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Abstract

The relevance of classification is almost endless in the everyday application of machine
learning. However, the performance of a classifier is only limited to the fulfillment of the
inherent assumptions it makes about the training examples. For example, to facilitate
unbiased learning a classifier is expected to be trained with an equal number of labeled
data instances from all of the classes. However, in a large number of practical applications
such as anomaly detection, semantic segmentation, disease prediction, etc. it may not
be possible to gather an equal number of diverse training points for all the classes. This
results in a class imbalance in the training set where some majority classes contain a
significantly larger number of examples than the rest of the minority classes (usually
corresponding to rare and important events). Consequently, a classifier trained in presence
of class imbalance is likely to achieve better accuracy on the majority classes compared
to the minority ones.

Class imbalance not only adversely affects the performance of a classifier but also leads to
improper validation of its merit by inducing bias on the performance evaluation indices.
We start by proposing a couple of fundamental conditions violation of which leads an index
to be susceptible to an altering extent of imbalance and a varying number of classes in
the test set. Under the light of these conditions, we present a theoretical study on the
applicability of different indices commonly used to evaluate a classifier in the presence
of class imbalance. Over the past couple of decades, a vast collection of research work
attempted to modify the classifier and the training set respectively by algorithm-level and
data-level approaches, such that the bias induced by class imbalance can be mitigated.
We follow this direction of research by focusing on the popular Fuzzy-k-Nearest Neighbor
(FkNN) classifier. We start by theoretically validating the quality of the class membership
of a test point estimated by FkNN. We further demonstrate that our analysis can explain
the susceptibility of FkNN to class imbalance and propose a point-specific locally adaptive
class weighting strategy as a remedy. Moreover, we show that class-specific feature weights
in addition to global class weights can significantly improve the immunity of FkNN against
class imbalance when both types of weights are optimized using a self-adaptive variant
of Differential Evolution. The advent of deep learning introduced another direction of
research where attempts were made to understand the extent to which the commendable
efficacy of the deep learning systems can be compromised in presence of class imbalance
and propose remedial measures. We attempt to contribute in this direction by proposing
an adaptive artificial oversampling technique that can be applicable to an end-to-end
deep image classifier. Our model is constructed using three networks, a classifier, a
convex generator, and a discriminator. An adversarial game between the classifier and
the convex generator leads the latter to generate difficult artificial minority instances
in the distributed feature space, while the discriminator adversarially guides the convex
generator to follow the intended class distribution. As concluding remarks we discuss
the future scope of research in combating the effects of class imbalance, especially in the
emerging applications.
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Chapter 1

Introduction to Class Imbalance

Summary

A classifier expects to be trained on an equal number of distinct labeled examples from all the

classes. This enables the learner to enjoy an equal opportunity to learn about each of the

classes and likely enable a similar performance on all of them. However, in many real-life

applications, it is common for all events to not occur with equal probability. This in conse-

quence increases the difficulty to gather examples for the classes corresponding to rare events

whereas annotated representatives of commonly occurring events are available in abundance.

Thus, during the formation of the training set an imbalance between the number of repre-

sentatives for the different classes is often observed. Such a class imbalanced training set

is likely to bias the classifier in favor of the majority classes containing a larger number of

labeled instances while the performance deteriorates on the minority class suffering from the

dearth of training points. This inspired the classical machine learning and the emerging deep

learning communities to consider the problem of class imbalance as a long-standing challenge.

In this introductory chapter, we first formally define the problem of class imbalance, discuss

its relevance in detail, and then provide a brief survey highlighting the major research direc-

tions and key developments. In this chapter, we also discuss the research problems which

motivated us to shape the objective of this thesis. Finally, we illustrate a road map of this

thesis highlighting the primary contributions made by the rest of the chapters.
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1. Introduction to Class Imbalance

1.1 The problem of class imbalance: An overview

Over the past couple of decades, the world experienced substantial growth in research on

communication and computation technologies, aiming to improve the quality of everyday

life. The vastly improved commercial production facilities and the advent of modern services

further helped the cause by providing the mass easy access to the newly invented technologies

at an affordable cost. This resulted in a colossal increase of available multi-media data that

require automated and efficient processing in real-time. For example, social media services

which became a part of regular life over the past decade not only require to efficiently manage

an influx of responses from billions of users around the world but also need to automatically

detect and screen hate speech, offensive contents, or false information. Consequently, the

world observed the ever-rising importance of machine learning; a research direction aiming

to develop robust and scalable algorithms capable of performing complex data processing,

information extraction, and fast crucial decision making of commendable quality compared

to a human expert. The new millennium also witnessed an almost dramatic growth of the

deep learning paradigm (LeCun et al., 2015; Goodfellow et al., 2016), which initially focused

on a costlier group of machine learning algorithms attempting to mimic the neural informa-

tion processing in the human brain. However, with the advent of new parallel computation

technologies and accessibility to a large amount of data the highly efficient deep learning soon

grew out to become a standalone research direction in its own right.

A machine learning algorithm depending on the learning strategy can be broadly catego-

rized into three major groups (Duda et al., 2000). First, supervised learning, where a learner

(for example, a classifier such as k-Nearest Neighbor (kNN) (Fix and Hodges Jr, 1951), Sup-

port Vector Machine (SVM) (Cortes and Vapnik, 1995), etc.) is tasked to approximate a

function from a set of data instances to a set of possible labels using a set of annotated

training examples. Second, unsupervised learning, where a learner (for example, a clustering

algorithm such as k-Means (MacQueen, 1967), Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN) (Ester et al., 1996), etc.) attempts to draw inference from a set

of data instances in absence of a labeled set of training points. Third, semi-supervised learn-

ing (Silva et al., 2016), where a learner during training gets access to only a limited number of

labeled examples in addition to a large pool of unlabelled data instances. In addition to these

2



1. Introduction to Class Imbalance

three classical learning approaches deep learning introduced a set of new techniques such as

self-supervised learning (Goodfellow et al., 2014) and weakly supervised (Zhou, 2018) to cater

to the evolving nature of annotated data availability. to elaborate, in self-supervised learning

the labels are considered as an intrinsic property of the data which can be approximated by

carefully observing the unlabeled samples. Weakly supervised learning on the other hand

relies on partially labeled or coarsely annotated training instances.

In this thesis, we solely focus on supervised learners, specifically classifiers. Thus let

us begin by formally defining the problem of classification. Let S be a dataset containing

S number of d-dimensional data points which can be classified into c predefined classes.

Therefore, the task of classification can be described as finding a function H which maps

from the set S of data instances to a set C of c class labels. For simplicity and without

the loss of generality, we assume C = {1, 2, · · · , c} while considering the exceptions of some

classifiers such as Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986) which uses a one-

hot encoding scheme to represent the class labels1. A classifier during training attempts to

approximate H : S → C using a training set X ⊆ S of N labelled examples. Hence, for all

data instances x ∈ X the corresponding original label h(x) ∈ C must be known in advance

and made available during training. Utilizing X a classifier is expected to correctly predict

the class label ĥX(y) of a new test point y belonging to the test set X ′ ⊆ S containing n

unlabelled instances. A classifier is a data-driven modeling technique i.e. the performance

is largely dependent on the quality of the training set. Ideally, a training set is expected to

adhere to some regularity conditions set by the classifier as inherent assumptions. Violation

of such conditions by the training set may result in improper learning and consequently an

undesirable performance (Das et al., 2018). One such regularity condition is the assumption

of an equal number of training examples from each of the classes to facilitate fair learning.

However, in many real-life problems, it may not be always possible to respect such conditions.

To elaborate, in applications such as credit card fraud detection (Pozzolo et al., 2014), medical

1In case of one-hot encoding a class label is expressed as a c-dimensional binary vector. Thus, a point
belonging to the i-th class is labeled by a vector having 1 at the i-th dimension and 0 otherwise. Consequently,
the set of classes labels C can be alternatively expressed as the standard basis of a c-dimensional coordinate
space. The classification function in such a case is alternatively expressed as a mapping from the data
space to a c-dimensional class space. Specifically, for a data point s ∈ S the classification function outputs
H(s) = {H1(s), H2(s), · · · , Hc(s)}, where Hi denotes the probability of s to belong to the i-th class. Thus,
if s belongs to the i-th class then the ideal output (accurate prediction with the highest confidence) of the
classifier should be Hi(s) = 1 and Hj(s) = 0 for all j ∈ C \ {i} which matches the one-hot encoded label of s.
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diagnosis (Wahab et al., 2017), financial prediction (Sun et al., 2020), image segmentation

(Bulò et al., 2017), object detection (Zhang et al., 2016b; Oksuz et al., 2020), etc. not

all events corresponding to the different classes are observed with equal probability. For

example, a credit card provider may find only a handful of fraudulent cases among a million

daily transactions, while a disease prediction system may observe only a limited number

of malignant tumor instances compared to a large number of benign cases. This in reality

results in an imbalanced training set where some classes contain a larger number of labeled

instances than the other ones. The classes which have an abundance of training instances are

called majority classes while those with a scarcity of labeled examples are known as minority

classes. A classifier that is susceptible to such class imbalance in the training set is likely to

perform well on the majority classes while failing to achieve good accuracy on the minority

classes (Kubat et al., 1997; Japkowicz, 2000). Let us assume that the i-th class contains Ni

number of training samples in the training set X. Thus, the prior probability of the i-th class

is denoted as Pi = Ni
N . We can now define class imbalance in a more formal manner as in

Definition 1.1.

Definition 1.1. A training set X is called class imbalanced if there exists a pair of distinct

classes (i, j) such that i, j ∈ C, and Ni 6= Nj or alternatively Pi 6= Pj.

Moreover, to express the extent of class imbalance in a training set we need a measure to

quantify it. Thus, in Definition 1.2 we describe the measure Imbalance Ratio (IR) as follows:

Definition 1.2 (Datta and Das (2018)). For a 2-class classification problem the Imbalance

Ratio (IR) is defined as the ratio of the number of points in the majority class to that of

the minority class in the training set. Analogously, for a c-class classification problem IR

is calculated as the maximum among all the pairwise IRs (represented by the set IRpair =

{Ni
Nj
|i, j ∈ C; i 6= j}) among the c classes (i.e. IR = max IRpair). Therefore, X can be

considered as imbalanced if IR > 1.

To observe how such a class imbalance in the training set can adversely affect the perfor-

mance of a classifier, let us consider the following illustrative example.

Example 1.1. Let us consider a 2-class “two-moon” dataset, where the two interleaving

classes namely Blue and Red are shaped in the form of horseshoes. We create a collection of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.1: The effect of class imbalance on the decision regions (shown by pink and white
respectively for the Red and the Blue class) learned by a MLP. (a) We train our classifier
on the highly imbalanced training set having an IR of 100. The learned decision boundary
correctly identifies only a small region of the entire Red class and consequently suffers a
high misclassification on the minority instances. (b)-(g): In all these training sets the IR is
gradually decreased by respectively setting it to 50, 25, 12.5, 6.25, 3.12, and 1.56. The quality
of the learned decision boundary progressively improves even though some difficult regions
of the minority class still remain misclassified. (h): The training set is balanced by sampling
equal number of instances from both of the classes. The classifier accurately predicts both
the classes and perfectly separates them with a non-linear decision boundary.

eight training sets each containing 2000 randomly sampled data instances from the Blue class.

For the Red class, we gradually mitigate the extent of class imbalance over the eight training

sets by sampling 20, 40, 80, 160, 320, 640, 1280, and 2000 data points. As a classifier,

we choose the MLP (for easy visualization of the learned decision boundary) containing two

hidden layers each having 16 hidden nodes. The outputs of the hidden layers are passed

through a leaky rectified linear activation function with a leakiness of 0.1. Further, the network

is trained using Adam (Kingma and Ba, 2015) optimizer with a learning rate of 0.0002. In

all the cases, the training is performed for 5000 steps, where each step contains a batch of 32

examples. We train the classifier using each of the eight training sets (arranged in the order

of decreasing class imbalance) and respectively plot the corresponding learned decision regions

in Figures 1.1a-1.1h. In case of Figure 1.1a where the IR is maximum among the eight

training sets (the minority class contains only 20 points compared to 2000 majority instances

setting the IR to 100) the classifier demonstrates a significant bias towards the majority class
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by misclassifying a large region of the minority Red class. From Figures 1.1b-1.1g we can

see that the quality of the learned decision boundary progressively improves with increasing

training examples from the minority class. However, even in Figure 1.1g, where the IR is

minimum among the eight training set (IR is set to 2000
1280 = 1.56) some difficult examples

from the Red class still remain misclassified. Finally, in Figure 1.1h corresponding to the

balanced training set, we can observe that both of the classes are correctly separated by the

decision boundary. These empirical observations suggest that class imbalance during training

has a significant impact on the performance of the classifier. Moreover, with an increasing

imbalance between the classes, the performance on the minority class is likely to deteriorate

further.

It is observed from Example 1.1 that class imbalance may significantly deteriorate the

accuracy of a MLP on the minority classes. However, minority classes usually correspond

to the rare and significant events and thus, their accurate classification is often a crucial

necessity. We can look back to the example of our credit card provider who needs to stress

the correct identification of the less frequent fraudulent transactions to prevent malpractice.

Further, a computer-aided diagnosis system needs to accurately segregate the fatal malignant

tumors from the harmless ones to avoid treatment delay if not unfortunate fatalities. Thus,

the challenge appears in the form of accurately classifying the minority class instances which

are usually prone to misclassification due to their scarcity in the training set. Evidently, the

problem of class imbalance gained sufficient attention from the machine learning community

resulting in a plethora of approaches to efficiently combat its adverse effects concerning the

performance on the minority class (He and Garcia, 2009; He and Ma, 2013; Branco et al.,

2016; Krawczyk, 2016; Haixiang et al., 2017). The relevance of class imbalance only further

increased with the advent of deep end-to-end learning systems (Johnson and Khoshgoftaar,

2019) directly handling complex data such as images, audios, videos, etc., and with the ever-

growing importance of applications such as semantic segmentation, object detection, few-shot

classification (Li et al., 2019), etc.

Subsequent to this overview in Section 1.1, rest of this chapter contains a characterization

of the class imbalance problem detailing its effect on different datasets of varying properties

in Section 1.2, brief surveys of approaches proposed to counter class imbalance in traditional
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and deep classifiers respectively in Sections 1.3 and 1.4, the motivation and objective of

this thesis in Section 1.5, and finally a road map of the subsequent chapters detailing their

respective contributions in Section 1.6.

1.2 Characteristics of the class imbalance problem

Class imbalance is known to adversely affect the classification performance on the minority

class. From Example 1.1 it is also observed that with increasing IR, the effect of class

imbalance is likely to become more severe. However, the extent to which class imbalance can

deteriorate the performance of a classifier is not easy to estimate. This is because the effect

of class imbalance largely depends on data properties and the choice of the classifier itself.

For example, let us consider a neural network classifier (López et al., 2013; Lin et al., 2017a)

which minimizes a mean squared loss over all the training instances. In such cases, it is likely

that the sum of small errors incurred by a large number of majority instances may overwhelm

the sum of large errors for the small number of minority points. This, in effect, may lead the

classifier to further stress on minimizing the loss over an already better classified majority

class while ignoring the worse performing minority. In contrast, a SVM (Cortes and Vapnik,

1995) or kNN (Fix and Hodges Jr, 1951) type classifier which is otherwise independent of

the total number of training samples may still suffer from class imbalance depending on data

properties (Das et al., 2018) such as the presence of overlapped classes (Prati et al., 2004;

Garćıa et al., 2006b; Alejo et al., 2013). Moreover, in large scale datasets, a classifier is

expected to get access to a larger number of minority class training examples and thus likely

to offer a better performance resisting the effects of class imbalance (Leevy et al., 2018; Zheng

and Jin, 2020).

1.2.1 Overlapped classes and class imbalance

The presence of overlapped classes only worsens the effects of class imbalance. For example,

let us consider an imbalanced training set where large portions of a dense majority class and

a sparse minority class are overlapped. If we attempt to classify a minority test instance by

the widely popular kNN classifier using such a training set, then it is highly likely that the

neighborhood of the test point will contain a higher number of majority examples leading
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to misclassification. The situation may also not improve for max-margin classifiers as the

regularization error calculated over the overlapped section of the dataset is sensitive to the

IR. However, even in the case of non-overlapping classes, the classification performance is

likely to depend on the individual class distributions. We illustrate the effect of overlap on

classification accuracy with the following 2-class classification problem in Example 1.2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: We use a 2-class dataset to illustrate how overlapped classes can worsen the
impact of class imbalance. For (a)-(d) the IR is set to 100 by sampling 2000 instances from
Blue and 20 examples from Red class. Whereas, for (e)-(h) the IR is improved to 1.56 by
taking 2000 and 1280 samples respectively from Blue and Red class. To induce the effect of
overlap the two classes are progressively drawn together over (a)-(d) and (e)-(h). We plot
the decision regions of the trained MLP (pink for Red and white for Blue class) with the
ideal boundary (green line). We can see that for (a)-(b) and (e)-(f) in absence of overlap the
decision region for the minority class shifts further from the ideal with increasing IR. For (c)
and (g) the classifier performs further deteriorates on the minority class with increasing IR.
Finally, for very high overlapped cases (d) and (h) the classifier fails to achieve a commendable
performance on both the classes.

Example 1.2. We take a classification problem between two convex classes namely Blue and

Red. Both classes are sampled from a ball of unit radius. The centers for the two classes are

chosen such that they always lie at an equal distance from the line x = 0. Thus, the ideal

decision boundary is x = 0 which is shown by the green line in Figures 1.2a-1.2h. To induce

overlap, the classes are drawn closer together by shifting their centers by an equal amount

towards the ideal decision boundary. We focus on two primary cases, namely a high IR of

100 and a low IR of 1.56, for each of which, we gradually increase the overlap from none to
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1. Introduction to Class Imbalance

small, moderate, and high by decreasing the distance between the class centers to respectively

4, 2, 1, and 0.5 units. For all the cases we train a MLP (again chosen for easy visualization

of the learned decision boundary) for 5000 steps using a batch size of 32 and plot the learned

decision regions in Figure 1.2. The architecture of the classifier and the learning strategy

are both kept similar to the one used in Example 1.1. We can see from Figures 1.2a-1.2b

and 1.2e-1.2f that up to a small overlap, even though the classifier can accurately classify the

minority instances with increasing IR the decision region becomes more biased towards the

majority class. Moreover, in comparison to Figure 1.1a better performance on the Red class

is observed in Figure 1.2a, albeit both of the training sets are non-overlapped with an equal

IR. This indicates that even in the absence of overlap the individual class distributions may

play a significant role behind controlling the impact of class imbalance on the classification

performance over the minority class. Figures 1.2a-1.2d and Figures 1.2e-1.2h further suggest

that accuracy over the minority class generally decreases with increasing overlap. Moreover,

for moderate and higher degree of overlap, the performance is generally poorer on both of

the classes while the minority class suffers further with higher IR as evident from Figures

1.2c-1.2d and Figures 1.2g-1.2h.

1.2.2 Varying scale of datasets and class imbalance

The advent of big data came with the opportunity to exploit the additional information ob-

tainable from a larger number of total samples. As the probability of different events and

consequently the IR remains a constant with increasing size of the training set, the minority

class is likely to contain a larger number of examples. This, in turn, may aid the classi-

fier to better learn the minority class distributions which results in improved performance.

Therefore, with the increasing scale of data, the classifier is expected to learn a better deci-

sion boundary decreasing the generalization error (Fernández et al., 2017). We validate this

intuition in the following Example 1.3.

Example 1.3. In this example we consider three highly (IR is set to 100) and three low (IR

is 1.56) imbalanced datasets previously used in Examples 1.1 and 1.2 which we respectively

recall in Figures 1.3a-1.3f. To investigate the impact of data scale for each of the six datasets,

we create a correspondingly large scale variant. For datasets with IR 100, we sample 20000

9



1. Introduction to Class Imbalance

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1.3: We illustrate how increased data scale may aid a classifier to better learn the
minority class distribution in presence of class imbalance. (a)-(f): We recall the six datasets
in Figures 1.1a, 1.2a, 1.2d, 1.1h, 1.2e, and 1.2h from Examples 1.1 and 1.2. (g)-(l): For
each of the six dataset we create a corresponding larger variant by sampling 10 times more
points from the two classes while retaining the original IR. We illustrate the decision regions
(pink for Red and white for Blue class) learned by a multi layer pedestrian after 5000 steps
and compare them with the boundary obtained for the corresponding smaller scaled dataset.
From (a) and (g) we can see that with increased scale the classification performance on the
minority class improves. This improvement becomes more apparent in (d) and (j) where the
IR decreases from 100 to 1.56. The classification performances in (h) and (k) are respectively
similar to (b) and (e) where the bias to the majority class mitigates with increasing scale
and decreasing IR. Finally in (i) we can see that even after an increased scale from (c) the
improvement on minority class is negligible. Similarly between (f) and (l) the classifier fails
to noticeably improve its accuracy on both the classes.
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1. Introduction to Class Imbalance

points from the blue class and 200 examples from the Red class to obtain a higher scale

dataset with an equal extent of imbalance. Further, when the IR of the dataset is 1.56 we

select 20000 Blue points and 12800 Red points to increase the scale while maintaining the

original ratio of representatives from the two classes in the training set. We train the same

MLP classifier used in Examples 1.1 and 1.2 for 5000 steps on the large scale datasets and

illustrate the learned decision regions in Figures 1.3g-1.3l. We can observe from Figure 1.3

that the classification accuracy on the minority class generally improves with increasing scale

for non-overlapped datasets. Further, the increased scale is also likely to close down the gap

between the learned and the ideal decision boundaries thus facilitating a better generalization

to the test samples. However, for highly overlapped datasets, the improvement achieved by

the classifier is negligible compared to the error it incurs on both the classes.

1.2.3 Class overlap, data scale, and class imbalance: A summary

We summarize the empirical findings of Sections 1.2.1 and 1.2.2 in Figure 1.4 to understand

the interrelation between different extent of overlap, data scale, and class imbalance. We can

empirically conclude that when IR is low both of the non-overlapped classes are likely to be

classified with acceptable accuracy irrespective of data scale. However, even in such cases,

the minority class may have slightly higher misclassification compared to the majority class.

The increasing scale may also improve the generalization capability of the classifier. If the

classes are highly overlapped and the IR is low then the minority class may suffer a high

misclassification. On the other hand, if IR is high then in absence of overlap the performance

on the minority class may largely depend on the corresponding class distribution. However,

in high IR, if the overlapped between classes are increased then both of the classes are likely

to suffer high misclassifications.

1.3 Approaches to counter the effects of class imbalance in

traditional classifiers

The different approaches commonly used to offer immunity to a traditional classifier against

class imbalance can be categorized into the following three groups (Krawczyk, 2016; Das

et al., 2018).
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High IRLow IR
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Figure 1.4: We graphically summarize the empirical findings of Sections 1.2.1 and 1.2.2
highlighting the interplay between class imbalance, overlapped classes and data scale. We
consider two scenarios namely Low IR and High IR. For each of the cases we describe the
likely classification performance with varying degree of overlap and differing scale of data.

• Data-level techniques: Here the training data itself is forcefully balanced by under-

sampling (Japkowicz, 2000) the majority class oversampling the minority class (often

by generating new artificial samples) (Chawla et al., 2002; Zhang and Li, 2014), or a

combination thereof to mitigate the extent of class imbalance (Li et al., 2018a). Such

approaches usually act as a pre-processing step before the actual training of the classi-

fier. Data-level techniques can be considered more general as they do not rely on the

choice of the classifier. However, such methods come with a risk of losing information

and distorting the original class distributions.

• Algorithm-level techniques: Here the training data is kept unaltered while the algorithm

is modified to account for the class imbalance. Such approaches primarily range over

appropriate cost tuning (Ling and Sheng, 2008), boundary shifting (Imam et al., 2006),

single class learning (Krawczyk et al., 2014b), active learning (Ertekin et al., 2007a),

kernel specific methods (Maratea and Petrosino, 2011; Maratea et al., 2014), multi-

objective optimization (Soda, 2011; Aşkan and Sayın, 2014), and classifier ensemble

(Wang and Japkowicz, 2010). Among the less explored directions boundary shifting

classifiers may also use additional cost tuning (Yang et al., 2009) or cost sensitivity can
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be hybridized with active learning (Zhao and Hoi, 2013; Peng et al., 2020) to offer a

better immunity against class imbalance.

• Hybrid techniques: Here data and algorithm level techniques are coupled together to en-

sure effective utilization of their individual advantages while compensating their short-

coming. Such approaches may focus on the hybridization of the resampling techniques

with an ensemble of classifiers (Chawla et al., 2003; Seiffert et al., 2010) alongside cost-

sensitive (Akbani et al., 2004) and active learning (Lee et al., 2015) based classifiers

learned on resampled training sets.

1.3.1 Data-level techniques

In this section, we take a look at the different data level techniques namely undersampling,

oversampling, and their combinations, which are proposed to mitigate the extent of class

imbalance in the training set.

1.3.1.1 Undersampling techniques

Undersampling was initially introduced in machine learning for reducing the size of the train-

ing set to run kNN with a limited computational cost. The primary undersampling ap-

proaches include Condensed Nearest Neighbor (CoNN) (Hart, 1968) and Tomek Links (TL)

(Tomek, 1976). Initially introduced for training set reduction both of the methods later

found success in mitigating class imbalance as well. Interestingly, CoNN and TL employ

contradictory philosophy to remove majority class training examples. CoNN prunes those

majority points which have a nearest neighbor in the reduced training set sharing the same

class label. Whereas, TL removes majority points which have a minority class nearest neigh-

bor in the training set. Intuitively CoNN attempts to filter out those samples which do not

play a significant role in learning the decision boundary. On the other hand, TL focuses on

borderline samples that lie close to the class periphery and thus are likely to be misclassified

with minute changes in the decision boundary. (Kubat et al., 1997) proposed a one-sided

sampling where the concepts of both the CoNN and TL were integrated. Similar to CoNN, in

one-sided sampling, an intermediate training set is created by all the minority class points, a

single randomly chosen majority example, and all majority class instances which are not the
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nearest neighbor of the chosen majority class point. The intermediate training set is further

reduced by removing the TLs. Recently, the TL undersampling technique has been extended

to further weed out the outliers, redundant, and noisy examples from the training set (Devi

et al., 2017). The philosophy of TL has also been employed by Vuttipittayamongkol and

Elyan (2020) while removing majority instances from the overlapped regions whereas Kang

et al. (2017) did the same for CoNN by showing that for SVMs majority points lying at a

distance from the decision boundary may safely be discarded. Besides these two traditional

techniques and their variants, Japkowicz (2000) showed that a simple Random Undersam-

pling (RUS) may also provide significantly improved performance by alleviating the effects

of class imbalance.

Clustering based undersampling techniques (Yen and Lee, 2006, 2009; Peng et al., 2014;

Ofek et al., 2017; Lin et al., 2017b; Tsai et al., 2019) were always regarded as a popular choice

as the cluster centers act as a natural proxy for a collection of similar points. Clustering also

helps to identify the different sub-concepts present inside a class (Stecking and Schebesch,

2012) as well as aids to better approximate the majority class distribution (Ng et al., 2014).

Thus, over the years, numerous techniques utilized clustering to perform an efficient under-

sampling such that information of the majority class can best be preserved while balancing

the training set. Density-based clustering algorithms such as DBSCAN (Ester et al., 1996)

may also be proven beneficial for undersampling as in (Bunkhumpornpat and Sinapiromsaran,

2017), where it was applied to prune majority points lying in a dense overlapped region or in

(Peng et al., 2014), where it was coupled with an additional kNN. Another popular approach

is to use evolutionary (Garćıa et al., 2006a; Garćıa and Herrera, 2009; Ha and Lee, 2016) and

meta-heuristic optimization techniques (Yu et al., 2013) to perform undersampling.

Among the other interesting directions of research, Wong et al. (2014) considered using a

fuzzy rule based system (Ishibuchi et al., 1992) to perform undersampling. Fu et al. (2016)

investigated the usefulness of Principal Component Analysis (Duda et al., 2000) to identify

a set of majority class examples that can retain the characteristics of the corresponding

class using a reduced number of samples. D’Addabbo and Maglietta (2015) designed an

undersampling technique for SVMs that can be used in a parallel or distributed computing

system. Koziarski (2020) proposed a radial-based sampling to reduce the computational cost.

Recently, a meta-learning (Brazdil et al., 2008) based trainable undersampling technique has
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been developed by Peng et al. (2019).

1.3.1.2 Oversampling techniques

Random oversampling of existing minority class points in an attempt to balance the training

set has always been considered as a basic idea. However, such an oversampling technique does

not provide additional information to the classifier aiding a better learning of the minority

class distribution. Instead, random oversampling may lead to overfitting which deteriorates

the performance of the classifier on the test set (Batista et al., 2012). The milestone devel-

opment came through the proposal of SMOTE which attempts to oversample the minority

class by generating new synthetic samples (Chawla et al., 2002). In SMOTE, given a mi-

nority point, a new artificial sample is generated as a convex combination of the original

point itself and one of its randomly chosen minority neighbors. Following its introduction,

it only took a short while for SMOTE to gain significant popularity due to its algorithmic

simplicity, acceptable time complexity, easy parameter tuning, commendable performance,

and theoretical validation (Elreedy and Atiya, 2019). Even though SMOTE offers an elegant

solution to the oversampling problem it still has its limitation. Firstly, SMOTE can end up

generating out of distribution points if the local convexity is not ensured over a small neigh-

borhood. Secondly, SMOTE is not locality specific i.e. it cannot generate more points to aid

the classifier in difficult to classify regions such as class peripheries or sparse locations. To

date numerous studies attempted to resolve the shortcomings of SMOTE by proposing better

performing variants, a survey of which can be found in (Fernández et al., 2018) marking the

fifteenth anniversary of the technique. In Table 1.1 we list down some of the notable and

recently proposed variants of SMOTE which highlights the importance of the technique in

class imbalanced learning and demonstrates its relevance even to this day.

Apart from SMOTE and its variants, there are notable research works exploring the over-

sampling techniques to tackle the problem of class imbalance (Sáez et al., 2016). As a primary

attempt (Lee, 2000) thought of generating new instances by adding noise to the existing mi-

nority training examples. Jo and Japkowicz (2004) attempted to relate the problems of class

imbalance and small disjuncts (Holte et al., 1989; Ting, 1994; Weiss and Hirsh, 2000; Weiss,

2010) while proposing random oversampling inside the clusters of the majority and minority

classes. This route was explored again in recent times by Tao et al. (2020). The effect of
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Table 1.1: List of notable and recently developed variants of SMOTE

Algorithm Comments

SMOTE+Tomek
SMOTE generated points are cleaned by removing Tomek links.

(Batista et al., 2004)

SMOTE+ENN Oversampled training set is cleaned by removing points which are
misclassified by a kNN with k = 3.(Batista et al., 2004)

Borderline SMOTE
Minority samples near the borderline are oversampled.

(Han et al., 2005)

ADASYN
Difficult to classify minority class regions are oversampled.

(He et al., 2008)

MSMOTE
Noisy samples are removed alongside SMOTE.

(Hu et al., 2009)

Safe-level SMOTE Minority points which do not lie close to majority instances are
oversampled.(Bunkhumpornpat et al., 2009)

LN-SMOTE Generalised variant of Borderline SMOTE (Han et al., 2005) and
Safe-level SMOTE (Bunkhumpornpat et al., 2009).(Maciejewski and Stefanowski, 2011)

SMOTE+FRST
Oversampled training set is cleaned by removing noisy points.

(Ramentol et al., 2012b)

FRIPS+SMOTE
Pre-processing removes the noisy instances.

(Verbiest et al., 2012)

MWMOTE New samples are generated in minority clusters which are hard to
classify.(Barua et al., 2014)

DBSMOTE New instances are generated between a minority point and a pseudo
center of a minority cluster.(Bunkhumpornpat et al., 2012)

FRIPS+SMOTE+FRBPS Post-processing filters the FRIPS+SMOTE (Verbiest et al., 2012)
generated artificial samples.(Verbiest et al., 2014)

Kernel-SMOTE
SMOTE is performed in the kernel space in SVM.

(Mathew et al., 2015)

SMOTEIPF A post-processing follows SMOTE to weed out potentially erroneous
artificial points.(Sáez et al., 2015)

WK-SMOTE
Improved variant of Kernel-SMOTE (Mathew et al., 2015).

(Mathew et al., 2018)

k-means SMOTE Improve immunity of SMOTE against small disjuncts and noisy
samples.(Douzas et al., 2018)

GSMOTE-NFM Differing neighborhood size for safe, boundary, and outlier minority
points.(Cheng et al., 2019)

G-SMOTE
Geometric generalization of SMOTE.

(Douzas and Bacao, 2019)

SMOTEFUNA
The furthest neighbor is always chosen for generating new sample.

(Tarawneh et al., 2020)

Adaptive-SMOTE
Improved variant of ADASYN (He et al., 2008).

(Pan et al., 2020)

Eigen-SMOTE Improve performance of SMOTE variants in presence of noise and
data scarcity.(Ye et al., 2020)

random oversampling was also investigated by Menardi and Torelli (2014) who theoretically

as well as empirically validated the efficacy of smoothed bootstrap re-sampling. In a differ-
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ent direction, the effectiveness of evolutionary optimization techniques such as the Genetic

Algorithm (Goldberg, 1989) to oversample the training set was explored by Cervantes et al.

(2014); Maheshwari et al. (2011). To avoid the additional challenges posed by the overlapped

regions between the classes Abdi and Hashemi (2015) proposed to oversample in the dense

locations of the minority class while Pérez-Ortiz et al. (2015) attempted to oversample in a

kernel induced feature space where the classes are linearly separated. A recent approach by

Bellinger et al. (2015) used a denoising autoencoder (Vincent et al., 2010) to generate new

artificial minority class examples. Such deep learning based methods are especially effective

on the high-dimensional dataset as, unlike SMOTE they do not rely on Euclidean distance

measure which is likely to fail with increasing dimensions (Aggarwal et al., 2001). In another

avenue of research, attempts were made (Das et al., 2015; Sadhukhan, 2019; Kamalov, 2020;

Sadhukhan and Palit, 2020) to somehow estimate the distribution of the minority class such

that new artificial examples can be easily sampled. Such minority examples being sampled

from a distribution approximating the original one are likely to prevent overfitting (Zhu et al.,

2017). However, the effectiveness of such approaches depends on the quality of the estimated

minority class distribution, which may not be accurate given the scarcity of minority samples.

Further, the situation may become even more challenging with increasing data dimensions

and complex class structures encouraging robust radial-based alternatives (Krawczyk et al.,

2019). Recently, Zhang et al. (2019) noted that the processes of oversampling and training

of the classifier should not be independent of each other. Instead, the two processes should

progress simultaneously such that the artificial samples aid the learning process as per the

classifier’s requirement.

1.3.1.3 Hybrid sampling techniques

Instead of only undersampling the majority class or oversampling the minority class hybrid

sampling approaches attempt to perform both. This aids such techniques to avoid a signifi-

cant loss of data or an increased risk of overfitting while balancing the training set. Among the

notable attempts (Ramentol et al., 2012a) employed a rough set based pruning with SMOTE

oversampling, Wang (2014), Richhariya and Tanveer (2020), and Jian et al. (2016) focused

on SVM specific approaches, while Prachuabsupakij (2015) attempted to couple a cluster-

ing based undersampling with SMOTE. An alternative direction performs undersampling
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through cleaning the majority class by removing noisy samples (Kang et al., 2016) or out-

liers (Junsomboon and Phienthrakul, 2017) before applying oversampling often by SMOTE.

Such cleaning may also be applied to minority class in an attempt to improve the quality

of artificial points generated for oversampling (de Morais and Vasconcelos, 2019). Another

direction proposes to balance the dataset by switching the labels of the majority class ex-

amples (Stefanowski and Wilk, 2007, 2008; B laszczyński et al., 2010; Gónzalez et al., 2017;

Fernandes and de Carvalho, 2019; Gutiérrez-López et al., 2020) undersampling the majority

and oversampling the minority classes in the process.

1.3.2 Algorithm-level methods

Let us now take a look at the various algorithm-level approaches where the original training

data is retained while the classifier is modified to account for the class imbalance. Even

though the implementation may be classifier-specific as the classification strategy is needed

to be considered explicitly for modification, most of the algorithm-level techniques follow

a general set of underlying strategies to combat class imbalance such as cost-sensitive or

boundary shifting. However, there can also be techniques that are only applicable to a

certain family of classifiers such as kernel-based methods for SVMs (Maratea and Petrosino,

2011).

1.3.2.1 Cost sensitive methods

Traditionally, one of the most common approaches to counter the effects of class imbalance

is to consider the different cost of misclassification for distinct classes (Palacios et al., 2014).

Thus, in cost-sensitive classifiers, class imbalance is compensated by considering a lower

misclassification cost for the majority class than that for the minority class. Designing a

cost-sensitive classifier involves answering a couple of primary questions. First, how should

disparate class-specific costs be incorporated in the classifier under concern? Second, how

should one find the set of optimal class-specific costs? The answer to the first question depends

on the classifier itself. For example, in a neural network cost sensitivity may be realized by

altering the class probability calculation, adjusting the output of the network, adapting the

learning rate, or modifying the loss function, and accordingly change the backpropagation of

error Kukar et al. (1998); Oh (2011). In the case of decision trees (Quinlan, 1987; Ho, 1995),
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differing cost of misclassification can be considered while calculating the information gain or

selecting the splitting attribute (Sahin et al., 2013; Lomax and Vadera, 2013). Whereas, in

the case of SVM, the opportunity of incorporating cost sensitivity is explicitly involved in

the formulation (Cao et al., 2013a; Katsumata and Takeda, 2015). The second question is

commonly answered by parameter tuning (Arar and Ayan, 2015), using the class priors (Tan,

2005; Castro and Braga, 2013), or optimizing the costs in a self-adaptive manner (Zhang

et al., 2018a). In the following Table 1.2, we list down the notable cost-sensitive variants of

classifiers such as artificial neural networks (Haykin, 2009), decision tree (Quinlan, 1987) and

random forest (Ho, 1995), SVMs, Bayesian network (Pearl, 1988), and deep belief network

(Hinton et al., 2006).

Table 1.2: List of notable cost sensitive classifiers

Base classifier Cost sensitive variants

Neural network

Kukar et al. (1998), Zhi-Hua Zhou and Xu-Ying Liu (2006), Alejo
et al. (2007), Pendharkar (2008), Oh (2011), Bertoni et al. (2011), Cas-
tro and Braga (2013), Cao et al. (2013b), Ghazikhani et al. (2013b),
Arar and Ayan (2015), Biswas et al. (2017)

Decision tree and random forest

Drummond and Holte (2000), Sheng and Ling (2006), , Liu et al.
(2010), Sahin et al. (2013), Lomax and Vadera (2013), Boonchuay
et al. (2017), Siers and Islam (2018), Guermazi et al. (2018), Zhu
et al. (2018)

Support vector machine
Veropoulos et al. (1999), Li et al. (2010), Masnadi-Shirazi and Vas-
concelos (2010), Duan et al. (2014), Cao et al. (2013a), Datta and
Das (2015), Katsumata and Takeda (2015)

Bayesian network Jiang et al. (2013), Jiang et al. (2014)

Deep belief network Zhang et al. (2016), Zhang et al. (2018a)

1.3.2.2 Boundary shifting methods

In class imbalanced problem the decision boundary is likely to lie at a distance from the major-

ity class and close to (if not pass through) the minority class. Boundary shifting classifiers at-

tempt to rectify this issue by shifting the learned boundary away from the minority class such

that the classification performance can be improved. In comparison to cost-sensitive meth-

ods, boundary shifting classifiers modify the decision boundary post-learning, even though

both approaches require a set of properly tuned class-specific costs. Boundary shifting is

intuitively appealing for kNN type classifiers as being a lazy learner they do not involve an

explicit learning phase which minimizes misclassification error giving a chance to employ cost
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sensitivity. Thus, an alternative that is more in line with the kNN decision strategy is to

consider the distinct contributions of training points from different classes (Mani and Zhang,

2003; Tan, 2005; Wang et al., 2008; Liu and Nakagawa, 2001; Dubey and Pudi, 2013; Liu

et al., 2018). Boundary shifting in kNN can also be achieved by minimizing the distance

between minority training points (Li and Zhang, 2011) and a test instance, or by considering

a dynamic neighborhood containing a sufficient number of minority examples while making

a decision (Zhang and Li, 2013; Zhang et al., 2017). Boundary shifting can also be used with

SVMs by providing higher weight to minority class (Imam et al., 2006) or by shifting the

learned decision boundary (Lin et al., 2002). Moreover, for decision trees boundary shifting

may be inherently implemented through the splitting criteria (Cieslak and Chawla, 2008)

without additional cost tuning.

1.3.2.3 Single class learning methods

A single or one-class classifier (Raskutti and Kowalczyk, 2004) as the name suggests is de-

signed to predict samples from a single target class. Unlike the traditional binary classifiers,

single class ones are trained only using the labeled samples from the target class. Thus, such

classifiers are naturally immune to the effects of class imbalance (Krawczyk and Woniak,

2014; Krawczyk et al., 2014b,a). Interestingly, the superiority of one class classifiers com-

pared to the binary classifiers employing remedial measures against class imbalance (such

as resampling) has always been a matter of debate. On one hand, studies like (Japkowicz,

2000) vouched for binary classifiers trained on a resampled training set. On the other hand,

Bellinger et al. (2012) contradicted the previous findings. Recently, Bellinger et al. (2017)

attempted to shed some light on the topic by identifying the cases where each of the two types

of classification strategies may be useful. As per their findings, one-class classifiers are likely

to perform well on the unimodal class structure while binary classifiers tailored for handling

class imbalance may outperform on complex data. However, one class classifier may still

suffer on minority class due to the general scarcity of available training examples. Moreover,

if the classification problem contains more than one minority class, then such methods may

not be beneficial (Krawczyk et al., 2014b).
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1.3.2.4 Active learning methods

Creating a training set is a costly process as it not only involves gathering of data but also

the task of properly labeling them by a set of experts. In an attempt to cut down the cost one

cannot compromise by gathering less data as that will restrict the availability of information

during training. Thus, the only opportunity to make the process economic is to reduce the

cost of labeling. This is where active learning finds its relevance. Active learners start with a

limited set of labeled samples alongside a large pool of unlabelled samples. During training,

the learner can query an oracle about the label of an unlabelled point and add that to the

training set as per necessity. In a class imbalanced problem minority class does not contain

a large number of labeled training instances. Thus, an active learner which can learn with

limited data is likely to be effective in such scenarios (Ertekin et al., 2007b,a; Zhu and Hovy,

2007; Attenberg and Provost, 2010; Attenberg and Ertekin, 2013; Khanchi et al., 2017; Lin

et al., 2018). Active learning may also be hybridized with cost-sensitive learning (Zhao and

Hoi, 2013; Peng et al., 2020) or aided by resampled training set (Zhu and Hovy, 2007) to

better handle class imbalance. One can further improve the active learning framework by

modifying the selection strategy of unlabelled instances which may also help the classifier in

the presence of class imbalance (Ferdowsi et al., 2013; You et al., 2014). Though efficient

active learners do face the question of implementing an oracle in practice, which upon query

will assign a label to an unlabelled data point (Zhang et al., 2014a; Guo and Wang, 2015;

Zhang et al., 2016a).

