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Notation

N : Set of Natural Numbers.

Z : Ring of Integers.

Q : Field of Rational numbers.

R : Field of Real numbers.

C : Field of Complex numbers.

k(n) : Field of rational functions in n variables over a field k.

DVR : Discrete Valuation Ring.

PID : Principal Ideal Domain.

UFD : Unique Factorization Domain.

For a commutative ring R, a prime ideal P of R, an R-algebra A

and an R-module M , the following notation will be used:

R∗ : Group of units of R.

Pic(R) : Picard group of R.

R[n] : Polynomial ring in n variables over R.

Spec(R) : The set of all prime ideals of R.

Max(R) : The set of all maximal ideals of R.

ht(P ) : Height of P.

k(P ) : Residue field RP /PRP .

AP : S−1A where S = R\P ; also identified with A⊗R RP .

SymR(M) : Symmetric algebra of M over R.

Derk(B) : Set of k-derivations of the k-algebra B.

For integral domains R ⊆ A,

tr.deg
R

(A) : Transcendence degree of the field of fractions of A over that of R.

If B is a subset of A, we shall use the notation B ⊆ A when B = A is a

possibility and the notation B $ A for a proper subset when we want to

emphasise that B 6= A.
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Chapter 1

Introduction

The main aim of the thesis is to investigate the following problems :

(i) To find an algebraic characterization of the polynomial ring k[X,Y, Z]

over an algebraically closed field k of characteristic zero (in particular,

an algebraic characterization of the affine three space).

(ii) To determine the structure of the kernel of a nice derivation on the

polynomial ring R[X,Y, Z] over a PID R containing Q; in particular,

the structure of the kernel of a nice derivation on k[X1, X2, X3, X4] of

rank 3, where k is a field of characteristic zero.

The first problem will be discussed in Chapter 3 under the heading “On

algebraic characterization of the affine three space” while the second problem

will be taken up in Chapter 4 entitled “On Nice and Quasi-Nice Derivations”.

Sections 1.2 and 1.3 of this chapter present an overview of the main results

of Chapters 3 and 4, along with their contexts. In Chapter 2, we give the

necessary definitions (Section 2.1) and state some well-known results on locally

nilpotent derivations (Section 2.2) and on polynomial rings and projective

modules (Section 2.3).

1.1 The concept of a locally nilpotent derivation

Let k be a field of characteristic zero, R a k-domain, and B an R-algebra.

An R-derivation D on B is an R-linear map D : B → B, which satisfies the

Leibniz rule i.e., D(ab) = aD(b) + bD(a) for all a, b ∈ B. In addition, if for

each a ∈ B, there exists n ∈ N such that Dn(a) = 0, then D is said to be a

1



Chapter 1: Introduction 2

locally nilpotent derivation on B. The set of all locally nilpotent R-derivations

on B is denoted by LNDR(B). When R is understood from the context (e.g.

when R = k), we simply denote it by LND(B). For any D ∈ LNDR(B), the

kernel of D is defined to be the subring {a ∈ B | D(a) = 0}. We denote the

kernel of a locally nilpotent derivation D by Ker D.

Locally nilpotent derivations on affine domains over a field k are the ring

theoretic version of Ga-actions, i.e., actions of the algebraic group (k,+) on

affine varieties over k. More precisely, for an algebraically closed field k of

characteristic zero and an affine k-domain B, there is a one to one correspon-

dence between LND(B) and the set of Ga-actions on Max(B). The kernel of

a locally nilpotent derivation on B corresponds to the ring of invariants of a

Ga-action on Max(B).

1.2 On algebraic characterization of the affine three

space

A major theme in Affine Algebraic Geometry is the study of affine n-spaces

(equivalently, polynomial rings) over a field. Investigations in the area often

lead to the problem of determining whether a given affine domain is a poly-

nomial ring. To show that an affine domain suspected to be a polynomial

ring is indeed so, one approach could be to find a suitable set of coordinates

(or variables). However, given an arbitrary polynomial, it is in general not at

all easy to check whether it is a coordinate. In fact, many open problems in

Affine Algebraic Geometry are closely related to the question of determining

whether certain polynomials are coordinates. Moreover, the approach may

not be applicable when the affine domain is abstractly defined as in the “Can-

cellation Problem” which asks whether for an affine domain A over a field k,

A[1] = k[n+1] necessarily implies A = k[n].

