

set of a Π-partite quasi-matroid M = (Q, h). As in the case of multipartite matroids

we have a corresponding integer polymatroid Jm.

Proof. We know that : Let Π = (Q1, ..., Qm) be an m-partition of the set Q. Then

the corresponding partition of the set P ∪ P0 is as follows : Replace the element p0 in

any Qi by the set P0. The remaining correspondence follows from the correspondence

between multipartite matroids and integer polymatroids.

We can also prove that an m-partite quasi-matroid is determined by the rank of the

special element(the one with rank greater than 1), its associated integer polymatroid
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and the m-partition of the ground set. From the above discussion, given a (multipartite)

quasi-matroid, we get a unique (multipartite) P0-uniform matroid and finally using

the correspondence between multipartite matroids and integer polymatroids we get a

correspondence between a multipartite quasi-matroid and an integer polymatroid.

Finally we have the following theorem generalizing to generalized martroid ports:

Theorem 8.4.3. Let Π = (P1, ..., Pm) be a partition of a set P and let Γ be a connected

Π-partite access structure on P . Consider ∆ = supp(Γ). Then Γ is a generalized

matroid port if and only if there exists an integer polymatroid Z = (Jm, h) with h({i}) ≤

|Pi| for every i ∈ Jm such that ∆ is compatible with Z and minΠ(Γ) = min{u ∈

B(Z,X) : X ∈ ∆}.

Proof. What we get here is a P0-uniform matroid. From this matroid we can get the

corresponding quasi-matroid. The proof is same as in the case of multipartite matroid

ports and is omitted.

Multipartite access structures such as multilevel access structures, compartmented

access structures have been expressed in terms of matroid and have been proved to be

ideal. Our connection helps in expressing the non-perfect version of such schemes in

the language of matroids and polymatroids. The actual constructions of non-perfect

multipartite schemes is our future line of work.



Chapter 9

A short note on intervals in Hales-

Jewett Theorem

One of the main results in conbinatorics and Ramsey theory is the Hales-Jewett The-

orem. For m,n ∈ N, let [m]n denote the set of all n-letter words with alphabets from

[m] = {1, 2, . . . ,m}. For a word w ∈ [m]n, S ⊆ [n] and i ∈ [m], w(S, i) is obtained

from w by replacing the jth letter with i for all j ∈ S. A combinatorial line in [m]n is

defined as the set of words {w(S, 1), w(S, 2), . . . , w(S,m)} with the wildcard set S 6= φ.

The Hales-Jewett Theorem [86] says that for m, r ∈ N, there exists n ∈ N such that any

r-colouring of [m]n contains a monochromatic combinatorial line. In [53] the authors

asked the following question:

• Do there exist m ≥ 4, r ≥ 2 and c > 1, m, r, c ∈ N such that there are r-colourings of

[m]n containing no monochromatic combinatorial line whose wildcard set is the union

of at most cr intervals ?

We answer this question in the positive :

Theorem 9.0.1. There is a 5-colouring of [4]n containing no combinatorial line whose

wildcard set is the union of at most 25 intervals (c = 5, r = 5). If gcd((m − 1)(m −

2), cr) = 1, then the conjecture holds.

We shall follow the ideas and notations of [53].
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Let t = (t1, t2, t3, t4) ∈ (Z/crZ)4. Let w be a word in [4]n. For the word w, let

T ′(w) = Σj∈[n]tw(j).

Contract the intervals on which w is a constant to a single letter to get w̄. Let w+ be

obtained by ading the letter 1 to the start and end of w. For the colouring T+(w) =

T (w+).

Now w(S, i) is obtained by replacing the j-th letter in w with i for all j ∈ S.

• Claim : For t1 = t3 = t4 = 3, t2 = −1, the colouring T+ : [4]n −→ Z/crZ does not

contain any combinatorial line which is monochromatic and whose wildcard set is the

union of less than cr intervals.

We shall adopt some more notations from [53]. For a combinatorial line (w(S, 1), ..., w(S, 4))

with wildcard set S, let xi = w(S, i). Let S be a disjoint union of q consecutive inter-

vals. Let w = x1. Other than the wildcard set S, the word w+ consists of a collection

of non-empty subwords w0, w1, . . . , wq, where wj−1 comes before wj for all j = 1, . . . , q.

Let the starting letter of wj be fj and the end letter be lj+1. The authors in [53] show

the following :

Theorem 9.0.2. For any t1, t2, t3 ∈ Zr and i ∈ [3],

T+(xi) = T (x+
i ) = T (w0) + hi(l1, f1) + T (w1) + hi(l2, f2) + . . .+ hi(lq, fq) + T (wq).