1.3.2.5 Kernel-based methods

This class of SVM specific methods mainly apply perturbation to Radial Basis Function kernel

such that the resolution (magnitude of an infinitesimal vector in the kernel induced feature

space) (Amari and Wu, 1999) around the minority points can be magnified (Wu and Chang,

2003, 2004, 2005; Maratea and Petrosino, 2011; Maratea et al., 2014; Zhang et al., 2014b).

However, such methods involve a costly tuning process for the different resolution parameters

which, if not done carefully, may lead to overfitting. Further, even though these methods are

iterative in nature, there is no guarantee that the performance will monotonically increase

over iterations. Alternatively, (Zhao et al., 2011) attempted to employ a data-dependent
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kernel that can condense the minority class in the feature space.

1.3.2.6 Multi-objective optimization based methods

In Multi-objective Optimization (MO) techniques (Marler and Arora, 2004) the problem is

expressed in the form of simultaneous optimization of two or more objective functions that

are in conflict with each other i.e. improving one will push the others away from their

corresponding optima. Evidently, in MO it is not possible to find a single feasible solution

that simultaneously optimizes all the contradicting objectives under concern. Instead, there

exists a set of solutions called Pareto Optimal (PO). In a PO solution, no objectives can be

further optimized without diminishing any of the others. Thus, each of the possibly infinite

numbers of PO solutions offers a trade-off between different objectives and it depends on the

user to select a solution that best suits their requirement.

In the context of class imbalance, a natural implementation is to define the objectives

as individual class-specific accuracies (Garćıa et al., 2010; Aşkan and Sayın, 2014; Wang

et al., 2014; Maheta and Dabhi, 2015). However, with the growing number of classes, the

complexity of the problem also increases exponentially. The problem becomes even more

difficult if additional objectives are considered (Bhowan et al., 2013, 2014). This issue can be

resolved by using performance evaluation indices which aggregates the class-specific accuracies

(Ducange et al., 2010). This approach was also followed by Soda (2011) who attempted

to optimize Accuracy (Japkowicz, 2006) alongside GMean (Kubat et al., 1997) two indices

which are likely to conflict in the presence of high imbalance. This is because in highly

imbalanced classification problems minimizing misclassification on only the majority class

is enough to improve Accuracy while GMean only improves when the classifier performs

equivalently well on all the classes. Similarly, (Chira and Lemnaru, 2015) proposed optimizing

Recall (accuracy on the minority class) and Precision (fraction of the correctly classified

minority class points and the total number of points predicted as minority class instances)

for two-class classification problems. Alternatively, MO can be used in class imbalanced

learning for data pre-processing such as feature and instance selection (Fernández et al.,

2015a), balancing an imbalanced training set (Li et al., 2018b), or discretization (as required

by the learner) (Tahan and Asadi, 2018). MO can also be employed in a classifier ensemble

framework designed to withstand the effects of class imbalance (Yang et al., 2020).
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1.3.2.7 Classifier ensemble methods

This family of techniques attempts to improve classification performance in the presence

of class imbalance by an ensemble of cost-sensitive (Nikolaou et al., 2016) and boundary

shifting (Nikolaou and Brown, 2015) component classifiers. Such techniques may choose to

modify AdaBoost (Freund et al., 1999; Rätsch et al., 2001) type boosting (Schapire, 1990)

based ensemble approaches to account for class imbalance (Joshi et al., 2001; Sun et al.,

2007; Song et al., 2009). In AdaBoost, a set of component weak learners is sequentially built

such that each learner stresses on accurate prediction of previously misclassified training

points with the help of a point specific weighting scheme. The final prediction is made by

weighted voting of the component classifiers where the better performing learners get higher

weights. As the minority points are prone to high misclassification they are expected to get

higher weights in the later rounds stressing the weak learners to perform well on them. Thus,

boosting type ensemble approaches are likely to offer a naturally better immunity against class

imbalance (Seiffert et al., 2008). Evidently, in such an ensemble approach itself, there are two

opportunities for incorporating cost sensitivity. First, in the point specific weighting scheme

as the cost of misclassification is not equal for all the classes (Ting, 2000; Viola and Jones,

2002). Second, in the component weighting strategy (Leskovec and Shawe-Taylor, 2003; Wang

and Japkowicz, 2010) guided by an error function which may not always be suitable for class

imbalanced problems (Sokolova et al., 2006; Japkowicz, 2006). In the most common direction,

both of these components and ensemble level opportunities for improvement are explored

simultaneously. Such techniques use an ensemble of cost-sensitive classifiers employing a

modified component specific set of weights or a suitable loss function to counter against the

effects of class imbalance by considering the differing cost of class-specific misclassification

(Fan et al., 1999; Masnadi-Shirazi and Vasconcelos, 2007, 2010; Ghazikhani et al., 2013a;

Krawczyk et al., 2013; Krawczyk et al., 2014c, 2015; Tao et al., 2019; Wong et al., 2020).

Alternatively, the ensemble method can also be refined by considering only the confident

classifiers during prediction to reduce computational cost (Fan et al., 2002) or appropriately

modified to account for class imbalance (Tan et al., 2003; Xiao et al., 2012).
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1.3.3 Hybrid approaches

Data-level techniques contain the risk of information loss or overfitting while algorithm-level

methods require complex classifier specific modifications. Hybrid approaches integrate the

two paradigms such that the best of both can be efficiently utilized with ease. A natural

direction of such techniques is to use common oversampling and undersampling methods

in ensemble approaches such as bagging and boosting (Galar et al., 2011). Thus, notable

methods from this family can be broadly classified into three groups all coupling resampling

with boosting (Bao et al., 2016; Kozlovskaia and Zaytsev, 2017; Tang and He, 2017), bagging

(Barandela et al., 2003; Tang et al., 2008; Blaszczyński and Stefanowski, 2015), and other

ensemble techniques (Sobhani et al., 2014; Lim et al., 2017; Zhang et al., 2018c). In the

following Table 1.3 we list down the notable attempts in this direction.

Table 1.3: List of notable and recently developed approaches hybridizing resampling with
classifier ensemble.

Algorithm Comments

Boosting based approaches:

SMOTEBoost (Chawla et al., 2003) SMOTE based oversampling with boosting.
JOUS-Boost (Mease et al., 2007) Hybrid sampling with boosting.
RAMO-Boost (Chen et al., 2010) Adaptive minority oversampling with boosting.
RUSBoost (Seiffert et al., 2010) RUS with boosting.
EUS-Boost (Galar et al., 2013) Evolutionary undersampling with boosting.
Thanathamathee and Lursinsap (2013) Boundary sample generation with boosting.
Select-Boost (Prusa et al., 2016) RUS with feature selection and boosting.
PBoost (Soleymani et al., 2018) Undersampling with boosting.
WOTBoost (Zhang et al., 2019) Weighted oversampling with boosting.

Bagging based approaches:

SMOTE-Bagging (Wang and Yao, 2009) SMOTE based oversampling with bagging.
RBBagging (Hido et al., 2009) Undersampling with bagging.
UBBagging (Liang and Cohn, 2013) Unevenly balanced bagging.
DTE-SBD (Sun et al., 2018) SMOTE with ensemble of decision trees based on bagging.
MIBag (Razavi-Far et al., 2019) Multiple imputation based oversampling with bagging.

Other ensemble based approaches:

EUS-SVM (Kang and Cho, 2006) Undersampling with ensemble of SVMs.
EnSVM (Liu et al., 2006) Oversampling with ensemble of SVMs.
Rıo et al. (2014) Resampling for big data with random forest.
Peng (2015) Adaptive sampling with cost tuning and classifier fusion.
Sun et al. (2015) Balancing by resampling with classifiers ensemble.
DeepBalance (Xenopoulos, 2017) Balanced bootstraps with ensemble of deep belief networks.
Roy et al. (2018) Oversampling with dynamic ensemble.
HUS-Boost (Popel et al., 2018) TL and RUS based undersampling with a soft voting ensemble.
REMDD (Niu et al., 2020) Undersampling with majority voting of candidate classifiers.

In another direction, hybrid approaches explored the coupling of cost-sensitive (Krawczyk,

2016), boundary shifting (Yang et al., 2009; Cieslak et al., 2012), and active learning (Niko-
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laou and Brown, 2015) based imbalanced classifiers with resampling techniques to achieve

better performance. Among these three avenues, most of the approaches follow the route of

integrating a cost-sensitive classifier with resampled training set (Akbani et al., 2004; Wang

et al., 2012; Hsu et al., 2015). Such approaches first attempts to mitigate the extent of class

imbalance in the training set by resampling and then train a cost-sensitive learner on them.

Using an empirical study on a large number of imbalanced datasets of diverse characteristics

López et al. (2012) concluded that even though cost tuning and resampling individually per-

form somewhat equivalently their hybridization is capable to offer a significant performance

boost. Intuitively, such techniques do not need to perform an excessive amount of over and

undersampling which aids to restrict information loss and tendency to overfit. Further, the

cost-sensitive classifier is likely to be trained on a nearly balanced training set which facilitates

an easy tuning of the class-specific misclassification costs while avoiding overcompensating.

1.4 Class imbalance in deep learning

Even though deep learning based classifiers managed to provide a significant improvement in

performance over their traditional counterparts (Krizhevsky et al., 2012; Szegedy et al., 2015,

2016; He et al., 2016) they are no less susceptible to the class imbalance in the training set

(Buda et al., 2018; Johnson and Khoshgoftaar, 2019; Oksuz et al., 2020). A key reason behind

this vulnerability is the working strategy of neural networks which learn by minimizing a loss

calculated over all the training points. Therefore, in the presence of class imbalance, the sum

of small errors over a large number of majority instances are likely to dominate the sum of

large errors obtained over a small number of minority points. Hence, reducing the errors

over the majority points will be more beneficial for minimizing the loss function which in

consequence will lead the network to learn the majority class even better, while ignoring the

minority (Lin et al., 2017a). Fortunately, even before the advent of deep learning (LeCun

et al., 1989), the impact of class imbalance was already well-known to the machine learning

community. Thus, alongside developing new deep learners the research community did not

waste time improving their immunity against class imbalance (Huang et al., 2016). This

primarily appeared as a less strenuous task as attempts were made to directly import the

common solutions available for traditional classifiers into deep learning paradigm (Levi and
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Hassner, 2015; Jaccard et al., 2017). But the limitation of this direction was soon recognized

for the deep learners employing an end-to-end strategy. For example, the widely appreciated

rich pool of SMOTE type oversampling schemes was found ineffective in deep learning due

to the following reasons.

1. SMOTE type oversampling approaches create new samples in the feature space. How-

ever, in end-to-end deep learning, the feature extraction and classification tasks are

not mutually independent. In fact, the feature extractor sits on top of the classifier

and both are trained simultaneously by back-propagating the single loss calculated on

the classifier’s output. Therefore, introducing SMOTE into this framework becomes

difficult.

2. In SMOTE one needs to find a neighboring point based on some distance metric while

the new sample is generated by a convex combination of existing instances. However,

deep learners can directly be applied to natural non-vector datasets containing images,

videos, and audios. In such data, not only the notion of conventional distance is unde-

fined, but also a convex combination of the samples does not ensure a realistic output.

This can further be illustrated in the following Figure 1.5a where we show that in case

of Fashion-MNIST dataset (Xiao et al., 2017), an image of T-shirt/top lies closer to

a shirt than another T-shirt/top in terms of Euclidean distance, even though the two

T-shirts/tops clearly appear more similar to us. Further, in Figure 1.5b, we can observe

that the convex combination of two images of the digit “9” from the MNIST dataset

(LeCun et al., 1998) does not result in any realistic digit let alone “9”.

Thus, new directions emerged where not only the applicability of traditional solutions were

investigated but also new deep learning specific techniques were developed. Let us now take

a look at the various approaches to combat the adversarial effects of class imbalance in deep

learning.

• Data-level methods: A primary direction imported from the literature of traditional

classifiers is random undersampling. However, a deep learner usually involves a large

number of parameters (often in the range of millions), proper training of which requires

a significant amount of data. Thus, reducing the amount of available data by random
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Class: T-shirt/Top
Distance: 0.0389 units

Class: Shirt
Distance: 0.0385 units

Class: T-shirt/Top

(a)

(b)

Figure 1.5: SMOTE is inapplicable on non-vector natural data such as images, videos, audios,
where realism is a key constraint. (a) SMOTE requires to find the neighbors of a training
example in terms of some distance measure. Unfortunately, in images the notion of distance
is not defined and thus, neighbors in terms of Euclidean distance may not be meaningful
in reality. We can see in Fashion-MNIST dataset a shirt lies closer to a T-shirt/top than
another T-shirt/top even though visually the two T-shirts/tops are clearly similar than the
T-shirt/top and shirt pair. (b) We show that convex combination of two images does not
necessarily result in a realistic similar image. Here, the two images of the digit “9” taken
from the MNIST dataset do not generate a new realistic “9” by convex combination.

undersampling can be considered counter-intuitive in deep learning. As a remedy, a

two-phase learning is proposed where transfer learning is used to compensate for the

information loss by undersampling (Lee et al., 2016; Havaei et al., 2017; Pouyanfar

et al., 2018; Johnson and Khoshgoftaar, 2019b). Recently, a subspace clustering based

technique was developed by You et al. (2018) which can ensure that the entire dataset

can be represented through a subset of carefully selected samples resulting in an efficient

undersampling.

The most common data level approach to mitigate the effect of class imbalance is to use

a simple random oversampling of the minority class (Levi and Hassner, 2015; Jaccard

et al., 2017). The advantage of this technique is one does not need to worry about

the validity of the added samples as they are taken from the dataset itself. Manually
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balancing the dataset also ensures that the inherent bias of the loss function to the

majority class becomes ineffective without any complex modification. However, random

oversampling does not add any new information to the dataset as well as may lead to

overfitting. A straightforward solution can be replacing random oversampling with data

augmentation (Afzal et al., 2019) a popular tool to address the general scarcity of data

in deep learning systems (Shorten and Khoshgoftaar, 2019). Alternatively, Liu et al.

(2019) came up with a fuzzy logic based synthetic minority sample generation technique

while (Ando and Huang, 2017) attempted to venture the usefulness of meta-learning

to perform oversampling in the deep learning paradigm. Recently, Wang et al. (2020)

proposed a deep generative model that considers a joint distribution of input samples,

their corresponding labels, and the latent variables relating the two.

The introduction of deep generative models namely Generative Adversarial Network

(GAN) (Goodfellow et al., 2014) resulted in a breakthrough in oversampling strategies

to combat class imbalance. A GAN network is composed of a couple of sub-networks,

namely a generator and a discriminator. The generator to tasked to learn a mapping

from points sampled from a known noise distribution to a data instance belonging

to the actual data distribution. The discriminator adversarially guides the generator

by checking if a generated data instance can be discriminated from the real training

samples. In essence GANs attempt to minimize the divergence between the generated

and the real data distribution. GANs can easily be extended for individual classes

by including the class information as a condition (Mirza and Osindero, 2014). Soon

after its introduction, GANs became widely popular for its simple architecture and

efficient performance. This inspired researchers to propose several modified variants

of GANs in an attempt to provide improved performance (Zhao et al., 2016; Arjovsky

et al., 2017; Mao et al., 2017), scalability (Shaham et al., 2019), and robustness (Metz

et al., 2016). Evidently, GANs can be an effective solution to generate new realistic

samples to compensate for the scarcity of training instances in the minority classes

(Wang et al., 2017a; Douzas and Bacao, 2018; Mariani et al., 2018; Ali-Gombe and

Elyan, 2019; Liu et al., 2019; Tripathi et al., 2019; Wang et al., 2019; Hwang et al.,

2019). However, GANs are susceptible to boundary distortion which may compromise
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the majority class distribution (Santurkar et al., 2018). Further, GANs are prone to

mode collapse, especially when a limited amount of data is available to it (Srivastava

et al., 2017). A competing deep generative model Variational Auto Encoder (VAE)

(Kingma and Welling, 2013) is also a popular choice to generate new data instances

for oversampling (Wan et al., 2017; Zhang et al., 2018b; Guo et al., 2019). However,

compared to GAN, the images produced by VAE are blurry with soft edges and limited

detailing.

• Algorithm-level methods: Similar to the traditional classifiers, the technique to im-

prove immunity against class imbalance by incorporating class-specific cost sensitivity

is also common in deep learning (Wang et al., 2018; Sarkar et al., 2019; Cui et al.,

2019). The deep learning framework also allows the classifier to learn the set of ef-

fective class-specific costs removing the need for expensive tuning (Khan et al., 2018;

Johnson and Khoshgoftaar, 2019a) in the process. Alternatively, the focus can be laid

on improving the quality of the learned features such that the classes become easy to

distinguish (Huang et al., 2016; Ng et al., 2016; Dong et al., 2018; Nie et al., 2019; Hayat

et al., 2019). Initially, designed for handling the imbalance between background and

foreground in object detection problems focal loss (Lin et al., 2017a) gives lesser impor-

tance to correctly classified points while calculating the loss such that the network can

focus on learning the hard to classify samples. This can be coupled with a class-specific

cost tuning to further aid the classifier in the presence of class imbalance. In another

prominent direction, efforts were made to tackle class imbalance by representing the

problem as modeling the tail of a long-tailed distribution (Ouyang et al., 2016; Wang

et al., 2017b; Li et al., 2020; Ma et al., 2020). This is intuitively appealing as the

distribution of the number of training samples for a multi-class imbalanced problem

is indeed a long-tailed one (Xiao et al., 2010) where the minority classes reside at the

tail. Inherited from their traditional counterpart boundary shifting techniques are also

widely used in deep classifiers. Here the task is to shift the learned decision boundary

from the minority class either by accounting for the higher uncertainty of the classifier

on such class (Khan et al., 2019) or by considering the label distribution during error

calculation (Cao et al., 2019). The usefulness of ensemble learning such as boosting
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was also investigated in works like (Yuan et al., 2018; Taherkhani et al., 2020).

1.5 Motivation and objective

Our discussion until this point establishes the importance of efficiently handling class imbal-

ance during classification. We have also highlighted how the challenge still looms large even

after a plethora of research works over the past couple of decades attempted to address the

various issues associated with class imbalance. Further, we have observed how the problem

of class imbalance is prominent in deep learning and how the traditional solutions are not

directly applicable in such a paradigm. Among this vast pool of open problems, in this thesis,

we primarily focus on three major issues related to class imbalance.

1. Designing an index that will be able to properly evaluate the performance of a classifier

is no less important than proposing a new classifier. For the classification task, the

most popular performance evaluation index is Accuracy which unfortunately fails in

the presence of class imbalance (Japkowicz, 2006). This is because Accuracy is not

designed to separately assess the performance of a classifier on each of the individual

classes and aggregate them in a meaningful way such as Average Class Specific Accuracy

(ACSA) (Huang et al., 2016) or GMean (Kubat et al., 1997). Such limitation leads

indices like Accuracy to be biased towards the performance on the majority class. The

problem becomes more challenging when possible concept drift (common in streaming

data (Jaworski et al., 2017b,a; Duda et al., 2017; Jaworski et al., 2018; Ng et al.,

2018)) and alteration in the number of classes between training and validation/test

set (often observed in open set classification (Rudd et al., 2018)) are to be considered.

Over the past decade, research works made significant effort to understand the effect of

class imbalance on different performance evaluation indices by analyzing their character

(Brzezinski et al., 2018; Ballabio et al., 2018). Remedial modifications and new indices

were also proposed to achieve a fair evaluation of a classifier’s performance in the

presence of class imbalance (Bradley et al., 2006). However, such studies remained

mostly limited to empirical validation or focused on specific applications.

2. The kNN (Fix and Hodges Jr, 1951) being one of the highly effective yet deceptively
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simple non-parametric classifier has always been a widely popular choice. A modified

variant Fuzzy k-Nearest Neighbor (FkNN) (Keller et al., 1985) incorporates the concept

of fuzzy sets to provide for the inherent uncertainty of estimating the class distribution

from a limited set of samples. FkNN also considers the lesser contribution of a distant

neighbor in the kNN framework. These modifications enable FkNN to provide improved

empirical performance over kNN. However, the theoretical quality assessment of the

performance of the FkNN classifier did not enjoy significant attention from the research

community. Further, the earlier studies ignored the fact that FkNN being a fuzzy

classifier assigns class membership to test points instead of crisp labels. Moreover,

FkNN like kNN is susceptible to the effect of class imbalance. However, investigating

the nature of such vulnerability to class imbalance or its possible remedies were not

fully explored after the introduction of FkNN.

3. In Section 1.4 we have demonstrated how class imbalance can affect the performance

of a deep classifier. Further, we have discussed how popular oversampling techniques

face significant challenges while being incorporated in a deep learning based classifier.

However, we have mentioned that GAN can generate samples that posses the similar

realistic nature of other examples. Unfortunately, GAN’s generator is likely to generate

points near the modes of the class distribution and may suffer from boundary distortion

or mode collapse. Further, GANs are not capable of adaptively generating hard to

classify samples for the classifier which will aid the learning in difficult regions. This is

due to the fact that the GAN is not directly linked with the classifier.

Motivated by these shortcomings in the current literature our three primary objectives in

this thesis are as follows:

1. Propose a general theoretical framework for analyzing the behavior of a performance

evaluation index. The framework should contain a set of necessary conditions focusing

on the possible concept drift and changes in the number of classes between training and

validation/test set.

2. Present a theoretical convergence analysis of the class membership estimator employed

by the FkNN classifier keeping in mind its relation with the classification performance.
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The analysis should also provide an explanation for the possible performance deterio-

ration of FkNN in the presence of class imbalance. Further, suggest remedial modifi-

cations that can provide better immunity to FkNN against the adverse effects of class

imbalance.

3. Investigate the applicability of oversampling techniques in deep image classifiers. The

oversampling approach should be adaptive in nature as well as capable to generate valid

samples that can be mapped to realistic images.
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Figure 1.6: Road map of this thesis.

In order to fulfill our objectives, this thesis attempts to make a collection of contributions

on the long-standing problem of class imbalance. Specifically, following the introductory

Chapter 1 we analyze the applicability of different indices in the presence of class imbalance

in Chapter 2. Following in Chapter 3 we characterize the effects of class imbalance on Fuzzy-

k-Nearest Neighbor (FkNN) (Keller et al., 1985) classifier. We further propose a simple

yet efficient point-specific Locally Adaptive Class Weighting (LACW) scheme to improve

the immunity of FkNN against class imbalance. In Chapter 4 we introduced an improved

variant of FkNN called Parameter Independent fuzzy class-specific Feature Weighted kNN

(PIFWkNN) which can use an optimized set of class-specific feature weights alongside a global
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value of k. Moreover, we propose PIFW2kNN which introduces additional optimized class

weights in PIFWkNN to improve its resilience against class imbalance. In the subsequent

Chapter 5 we investigate the efficacy of oversampling techniques to combat the effect of

imbalance in deep image classifiers. Finally, in Chapter 6 we present the concluding remarks

and discuss the future scope of extensions listing the open problems. A brief road map of

this thesis is illustrated in Figure 1.6.

1.6.1 Contributions of Chapter 2

In this chapter, we start by defining two necessary conditions (detailed in Section 2.2) that

a performance evaluating index must satisfy while assessing a classifier in the presence of

class imbalance. Unlike previous studies, our proposed conditions theoretically validate the

applicability of an index from a more general perspective. Specifically, we want to ensure a

fundamental criterion that if the class-specific performance of a classifier remains invariant

then irrespective of any alteration in the validation/test set it should be evaluated uniformly

as well. To elaborate, we identify two scopes of data alterations namely, the varying class

priors between training and validation/test sets and the increasing number of classes. We

show that satisfying the two proposed conditions ensures that the index under concern will be

invariant to the two types of alterations and thus be capable of providing a fair assessment.

Subsequently, we present a theoretical framework to validate the invariance of four binary

and five multi-class widely used performance evaluation indices to the couple of necessary

conditions. If an index is found violating any of the two conditions then a remedial modifica-

tion and/or normalization is suggested. Further, we attempt to assess the interpretability of

those indices which satisfy both the necessary conditions. To achieve this we define a third

condition that guards an index against being biased towards the extremely poor performing

class. We also present an empirical study to support our theoretical findings. Finally, un-

der the light of the three conditions, we present a detailed discussion on the applicability of

different indices in a diverse range of applications regularly affected by class imbalance.
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1.6.2 Contributions of Chapter 3

Motivated by a lack of significant research on the quality assessment of the class memberships

estimator in FkNN, in this chapter we attempt to bridge the gap by presenting a theoretical

analysis. We start by considering the specific nature of FkNN which attempts to provide a

membership for all the classes to a test point instead of crisply assigning it to a particular

class. This observation leads us to investigate the convergence of the FkNN class membership

estimator unlike studies focusing on the misclassification error (Yang and Chen, 1991). We

specifically show that the bias and Mean Squared Error (MSE) of the class membership

estimator employed by FkNN both converge to zero with the increasing availability of training

examples. Such a convergence analysis has three significant advantages. First, we only

need to make some elementary assumptions on the choice of membership function, class

distribution, and the two parameters associated with FkNN. Second, owing to the choice of

our unbounded non-negative loss functions our analysis can be directly extended to multi-

class classification problems as well. Third, as an important implication, our analysis gives

a straightforward explanation for the vulnerability of FkNN in class imbalanced problems.

Therefore, to improve the resilience of FkNN against the effects of class imbalance we propose

a point-specific Locally Adaptive Class Weighting (LACW) strategy. To compensate for

the scarcity of the minority class LACW adaptively assigns a set of class-specific weights

considering the locality of a given test point by employing a simple heuristic. The proposed

theoretical convergence analysis is also supported by a simulation study on artificial and

real-world classification datasets. Moreover, the effectiveness of the proposed LACW when

coupled with the weighted variant of FkNN is validated by experimental comparison with

FkNN variants tailored for handling class imbalance on real-world benchmark imbalanced

datasets.

1.6.3 Contributions of Chapter 4

In this chapter, we propose an improved variant of FkNN called Parameter Independent

Fuzzy class-specific feature Weighted kNN (PIFWkNN) which integrates an optimized set of

class-specific feature weights along with a global choice of parameter k. To elaborate, not all

features are equally important to discriminate a class from the others. Thus, an optimized
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class-specific feature weighting during distance calculation can be beneficial for easing the

classification. Further, the performances of kNN type classifiers are largely dependent on

the choice of a global k. However, it is difficult to design an objective function which will

optimize the set of class-specific feature weights as well as the choice of the parameter k

while possessing necessary properties required by a mathematical optimizer. Therefore, we

choose to optimize such an objective function by the help of Evolutionary Optimization (EvO)

algorithms namely Differential Evolution (DE) (Das and Suganthan, 2011; Das et al., 2016).

However, the performance of DE is reliant on the tuning of a couple of parameters called scale

factor and crossover probability. An improved variant of DE called Success History based

Adaptive DE (SHADE) (Tanabe and Fukunaga, 2013) attempts to address this issue by

adaptively selecting the parameter values removing the costly tuning in the process. Hence,

in PIFWkNN we employ SHADE to optimize the set of feature weights and the global k.

A comparative study with kNN and FkNN variants employing feature weighting on real-

world datasets highlights the efficacy of the proposed PIFWkNN. Even though class-specific

feature weighting is likely to offer some immunity against the effects of class imbalance the

general scarcity of minority points may still hinder a proper optimization of such weights.

Thus, to additionally guard against the adversarial impact of class imbalance we propose to

include a set of optimized class-specific weighting in the PIFWkNN framework. We call this

classifier PIFW2kNN which employs a modified objective function to simultaneously optimize

class-specific feature weights, class-specific weights, and a global value of k. Experiments

on real-world benchmark class imbalanced datasets validate the improved performance of

PIFW2kNN in comparison to the state-of-the-art classifiers capable of efficiently handling

class imbalance.

1.6.4 Contributions of Chapter 5

In this chapter, we propose an end-to-end data level approach called Generative Adversarial

Minority Oversampling (GAMO) which can adaptively oversample the minority class(es)

to mitigate the effects of class imbalance on a deep image classifier. In essence, GAMO

attempts to adversarially connect a generator with a classifier. Such a relationship ensures

that the generator will be able to combat class imbalance by routinely supplying new difficult

to classify samples to the classifier. However, due to the adversarial relationship with the
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classifier, the generator will attempt to push the generated points towards the class periphery.

If left unchecked then such a generator may end up generating out-of-class samples in an

attempt to fool the classifier. To prevent this instead of a classical generator we propose a

convex generator that generates a new sample for a given class as a convex combination of

the existing training examples from that class. However, if the class is not convex then such

a convex generator may still violate the corresponding class distribution. To address this

issue we propose to include an additional discriminator in the framework which will guide

the convex generator to follow the class distribution. Hence, GAMO can be expressed as a

three-player game between a convex generator, a discriminator, and a classifier, where the

generator attempts to fool both of the other two networks. However, GAMO generates new

samples in the learned feature space whereas many applications may require balancing the

original training set. Thus, we propose a GAMO2pix network which can learn the reverse

mapping from the distributed feature to image space. This also helps us to assess the quality

and diversity of the artificial instance generated by GAMO. An ablation study and empirical

evaluation support the performance of the proposed technique.

1.6.5 Contributions of Chapter 6

In this chapter, we summarize the conclusions made by the previous chapters and discuss

some open problems and future directions of research on the topic.
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Chapter 2

Appropriateness of Performance
Indices for Imbalanced Data
Classification

Summary

Indices quantifying the performance of classifiers under class-imbalance, often suffer from

distortions depending on the constitution of the test set or the class-specific classification

accuracy, creating difficulties in assessing the merit of the classifier. In this chapter, we

identify two fundamental conditions that a performance index must satisfy to be respectively

resilient to the altering number of testing instances from each class and the number of classes

in the test set. In light of these conditions, under the effect of class imbalance, we theoretically

analyze four indices commonly used for evaluating binary classifiers and five popular indices

for multi-class classifiers. For indices violating any of the conditions, we also suggest remedial

modification and normalization. We further investigate the capability of the indices to retain

information about the classification performance over all the classes, even when the classifier

exhibits extreme performance on some classes. Simulation studies are performed on high-

dimensional deep representations of a subset of the ImageNet dataset using four state-of-the-

art classifiers tailored for handling class imbalance. Finally, based on our theoretical findings

and empirical evidence, we recommend the appropriate indices that should be used to evaluate

the performance of classifiers in presence of class-imbalance.
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2. Appropriateness of Performance Indices

2.1 Introduction

2.1.1 Overview

Class imbalance in the training set leads the classifier to be biased in favor of the majority

classes and consequently suffers from higher misclassification on the minority classes. Evi-

dently, such bias should be properly taken under consideration during performance evaluation.

This indicates the need for special indices, unlike the widely used Accuracy measure which

lays more stress on the performance over the majority classes, being unsuitable in presence

of class imbalance (Sokolova et al., 2006; Japkowicz, 2006).

Over the years, for a binary imbalanced classification problem indices like Recall, Speci-

ficity, and Precision (Buckland and Gey, 1994) were considered to be the basic measures of

performance. However, by design, Recall (or Sensitivity) measures the accuracy over the

minority (positive) class, Specificity does the same for the majority (negative) class, and

Precision (Buckland and Gey, 1994) considers the fraction of positives which are accurately

classified (true positive) to the number of instances predicted as positives. In other words,

these three measures offer different criteria of evaluation by respectively focusing on the true

positive, true negative (analogous to true positive for the negative class), and false-positive

(negative instances wrongly classified as positive) counts and a good classifier is expected

to optimize all of them. However, optimizing multiple indices simultaneously is difficult in

practice, especially if a trade-off is required. Therefore, attempts were made to combine two

or more of these basic indices together to form new measures that can consider multiple

distinct aspects during evaluation as well as provide easy interpretability. For example, the

GMean (Kubat et al., 1997) index is calculated by taking the geometric mean of Sensitivity

and Specificity, while Area Under Receiver Operating Characteristics (AUROC) (Hand and

Till, 2001) measure is found by plotting Recall against False Positive Rate (FPR). Similarly,

the Precision and Recall can be combined to form the Area Under Recall Precision Curve

(AURPC) (Davis and Goadrich, 2006) index.

In the case of the multi-class classification, a direct extension of the GMean index is

available (Branco et al., 2016). The multi-class analog of Recall is the Average Class-Specific

Accuracy (ACSA) (Huang et al., 2016). AUROC can be extended for multi-class classification

problems by either the One Versus One (OVO) strategy to calculate AUROC-OVO (Hand
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and Till, 2001), or by the One Versus All (OVA) strategy to find AUROC-OVA (Japkowicz,

2013). Similarly, the multi-class version of AURPC is called AURPC-OVA (Japkowicz, 2013),

as the extension warrants the use of the OVA strategy. In the following Table 2.1 we briefly

describe the indices which are analyzed in detail in the subsequent sections of this article.

Table 2.1: Brief description of the indices discussed in this chapter (formally detailed in
Definition 2.3 and 2.5).

Index Brief description

GMean Geometric mean of all the class-specific accuracies. Applicable to two-class as well
as multi-class classification problems.(Kubat et al., 1997)

AUROC Can be reduced to the arithmetic mean of the class-specific accuracies in a
two-class classification problem.(Hand and Till, 2001)

Precision In a two-class classification problem it is defined as the fraction of true positives to
the total number of instances which are classified as positives.(Buckland and Gey, 1994)

AURPC Reduces to the arithmetic mean of accuracy over the positive class and Precision
in a two-class classification problem.(Davis and Goadrich, 2006)

ACSA Arithmetic mean of the class-specific accuracies in a multi-class classification
problem.(Huang et al., 2016)

AUROC-OVA
Direct extension of AUROC for multi-class classification using OVA strategy.

(Japkowicz, 2013)

AUROC-OVO
Direct extension of AUROC for multi-class classification using OVO strategy.

(Hand and Till, 2001)

AURPC-OVA
Direct extension of AURPC for multi-class classification using OVA strategy.

(Japkowicz, 2013)

2.1.2 Background

The growing number of classification performance measures inspired the research community

to investigate their uniqueness, compare their applicability to class imbalanced problems in

general, and evaluate their suitability for specific applications. Studies like (Daskalaki et al.,

2006; Ferri et al., 2009; Ballabio et al., 2018) attempted to empirically find the inter-relation

between indices, while observing their behavior under different scenarios. However, these

empirical analyses are dependent on the choice of classifiers as well as the datasets, therefore

failing to provide general conclusions. In contrast, a theoretical approach is taken in (Joshi,

2002) and (Liu et al., 2007) to model the change of an index value with respect to varying

class imbalance. However, these preliminary approaches, in addition to being complicated

did not consider the possible disparity between the training and test sets. A simpler, more

structured framework was proposed by Sokolova and Lapalme (2007, 2009) which was later
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extended by Brzezinski et al. (2018). They formalized a set of transformation conditions on

the confusion matrix (Kubat et al., 1997) to imitate changes in classification performance as

well as alterations in the test set. An index is called invariant (or considered unaffected) by

a certain transformation if its value does not change despite the transformation. Luque et al.

(2019) took a different direction by building upon the measure of class imbalance proposed

in (Núñez et al., 2017) and defining a set of indicators to theoretically analyze the bias

of various indices in binary classification problems. Recently, the work done by Brzezinski

et al. (2018) was further extended in (Brzezinski et al., 2019) for imbalanced streaming data

classification (Yamazaki et al., 2007; Alaiz-Rodŕıguez and Japkowicz, 2008). The authors

attempted to properly interpret the value returned by an index especially under the effect

of the dynamically changing class priors between the training and test sets, which is fairly

common for streaming data. However, these works mostly focused on the application-specific

suitability of an index. This limits them from discussing on a set of necessary conditions,

violation of which may deem the index as undesirable for general use, along with offering

any remedial modifications to impose invariance. Moreover, they considered the key dataset

properties such as the number of classes as constant. This restricts them from addressing the

pivotal role that the altering number of classes may play in distorting an index, a situation

common to open set classification problems (Rudd et al., 2018).

2.1.3 Motivation

In an attempt to rectify the shortcomings of the existing literature (as discussed in Section

2.1.2), we carry out a systematic theoretical study on the desirable properties of the indices.

The presented properties are fundamental in the sense that they ensure the invariance of an

index against the following two types of undesirable distortions:

Type 1 distortion: The fraction of representatives from a class in the test set X ′ ⊆ S

(containing n data instances) may not always be similar to that of X 1. However, under such

conditions, the value returned by some performance indices (such as Precision (Bradley et al.,

2006)) tends to vary with changes in the number of test points from the different classes. An

example of this type of distortion is illustrated in Figure 2.1a, where the mapping within the

1All our analyses and discussions in this chapter are applicable to both of the validation and test sets.
Thus, throughout this chapter validation and test sets are often considered as synonymous and are denoted
by the same notation for simplicity.
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(a) Type 1 distortion of index. (b) Type 2 distortion of index.

Well	behaved	data
Moderately	behaved	data
Ill	behaved	data
Very	poor	classifier
Poor	classifier
Moderate	classifier
Good	classifier
Very	good	classifier

(c) Legends.

Figure 2.1: Two types of distortions can affect an index while quantifying the performance of
classifiers of varying quality over datasets posing diverse degrees of challenge. The complexity
of the datasets (plotted by black lines along the horizontal axis) ranges over well behaved
(dotted line), moderately behaved (dashed line), and ill behaved (solid line). The quality
of the classifier (plotted as colored lines along the vertical axis) varies between very poor
(magenta), poor (red), moderate (green), good (blue), and very good (yellow). The ideal
behavior of an index is illustrated in the background. (a) Type 1 distortion results in the
index becoming increasingly warped within its stipulated range. Here the behavior of a
dataset is characterized by the variation in the class priors from the training set to those of
the test sets. In well behaved data no variation takes place while the mild and high amount of
disparity is respectively observed for moderately and ill behaved data. (b) Type 2 distortion
results in the range of the index becoming progressively smaller. Here the number of classes
remains constant in a well behaved data, while small and high increase in c respectively
indicates a moderately and ill behaved data. Best viewed in color in the electronic version.

range of the index (which remains unchanged) becomes increasingly warped. The change in

the fraction of representatives between training and test (or validation) sets may happen in a

real-world classification problem due to a couple of reasons. Firstly, concept drift (Yamazaki

et al., 2007; Alaiz-Rodŕıguez and Japkowicz, 2008) can result in continuous alterations of class

priors (and consequently the degree of imbalance) over time. Such drifting is fairly common

in imbalanced streaming data classification problems (Brzezinski et al., 2019), resulting in

different extents of class imbalance in training, validation, and test sets. Secondly, prior

probability shift between training, validation, and test sets also occurs in current large scale

benchmark datasets such as LSUN (Yu et al., 2015) and ImageNet (Deng et al., 2009), where

the class priors in the training set are not retained in the predefined validation and test sets.

It is important to note that remedial measures like stratified cross-validation (López et al.,

2014) cannot be efficiently applied in both of these situations.

If an index suffering from the above-mentioned distortion is used during validation, then

the classifier will be improperly evaluated and consequently miscalibrated. Further, in stream-

ing data classification, an application may require the classifier to be tested at regular in-
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tervals, so that the classifier’s parameters can be periodically fine-tuned according to the

latest performance. Here also, the use of an index that is susceptible to this first type of

distortion may lead to inappropriate judgment about the quality of the classifier and mislead

the periodic retraining procedure.

Type 2 distortion: The range of possible values to be returned by some performance

indices (for example, AUROC-OVO as shown in Theorem 2.3) gets diminished with an in-

crease in the number of classes in the data. Thus, an index affected by such a distortion

may fail to identify the better classifier with decreasing confidence as the number of classes

increases, even when the contenders are of diverse quality. In the worst case, on a very large

number of classes, due to rounding error a set of classifiers may end up being evaluated as

similar, all providing commendable performance instead of reflecting their actual quality. An

example of this distortion is also illustrated in Figure 2.1b, where the lower bound of the

index gradually increases.

Example 2.1. To better illustrate the two types of distortions we present an example in

Figure 2.2. For Type 1 distortion, we take a two-class dataset2 where each class is drawn from

a normal distribution. To quantize the level of class imbalance in the test set, we use a measure

called Ratio of Representatives in the Test set (RRT), which for a two-class classification

problem can be expressed as
nmaj

nmin
, where nmaj and nmin are respectively the number of test

points from the majority and the minority class (see Definition 2.1). A well behaved test set

as shown in Figure 2.2a, is created by sampling 5000 points from each class. Progressively

worse behaved test sets are formed by varying the RRT between 2,4,6,8, and 10. Now as

shown in Figures 2.2a and 2.2b, let us shift a linear classifier from the best possible position

(which accurately separates the two classes) to the worst (which only perfectly classifies the

majority). We measure the Precision of the different classifiers on the varying test sets and

plot them in Figure 2.2c. We can observe that even though the classifier maintains its quality

by remaining at a fixed position, the Precision decreases with increasing RRT (for example,

at the class boundary x = 4 the Precision deteriorates from 0.93 to 0.59 when RRT is altered

from 1 to 10). The change in Precision is high when the classifier is of poor quality, while

the gap progressively closes down with improving performance.

In the case of Type 2 distortion, we start with a three-class dataset as in Figure 2.2d where

2The construction of all the datasets used in this example is detailed in Section A.1 of Appendix A.
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Figure 2.2: Illustrative example of the two types of distortions; (a)-(c) for Type 1 and (d)-(f)
for Type 2. Please note that the quality of the linear classifiers follow the legends as in
Figure 2.1. (a) Balanced two class dataset (Well behaved) (b) When RRT is set to 10 by sub-
sampling from the class in the right (Ill behaved). (c) Effect of Type 1 distortion on Precision:
the value returned by the index deteriorates with increasing RRT, even when the classifier
remains the same. (d) Three class dataset (Well behaved) (e) The final six class dataset after
adding the rest of three classes on the vertices of the regular hexagon (Ill behaved in the
sense of Type 2 distortion). (f) Effect of Type 2 distortion on AUROC-OVA: progressively
higher index value is produced for the similar performing classifier while c increases. Best
viewed in color in the electronic version.

the classes are sampled from normal distributions centered at the three adjacent vertices of

a regular hexagon. We gradually increase the number of classes to six in Figure 2.2e by

similarly sampling on the rest of the three vertices in an anticlockwise order. In each case,

we start with an OVA ensemble of linear classifiers which performs as worse as a uniformly

random assignment and gradually moves towards the best which achieves perfect accuracy. As

previous, we calculate the AUROC-OVA of the different classifiers on the various datasets and

plot them in Figure 2.2f. We can observe that even when a classifier is accurately classifying

the same fraction of points from each class the AUROC-OVA index gradually returns a higher

value with the increasing number of classes (for example, when the classifier correctly predicts

60% points from each class on average, the AUROC-OVA reaches from 0.70 to 0.77 with c

altering from 3 to 6).