Another approach would be to find useful characterizations of the affine

n-space, and then examine whether a given affine domain satisfies those char-

acterizing conditions. This approach has often turned out to be fruitful. Con-

sequently, the “Characterization Problem” is considered one of the most im-

portant problems on Affine Spaces, along with the “Cancellation Problem”,

“Embedding Problem”, “Automorphism Problem”, “Jacobian Problem” and

other famous problems.



3 1.2 On algebraic characterization of the affine three space

A simple example will illustrate the usefulness of having a good charac-

terization of an affine space in the context of problems like the Cancellation

Problem. If k is an algebraically closed field of characteristic zero, then an

algebraic characterization of the polynomial ring k[1] is given by the fact that

k[1] is the only one-dimensional UFD with trivial units. Now this immediately

solves the Cancellation Problem for the affine line, i.e., that A[1] = k[2] implies

that A = k[1]. A topological characterization of the affine line A1
C is given by

the fact that the affine line A1
C is the only acyclic normal curve.

In his attempt to solve the Cancellation Problem, C.P. Ramanujam ob-

tained a remarkable topological characterization of the affine plane C2 ( [35]).

Later an algebraic characterization of the polynomial ring k[2] was obtained by

M. Miyanishi ( [30]) for an algebraically closed field k of characteristic zero.

This characterization involves the concept of “locally nilpotent derivation”.

Miyanishi’s characterization theorem established that any two-dimensional

affine domain B over an algebraically closed field k of characteristic zero which

is a UFD, whose units are all in k∗ and on which there exists a non-zero lo-

cally nilpotent derivation, must be k[2]. This characterization was used by T.

Fujita and Miyanishi-Sugie ( [22], [33]) to solve the Cancellation Problem for

the affine plane. Since then, there have been several attempts to give a char-

acterization of k[3]. Remarkable results were obtained by M. Miyanishi ( [31])

and S. Kaliman ( [25]). These results involved some topological invariants.

In Chapter 3, we will use a variant of the Makar-Limanov invariant, to give

new algebraic characterizations of k[2] and k[3]. We recall the definition of the

Makar-Limanov invariant and then define its variant which will be used in our

characterization theorems.

The Makar-Limanov invariant of B, denoted by ML(B), is defined to be

ML(B) :=
⋂

D∈LND(B)

Ker D.

The Makar-Limanov invariant has been a powerful tool for solving some major

problems in affine algebraic geometry like the Linearization Problem ( [21, pp.

195–204]). L.G. Makar-Limanov used this invariant to show that the well-

known Russell-Koras threefold, which was a candidate for a counterexample

to the Linearization Problem, is not isomorphic to C[3] ( [28]). When k is an

algebraically closed field of characteristic zero, the Makar-Limanov invariant

gives the following characterization of k[1] ( [8, Lemma 2.3]).
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Theorem : Let k be a field of characteristic zero and B an affine k-domain

with tr.degk B = 1. Then B = k[1] if and only if ML(B) = k.

However, the triviality of the Makar-Limanov invariant alone does not

characterize the affine 2-space (i.e., dimB = 2 and ML(B) = k ; B = k[2]).

There are two-dimensional affine domains B over any field k of characteristic

zero called “Danielewski surfaces” (see Theorem 2.2.10) for which ML(B) = k

but which are not k[2].

In Section 3.1, we will show that under the additional condition that B has

a locally nilpotent derivation D “with slice” (i.e., 1 ∈ Im(D)), the condition

“ML(B) = k” does imply that B = k[2] when dimB = 2.