In our case extending theorem 9.0.2, we have the following

Theorem 9.0.3. For any t1, t2, t3, t4 ∈ Zcr and i ∈ [4],

T+(xi) = T (x+
i ) = T (w0) + hi(l1, f1) + T (w1) + hi(l2, f2) + . . .+ hi(lq, fq) + T (wq).
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Proof. Extending the proof of [53] we have the following table which summarizes the

values of hi(f, l) as follows :

(l, f) (1, 1) (2, 2) (3, 3) (4, 4) (2, 3) (3, 1) (1, 2) (1, 4) (2, 4) (3, 4)

h1(l, f) −t1 t1 t1 t1 t1 0 0 0 t1 t1

h2(l, f) t2 −t2 t2 t2 0 t2 0 t2 0 t2

h3(l, f) t3 t3 −t3 t3 0 0 t3 t3 t3 0

h4(l, f) t4 t4 t4 −t4 t4 t4 t4 0 0 0

Since the proof is in the same line as in [53] we omit the proof.

Suppose that for t1 = t3 = t4 = 3, t2 = −1, there is a combinatorial line (w(S, 1), ..., w(S, 4))

with wildcard set S, with T+(x1) = T+(x2) = T+(x3) = T+(x4) where xi = w(S, i).

The for i = 1, 3, 4, we have,

0 = T+(xi)− T+(x2) = Σq
j=1(hi(lj, fj)− h2(lj, fj))

Adding these equations we get,

0 = T+(x1)+T+(x3)+T+(x4)−3T+(x2) = Σq
j=1(h1(lj, fj)+h3(lj, fj)+h4(lj, fj)−3h2(lj, fj))

It can be verified that for the chosen t1, t2, t3, t4, for each l, f , we have h1(l, f) +

h3(l, f) + h4(l, f)− 3h2(l, f) = 6. Hence

0 = T+(x1) + T+(x3) + T+(x4)− 3T+(x2) = 6q
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.

This means that 6q = 0 in Z/crZ. Now set c = 5 and r = 5. Since gcd(6, 25) = 1,

we must have q ≥ cr = 25.

So for c = 5, r = 5, m = 4, there is a 5-colouring of [4]n containing no monochromatic

combinatorial line whose wildcard set is the union of at most cr = 25 intervals and the

required question is answered in the positive.
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Conclusion

In this chapter we make some concluding remarks about this thesis and discuss some

works which are possible extensions of the chapters in this thesis and are currently under

preparation as this thesis goes to print. The main focus of this thesis is construction

of different variants of secret sharing schemes. We have considered AC0 implementable

dynamic, evolving and perpetual secret sharing schemes. Next we have considered

quantum versions of evolving schemes and various multipartite schemes. Finally we

have made a note on forbidden minors of generalized matroid ports and discussed

possible applications and connections to multipartite structures. The thesis ends with

a short note on a question relating to the Hales-Jewett Theorem.

10.1 Chapter 3

In chapter 3 work we proposed two AC0 implementable secret sharing schemes which

can accommodate new parties into the system. First construction is a dynamic scheme

where the dealer shares the secret and goes offline after distributing the shares to the

parties. Later the parties present in the system redistributes their shares to generate

shares of new parties without reconstructing the secret. Second construction is an

evolving scheme where the dealer is present throughout and generates shares for the

incoming parties with the constraint that the old shares cannot be modified.
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There can be scenarios where during the process the secret gets perturbed within a

certain Hamming distance. A relevant question is can a scheme be constructed which

can handle such a situation without making too many modifications to the shares and

without leaking the secret. Another question is related to reproduction number. It is

the average number of parties to which a share gets distributed from a single party. We

know that when the reproduction number is less than 1, the system eventually ends.

Can the share size be reduced in such scenarios is a problem for an ongoing work.

10.2 Chapter 4

This work opens up lots of research directions which we plan to present in an ex-

panded version. Some of these are as follows – utilize data structures to construct AC0

implementable evolving versions of hierarchical secret sharing schemes and use secret

redistribution combined with various combinatorial structures such as hypercubes, sim-

plicial complexes etc. to realize evolving versions of more general access structures with

reduced memory usage and keeping the computational complexity of the operations as

low as possible.

10.3 Chapter 5

To summarize, in this chapter we initiate the study of a very general class of quantum

evolving secret sharing schemes which can handle an unbounded and increasing number

of participants. The methods used rely on previously established ones. In the spirit of

increasing thresholds, our security technique can handle an increasing number of queries
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from the adversary, as long as at any time t the number of queries dnt the adversary

makes is less than the quantum query complexity of the embedded function being used

(See Chapter 7). Since only a constant number of decoy states need to be embedded in

the share, the share size does not blow up drastically. As a whole this paper mirrors a

real-life situation and constructs a resilient quantum secret sharing scheme where the

dealer does not know in advance how many participants are going to join in the future.