Evidently, an evaluation index may suffer from either or both of these distortions with
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the change in the properties of the dataset (such as the number of classes, size of the test

set, and extent of class imbalance) even if the classifier retains a consistent performance.

Consequently, such types of distortions primarily complicate the interpretation of a value

returned by an index. For example, the classifier with moderate performance in Figure 2.1

can either be assigned a higher index value or a lower index value (compared to the ideal)

depending on the nature of the distortion suffered by the performance indices. Hence, the

actual index values cannot be used to properly assess the merit of a classifier. Another issue

arises when the difference between the values yielded by a bad classifier and a good one

gets diminished to the extent of being ignored due to the rounding of values in practical

experiments.

Even when an index is found to be unaffected by the two types of distortions it may still

provide a value from which adequate information about the performance of a classifier over

all the classes is difficult to extract. This usually occurs in multi-class imbalanced classifi-

cation problems, where high misclassification in a single class (irrespective of the classifier’s

performance over the other classes) results in a severely deteriorated index value.

2.1.4 Contributions of Chapter 2

In this chapter, we identify two necessary conditions (described in Section 2.2) that an index

must satisfy to be considered ideal for evaluating the performance of classifiers on imbalanced

datasets. Contrary to the prior works, we do not focus on the application-specific suitability

of any index and aim to propose a set of constraints that will evaluate an index from a more

generalized perspective. To elaborate we look at the nature of changes in the data itself which

can affect an index. Evidently, it is expected that an index should remain invariant to any

changes in the training/test set if the classifier performs uniformly. Therefore, ensuring such

can be considered as a fundamental requirement over all other types of secondary consistency

checks. In essence, under the assumption that the classifier sustains its performance over

each of the classes, we formulate two transformation conditions on the confusion matrix.

Invariance to both of these transformations will ensure the immunity of an index against the

two types of distortions. In Table 2.2, we put our contributions in proper context with the

existing works. We further summarize the contributions as follows:
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Table 2.2: Summary of contributions made in this chapter in comparison to existing literature
(no references are provided for original contributions).

Topics Reference Our contribution

Condition 2.1

Sokolova
and

Lapalme
(2009)

Established as a necessary safeguard against Type 1
distortion.

Invariance of Recall, Precision, and AU-
ROC to Condition 2.1

Sokolova
and

Lapalme
(2009)

Re-validated using a mathematical framework.

Invariance of GMean, ACSA, AUROC-
OVA, AUROC-OVO, and AURPC-OVA
to Condition 2.1

- Validated using a mathematical framework.

Remedial modification of Precision, AU-
RPC, and AURPC-OVA to satisfy Condi-
tion 2.1

Bradley
et al.

(2006)

Validated using a mathematical framework. Estab-
lished as an effective replacement to the original
ones, which satisfy Condition 2.1.

Remedial normalization of AUROC-OVA
to satisfy Condition 2.1

-
Proposed and validated using a mathematical frame-
work.

Condition 2.2 -
Proposed as a necessary safeguard against Type 2
distortion.

Invariance of Recall, Precision, AUROC,
GMean, ACSA, AUROC-OVO, AUROC-
OVA, and AURPC-OVA to Condition 2.2

- Validated using a mathematical framework.

Remedial normalization of AUROC-OVO,
and AUROC-OVA to satisfy Condition 2.2

-
Proposed by us and validated using a mathematical
framework.

Condition 2.3 -
Proposed to validate the quality of the information
returned by an index which satisfies Condition 2.1
and 2.2.

Invariance of GMean, ACSA, and modified
AURPC-OVA to Condition 2.3

- Validated using a mathematical framework.

1. The first condition guards against the Type 1 distortion by ensuring invariance of an

index with alterations of the size and sample distributions among the different classes in

the test set. This condition was first introduced by Sokolova and Lapalme as properties

I6 and I8 in 2009 (where the former is a special case of the later). However, they

were not motivated to evaluate the effects of distortions over the indices. Therefore,

their analysis did not elaborate on the implication of the properties or identify them

as fundamental constraints. In this article, we bridge this gap by establishing this

condition as a necessary measure against the Type 1 distortion. Moreover, in Theorems

2.1 and 2.3 under the light of the first condition we analytically discuss the properties

of GMean, ACSA, AUROC-OVO, AUROCC-OVA, and AURPC-OVA, none of which

were covered in the previous studies.
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2. We propose the second condition which deals with the Type 2 distortion assuring in-

variance to the varying number of classes in the test set, as shown in Theorem 2.3.

3. We show in Theorem 2.2 that contrary to the regular Precision and AURPC indices,

the modifications proposed in (Bradley et al., 2006) are indeed capable of inducing

invariance under the first condition. We further propose the normalized variants of

AUROC-OVO (which essentially reduces to ACSA) and AUROC-OVA, which offer

immunity against the effects of the two types of distortions.

4. We also propose the third condition to ensure that in a multi-class classification prob-

lem, an index that fulfills the two fundamental desirable properties are also capable

to provide sufficient information about the classifier’s performance over all the classes,

even when a single class suffers extremely high misclassification. We show in Theorem

2.5 that except GMean, both ACSA and AURPC-OVA offer invariance under the third

condition.

In this chapter, we also present an empirical analysis on some selected subsets of ImageNet

(Deng et al., 2009) in Section 2.5 to experimentally validate our theoretical findings and

effectiveness of the prescribed remedies. Finally, in Section 2.6, we present a discussion on the

applicability of different indices in imbalanced classification tasks, and make recommendations

as per situation, and subsequently conclude in Section 2.7.

2.2 Desirable properties for performance indices

Various performance evaluating indices depend on the diverse properties (such as imbalance,

number of classes, etc.) of the training and/or test set to different extents, resulting in

improper/ambiguous evaluation of a classifier. This issue can be resolved by defining a set

of necessary but not sufficient conditions to ensure the quality of the evaluation by an index.

For a training set, the extent of class imbalance can be quantified with the help of IR as

defined in Definition 1.2 in Chapter 1. However, a classifier is trained on a single training set

X with a fixed predefined IRpair, whereas all possible test sets might not follow a distribution

of the representatives among the classes (i.e. IRpair) similar to X. Therefore, analogous to

IR we define RRT for quantifying the ratio of representatives among the classes in the test
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set.

Definition 2.1. For a 2-class classification problem, the RRT is defined as the proportion of

the number of points from the majority class to that of the minority class, where the majority

and the minority classes are named according to the training set. This definition can be

extended for the c-class classification case in a manner similar to IR, where the set of a

pairwise ratio of the number of the data instances among the c classes is denoted by RRTpair,

i.e. RRT = max RRTpair.

Performance of the classifier on a c-class classification problem can be expressed in the

form of a matrix called the confusion matrix, which is defined as follows:

Definition 2.2 (Kubat et al. (1997)). A confusion matrix over a test set X ′ for a c-class

classification problem can be defined as Qc = [qij ]c×c, where qij represents the number of

points which actually belongs to ith class but are predicted as a member of class j, for all

i, j ∈ C. Thus, the diagonal elements i.e. qii are those instances of class i which are correctly

classified while the rest are different misclassifications. Evidently, each entry in the confusion

matrix must be a non-negative integer i.e. qij ∈ Z+ ∪ {0}; ∀i, j ∈ C

There are some important properties of the confusion matrix which we detail in the

following discussion.

Property 1: The sum of entries in the ith row of the confusion matrix is denoted by ni

(i.e.
∑c

j=1 qij = ni; ∀i ∈ C), which is the number of test points belonging to the ith class.

We assume that ni > 0, as there should be at least one point from each class in the test set.

Property 2: The sum of entries in the ith column of the confusion matrix is denoted by

ri (i.e.
∑c

j=1 qji = ri; ∀i ∈ C), which is the number of test points predicted as ith class.

Property 3: The total number of test points n =
∑c

i=1

∑c
j=1 qij ; ∀i, j ∈ C.

Property 4: In case of two-class classification, the entries of Q2 are specially named, as

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN), when

the test instances from the majority and the minority classes are respectively labelled as -1

(negative) and +1(positive). Therefore, Q2 can be formally represented as:

Q2 =

TP FN

FP TN

 . (2.1)
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Before proceeding further we need to describe our primary assumption based on which

the following theory will be built.

Assumption 2.1. The class-specific performance (the fraction of correct classification as

well as the proportion of misclassification to each of the other classes) of a classifier remains

the same over any random subset of the dataset.

The class-specific performance of a classifier can be considered as an equivalence relation,

which can partition the set Qc containing all possible c-class confusion matrices into some

equivalence classes. In any of these equivalence classes, the class-specific performance of a

classifier remains constant over all the classes. To elaborate, given two confusion matrices

say Qc and Q′c
3, if the equivalence relation qij/ni = q′ij/n

′
i, satisfies for all i, j ∈ C, then they

can be considered as members of the same equivalence class, i.e. Qc ∼ Q′c. In other words

the equivalence property essentially corresponds to constant performance by a classifier or

formally represents Assumption 2.1. Using the notion of the confusion matrix, we can now

formally define a performance evaluation index as a function f mapping from the set of all

possible confusion matrices Qc to a real scalar quantity. Such a representation is important

as it helps us define some functionals to formally describe our proposed conditions, in the

following manner.

Condition 2.1. The value of an index should not be dependent on RRT, if the classifier

performs equivalently, i.e.

VQc(f) = VQ′c(f); ∀Qc ∼ Q′c,

where VQc is a functional evaluating the index f on the confusion matrix Qc.

As an extension of the work by Sokolova and Lapalme (2009), in this article we propose

Condition 2.1 as a necessary measure against the Type 1 distortion, violation of which may

alter the value of an index with the changes of RRT in the test set even when the classifier

remains the same.

3Evidently, Q′c = [q′ij ]c×c,
∑c

i=1

∑c
j=1 q

′
ij = n′,

∑c
j=1 q

′
ij = n′i, and

∑c
j=1 q

′
ji = r′i for all i ∈ C.
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Condition 2.2. The lower and the upper bounds of an index f should not be dependent on

the number of classes, i.e.

LQc(f) = LQc+1(f) ∀c ∈ Z+ \ {1},

and UQc(f) = UQc+1(f) ∀c ∈ Z+ \ {1},

where, Qc and Qc+1 are respectively the sets of all possible c-class and (c+ 1)-class confusion

matrices. Moreover, L and U , are two functionals of f , respectively calculating the minimum

and maximum value of f over all Qc and Qc+1.

Condition 2.2 ensures that under the assumption of a consistent performance by a clas-

sifier, the value of an index should not be biased to differing number of classes in the test

set.

If we consider a c-class confusion matrix, where qii/ni = ε, only for the ith class (i ∈ C)

while qjj/nj ≥ (1− ε) for all the other classes (j ∈ C \ {i}), and ε = 1
c , then all such matrices

form a set Qc(i) ⊂ Qc. In other words, Qc(i), is the set of all such c-class confusion matrices

where the classifier performed extremely poor only on the ith class.

Condition 2.3. An index f while evaluating a multi-class classifier should not be biased to-

wards the misclassification of a single class, i.e. WQc(i)(f) > LQc(f), whereW is a functional

which calculates the limit of f , as ε→ 0+.

In other words, Condition 2.3 ensures that the value returned by the index will not

excessively degrade if a single class is almost entirely misclassified in a multi-class classification

problem. Violating Condition 2.3 will lead the index to lose information about the classifier’s

performance on all the other classes. Evidently, index failing to satisfy Condition 2.3 will

be unable to distinguish between two classifiers, one of which achieves good class-specific

accuracies on all but one class, while the other achieves high misclassification on all.
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2.3 Analysis of the two-class performance evaluation indices

In this section, we analyze the characteristics of four indices, namely GMean, AUROC4,

Precision, and AURPC; which are used to evaluate the performance of a classifier in the

presence of class imbalance for a two-class classification problem. We only require to validate

if the indices satisfy Condition 2.1 as the other is only applicable for multi-class classification.

Definition 2.3. For a two-class classification problem, given a confusion matrix Q2 as in

(2.1),

1. The GMean index, denoted by γ2 is defined as:

γ2(Q2) =

((
TP

TP + FN

)(
TN

FP + TN

)) 1
2

. (2.2)

2. The AUROC index, denoted by ρ is defined as:

ρ(Q2) =
1

2

(
TP

TP + FN
+

TN

FP + TN

)
. (2.3)

3. The Precision index, denoted by ζ is defined as:

ζ(Q2) =
TP

TP + FP
. (2.4)

4. The AURPC index, denoted by κ is defined as:

κ(Q2) =
α′(M2) + ζ(M2)

2
, (2.5)

where, α′(Q2) = TP/(TP + FN) is the Recall.

Evidently, the formal definitions of the indices do correspond to their pedagogical descrip-

tion in Table 2.1. We may now proceed to analyzing the behavior of the indices under the

light of Condition 2.1 in the following theorem.

Theorem 2.1. For a two-class classification problem, given two confusion matrices Q2 and

Q′2, the following statements can shown to be true if Q2 ∼ Q′2,

4For mathematical simplicity we have restricted ourselves to the discrete version of the index, which is
popularly used in practice.
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1. The index γ2 satisfies Condition 2.1.

2. The index ρ satisfies Condition 2.1.

3. The index ζ does not satisfy Condition 2.1.

4. The index κ does not satisfy Condition 2.1.

Proof. Let us define Q2, as in (2.1), while Q′2 can be constructed as,

Q′2 =

b1TP b1FN

b2FP b2TN

 ,
where b1, b2 ∈ R+, b1 6= b2 and q′ij ∈ Z+,∀i, j ∈ {1, 2}. Such a form of Q′2, will ensure that

qij/ni = q′ij/n
′
i, is satisfied for all i, j ∈ {1, 2}, or Q2 ∼ Q′2. With this initial setup we start

the proof of the first statement by finding the value of VQ′2(γ2), following (2.2):

VQ′2(γ2) =

((
b1TP

b1TP + b1FN

)(
b2TN

b2FP + b2TN

)) 1
2

,

=

((
TP

TP + FN

)(
TN

FP + TN

)) 1
2

= VQ2(γ2).

Therefore, the γ2 index satisfies Condition 2.1.

The second statement can be proved in a similar manner by starting from VQ′2(ρ) using

(2.3),

VQ′2(ρ) =
1

2

(
b1TP

b1(TP + FN)
+

b2TN

b2(FP + TN)

)
,

=
1

2

(
TP

TP + FN
+

TN

FP + TN

)
= VQ2(ρ).

This proves the second statement.

Similarly, we show the third statement to be true by calculating VQ′2(ζ) as per (2.4),

VQ′2(ζ) =
b1TP

b1TP + b2FP
. (2.6)

From (2.6) it is evident that VQ′2(ζ) can be equal to VQ2(ζ), only when b1 = b2, which implies

that ζ violates Condition 2.1.
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Finally, we prove the fourth statement by finding the value of VQ′2(κ) according to (2.5),

VQ′2(κ) =
b1TP

b1(TP + FN)
+

b1TP

b1TP + b2FP
,

=
TP

TP + FN
+

b1(TP )

b1(TP ) + b2(FP )
. (2.7)

Therefore, from (2.7), we can conclude in a manner similar to (2.6) that VQ′2 = VQ2 only

holds when b1 = b2, thus completing the proof.

From Theorem 2.1, we can see that while GMean and AUROC indices satisfy Condition

2.1, the Precision and AURPC indices do not, thus being susceptible to RRT. In other

words, both of Precision and AURPC may evaluate a good classifier as a poor choice, with

the increase in RRT, even when the class-specific performances are retained. This is due to

the increasing number of test points from the majority class which considerably increases FP.

This was first observed by Bradley et al. (2006), who proposed a solution by incorporating

the class priors in the definition of Precision. In their modified definition of Precision (and

consequently AURPC) the direct use of FP is replaced with the ratio of false positives to

the number of majority instances. The modified Precision and AURPC, respectively called

mPrecision and mAURPC, are described in the following definition.

Definition 2.4 (Bradley et al. (2006)). For a two-class classification problem, given a con-

fusion matrix Q2 as in (2.1), where TP + FN = n1 and FP + TN = n2,

1. The mPrecision index, denoted by ζ̂ is defined as:

ζ̂(Q2) =
TP/n1

(TP/n1) + (FP/n2)
. (2.8)

2. The mAURPC index, denoted by κ̂ is defined as:

κ̂(Q2) =
1

2
(α′(Q2) + ζ̂(Q2)). (2.9)

Theorem 2.2. For a two-class classification problem, given two confusion matrices Q2 and

Q′2, the following statements can shown to be true, if Q2 ∼ Q′2,

1. The index ζ̂ satisfies Condition 2.1.

52



2. Appropriateness of Performance Indices

2. The index κ̂ satisfies Condition 2.1.

Proof. Given Q2, as in (2.1), we construct Q′2, such that Q2 ∼ Q′2, in a manner similar to

Theorem 2.1. Then to prove the first statement we proceed by calculating VQ′2(ζ̂) using (2.8).

VQ′2(ζ̂) =
b1TP/b1n1

b1TP/b1n1 + b2FP/b2n2
,

=
TP/n1

(TP/n1) + (FP/n2)
= VQ2(ζ̂).

This completes the proof of first statement.

We prove the second statement by finding VQ′2(κ̂), which from (2.8), and (2.9) can also

be written as

VQ′2(κ̂) =
b1TP

2b1n1
+

b1TP/b1n1

2b1TP/b1n1 + 2b2FP/b2n2

=
TP

2n1
+

TP/n1

(TP/2n1) + (FP/2n2)
= VQ2(κ̂).

Thus, the second statement is proved, completing the proof of this Theorem.

From Theorem 2.2 we can conclude that the proposed modification of Precision and

AURPC can improve their immunity over RRT by satisfying Condition 2.1, and in the process

will be able to better evaluate a classifier.

2.4 Analysis of the multi-class performance evaluation indices

In this section, we will define five multi-class evaluation indices, namely GMean, ACSA,

AUROC-OVO, AUROC-OVA, and AURPC-OVA. Similar to the two-class indices we present

an analysis in the perspective of the first two conditions and prescribe modification/normalization

as per requirement.

Definition 2.5. Given a c-class confusion matrix Qc as defined in Definition 2.2,

1. The GMean index, denoted by γc is defined as:

γc(Qc) =

(
c∏
i=1

qii
ni

) 1
c

. (2.10)
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2. The ACSA index, denoted by α is defined as:

α(Qc) =
1

c

c∑
i=1

qii
ni
. (2.11)

3. The AUROC-OVO index, denoted by ρo is defined as:

ρo(Qc) =
1

2c

c∑
i=1

(
1 +

qii
ni
−

c∑
j=1
j 6=i

qji
(c− 1)nj

)
. (2.12)

4. The AUROC-OVA index, denoted by ρa is defined as:

ρa(Qc) =
1

2c

c∑
i=1

(
1 +

qii
ni
− ri − qii
n− ni

)
. (2.13)

5. The AURPC-OVA index, denoted by κa is defined as:

κa(Qc) =
1

2c

c∑
i=1

(
qii
ri

+
qii
ni

)
. (2.14)

Similar to the two-class case, here also the indices reflect their informal description from

Table 2.1 to their mathematical definition. Before proceeding further, we need to first prove

three supporting lemmas, which respectively comment on the range of ACSA index, and

highlights the key properties of AUROC-OVO and AUROC-OVA.

Lemma 2.1. In a c-class classification problem the value of index α lies between 0, and 1.

Proof. According to Definition 2.2, in a c-class confusion matrix 0 ≤ qii/ni ≤ 1, for all i ∈ C.

Using this and the definition of α in (2.11), we can conclude that 0 ≤ α ≤ 1. Specifically,

α = 0, when the classifier wrongly classified every test point i.e. qii = 0, for all i ∈ C, and

α = 1, if the classifier correctly predicts the class label for each member of the test set.

Lemma 2.2. The value ρo(Qc) can be expressed as a linear function of α(Qc), with a constant

coefficient and bias both of which are dependent on c, as follows:

ρo(Qc) =
c

2(c− 1)
α(Qc) +

c− 2

2(c− 1)
. (2.15)
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Moreover, the lower bound of ρo(Qc) can be expressed as LQc(ρo) = c−2
2(c−1) , while the upper

bound UQc(ρo) = 1.

Proof. We first start with a Qc ∈ Qc, then following from (2.12) after some algebraic manip-

ulation we express ρo(Qc) as:

ρo(Qc) =
1

2
+

1

2c

c∑
i=1

qii
ni
− 1

2c(c− 1)

c∑
i=1

∑
j∈C\{i}

qji
nj
,

=
1

2
+

1

2c

c∑
i=1

qii
ni
− 1

2c(c− 1)

c∑
i=1

ni − qii
ni

,

=
1

2
+

1

2c

c∑
i=1

qii
ni
− 1

2(c− 1)

(
1− 1

c

c∑
i=1

qii
ni

)
,

=
1

2
+
α(Qc)

2
− 1

2(c− 1)
(1− α(Qc)),

=
c

2(c− 1)
α(Qc) +

c− 2

2(c− 1)
. (2.16)

Interestingly, from (2.16) we can conclude that for a given c, the index ρo(Qc) can be expressed

as a linear function of α(Qc), with a constant coefficient and a bias. Now Qc is an arbitrary

matrix belonging to the set Qc. Therefore, we can safely extend (2.16) to:

LQc(ρo) =
c

2(c− 1)
LQc(α) +

c− 2

2(c− 1)
, (2.17)

and, UQc(ρo) =
c

2(c− 1)
UQc(α) +

c− 2

2(c− 1)
. (2.18)

Plugging the values of LQc(α), UQc(α) from Lemma 2.1, respectively in (2.17), and (2.18) we

obtain.

LQc(ρo) =
c− 2

2(c− 1)
and UQc(ρo) = 1,

which completes the proof.

Lemma 2.3. If we assume for simplicity, without loss of generality that n1 ≤ n2 · · · ≤ nc,

then the lower bound of ρa(Qc) can be expressed as

LQc(ρa) =
1

2c

(
c− 1− nc

n− nc−1

)
(2.19)
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while the upper bound UQc(ρa) = 1.

Proof. If the classifier misclassifies all of the test points then qii = 0,∀i ∈ C. However, as

evident from (2.13) the value of LQc(ρa) is also dependent on the actual predictions as the

the cost of misclassification to all the classes are not equal. To elaborate, we take a c-class

confusion matrix Qc, and construct Q′c, such that Qc +B = Q′c, where, B = [bij ]c×c, bij ∈ Z,∑c
i=1 bji = 0, q′ij = qij + bij ≥ 0, and

∑c
i=1 bij = r̄i, ∀i, j ∈ C, while conserving ni, ∀i ∈ C,

and n. Now, ρa(Q
′
c)− ρa(Qc) can be calculated as

ρa(Q
′
c)− ρa(Qc) =

1

2c

c∑
i=1

bii
ni
− 1

2c

c∑
i=1

r̄i − bii
n− ni

. (2.20)

Now for simplicity without loss of generality if we assume that n1 ≤ n2 · · · ≤ nc, then for any

i > j, ∀i, j ∈ C, from (2.20) we can conclude that, increase in r̄i−bii (i.e. the misclassification

to other classes) will have larger effect on the value of ρa(Q
′
c) than r̄j − bjj . In other words,

the cost of misclassifications is higher for the majority class. Hence the value of ρa(Qc) will

be minimum when all the points from classes other than c are wrongly predicted as class c,

while the points from class c are misclassified as c− 1. Hence, from (2.13) we get,

LQc(ρa) =
1

2c

(
c− 1− nc

n− nc−1

)
. (2.21)

If the classifier correctly classifies all the test points then ri−qii = 0, while qii/ni = 1, ∀i ∈ C.

Plugging these values in (2.13) gives UQc(ρa) = 1, finishing the proof.

We can now state the following theorem which investigates the behavior of different indices

under the effect of varying RRT and number of classes.

Theorem 2.3. Given a c-class classification problem:

1. The index γc, satisfies both of Condition 2.1 and 2.2.

2. The index α satisfies both of Condition 2.1 and 2.2.

3. The index ρo satisfies Condition 2.1 but not Condition 2.2.

4. The index ρa fails to satisfy both of Condition 2.1 and 2.2.
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5. The index κa satisfies Condition 2.2 but not Condition 2.1.

Proof. Let us consider two c-class confusion matrices Qc and Q′c. If we define Qc as per

Definition 2.2 then we can construct a new confusion matrixQ′c by multiplying all the elements

in the ith row by a bi, where bi ∈ R+, biqij ∈ Z+, and bi 6= bj ; ∀i, j,∈ C, such that Qc ∼ Q′c.

1) Using (2.10) we find the value of VQ′c(γc) as follows:

VQ′c(γc) =

(
c∏
i=1

biqii
bini

) 1
c

=

(
c∏
i=1

qii
ni

) 1
c

= VQc(γc).

Hence, it is proved that γc satisfies Condition 2.1.

Given a c-class confusion matrix Qc, the γc(Qc) is only dependent on the values of qii,

and ni, as can be inferred from its definition in (2.10). Now, from Definition 2.2 we know

that the values of ni > 0, and qii ≥ 0 (non-zero positive when at least one point from the

class is correctly classified, 0 otherwise) for all i ∈ C. Thus, from (2.10), it is evident that

γc(Qc) ≥ 0 (non-zero only when qii > 0;∀i ∈ C), which implies that LQc(γc) = 0.

Similarly, from the fact that qii <= ni; ∀i ∈ C, as ni =
∑c

j=1 qij , we can conclude that

0 ≤ qii/ni ≤ 1. Therefore, from (2.10) the value of UQc(γc) can found to be 1. Now, given

the family of c + 1-class confusion matrices, by the similar argument it can be shown that

LQc+1(γc) = 0, and UQc+1(γc) = 1, which satisfies the Condition 2.2. This completes the first

part of the theorem.

2) We take a c-class confusion matrix Qc and construct Q′c, such that they belong to the

same equivalence class. We then find the value of VQ′c(α) as per (2.10):

VQ′c(α) =
1

c

c∑
i=1

biqii
bini

=
1

c

c∑
i=1

qii
ni

= VQc(α).

Therefore, α satisfies Condition 2.1.

It is evident from Lemma 2.1 that LQc(α) = 0, UQc(α) = 1. By the same logic it can

be claimed that LQc+1(α) = 0, UQc+1(α) = 1. Therefore, the lower and upper bound of α

does not change with the increase in the number of classes, proving the second part of the

theorem.

3) We start by a c-class confusion matrix Qc and construct Q′c ensuring that Qc ∼ Q′c.
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Now to confirm if ρo satisfies Condition 2.1, we find VQ′c(ρo), using (2.12) as follows:

VQ′c(ρo) =
1

2c

c∑
i=1

(
1 +

biqii
bini

−
c∑
j=1
j 6=i

bjqji
(c− 1)bjnj

)
,

=
1

2c

c∑
i=1

(
1 +

qii
ni
−

c∑
j=1
j 6=i

qji
(c− 1)nj

)
= VQc(ρo).

Thus we show the invariance of ρo under Condition 2.1.

We first start with a Qc ∈ Qc, then following from Lemma 2.2, we get:

LQc(ρo) =
c− 2

2(c− 1)
and UQc(ρo) = 1.

Approaching similarly for a c+ 1-class confusion matrix, we see that:

LQc+1(ρo) =
c− 1

2c
6= LQc(ρo), (2.22)

UQc+1(ρo) = 1 = UQc(ρo). (2.23)

Therefore, from (2.22), and (2.23), we conclude that the lower bound of ρo is dependent on

the number of classes while the upper bound is remained at 1, violating Condition 2.2 and

completing the third part of the theorem.

4) Similar to the previous approaches given a c-class confusion matrix Qc, we construct

Q′c and express VQ′c(ρa) as follows:

VQ′c(ρa) =
1

2c

c∑
i=1

(
1 +

biqii
bini

−
∑c

j=1 bjqji − biqii∑c
j=1 bjnj − bini

)
,

=
1

2c

c∑
i=1

(
1 +

qii
ni
−
∑c

j=1 bjqji − biqii∑c
j=1 bjnj − bini

)
6= VQc(ρa).

Hence, ρa do not satisfy Condition 2.1.

It is evident from Lemma 2.3 that for a c + 1-class problem UQc+1(ρa) = UQc(ρa) = 1.

58



2. Appropriateness of Performance Indices

Moreover, similar to (2.21), we can calculate:

LQc+1(ρa) =
1

2c+ 2

(
c− nc+1

n− nc

)
. (2.24)

From, (2.21) and (2.24) we can show LQc(ρa) 6= LQc+1(ρa), indicating that ρa does not satisfy

Condition 2.2, which completes the fourth part of the theorem.

5) As previous we take a c-class confusion matrix Qc, and construct Q′c satisfying the

equivalence relation. Let us now find VQ′c(κa) by (2.14),

VQ′c(κa) =
1

2c

c∑
i=1

(
biqii∑c
j=1 bjqji

+
biqii
bini

)
,

=
1

2c

c∑
i=1

(
biqii∑c
j=1 bjqji

+
qii
ni

)
6= VQc(κa).

Therefore, we conclude that κa violates Condition 2.1.

We know from Definition 2.2, if qii becomes ni for all i ∈ C, i.e. when all the points

in the test set are correctly classified in their respective classes, then ri = qii;∀iC. On the

other hand if all the test points are misclassified then qii = 0 for all i ∈ C. Consequently,

0 ≤ qii/ri ≤ 1, and 0 ≤ qii/ni ≤ 1, where both reaches the lower bound of 0 when qii = 0

(at the worst performance of the classifier) and the upper bound 1 when qii = ni (i.e. the

classifier has achieved the best performance). Following this observation we can calculate

LQc(κa) = 1
2(0 + 0) = 0 and UQc(κa) = 1

2(1 + 1) = 1. We can similarly find LQc+1(κa)

and UQc+1(κa), which will be equal to their respective values for the set of c-class confusion

matrices. Hence, κa satisfies Condition 2.2.

If we consider the case of AUROC-OVO then it is evident from Lemma 2.2, that the lower

limit of ρo gradually increases with the number of classes thus becomes affected by the Type

2 distortion. A solution to mitigate this problem is to apply a normalization to ρo, such that

its lower bound can be made independent of C. This can be done by first subtracting the

bias from ρo and then dividing the result by the coefficient (both terms are dependent on the

choice of c) found in (2.15), which necessarily reduces the index to ACSA.

In a similar fashion, we can discuss the nature of AUROC-OVA as well. As per Lemma

2.3 the lower bound of the ρa index is dependent on the number of classes as well as on the
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number of test points from the top two majority classes. Therefore, normalizing such an

index will require to make certain assumptions on the representatives of the majority classes

in the test set. In a special situation where the test set only contains n
2 points each from

the top two majority classes, then LQc(ρa) reduces down to ρ̄a(c) = c−2
2c , which is a weak

lower limit for ρa. We call the normalized AUROC-OVA, as nAUROC-OVA, and calculate

it by first subtracting the reduced lower limit and then dividing the result by the difference

between the reduced lower limit and unity. In other words nAUROC-OVA can be expressed

as ρa(Qc)−ρ̄a(c)
1−ρ̄a(c) .

The reason for violating Condition 2.1 by AURPC-OVA is the direct consideration of ri

(which involve the true as well as false predictions in the ith class) in the precision counterpart.

Therefore, we propose a modified AURPC-OVA such that while calculating the precision the

qji values are properly scaled by their corresponding njs, for all j, i ∈ C. We describe the

modified AURPC-OVA called as mAURPC-OVA, in the following Definition 2.6.

Definition 2.6. For a c-class confusion matrix Qc the mAURPC-OVA index, denoted by κ̂a

is defined as:

κ̂a(Qc) =
1

2c

c∑
i=1

(
qii/ni∑c
j=1 qji/nj

+
qii
ni

)
. (2.25)

We now proceed to confirm Condition 2.1, and 2.2 for mAURPC-OVA, in the following

theorem.

Theorem 2.4. The index κ̂a satisfies both of the Conditions.

Proof. Proceeding in a manner similar to the one taken for κa in Theorem 2.3, if we consider

the two c-class confusion matrices Qc and Q′c, then VQ′c(κ̂a) can be expressed as follows:

VQ′c(κ̂a) =
1

2c

c∑
i=1

(
biqii/bini∑c
j=1 bjqji/bjnj

+
biqii
bini

)
,

=
1

2c

c∑
i=1

(
qii/ni∑c
j=1 qji/nj

+
qii
ni

)
= VQc(κ̂a),

which indicates that κ̂a, satisfies Condition 2.1.

Similar to Theorem 2.3, we can see that 0 ≤ qii/ni ≤ 1, and 0 ≤
∑c

j=1 qji/nj ≤ 1,

for all i, j,∈ C. Both of these terms reach their corresponding lower bound when classifiers
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performs the worst and upper bound at the accurate classification as previously described in

the fifth part of Theorem 2.3. Therefore, following Theorem 2.3, we can conclude that both

of LQc(κ̂a) = 0 = LQc+1(κ̂a) and UQc(κ̂a) = UQc+1(κ̂a), hold implying that Condition 2.2 is

satisfied by κ̂a.

From Theorem 2.3 and 2.4 we can conclude that among all only GMean, ACSA, and

AURPC-OVA satisfy both of Condition 2.1 and 2.2 and thus can be applicable to evaluate

multi-class imbalanced classifiers in presence of varying RRT or number of classes. However,

the question about the quality of the information provided by these indices under extremely

poor classification performance on a single class is still required to be answered. Therefore, we

proceed to the following Theorem 2.5 which evaluates the indices under the light of Condition

2.3.

Theorem 2.5. Among the three indices which are immune to the two types of distortions,

except γc, both of α and κ̂a also satisfy Condition 2.3.

Proof. To prove that γc fails to satisfy the third condition we start by finding WQc(i)(γc),

which by (2.10) can be expressed as follows:

WQc(i)(γc) = lim
ε→0+

(
ε

c∏
j=1,j 6=i

(1− ε)

) 1
c

= lim
ε→0+

ε
1
c (1− ε)

c−1
c = 0. (2.26)

From (2.26) and Theorem 2.3, we can see that for γc index WQc(i)(γc) = LQc(γc), thus

violating Condition 2.3.

We begin by calculating WQc(i)(α), which according to (2.10) is as follows:

WQc(i)(α) = lim
ε→0+

1

c

(
ε+

c∑
j=1,j 6=i

(1− ε)
)
,

= lim
ε→0+

ε+ (c− 1)(1− ε)
c

=
c− 1

c
. (2.27)

From (2.27) and Theorem 2.3, it is evident that α index WQc(i)(α) > LQc(α), therefore, α

satisfies Condition 2.3.
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As per (2.6) the value of WQc(i)(κ̂a) can be calculate as:

WQc(i)(κ̂a) = lim
ε→0+

1

2c

c∑
j=1
j 6=i

(
1− ε+

1− ε
1− ε+

ri−qjj
n−nj

)

+ lim
ε→0+

1

2c

(
ε+

ε

ε+ ri−qii
n−ni

)
,

⇒WQc(i)(κ̂a) > lim
ε→0+

1

2c

c∑
j=1
j 6=i

(
1− ε+

1− ε
1− ε+

n−nj+njε
n−nj

)

+ lim
ε→0+

1

2c

(
ε+

ε

ε+ n−niε
n−ni

)

⇒WQc(i)(κ̂a) >
c− 1

2c
(1 +

1

2
) + 0 =

3(c− 1)

4c
. (2.28)

From (2.28) and Theorem 2.4, it is evident that WQc(i)(κ̂a) > LQc(κ̂a), confirming that the

index κ̂a satisfies Condition 2.3, which completes the proof.

2.5 Experiments

This section first provides a brief description of the used dataset, followed by details of

the experiment protocol, and finally illustrates the different results alongside appropriate

discussion.

2.5.1 Description of datasets

We have used a subset of the widely popular ImageNet (Deng et al., 2009) classification

dataset for all our experiments. The ImageNet dataset provides a vast collection of natural

images categorized into a large number of structured classes (1000 leaf classes alongside

860 higher-level concepts following a predefined tree). For our experiments following the

standard practice (Razavian et al., 2014; Nanni et al., 2017; Mahajan et al., 2018; Datta

et al., 2019) we have taken a subset of the ImageNet training set by sampling images from

12 higher-level classes (formed by combining 1-5 leaf concepts and containing a total of 1300-

6500 data instances). Since our chosen classifiers are only applicable to real-valued data,

given the images, we need to extract quality features. Therefore, for the purpose of feature

62



2. Appropriateness of Performance Indices

extraction, we have used the state-of-the-art Inception V3 (Szegedy et al., 2016), an end-

to-end deep neural network, which learns the map from the image space to a set of classes

through a 2048-dimensional real-valued distributed representation space. The Inception V3

used by us is a standard implementation pre-trained on the complete ImageNet training

set, publicly available from Keras deep learning API at https://keras.io/applications.

Thus, in our case, the selected subset of images can be mapped to useful feature vectors by

a simple forward pass through the pre-trained network. We have then created 12 two-class

classification problems, having IR between 5 and 40 for experimentally validating the effect

of Type 1 distortion over the various indices. Moreover, we have formed a total of 10 multi-

class imbalanced datasets (4 sets for 3-class, while 3 sets each for the 5-class and 10-class

classification problems) having IR between 20-30 for the purpose of empirically evaluating

the effect of Type 2 distortion. A detailed description of the datasets used in our experiments

can be found in Section A.2 of Appendix A.

2.5.2 Experiment protocol

We perform two sets of experiments respectively over two-class and multi-class imbalanced

subsets of ImageNet to inspect the behavior of different indices in light of Condition 2.1 and

Condition 2.2. We conduct our experiments using four state-of-the-art, classifiers of diverse

nature, all specifically tailored for handling class-imbalance, namely Dual-LexiBoost with k-

Nearest Neighbor as the base classifier (Datta et al., 2019), Near Bayesian SVM (NBSVM)

(Datta and Das, 2015), RUSBoost (Seiffert et al., 2010; Japkowicz, 2000) with decision trees

(Breiman, 2017) as the base classifier, and MLP (Rumelhart et al., 1986) combined with

SMOTE (Chawla et al., 2002). The parameter settings of these methods can be found in

Section A.3 of Appendix A.

For both experiments, the classifier is first trained with the training set and then tested by

multiple test sets having different RRT values. This is done in an attempt to mimic the two

primary causes of the first type of distortion as described in Section 2.1.3. In case of two-class

datasets the RRT is varied between 1 (balanced), 0.5 (more number of minority class points

are taken compared to the majority), half of the original IR (reduced effect of imbalance),

the original IR of the training set, and twice of the original IR. Similarly, in case of multi-

class datasets, we have used 5 different test sets with varying RRT (The first is balanced, in
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Figure 2.3: Effect of RRT on different indices over two-class imbalanced subsets of ImageNet.

the second the IR between the classes are reversed, in the third the original IR between the

minority class and all others are halved, the fourth maintains the original IR, while the last

doubles the test points from all classes except the minority). Such an experimental setting

helps us to understand the effect of the varying number of test points from different classes

on the values of the indices. Additionally, the experiments on multi-class datasets provide

us with a way to inspect the effect of increasing c on the indices. Average results over 5

independent runs of 5-fold stratified cross-validation (which also aids in parameter tuning for

the classifiers) are reported to ensure the reliability of our findings.

2.5.3 Validating the two-class classification performance evaluation indices

in light of Condition 2.1

For each of the datasets, we have found the standard deviation of the mean performance in

terms of an index over the five test sets and four classifiers. We plot the findings in Figure

2.3, which shows that the Precision index achieves the highest variability over the test sets for

a given training set. However, the low standard deviation of GMean and AUROC suggests

that the classifiers retain an almost similar performance over the various test sets. Therefore,

the high standard deviation of Precision must be due to the changes in the actual numbers

of the respective test points from the two classes, which vary significantly due to the diverse

choice of RRT. These observations reflect the theoretical analysis which shows Precision to

be sensitive over RRT even when the class-specific classification performance is retained, thus

failing to satisfy Condition 2.1. Due to having Precision as a component AURPC also suffers

from the same issue, though the additional consideration of Recall helps to mitigate the effect

of altering RRT to some extent. Interestingly, mPrecision and mAURPC closely follow the
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GMean and AUROC indices indicating their immunity against the effect of RRT.
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Figure 2.4: Analysis of index behavior over multi-class imbalanced subsets of ImageNet under
Condition 2.1. (a) Effect of RRT on different indices over multi-class imbalanced subsets of
ImageNet. (b) Stability of ACSA compared to nAUROC-OVA.

2.5.4 Validating the multi-class classification performance evaluation in-

dices in light of Condition 2.1

We use an approach similar to the two-class case for validating Condition 1 for the multi-class

performance evaluation indices. However, the indices which are susceptible to Condition 2

are expected to have a smaller range with an increasing value of c, and may result in a

lower standard deviation over the test sets for a higher number of classes. Thus, comparing

these indices with those indices satisfying Condition 2 may lead to a bias against the later

and will not help to reach a conclusive remark. Hence, in Figure 2.4a, we only compare the

standard deviations of indices satisfying Condition 2.2, viz. GMean, ACSA, nAUROC-OVA,

AURPC-OVA, and mAURPC-OVA, over the various test sets for each of the datasets. A

close inspection reveals that the minimum variability (especially improving from AURPC-

OVA) is achieved by mAURPC-OVA establishing it as the better choice among the five

contenders. Interestingly, ACSA has shown slightly higher variability compared to nAUROC-

OVA, which is unlikely as the later violates Condition 2.1. This leads us to investigate further,

by normalizing the standard deviation of the ACSA and nAUROC-OVA indices for each of

the datasets by the respective minimum standard deviation achieved overall the multi-class

datasets. This kind of normalized standard deviation can be considered as a measure of

stability as it quantifies the variability of an index from its best stable performance (a lower
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value signifies that the index can equivalently evaluate similar performing classifiers). We

plot the results in Figure 2.4b, which shows the normalized standard deviation to be slightly

greater for nAUROC-OVA than that of ACSA. This indicates nAUROC-OVA to be less stable

compared to ACSA, and the lower standard deviation of the former in Figure 2.4a may be

due to the fact that AUROC-OVA is normalized using a weak lower bound.

2.5.5 The effect of the number of classes (Condition 2.2) over the different

indices

We consider AUROC-OVA and AUROC-OVO for this experiment as they are seen to have

a higher lower bound with an increasing number of classes. Their respective normalized

version, i.e. nAUROC-OVA and ACSA are also considered to establish the improvement

achieved through normalization, alongside GMean as a reference. We plot the minimum value

achieved by these indices for each of the datasets in Figure 2.5. The results show that on three

and five class datasets the AUROC-OVA, and AUROC-OVO performs almost equivalently

to their normalized counterparts. However, on the ten class datasets the minimum index

value achieved by AUROC-OVA and AUROC-OVA are significantly higher than ACSA, and

nAUROC-OVA. This validates the bias of AUROC-OVA and AUROC-OVO towards a higher

value with an increasing number of classes, and also demonstrated the ability of the respective

normalized versions to counter this bias.
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Figure 2.5: Effect of the number of classes on different indices over multi-class imbalanced
subsets of ImageNet.