We now define a variant of the Makar-Limanov invariant. This invariant

is mentioned in the book Algebraic Theory of Locally Nilpotent Derivations by

G. Freudenburg ( [21, pg. 237]). Consider the subset LND∗(B) of LND(B)

defined by

LND∗(B) = {D ∈ LND(B) | Ds = 1 for some s ∈ B}.

Then we define

ML∗(B) :=
⋂

D∈LND∗(B)

Ker D.

If LND∗(B) = ∅, we define ML∗(B) to be B. Note that if ML∗(B) = k then

automatically ML(B) = k. Also note that ML∗(k[n]) = ML(k[n]) = k for

each n > 1.

Now we state our result on the characterization of the affine two space.

Theorem 3.1.8 Let k be a field of characteristic zero and B a two-dimensional

affine k-domain. Then the following are equivalent:

(I) B = k[2].

(II) ML∗(B) = k.

(III) ML(B) = k and ML∗(B) 6= B.

We will also show that if B is an affine UFD of dimension 3 over an

algebraically closed field having a non-trivial locally nilpotent derivation D

with a slice (i.e., 1 ∈ Im(D)), then B = k[3] iff ML(B) = k, i.e., we will prove

Theorem 3.2.6 Let k be an algebraically closed field of characteristic zero

and B an affine k-domain such that B is a UFD and dim B = 3. Then the

following are equivalent:
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(I) B = k[3].

(II) ML∗(B) = k.

(III) ML(B) = k and ML∗(B) 6= B.

In Section 3.2, we will present a complete classification of three-dimensional

affine factorial domains with ML∗(B) = ML(B) (Proposition 3.2.3). In Sec-

tion 3.3, we will also give examples of three-dimensional affine UFDs B for

which ML∗(B) = B but ML(B) $ ML∗(B). In the three examples (3.3.3,

3.3.4 and 3.3.5), tr. degkML(B) will be two, one and zero respectively. We

will also present an example (3.3.6) which will show that Theorem 3.2.5 does

not extend to a four-dimensional affine regular UFD.

1.3 On Nice and Quasi-Nice Derivations

Let B = R[n]. A locally nilpotent derivation D on B is said to be a nice

derivation if D2(Ti) = 0 for all i ∈ {1, . . . , n} for some coordinate system

(T1, T2, . . . , Tn) of B. For any D ∈ LNDR(B), the rank of D, denoted by

rank D, is defined to be the least integer i for which there exists a coordinate

system (X1, X2, . . . , Xn) of B satisfying R[Xi+1, . . . , Xn] ⊆ Ker D.

We shall now discuss special cases of an important problem (Question 2

below) in Affine Algebraic Geometry. The problem is closely related to the

celebrated Hilbert Fourteenth Problem which we recall below.

Question 1 (Hilbert’s Fourteenth Problem):

Let k be a field of characteristic zero, L a subfield of k(X1, X2, . . . , Xn)(= k(n))

and A := k[X1, X2, . . . , Xn] ∩ L. Thus k ⊆ A ⊆ k[X1, X2, . . . , Xn] and L is

the field of fractions of A. Is A finitely generated as a k-algebra?

It was shown by O. Zariski that the answer to Question 1 is affirmative if

tr. degk L 6 2 ( [40]). The first counterexample to Hilbert’s Fourteenth Prob-

lem was given by M. Nagata ( [34]) for n = 32 and tr.degk L = 4 and later P.

Roberts ( [37]) gave a counterexample for the case n = 7 and tr.degk L = 6.

A’Campo-Neuen ( [2]) and Deveney-Finston ( [15]) showed that the example

given by Roberts arises as the kernel of a locally nilpotent derivation on k[7].