This technique can also be used in the context of secure broadcasting in the presence

of external adversary.

One major drawback of this construction is the use of a huge amount of quantum

memory. Note that Alice has to maintain/ recall all the tuples. With the increase in

generations and participants, these increase at a very high rate. Also the random states

need to be generated for every tuple and every generation which requires enhanced

computation costs. In the remarks we saw a method to reduce the usage of quantum

memory. The method fails when more and more participants arrive and the threshold

needs to be updated. So for practical implementation it is necessary to reduce the

usage of quantum memory and also to reduce the number of random states. Note that

we have not assumed any relation between the participants. Assuming some relations

between the participants it might be possible to reduce the usage of quantum memory.

Further improvements to this construction is a probable future research direction.

10.4 Chapter 6

The central idea of this chapter is to show how to design a quantum hierarchical secret

sharing scheme by maintaining the tuples (p1, ..., pm) for the disjoint groups and by
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repeatedly using required (t, n) threshold quantum secret sharing schemes. This idea

is a modification of the ideas of chapter 5. The main methods of our paper are the

multiple levels of shares obtained from the secret, random permutations and trap codes.

The dealer maintains states according to the various combinations of the number of

participant arriving from each group. For the quantum hierarchical scheme the groups

of participants are first arranged as per the hierarchical order. The dealer first shares the

secret in the highest level group. For the next lower level group, the dealer uses a random

state to update the secret of the first(highest) group and shares it to the participants of

the second lower level group. To update the secret the dealer uses random permutations

and trap codes. This process continues till all the groups are exhausted. To reconstruct

the secret, the lowest participants recover the updated secret of their generation. Using

the random states, they recover the updated secrets of the generation one level above.

This process goes on until they reach the highest level and the secret is recovered. For

the other schemes, the dealer maintains different combinations of tuples and imposes

different condition as per the access structure. Our schemes are general and can handle

arbitrary number of participants. Hence we have constructed quantum versions of most

known multipartite access structures existing in literature. Our scheme is simpler than

the existing schemes, and the entangled state is not needed. The security of our scheme

is based on the decoy particles, and the scheme can resist the popular quantum attacks.

In the remarks we have shown ways to reduce the usage of quantum memory.

• Open Problem : The reduction of quantum memory mentioned in the remarks is

not enough as Alice has to maintain the tuples to share the random states for all

combinations of participants. Any way to reduce these tuples would lead to a different

and more efficient method to realize these multipartite access structures.
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10.5 Chapter 7

In this chapter we obtain robust/resilient secret sharing schemes by embedding function

outputs of hard functions. This technique turns out to be helpful to reduce share sizes

and in the cases of secure broadcasting and fine-grained analysis.

10.6 Ongoing Work

10.6.1 Perpetual Secret Sharing - A Quantum Version

We have seen in chapter 4 how to construct a “Perpetual Secret Sharing Scheme”. This

scheme helps overcome the drawbacks of the constructed schemes of chapter 3. We have

also seen that quantum evolving schemes and the hierarchical schemes of chapters 5 and

6 use a huge amount of memory. Perpetual schemes are proven to be advantageous in

reducing memory. Hence a quantum version of such a scheme can be helpful in reducing

the memory requirements of the quantum versions of evolving, hierarchical and various

multipartite schemes. In this context we refer the reader to quantum data structures

[85], [71], [94].
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Appendix A

List of Symbols
Symbol Definition/Description

N Set consisting of all natural numbers.

R Set consisting of all real numbers.

Rn Euclidean vector space of dimension n.

R+n Vector space of dimension n, each element being a positive number.

((pij))m×n A matrix with m rows and n columns. First row has elements p11, p12, · · · , p1n,

second row has elements p21, p22, · · · , p2n and similarly others up to mth row which

has elements pm1, pm2, · · · , pmn.

A\B Set consisting of those elements of A that are not in B.

A ⊆ B A is a subset of B.

|x| Absolute value of the number x.

sign(x) Sign of the number x.

K : A→ B Function K mapping the set A to B.
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Symbol Definition/Description

(a, b) The interval {x ∈ R : a ≤ x ≤ b}.

[a, b] The interval {x ∈ R : a < x < b}.

(a, b] The interval {x ∈ R : a ≤ x < b}.

[a, b) The interval {x ∈ R : a < x ≤ b}.

=⇒ Implies

≈ Approximately equal to

P−→ Converges in Probability.(
n
k

)
Binomial coefficient n!/[k!(n− k)!].

lim
x→a

f(x) Limit of function f at a.

sup Supremum.

min(x ∈ A : B) Minimum of all values in set A such that event B holds.

f(.) Function f .

P (A) Probability measure of the set A.

P (A |B) Conditional Probability measure of A given B

[m] set of natural numbers 1, 2, . . . ,m
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