2.5.6 The effect of Condition 2.3 on multi-class indices

From Figure 2.5 the minimum values of GMean are consistent with the other indices over

the three, and five class datasets. However, for the ten-class datasets, the index produced
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significantly lower values compared to the others. Moreover, on a ten-class dataset GMean

produced its lowest possible value of 0, indicating the worst possible classification perfor-

mance. However, the values of the other indices over the same dataset clearly indicate that

the classifier managed to successfully classify many of the test points. Therefore, despite

satisfying Conditions 2.1 and 2.2, GMean fails to do the same for Condition 2.3 as poor

performance on a single class results in the loss of all information about the performance on

every other class.

AUROC-OVO

AUROC-OVA

Satisfies Condition 1 Satisfies Condition 2

ACSA
GMean

AUROC
mPrecision
mAURPC

mAURPC-OVA

AURPC
Precision
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nAUROC-OVA

(a)

Satisfies Condition 1 and 2 Satisfies all conditions

ACSA
mAURPC-OVAGMean

(b)

Figure 2.6: A summary of the different conditions satisfied by each of the indices under con-
cern. (a) Summary of findings documented by Theorem 2.1, 2.2, 2.3, and 2.4, i.e. validation
of indices under Condition 2.1, and 2.2. (b) Summary of findings in Theorem 2.5, i.e. valida-
tion of the indices under the light of Condition 2.3, which satisfy the fundamental properties
and applicable to multi-class classification problems.

2.6 Applicability of indices

Based on the satisfaction of the two fundamental conditions the indices can be grouped as

shown in Figure 2.6a. Moreover, the multi-class indices which satisfy Condition 2.1, and 2.2,

are further classified by Condition 2.3 in Figure 2.6b. Therefore, using Figure 2.6 we can

proceed to recommend an appropriate choice of indices for different applications.

In the case of two-class classification, all four of GMean, AUROC, mPrecision, and mAU-

RPC satisfy Condition 1, thus any one of these can be a good index of choice. However,

GMean is biased towards the accuracy of that class which is poorly classified compared to

the other. In a two-class scenario, this property of GMean may prove useful as it will identify
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the high bias of a classifier towards a particular class. AUROC, on the other hand, accords

equal weight to the performance in both classes. Therefore, we recommend GMean for a

general evaluation of the performance of a two-class classifier.

Recall and Precision (consequently AURPC, mPrecision, and mAURPC) both depend on

the choice of the positive class. Recall is focused on the classification performance over the

minority class, thus can be used in applications where false positives do not lead to severe

consequences. For example, we may consider the case of benign and malignant tumor classi-

fication in medical diagnostic systems, where wrongly classifying a sample from the minority

class of malignant tumors may result in a fatal outcome. On the other hand, Precision (and

AURPC) can be effectively used when the application attempts to limit the number of false

positives while the class priors do not significantly vary over time. One can think of the spam

filtering problem where even though the non-spam emails are considerably high in numbers,

labeling one of them as spam may lead to loss of important information. Evidently, mPreci-

sion and mAURPC indices can act as the respective replacement of Precision and AURPC if

the application under concern can cause Type 1 distortion.

In the case of multi-class classification, even though GMean satisfies both of Condition

2.1 and 2.2 it may still be biased in case of extremely poor performance over a single class,

as indicated by its violation of Condition 2.3. GMean can however still prove beneficial if the

target is to achieve non-zero classification accuracy on each class. On the contrary, ACSA and

mAURPC satisfy all three of the conditions, and thus any of the two can be an appropriate

choice of index. Finally, despite their violation of Condition 2.1, nAUROC-OVA and AURPC-

OVA can be used in those applications where the misclassification from different classes are

associated with different costs. For example, in a multi-class medical diagnostic application

a somewhat similar set of syndromes may correspond to different diseases of varying severity

and rarity.

2.7 Discussion

In this chapter, we showed that the common indices used for evaluating the performance

of a classifier in presence of class imbalance may suffer from different forms of distortions,

depending on the character of the data, especially the test set. We formally defined two
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conditions that an index needs to satisfy to be resilient to such distortions. We presented

theoretical analyses detailing the traits of the indices in light of these conditions and pro-

posed necessary remedies as per need. We further defined a third condition to evaluate the

quality of the information provided by an index, especially under adverse conditions such

as exceptionally poor accuracy over a single class. We also undertook empirical analysis to

support our theoretical findings. Finally, we discussed on the applicability of different indices

and make recommendations.
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Chapter 3

Convergence of the Class
Membership Estimator in Fuzzy
k-Nearest Neighbor Classifier on
Balanced and Imbalanced Datasets

Summary

The question of validating the quality of the class memberships estimated by Fuzzy k-nearest

neighbor (FkNN) for a regular multi-class classification problem still remains mostly unan-

swered. In this chapter, we attempt to address this issue by first proposing a different direction

of evaluating a fuzzy classifier which shifts the focus from the misclassification error of FkNN

to the class memberships estimated by it. This leads us to find novel theoretical upper bounds

respectively on the bias and the mean squared error of the class memberships estimated by

FkNN, which attest to the convergence of the estimated class memberships towards their corre-

sponding ideals with the increasing availability of labeled data points, under some elementary

assumptions on the class distribution and membership function. We also demonstrate that

the proposed analysis can provide an explanation for the vulnerability of FkNN to class im-

balance. A detailed simulation study on artificial and real datasets, as well as a performance

comparison with the state-of-the-art, are presented to empirically support our claims. In this

chapter, we also investigate the usefulness of coupling a points-specific locally adaptive class

weights with the weighted variant of FkNN in an attempt to improve the performance of the

classifier in the presence of class imbalance. Comparison of performance with the FkNN vari-

ants tailored to handle class imbalance on real-world benchmark imbalanced datasets validates
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the efficacy of the proposed.

3.1 Introduction

3.1.1 Overview

From its introduction by Fix and Hodges Jr in 1951 the kNN classifier has always enjoyed pop-

ularity among the machine learning community for its methodical simplicity, non-parametric

working principle (Duda et al., 2000), and ease of implementation. Further, kNN being a

lazy learner does not engage in any learning activity before a query has been made to the

classifier, making it readily integrable to an application.

Given a training set X and a test instance y, the kNN classifier first finds the set VXk (y) =

{v1,v2, · · · ,vk} of the k nearest neighbors (defined by some distance metric) of y in X. For

simplicity we assume that the elements of VXk (y) are ordered by their respective distances

from y, i.e. vi (where i = 1, 2, · · · , k) is the i-th nearest neighbor of y in X. The classifier then

labels the test point y with that class which has the majority of representatives in VXk (y). To

elaborate, let us first consider an indicator function I which given an input condition returns

1 if the condition is found to be true and 0 otherwise. Then the kNN classification rule can

be expressed as follows:

ĥX(y) = arg max
j∈C

∑
v∈VX

k (y)

I(h(v) = j). (3.1)

Even though the kNN classifier provides a commendable performance on numerous appli-

cations it still comes with its fair share of limitations. First, in kNN each of the k neighbors

plays an equal role in deciding the class label for y irrespective of their distance from y.

Second, kNN does not account for the implicit uncertainty in the class distributions esti-

mated from a finite number of available training points. The FkNN classifier attempts to

address these issues of regular kNN by providing less importance to the distant neighbors

and employing the theory of fuzzy sets (Zadeh, 1965). Similar to kNN (Muja and Lowe,

2014; Garcia-Pedrajas et al., 2015; Anava and Levy, 2016; Gallego et al., 2018), the FkNN

classifier also gained popularity and interest among the research community (Derrac et al.,

2014). In one direction of research, attempts were made to improve the classification per-
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formance of FkNN (Yang and Chen, 1998; Sarkar, 2007; Derrac et al., 2016; Ezghari et al.,

2017); while the other tailored FkNN for various real-world applications (Hu et al., 1998;

Frigui and Gader, 2009) and data specific problems (Maillo et al., 2017).

In a c-class classification problem, FkNN considers each class as a fuzzy set and given

a test point y, it estimates a membership ûj(y) for the j-th class (where j ∈ C), such

that
∑c

j=1 ûj(y) = 1. In other words, the class membership estimator (hereafter called just

estimator) employed by FkNN estimates the degree of membership of y for each of the c

classes instead of crisply assigning it to only one of them. The FkNN estimator is defined as:

ûj(y) =

∑
v∈VX

k (y) uj(v)||y − v||
2

1−m∑
v∈VX

k (y) ||y − v||
2

1−m

, (3.2)

where, m is a newly introduced parameter which scales down the contributions of the distant

neighbors in making the decision for y. According to the study of Keller et al. (1985), the

performance of FkNN does not alter significantly with varying m. Therefore, one can treat

m as a constant and use its conventional choice of m = 2 to obtain a good performance

on a wide variety of datasets. Furthermore, FkNN assumes that the class memberships for

the training points i.e. uj(x), for all x ∈ X and j ∈ C, are known in advance. In practice

one may find uj(x) by either utilizing domain knowledge to make certain assumptions on the

corresponding class distribution, or using non-parametric kernel density estimation techniques

(Silverman, 1988). Moreover, Keller et al. (1985) proposed a widely popular and efficient

(Villar et al., 2016; Maillo et al., 2017) heuristic method which estimates uj(x) by exploiting

the information extracted from the locality of x. If we assume that among the k′ training

set neighbors of x, the number of points belonging to the j-th class is k′j , then the Keller’s

heuristic estimates uj(x) as follows:

uj(x) =


0.51 +

(
k′j
k′

)
× 0.49 if x ∈ Xj ,(

k′j
k′

)
× 0.49 otherwise.

(3.3)

Both of the regular kNN and FkNN classifiers give equal importance to each of the classes

while taking the decision for a test instance. However, depending on the specific nature of

the problem an equal weighting of classes may not be proven beneficial. For example, one
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may choose to compensate for the dearth of minority class representatives in an imbalanced

training set by giving minority neighbors higher weights during the decision making (Tan,

2005). This can be achieved by a weighted variant of the kNN classifier where every class is

associated with a weight and the number of points belonging to a certain class is multiplied

by the weight associated with that class. The rest is similar to the conventional kNN decision

rule, resulting in the assignment of the new point to the class having the maximum weighted

number of members in the VXk (y). If the weight for the j-th class is denoted by ωj , then the

weighted kNN classification rule can be expressed as:

ĥX(y) = arg max
j∈1,2,··· ,c

∑
v∈VX

k (y)

ωjI(h(v) = j), (3.4)

where the weights ωj for all j ∈ C can be any positive real number. The weighted kNN

classifier is actually a more general form of the kNN classifier, which can be reduced to the

basic kNN classifier by making all the weights equal. The concept of weighted kNN can

be directly extended to FkNN as well (WFkNN), by simply modifying the estimated class

membership ûj(y) of a test point y in the j-th class as follows:

ûΩ
j (y) =

ωj ûj(y)∑c
j=1 ωj ûj(y)

(3.5)

3.1.2 Background

In this section, we first discuss the previous performance analysis of kNN and FkNN, following

which we briefly describe the different studies which investigated the effect of class imbalance

on the two classifiers under concern.

3.1.2.1 Performance analysis of kNN and FkNN

The first milestone research on the theoretical analysis of kNN was conducted by Cover and

Hart (1967) who showed that the rate of misclassification of 1NN can be at most twice that

of the Bayes decision rule in the Euclidean space. Furthermore, they commented on the

preferable value of parameter k for achieving a good performance by stating that the choice

of k should be varied with n ensuring k → ∞ and k
n → 0 as n → ∞. In a subsequent

work, Cover (1968) extended the result in (Cover and Hart, 1967) for an infinite number of
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classes, which was further improved by Wagner (1971). Recently, Bax (2000) investigated

the generalized error of 1NN by using the concept of validation and later extended it by

proposing probably approximately correct error bounds (Bax, 2012).

Yang and Chen (1991) made a milestone contribution by proposing a theoretical analysis

for the FkNN classifier. They demonstrated that the bound established by Cover (1968)

holds in the case of F1NN as well. However, this significant attempt still has its limitations,

as the authors restricted themselves to a more elementary form of the original problem.

Firstly, instead of considering the consistency of a general FkNN the authors only focused

on the simpler case of k = 1. Secondly, the analysis was performed for a bounded loss func-

tion. Thirdly, the approach employed by the authors involved a more complicated Lebesgue

dominated convergence (Yang and Chen, 1991). Finally, the authors did not perform any

simulation study to empirically validate their theoretical conclusions. In this chapter, we aim

to address these issues and develop a simple yet commendable validation of the performance

of FkNN using two unbounded loss functions.

3.1.2.2 Addressing class imbalance in kNN and FkNN

After the formal introduction of class imbalance problem by Kubat et al. in 1997 a couple of

primary works (Zhang and Mani, 2003; Tan, 2005) investigated its effect on kNN classifiers.

On one hand, Zhang and Mani (2003) attempted to effectively compensate for the dearth

of minority training instances by undersampling the majority class. On the other hand, the

idea of weighted kNN using class-specific weights to counter the adversarial effect of class

imbalance was first explored by Tan (2005) and later studied in further detail by Wang et al.

(2008), Liu and Chawla (2011), and Dubey and Pudi (2013). In other directions of research,

Li and Zhang (2011) considered extending some of the minority points to Gaussian balls to

improve their abundance. Further, (Kriminger et al., 2012; Zhang and Li, 2013; Zhang et al.,

2017) investigated the importance of the neighborhood information in better estimation of

the posterior probability for each of the classes. However, all of these methods involve an

exhaustive search and/or introduce new tunable parameters, which hinder the scalability

and easy implementation of kNN by burdening the user with a significant computational

overhead.

Even though a collection of notable variants was proposed to improve the classification
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accuracy of the canonical kNN in presence of class imbalance, the same cannot be said about

FkNN. In fact, to the best of our knowledge, there is no notable work that investigated the

effect of class imbalance on FkNN and propose remedial measures. In this chapter, we attempt

to fill this gap by designing a WFkNN which is likely to improve the resilience of the classifier

against class imbalance. Moreover, multiple studies (Wettschereck and Dietterich, 1994;

Garcia-Pedrajas et al., 2015; Anava and Levy, 2016) highlighted the benefits of accounting

locality information in the decision process of kNN, which is usually performed by adapting

the value of the parameter k. In this chapter, we instead attempt to explore the effectiveness

of incorporating the locality information through point specific adaptive class weights.

3.1.3 Motivation

The approach of validating the performance of a classifier by comparing its generalization

error with that of the Bayes decision rule may fail for FkNN. This is due to the fact that

the primary goal of FkNN is to estimate the class memberships of a given test point, from

which consequently its class label can be decided. Hence, if the error between the original

class membership and that estimated by the FkNN reduces on average, then the misclas-

sification risk will decrease. On the other hand, multiple fuzzy classifiers can still achieve

similar classification accuracy while the estimated class membership may lie far away from

the corresponding original. We illustrate this idea by the following Example 3.1.
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Figure 3.1: Similar classification performance does not imply similar convergence of bias and
MSE. We are given a set of classifiers all of which achieve a 100% classification accuracy
over the test set X ′. (a) Even when the classifiers performed equivalently the respective bias
did not converge to the same extent. (b) Similar can be observed for MSE as well which
converged differently for distinct classifiers.
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Example 3.1. We take a 2-dimensional, 2-class classification problem, where the class dis-

tributions are defined as bivariate Gaussian. Both of the classes are sampled from normal

distributions having an identity covariance matrix, while the mean for the first class is [−5, 0],

and that for the second class is [5, 0]. We generate a training set X and a test set X ′, by

respectively collecting 103 and 100 data points from each of the two classes. The initial mem-

bership for the training points as well as the ground truth for the test points can be easily

calculated as the underlying class distributions are known. Thus, given a data point, its

membership in a class is actually the probability for that point to be sampled from that class.

Using this experimental setup, we classify X ′ by FkNN using k = 1, 3, 5, 7, 9, 11, and 32 (the

conventional maximum value of k is taken as d
√
Ne = d

√
103e). We present the bias and

Mean Squared Error (MSE) of FkNN estimator for the positive class for each of the choices

of k respectively in Figure 3.1a and Figure 3.1b, when all the FkNN classifiers achieved 0

misclassification error i.e. they are 100% accurate on X ′. We can observe that all the clas-

sifiers though performed equally in terms of accuracy, the minimum bias and MSE are only

achieved by FkNN when k = 5. This indicates that even when the estimated memberships do

not converge to the corresponding true values, a fuzzy classifier may still be able to perform

well.

From the observation made in Example 3.1, a stronger validation of the performance of

FkNN can be achieved by focusing on the loss functions such as bias (measuring the quality

of the estimated class membership) and MSE (indicating the consistency of FkNN) of the

estimator. As an added advantage, both of the loss functions have a positive and unbounded

range. We specifically show that both of the bias and MSE of the FkNN estimator are upper

bounded when a certain class of membership functions is used and the choice of k follows N

as per the suggestion of Cover and Hart (1967).

3.1.4 Contributions of Chapter 3

Over the years, only a handful of studies shed light on the properties of FkNN using theoretical

analysis. This is mostly due to the late development of FkNN as well as its additional

complexity. This chapter aims to bridge this gap by introducing a novel direction for analyzing

the behavior of FkNN.
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Instead of following the traditional path of validating a fuzzy classifier’s performance in

terms of misclassification error, this chapter proposes a new direction to evaluate the accuracy

of the estimated class memberships for a test point. As illustrated in Section 3.1.3, such an

approach may be more informative, as it directly evaluates the ability of a fuzzy classifier to

achieve its primary goal. Therefore, we focus on the bias and Mean Squared Error (MSE)

of the FkNN estimator and attempt to establish their convergence under some elementary

assumptions on the class distributions. As an additional advantage, both of the chosen loss

functions are positive and unbounded, and their convergence towards zero implies a correct

estimation of the class memberships and consequently an accurate classification with high

probability.

In this chapter, we propose two fairly straightforward theorems (and deduce two cor-

responding corollaries) the first of which describes the convergence of the loss functions in

two-class cases, while the other directly extends the result for multi-class scenarios. Addi-

tionally, the proposed theorems can be considered as reasonably robust as they are applicable

to a wide class of membership functions and probability distributions. Moreover, as a ma-

jor improvement over the previous works the current study is not bound to any particular

value of k or m, and only requires satisfying some elementary assumptions on the choice of

k corresponding to N .

This chapter further discusses on the implications of our proposed analysis in explaining

the susceptibility of FkNN in the presence of class imbalance. As a remedy, we suggest

employing a point specific Locally Adaptive Class Weighting (LACW) which can aid FkNN

to offer better immunity against the effects of class imbalance. Contrary to a global class

weighting strategy that assigns the same class weights to all test instances, the LACW can

consider the locality information of a test point during adaptively calculating the class weights

using a simple heuristic. This is expected to be beneficial as the useful locality information

(Anava and Levy, 2016) of a y ∈ X ′ is not otherwise supplied to a FkNN classifier.

The rest of the chapter contains some preliminaries in Section 3.2, and the proposed

analysis in Section 3.3. We present a detailed simulation study using both artificial and

real datasets in Section 3.4, which also contains a performance evaluation of the LACW in

conjunction with FkNN compared to FkNN variants tailored to handle class imbalance.
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3.2 Preliminaries

In this section, we first discuss on the basic assumptions which are to be ensured for the pro-

posed theoretical bounds to be applicable. Further, we list the previously found mathematical

results which are necessary to proceed with our analysis.

3.2.1 Assumptions

The proposed upper bounds respectively for the bias and MSE of the estimator of FkNN

make three elementary assumptions about the nature of the two associated parameters, the

membership function, and the data distribution. The first assumption deals with the choices

of parameters m and k. Whereas, the second and third assumptions respectively ensure some

desirable properties for the membership function and data distribution.

Assumption 3.1. The value of m should be greater than 1, while k should be varied as per

the suggestion of Cover and Hart (1967) i.e. k →∞ and k
N → 0 as N →∞.

Assumption 3.2. For a c-class classification problem, given a dataset S, let the class-specific

gradients of the membership function with respect to s ∈ S be denoted as ∇uj(s). Then ∇uj(s)

should exist for all j = 1, 2, · · · , c while their corresponding norm defined as ||∇uj(s))|| should

be upper bounded by some A0 > 0.

Assumption 3.3. Let us assume that the data points belonging to S are identically and inde-

pendently sampled from some arbitrary distribution defined by a probability density function

p. Then the first-order differential of p should exist.

3.2.2 Necessary result

Our analysis will require the following result found by Mack and Rosenblatt (1979) which

given a d-dimensional dataset S containing S number of data instances comments on the

expected distance between a data instance s and its k-th neighbour vk in the set S \ {s}.

Result 3.1 (Mack and Rosenblatt (1979)). If we assume that the dataset S is sampled from

some probability distribution having density function p then the expected distance between the

78



3. Convergence of FkNN class membership estimator

neighbors s and vk for all A1 6= 0 can be found as:

E(||s− vk||A1) =

(
k/S

vdp(s)

)A1
d

+ o
(

(k/S)
A1
d

)
,

where vd is the volume of a d-dimensional sphere of unit radius.

3.3 The convergence of FkNN class membership estimator

We prove the convergence of FkNN in terms of bias and MSE with the help of a couple

of theorems. The first theorem establishes the proposed bounds for two-class classification

problems while the second extends the theory for general multi-class situations.

3.3.1 Convergence for two-class classification problems

The convergence of FkNN for the two-class classification problem can be illustrated by the

following Theorem 3.1.

Theorem 3.1. Let us consider a two-class classification problem, where given a test point y,

its true membership to the j-th class and that estimated by FkNN, are denoted by uj(y) and

ûj(y), respectively. Then under the aforementioned assumptions, as N → ∞, the following

can be shown to be true,

1) E(|ûj(y)− uj(y)|)→ 0,∀j ∈ {1, 2},

2) E(|ûj(y)− uj(y)|2)→ 0∀j ∈ {1, 2}.

Proof. In case of a two-class classification problem, u2(s) = 1 − u1(s), ∀s ∈ S. Such a

relationship would also be maintained while estimating the membership by FkNN for some

s ∈ S. Therefore, û2(s) = 1 − û1(s). This enables us to safely assume that any bound

established on the bias and MSE of the estimator for the first class will also hold true for the

second class as well. Hence, for simplicity and without loss of generality we can prove the

theorem only considering the first class.

Let us first define m′ = 2
1−m and calculate the value of û1(y) by expression (3.2). We can
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now proceed to finding the bias of the estimator of FkNN for the first class.

|û1(y)− u1(y)| =

∣∣∣∣∣
∑

v∈VX
k (y) u1(v)||y − v||m′∑
v∈VX

k (y) ||y − v||m′
− u1(y)

∣∣∣∣∣ ,
=

∣∣∣∣b1b2 − u1(y)

∣∣∣∣ . (3.6)

Expanding b1 in expression (3.6) by the Mean Value Theorem (MVT) (Apostol, 1964), we

obtain,

b1 =
∑

v∈VX
k (y)

(
u1(y) + (y − v)T∇u1(δv)

)
||y − v||m′ , (3.7)

where δv ∈ B(y, ||y−v||) for all v ∈ VXk (y) while B(y, ||y−v||) denotes a d-dimensional ball

centered at y with a radius of ||y − v||. Replacing the value of b1 from expression (3.7) into

expression (3.6) we obtain,

|û1(y)− u1(y)| =

∣∣∣∣∣∣u1(y)− u1(y) +
1

b2

∑
v∈VX

k (y)

(y − v)T∇u1(δv)||y − v||m′
∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

b2

∑
v∈VX

k (y)

(y − v)T∇u1(δv)||y − v||m′
∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣ 1

b2

∑
v∈VX

k (y)

(y − v)T

||y − v||
∇u1(δv)||y − v||1+m′

∣∣∣∣∣∣ ,
≤ 1

b2

∑
v∈VX

k (y)

||∇u1(δv)|| × ||y − v||1+m′ ,

≤
∑

v∈VX
k (y) ||∇u1(δv)|| × ||y − v||1+m′

k||y − v1||m′
. (3.8)

Now according to Assumption 3.2 the norm of the gradient ||u1(δv)|| ≤ A0 for all v ∈ VXk (y).

Placing this value back in expression (3.8) we get,

|û1(y)− u1(y)| ≤
A0
∑

v∈VX
k (y) ||y − v||1+m′

k||y − v1||m′
. (3.9)
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Now taking the expectation for both sides of expression (3.9),

E (|û1(y)− u1(y)|) ≤E

(
A0
∑

v∈VX
k (y) ||y − v||1+m′

k||y − v1||m′

)

≤A0

k

∑
v∈VX

k (y)

E

(
||y − v||1+m′

||y − v1||m′

)
. (3.10)

Applying the Cauchy Schwarz inequality (Gut, 2005) on the Right Hand Side (RHS) of

expression (3.10) we get,

E (|û1(y)− u1(y)|) ≤A0

k

∑
v∈VX

k (y)

[
E
(
||y − v||

2m−6
m−1

)
E
(
||y − v1||

4
m−1

)] 1
2
,

≤A0

[
E
(
||y − vk||

2m−6
m−1

)
E
(
||y − v1||

4
m−1

)] 1
2
. (3.11)

We can now reduce the RHS of (3.11) using Result 3.1,

E (|û1(y)− u1(y)|) ≤ A0

((
k/N

vdp(y)

) m−3
d(m−1)

+ o
(

(k/N)
m−3

d(m−1)

))

×

((
1/N

vdp(y)

) 2
d(m−1)

+ o
(

(1/N)
2

d(m−1)

))
,

≤ A0(b3 + b4 + b5 + b6), (3.12)

where, b3 =

(
k

m−3
m−1 /N

vdp(y)

) 1
d

, (3.12a)

b4 =

(
k

vdp(y)

) m−3
d(m−1)

o
(

(1/N)
1
d

)
, (3.12b)

b5 =

(
1

vdp(y)

) 2
d(m−1)

o

((
k

m−3
m−1 /N

) 1
d

)
, (3.12c)

b6 = o

((
k

m−3
m−1 /N

) 1
d

)
. (3.12d)

Now, according to Assumption 3.1, if m > 1, then m−3
m−1 < 1. Thus, k

m−3
m−1 < k, for all

k ≥ 1, which implies that b3 in the expression (3.12a) goes to 0 as k/N → 0 with N → ∞.

By a similar logic, b4, b5, and b6 all go to 0 as well when N →∞. Therefore, from (3.12), we
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get

E (|û1(y)− u1(y)|)→ 0 as N →∞. (3.13)

This concludes the proof for the first part of the theorem.

For the second part of the theorem we follow a path similar to the one used for proving

the bound on bias. Thus, using the MVT on MSE of the estimator we get:

(|û1(y)− u1(y)|2) ≤

(∑
v∈VX

k (y) ||∇u1(δv)|| × ||y − v||1+m′

k||y − v1||m′

)2

. (3.14)

Now finding the expectation of (3.14) and proceeding similarly as the previous,

E(|û1(y)− u1(y)|2) ≤E

(
A0
∑

v∈VX
k (y) ||y − v||1+m′

k||y − v1||m′

)2

,

≤A
2
0

k2
E

 ∑
v∈VX

k (y)

||y − v||1+m′

||y − v1||m′

2

,

≤A
2
0

k2
E

(
k||y − vk||1+m′

||y − v1||m′

)2

,

≤A2
0E

(
||y − vk||1+m′

||y − v1||m′

)2

. (3.15)

Applying Cauchy Schwartz inequality on the RHS of expression (3.15),

E(|û1(y)− u1(y)|2) ≤ A2
0

[
E
(
||y − vk||

4m−12
m−1

)
E
(
||y − v1||

8
(m−1)

)] 1
2
. (3.16)

Applying Result 3.1 on the RHS of expression (3.16) we get,

E(|û1(y)− u1(y)|2) ≤ A2
0

((
k/N

vdp(y)

) 2m−6
d(m−1)

+ o
(

(k/N)
2m−6
d(m−1)

))

×

((
1/N

vdp(y)

) 4
d(m−1)

+ o
(

(1/N)
4

d(m−1)

))
. (3.17)

Similar to the case of bias, it can be shown that under Assumption 3.1, as N → ∞ the

expression (3.17) goes to 0, thus completing the proof.

82



3. Convergence of FkNN class membership estimator

Using Theorem 3.1, a stronger convergence of FkNN can be shown in the form of the

following Corollary 3.1.

Corollary 3.1. For a two-class classification problem the class memberships estimated by

FkNN for a test point y converge in probability to the corresponding true memberships, as

N →∞.

Proof. In Theorem 3.1 we have shown that as N → ∞, the following holds true for a j ∈

{1, 2},

E(|ûj(y)− uj(y)|)→ 0. (3.18)

Now for some small A2 > 0, Markov inequality (Gut, 2005) states that,

Pr(|ûj(y)− uj(y)| > A2) ≤ E|ûj(y)− uj(y)|
A2

. (3.19)

From expression (3.18) and (3.19) it is evident that,

ûj(y)
p→ uj(y).

This completes the proof.

3.3.2 Convergence for multi-class classification problems

The convergence of FkNN for the multi-class classification problem can be established by the

following theorem.

Theorem 3.2. Let us consider a c-class classification problem, where given a test point y,

its true membership to the j-th class and that estimated by FkNN, are denoted by uj(y) and

ûj(y), respectively. Then under the aforementioned assumptions as N → ∞, the following

hold true,

1) E(|ûj(y)− uj(y)|)→ 0,where j = 1, 2, · · · c,

2) E(|ûj(y)− uj(y)|2)→ 0,where j = 1, 2, · · · c.

Proof. Both of bias and MSE of an estimator can only have positive range, which bound their
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respective minimum value to 0. Therefore, it is sufficient to show that the respective sum

of biases and MSEs over all the classes converge to 0, which necessarily indicate that bias

and MSE of the estimator for the individual classes have converged to 0 as well. Thus, we

reformulate the problem to prove that the following two statements hold true, when N →∞,

µe =
c∑
j=1

E(|ûj(y)− uj(y)|)→ 0, (3.20)

σe =
c∑
j=1

E(|ûj(y)− uj(y)|2)→ 0. (3.21)

We first start with the Left Hand Side (LHS) of expression (3.20) and proceed in a manner

similar to Theorem 3.1. Thus, after applying MVT and Assumption 3.2 we reach to the

following,

µe =
c∑
j=1

E(|ûj(y)− uj(y)|)

≤A0

c∑
j=1

E

(∑
v∈VX

k (y) ||y − v||1+m′

k||y − v1||m′

)
,

≤cA0

k
E

(∑
v∈VX

k (y) ||y − v||1+m′

||y − v1||m′

)
. (3.22)

Applying Cauchy Schwartz inequality followed by Result 3.1 on the RHS of expression (3.22)

as in Theorem 3.1 we obtain,

µe =
c∑
j=1

E(|ûj(y)− uj(y)|) ≤ cA0

((
k/N

vdp(y)

) m−3
d(m−1)

+ o
(

(k/N)
m−3

d(m−1)

))

×

((
1/N

vdp(y)

) 2
d(1−m)

+ o
(

(1/N)
2

d(m−1)

))
. (3.23)

Applying Assumption 3.1 on the RHS of expression (3.23) we reach to expression (3.20), from

which the first part of the theorem can be concluded.

The second part of the theorem can be shown to be true as well by starting from expression
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(3.21) and following a path similar to Theorem 3.1. Thus,

σe =
c∑
j=1

E(|ûj(y)− uj(y)|2) ≤ cA2
0E

(
||y − vk||1+m′

||y − v1||m′

)2

,

≤ cA2
0

((
k/N

vdp(y)

) 2m−6
d(m−1)

+ o
(

(k/N)
2m−6
d(m−1)

))
,

×

((
1/N

vdp(y)

) 4
d(m−1)

+ o
(

(1/N)
4

d(m−1)

))
(3.24)

Applying Assumption 3.1 on expression (3.24) we can show (3.21) to be true, which completes

the proof.

Similar to the case of two-class classification, here also we can deduce a corollary which

proves a stronger convergence of the FkNN estimator.

Corollary 3.2. In a c-class classification problem as N →∞, given a test point y,

ûj(y)
p→ uj(y); where, j = 1, 2, · · · c.

Proof. This can directly be shown with the help of Markov inequality in a manner similar to

the one presented in Corollary 3.1. Therefore, using the convergence of bias for individual

classes from Theorem 3.2, we can infer that the class memberships estimated for y by FkNN

converges with probability to the corresponding true memberships.
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Figure 3.2: The effect of increasing class imbalance on the bias and MSE of the minority
class.(a) The effect of class imbalance on bias of the minority class. (b) The effect of class
imbalance on MSE of the minority class.
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3.3.3 FkNN in presence of class imbalance

3.3.3.1 Discussion on the effect of class imbalance on FkNN under the light of

Theorem 3.1, and Theorem 3.2

The two presented theorems and their associated corollaries indicate that the FkNN classifier

can achieve better performance with the increasing availability of training samples. Moreover,

if we convert the fuzzy class memberships to crisp class labeling by assigning a test point to

the class with maximum membership, then the corollaries imply that a better classification

accuracy may be reached with a high probability as the loss functions converge.

Furthermore, it is well known that kNN fails to achieve commendable accuracy in presence

of class imbalance (Branco et al., 2016; Das et al., 2018), which is expected to be reflected in

FkNN as well given the two share a similar philosophy. This shortcoming of FkNN can be

explained under the light of Theorem 3.1 (and Theorem 3.2 for c-class classification), which

can be considered as a significant practical implication of the theory. To better illustrate the

susceptibility of FkNN in the presence of class imbalance we present the following Example

3.2.

Example 3.2. We take a two-class classification problem, where both of the classes follow a

normal distribution with the identity covariance matrix. However, for the distribution of the

first class, the mean is [−2 0], while that for the second class is [2 0]. Moreover, we construct

five training sets by varying the IR, as 100, 50, 25, 10, and 1 (i.e. we combine 10000 points

selected from the first class, and 100, 200, 400, 1000, and 10000 instances respectively sampled

from the second class to achieve the desired IR in the corresponding training set). The test

set is built by sampling 100 data points from each of the two classes. The membership of a

point in a class is calculated by finding the probability of that point to belong in that class.

With this setup we plot the bias and MSE for the minority class against the varying IR, while

choosing the value of k as 1 and 5, respectively in Figure 3.2a and Figure 3.2a. Interestingly,

both of the bias and MSE for the minority class improve with the decreasing IR and become

minimum when the two classes are balanced. This can be directly explained by Theorem 3.1,

as the number of minority class (and consequently the size of the training set) representatives

increase with improving IR, it facilitates the loss functions to further converge.

To elaborate, a class imbalanced dataset will always have a lesser number of training
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points than a corresponding balanced one or in other words, N will decrease with increasing

IR. Thus, the membership estimated by FkNN according to Theorem 3.1 and 3.2 will be

more distant from their true values with the increasing imbalance between the classes. This

in consequence is likely to lead to a higher misclassification by FkNN especially for the

minority class as indicated by Corollary 3.1 and 3.2. As a remedy, similar to kNN one

may use a class-specific weighting (Tan, 2005) to rectify the estimated class memberships, or

introduce synthetic minority data instances (Chawla et al., 2002) to mitigate the effect of class

imbalance by increasing the value of N . However, as the synthetic sampling contains the risk

of contaminating the training set here we choose the alternative of combating class imbalance

through class weighting. However, a global weighting strategy may not be fully effective in

the absence of locality information of a test point (which is not readily available to the regular

FkNN). Thus, in the following Section 3.3.3.2 we describe LACW, which can provide a set of

adaptive class weights while taking the locality information of the test instance into account.

3.3.3.2 Point-specific locally adaptive class weights

A conventional Global Class Weighting (GCW) strategy which can be considered as folklore

these days is to use a normalized inverse of the class priors as the class weights; i.e. the weight

ωj for the j-th class for all j ∈ C is defined as N
cNj

. The intuition behind such a weighting

scheme is to offer each of the classes a fair chance by providing them an opportunity to

reach the ideal class prior 1
c of a balanced dataset from their corresponding imbalanced one

of
Nj

N for all j ∈ C. Effectively GCW strategy when coupled with WFkNN will increase the

membership to the minority classes while dragging down the same for the majority classes

for all y ∈ X ′, compensating the disparity in the number of training points from different

classes in an imbalanced X.

However, the conventional GCW strategy is incapable of providing a point specific set of

weights while taking the locality information of a test point y into account. This limitation of

the GCW strategy may lead the classifier to overcompensate in certain localities of the dataset

resulting in a higher number of false positives. One may address this issue by calculating

the weights not on the entire training set but on a neighborhood of the test point y ∈ X ′.

We make a reasonable assumption that if a test point y lie in a dense region of the dataset

then a larger number of training set neighbors should actively participate in calculating the
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set of class weights for it. In contrast, if y ∈ X ′ resides in a sparse section of the dataset

then a smaller number of neighboring training points should play a role in finding its suitable

class weights. This allows us to further provide point specific information to the WFkNN

classifier by adaptively determining the size of the neighborhood ν(y) using the local density

around y. However, instead of actually calculating or approximating the local density around

a point one may choose to use an indicator that can be easily computed. According to Result

3.1 one such indicator can be the distance δ(y, X) between the test point y and its nearest

neighbor in the training set X. Thus, a small value of δ(y,X) suggests that y lies in a dense

neighborhood indicating that a high value of ν(y) should be chosen. On the other hand, if

δ(y,X) is found to be large then y is expected to reside in a sparse region which suggests

selecting a lower value for ν(y).

We may now proceed to describe a simple heuristic technique to actually compute the

value of ν(y). Given a training set X we start by defining a couple of constants:

δmax = max
x∈X

δ(x, X \ {x}),

δmin = min
x∈X

δ(x, X \ {x}).

Now given a test point y ∈ X ′ one of the three following situations can arise.

1. δ(y, X) ≤ δmin which indicates that y lies in a significantly dense region and ν(y)

should be set to the maximum allowable neighborhood size νmax.

2. δ(y, X) ≥ δmax which suggests that y resides in a sufficiently sparse location and ν(y)

should be taken as the minimum allowable neighborhood size νmin.

3. For any other value of δ(y, X) between δmin and δmax the corresponding ν(y) should

lie between νmin and νmax, while ensuring that if δ(y, X) ≤ δ(y′, X) then ν(y) ≥ ν(y′)

for all y,y′ ∈ X ′.

The νmax and νmin are data dependent parameters the value of which should be large

enough to offer a fair chance to all the classes for appearing as a neighbor. We respectively

set νmax and νmin to N and
√
N as these value are empirically found to provide a consistently

superior performance over a wide variety of datasets. We calculate ν(y) for a δ(y, X) lying

between δmin and δmax as follows:
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ν(y) =
⌊
νlin(y)νexp(y)

1
2

⌋
, (3.25)

where, νlin(y) = δ(y, X)
νmin − νmax
δmax − δmin

+
νmaxδmax − νminδmin

δmax − δmin
, (3.26)

and νexp(y) = νmax + (νmax − νmin)
eδmin − eδ(y,X)

eδmax − eδmin
. (3.27)

Figure 3.3: The curves for the linear estimate (in pink), concave exponential estimate (in
magenta), and final ν(y) as the geometric mean of the two estimates (in blue), when δ(y, X)
is varied between δmin and δmax. We can observe that the linear model provides a restrictive
estimate compared to the exponential, while the geometric mean of the two can be used to
strike a balance.

To elaborate, we first perform a linear as well as a concave exponential estimate of ν(y)

and then calculate the actual value of ν(y) by taking the geometric mean of the two estimates

(floor value is chosen to ensure that the neighborhood size is an integer). The linear estimate

models ν(y) as a linear function of δ(y, X) between the two extremities (δmin, νmax) and

(δmax, νmin). Such an estimate is useful to restrict the size of the neighborhood when N

becomes large enough. On the other hand, the concave exponential model encourages a

larger neighborhood as it estimates a higher value of ν(y) compared to its linear counterpart.

This estimation is useful for moderate and small scaled dataset where the linear estimate

may excessively shrink the neighborhood size. The final value of ν(y) is calculated as the

geometric mean of the linear and exponential estimates striking a balance between the two.

We empirically found that geometric mean which by construction produces a value closer

to the linear estimate achieves a better performance compared to the arithmetic mean over

datasets of diverse scale. Once the size of the neighborhood is estimated one can calculate the
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weight ωj for the j-th class for all j ∈ C as ν(y)
cν(y)j

, where ν(y)j is the number of training points

belonging to the j-th class in the ν(y) neighborhood of y. Thereafter, one may estimate the

class memberships using the WFkNN as described in (3.5).

3.4 Experiments

In this section, we first detail the simulation study to empirically validate our proposed

analysis. Further, we provide a comparative study on real-world datasets to evaluate the

efficacy of LACW in aiding WFlkNN to improve the classification accuracy in the presence

of class imbalance.

3.4.1 Simulation study for validating Theorems 3.1 and 3.2

We start by describing the datasets used in this simulation study. We then detail the exper-

imental protocol before proceeding to the results and subsequent discussions.

3.4.1.1 Description of the datasets used in the simulation study

We have used a collection of 9 artificial as well as 12 real-world datasets in this study.

Artificial Datasets: We design 9 artificial classification datasets each of which is d-

dimensional and can have c classes, where d ∈ {2, 5, 10} and c ∈ {2, 5, 9, 10, 15, 20}. An

artificial dataset is formed by combining 200,000 d-dimensional data instances randomly

sampled from each of the c classes, where the corresponding class distribution p is considered

as multivariate Gaussian with a predefined mean and covariance matrix. We briefly highlight

the key properties of the artificial datasets in Table 3.1, while a detailed description along with

the respective generating technique can be found in Section B.1 of Appendix B. Moreover,

for better visualization, we graphically illustrate the 2-dimensional datasets in Figure 3.4,

where each of the classes is differently colored.

In case of an artificial dataset, it is trivial to label a data instance by the class from which

it was originally generated. Furthermore, designing a suitable membership function which

will satisfy Assumption 3.2, while reflecting the ideal membership to the original class, is also

not difficult considering our freedom of choosing the appropriate distributions for individual

classes. Therefore, given a data point s from a d-dimensional c-class artificial dataset S, the
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Table 3.1: Properties of the artificial datasets.

Dataset Number of Number of Remark
Name Dimensions Classes (if any)

AD-2-2-NO 2 2 No overlap
AD-2-2-SO 2 2 Small overlap
AD-2-2-LO 2 2 Large overlap
AD-9-2 2 9 No overlap
AD-15-2 2 15 No overlap

AD-5-5 5 5 Uncontrolled overlap
AD-10-5 5 10 Uncontrolled overlap

AD-10-10 10 10 Uncontrolled overlap
AD-20-10 10 20 Uncontrolled overlap

(a) (b) (c)

(d) (e)

Figure 3.4: Two-dimensional artificial datasets. (a) AD-2-2-NO: 2-dimensional 2 class dataset
with no overlap. (b) AD-2-2-SO: 2-dimensional 2 class dataset with small overlap. (c) AD-
2-2-LO: 2-dimensional 2 class dataset with large overlap. (d) AD-9-2: 2-dimensional 9 class
with no overlap. (e) AD-15-2: 2-dimensional 15 class dataset with no overlap.

value of uj(s) for the j-th class, can be defined as follows:

uj(s) =
pj(s)∑c
i=1 pi(s)

,

where the distribution of the j-th class is pj (here multivariate Gaussian), while pj(s) is the

probability of s being a member of the that class.

Real world datasets: We collect 12 real-world classification datasets of diverse prop-

erties from the KEEL (Triguero et al., 2011), and University of California, Irvine (Dua and
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Graff, 2017) machine learning data repositories. In Section B.2 in Appendix B we provide

a brief description of the various important attributes (namely the number of points, the

number of dimensions, and the number of classes) of the real-world datasets used in the

simulation study.

3.4.1.2 Experimental protocol

Our primary goal in this simulation study over artificial datasets is to validate Theorem 3.1

and 3.2. Therefore, for each of the artificial datasets, we gradually increase the size of the

training set by respectively combining 10,000, 50,000, 100,000, and 150,000 randomly selected

data instances from each of the c classes. Subsequently, we construct a test set corresponding

to each of these previously assembled training sets, by picking 100 data instances from the

remaining data points in each of the c classes. This entire process is repeated for 10 times (i.e.

generating 40 training-test pairs from a single dataset) such that the effect of randomization

on the results can be mitigated. Moreover, to evaluate the impact of the choice of k for a

given N , we vary its value among 1, dN0.1e, dN0.25e, and dN0.5e for each of the training-test

pairs.

Similarly, in case of the real datasets we perform a 10-fold cross-validation, and vary the

value of k as 1, dN0.1e, dN0.25e, and dN0.5e for each of the training-test pairs. However,

as we have pointed out in Section 3.1 the initial fuzzy memberships for the data points in

a real dataset can be found by using various techniques. Therefore, in our experiments we

choose the popular Keller’s Heuristic (KH) (Keller et al., 1985) with the value of k′ equals to

k. Moreover, in an attempt to validate the efficacy of KH we compare its performance with

the Kernel Density Estimation (KDE) using the Gaussian kernel while setting the bandwidth

according to the rule of thumb as suggested by Silverman (1988). We use Wilcoxon Signed

Rank (WSR) test (Garćıa et al., 2013) to evaluate if KH can perform significantly (with a

significance level of 5%) different than KDE as an initialization technique, on average over

all the 12 real-world datasets.

Among the available indices which are capable to quantize the performance of a classifier,

one of the simplest yet effective indexes is the Accuracy measure. The Accuracy index given a

c class confusion matrix Qc is defined as β =
∑c

i=1 qii/n, where
∑c

i=1 qii calculates the number

of test points correctly classified by a classifier, and n is the size of the test set. Evidently,
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1 ≥ β ≥ 0, and the higher value of Accuracy indicates a better classification. However, to

calculate accuracy for FkNN, one needs to retrieve a class label from the estimated fuzzy

memberships. This can be done by assigning a test point to that class which achieves the

maximum membership among the c possible classes. Moreover, one is not required to consider

the individual class-specific bias and MSE, as according to Theorem 3.2, only observing µe,

and σe should suffice, especially when our experiments involved datasets with a varying

number of classes. Therefore, we report all our results in terms of β, µe, and σe, which also

enables us to investigate the importance of the latter two measures in case of fuzzy classifiers.

3.4.1.3 Results on artificial datasets

We plot the average µe respectively over the 2-dimensional, 5-dimensional, and 10-dimensional

artificial datasets, with varying values of N , and corresponding choices of k in Figure 3.5a.

The similar plots for σe and β, are respectively illustrated in Figure 3.5b and Figure 3.5c.

Following the legends described in Figure 3.5d, we can observe that irrespective of data

dimension, and choices of k, the value of µe, σe, and β, generally (the small fluctuations are

mostly due to the effect of randomization) improve with increasing N . Furthermore, the best

value of an index for all the cases is usually achieved by k = dN0.25e, which is a moderate

data-dependent choice. Interestingly, the best µe, σe, and β on average are achieved over the

2-dimensional datasets. Moreover, the deterioration in the case of µe and σe with increasing

data dimensions are more apparent than that in β. This phenomenon may be explained by

the presence of the uncontrolled overlap in the higher dimensional datasets.

To investigate further we plot the variation of µe, σe, and β averaged over the choices

of k, with increasing value of N , for the three datasets, namely AD-2-2-NO, AD-2-2-SO,

and AD-2-2-LO, respectively in Figure 3.6a, Figure 3.6b, and Figure 3.6c. As described in

Table 3.1 and in Figure 3.4a, Figure 3.4b, and Figure 3.4c, the three chosen datasets have an

increasing amount of overlap between the two classes, thus aiding us to assess the impact of

overlapping classes on the performance of FkNN. From Figure 3.6a, Figure 3.6b, and Figure

3.6c, it is evident that the values of µe, σe, and β degrade with increasing overlap. This can

be considered natural as given a test point FkNN will have neighboring training points from

multiple classes in the overlapped region. All of these training points will have somewhat

similar class memberships for the overlapped classes, thus using their information, FkNN will
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strive to achieve an accurate membership estimate for the test points. However, the accuracy

may still persist as the class corresponding to the maximum estimated membership is likely

to be conserved in most of the regular situations. Moreover, with the increasing number of

training samples, the effect of overlap may be reduced further. The detailed results on the

artificial datasets can be found in Table B.6, B.4, and B.5 of Appendix B.
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Figure 3.5: Summary of simulation on artificial datasets. (a) Comparison of µe over the
artificial datasets. (b) Comparison of σe over the artificial datasets. (c) Comparison of
Accuracy over the artificial datasets. (d) Legends. Note that in all cases a ceiling value is
taken to ensure that k is an integer.

3.4.1.4 Results on real-world datasets

To compare the correctness of initial memberships calculated by KH and KDE, we plot the

µe, σe, and β (averaged over the 12 real datasets) with varying choice of k, respectively in

Figure 3.7a, Figure 3.7b, and Figure 3.7c. It is evident from Figure 3.7c that the initial

membership estimated by KH testifies for a better classification than by KDE, or in other

words, the former can better approximate the local data distribution which is helpful for

a better performance of FkNN. This is further validated by the lesser average µe and σe

achieved by FkNN using the memberships initialized by KH. Furthermore, the result of the
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Figure 3.6: The effect of overlapping classes on bias, MSE, and Accuracy. (a) µe on the
overlapped datasets. (b) σe on the overlapped datasets. (c) Accuracy on the overlapped
datasets.

Wilcoxon signed rank test, as detailed in Table 3.2, highlights the statistically significant

difference of average performance of FkNN in all the cases when KDE is used instead of KH

for initialization. Further we observe that on average k = dN0.1e achieves better performance

in terms of µe and β while k = dN0.25e gives a close competition especially on σe. This may

be considered as an evidence in support of Assumption 3.1 given the fact that the chosen

datasets are of diverse scale (N ranges from 150 to as large as 20,000) suggesting the better

performing choice of k to be distinct as well. Thus, compared to the smallest possible value of

1 or the largest conventional choice of dN0.5e the moderate values of the parameter k such as

dN0.1e and dN0.25e achieve a better performance on average. The results on the 12 real-world

datasets are detailed in Table B.7 of Appendix B.

3.4.2 Comparative study to evaluate the efficiency of LACW

As Section 3.4.1 we start by describing the real-world datasets used in this study. Subse-

quently, we detail the experimental protocol, describe the competing techniques, and finally

provide the results in an attempt to validate the efficacy of LACW in aiding WFkNN in the
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Figure 3.7: Comparison of the performance of KDE and KH in terms of µe, σe, and β over the
real world datasets. (a) Comparison in terms of µe averaged over different k. (b) Comparison
in terms of σe averaged over different k. (c) Comparison in terms of β averaged over different
k. Note that in all cases a ceiling value is taken to ensure that k is an integer.

Table 3.2: Summary of Wilcoxon Signed Rank Test for the comparison of performance of
KDE and KH over the real world datasets.

k = 1 k = dN0.1e k = dN0.25e k = dN0.5e

µe σe β µe σe β µe σe β µe σe β

KDE H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1 H1

KH CM CM CM CM CM CM CM CM CM CM CM CM

H1: The difference of performance on the 12 real world datasets are statistically significant
as indicated by WSR. H0: The difference of performance on the 37 real world imbalanced
datasets are statistically comparable as indicated by WSR.
CM : Control method.

presence of class imbalance.

3.4.2.1 Real world class imbalanced benchmark datasets used in this compara-

tive study

We select 37 real-world class imbalanced benchmark datasets from six different machine

learning data repositories and collections namely KEEL (Triguero et al., 2011), University of

California, Irvine (Dua and Graff, 2017), IDA benchmark (Rätsch, 2001), Akbani et al. (2004),
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Agnostic Learning vs. Prior Knowledge Challenge (Guyon, 2006), and LibSVM (Chang and

Lin, 2011). The datasets are chosen to ensure diversity in terms of scale, dimensionality,

number of classes, and IR. A detail of these datasets highlighting their key properties can be

found in Table B.3 of Appendix B.

3.4.2.2 Experimental protocol

All our experiments are performed using a 10-fold stratified cross-validation while the value

of k is varied between 1, dN0.1e, dN0.25e, and dN0.5e. In this experiment, we are focused

on validating the average performance of LACW coupled with WFkNN (hereafter called

WFkNN+LACW) in comparison to other FkNN variants. Therefore, in all cases, we report

the mean result overall folds and all choices of k. However, classifiers tailored for handling

class imbalance may perform slightly poorer on the majority classes at the expense of a

significant improvement over the minority ones due to overcompensation. Thus, µe and σe

may not be able to reflect the true performance of a classifier in presence of class imbalance

as the significantly lower bias and MSE achieved over less number of minority points may

be overwhelmed by the minutely increased bias and MSE over a large number of majority

instances. This leads us to use the bias and MSE (respectively denoted by µ+ and σ+)

only over the minority class instead of µe and σe. Further, we recall from Chapter 2 that

Accuracy cannot be considered as an ideal performance measure in the presence of class

imbalance (Sokolova et al., 2006; Japkowicz, 2006). Hence, along with µ+ and σ+ we also

evaluate the classifiers in terms of ACSA and GMean.

To evaluate the efficacy of WFkNN+LACW we compare its performance with five con-

tending FkNN variants capable of handling class imbalance. First, the regular FkNN classifier

as a benchmark. Second, the WFkNN coupled with GCW. Third, regular FkNN trained on

a training set artificially balanced by SMOTE (Chawla et al., 2002). The parameter deter-

mining the number of neighbors in SMOTE is set to 5 following the original article. Fourth,

regular FkNN trained on a training set artificially (almost) balanced by RUS (Japkowicz,

2000). To prevent serious loss of information we restrict RUS to retain at least 20% of data

instances from any majority class even if an attempt of balancing requires a lesser number

of data points to be sampled. Fifth, the WFkNN coupled with the class weighting approach

proposed by Tan (2005) (hereafter called Neighbor Weighted FkNN or NWFkNN). The data-
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dependent exponent parameter in NWFkNN is set to 4 following recommendations made in

the corresponding research article. In the case of WFkNN+LACW we use the KH initial

membership estimation where k′ is set to k.

To validate if the performance of WFkNN+LACW is statistically different from its con-

tenders we undertake a WSR test (with a significance level of 5%) over all datasets. Fur-

ther, to better highlight the efficacy of WFkNN+LACW we perform a Wilcoxon Rank-Sum

(WRS) test1 (Hollander et al., 2013) with 5% level of significance on each of the datasets.

We express the outcome of WRS test in the form of a Win-Tie-Loss count for each of the

contenders. A Win (W) on a dataset takes place if a contender achieves a significantly worse

performance from the control method WFkNN+LACW according to WRS. A Tie (T) is

considered when the WRS finds the performance of the contender is statistically comparable

with WFkNN+LACW. Finally, A Loss (L) is defined as the case when WFkNN+LACW

performs worse than a contender while WRS indicates that the difference in performance is

statistically significant.

Table 3.3: Performance comparison of WFkNN+LACW with other FkNN variants on real
world class imbalanced benchmark datasets

FkNN WFkNN FkNN FkNN NWFkNN WFkNN
+GCW +SMOTE +RUS +LACW

Average ACSA 0.70 0.77 0.60 0.77 0.73 0.79
Average GMean 0.55 0.73 0.33 0.70 0.63 0.75

Average µ+ 0.28 0.19 0.46 0.20 0.24 0.18
Average σ+ 0.12 0.07 0.24 0.08 0.09 0.06

W-T-L for ACSA 32-5-0 22-15-0 30-7-0 20-15-2 27-10-0 CM
W-T-L for GMean 31-6-0 22-15-0 30-6-1 21-14-2 28-9-0 CM

W-T-L for µ+ 36-1-0 19-18-0 36-1-0 17-14-6 31-6-0 CM
W-T-L for σ+ 34-3-0 20-17-0 37-0-0 20-12-5 25-12-0 CM

WSR for ACSA H1 H1 H1 H1 H1 CM
WSR for GMean H1 H1 H1 H1 H1 CM

WSR for µ+ H1 H1 H1 H1 H1 CM
WSR for σ+ H1 H1 H1 H1 H1 CM

The best result is boldfaced.
H1: The difference of performance on the 37 real world imbalanced datasets are statisti-
cally significant as indicated by WSR.
H0: The difference of performance on the 37 real world imbalanced datasets are statisti-
cally comparable as indicated by WSR.
CM : Control method.

1Also known as Mann-Whitney U test.
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3.4.2.3 Results on real-world class imbalanced benchmark datasets

We summarize the results on 37 real-world class imbalanced benchmark datasets in the fol-

lowing Table 3.3. A closer inspection of Table 3.3 reveals that the regular FkNN fails to

achieve a commendable performance suggesting the need of specially tailored FkNN variants

capable of countering the adverse effects of class imbalance. Moreover, WFkNN+LACW

outperforms others in all four of the performance indices while the WSR test verifies its per-

formance to be significantly different from all its contenders over the 37 datasets. Therefore,

in view of the empirical findings, it is safe to say that WFkNN+LACW is indeed capable

of alleviating the susceptibility of WFkNN in the presence of class imbalance. Further, the

improvement achieved over WFkNN+GCW highlights the importance of incorporating local

information through the point specific adaptive class weighting strategy in WFkNN+LACW.

Moreover, the performance of WFkNN+LACW is only followed by FkNN+SMOTE which

manages to achieve 6 and 5 wins when respectively compared in terms of µ+ and σ+. This

is an expected behavior as SMOTE increases the number of training points which according

to Theorem 3.1 and 3.2 should facilitate a better convergence of FkNN. However, as noted

earlier in Section 3.4.1.3 an improvement in bias and MSE may not always alter the final

labeling of a test point. Therefore, the competitive performance of FkNN+SMOTE becomes

less apparent when compared in terms of ACSA or GMean. We detail the results on the real

world class imbalanced datasets in Table B.8, B.9, B.10, and B.11 on Appendix B.

3.5 Discussion

In this chapter, we presented an analytical view of the performance of FkNN classifier.

Contrary to the previous attempts our analysis followed a simpler approach that utilizes

unbounded loss functions, relies only on three elementary assumptions, and remains inde-

pendent of the choice of k, m, and the number of classes. Moreover, we showed that proving

the convergence of bias and MSE of FkNN estimator can indicate a more interpretable per-

formance assurance than comparing the risk of FkNN with that of the Bayes classifier. In

particular, we proved that the bias and MSE of the FkNN estimator for each of the classes

are bounded, and go to 0 as n→∞. Additionally, we presented a detailed simulation study

verifying our theoretical claims and evaluating the performance of FkNN in practical applica-
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tions. The simulation also highlights the need for tuning k for achieving a better performance

and validates the resilience of FkNN to the presence of overlapping classes. Further, we de-

scribed LACW, a point specific locally adaptive class weighting strategy that when coupled

with weighted FkNN can help in improving the performance of the classifier in the presence

of class imbalance. Finally, we detailed a comparison study with FkNN variants tailored for

handling class imbalance to establish the efficacy of the LACW strategy and validated the

usefulness of incorporating the local information of a test point through adaptive class-specific

weights.
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Chapter 4

Parameter Independent Fuzzy
k-Nearest Neighbor Classifier for
Balanced and Imbalanced Data
Classification

Summary

Unlike the canonical kNN which treats the neighbors equally, the FkNN classifier imposes a

weight on each of the k nearest neighbors based on their distances from the query point, by

using a fuzzy membership function. FkNN though improves the performance of kNN, requires

optimizing additional data-dependent parameters other than k. Furthermore, FkNN does

not consider the effect of those representative features of a data point which may be noisy,

redundant, and may not contain useful information to distinctly identify a specific class.

We attempt to address both of these issues in the current chapter by proposing a Parameter

Independent Fuzzy class-specific Feature Weighted k-Nearest Neighbor (PIFWkNN) classifier.

PIFWkNN formulates the issues of choosing a suitable value of k and a set of class-dependent

optimum weights for the features as a single-objective continuous non-convex optimization

problem. We solve this problem by using a very competitive variant of Differential Evolution

(DE), called Success-History based Adaptive DE (SHADE). We perform extensive experiments

to demonstrate the improved accuracy of PIFWkNN compared to the other state-of-the-art

classifiers. Furthermore, FkNN classifiers are known to be susceptible to the presence of a

class imbalance in the training set. In this chapter, we attempt to address this issue as well by

aiding FkNN to combat the detrimental effects of class imbalance through a set of global class-
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specific weights. The formulation of PIFWkNN allows a direct optimization of such a set of

global weights which are likely to be effective in offering the classifier additional immunity

against class imbalance. We call our approach PIFW2kNN and validate its efficacy through

a comparative study of performance.

4.1 Introduction

4.1.1 Overview

As mentioned earlier in Chapter 3 the kNN classifier has always been a popular and widely

applied choice (Angiulli and Fassetti, 2013; Liu and Liu, 2016) for its good performance as

well as conceptual and computational simplicity. Furthermore, kNN, being a non-parametric

classifier (Duda et al., 2000), does not depend on any prior assumptions made about the data

distribution. However, kNN is reliant on three important factors for performing a successful

classification; namely the size of the neighborhood determined by the value of k, the distance

function used to identify the neighbors, and the importance of a neighbor, class, or feature.

Over the years a vast amount of research concentrated on one or more of these three

directions to improve the accuracy of kNN. Cover and Hart (1967) first showed that the

probability of inaccurate classification by kNN can be at most twice the risk of the Bayes

classifier when k = 1 and the number of training samples N → ∞. However, in reality, one

always has access to a finite number of training instances. Thus, choices of k other than 1

may be more useful (Hall et al., 2008). Hence for practical implementation, several techniques

like cross-validation and probabilistic modeling (Ghosh, 2006) are suggested to find a single

global optimum choice of k. It is also a common practice to use a conventional constant

choice of k limited among 1, 3, 5, 7, 9 and d
√
Ne (Bhattacharya et al., 2012; Domeniconi

et al., 2002).

Optimizing only the number of neighbors may not enough as the definition of a set of

neighboring training points is reliant on the choice of the distance metric. The issue of

finding a suitable distance measure for the kNN classifier influenced many researchers to

design adaptive Euclidean, City-block (Wang et al., 2007), and Mahalanobis (Weinberger

et al., 2005) distances. Previous researches also pointed out that the kNN classifier may be

benefited by incorporating one or more of the class, feature, and neighbor specific weighting
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schemes. An intuitive idea suggests that a distant neighbor should play a less significant role

than a close one in deciding for a test instance, which is theoretically validated recently by

(Samworth, 2012). Class-specific weighting is useful for aiding kNN with additional knowledge

about the class properties, especially when all the classes are not equally represented in the

training set (Tan, 2005). Moreover, to remove the effect of noisy and redundant features,

attribute specific weighting has been shown to be beneficial (Mateos-Garćıa et al., 2012).

As discussed in Section 3 the traditional kNN provides a hard decision for a test point

which may be restricted due to the limited access to the information about the class distribu-

tions learned from a finite set of training samples. Contrary to this, the Fuzzy-kNN (FkNN)

classifier (Keller et al., 1985; Derrac et al., 2014) not only provides a soft decision for a query

point y (in the form of probabilistic membership for y to belong in all of the possible classes)

but also assigns a weight to a neighbor inversely proportionate to its distance from y. The

flexibility offered by FkNN is further extended by utilizing the interval type-2 fuzzy logic

(Mendal and John, 2002). FkNN and its variants though improve the accuracy of kNN, in

return increase the complexity by introducing some new parameters (for example m, which

controls the weight decay of a neighbor in proportion to its distance from the test instance

or k′ which is used for calculating an initial membership of the training points) alongside k,

all of which are needed to be properly optimized.

4.1.2 Background

4.1.2.1 Class specific feature selection

A data instance is traditionally represented through a set of handcrafted features (Fisher,

1936). However, in most cases, the set of features is not designed while keeping a particular

application in mind. Thus, if a data instance is expressed in the form of a d-dimensional vector

then all of the d features may not effectively contribute to a certain application. Further,

a feature can be noisy by design and may provide redundant information (Hanchuan Peng

et al., 2005). Thus, a primary concern of the machine learning community is to select a

subset of useful features that will offer relevant information for efficiently performing a given

task such as classification (Chandrashekar and Sahin, 2014). One may further extend the

notion of feature selection in case of classification by arguing that not all selected features
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play an equal role in distinguishing all the classes. Thus, contrary to the selection of a global

subset of features it may be more beneficial to look for class-specific subsets that are likely

to improve the classification performance on the class under concern (Pineda-Bautista et al.,

2011; Chen and Gu, 2015). However, a crisp selection either retains or discards a feature

in its entirety which may hinder the efficient exploitation of information. Instead one may

choose to assign a class-specific weight to each feature according to their relevance in the

proper identification of a particular class.

4.1.2.2 Evolutionary optimization for parameter tuning

Employing Evolutionary Optimization (EvO) techniques for optimizing fuzzy classifiers is a

well-explored direction of research (Munoz-Salinas et al., 2008; Trawiński et al., 2013, 2014;

Fernández et al., 2015b). This is because in such systems it is often difficult to express the

objective function in a form which will ensure the necessary conditions set by a mathematical

optimizer. Following this route EvO techniques were also employed for tuning k (and in cases

m and k′) associated with kNN, FkNN, and their variants (Paredes and Vidal, 2006; Hu and

Xie, 2005). The reason behind favoring an EvO technique over a mathematical optimization

algorithm is the inadequate knowledge about the properties of the fitness function used to

model the optimization problem. Moreover, depending on the encoding scheme (influenced

by the domain of the fitness function), one has the freedom of choosing a particular algorithm

from the vast and diverse collection of EvO methods such as Genetic Algorithm (GA) (Gold-

berg, 1989), Differential Evolution (DE) (Storn and Price, 1997), etc. The practice of using

EvO algorithms for optimizing the performance of kNN was later modified to incorporate the

calculation of a set of optimal global weights for the features (Raymer et al., 2000) and fur-

ther extended to consider additional class information. However, EvO algorithms introduce

a new set of performance affecting parameters which are to be adjusted. Furthermore, the

common practice does not simultaneously optimize the feature weights and the value of k.

4.1.3 Motivation

We are motivated by the fact that the performance of FkNN can be improved by using

the optimal choices of parameters k, k′, and m. However, among the three parameters

optimizing only k will suffice as according to the study by Keller et al. (1985); the value of
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Figure 4.1: The effect of class specific feature weighting on a kNN classifier. (a) Classification
without feature weighting. (b) Classification when class-specific feature weighting is used.
(c) Legends.

m has little effect over the performance when restricted to its conventional choice, while k

and k′ can have similar value, thus requiring no explicit tuning. Furthermore, introducing

important additional information through features and class weights may be helpful for better

classification. This can be achieved by either a set of globally optimized weights for the

attributes in addition to class weighting (AlSukker et al., 2010) or a class-specific optimal

set of weights for the features (Paredes and Vidal, 2006). Among the two techniques, we

prefer the use of class-specific feature weights for its simplicity. The properties of the class

distributions are directly reflected through the sampled values of the features. Therefore,

it is evident that each class can be better distinguished from the rest using a unique set of

informative features. Hence, a weighting scheme should consider the importance of a feature

not from the global perspective of the entire dataset but from that of the individual classes;

which can be better realized by using a set of class-specific feature weights. The usefulness

of such a weighting technique can be explained with the help of the following illustrative

Example 4.1.

Example 4.1. Let us a take a three-class classification problem, where the classes are named

as Red, Blue, and Green as illustrated in Figure 4.1a (see Figure 4.1c for legends). The

dataset is two-dimensional i.e. a data instance is represented through two features namely F1

and F2. We take two test instances, one from the Red class and the other from the Blue class.

If we do not use any class specific feature weighting then from Figure 4.1a we can see that
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both of the test points will be misclassified as members of the Green class by a regular kNN

classifier with k = 3 if Euclidean distance is used. However, a careful observation will reveal

that F2 has little contribution for distinguishing a member of the Red class while F1 performs

the same for the Blue class by remaining almost invariant. In case of the Green class, both

of F1 and F2 are evenly spread between a similar range indicating an equal importance in

distinguishing one of its member. Hence, using weighted Euclidean distance (see expression

(4.2)) with a feature weight vectors ωFRed, ωFBlue, and ωFGreen respectively for the Red, Blue,

and Green class may prove to be beneficial. We select such a set of weights as in matrix ΩF

in expression (4.1).

ΩF =


ωFRed

ωFBlue

ωFGreen

 =


1 0

0 1

1 1

 . (4.1)

We can verify that the use of such a set of weights can indeed correctly classify both of

the test points in their respective classes as seen in Figure 4.1b.

Thus, in an attempt to improve the accuracy of an FkNN classifier, one may simulta-

neously optimize the parameters of FkNN as well as a set of class-specific feature weights

using a suitable combination of a fitness function, encoding scheme, and an EvO algorithm.

The class-specific feature weighting should also offer immunity against class imbalance to

some extent as it attempts to adapt the distance measure and consequently the neighbors to

facilitate a better classification. However, only class-specific feature weighting may not be

enough if the number of training points from the minority class(es) is severely limited. The

situation will only worsen with the increasing sparsity of the minority class(es). Thus, to offer

further resilience against class imbalance one may attempt to replace FkNN with WFkNN

and introduce an additional set of class-specific weights. Optimization of such class-specific

weights alongside the parameters and feature weights of WFkNN by EvO techniques can

be achieved by a simple modification of the fitness function and the encoding scheme of the

candidate solutions.
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4.1.4 Contribution of Chapter 4

In this chapter, we propose a new Parameter Independent Fuzzy class-specific feature Weighted

kNN (PIFWkNN) classifier. The major contribution of PIFWkNN is incorporating a set of

optimal class-specific weights for the features with the traditional FkNN. The PIFWkNN

classifier further optimizes the choice of the global value of k, such that the performance of

FkNN can be maximized. However, in contrary to the previous works, PIFWkNN does not

express the optimization of the weights and the value of k as two separate problems. The

PIFWkNN classifier uses a novel real-valued encoding scheme such that the two optimiza-

tion problems can be conjugated into a single one and can be simultaneously solved by an

evolutionary algorithm like DE. However, the need of preserving the parameter independent

nature of the proposed classifier cannot be satisfied by the use of regular DE, as it intro-

duces two new performance controlling parameters (namely the scale factor of the mutation

and the crossover rate). Therefore, in this study, we use a state-of-the-art variant of DE,

called Success-History based parameter Adaptive Differential Evolution (SHADE) (Tanabe

and Fukunaga, 2013) which can optimally adapt the different associated parameters of DE

on-the-fly alongside ensuring better performance than canonical DE.

To establish the effectiveness of the alterations made through the proposed technique, we

perform an extensive experiment using 20 real-world datasets of varying properties. We com-

pare the classification accuracy of PIFWkNN with that of kNN, FkNN, Extended Nearest

Neighbor (ENN) (Tang and He, 2015), kLDEDW (Mateos-Garćıa et al., 2012), DE4 (Al-

Sukker et al., 2010), CW (Paredes and Vidal, 2006), GA-Fuzzy kNN (Hu and Xie, 2005) and,

EF-kNN IVFS (Derrac et al., 2016). Two non-parametric statistical testing methods namely

Wilcoxon Rank Sum1 (WRS) (Gibbson and Chakraborti, 2011) test and Wilcoxon Signed-

Rank (WSR) (Derrac et al., 2011) test are used to check if the improvement of PIFWkNN is

significantly better than the contending algorithms.

We further extend the PIFWkNN classifier for improving its performance of class im-

balance data and propose a class weighted variant called as PIFW2kNN. The proposed

PIFW2kNN replaces the FkNN in PIFWkNN with a WFkNN such that additional class-

specific weights can be Incorporated. Instead of finding the class weights through some

1Alternatively called Mann-Whitney U test.
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heuristic techniques PIFW2kNN optimizes them simultaneously with the associated param-

eters and feature weights. We validate the efficacy of the PIFW2kNN on 20 class imbalanced

real-world benchmark datasets in comparison to the state-of-the-art variants of kNN and

FkNN tailored to efficiently combat the effects of class imbalance.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the PIFWkNN

and PIFW2kNN algorithms in detail. In Section 4.3, we present the results and evaluate the

improvements achieved by the proposed classifier, and follow it with a discussion in Section

4.4.

4.2 Proposed method

In Chapter 3 we have already introduced the kNN, FkNN, and WFkNN classifiers. Thus, in

this chapter, we can directly start with the discussion on the role of a distance function in

such classifiers.

4.2.1 Feature weighted Euclidean distance

Both of the kNN and the FkNN algorithms can be easily modified by using a suitable distance

measure ∆ which is necessary for finding the neighbors and calculating the class memberships.

Instead of the traditional Euclidean distance here we propose to use a class-based feature

weighted Euclidean distance measure ∆ΩF . Given a training point x ∈ X and a test point

y ∈ X ′ weighted Euclidean distance can be defined as:

∆ΩF (x,y) =

(
d∑
i=1

ωFh(x)i(x
(i) − y(i))2

) 1
2

, (4.2)

where, ωFij is the weight for the i-th dimension when the training point x belongs to the j-th

class for all i ∈ {1, 2, · · · , d} and j ∈ C. Therefore, ΩF = [ωFij ]c×d.

4.2.2 Optimization problems, DE, and SHADE

Let us take a function J : Θ→ R, where Θ is a set defined as follows:

Θ = {θ|θ ∈ Rd, A(1)
3 ≤ θ(1) ≤ A(1)

4 , · · · , A(d)
3 ≤ θ(d) ≤ A(d)

4 }. (4.3)
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Here, A3 = {A(1)
3 , A

(2)
3 , · · · , A(d)

3 } and A4 = [A
(1)
4 , A

(2)
4 , · · · , A(d)

4 }. An optimization problem,

whose solution is θ̂ can be expressed in the form of minimization problem without loss of

generality as follows:

θ̂ = arg min
θ∈Θ

J (θ). (4.4)

Here J is known as the objective function, which represents the optimization problem and is

needed to be minimized. DE attempts to find θ̂ by starting with a random population ΘNp ⊆

Θ containing Np number of candidate solutions and over iterations evolving/improving them

until a termination condition is met. The evolution is performed by sequentially applying

three operations namely mutation (using a difference vector of two candidate solutions),

crossover (exponential or binomial), and selection to the population, a detail of which can be

found in Das et al. (2016). There exists a wide variety of mutation and crossover operations,

designed for tackling different types of optimization problems.

The canonical DE technique though simple in nature greatly depends on the choices of

the scale factor F and the crossover rate Cr to attain good performance. The value of Np is

conventionally kept fixed to a constant, while the maximum number of Fitness Evaluations

(FEs) is dependent on the problem dimension (Liang et al., 2013; Awad et al., 2016). Thus,

the use of DE though relieves the user from tuning the value of k and finding the optimal

feature weights; still requires adjusting F and Cr for effectively improving the accuracy of

FkNN. This issue can be solved by using a state-of-the-art variant of DE, called SHADE,

which utilizes self-adaptation techniques to intelligently calculate the optimal value of F

and Cr. Moreover, SHADE produces a better result than regular DE using less number of

iterations which is confirmed by its performance in the CEC 2013 single-objective real-valued

benchmark functions optimization challenge (Liang et al., 2013). The SHADE method is

described in Algorithm 1, where randc(A5, A6) and randn(A7, A8) sample a real value at

random respectively from a Cauchy distribution (with location A5 and scale A6), and a

normal distribution (with mean A7 and standard deviation A8).
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Algorithm 1 The SHADE algorithm

Input: The optimization problem J , A3, A4, population size Np, the size of memory pool H.
Output: The solution ŝ of the optimization problem J .

1: Initialize population ΘNP
= {θ1,θ2, · · · ,θNp

}, a set of random d-dimensional real vectors sampled
from an uniform distribution and scaled between A3 and A4. Also set M(Cr) = {0.5}H, M(F) =
{0.5}H, Ar = φ, b0 = 1.

2: while not converged do
3: M(Cr) = φ, M(F) = φ.
4: for j ← 1 to Np do
5: Randomly select an integer ψ between 1 and H.
6: Set Crj =randn(M(Cr)ψ, 0.1), Fj =randc(M(F)ψ, 0.1).
7: Generate the trial solution θ′j by current-to-pbest/1/bin method using crossover rate Crj and

scale factor Fj (Zhang and Sanderson, 2009).
8: if J (θ′j) ≤ J (θj) then
9: θj = θ′j .

10: end if
11: if J (θ′j) < J (θj) then
12: Update Ar = Ar ∪ θj , M(Cr) =M(Cr) ∪ Crj , and M(F) =M(F) ∪ Fj .
13: end if
14: end for
15: Randomly discard solutions from Ar, if |Ar| > Np.
16: if M(Cr) 6= φ and M(F) 6= φ then
17: Update M(Cr)b0 and M(F)b0 respectively using M(Cr) and M(F) following Tanabe and

Fukunaga (2013).
18: Update b0 = (b0 mod H) + 1.
19: end if
20: end while

4.2.3 Addressing the compromise between the performance and complex-

ity of SHADE compared to canonical DE

We describe a set of assumptions based on which the computational complexity of DE and

SHADE can be derived and compared in the subsequent theorem.

Assumption 4.1. Both DE and SHADE are optimizing the same problem using similar fit-

ness function and equivalent d-dimensional encoding of the candidate solutions. This enables

us to discard the complexity of evaluating the fitness function from our discussion.

Assumption 4.2. Let Np be treated as a constant following the common practice as described

in details by Das et al. (2016). This assumption can be further supported by the fact that in

majority of cases Np < A9d (where A9 is a small usually 0 ≤ A9 ≤ 10) and almost certainly

Np � d2.

Assumption 4.3. Both DE and SHADE are allowed to employ an equal number of FEs
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while attempting to optimize the fitness function. Following the conventional standards of

evolutionary algorithm evaluation documented by various CEC competitions (Liang et al.,

2013; Awad et al., 2016) the number of FEs can be considered to be bounded by O(d). Hence,

using Assumption 4.2 the number of generations (τ) can be bounded by O(d) as well.

Under these elementary assumptions, we can now proceed to compare the computational

complexities of SHADE and regular DE.

Theorem 4.1. For a maximum number of generations bounded by O(d), an attempt to

optimize a d-dimensional optimization problem can be done by both of DE and SHADE in

O(d2) time.

Proof. The time complexity of DE following Assumption 4.1 was previously derived asO(Npdτ)

in the work of Zielinski et al. (2005). This complexity can directly be reduced to O(d2) if

Assumption 4.2 and 4.3 are applied.

At the start of every generation, SHADE spends a constant (follows from Assumption

4.2) amount of time to sort the current Np solutions based on their fitness such that a small

fraction of Np number of better solutions can be identified. Alongside, SHADE also finds the

union of the current population and an external archive, both containing at most Np number

of d-dimensional candidate solutions, which requires O(d) time due to Assumption 4.2. In

every generation, each of the Np solutions (called as target) respectively goes through the

evolutionary steps of mutation, crossover, and selection. SHADE uses a current-to-pbest/1

mutation strategy, which can generate a mutated (donor) vector in O(d) time (constant time

is spent for randomly sampling the parameters from their respective distribution and finding

two random solutions from the archive). The target and corresponding donor then participate

in binomial crossover to form a trial vector in another O(d) time. The selection between trial

and target vector based on their fitness can be performed in constant time with the help

of Assumption 4.1. Moreover, following Assumption 4.2 and the size of H being a small

integer, the time needed for the archiving of successful parameters and maintaining H can

be considered to be constant. Therefore, each generation of SHADE can be performed in a

total of O(Npd) ≈ O(d) time. Finally, the total time complexity of SHADE can be bounded

by O(dτ), which following Assumption 4.3 is reduced to O(d2).
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From Theorem 4.1 we can observe that canonical DE and SHADE are both bounded by

the same time complexity of O(d2); while the later is documented (Tanabe and Fukunaga,

2013) to outperform the former. Furthermore, a recent study by Ghosh et al. (2017) showed

that in practice on 30-dimensional benchmark problems (Liang et al., 2013), SHADE takes

slightly more execution time than DE/rand/1/bin algorithm, if the values of F and Cr are

kept fixed for DE. However, in the surveys of Das and Suganthan (2011) and Das et al. (2016),

the authors highlighted the importance of tuning F and Cr to optimize the performance of

DE by citing several notable works on the topic. Therefore, the effective execution time

of a single run of DE will be the average time reported by Ghosh et al. (2017) multiplied

by the number of possible combinations of allowed values of F and Cr; making it far more

disadvantageous than a single run of SHADE. In conclusion, SHADE can be considered more

beneficial in terms of the performance-complexity trade-off compared to canonical DE, which

leads us to use it as the evolutionary optimizer in this chapter.

4.2.4 Objective function and encoding scheme for PIFWkNN

We need to design an objective function, the minimization of which will optimize the perfor-

mance of PIFWkNN. A choice of such a function can be the leave-one-out misclassification

error over the training set. Such an error can be calculated by classifying each x ∈ X by

PIFWkNN, while X \ {x} is used as the training set. As our aim is to optimize the parame-

ters for PIFWkNN, the candidate solutions of the objective function should also incorporate

the parameter space of the classifier. Let us denote the domain of the objective function as

T ∈ Rd′ . Thus, we formally define the objective function E : T→ R as shown below:

E(η) =

(
1− 1

N

∑
x∈X
I(ĥX\{x}(x) = h(x))

)
. (4.5)

where η ∈ T is a candidate solution of E from which the optimal choices of the parameters

k and ΩF can be extracted. Now the only remaining task is to encode η in such a way that

not only ΩF and k can be easily calculated from it but also it can be properly evolved by

SHADE. We illustrate such an encoding in Figure 4.2.

One such formulation of η can be in the form of a d′-dimensional vector where each row

of ΩF is horizontally concatenated while an extra dimension is added for k. However, such a
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Figure 4.2: Encoding scheme for PIFWkNN. We represent a candidate solution η ∈ T in the
form of a d′ dimensional real-valued vector, where d′ = (d × c) + 1. Given a d-dimensional
c-class dataset the first (d × c) dimensions of η represent the class specific feature weights.
Specifically the feature weights for the j-th class are stored between the ((d× (j − 1) + 1)-th
and (d× j)-th dimension of η for all j ∈ C. The last ((d× c) + 1)-th dimension of η is used
to optimize the parameter k.

formulation of η despite being capable to simultaneously encode ΩF and k, cannot be directly

implemented for optimization in practice. This is because ΩF is a real-valued matrix, each

row of which should be in the range between 0 and 1. On the other hand, k is an integer lying

in the range between 1 and
√
N . Such an issue can be solved by extracting ΩF and k from

an evolved solution η (instead of directly using it as the parameter vector) after applying

some corrections.

4.2.5 Putting it all together: the PIFWkNN algorithm

The proposed PIFW-kNN classifier starts by initializing a random (sampled from a d′-

dimensional uniform distribution) population TNp containing Np number of candidate so-

lutions η (where, 0 ≤ η(i) ≤ 1,∀η ∈ TNp , for all i = 1, 2, · · · , d′ and TNp ⊂ T is the current

population). Each of the initial solutions are corrected and after extracting corresponding

ΩF and k evaluated by calculating E . For ΩF the correction and extraction can be done by

normalizing the set of weights for each of the classes ([η(jd−d+1), η(jd−d+2) · · · , η(jd)] for the

j-th class) in the range 0 to 1. While, for k, η(d′) is first bounded between ε and 1, where ε

is a very small positive real number (for η(d′) ≤ 0 set η(d′) = ε and for η(d′) ≥ 1 set η(d′) = 1,

otherwise the value of η(d′) can be retained). The modified η(d′) is multiplied by the maximum

allowable value of k and rounded to the next integer as in expression (4.6).

k =
⌈
η(d′) ×

√
N
⌉
. (4.6)

This population is fed to SHADE for evolution. In each iteration of SHADE new solutions

are generated by applying evolutionary operations, and from these solutions after necessary
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correction a value of ΩF and k can be extracted. Using these obtained parameter settings

alongside the training set X, the classification error E of the modified FkNN is calculated

and the new solution becomes a part of the population only if its error is less than that of the

corresponding parent. These steps are repeated until a termination condition is met. Finally

the best solution η̂ among the evolved population is obtained which can be used to construct

the optimal ΩF and k. These parameters can then be utilized for classifying a test point. We

describe the entire method in Algorithm 2.

Algorithm 2 The PIFWkNN algorithm

Input: The training set X, a test point y ∈ X ′.
Output: The class label ĥX(y) of y as predicted by PIFWkNN.

1: Randomly initialize population TNp
= [ηtj ]Np×d′ with real values lying between 0 and 1.

2: Evolve TNp
by SHADE to minimize objective function E as in (4.5). Apply necessary corrections

to each of the newly obtained trial solution and extract ΩF and k as described in Section 4.2.5
for evaluating them by E .

3: Find η̂ = arg minη∈TNp
E(η) and construct optimal ΩF and k using η̂.

4: Calculate ûj(y) according to (3.2) using optimal k and ΩF , by the distance as in (4.2) and training
set X.

5: Find ĥX(y) = arg maxj∈C ûj(y).

4.2.6 The PIFW2kNN algorithm

The PIFWkNN due to the incorporation of class-specific feature weighting and an optimized

choice of k is likely to offer immunity against class imbalance to a certain extent. However,

if a certain class contains a significantly limited number of training points then it may not

be possible for PIFWkNN to find an optimized set of feature weights for that class. Such

a situation commonly arises for the minority class(es) where a dearth of sufficient training

point is quite regular. Thus, to achieve good performance over the class imbalanced datasets

we introduce the PIFW2kNN classifier. The PIFW2kNN classifier varies from its predecessor

PIFWkNN in two basic aspects.

1. The optimization problem of PIFW2kNN contains three elements, namely the class

specific feature weights, the parameter k, and the class specific weights to handle class

imbalance. Thus, we define a candidate solution η′ ∈ T′ as a d′′-dimensional real

valued vector as shown in Figure 4.3. Similar to PIFWkNN such an encoding η′ is

capable to simultaneously optimize all three parameters while offering simple correction
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Figure 4.3: Encoding scheme for PIFW2kNN. Similar to PIFWkNN here also we represent
a candidate solution η′ ∈ T′ in the form of a d′′ dimensional real-valued vector, where
d′′ = (d × c) + c + 1. Given a d-dimensional c-class dataset the first (d × c) dimensions of
η′ similar to PIFWkNN represent the class specific feature weights. The ((d × c) + 1)-th
dimension of η′ is used to store k̂ from which the parameter k is estimated as in PIFWkNN.
Whereas, the class weights to compensate for the class imbalance are stored between the
((d× c) + 2)-th and ((d× c) + c+ 1)-th dimension of η′.

and extraction. Given a solution η′ the ΩF and k follows the similar correction and

extraction routine from the PIFWkNN. The class specific weights Ω can be extracted

as

Ω = [η′((d×c)+2)), η′((d×c)+3)), · · · , η′((d×c)+c+1))]. (4.7)

To respect the bound constraint one needs ensure that each element of Ω is strictly

positive (in case of a violation replacement with a random real number between 0 and

1 may be performed). The class specific weights can be initialized randomly. However,

we have observed in our experiments that initializing Ω with GCW usually reaches to

a better optima in less time.

2. The objective function in 4.5 is incapable of considering the bias which may be induced

in presence of class imbalance. To elaborate, let us think of an example where the

training set contains 90 points from the majority class and only 10 representatives from

the minority class. In such a scenario even if all the minority training points gets

misclassified the objective function in 4.5 will return a commendable error of 0.1. As

a remedy we chose to redefine the objective function E ′ : T′ → Rd′′ as the geometric

mean of the leave-one-out class specific accuracies for all x ∈ X as follows:

E ′(η′) =

1−

∏
j∈C

1

Nj

∑
x∈Xj

I(ĥX\{x}(x) = j)

 1
c

 . (4.8)

Such an objective function similar to the GMean index has a couple of benefits in our

particular scenario. First, E ′ only returns a value less than the maximum (i.e. 1, when
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there exist at least one class for which no training point has been correctly classified) if

and only if all the c classes attain a non-zero class specific accuracy. Second, the error is

more inclined to decrease with the increasing accuracy over the worst performing class.

In other words E ′ attempts to ensure non-zero class specific accuracy for all the classes

while stressing on the similar performance over all the classes including the difficult

ones.

The complete PIFW2kNN is described in the following Algorithm 3.

Algorithm 3 The PIFW2kNN algorithm

Input: The training set X, a test point y ∈ X ′.
Output: The class label ĥX(y) of y as predicted by PIFW2kNN.

1: Randomly initialize population T′Np
= [η′tj ]Np×d′ with real values lying between 0 and 1. The

[η′((d×c)+2)), η′((d×c)+3)), · · · , η′((d×c)+c+1))] dimensions of η′ which corresponds to Ω can also be
initialized by GCW.

2: Evolve T′Np
by SHADE to minimize objective function E ′ as in (4.8). Apply necessary corrections

to each of the newly obtained trial solution and extract ΩF , k, and Ω as described in Section 4.2.5
and 4.2.6 for evaluating them by E ′.

3: Find η̂′ = arg minη′∈T′
Np
E ′(η′) and construct optimal ΩF , k, and Ω using η̂′.

4: Calculate ûΩ
j (y) according to (3.5) using optimal k, ΩF , and Ω by the distance as in (4.2) and

training set X.
5: Find ĥX(y) = arg maxj∈C û

Ω
j (y).

4.3 Experiments

In this section, we will undertake a couple of experiments in an attempt to validate the

respective improved performances of PIFWkNN and PIFW2kNN in comparison to a set of

contending classifiers.

4.3.1 Datasets used for evaluating PIFWkNN and PIFW2kNN

We evaluate the performance of PIFWkNN on 20 real-world classification datasets having

diverse scale, dimensionality, and the number of classes. All the datasets are collected from

the UCI Machine Learning Repository (Dua and Graff, 2017). A detailed list of these datasets

along with their key properties can be found in Table C.1 in Appendix C.

For validating the efficacy of PIFW2kNN we use 20 real-world benchmark class imbal-

anced datasets available from UCI Machine Learning Repository (Dua and Graff, 2017),
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KEEL (Triguero et al., 2011), IDA benchmark (Rätsch, 2001), Akbani et al. (2004), Agnostic

Learning vs. Prior Knowledge Challenge (Guyon, 2006), and LibSVM (Chang and Lin, 2011).

While choosing the datasets we attempt to ensure diversity in terms of scale, dimensionality,

number of classes, and the extent of class imbalance. Table C.2 in Appendix C lists these

benchmark class imbalanced datasets detailing their various properties.

Table 4.1: Brief description and parameter settings of contending algorithms of PIFWkNN.

Algorithm Description Parameter Settings

kNN Described in Section 3.1 The value of k is optimized by cross-validation
over the possible choices 1, 3, 5, 7, 9, 11, and

√
N .

FkNN Described in Section 3.1 The value of k is optimized by cross-validation
over the possible choices 1, 3, 5, 7, 9, 11, and

√
N .

k′ = k and m = 2 following Keller et al. (1985).

ENN A variant of the nearest neighbor rule which un-
like kNN, considers not only the nearest neigh-
bors of the test instance but also all the training
points that consider that test instance as their
nearest neighbor (Tang and He, 2015).

The value of k is optimized by cross-validation
over the possible choices 1,3,5,7,9,11 and

√
N .

GA-Fuzzy
kNN

First evolutionary approach for FkNN classifier
(Hu and Xie, 2005). This optimizes k′ and m
using binary genetic algorithm.

The value of k is varied between 1,3,5,7,9,11 and√
N . Crossover probability is varied between 0.7,

0.8 and 0.9. Mutation probability is varied be-
tween 0.01, 0.025 and 0.05.

EF-kNN
IVFS

An Evolutionary FkNN approach using interval-
valued fuzzy sets (Derrac et al., 2016).

The value of k is varied between 1,3,5,7,9,11 and√
N . Interval-valued fuzzy set is used to cal-

culate the membership of training instances of
FkNN based on multiple choices of two param-
eters, k′ and m. Initial divergence rate (Eshel-
man, 1991) is varied between 0.2, 0.35 and 0.5.

CW This algorithm uses a class-dependent feature
weighting method and the weight matrix is
learned by gradient descent algorithm (Paredes
and Vidal, 2006).

The results are quoted from (Mateos-Garćıa
et al., 2012)

DE4 This algorithm uses a hybrid weighting ap-
proach, which combines the global feature
weighting and class weighting and the weights
are optimized using differential evolution (Al-
Sukker et al., 2010).

The results are quoted from (Mateos-Garćıa
et al., 2012)

kLDEDW It is a nearest neighbor method that uses label
dependent feature weighting technique and opti-
mizes the weight matrix and the value of k using
genetic algorithm (BLX-α crossover technique)
(Mateos-Garćıa et al., 2012).

The results are quoted from (Mateos-Garćıa
et al., 2012).

4.3.2 Experimental protocol

To validate the efficacy of PIFWkNN we compare its performance with eight kNN and FkNN

variants often using EvO techniques for optimizing the different associated parameters. The
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eight contending classifiers contenders are listed in Table 4.1 along with a brief description

of their working strategy and parameter search space. Interestingly, from Table 4.1 it can

be observed that many improved variants of kNN and FkNN actually ends up introducing

additional tunable parameters while attempting to optimize the others. Whereas, PIFWkNN

handles all its parameters in a self-adaptive manner. In all cases, the results are reported in

terms of Accuracy averaged over 10-fold cross-validation. Additionally, in case of PIFWkNN,

GA-Fuzzy-kNN, and EF-kNN IVFS i.e. methods using EvO techniques the classifier perfor-

mance for each fold is averaged over five independent runs in an attempt to mitigate the effect

of any randomization bias. For CW, DE4, and kLDEDW the mean performance on 10 fold

cross-validation is quoted from the corresponding article. Moreover, in this experiment, our

target is to evaluate the efficacy of PIFWkNN in optimizing an effective set of class-specific

feature weights along with a global choice of k. Thus, we compare the performance of the pro-

posed PIFWkNN against the best result obtained by each of the contending classifiers. The

parameter setting for which the contenders achieve the best performance is either detailed in

Table C.3 in Appendix C or can be found in the corresponding article.

To evaluate the effectiveness of PIFW2kNN in retaining its performance in presence

of class imbalance we compare it against six kNN and FkNN variants tailored to serve

a similar purpose. The chosen competing classifiers are dynkNN (Garcia-Pedrajas et al.,

2015), CCNND (Kriminger et al., 2012), CWkNN (Dubey and Pudi, 2013), WkNN+GCW,

FkNN+SMOTE, and FkNN+RUS. The parameter tuning strategy for dynkNN is followed

from the original article, CCNND is run with the nearest neighbor while the number of

neighbors in CWkNN is set to
√
N . For FkNN+SMOTE and FkNN+RUS, the parameter

settings are kept similar to those described in Section 3.4.2.2. In all cases the results are

reported in terms of GMean and ACSA averaged over 10-fold cross-validation (PIFW2kNN

are additionally run for five times on each fold to reduce bias induced by randomization) and

all considered parameter choices.

In both experiments, we report the average rank achieved by a classifier as an indication

of its consistency. Further, to validate if the performance improvement achieved by the

proposed techniques is statistically significant we perform WRS and WSR tests by setting

the proposed classifier as control. Similar to Section 3.4.2.2 the result of the WRS test is

reported in terms of Win (W), Tie (T), and Loss (L). To recall, win signify the number of
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datasets on which the contending classifier performed significantly worse than the control

method. Loss indicates the number of datasets on which the performance of the competing

classifier is significantly better than the control. Finally, Tie denotes the number of cases when

the contender demonstrates a statistically comparable performance with the control. The

WSR test further verifies if the contender performs significantly different from the proposed

methods. For both WSR and WRS the null hypothesis is only rejected with a 95% confidence

level.

Table 4.2: Comparison of PIFWkNN with improved variants of kNN and FkNN on real world
datasets.

Algorithm Average Average WRS WSR
Accuracy Rank W-T-L

PIFWkNN (Ours) 0.84 1.67 CM CM
kNN 0.81 4.82 13-7-0 H1

FkNN 0.79 5.57 14-6-0 H1

ENN 0.76 6.77 17-3-0 H1

GA-Fuzzy kNN 0.81 5.42 15-4-1 H1

EF-kNN IVFS 0.81 5.05 15-5-0 H1

kLDEDW 0.82 3.42 N/A N/A
CW 0.80 5.25 N/A N/A
DE4 0.75 7.00 N/A N/A

CM: Denotes the control method PIFWkNN. N/A: Statistical tests such
as WRS and WSR cannot be performed as the results are quoted from the
corresponding original article. H1 is the alternative hypothesis denoting that
the performance of the contender is significantly different from PIFW-kNN
on 20 datasets as indicated by WSR. H0 is the null hypothesis denoting that
the performance of the contender is statistically comparable with PIFW-kNN
on 20 datasets as indicated by WSR.

4.3.3 Comparison of PIFWkNN with other classifiers on real-world datasets

We summarize the performance of PIFWkNN and eight other contending algorithms over 20

real-world datasets in terms of Accuracy in Table 4.2. A closer inspection of Table 4.2 reveals

that the self-adaptive PIFWkNN achieves the highest average Accuracy and the lowest aver-

age rank over the 20 datasets. This finding attests to the better performance of PIFWkNN

highlighting its consistency compared to its contenders. The performance of PIFWkNN is

followed by kLDEDW another EvO based approach which also incorporates feature weighting

while finding the neighborhood. This observation acts as evidence in support of the useful-

ness of optimizing class-specific feature weights and global choice of k by EvO techniques.

The WRS result suggests that PIFWkNN can significantly outperform all of its contenders
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in a majority of cases. In fact, PIFWkNN achieves either statistically better or at least

comparable Accuracy with the contending algorithms on all the datasets except a single one.

However, the loss suffered by PIFWkNN while competing with GA-Fuzzy kNN on only a

single dataset cannot lead us to a general conclusion as such a performance decline of the

proposed classifier is not observed on any other occasion. Moreover, the results of the WSR

test suggest that the performance of PIFWkNN is significantly different from its contenders

over all the 20 datasets further validating the improvement offered by the proposed. The

complete results on individual datasets are detailed in Table C.4 in Appendix C.

4.3.4 Comparison of PIFW2kNN with other tailored classifiers on real

world-class imbalanced benchmark datasets

In Table 4.3 we compare the proposed PIFW2kNN in terms of GMean and ACSA with six

variants of kNN and FkNN tailored to handle class imbalance on 20 real-world imbalanced

benchmark datasets. From Table 4.3 it is evident that PIFW2kNN achieves the highest

average GMean and ACSA among the seven competing classifiers indicating the improved

performance of the proposed. Furthermore, PIFW2kNN also achieves the best average rank

for both GMean and ACSA attesting to its consistency. Interestingly, the performances of

PIFW2kNN in terms of GMean and ACSA do not vary by a large amount which indicates that

the proposed classifier offers better resilience against class imbalance as it achieves almost

similar class-specific accuracies. The performance of PIFW2kNN is followed by WkNN+GWS

and FkNN+SMOTE. This observation supports the efficiency of the popular GWS approach

as well as attest to the efficacy of the simple SMOTE based oversampling. This observation is

also backed up by the WRS result which shows that both WkNN+GWS and FkNN+SMOTE

achieve a higher number of statistically comparable performances with PIFW2kNN among the

contenders. Even though CCNND manages to perform significantly better than PIFW2kNN

on a single dataset the classifier achieves lower GMean, ACSA, along with respective ranks

on average indicating a poor consistency. Moreover, the WSR test suggests that the pro-

posed PIFW2kNN performs significantly different from the other classifiers on the 20 class

imbalanced datasets in terms of both indices.
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Table 4.3: Comparison of PIFWkNN with tailored variants of kNN and FkNN on real world
class imbalanced benchmark datasets.

GMean ACSA

Algorithm Average Average WRS WSR Average Average WRS WSR
Performance Rank W-T-L Performance Rank W-T-L

PIFW2kNN (Ours) 0.80 1.45 CM CM 0.81 1.78 CM CM
dynkNN 0.66 4.65 18-2-0 H1 0.73 4.98 17-3-0 H1

CCNND 0.70 4.45 16-3-1 H1 0.75 4.73 15-4-1 H1

CWkNN 0.35 6.68 19-1-0 H1 0.60 6.23 19-1-0 H1

WkNN+GCW 0.73 2.85 11-8-1 H1 0.77 3.20 10-8-2 H1

FkNN+SMOTE 0.73 3.58 12-8-0 H1 0.78 3.38 10-9-1 H1

FkNN+RUS 0.67 4.35 17-3-0 H1 0.76 3.73 13-7-0 H1

CM: Denotes the control method PIFW2kNN. H1 is the alternative hypothesis denoting that the performance
of the contender is significantly different from PIFW-kNN on 20 datasets as indicated by WSR. H0 is the null
hypothesis denoting that the performance of the contender is statistically comparable with PIFW-kNN on 20
class imbalanced datasets as indicated by WSR.

4.4 Discussion

In this chapter, we have proposed a parameter independent technique of feature weighted

fuzzy kNN which uses a self-adaptive variant of DE to optimize the feature weights as well

as the value of k. In our model, the weights of the features are dependent on the label of

the training points. The optimizing of the choice of k and the class-specific feature weight

matrix are formulated as a single problem that can be solved by SHADE using the pro-

posed encoding scheme. The proposed model has been tested on 20 real-world datasets of

varying properties and compared with 8 state-of-the-art and popular classifiers. From our

experiments, it can be concluded that the proposed PIFW-kNN can not only perform inde-

pendently (without requiring any additional parameter tuning) but can also show a significant

edge over some of the parameter-free popular classifiers. Further, to efficiently handle class

imbalance we have proposed PIFW2kNN which incorporates additional class-specific weights

in the PIFWkNN framework. This can be achieved by modifying the encoding scheme as

well as the objective function to provide simultaneous optimization of the class weights. The

efficacy of PIFW2kNN has been validated by experimental comparison with six kNN and

FkNN variants tailored for handling class imbalance on 20 real-world benchmark imbalanced

datasets.
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Chapter 5

Generative Adversarial Minority
Oversampling

Summary

Class imbalance is a long-standing problem relevant to several real-world applications of deep

learning. Oversampling techniques, which are effective for handling class imbalance in classi-

cal learning systems, can not be directly applied to end-to-end deep learning systems. In this

chapter, we propose a three-player adversarial game between a convex generator, a multi-class

classifier network, and a real/fake discriminator to perform oversampling in deep learning

systems. The convex generator generates new samples from the minority classes as con-

vex combinations of existing instances, aiming to fool both the discriminator as well as the

classifier into misclassifying the generated samples. Consequently, the artificial samples are

generated at critical locations near the peripheries of the classes. This, in turn, adjusts the

classifier induced boundaries in a way that is more likely to reduce misclassification from the

minority classes. Extensive experiments on multiple class imbalanced image datasets establish

the efficacy of our proposal.

5.1 Introduction

5.1.1 Overview

Over the years, the machine learning community has devised many methods for tackling class

imbalance (Krawczyk, 2016; Branco et al., 2016). However, only a few of these techniques

have been extended to deep learning even though class imbalance is fairly persistent is such
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networks, severely affecting both the feature extraction as well as the classification process

(Xie and Tu, 2015; Huang et al., 2016; Xie and Tu, 2017; Buda et al., 2018; Khan et al., 2018;

Johnson and Khoshgoftaar, 2019). The existing solutions (Huang et al., 2016; Chung et al.,

2016; Wang et al., 2016; Lin et al., 2017a; Bulò et al., 2017) for handling class imbalance in

deep neural networks mostly focus on cost tuning to assign suitably higher costs to minority

instances. Another interesting class of approaches (Yan et al., 2015; Dong et al., 2018) focuses

on constructing balanced subsamples of the dataset. Wang et al. (2017b) proposed a novel

meta-learning scheme for imbalanced classification. It is interesting to note that oversampling

techniques like SMOTE (Chawla et al., 2002) have not received much attention in the context

of deep learning, despite being very effective for classical systems (Fernández et al., 2018).

This is because deep feature extraction and classification are performed in an end-to-end

fashion, making it hard to incorporate oversampling which is typically done subsequent to

feature extraction. An attempt to bridge this gap was made by Ando and Huang (2017) in

their proposed deep oversampling framework (DOS). However, DOS uniformly oversamples

the entire minority class and is not capable of concentrating the artificial instances in diffi-

cult regions. Additionally, the performance of DOS depends on the choice of the class-wise

neighborhood sizes, which must be determined by costly parameter tuning.

Generative adversarial networks (GANs) are a powerful subclass of generative models that

have been successfully applied to image generation. This is due to their capability to learn

a mapping between a low-dimensional latent space and a complex distribution of interest,

such as natural images (Goodfellow et al., 2014; Mirza and Osindero, 2014; Radford et al.,

2015; Odena et al., 2017). The approach is based on an adversarial game between a generator

that tries to generate samples that are similar to real samples and a discriminator that tries

to discriminate between real training samples and generated samples. The success of GANs

as generative models has led Douzas and Bacao Douzas and Bacao (2018), Ali-Gombe and

Elyan (2019), and Liu et al. (2019) to investigate their effectiveness in oversampling the

minority class(es). However, attempting to oversample the minority class(es) using GANs

can lead to boundary distortion (Santurkar et al., 2018), resulting in a worse performance on

the majority class 1. Moreover, the generated points are likely to lie near the mode(s) of the

1Boundary distortion is a form of co-variance shift observed in GANs where the samples generated near
the periphery of a class may lack diversity. Such a phenomenon may lead to a significant diversion of the
distribution of the generated samples from the corresponding original class distribution.
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minority class(es) (Srivastava et al., 2017), while new points around the class boundaries are

required for learning reliable discriminative (classification) models (Han et al., 2005; He et al.,

2008). Mariani et al. (2018) also attempted to utilize GAN coupled with an autoencoder

(Ballard, 1987) for artificially balancing a class imbalanced training set. Their generative

model is expected to generate new images for the minority class by learning useful features

from the abundant majority instances. However, their generative model may fail to serve its

purpose if the majority and minority classes do not share enough common features, limiting

the applicability of their technique.

5.1.2 Background

The success of SMOTE (Chawla et al., 2002, 2003) has inspired several improvements. For

example, Han et al. (2005) and Bunkhumpornpat et al. (2009) attempt to selectively over-

sample minority class points lying close to the class boundaries. Works like (He et al., 2008;

Lin et al., 2013; Barua et al., 2014), on the other hand, asymmetrically oversample the mi-

nority class such that more synthetic points are generated surrounding the instances which

are difficult to classify. Although these methods achieved commendable improvement on tra-

ditional classifiers, they can neither be extended to deep learning techniques nor be applied

to images, respectively due to the end-to-end structure of deep learning algorithms and a

lack of proper notion of distance between images.

Extending GANs for semi-supervised learning works like (Kumar et al., 2017; Salimans

et al., 2016) fused a c-class classifier with the discriminator by introducing an extra output

line to identify the fake samples. On the other hand, (Springenberg, 2015) proposed a c-class

discriminator which makes uncertain predictions for fake images. Additionally, (Odena et al.,

2017) proposed a shared discriminator-cum-classifier network which makes two separate sets

of predictions using two different output layers. These approaches can loosely be considered

to be related to GAMO as these also incorporate a classifier into the adversarial learning

scheme.
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5.1.3 Motivation

As mentioned earlier in Section 5.1.1 deep neural networks are susceptible to the class im-

balance in the training set. A naive way to tackle this issue maybe balancing the training

set by generating artificial data instances. However, in the case of images, the task becomes

difficult as the traditional oversampling approaches are not capable to handle to such data

in an end-to-end network. One may attempt to use a conditional GAN (cGAN) (Mirza and

Osindero, 2014) to generate new instances for the minority class(es). However, the cGAN

may fail to generate useful diverse new samples due to mode collapse2 and boundary dis-

tortion, especially in the absence of enough complex image samples from the minority class.

Further, the generator will not be able to help the classifier by generating points in the dif-

ficult to learn regions without a proper channel of communication. One may address these

issues is to design a generator that will be adversarially connected with the classifier and will

generate a new sample as a convex combination of the existing instances of a class. However,

if the classes are not convex by nature then the samples generated by such convex generators

may fail to adhere to the class distribution. This can be solved by introducing an additional

discriminator which will guide the convex generator to properly follow the class distribution.

We illustrate this in the following Example 5.1.

Example 5.1. We take a traditional “two-moon” dataset, which contains 2 horseshoe-shaped

classes arranged in an interleaved fashion. The reasons for choosing such a dataset are two-

fold. First, the classes are non-convex. Second, the classes are only separable by a non-linear

class boundary. We generate a class imbalanced problem having an IR of 40 by respectively

sampling 2000 and 50 points from the first and the second class. In the sub-figures under

Figure 5.1 the majority class is represented by blue dots, the minority class is denoted by red

dots, while green cross (+) is used to illustrate the generated points for the minority class.

Further, the sea-green and yellow regions denote the areas where the classifiers respectively

label a point by the majority and the minority class. We illustrate four scenarios in Figure

5.1. First, the performance of a classifier network H on the class imbalanced training set in

Figure 5.1a. Second, the performance of H on a training set balanced by cGAN in Figure

2Mode collapse is a form of co-variance shift observed in GANs where the generated samples remain within
a set of limited instances even when the input changes over a wide range. This may happen when the
discriminator gets trapped to a local optima and the generator can easily fool it by perfecting the generation
of only a few instances.
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5.1b. Third, the performance of H on a training set balanced by a convex generator G in

Figure 5.1c. Fourth, in Figure 5.1d we illustrate the performance of H on a training set

balanced by a convex generator G additionally guided by a discriminator D.

We can see in Figure 5.1d that the classifier H achieves the best performance when D

aids the generator G to generate the new samples in the critical locations while respecting

the class distribution.

(a) (b)

(c) (d)

Figure 5.1: Illustration using a “two-moon” dataset: (a) Imbalanced classification with an
unaided classifier network H results in misclassification of the minority class instances. (b)
Artificial minority points generated using conditional GAN help to improve the result on the
minority class but bleed into the majority class, affecting the performance on the latter. (c)
New points are generated by training a convex generator G alternatingly with H. This is
a two player adversarial game where G attempts to generate samples which are hard for H
to correctly classify. This results in ideal performance on the minority class, but at the cost
of misclassifying the majority class as G does not adhere to the distribution of the minority
class. (d) Ideal performance on both classes is achieved by further incorporating an additional
discriminator D to induce fidelity to the minority class distribution and to limit bleeding into
majority class territory.

5.1.4 Contributions of Chapter 5

Hence, in this chapter, we propose (in Section 5.2) a novel end-to-end feature-extraction-

classification framework called Generative Adversarial Minority Oversampling (GAMO) which
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employs adversarial oversampling of the minority class(es) to mitigate the effects of class im-

balance3. The contributions made in this chapter differ from the existing literature in the

following ways:

1. Unlike existing deep oversampling schemes (Ando and Huang, 2017; Douzas and Bacao,

2018), GAMO is characterized by a three-player adversarial game among a convex

generator G, a classifier network H, and a discriminator D.

2. Our approach is fundamentally different from the existing adversarial classification

schemes where the generator works in harmony with the classifier to fool the discrim-

inator (Salimans et al., 2016; Kumar et al., 2017; Springenberg, 2015; Odena et al.,

2017). In GAMO our convex generator G attempts to generate new samples which will

fool the classifier H as well as the discriminator D.

3. Unlike the generator employed in GAN (Goodfellow et al., 2014), we constrain G to

conjure points within the convex hull of the class of interest. Additionally, the discrimi-

nator D further ensures that G adheres to the class distribution for non-convex classes.

Consequently, the adversarial contention with H pushes the conditional distribution(s)

learned by G towards the periphery of the respective class(es), thus helping compensate

for class imbalance effectively.

4. In contrast to methods like (Chawla et al., 2002; Douzas and Bacao, 2018), G can

oversample different localities of the data distribution to different extents based on the

gradients obtained from H.

5. For applications requiring a balanced training set of images, we also propose a technique

called GAMO2pix (Section 5.4) that can generate realistic images from the synthetic

instances generated by GAMO in the distributed representation space.

We undertake an ablation study as well as evaluate the performance of our method compared

to the state-of-the-art in Section 5.3.

3Codes & data at: https://github.com/SankhaSubhra/GAMO.
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5.2 Proposed Method

Let us consider a c-class classification problem with a training dataset X ⊂ Rd (of images

vectorized either by flattening or by a convolutional feature extraction network F ). Let the

prior probability of the i-th class be Pi, where i ∈ C = {1, 2, · · · c}. Without loss of generality,

we consider the classes to be ordered such that P1 ≤ P2 ≤ · · · < Pc. We intend to train a

classifier H having c output lines, where the i-th output Hi(x) predicts the probability of

any x ∈ X to be a member of the i-th class.

5.2.1 Adversarial Oversampling

Our method plays an adversarial game between a classifier that aims to correctly classify the

data points and a generator attempting to spawn artificial points which will be misclassified

by the classifier. The idea is that generating such difficult points near the fringes of the mi-

nority class(es) will help the classifier to learn class boundaries which are more robust to class

imbalance. In other words, the performance of the classifier will adversarially guide the gen-

erator to generate new points at those regions where the minority class under concern is prone

to misclassification. Moreover, the classifier will aid the generator to adaptively determine

the concentration of artificial instances required to improve the classification performance in

a region, thus relieving the user from tuning the amount of oversampling. Instead, we only

need to fix the number of points to be generated to the difference between the number of

points in the majority class and that of the (respective) minority class(es).

5.2.2 Convex Generator

The generator tries to generate points which will be misclassified by the classifier. Hence, if

left unchecked, the generator may eventually learn to generate points which do not coincide

with the distribution of the intended minority class. This may help improve the performance

on the concerned minority class but will lead to high misclassification from the other classes.

To prevent this from happening, we generate the new points only as convex combinations

of the existing points from the minority class in question. This will restrict the generated

distribution within the convex hull of the real samples from the (respective) minority class(es).

Since the generator attempts to conjure points that are difficult for the classifier, the points
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are generated near the peripheries of the minority class(es).

Our convex generator G comprises of two modules: a Conditional Transient Mapping

Unit (cTMU) and a set of class-specific Instance Generation Units (IGU), which we propose

to limit the model complexity. The cTMU network learns a mapping t, conditioned on class

i, from a λl-dimensional latent space to an intermediate space. The IGUi, on the other

hand, learns a mapping gi from the cTMU output space to a vector gi(t(z|i)) of Ni convex

weights using softmax activation, where z is a latent variable drawn from a standard normal

distribution. Thus, gi(t(z|i)) ≥ 0, and gi(t(z|i))T1 = 1. Hence, G can generate a new

d-dimensional sample for the i-th class as a convex combination of the data points in Xi,

G(z|i) = gi(t(z|i))TXi. (5.1)

Formally, the adversarial game played by the proposed classifier-convex generator duo

poses the following optimization problem, when cross entropy loss is considered:

min
G

max
H

J(G,H) =
∑

i∈C
Ji, (5.2)

where Ji = (Ji1 + Ji2 + Ji3 + Ji4),

Ji1 = PiEx∼pi [logHi(x)],

Ji2 =
∑

j∈C\{i}
PjEx∼pj [log(1−Hi(x))],

Ji3 = (Pc − Pi)EG(z|i)∼p(g)i

[logHi(G(z|i))], and,

Ji4 =
∑

j∈C\{i}

(Pc − Pj)EG(z|j)∼p(g)j

[log(1−Hi(G(z|j)))],

while pi and p
(g)
i respectively denote the real and generated class conditional probability

distributions of the i-th class.

The two-player minimax game formalized in (5.2) is played between a classifier H and a

generator G. H attempts to correctly classify all real as well as generated points belonging

to all the classes. Whereas, G strives to generate sample(s) which have a high probability of

being classified by H into all other classes. To demonstrate how such an adversarial game can

aid H to learn a better class boundary, we illustrate its chronological progression in a more

explanatory manner in Figure 5.2. In Theorem 5.1, we show that the optimization problem
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(a) (b)

(c) (d)

Figure 5.2: GAMO functions by simultaneously updating the classifier H and the generator
G. The classification function (black, dotted line) is trained to correctly classify samples from
the majority class distribution pmaj (blue, solid line), the real minority class distribution pmin

(red, dots and dashes) as well as the generated minority distribution p
(g)
min (brown, dashed

line). The generator, on the other hand, is trained to generate minority samples which
will be misclassified by H. The upward arrows show how the generator learns the mapping
x = G(z) from a standard normal distribution (mauve, dotted line) in the latent space
to convex combinations of the real minority instances from the minority class. The ideal
classification function is shown as a blue highlight in the background. (a) Let us consider an

initial adversarial pair: the generated distribution p
(g)
min is similar to the real distribution of

the minority class pmin and H is an inaccurate classifier. (b) H is trained to properly classify

the samples from the three distributions pmaj , pmin, and p
(g)
min; resulting in a non-ideal trained

classifier which is biased in favor of the majority class. (c) After an update to G, the gradient
of H has guided G(z) to flow to regions that are more likely to be misclassified by H. (d)
Thereafter, retraining H results in a classifier much closer to the ideal classifier due to the
increased number of minority samples near the boundary of the two classes.

in (5.2) is equivalent to minimizing a sum of the Jensen-Shannon divergences.

Theorem 5.1. Optimizing the objective function J is equivalent to the problem of minimizing
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the following summation of Jensen-Shannon (JS) divergences:

c∑
i=1

JS
((
Pipi + (Pc − Pi)p(g)

i

)∣∣∣∣∣∣ c∑
j 6=i
j=1

(
Pjpj + (Pc − Pj)p(g)

j

))

Proof. For simplicity and without loss of generality we focus on a single minority class,

say the i-th one. Then, we can start by finding that H∗i (x), which will maximize Ji (the

component of J corresponding to the i-th class) for a given G. Therefore, we first find the

partial differentiation of Ji, with respect to Hi(x), as follows:

∂Ji
∂Hi(x)

=
Pipi
Hi(x)

−
∑

j∈C\{i} Pjpj

1−Hi(x)
+

(Pc − Pi)p(g)
i

Hi(x)
−
∑

j∈C\{i}(Pc − Pj)p
(g)
j

1−Hi(x)
(5.3)

Equating (5.3) to 0, and solving it for Hi(x) gives,

H∗i (x) =
Pipi + (Pc − Pi)p(g)

i∑c
l=1

(
Plpl + (Pc − Pl)p

(g)
l

) (5.4)
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Plugging in the value of H∗i (x) from (5.4) back in Ji, we get,

Ji =

∫
Pipi log

Pipi + (Pc − Pi)p(g)
i∑c

l=1

(
Plpl + (Pc − Pl)p

(g)
l

)dx+

∫ ∑
j∈C\{i}

Pjpj log

∑
j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

)
∑c

l=1

(
Plpl + (Pc − Pl)p

(g)
l

) dx+

∫ (
(Pc − Pi)p(g)

i

)
log

Pipi + (Pc − Pi)p(g)
i∑c

l=1

(
Plpl + (Pc − Pl)p

(g)
l

)dx+

∫ ∑
j∈C\{i}

(
(Pc − Pj)p(g)

j + Pjpj
)

log

∑
j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

)
∑c

l=1

(
Plpl + (Pc − Pl)p

(g)
l

) dx

Ji =

∫ (
Pipi + (Pc − Pi)p(g)

i

)
log

Pipi + (Pc − Pi)p(g)
i

1
2

∑c
l=1

(
Plpl + (Pc − Plp

(g)
l

)dx−
log 2

∫ (
Pipi + (Pc − Pi)p(g)

i

)
dx+∫ ∑

j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

)
log

∑
j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

)
1
2

∑c
l=1

(
Plpl + (Pc − Pl)p

(g)
l

) dx−

log 2

∫ ∑
j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

)
dx

Ji =2JS
((
Pipi + (Pc − Pi)p(g)

i

)∣∣∣∣∣∣ ∑
j∈C\{i}

(
Pjpj + (Pc − Pj)p(g)

j

))
− cPc log 2 (5.5)

From (5.5), ignoring the constant scalar multiplicative factor and the additive factor−cPc log 2

(also a constant for a given problem) we can conclude that

min
G

max
H

J ∼ min
p(g)

c∑
i=1

JS
((
Pipi + (Pc − Pi)p(g)

i

)∣∣∣∣∣∣∑
j 6=i

(
Pjpj + (Pc − Pj)p(g)

j

))
, (5.6)

which completes the proof.

The behavior of the proposed approach can be understood by interpreting Theorem 5.1.

The optimization problem aims to bring the generated distribution, for a particular class,

closer to the generated as well as real distributions for all other classes. Since the real dis-

tributions are static for a fixed dataset, the optimization problem in Theorem 5.1 essentially

attempts to move the generated distributions for each class closer to the real distributions for

all other classes. This is likely to result in the generation of ample points near the peripheries,
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which are critical to combating class imbalance. While doing so, the generated distributions

for all classes also strive to come closer to each other. However, the generated distributions

for the different classes do not generally collapse upon each other, being constrained to remain

within the convex hulls of the respective classes.

5.2.3 Additional Discriminator

While the generator only generates points within the convex hull of the samples from the

minority class(es), the generated points may still be placed at locations within the convex

hull which do not correspond to the distribution of the intended class (recall Figure 5.1c).

This is likely to happen if the intended minority class(es) are non-convex in shape. Moreover,

we know from Theorem 5.1 that the generated distributions for different minority classes

may come close to each other if the respective convex hulls overlap. To solve this problem,

we introduce an additional conditional discriminator which ensures that the generated points

do not fall outside the actual distribution of the intended minority class(es). Thus, the

final adversarial learning system proposed by us consists of three players, viz. a multi-class

classifier H, a conditional discriminator D which given a class aims to distinguish between

real and generated points, and a convex generator G that attempts to generate points which,

in addition to being difficult for H to correctly classify, are also mistaken by D to be real

points sampled from the given dataset. The resulting three-player minimax game is formally

presented in (5.7).

min
G

max
H

max
D

Ĵ(G,H,D) =
∑

i∈C
Ĵi, (5.7)

where, Ĵi = (Ji1 + Ji2 + Ji3 + Ji4 + Ĵi1 + Ĵi2),

Ĵi1 = PiEx∼pi [logD(x|i)], and,

Ĵi2 = (Pc − Pi)EG(z|i)∼p(g)i

[log(1−D(G(z|i)|i))].

5.2.4 Least-Square Formulation

Mao et al. (2017) showed that replacing the popular cross entropy loss in GAN with least

square loss can not only produce better quality images but also can prevent the vanishing

gradient problem to a greater extent. Therefore, we also propose a variant of GAMO using
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the least square loss, which poses the following optimization problem:

min
H

LH =
∑

i∈C
(Li1 + Li2 + Li3 + Li4), (5.8)

min
D

LD =
∑

i∈C
(Li5 + Li6), (5.9)

min
G
LG =

∑
i∈C\{c}

(Li7 + Li8 + Li9), (5.10)

where, Li1 = PiEx∼pi [(1−Hi(x))2],

Li2 =
∑

j∈C\{i}
PjEx∼pj [(Hi(x))2],

Li3 = (Pc − Pi)EG(z|i)∼p(g)i

[(1−Hi(G(z|i)))2],

Li4 =
∑

j∈C\{i}
(Pc − Pj)EG(z|j)∼p(g)j

[(Hi(G(z|j)))2],

Li5 = PiEx∼pi [(1−D(x|i))2],

Li6 = (Pc − Pi)EG(z|i)∼p(g)i

[(D(G(z|i)|i))2],

Li7 = E
G(z|i)∼p(g)i

[(Hi(G(z|i)))2],

Li8 =
∑

j∈C\{i,c}
E
G(z|j)∼p(g)j

[(1−Hi(G(z|j)))2],

Li9 = E
G(z|i)∼p(g)i

[(1−D(G(z|i)|i))2].

5.2.5 Putting it all together

The model for the GAMO framework is detailed in Figure 5.3, while the complete algorithm

is described in Algorithm 4. To ensure an unbiased training for H and D we generate artificial

points for the i-th class with probability (Pc −Pi) to compensate for the effect of imbalance.

On the other hand, to also ensure unbiased training for G we use samples from all classes

with equal probability.

5.3 Experiments

We evaluate the performance of a classifier in terms of two indices that are not biased toward

any particular class (Sokolova and Lapalme, 2009), namely ACSA (Huang et al., 2016; Wang

et al., 2017b) and GMean (Kubat et al., 1997; Branco et al., 2016). All our experiments have
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Figure 5.3: The GAMO model: (Left) Schematic of the GAMO framework; (Right) Illustra-
tion of an Instance Generation Unit (IGU). Given an image, the extracted feature vectors
(either by a convolutional neural network F or by flattening) are fed to the classifier network
H as well as the conditional discriminator D. H predicts the class label for the input data
point while D distinguishes between real and fake data instances. The convex generator
network G is composed of a cTMU , and IGUs corresponding to each of the c − 1 minority
classes. The IGUi network takes an intermediate vector generated by cTMU and maps it to
a set of Ni convex weights. It then takes the set Xi as input and generates a new sample for
the i-th class, as the convex combination of all the xj ∈ Xi.

Algorithm 4 Generative Adversarial Minority Oversampling (GAMO)

Input: X: training set, λl: latent dimension, λ1: minibatch size, λ2, λ3: (hyperparameters, set to
dNλb
e in our implementation).

Output: A trained classification network H.
Note: For flattened images F need not be trained, i.e., F (X) can be replaced by X.

1: while not converged do
2: for λ2 steps do
3: Sample Λd = {x1,x2, · · ·xλ1

} from X, with corresponding set of class labels Yd.
4: Update F by gradient descent on (H(F (Λd)), Yd) keeping H fixed.
5: end for
6: for λ3 steps do
7: Sample Λd = {x1,x2, · · ·xλ1} from X, with corresponding set of class labels Yd.
8: Sample Λn = {z1, z2, · · · zλ1} from a l-dimensional standard normal distribution.
9: Update H and D by respective gradient descent on (H(F (Λd)), Yd) and (D(F (Λd)|Yd),1),

keeping F fixed.
10: Generate set of labels Yn by assigning each zj ∈ Λn to one of the c− 1 minority classes, with

probability ∝ (Pc − Pi); ∀i ∈ C \ {c}.
11: Update H and D by respective gradient descent on (H(G(Λn|Yn)), Yn) and

(D(G(Λn|Yn)|Yn),0), keeping G fixed.
12: Sample Λg = {z1, z2, · · · zλ1

} from a λl-dimensional standard normal distribution.
13: Generate set of labels Yg by assigning each zj ∈ Λg to any of the c− 1 minority classes with

equal probability. Take ones’ complement of Yg as Y g.
14: Update G by gradient descent on (H(G(Λg|Yg)), Y g) keeping H fixed.
15: Update G by gradient descent on (D(G(Λg|Yg)|Yg),1) keeping D fixed.
16: end for
17: end while
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Figure 5.4: Ablation study on the class imbalanced MNIST dataset: SMOTE generates
artificial samples from the minority class(es) as convex combinations of pairs of neighbors
from the respective class(es). The oversampled dataset is then classified using a classifier
network CN. SMOTE sometimes generates unrealistic “out-of-distribution” samples which
are combinations of visually disparate images that happen to be Euclidean neighbors in the
flattened image space. Using cGAN for generating new samples results in realistic images
only from the more abundant minority classes. Training only a conditional Generator cG
adversarially against CN, to generate images which will be misclassified by CN, results in
new samples which all resemble the majority class ‘0’. Introducing a discriminator D (to
ensure that cG adheres to class distributions) into the mix results in new samples which are
somewhat in keeping with the class identities, but still unrealistic in appearance. Employing
our proposed convex generator G to generate new samples by training it adversarially with CN
(the GAMO\D formulation) results in samples which are in keeping with the class identities,
but often “out-of-distribution” as the classes are non-convex. Finally, introducing D into this
framework results in the complete GAMO model which can generate realistic samples which
are also in keeping with the class identities.

been repeated 10 times to mitigate any bias generated due to randomization and the means

and standard deviations of the index values are reported.

We have used a collection of 7 image datasets for our experiments, namely MNIST (LeCun
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Table 5.1: Comparison of classification performance of CE and LS variants of classifiers on
class imbalanced MNIST and Fashion-MNIST datasets.

Dataset Algorithm CE LS

ACSA GMean ACSA GMean

MNIST

Baseline CN 0.88±0.01 0.87±0.02 0.88±0.01 0.86±0.01
SMOTE+CN 0.88±0.02 0.87±0.03 0.89±0.01 0.89±0.01
cGAN+CN 0.88±0.01 0.87±0.01 0.89±0.01 0.88±0.01

cG+CN 0.86±0.03 0.85±0.02 0.86±0.03 0.85±0.03
cG+D+CN 0.85±0.02 0.83±0.01 0.85±0.02 0.82±0.02

GAMO\D (Ours) 0.87±0.01 0.86±0.01 0.88±0.01 0.87±0.01
GAMO (Ours) 0.89±0.01 0.88±0.01 0.91±0.01 0.90±0.01

Fashion-MNIST

Baseline CN 0.82±0.01 0.80±0.01 0.81±0.01 0.79±0.01
SMOTE+CN 0.82±0.01 0.80±0.02 0.80±0.01 0.77±0.01

Oversample+CN 0.81±0.01 0.79±0.01 0.81±0.01 0.79±0.01
Augment+CN 0.82±0.01 0.78±0.01 0.82±0.01 0.78±0.01

DOS 0.82±0.01 0.79±0.01 0.81±0.01 0.79±0.02
cDCGAN+CN 0.81±0.02 0.78±0.01 0.82±0.01 0.80±0.01

cG+CN 0.79±0.02 0.77±0.02 0.80±0.01 0.77±0.02
cG+D+CN 0.79±0.02 0.78±0.01 0.79±0.01 0.78±0.02

GAMO\D (Ours) 0.81±0.01 0.80±0.01 0.82±0.01 0.80±0.01
GAMO (Ours) 0.82±0.01 0.80±0.01 0.83±0.01 0.81±0.01

The best result is boldfaced.

et al., 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky, 2009), SVHN (Netzer

et al., 2011), LSUN (Yu et al., 2015) and SUN397 (Xiao et al., 2010)4. All the chosen datasets

except SUN397 are not significantly imbalanced in nature, therefore we have created their

imbalanced variants by randomly selecting a disparate number of samples from the different

classes5. Further, for all the datasets except SUN397, 100 points are selected from each class

to form the test set. In the case of SUN397 (50 classes of which are used for our experiments)

20 points from each class are kept aside for testing.

We refrain from using pre-trained networks for our experiments as the pre-learned weights

may not reflect the imbalance between the classes. We, instead, train the models from scratch

to emulate real-world situations where the data is imbalanced and there is no pre-trained

network available that can be used as an appropriate starting point. We have obtained the

optimal architectures and hyperparameters for each contending method in Section 5.3-5.4

using a grid search (see in Section D.2 of Appendix D).

4Additional study on class imbalanced non-image benchmark datasets can be found in the Section D.3 in
Appendix D. These results are omitted from the current chapter to preserve the focus on image classification
as GAMO is primarily designed to address that problem.

5Additional notes on data creation can be found in Section D.1 in Appendix D
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Table 5.2: Comparison of classification performance on class imbalanced CIFAR10 and SVHN
datasets.

Algorithm
CIFAR10 SVHN

ACSA GMean ACSA GMean

Baseline CN 0.45±0.01 0.37±0.01 0.74±0.01 0.73±0.01
SMOTE+CN 0.46±0.02 0.4±0.02 0.75±0.01 0.73±0.02

Oversample+CN 0.44±0.02 0.37±0.03 0.74±0.02 0.73±0.02
Augment+CN 0.47±0.01 0.39±0.02 0.69±0.01 0.63±0.01
cDCGAN+CN 0.42±0.02 0.32±0.03 0.69±0.01 0.66±0.02

DOS 0.46±0.02 0.37±0.01 0.71±0.02 0.68±0.01
GAMO\D (Ours) 0.47±0.01 0.40±0.01 0.75±0.01 0.75±0.02

GAMO (Ours) 0.49±0.01 0.43±0.02 0.76±0.01 0.75±0.02
The best result is boldfaced.

5.3.1 Class imbalanced MNIST and Fashion-MNIST

The experiments in this section are conducted using imbalanced subsets of the MNIST and

Fashion-MNIST datasets. In the case of both the datasets, we have sampled 4000, 2000,

1000, 750, 500, 350, 200, 100, 60, and 40 points from classes in order of their index. Thus,

the datasets have an IR of 100. We begin by establishing the effectiveness of our proposed

framework. We also compare between the two variants of GAMO which use Cross Entropy

(CE) and Least Square (LS) losses, respectively.

We undertake an ablation study on MNIST using flattened images to facilitate straightfor-

ward visualization of the oversampled instances. Convolutional features are used for Fashion-

MNIST. For MNIST, we have compared GAMO, against baseline classifier network (CN),

SMOTE+CN (training set is oversampled by SMOTE), cGAN+CN (training set oversampled

using cGAN, which is then used to train CN), and also traced the evolution of the philosophy

behind GAMO, through cG+CN (conditional generator cG adversarially trained against CN,

in contrast to cGAN+CN where CN does not play any part in training cGAN), cG+D+CN

(cG+CN network coupled with a discriminator D), and GAMO\D (GAMO without a dis-

criminator) on the MNIST dataset. For Fashion-MNIST, SMOTE+CN is performed in the

feature space learned by baseline CN. Oversample+CN (minority class images randomly

sampled with replacement), Augment+CN (data augmentation to create new images and

balance the training set), and DOS are also considered during comparison, while cGAN+CN

is replaced by cDCGAN+CN (oversampled using conditional deep convolutional GAN).

The ablation study is shown visually in Figure 5.4 and the results for both datasets are

tabulated in Table 5.1. Overall, GAMO is observed to perform better than all other methods
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on both datasets. Interestingly, GAMO\D performs much worse than GAMO on MNIST but

improves significantly on Fashion-MNIST. This may be due to the fact that the convolutional

feature extraction for Fashion-MNIST results in distributed representations where the classes

are almost convex with little overlap between classes, enabling the convex generator to always

generate data points that reside inside the class distributions.

Since we observe from Table 5.1 that the LS variants of the classifiers mostly perform

better than their CE based counterparts (which according to Mao et al. (2017) is contributed

by the more stable and better decision boundary learned in LS), all the experiments in the

subsequent sections are reported using the LS formulation for all the contending algorithms.

5.3.2 Class imbalanced CIFAR10 and SVHN

In the case of CIFAR10 and SVHN, the classes are subsampled (4500, 2000, 1000, 800, 600,

500, 400, 250, 150, and 80 points are selected in order of the class labels) to achieve an IR

of 56.25. From Table 5.2 we can see that GAMO performs better than others on both of

these datasets, closely followed by GAMO\D, further confirming the additional advantage

of convolutional feature extraction in the GAMO framework. Interestingly, Augment+CN

performs much worse than the other methods on the SVHN dataset. This may be due to

the nature of the images in the SVHN dataset, which may contain multiple digits. In such

cases, attempting to augment the images may result in a shift of focus from one digit to its

adjacent digit, giving rise to a discrepancy with the class labels.
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5. GAMO

5.3.3 Class imbalanced CelebA and LSUN

The experiments on CelebA and LSUN are undertaken to evaluate the performance of GAMO

on images of higher resolution, as well as to assess the effects of an increase in the number of

instances from the different classes. In the case of CelebA, the images are scaled to 64× 64

size, while for LSUN the same is done on a central patch of resolution 224 × 224 extracted

from each image. In the case of CelebA, we have created two 5 class datasets by selecting

samples from non-overlapping classes of hair colors, namely blonde, black, bald, brown, and

gray. The first dataset is the smaller one (having 15000, 1500, 750, 300, and 150 points in

the respective classes) with an IR of 100, while the second one is larger (having 28000, 4000,

3000, 1500, and 750 points in the respective classes) with an IR of 37.33. Similarly, in the

case of LSUN, we select 5 classes namely classroom, church outdoor, conference room, dining

room, and tower, and two datasets are created. The smaller one (with 15000, 1500, 750, 300,

and 150 points from the respective classes) has an IR of 100, while the larger one (with 50000,

5000, 3000, 1500, and 750 points) has an IR of 66.67.

In Table 5.3, we present the ACSA and GM over both the training and test sets for the

small and large variants of the two datasets. We can observe that all the algorithms manage

to close the gap between their respective training and testing performances as the size of the

dataset increases. However, SMOTE+CN shows a high tendency to overfit, which might be

caused by the miscalibrated initial baseline CN. The same is observed for Oversample+CN,

indicating that such a balancing technique may not provide additional information to a

classifier to facilitate better learning. Moreover, while Augment+CN seems to have the

lowest tendency to overfit (the smallest difference between training and testing performances),

GAMO exhibits a greater ability to retain good performance on the test dataset.

5.3.4 Subset of SUN397

We have randomly selected 50 classes from SUN397 to construct a dataset containing 64×64

sized images (depending on the image size either a 512× 512 or a 224× 224 center patch is

extracted, which is then scaled to 64×64) with an IR of 14.21. The experiment on SUN397 is

performed to evaluate the performance of GAMO over a large number of classes. A scrutiny

of the result tabulated in Table 5.4 reveals that despite all four contending techniques being
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5. GAMO

severely affected by the complexity of the classes and the scarcity of data samples from many

of the classes, GAMO is able to retain overall better performance than its competitors.

Table 5.4: Comparison of classification performance on subset of SUN397.

Algorithm ACSA GMean

Baseline CN 0.26±0.04 0.19±0.05
SMOTE+CN 0.28±0.04 0.21±0.04

Oversample+CN 0.23±0.05 0.00±0.00
Augment+CN 0.30±0.04 0.21±0.04
cDCGAN+CN 0.20±0.05 0.00±0.00

DOS 0.28±0.04 0.20±0.05
GAMO (Ours) 0.32±0.04 0.24±0.03

The best result is boldfaced.

5.4 GAMO2pix

GAMO results ultimately in a classifier trained to properly classify samples from all the

classes. However, some applications may require that actual samples be generated by over-

sampling to form an artificially balanced dataset. While GAMO directly generates images if

flattened images are used, it only generates vectors in the distributed representation space

(mapped by the convolutional layers) for the convolutional variant. Therefore, we also pro-

pose the GAMO2pix mechanism to obtain images from the GAMO-generated vectors in the

distributed representation space.

Table 5.5: Comparison of FID of cDCGAN and GAMO2pix.

Dataset GAMO2pix (Ours) cDCGAN

Fashion-MNIST 0.75±0.03 5.57±0.03
SVHN 0.17±0.02 0.59±0.04

CIFAR10 1.59±0.03 2.96±0.03
CelebA-Small 11.13±0.04 15.12±0.05

The best result is boldfaced.

Our network for generating images (as illustrated in Figure 5.5a) from the GAMO-

generated vectors is inspired by the Variational Autoencoder (VAE) (Kingma and Welling,

2013; Rezende et al., 2014). VAE, unlike regular autoencoders, is a generative model that

attempts to map the encoder output to a standard normal distribution in the latent space,

while the decoder is trained to map samples from the latent normal distribution to images.

In GAMO2pix, the convolutional feature extractor F trained by GAMO is kept fixed and
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Image
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Figure 5.5: GAMO2pix model and its performance. (a) GAMO2pix network. (b)-(c) Com-
parison of images respectively generated by cDCGAN, and GAMO2pix for (left to right)
CIFAR10, Fashion-MNIST, SVHN, and CelebA-Small.

connected to two trainable parallel dense layers, which learn the mean (µ) and the log-

variance (logσ2) of the posterior distribution. Then samples drawn from N (µ,σ) are fed to

the decoder. The loss of GAMO2pix is the sum of KL(N (µ,σ)||N (0, I)) and mean squared

reconstruction error. The GAMO2pix network is trained separately for each class to learn the
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5. GAMO

inverse map from the feature space induced by F to the original image space. Thus, we use

GAMO2pix to generate realistic images of the concerned class given the GAMO-generated

vectors.

We present the images respectively generated by cDCGAN and GAMO2pix on CIFAR10,

Fashion-MNIST, SVHN and CelebA-Small in Figures 5.5b-5.5c. We can see that GAMO2pix

can indeed generate more realistic and diverse images, compared to cDCGAN which also

suffers from mode collapse for minority classes. This is further confirmed by the lower Fréchet

Inception Distance (FID) (Heusel et al., 2017) (calculated between real and artificial images

from each class and averaged over classes) achieved by GAMO2pix, as shown in Table 5.5.

5.5 Discussion

In this chapter, we presented GAMO, a three-player game between a convex generator, a

classifier network, and a discriminator, which results in an effective end-to-end oversampling

technique for handling class imbalance in deep learning frameworks. GAMO can be consid-

ered as an important step towards training robust discriminative models using adversarial

learning. We have observed from our experiments that the convolutional variant of GAMO

is more effective due to the distributed representations learned by the convolutional layers.

We also found that the LS loss variant of GAMO generally performs better than the CE

loss variant. Further, in this chapter, we introduced GAMO2pix a VAE inspired network

that can generate realistic images from GAMO generated samples. The images generated by

GAMO2pix also attest to the fact that GAMO can indeed provide a diverse set of quality

samples while adhering to the class distribution.
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Chapter 6

Conclusion

Summary

In this chapter, we focus on evaluating the various contributions made by us in the previous

chapters of this thesis. Specifically, we provide a brief summary highlighting the key attributes

of our works and discuss their importance in further enriching the active research efforts

focusing on the topic of handling class imbalance. Moreover, we detail the future possibilities

of our contribution hoping they will encourage further research opportunities. Finally, as a

concluding remark, we list the various open problems related to class imbalance.

6.1 Evaluation of contributions

In this section, we briefly evaluate the different contributions made in this thesis. We start

with the introductory Chapter 1 which defines the problem of class imbalance and empirically

characterizes its effects on the performance of a classifier. The chapter also discusses the

plethora of research done by machine learning as well as deep learning communities over

the past couple of decades in an attempt to improve the reliance of a classifier in presence

of class imbalance. The review highlights the key data level, algorithm level, and hybrid

level solutions and describes the multitude of challenges associates with each direction. The

introductory chapter concludes by presenting a road map of this thesis and briefly describing

the contributions made by the rest of the chapters.

Before we proceed to design classifiers tailored for handling class imbalance we take a

look at the applicability of different performance evaluation indices. In Chapter 2 we start

by discussing the need for special indices that will not be biased in the presence of class im-
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balance and thus will able to offer a fair evaluation. A detailed survey of previous researches

done on the topic highlights the requirement of a set of generalized conditions that an index

should satisfy to be applicable to a wide range of applications. Thus, we proceed to define

two necessary conditions that ensure the invariance of an index with altering the extent of

class imbalance and changing the number of classes between training and test/validation

set. The invariance of four two-class and five multi-class performance evaluation indices are

theoretically validated and remedial modification and/or normalization are proposed as re-

medial measures. Further, a third condition is proposed to assess the interpretability of an

index which satisfies the necessary invariance constraints. A simulation study using class im-

balanced subsets of ImageNet and state-of-the-art classifiers tailed to efficiently tackle class

imbalance is presented as empirical evidences for the theoretical findings. Finally, under

the light of the three conditions a detailed discussion provides an application-specific recom-

mendation for different indices. The key contribution of this chapter is moving away from

the traditional often empirical application-specific analysis to a more generalized theoretical

discussion through identifying some necessary invariance conditions. Moreover, the chapter

focus on validating a set of widely used performance evaluation indices, propose rectification

as per requirement and highlight their individual applicability.

We then in Chapter 3 consider the intuitively better FkNN classifier which also offers a

performance improvement over canonical kNN. We start by highlighting through a motiva-

tional example that the theoretical performance analysis of kNN and FkNN should not follow

the same route as the latter instead of labeling returns class memberships for a given test

point. Thus, unlike the commonly used misclassification based theoretical study we focus

on the convergence of the class membership estimator used in FkNN. Such a convergence

can be expressed in terms of bias and MSE of the estimator. We specifically show that

with an increasing number of training examples the expected bias and MSE of the estimator

converges towards their corresponding minimum at zero. A couple of key advantages of our

analysis is its reliance on a set of elementary constraints as well as not being applicable for a

particular choice of parameter k. The simple yet effective analysis is also directly extendable

from binary to multi-class classification problems. A simulation study on artificial as well as

real-world datasets validates the theoretical findings. This analysis also helps us to better

understand the behavior of a FkNN classifier in the presence of class imbalance. Specifi-
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cally, an imbalanced training set will always contain a fewer number of examples compared

to its balanced counterpart and thus likely to result in poorer convergence. To improve the

immunity of kNN classifier in presence of class imbalance we employ a simple heuristic lo-

cally adaptive weighting scheme which will consider the neighborhood properties of a test

point while calculating a class-specific weight for it. The efficacy of the weighting scheme is

validated through experimental comparison with FkNN variants tailored for handling class

imbalance on a set of imbalanced real-world benchmark datasets having diverse properties.

We retain our focus on FkNN a simple, non-parametric, widely used classifier offering

commendable performance in Chapter 4 as well. We start by demonstrating the need for

optimizing a class-specific set of feature weights which if considered during distance calcu-

lation will be able to clearly distinguish the members of the class under concern from the

rest. However, mathematically optimizing such a set of class-specific feature weight may

not be easy as finding an objective function satisfying the conditions set by the optimizer

can be difficult in practice. Thus, we propose to use a self-adaptive variant of DE which

also demonstrates an improved performance over the canonical optimizer while incurring a

similar computational cost. We also highlight how finding a good performing global value

of the parameter k can be a tiresome process. We show that optimizing the class-specific

feature weights and the choice of global k may be reduced to a single problem and thus

can be solved simultaneously in the proposed PIFWkNN. Even though class-specific feature

weights are likely to offer some immunity against class imbalance additional measures may

still be required considering the general scarcity of minority instances. Thus, in PIFW2kNN

we attempt to use a set of class-specific weights to compensate for the class imbalance. We

remove the need for expensive cost tuning by simultaneously optimizing the class-specific

weights by incorporating them in the optimization problem of PIFWkNN. We show how this

can be achieved through a modified encoding along with a different objective function more

suitable for accounting the effects of class imbalance. A comparison with state-of-the-art clas-

sifiers employing feature weighting establishes the effectiveness of PIFWkNN. The efficacy

of PIFW2kNN is also experimentally validated through a comparison with kNN and FkNN

variants capable to sustain their performance in presence of class imbalance on the real-world

benchmark imbalanced datasets.

Finally in Chapter 5 we focus on end-to-end deep image classifiers and proceed to propose
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an adaptive oversampling technique. The GAMO framework consists of three component net-

works, namely a convex generator which generates a new sample as a convex combination of

all the examples from a given class, a classifier, and a discriminator that guides the generated

samples to adhere the corresponding class distribution. The convex generator maintains an

adversarial relationship with the classifier such that it can adaptively generate hard to clas-

sify instances during oversampling. The convex generator is also adversarially connected with

the discriminator following a typical GAN strategy. In essence, GAMO plays a three-player

game between the convex generator, the classifier, and the discriminator. Unlike previous

approaches (Ando and Huang, 2017) GAMO is capable of not only adaptively generating

artificial samples in the distributed feature space which aids the learning of the classifier but

also realistic image instances through the proposed GAMO2pix network. Further, the convex

generator also attempts to address the issues of mode collapse and boundary distortion of

regular GANs trained on a limited amount of data.

To summarize, this thesis starts by attempting to answer the primary question of evalu-

ating the efficacy of a classifier in the presence of class imbalance. Following, it focuses on

FkNN by first validating its convergence and explaining its susceptibility to class imbalance

in the process. The thesis also aims to offer immunity to FkNN against class imbalance

through a locally adaptive class weighting. Subsequently, this thesis proposes two variants of

FkNN namely PIFWkNN and PIFW2kNN which respectively improves upon the base classi-

fier and offers additional resilience against class imbalance. Finally, GAMO aims to address

the issues associated with a GAN based adaptive oversampling strategy which is applicable

to an end-to-end deep image classifier.

6.2 Future Possibilities

In this section, we describe how our contributions made in this thesis can be further explored

to open up new research opportunities.

• In Chapter 2 we discussed how different performance indices may suffer distortions with

altering class imbalance and the number of classes between training and test/validation

set in a class imbalanced problem. Following a theoretical analysis and simulation study,

we have also recommended an application-specific applicability of different indices. A
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6. Conclusion

natural future extension of this work would be to investigate the behavior of indices that

are used in imbalanced multi-label (Madjarov et al., 2012) and multi-instance (Carbon-

neau et al., 2018) classification problems. One may also consider validating the efficacy

of the modified/normalized indices on class imbalanced problems where the two types

of distortions are naturally occurring. For example, Type 1 distortion is quite inherent

in image foreground and background classification (Lin et al., 2017a). This is because

the foreground usually spreads over less number of pixels compared to background re-

sulting in class imbalance. Moreover, the fraction of background to foreground in an

image i.e. the RRT may significantly vary between images consequently causing dis-

tortion in performance indices which fail to satisfy Condition 2.1. Type 1 distortion

is also possible during sentiment analysis from tweets, where not all sentiments may

occur with equal frequency (Zimbra et al., 2018), while the prior probability of different

sentiments may notably change over time. Thus, if a sentiment analyzing classifier is

periodically tested after deployment for potential fine-tuning and an index susceptible

to Type 1 distortion is utilized for quantifying its performance, then the result may

mislead the quality assessment. On the other hand, Type 2 distortion can occur in

open set recognition or incremental learning problems where the number of classes may

increase over time (Rudd et al., 2018), thus the use of an index which satisfies Condition

2.2 may be beneficial.

• In Chapter 3 we discussed on the theoretical convergence of the FkNN class membership

estimator and employed a heuristic locally adaptive class weighting scheme to guard

against the effects of class imbalance. A limitation of this work is the assumptions on

the properties of the class distributions and the membership functions. Though most

of the regular functions do follow the desirable properties, there are notable exceptions

as well. One can consider further reducing the restrictions imposed by the assumptions

in a future direction of this work. The impact of different distance measures other than

Euclidean, such as geometric divergence (Saha and Das, 2016) on the performance

of FkNN can be also worth investigating. Another interesting extension of this work

may come from analysing the behavior of possibilistic kNN (PkNN) (Frigui and Gader,

2009) where given a test point, its sum of membership to all the classes need not be
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equals to 1. Given our convergence analysis of the class membership estimator does not

impose any constraints on the sum of memberships, it may very well be extended to the

case of PkNN. However, as the membership estimator of PkNN changes from that of

FkNN, the applicability of Result 3.1 may not be straightforward anymore. Thus, the

problem may be reduced to finding a suitable bound on the class membership estimator

of PKNN or expressing the same in some approximated form such that Result 3.1 can

be applied. In another direction, it would also be interesting to use a technique similar

to Bax (2012) for establishing a bound on the generalization error of FkNN. Further,

the simple heuristic point specific class weighting can be improved by optimizing it in

a manner similar to Anava and Levy (2016).

• In Chapter 4 we demonstrated the importance of an optimized set of class-specific fea-

ture weighting and global choice of parameter k in FkNN. We further highlighted how

a set of class-specific global weights can also be simultaneously optimized which can

improve the immunity of FkNN in the presence of class imbalance. A direct exten-

sion of this work can investigate the usefulness of different DE variants in solving the

optimization problem involved in the process. With an increasing number of classes

and features, the optimization problem can also become high dimensional which may

require special purpose self-adaptive scalable DE based optimizer (Ghosh et al., 2017).

Moreover, both of PIFWkNN and PIFW2kNN are reliant on optimizing global weights

and parameter setting. This may further be improved for complex overlap structures

and small disjuncts by incorporating locality specific information through neighborhood

dependent choices of weights and parameter values.

• In Chapter 5 we introduced a novel GAN inspired oversampling technique applicable

to deep image classifiers. An interesting area of future investigation is to improve the

quality of the images generated by GAMO2pix by employing a different architecture

such as BEGAN (Berthelot et al., 2017). To reduce the tendency of GAMO to overfit

as well as to potentially improve its performance, one may consider hybridization with

improved GAN variants (Gurumurthy et al., 2017) which can achieve good performance

even with less number of training samples. Further, one may explore the efficacy of

GAMO to learn new classes by taking inspiration from Memory Replay GAN (Wu et al.,
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2018), or study the usefulness of the proposed convex generator for handling boundary

distortion in GANs.

6.3 Open problems

In this section, we discuss some open problems related to class imbalance which are likely to

introduce new avenues of research.

• We start with the very basic question of defining a classification problem as class imbal-

anced. Theoretically, a training set can be considered as class imbalanced if the number

of representatives from the different classes are not equal. However, in practice, it is

almost impossible to obtain a training set that contains an equal number of points from

all the classes. Further in Chapter 1 we demonstrated that even if there is an unequal

number of class representatives the effect of class imbalance on classification perfor-

mance largely depends on the individual class structure and the choice of the classifier.

Thus, the question remains in which case we will expect a classifier to be significantly

affected by class imbalance and will require additional efforts to improve the accuracy.

Answer to such a trivial question may be provided by a detailed theoretical study, which

will consider the class distribution as well as the nature of the classifier to predict the

impact of class imbalance on the classification performance over the minority class.

• Another basic question is involved with the quantification of class imbalance through IR

in a multi-class classification problem. In such cases, IR only represents the fraction of

points belonging to the largest class and the smallest class ignoring the rest. However,

this may not be able to properly express the extent of imbalance in the training set. As

an example, we take a three-class classification problem where the classes respectively

contain 1000, 1000, 10 points. Now let us consider another training set having 1000,

10, and 10 data instances in the three respective classes. In both cases, the IR is 100

indicating a similar class imbalance. However, in reality, the second training set has two

minority classes which are likely to further hinder fair training. Thus, a more expressive

form of IR is required which will better represent the learning difficulty.

• In traditional machine learning, the widely used undersampling approach is prone to
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suffer from information loss. However, to mitigate such loss techniques should focus

on finding better representatives through which the entire class can be properly sum-

marized. A critical obstacle towards achieving this goal comes in the form of disjuncts

(Weiss and Hirsh, 2000; Weiss, 2010) which are intra-class clusters usually correspond-

ing to different sub-concepts. Evidently, each of such disjuncts needs to be adequately

represented during undersampling the majority class. However, usually not all disjuncts

are uniformly represented in the training set as the corresponding sub-concepts are not

observable with equal probability (Gao et al., 2019). This results in an intra-class im-

balance between different disjuncts usually making the smaller ones harder to classify

and thus difficult to undersample. Further, undersampling techniques should also be

aware of the locality specific diverse requirement of information. For example, in a

spherical class structure, it is acceptable to have less number of training instances in

the center while more information is required to correctly identify the class periphery.

The problem is even more critical in deep learning systems where the feature extrac-

tion is performed simultaneously with classification. Further, deep learners have a large

number of parameters proper tuning of which requires a sufficient amount of diverse

data.

• We have discussed in Chapter 1 how the commonly used oversampling techniques are

required to be adaptive and the artificial samples should adhere to the class distribution.

We have also noted how the challenge escalates in deep learning systems given the

realistic nature of the data and the end-to-end approach of the learners. In classical

machine learning, a plethora of solutions was proposed over the years. However, in

deep learning only a handful of recent research works attempted to address these issues

(Tripathi et al., 2019; Liu et al., 2019) while the majority followed the traditional cost-

sensitive route leaving such a promising direction of research mostly unexplored.

• In cost-sensitive deep learning systems the costs are usually assigned by heuristic ap-

proaches or expensive parameter tuning (Lin et al., 2017a; Cui et al., 2019). However,

some research works (Khan et al., 2018) attempted to include the cost in the objec-

tive function such that they can be properly learned. Not only this avenue of research

should gain further attention but also new ways such as adversarially learning the costs

152



6. Conclusion

may be considered.

• With the advent of new problems such as few-shot learning (Wang et al., 2019), open set

classification (Rudd et al., 2018), multi-instance and multi-label classification (Zhang

and Zhang, 2007), weakly supervised learning (Zhou, 2018), fine-grained classification

(Xiao et al., 2015), and emerging new data sources such as streaming data (Brzezinski

et al., 2019) investigating the scope and effects of class imbalance need to adapt as well.
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Supplementary for Chapter 2

A.1 Construction of datasets used in Example 2.1

A.1.1 Datasets used for illustration of Type 1 distortions

For the two class datasets, both of the classes are sampled from multivariate normal distri-

bution N (µi,Σi), where µi and Σi are respectively the mean and co-variance matrix of the

ith class, and i ∈ {1, 2}. The parameters are as follows:

µ1 = [3 3]T and µ2 = [7.5 3]T .

Σ1 =

0.45 0

0 0.45

 and

0.25 0

0 0.25


We start with sampling 5000 data points from each class and then sub-sample from the one

in the left to construct the datasets of gradually deteriorating behavior.

A.1.2 Datasets used for illustration of Type 2 distortions

Similar to the ones used to construct the datasets used to illustrate the effect of Type 1

distortion, here also the classes are sampled from N (µi,Σ), where i ∈ {1, 2, 3, 4, 5, 6}. For

the ith class the center µi, lies on the ith vertex of a regular hexagon centered at [0 0]T , with
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edge length of 5 unit. Therefore,

µ1 = [−2.5 − 4.33]T , µ2 = [−5 0]T ,

µ3 = [−2.5 4.33]T , µ4 = [2.5 4.33]T ,

µ5 = [5 0]T , and µ6 = [2.5 − 4.33]T ,

while Σ =

0.08 0

0 0.08

 .
We start with sampling from the three classes lying respectively on the three adjacent vertices

of the regular hexagon. We gradually deteriorate the behavior of the dataset by sampling

from the three remaining vertices in an anti-clockwise order. Further, from the ith class we

randomly sample ni number of test points, where n1 = 5000, n2 = 1500, n3 = 4000, n4 = 500,

n5 = 3500, and n6 = 4500.

A.2 Description of class imbalanced datasets sampled from

ImageNet 2012

In Table A.1 we give the details of the 12 higher-level classes (alongside the leaf classes chosen

for each of them) selected from ImageNet. The Table A.2 summarizes the properties (such as

number of points, classes, IR, etc.) for each of the created datasets. Moreover, a dataset is

named as “ImageNet-c-i”, where c is the number of class and i is a serial index. For example,

ImageNet-10-1 indicates the first 10-class dataset.

A.3 Parameter Setting of the classifiers used for empirical

evaluation

For Dual-LexiBoost all the parameters are set following the guidelines of the original article.

To elaborate, in Dual-LexiBoost the k-nearest neighbor is chosen as the base classifier where

the number of neighbors is set to 3; while the number of rounds is set to 10. For NBSVM,

a linear kernel (using radial basis kernel did not significantly improve performance, possibly

because Inception V3 induces linear separability among classes) is used while the regulariza-
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Table A.1: Selected Classes from ImageNet ILSVRC2012

Selected No. of Leaf classes ILSVRC2012
class (Serial∗) Points Reference

Animal (1) 6500

Egyptian Cat n02124075
Cougar n02125311
Gazelle n02423022

Great Dane n02109047
Zebra n02391049

Artifact (2) 6394

Revolver n04086273
Desk n03179701

Chainsaw n03000684
Typewriter Keyboard n04505470

Teddy, Teddy Bear n04399382

Dress (3) 2600
Crash Helmet n03127747

Gown n03450230

Factory (4) 1300 Lumber-mill n03697007

Food (5) 3900
Strawberry n07745940

Mashed Potato n07711569
Bagel n07693725

Fungus (6) 3900
Hen-of-the-Woods n13052670

Earthstar n13044778
Stinkhorn n13040303

Geological (7) 4200

Cliff n09246464
Valley n09468604

Coral Reef n09256479
Seashore n09428293

Natural (8) 1300 Rapeseed n11879895

Person (9) 2600
Groom n10148035

Scuba Diver n10565667

Plant (10) 2600
Daisy n11939491

Yellow lady slippers n12057211

Sport (11) 2600
Racket n04039381
Barbell n02790996

Vehicle (12) 6500

Airliner n02690373
Gondola n03447447

Mountain Bike n03792782
Ambulance n02701002
Limousine n03670208

∗ The serial number will be hereafter used to represent the corresponding class.

tion parameter is varied in the set {10, 100}. The number of iterations in RUSBoost is kept

fixed at 10 while all the other parameters are set to the default as advised in the original

article. The MLP is designed with one hidden layer containing
√
cd number of hidden nodes,

while the parameters for SMOTE are set following the corresponding research article.
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Table A.2: Properties of the class imbalanced subsets of ImageNet.

Dataset c Serial of Data points in IR
name classes each class

ImageNet-2-1 2 1, 9
3000, 75 40ImageNet-2-2 2 12, 10

ImageNet-2-3 2 2, 8

ImageNet-2-4 2 7, 4
3000, 150 20ImageNet-2-5 2 5, 11

ImageNet-2-6 2 6, 3

ImageNet-2-7 2 1, 8
3000, 300 10ImageNet-2-8 2 12, 11

ImageNet-2-9 2 6, 4

ImageNet-2-10 2 7, 9
3000, 600 5ImageNet-2-11 2 2, 10

ImageNet-2-12 2 5, 3

ImageNet-3-1 3 1, 2, 8

2500, 1250, 100 25
ImageNet-3-2 3 12, 10, 9
ImageNet-3-3 3 7, 5, 3
ImageNet-3-4 3 6, 11, 4

ImageNet-5-1 5 1, 2, 4, 10, 5
3000, 1500, 750, 250, 100 30ImageNet-5-2 5 7, 12, 9, 11, 3

ImageNet-5-3 5 6, 2, 9, 10, 8

ImageNet-10-1 10 1, 2, 5, 6, 7, 12, 10, 11, 4, 8
2000, 1750, 1500, 1250, 1000,

750, 500, 250, 150, 100
20ImageNet-10-2 10 1, 2, 5, 6, 12, 10, 11, 4, 9, 3

ImageNet-10-3 10 1, 2, 6, 12, 10, 4, 9, 3, 7, 8
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Supplementary for Chapter 3

B.1 Description of the artificial datasets

In this section we describe the protocol followed to generate the artificial datasets used in

Chapter 3. In a c-class d-dimensional dataset S, let us denote the set of Sj number of points

which belong to class j by Sj , for all j ∈ C. We denote an identity matrix of size b× b as Ib,

while x is a d-dimensional real vector represented as [x(1), x(2), · · · , x(d)]. Let us also define
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a set of three matrices, namely M1,M2, and M3 as follows:

M1 =



−20 −10

−20 0

−20 10

−10 −10

−10 0

−10 10

0 −10

0 0

0 10

10 −10

10 0

10 10

20 −10

20 0

20 10



, M2 =



0 0 0 0 5

0 0 0 5 0

0 0 0 5 5

0 0 5 0 0

0 0 5 0 5

0 0 5 5 0

0 0 5 5 5

0 5 0 0 0

0 5 0 0 5

0 5 0 5 0



,
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M3 =



0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 5 0

0 0 0 0 0 0 0 0 5 5

0 0 0 0 0 0 0 5 0 0

0 0 0 0 0 0 0 5 0 5

0 0 0 0 0 0 0 5 5 0

0 0 0 0 0 0 0 5 5 5

0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 5 0 0 5

0 0 0 0 0 0 5 0 5 0

0 0 0 0 0 0 5 0 5 5

0 0 0 0 0 0 5 5 0 0

0 0 0 0 0 0 5 5 0 5

0 0 0 0 0 0 5 5 5 0

0 0 0 0 0 0 5 5 5 5

0 0 0 0 0 5 0 0 0 0

0 0 0 0 0 5 0 0 0 5

0 0 0 0 0 5 0 0 5 0

0 0 0 0 0 5 0 0 5 5

0 0 0 0 0 5 0 5 0 0



.

With the abpve setting we now proceed to detail the generation of artificial dataset in

the following Table B.1.

The mean of the classes for higher dimensional datasets are chosen to ensure that no two

classes are completely overlapped in all the dimensions. Therefore, to find the mean of a class

we first start by encoding the index of that class in binary numeral system and representing

it as a vector. Then, we append necessary number of zeros to the left of the binary vector to

reach the required dimension. Finally, we multiply each dimension of the binary vector with

a constant scalar to obtain the mean for that class. For example, to calculate the mean for

the 3-rd class in AD-5-5, we start by representing 3 as [1 1]. We then add 3 zeros to the left

of the 2-dimensional binary vector to extend it to the 5-dimensional space forming [0 0 0 1 1].
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Table B.1: Construction of artificial datasets.

Dataset Description

AD-2-2-NO S1 = 200000 and S1 ∼ N (µ1,Σ), where µ1 = [−5 0], and Σ = I2. S2 = 200000 and
S2 ∼ N (µ2,Σ), where µ2 = [5 0], and Σ = I2.

AD-2-2-SO S1 = 200000 and S1 ∼ N (µ1,Σ), where µ1 = [−3.5 0], and Σ = I2. S2 = 200000 and
S2 ∼ N (µ2,Σ), where µ2 = [3.5 0] and Σ = I2.

AD-2-2-LO S1 = 200000 and S1 ∼ N (µ1,Σ), where µ1 = [−2 0], and Σ = I2. S2 = 200000 and
S2 ∼ N (µ2,Σ), where µ2 = [2 0], and Σ = I2.

AD-9-2 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I2, and µj is the (j+3)-rd row of the matrix
M1, for all j = 1, 2, · · · , 9.

AD-15-2 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I2, and µj is the j-th row of the matrix M1,
for all j = 1, 2, · · · , 15.

AD-5-5 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I5, and µj is the j-th row of the matrix M2,
for all j = 1, 2, · · · , 5.

AD-10-5 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I5, and µj is the j-th row of the matrix M2,
for all j = 1, 2, · · · , 10.

AD-10-10 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I10, and µj is the j-th row of the matrix
M3, for all j = 1, 2, · · · , 10.

AD-20-10 Sj = 200000 and Sj ∼ N (µj ,Σ), where Σ = I10, and µj is the j-th row of the matrix
M3, for all j = 1, 2, · · · , 20.

Finally, we multiply 5 with each element of the binary vector to construct the third row of

M2.

B.2 Description of real-world datasets

We list the key properties of the 12 real world datasets used in the simulation in Table

B.2.The same for the 37 class imbalanced datasets are detailed in Table B.3.

Table B.2: Key properties of the 12 real-world datasets used in the simulation study.

Dataset Number of Number of Number of
Name Points Dimensions Classes

Banana 5300 2 2
Diabetic 1151 19 2

Heart 270 13 2
Iris 150 4 3

Letter 20000 16 26
Magic∗ 13688 10 2

Penbased 10992 16 10
Ring 7400 20 2
Seeds 210 7 3

Segment 2310 19 7
Twonorm 7400 20 2
Waveform 5000 21 3

∗Subset of the original dataset is taken.
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Table B.3: Key properties of the real world benchmark class imbalanced datasets.

Dataset Number of Number of Number of Imbalance
Name Points Dimensions Classes Ratio

Abalone19 4117 8 2 129.50
Acoustic 78823 50 3 2.16

ADA 4147 48 2 3.03
Balance Scale 625 4 3 5.87

BCWO 684 10 2 1.86
Chess 28056 6 18 168.60

CodRna 59535 8 2 2.00
Colon Cancer 62 2000 2 1.90

Connect 67557 42 3 6.89
Cover Type 581012 54 7 103.13

Dermatology6 358 34 2 16.90
Diabetes 768 8 2 1.86

Ecoli-0-2-6-7 vs 3-5 224 7 2 9.18
Ecoli-0-3-4-7 vs 5-6 257 7 2 9.28
German Numeric 1000 24 2 2.33

Glass7 214 9 2 6.37
Haberman’s Survival 306 3 2 2.77

Hayes-Roth 132 4 3 1.70
Hepatitis1 155 19 2 3.84

Hypothyroid3 3772 29 2 38.70
IJCNN1 141691 22 2 9.44

Liver Disorder 346 5 2 1.36
Pageblocks0 5472 10 2 8.79

Poker-8-9 vs 5 2075 10 2 82.00
Poker-8-9 vs 6 1477 10 2 85.55
Shuttle-2 vs 5 3316 9 2 66.67

Soybean12 683 35 2 14.52
SVM Guide2 391 20 3 4.16
SVM Guide4 312 10 6 2.00

SYLVA 13086 216 2 15.25
WDBC 569 30 2 1.68
Wine 178 13 3 1.47

Winequality-red-8 vs 6-7 855 11 2 46.50
Winequality-white-3-9 vs 5 1482 11 2 58.28
Winequality-white-3 vs 7 900 11 2 44.00

Yeast3 1484 8 2 8.10
Yeast4 1484 8 2 28.10

B.3 Detailed results on artificial datasets

The performance of FkNN classifier on 9 artificial datasets are detailed in terms of sum of

bias over all classes µe, the same for Mean Squared Error σe, and Accuracy (β) respectively

in Table B.4, B.5, and B.6, .

B.4 Detailed result on real-world datasets

We describe the comparative performances of the two initial membership estimation tech-

niques (namely Kernel Density Estimation (KDE) and Keller’s Heuristics (KH)) in terms of
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η, µe and σe, on 12 real-world datasets in the following Table B.7.

B.5 Detailed results on benchmark class imbalanced real-world

datasets

We detail the result on 37 real-world benchmark imbalanced datasets in terms of ACSA,

GMean, µ+, and σ+ respectively in the following Table B.8, B.9, B.10, and B.11.
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Table B.6: Performance of FkNN on artificial datasets in terms of Accuracy.

Nc k A
D

-2
-2

-N
O

A
D

-2
-2

-S
O

A
D

-2
-2

-L
O

A
D

-9
-2

A
D

-1
5
-2

A
D

-5
-5

A
D

-1
0
-5

A
D

-1
0
-1

0

A
D

-2
0
-1

0

10000

1 1.00 1.00 0.98 1.00 1.00 0.99 0.97 0.95 0.94
N0.1 1.00 1.00 0.98 1.00 1.00 0.99 0.98 0.96 0.95
N0.25 1.00 1.00 0.98 1.00 1.00 0.99 0.98 0.97 0.97
N0.5 1.00 1.00 0.98 1.00 1.00 0.99 0.98 0.98 0.98

50000

1 1.00 1.00 0.98 1.00 1.00 0.98 0.98 0.97 0.95
N0.1 1.00 1.00 0.98 1.00 1.00 0.98 0.99 0.98 0.96
N0.25 1.00 1.00 0.98 1.00 1.00 0.98 0.99 0.98 0.97
N0.5 1.00 1.00 0.98 1.00 1.00 0.98 0.99 0.98 0.98

100000

1 1.00 1.00 0.96 1.00 1.00 0.99 0.98 0.97 0.96
N0.1 1.00 1.00 0.96 1.00 1.00 0.99 0.98 0.98 0.97
N0.25 1.00 1.00 0.96 1.00 1.00 0.99 0.98 0.98 0.97
N0.5 1.00 1.00 0.96 1.00 1.00 0.99 0.98 0.98 0.97

150000

1 1.00 1.00 0.99 1.00 1.00 0.99 0.98 0.98 0.97
N0.1 1.00 1.00 0.99 1.00 1.00 0.99 0.98 0.98 0.98
N0.25 1.00 1.00 0.99 1.00 1.00 0.99 0.98 0.98 0.98
N0.5 1.00 1.00 0.99 1.00 1.00 0.99 0.98 0.99 0.98

166



B. Supplementary Materials for Chapter 3

T
ab

le
B

.7
:

C
o
m

p
a
ri

so
n

of
p

er
fo

rm
an

ce
on

re
al

w
or

ld
d

at
as

et
s

w
it

h
in

it
ia

l
fu

zz
y

m
em

b
er

sh
ip

s
es

ti
m

at
ed

u
si

n
g

K
D

E
an

d
K

H
.

Banana

Diabetic

Heart

Iris

Letter

Magic

Penbased

Ring

Seeds

Segment

Twonorm

Waveform

k
=

1

η
K

D
E

0
.9

0
0
.5

3
0
.7

5
0
.9

5
0
.9

4
0
.7

0
0
.9

7
0
.7

5
0
.9

1
0
.9

6
0
.9

4
0
.7

7
K

H
0
.8

7
0
.6

1
0
.7

5
0
.9

5
0
.9

5
0
.7

9
0
.9

9
0
.7

5
0
.9

2
0
.9

6
0
.9

4
0
.7

7

µ
e

K
D

E
0
.1

2
0
.2

2
0
.3

0
0
.0

6
0
.1

5
0
.1

9
0
.0

5
0
.6

9
0
.1

4
0
.0

7
0
.1

1
0
.3

9
K

H
0
.1

4
0
.4

3
0
.3

2
0
.1

0
0
.1

5
0
.2

5
0
.0

3
0
.3

3
0
.1

4
0
.0

7
0
.1

2
0
.3

3

σ
e

K
D

E
0
.0

1
0
.0

1
0
.2

7
0
.0

3
0
.0

5
0
.0

3
0
.0

3
0
.6

7
0
.0

8
0
.0

7
0
.0

7
0
.2

5
K

H
0
.0

7
0
.2

1
0
.1

5
0
.0

4
0
.0

3
0
.1

2
0
.0

1
0
.1

5
0
.0

6
0
.0

2
0
.0

5
0
.1

6

k
=
N

0
.1

η
K

D
E

0
.9

0
0
.5

3
0
.7

5
0
.9

5
0
.9

4
0
.6

9
0
.9

7
0
.7

1
0
.9

3
0
.9

6
0
.9

6
0
.8

0
K

H
0
.8

9
0
.6

2
0
.8

3
0
.9

5
0
.9

5
0
.8

2
0
.9

9
0
.6

0
0
.9

3
0
.9

6
0
.9

6
0
.8

0

µ
e

K
D

E
0
.1

1
0
.2

1
0
.3

3
0
.0

5
0
.1

3
0
.1

8
0
.0

5
0
.7

5
0
.1

0
0
.0

9
0
.0

9
0
.3

1
K

H
0
.1

4
0
.4

3
0
.2

9
0
.1

0
0
.1

5
0
.2

4
0
.0

3
0
.3

6
0
.1

2
0
.0

7
0
.1

0
0
.3

0

σ
e

K
D

E
0
.0

1
0
.0

1
0
.1

9
0
.0

2
0
.0

3
0
.0

2
0
.0

3
0
.6

2
0
.0

4
0
.0

6
0
.0

4
0
.1

3
K

H
0
.0

5
0
.1

4
0
.0

9
0
.0

3
0
.0

2
0
.0

7
0
.0

1
0
.1

7
0
.0

4
0
.0

2
0
.0

2
0
.0

9

k
=
N

0
.2
5

η
K

D
E

0
.9

0
0
.5

3
0
.8

3
0
.9

5
0
.9

3
0
.6

9
0
.9

7
0
.6

6
0
.9

2
0
.9

6
0
.9

7
0
.8

3
K

H
0
.9

0
0
.6

3
0
.8

3
0
.9

5
0
.9

4
0
.8

1
0
.9

9
0
.5

4
0
.9

3
0
.9

5
0
.9

8
0
.8

3

µ
e

K
D

E
0
.1

1
0
.3

1
0
.3

6
0
.0

5
0
.1

7
0
.1

9
0
.0

6
0
.8

3
0
.0

9
0
.1

1
0
.1

1
0
.3

2
K

H
0
.1

4
0
.4

3
0
.2

7
0
.1

0
0
.1

9
0
.2

5
0
.0

3
0
.4

0
0
.1

1
0
.0

8
0
.0

8
0
.2

9

σ
e

K
D

E
0
.0

1
0
.0

1
0
.1

8
0
.0

2
0
.0

3
0
.0

2
0
.0

3
0
.6

6
0
.0

3
0
.0

6
0
.0

4
0
.1

2
K

H
0
.0

4
0
.1

3
0
.0

8
0
.0

3
0
.0

2
0
.0

8
0
.0

1
0
.1

7
0
.0

3
0
.0

2
0
.0

1
0
.0

7

k
=
N

0
.5

a
cc

K
D

E
0
.9

0
0
.5

3
0
.8

5
0
.9

6
0
.8

7
0
.6

7
0
.9

6
0
.5

4
0
.9

1
0
.9

4
0
.9

8
0
.8

6
K

H
0
.9

0
0
.6

5
0
.8

5
0
.9

7
0
.8

6
0
.7

9
0
.9

7
0
.5

1
0
.9

3
0
.9

3
0
.9

7
0
.8

5

µ
e

K
D

E
0
.0

2
0
.0

1
0
.4

2
0
.0

8
0
.5

8
0
.1

3
0
.1

2
0
.9

6
0
.1

2
0
.2

2
0
.1

5
0
.3

9
K

H
0
.1

4
0
.4

5
0
.2

7
0
.0

9
0
.4

4
0
.3

1
0
.0

7
0
.4

8
0
.1

2
0
.1

3
0
.1

0
0
.3

2

σ
e

K
D

E
0
.0

0
0
.0

1
0
.1

8
0
.0

2
0
.1

7
0
.0

4
0
.0

5
0
.7

9
0
.0

4
0
.0

9
0
.0

5
0
.1

4
K

H
0
.0

4
0
.1

2
0
.0

6
0
.0

2
0
.0

8
0
.0

8
0
.0

1
0
.2

3
0
.0

3
0
.0

3
0
.0

1
0
.0

7

167



B. Supplementary Materials for Chapter 3

Table B.8: Comparison of performance on real-world benchmark class imbalanced datasets
in terms of ACSA

Dataset FkNN WFkNN FkNN FkNN NWFkNN WFkNN
+GCW +SMOTE +RUS +LACW

Abalone19 0.50† 0.64† 0.58† 0.50† 0.50† 0.66
Acoustic 0.62† 0.66† 0.62† 0.68≈ 0.52† 0.68

ADA 0.69† 0.76† 0.73† 0.73† 0.58† 0.79
Balance 0.62≈ 0.60† 0.63≈ 0.58† 0.63≈ 0.62
BCWO 0.95† 0.96≈ 0.96≈ 0.96≈ 0.95† 0.97
Chess 0.42† 0.46† 0.43† 0.36† 0.28† 0.48

CodRna 0.85† 0.89≈ 0.89≈ 0.89≈ 0.77† 0.90
Colon Cancer 0.69† 0.80≈ 0.77† 0.76† 0.57† 0.80

Connect 0.41† 0.47≈ 0.45† 0.44† 0.34† 0.48
Cover Type 0.56† 0.68† 0.59† 0.51† 0.30† 0.70

Dermatology6 0.99† 1.00≈ 1.00≈ 1.00≈ 0.79† 1.00
Diabetes 0.68† 0.72≈ 0.72≈ 0.71† 0.61† 0.73

Ecoli-0-2-6-7 vs 3-5 0.78† 0.86≈ 0.86≈ 0.83† 0.50† 0.87
Ecoli-0-3-4-7 vs 5-6 0.86† 0.88† 0.89† 0.91≈ 0.50† 0.92
German Numeric 0.58† 0.65† 0.65† 0.65† 0.53† 0.69

Glass7 0.89† 0.92† 0.93† 0.91† 0.88† 0.95
Haberman’s Survival 0.58† 0.61† 0.64≈ 0.63≈ 0.54† 0.63

Hayes-Roth 0.68† 0.73† 0.73† 0.71† 0.60† 0.75
Hepatitis1 0.69† 0.76† 0.78† 0.81≈ 0.59† 0.81

Hypothyroid3 0.77† 0.92≈ 0.91† 0.82≈ 0.50† 0.93
IJCNN1 0.65† 0.87† 0.84† 0.78† 0.50† 0.89

Liver Disorder 0.65≈ 0.64≈ 0.64≈ 0.63† 0.64≈ 0.65
Pageblocks0 0.86† 0.93† 0.94≈ 0.92† 0.66† 0.95

Poker-8-9 vs 5 0.50† 0.59† 0.65† 0.51† 0.50† 0.61
Poker-8-9 vs 6 0.63† 0.85≈ 0.85≈ 0.73† 0.50† 0.86
Shuttle-2 vs 5 1.00≈ 1.00≈ 1.00≈ 1.00≈ 1.00≈ 1.00

Soybean12 0.87† 0.95† 0.99≈ 0.92† 0.50 † 0.98
SVM Guide2 0.62† 0.70† 0.67† 0.68† 0.53† 0.72
SVM Guide4 0.63† 0.65† 0.63† 0.64† 0.66≈ 0.67

SYLVA 0.65† 0.92≈ 0.92≈ 0.79† 0.50† 0.93
WDBC 0.94≈ 0.93† 0.92† 0.95≈ 0.94≈ 0.95
Wine 0.96≈ 0.96≈ 0.96≈ 0.95† 0.96≈ 0.97

Winequality-red-8 vs 6-7 0.55† 0.65≈ 0.61† 0.56† 0.50† 0.66
Winequality-white-3-9 vs 5 0.52† 0.63† 0.65≈ 0.53† 0.50† 0.66
Winequality-white-3 vs 7 0.52† 0.56† 0.63† 0.53† 0.62≈ 0.61

Yeast3 0.83† 0.90† 0.90† 0.90† 0.62† 0.92
Yeast4 0.55† 0.82≈ 0.79† 0.73† 0.50† 0.83

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.
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Table B.9: Comparison of performance on real-world benchmark class imbalanced datasets
in terms of GMean

Dataset FkNN WFkNN FkNN FkNN NWFkNN WFkNN
+GCW +SMOTE +RUS +LACW

Abalone19 0.00† 0.60† 0.45† 0.00† 0.00† 0.62
Acoustic 0.61† 0.64† 0.61† 0.67≈ 0.42† 0.68

ADA 0.65† 0.74≈ 0.72† 0.73† 0.39† 0.75
Balance 0.50† 0.48† 0.52≈ 0.42† 0.52≈ 0.51
BCWO 0.95≈ 0.96≈ 0.96≈ 0.96≈ 0.95≈ 0.96
Chess 0.14† 0.27≈ 0.08† 0.07† 0.00† 0.27

CodRna 0.84† 0.89≈ 0.89≈ 0.89≈ 0.74† 0.90
Colon Cancer 0.54† 0.75≈ 0.74† 0.74† 0.28† 0.76

Connect 0.18† 0.46≈ 0.17† 0.41† 0.00† 0.46
Cover Type 0.36† 0.67≈ 0.37† 0.33† 0.00† 0.68

Dermatology6 0.99≈ 1.00≈ 1.00≈ 1.00≈ 0.66† 1.00
Diabetes 0.66† 0.71† 0.72≈ 0.71† 0.50† 0.73

Ecoli-0-2-6-7 vs 3-5 0.65† 0.80† 0.81† 0.79† 0.00† 0.83
Ecoli-0-3-4-7 vs 5-6 0.82† 0.88† 0.88† 0.90≈ 0.00† 0.91
German Numeric 0.45† 0.65† 0.65† 0.66† 0.20† 0.68

Glass7 0.87† 0.90† 0.92† 0.90† 0.86† 0.94
Haberman’s Survival 0.49† 0.61† 0.63≈ 0.62≈ 0.20† 0.62

Hayes-Roth 0.61† 0.68† 0.69† 0.67† 0.37† 0.71
Hepatitis1 0.58† 0.74† 0.74† 0.80≈ 0.29† 0.81

Hypothyroid3 0.73† 0.91≈ 0.91≈ 0.80† 0.00† 0.92
IJCNN1 0.47† 0.87† 0.82† 0.73† 0.00† 0.89

Liver Disorder 0.63≈ 0.64≈ 0.63≈ 0.62† 0.63≈ 0.64
Pageblocks0 0.85† 0.92† 0.94≈ 0.92† 0.56† 0.94

Poker-8-9 vs 5 0.01† 0.38† 0.47† 0.05† 0.00† 0.45
Poker-8-9 vs 6 0.30† 0.84≈ 0.84≈ 0.52† 0.00† 0.85
Shuttle-2 vs 5 1.00≈ 1.00≈ 1.00≈ 1.00≈ 1.00≈ 1.00

Soybean12 0.84† 0.95† 0.99≈ 0.91† 0.00† 0.98
SVM Guide2 0.48† 0.67† 0.59† 0.65† 0.32† 0.69
SVM Guide4 0.44† 0.59† 0.45† 0.37† 0.61≈ 0.61

SYLVA 0.44† 0.92≈ 0.91≈ 0.68† 0.00† 0.92
WDBC 0.94≈ 0.93† 0.92† 0.95≈ 0.93† 0.95
Wine 0.96≈ 0.96≈ 0.96≈ 0.94† 0.96≈ 0.96

Winequality-red-8 vs 6-7 0.14† 0.55† 0.38† 0.19† 0.00† 0.58
Winequality-white-3-9 vs 5 0.06† 0.43† 0.51† 0.11† 0.00† 0.52
Winequality-white-3 vs 7 0.05† 0.23† 0.45† 0.09† 0.44† 0.39

Yeast3 0.81† 0.90† 0.90† 0.90† 0.47† 0.92
Yeast4 0.17† 0.81≈ 0.77† 0.68† 0.00† 0.82

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.
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Table B.10: Comparison of performance on real-world benchmark class imbalanced datasets
in terms of µ+.

Dataset FkNN WFkNN FkNN FkNN NWFkNN WFkNN
+GCW +SMOTE +RUS +LACW

Abalone19 0.50† 0.23≈ 0.41† 0.48† 0.52† 0.22
Acoustic 0.29† 0.20≈ 0.30† 0.24† 0.40† 0.19

ADA 0.26† 0.14≈ 0.21† 0.16† 0.46† 0.14
Balance 0.51† 0.30† 0.29≈ 0.39† 0.57† 0.29
BCWO 0.06† 0.04≈ 0.04≈ 0.04≈ 0.09† 0.04
Chess 0.38† 0.24≈ 0.38† 0.29† 0.53† 0.23

CodRna 0.16† 0.10≈ 0.11≈ 0.11≈ 0.27† 0.10
Colon Cancer 0.27† 0.18† 0.15≈ 0.22† 0.39† 0.14

Connect 0.44† 0.26≈ 0.45† 0.33† 0.54† 0.26
Cover Type 0.30† 0.28† 0.21† 0.29† 0.53† 0.27

Dermatology6 0.05† 0.00≈ 0.00≈ 0.02† 0.46† 0.00
Diabetes 0.26† 0.17≈ 0.20† 0.20† 0.38† 0.17

Ecoli-0-2-6-7 vs 3-5 0.24† 0.17† 0.17† 0.19† 0.57† 0.15
Ecoli-0-3-4-7 vs 5-6 0.21† 0.21† 0.20≈ 0.22† 0.56† 0.20
German Numeric 0.32† 0.19† 0.23† 0.23† 0.47† 0.17

Glass7 0.11† 0.08† 0.07† 0.09† 0.18† 0.05
Haberman’s Survival 0.33† 0.22† 0.23† 0.22† 0.47† 0.20

Hayes-Roth 0.30† 0.22† 0.26† 0.29† 0.41† 0.21
Hepatitis1 0.30† 0.16† 0.16† 0.17† 0.48† 0.12

Hypothyroid3 0.22† 0.23† 0.12≈ 0.20† 0.64† 0.11
IJCNN1 0.27† 0.19≈ 0.21≈ 0.23† 0.53† 0.20

Liver Disorder 0.25† 0.20≈ 0.22† 0.22† 0.31† 0.20
Pageblocks0 0.14† 0.14† 0.08† 0.14† 0.45† 0.15

Poker-8-9 vs 5 0.50† 0.21≈ 0.22≈ 0.47† 0.52† 0.22
Poker-8-9 vs 6 0.39† 0.36† 0.33≈ 0.45† 0.55† 0.34
Shuttle-2 vs 5 0.02† 0.17≈ 0.00† 0.01† 0.74† 0.17

Soybean12 0.23† 0.24† 0.21† 0.22≈ 0.59† 0.23
SVM Guide2 0.34† 0.20† 0.14† 0.28† 0.48† 0.18
SVM Guide4 0.31† 0.24≈ 0.31† 0.27† 0.39† 0.24

SYLVA 0.30† 0.25≈ 0.27≈ 0.32† 0.58† 0.26
WDBC 0.08† 0.06≈ 0.05≈ 0.06≈ 0.10† 0.06
Wine 0.02≈ 0.01≈ 0.01≈ 0.01≈ 0.03≈ 0.01

Winequality-red-8 vs 6-7 0.45† 0.20≈ 0.33† 0.40† 0.52† 0.20
Winequality-white-3-9 vs 5 0.47† 0.36† 0.35† 0.45† 0.53† 0.31
Winequality-white-3 vs 7 0.48† 0.38† 0.34† 0.46† 0.52† 0.36

Yeast3 0.20† 0.12† 0.11≈ 0.11≈ 0.52† 0.10
Yeast4 0.38† 0.20† 0.20† 0.27† 0.58† 0.17

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.
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Table B.11: Comparison of performance on real-world benchmark class imbalanced datasets
in terms of σ+.

Dataset FkNN WFkNN FkNN FkNN NWFkNN WFkNN
+GCW +SMOTE +RUS +LACW

Abalone19 0.26† 0.08† 0.20† 0.23† 0.27† 0.04
Acoustic 0.11† 0.06† 0.12† 0.08† 0.18† 0.04

ADA 0.10† 0.04† 0.08† 0.05† 0.23† 0.03
Balance 0.26† 0.10† 0.14† 0.17† 0.32† 0.09
BCWO 0.02≈ 0.01≈ 0.01≈ 0.01≈ 0.03† 0.01
Chess 0.17† 0.09† 0.17† 0.11† 0.28† 0.07

CodRna 0.05† 0.02≈ 0.03≈ 0.03† 0.10† 0.02
Colon Cancer 0.11† 0.07≈ 0.05† 0.07≈ 0.18† 0.07

Connect 0.21† 0.08≈ 0.22† 0.13† 0.29† 0.08
Cover Type 0.13† 0.09† 0.13† 0.08† 0.28† 0.07

Dermatology6 0.01† 0.00≈ 0.00≈ 0.00≈ 0.23† 0.00
Diabetes 0.10† 0.05† 0.07† 0.07† 0.17† 0.03

Ecoli-0-2-6-7 vs 3-5 0.09† 0.04≈ 0.07† 0.05† 0.33† 0.04
Ecoli-0-3-4-7 vs 5-6 0.08† 0.06≈ 0.05≈ 0.06≈ 0.32† 0.06
German Numeric 0.13† 0.06† 0.09† 0.08† 0.24† 0.05

Glass7 0.05† 0.04† 0.03≈ 0.04≈ 0.09† 0.03
Haberman’s Survival 0.14† 0.06† 0.09† 0.08† 0.24† 0.05

Hayes-Roth 0.12† 0.08≈ 0.11† 0.12† 0.20† 0.07
Hepatitis1 0.13† 0.05≈ 0.07≈ 0.06≈ 0.25† 0.06

Hypothyroid3 0.09† 0.07≈ 0.06≈ 0.08≈ 0.43† 0.07
IJCNN1 0.11† 0.06† 0.07† 0.06† 0.29† 0.01

Liver Disorder 0.09† 0.06† 0.08† 0.08† 0.13† 0.05
Pageblocks0 0.05† 0.03† 0.02≈ 0.03† 0.23† 0.02

Poker-8-9 vs 5 0.25† 0.07† 0.18† 0.23† 0.27† 0.05
Poker-8-9 vs 6 0.12† 0.14† 0.01† 0.09† 0.31† 0.13
Shuttle-2 vs 5 0.04† 0.05† 0.00† 0.04≈ 0.55† 0.04

Soybean12 0.04† 0.07† 0.01† 0.03† 0.35† 0.06
SVM Guide2 0.15† 0.09† 0.08≈ 0.11† 0.25† 0.08
SVM Guide4 0.13† 0.09≈ 0.13† 0.10† 0.18† 0.09

SYLVA 0.13† 0.07† 0.03† 0.08≈ 0.34† 0.08
WDBC 0.03≈ 0.02≈ 0.02≈ 0.02≈ 0.04† 0.02
Wine 0.00≈ 0.00≈ 0.00≈ 0.00≈ 0.01† 0.00

Winequality-red-8 vs 6-7 0.22† 0.07≈ 0.15† 0.19† 0.28† 0.07
Winequality-white-3-9 vs 5 0.23† 0.15≈ 0.15≈ 0.21† 0.28† 0.15
Winequality-white-3 vs 7 0.25† 0.17† 0.20† 0.23† 0.28† 0.16

Yeast3 0.07† 0.02≈ 0.04† 0.03† 0.29† 0.02
Yeast4 0.17† 0.08≈ 0.10† 0.10† 0.34† 0.08

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.
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Appendix C

Supplementary for Chapter 4

C.1 Details of the datasets used for the empirical validation

of PIFWkNN and PIFW2kNN

The key properties of the 20 real world datasets used for validating the efficacy of PIFWkNN

are detailed in the following Table C.1. The different attributes of the 20 real world class

imbalanced datasets used for evaluating the performance of PIFW2kNN are listed in Table

C.2.

C.2 Detailed results on real-world datasets

The comparative study in terms of Accuracy is listed in Table C.4, while the optimized values

of parameters used for obtaining the reported results are detailed in Table C.3. The perfor-

mance of PIFW2kNN along with its contenders on real-world class imbalanced benchmark

datasets in terms of GMean and ACSA are respectively detailed in Table C.5 and C.6.
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Table C.1: Key properties of the real-world datasets used to validate the efficacy of
PIFWkNN.

Dataset Number of Number of Number of
Name Points Dimensions Classes

Australian 690 14 2
Balance Scale 625 4 5
Breats Tissue 106 10 6
Breast Cancer 569 32 2

Diabetes 768 8 2
Ecoli 366 8 8

Haberman 306 3 2
Heart Statlog 270 13 2

Hill Valley 606 100 2
Ionosphere 351 34 2

Ozone 2536 73 2
Pendigits 10922 16 10

Postoperative 90 9 3
Sonar 208 60 2

Transfusion 151 5 3
Vehicle 946 18 4

Vote 435 16 2
Vowel 910 11 11
Wine 178 13 3
Yeast 1484 8 10

Table C.2: Key properties of the real-world class imbalanced benchmark datasets used to
validate the efficacy of PIFW2kNN.

Dataset Number of Number of Number of Imbalance
Name Points Dimensions Classes Ratio

Abalone19 4117 8 2 129.50
Acoustic 78823 50 3 2.16

ADA 4147 48 2 3.03
Biodeg 1055 41 2 1.96
BCWO 684 10 2 1.86
Chess 28056 6 18 168.60

CodRna 59535 8 2 2.00
Colon Cancer 62 2000 2 1.90
Dermatology6 358 34 2 16.90

German Numeric 1000 24 2 2.33
Glass7 214 9 2 6.37

Hepatitis1 155 19 2 3.84
Hypothyroid3 3772 29 2 38.70

IJCNN1 141691 22 2 9.44
Liver Disorder 346 5 2 1.36

Shuttle 43314 9 3 13.85
Soybean12 683 35 2 14.52

SVM Guide2 391 20 3 4.16
SVM Guide4 312 10 6 2.00

SYLVA 13086 216 2 15.25
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Table C.5: Comparison of PIFW2kNN on real-world class imbalanced benchmark datasets
in terms of GMean.

Dataset dynkNN CCNND CWkNN WkNN FkNN FkNN PIFW2kNN
+GCW +SMOTE +RUS

Abalone19 0.00† 0.67† 0.00† 0.60† 0.45≈ 0.00† 0.46
Acoustic 0.64† 0.51† 0.47† 0.50† 0.61† 0.37† 0.71

ADA 0.65† 0.64† 0.39† 0.72≈ 0.72≈ 0.67† 0.71
Biodeg 0.84† 0.74† 0.82† 0.84† 0.85≈ 0.83† 0.87
BCWO 0.96≈ 0.96≈ 0.93† 0.65† 0.92† 0.95† 0.98
Chess 0.12† 0.21† 0.00† 0.24≈ 0.08† 0.07† 0.26

CodRna 0.86† 0.87† 0.66† 0.88≈ 0.89≈ 0.89≈ 0.90
Colon Cancer 0.55† 0.66† 0.20† 0.77† 0.74† 0.74† 0.82
Dermatology6 0.97† 0.94† 0.24† 1.00≈ 1.00≈ 1.00≈ 1.00

German Numeric 0.60† 0.62† 0.12† 0.67≈ 0.65≈ 0.66≈ 0.67
Glass7 0.86† 0.85† 0.83† 0.94† 0.92† 0.90† 0.97

Hepatitis1 0.64† 0.70† 0.05† 0.79† 0.74† 0.80† 0.85
Hypothyroid3 0.76† 0.92† 0.05† 0.93† 0.91† 0.80† 0.95

IJCNN1 0.73† 0.90 0.00† 0.89† 0.82† 0.73† 0.92
Liver Disorder 0.60† 0.60† 0.57† 0.33† 0.63† 0.62† 0.73

Magic 0.71† 0.57† 0.57† 0.76≈ 0.75≈ 0.74† 0.77
Shuttle 0.99≈ 0.98≈ 0.94≈ 0.99≈ 0.96≈ 0.95† 0.98

SVM Guide2 0.59† 0.60† 0.09† 0.72† 0.59† 0.65† 0.75
SVM Guide4 0.46† 0.25† 0.10† 0.51† 0.45† 0.37† 0.74

SYLVA 0.74† 0.90† 0.00† 0.95≈ 0.91† 0.68† 0.95

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.

Table C.6: Comparison of PIFW2kNN on real-world class imbalanced benchmark datasets
in terms of ACSA.

Dataset dynkNN CCNND CWkNN WkNN FkNN FkNN PIFW2kNN
+GCW +SMOTE +RUS

Abalone19 0.50† 0.68† 0.50† 0.63† 0.58≈ 0.50† 0.56
Acoustic 0.66† 0.66† 0.64† 0.60† 0.62† 0.68† 0.72

ADA 0.64† 0.66† 0.58† 0.76† 0.73≈ 0.73≈ 0.72
Biodeg 0.84† 0.81† 0.84† 0.84† 0.86≈ 0.84† 0.87
BCWO 0.96≈ 0.86† 0.93† 0.71† 0.92† 0.95≈ 0.98
Chess 0.20† 0.36≈ 0.24† 0.28† 0.43† 0.36≈ 0.34

CodRNA 0.87≈ 0.87≈ 0.72† 0.90≈ 0.89≈ 0.89≈ 0.90
Colon Cancer 0.66† 0.73† 0.55† 0.81† 0.77† 0.76† 0.83
Dermatology6 0.98† 0.95† 0.60† 1.00≈ 1.00≈ 1.00≈ 1.00

German Numeric 0.64† 0.62† 0.51† 0.67≈ 0.65≈ 0.65≈ 0.67
Glass7 0.87† 0.86† 0.85† 0.92† 0.93≈ 0.91† 0.95

Hepatitis1 0.73† 0.72† 0.51† 0.80† 0.78† 0.81† 0.85
Hypothyroid3 0.80† 0.92† 0.51† 0.93† 0.91† 0.82† 0.95

IJCNN1 0.77† 0.89≈ 0.50† 0.90≈ 0.84† 0.78† 0.91
Liver Disorder 0.61† 0.62† 0.62† 0.51† 0.64† 0.63† 0.73

Magic 0.75† 0.65† 0.66† 0.77≈ 0.77≈ 0.75† 0.79
Shuttle 0.99≈ 0.99≈ 0.98≈ 0.99≈ 0.97≈ 0.96≈ 0.98

SVM Guide2 0.66† 0.62† 0.35† 0.73≈ 0.67† 0.68† 0.74
SVM Guide4 0.63† 0.54† 0.46† 0.61† 0.63† 0.64† 0.76

SYLVA 0.78† 0.92† 0.50† 0.95≈ 0.92† 0.79† 0.95

†: The performances are significantly different as indicated by the WRS.
≈: The performances are statistically comparable as indicated by the WRS.
The best result is boldfaced.
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Appendix D

Supplementary for Chapter 5

D.1 Notes on imbalanced dataset creation

In this section we provide a couple of notes regarding our data creation process.

• Widely used image datasets such as MNIST, Fashion-MNIST, CIFAR-10, and SVHN

are not considered as class imbalanced in regular practice. Thus, we created imbalanced

variants of these dataset by randomly undersampling different classes in the training set

as described in Section 5.3. However, as noted earlier in Section 1.2 the effect of class

imbalance depends on multiple factors such as data distribution, data scale, and the

choice of the classifier. Even though the impact of real world benchmark imbalanced

datasets on classification performance are well documented the same cannot be said

about the imbalanced variants of image datasets created by us. Thus, we empirically

validate if our imbalanced image datasets are indeed capable to affect the Baseline CN

classifier. We compare the performances of the Baseline CN respectively trained on

the class imbalanced training set and their balanced counterparts in terms of GMean

and ACSA on the same test set. From the following Table D.1 we can observe that the

average performance over 10 runs of the Baseline CN trained on an imbalanced training

set is always poorer than that trained on the corresponding balanced training set.

• During development we had experimented on 10 imbalanced variants of MNIST and

Fashion-MNIST (retaining the class order in one, while randomly shuffling it in others).

The performance of the algorithms remained consistent in terms of the average standard

deviation across the variant datasets (0.02). Thus, for simplicity and ease of readability,
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we had reported the results only on the ordered datasets.

Table D.1: The imbalanced datasets designed by us are indeed capable to affect a classifier’s
performance.

Datasets Baseline CN
GMean ACSA

MNIST
All classes contain 4000 training instances 0.96 0.96
Classes contain training instances as described in Section 5.3.1 0.86 0.88

Fashion-MNIST
All classes 4000 contain training instances 0.89 0.89
Classes contain training instances as described in Section 5.3.1 0.79 0.81

CIFAR-10
All classes contain 4500 training instances 0.62 0.65
Classes contain training instances as described in Section 5.3.2 0.37 0.45

SVHN
All classes contain 4500 training instances 0.84 0.85
Classes contain training instances as described in Section 5.3.2 0.73 0.74

D.2 Network architecture and hyperparameter selection

D.2.1 SMOTE

The number of intra-class neighbours are varied between {3, 5, 7}, and finally set to 5 which

is found to be the best performer.

D.2.2 Common settings

For all of the networks the batch size is set to 32. For all the generators involved in different

algorithms the latent dimension is taken as 100 (Mirza and Osindero, 2014). For GAMO

using convolutional feature extraction the dimension of the feature space is taken as 512.

The momentum parameter in batch normalization is set to 0.9, while the α in LeakyReLU is

taken as 0.1 (Keras default settings). For convolutional layers the stride is 1, while that for

deconvolution layers is set to 2 (for increasing the resolution of the image). We have used

Adam (Kingma and Ba, 2015) optimizer in all cases, for which the β2 parameter is set to 0.5.

The latent dimension for GAMO2pix is also set to 100. The maximum number of steps for

different algorithms and datasets are listed in the following Table D.2.
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D.2.3 Augmentation

Data augmentation is performed using the “preprocessing” function of the “ImageDataGen-

erator” class available in “Keras” deep learning API. Table D.3 lists the different parameters

used for augmentation along with their associated values.

D.2.4 GAMO network

The GAMO network architecture and hyperparameters, along with the grid search space and

the final network is listed in Table D.4.

D.2.5 cGAN/cDCGAN network

The cGAN and cDCGAN network architecture and hyperparameters grid search space and

the final network is listed in Table D.5.

D.2.6 Classifier network

The classifier network architecture and hyperparameters grid search space and the final net-

work is listed in Table D.6.

D.2.7 DOS

The DOS network for a dataset is designed similarly to the baseline classifier network. The

neighborhood size is set following the guideline of the original article (Ando and Huang,

2017).

Note

The Dense parts are kept similar throughout analogous networks as that particular architec-

ture is found to be performing better on average over all algorithms, after the grid search.

D.2.8 GAMO2pix

The GAMO2pix network architecture and hyperparameters of the final network is listed in

Table D.7.
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Table D.2: List of maximum number of steps used by an algorithm on a dataset

Algorithm Dataset Maximum number of steps

Baseline CN MNIST, Fashion-MNIST, CIFAR10, SVHN 50000
Baseline CN CelebA, LSUN, SUN397 150000
SMOTE+CN MNIST Same as Baseline CN
Augment+CN Fashion-MNIST, CIFAR10, SVHN, CelebA, LSUN,

SUN397
Same as Baseline CN

cGAN+CN MNIST Same as Baseline CN
cG+CN MNIST, Fashion-MNIST Same as Baseline CN
cG+D+CN MNIST, Fashion-MNIST Same as Baseline CN
cDCGAN+CN Fashion-MNIST, CIFAR10, SVHN, CelebA, LSUN,

SUN397
Same as Baseline CN

DOS Fashion-MNIST, CIFAR10, SVHN, CelebA, LSUN,
SUN397

Same as Baseline CN

GAMO\D MNIST, Fashion-MNIST, CIFAR10, SVHN, CelebA,
LSUN, SUN397

Same as Baseline CN

GAMO MNIST, Fashion-MNIST, CIFAR10, SVHN, CelebA,
LSUN, SUN397

Same as Baseline CN

GAMO2pix Fashion-MNIST, CIFAR10 25000
GAMO2pix CelebA 50000

Table D.3: List of parameters along with their corresponding values chosen for augmenting
the datasets.

Fashion-MNIST CelebA
Parameters CIFAR10 LSUN

SVHN SUN397

rotation range 20 20
width shift range 0.2 0.2
height shift range 0.2 0.2

shear range 0.2 0.2
zoom range 0.2 0.2

brightness range (0.1, 1) (0.1, 1)
fill mode nearest nearest

horizontal flip False True

The name and value of the parameters follow the
convention of the standard “Keras” implementa-
tion.
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Table D.4: Grid search space along with the selected network architecture and hyperparam-
eter settings of GAMO framework.

Dataset Parameters Grid search space Final network

MNIST

No. of layers in cTG {2, 3, 4} Dense, 256, ReLU
Dense, 64, ReLU

BN in cTG {True, False} True
No. of layers in IGUi - Dense, ni, softmax

No. of layers in D {2, 3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid

No. of layers in CN {2, 3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 10, softmax

Fashion-MNIST

No. of layers in C {2, 3, 4}
5× 5 Conv., 32, LeakyReLU
5× 5 Conv., 32, LeakyReLU

Dense, 512, tanh
Average Pooling in C {True, False} True

BN in cTG {True, False} True
Other parameters - Identical to MNIST

CIFAR10

No. of layers in C - Similar to Fashion-MNIST
Average Pooling in C - True

No. of layers in cTG {2, 3} Dense, 256, ReLU
Dense, 64, ReLU

BN in cTG - True
No. of layers in IGUi - Dense, ni, softmax

No. of layers in D {3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid

No. of layers in CN {3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 10, softmax

CelebA

No. of layers in C {4, 5, 6}

5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU

Dense, 512, tanh
Average Pooling in C - True

No. of layers in cTG {3, 4} Dense, 256, ReLU
Dense, 64, ReLU

BN in cTG - True
No. of layers in IGUi - Dense, ni, softmax

No. of layers in D {3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid

No. of layers in CN {3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 5, softmax

Optimizer Adam (β1) {0.0002, 0.002, 0.02} 0.0002

The β2 parameter of Adam optimizer is set to 0.5 for all experiments.
If True then BN or Batch Normalization Ioffe and Szegedy (2015) is applied after every dense
layer of cTG.
If True then 2× 2 AveragePooling is applied after every convolution layer.
Due to the similar nature of the two datasets, the optimum architecture and parameter settings
for CIFAR10 are also used for SVHN.
Due to the similar nature of the three datasets, the optimum architecture and parameter settings
for CelebA are also used for LSUN, and SUN397.
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Table D.5: Grid search space along with the selected network architecture and hyperparam-
eter settings of the cGAN/cDCGAN network.

Dataset Parameters Grid search space Final network

MNIST

No. of layers in Gen. {3, 4}
Dense, 128, ReLU
Dense, 256, ReLU
Dense, 784, tanh

No. of layers in Dis. {3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid

Fashion-MNIST

No. of layers in Gen. {4, 5, 6, 7, 8}

Dense, 6272, LeakyReLU
4× 4 Conv., 128, LeakyReLU

4× 4 Deconv., 128, LeakyReLU
4× 4 Conv., 128, LeakyReLU

4× 4 Deconv., 128, LeakyReLU
5× 5 Conv., 128, LeakyReLU

5× 5 Conv., 1, tanh
BN in Gen. {True, False} True

Average Pooling in Gen. {True, False} False

No. of layers in Dis. {5, 6}

5× 5 Conv., 32, LeakyReLU
5× 5 Conv., 32, LeakyReLU

Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid
Average Pooling in Dis. {True, False} True

CIFAR10

No. of layers in Gen. {4, 5, 6, 7, 8}

Dense, 512, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU

5× 5, Deconv., 3, tanh
BN in Gen. - True

Average Pooling in Gen. - False

No. of layers in Dis. {5, 6}

5× 5 Conv., 32, LeakyReLU
5× 5 Conv., 32, LeakyReLU

Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid
Average Pooling in Dis. - True

CelebA

No. of layers in Gen. {4, 5, 6, 7, 8}

Dense, 2048, LeakyReLU
4× 4, Deconv., 64, LeakyReLU
4× 4, Deconv., 64, LeakyReLU
4× 4, Deconv., 64, LeakyReLU

4× 4, Deconv., 3, tanh
BN in Gen. - True

Average Pooling in Gen. - False

No. layers in Dis. {6, 7, 8}

5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU

Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 1, sigmoid
Average Pooling in Dis. - True

Optimizer Adam (β1) {0.0002, 0.002, 0.02} 0.0002

Gen. and Dis. respectively stands for Generator and Discriminator. The β2 parameter of Adam
optimizer is set to 0.5 for all experiments. If True then BN or Batch Normalization (Ioffe and Szegedy,
2015) is applied after every dense layer of conditional generator. In case of MNIST and Fashion-MNIST
the generator used in cG+CN, and cG+D+CN has similar architecture to that of cGAN. If True then
2 × 2 AveragePooling is applied after every convolution layer. Due to the similar nature of the two
datasets, the optimum architecture and parameter settings for CIFAR10 are also used for SVHN. Due
to the similar nature of the three datasets, the optimum architecture and parameter settings for CelebA
are also used for LSUN, and SUN397.
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Table D.6: Grid search space along with the selected network architecture and hyperparam-
eter settings of the classifier network.

Dataset Parameters Grid search space Final network

MNIST No. of Dense layers {2, 3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 10, softmax

Fashion-MNIST
No. of Conv. layers {2, 3, 4} 5× 5 Conv., 32, LeakyReLU

5× 5 Conv., 32, LeakyReLU
Average Pooling {True, False} True

Other parameters - Identical to MNIST

CIFAR10

No. of Conv. layers {2, 3, 4} 5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU

Average Pooling {True, False} True

No. of Dense layers {2, 3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 10, softmax

CelebA

No. of Conv. layers {3, 4, 5}

5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU
5× 5, Conv., 32, LeakyReLU

Average Pooling - True

No. of Dense layers {2, 3, 4}
Dense, 256, LeakyReLU
Dense, 128, LeakyReLU

Dense, 5, softmax

Optimizer Adam (β1) {0.0002, 0.002, 0.02} 0.0002

The β2 parameter of Adam optimizer is set to 0.5 for all experiments.
If True then 2× 2 AveragePooling is applied after every convolution layer.
Due to the similar nature of the two datasets, the optimum architecture and parameter settings
for CIFAR10 are also used for SVHN.
Due to the similar nature of the three datasets, the optimum architecture and parameter settings
for CelebA are also used for LSUN, and SUN397.
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Table D.7: Architecture and hyperparameter settings of the GAMO2pix network.

Dataset Parameters Final network

Fashion-MNIST

Mean layer Dense, 100
Log Variance layer Dense, 100

Decoder

Dense, 1568, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU

4× 4, Conv., 1, tanh

CIFAR10 Decoder

Dense, 512, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU

4× 4, Conv., 3, tanh

CelebA Decoder

Dense, 512, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU
4× 4, Deconv., 32, LeakyReLU

4× 4, Conv., 3, tanh

Optimizer Adam (β1) 0.0002

For all the datasets, the corresponding feature extractor network trained
by GAMO is connected to the Mean and Log Variance layer. Among all
the components of GAMO2pix only the feature extractor is kept fixed
throughout the training period.
The β2 parameter of Adam optimizer is set to 0.5 for all experiments.
Due to the similar nature of the two datasets, the optimum architecture
and parameter settings for CIFAR10 are also used for SVHN.
The Mean layer and the Log Variance layer is kept similar to Fashion-
MNIST for CIFAR10, SVHN, and CelebA.
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D.3 Results on non-image class imbalanced benchmark datasets

The five non-image datasets used for additionally validating the performance of GAMO are

collected from University of California, Irvine, Machine Learning Repository (Dua and Graff,

2017), KEEL (Triguero et al., 2011), and LibSVM (Chang and Lin, 2011). The different

properties of these datasets are detailed in Table D.8. The results of the comparison be-

tween GAMO, Baseline CN, cGAN+CN, SMOTE+CN, and GAMO\D are summarized in

the following Table D.9. We have used a 10-fold stratified cross-validation and report the

mean ACSA and GM. The best ACSA and GM among the contenders are boldfaced for

each dataset. It is evident from Table D.9 that GAMO on average can retain its com-

mendable performance on non-image datasets as well. Interestingly, the average performance

of SMOTE+CN in terms of ACSA is close to that of GAMO, justifying the popularity of

SMOTE over the past couple of decades. However, compared to SMOTE+CN, the proposed

GAMO shows a better consistency over all the classes as indicated by the higher average

GMean (γc).

Table D.8: Detailed description of the datasets.

Dataset Number of Number of Number of IR
name points dimensions classes

Abalone19 4177 8 2 129.5
Chess 28056 6 18 168.6

Cover Type 581012 54 7 103.13
IJCNN1 141691 22 2 9.4
Magic 19020 10 2 1.8

Table D.9: Results on non-image class imbalanced benchmark datasets.

Datasets
Baseline CN SMOTE+CN cGAN+CN GAMO\D GAMO

ACSA γc ACSA γc ACSA γc ACSA γc ACSA γc

Abalone19 0.50 0.00 0.58 0.48 0.59 0.48 0.46 0.00 0.59 0.48
Chess 0.29 0.00 0.30 0.00 0.25 0.00 0.16 0.00 0.32 0.20

Cover Type 0.51 0.43 0.70 0.64 0.57 0.47 0.46 0.31 0.66 0.64
IJCNN1 0.91 0.90 0.93 0.93 0.93 0.93 0.89 0.88 0.95 0.95
Magic 0.82 0.82 0.81 0.81 0.82 0.82 0.73 0.72 0.83 0.83

Avg. Performance 0.60 0.43 0.66 0.57 0.63 0.54 0.54 0.38 0.67 0.62
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