Later G. Freudenburg ( [20]) and Daigle-Freudenburg ( [12]) constructed lo-

cally nilpotent derivations on k[n] (n = 6, n = 5) for which the kernels are

not finitely generated as k-algebras. Soon S. Kuroda gave counterexamples to
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the Hilbert Fourteenth Problem for the cases n = 4 and tr. degk L = 3 in [26]

and n = 3 and tr.degk L = 3 in [27]. In view of Zariski’s theorem ( [40]),

Kuroda’s examples are counterexamples to Hilbert’s Fourteenth Problem for

the lowest possible dimension. However, the examples of Kuroda cannot be

viewed as kernels of some locally nilpotent derivations on k[n]. This leads us

to the following special case of the original Hilbert Fourteenth Problem.

Question 2′: Let k be a field of characteristic zero, B = k[n] and D ∈
LND(B). Is Ker D necessarily finitely generated as a k-algebra?

The answer is affirmative for n 6 3 as shown by R. Rentschler ( [36]) for

n = 2 and by M. Miyanishi ( [32]) for n = 3. In fact, Rentschler ( [36]) and

Miyanishi ( [32]) proved that the kernels are polynomial rings. As mentioned

earlier, for n > 5, there are counterexamples to Question 2′ as shown by Daigle

and Freudenburg ( [20], [12]). Thus Question 2′ reduces to

Question 2: Let k be a field of characteristic zero and D ∈ LND(k[4]). Is

Ker D necessarily finitely generated?

Daigle-Freudenburg have constructed examples to show that given any

integer n > 3, there exists a locally nilpotent derivation on k[4] of rank less or

equal to 3 whose kernel cannot be generated by fewer than n elements ( [14]).

Question 2 is open. One therefore explores the following questions.

Question 3: Let k be a field of characteristic zero and D ∈ LND(k[4]). Under

what additional hypothesis is Ker D finitely generated?

We mention two results addressing Question 3. First, Daigle-Freudenburg

( [13]) showed that the kernel of any triangular k-derivation on k[4] is finitely

generated over k. Later, Bhatwadekar-Daigle showed that the kernel is indeed

finitely generated ( [5, Theorem 1]) in the case when rank D 6 3.

In view of the theorems of Rentschler and Miyanishi (that Ker D in Ques-

tion 2′ is a polynomial ring for n 6 3) and the theorem of Bhatwadekar-Daigle

(that Ker D in Question 2′ is finitely generated for n = 4 when rank D 6 3),

one explores the following question.

Question 4: Let k be a field of characteristic zero and D be a locally nilpotent

derivation on k[4] of rank at most 3. Under what additional hypothesis is

Ker D a polynomial ring?

Bhatwadekar-Gupta-Lokhande showed that if Ker D is regular, then

Ker D is indeed k[3] ( [7, Theorem 3.5]). One of the results of the thesis

establishes the fact that Ker D in Question 4 is a polynomial ring if D is a
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nice derivation (Corollary 4.1.8 below). This result will come as an outcome

of our results on nice derivations on R[X,Y, Z], where R is a PID containing

Q.

We now state our results on nice and the more general quasi-nice deriva-

tions on the polynomial ring B = R[X,Y, Z], where R is an integral domain

containing Q. Let m be a positive integer 6 3. We will call a locally nilpotent

derivation D on B quasi-nice or m-quasi if D2(Ti) = 0 for all i ∈ {1, . . . ,m}
for some coordinate system (T1, T2, T3) of B. Thus a quasi-nice derivation is

a nice derivation if m = 3.

The case of the polynomial ring k[X,Y, Z], where k is a field of character-

istic zero was investigated by Z. Wang in [39]. He showed that rank D is less

than 3 when m = 2 or 3 and that rank D = 1 when D is a nice derivation

(i.e., when m = 3).

Now let R be a Noetherian domain containing Q, say R is regular. It is

natural to ask how far we can extend the results of Wang to R[X,Y, Z](= R[3]).

In particular, we consider the following question.

Question 5. If D is a nice derivation on R[X,Y, Z], then is rank D = 1, or,

at least, is rank D < 3?

In Section 4.1, we will give a complete description of the kernel of a nice

derivation on R[X,Y, Z] when R is a PID. We will show that the rank of D

is indeed less than 3 and its kernel is a polynomial ring generated by two

elements over R (Theorem 4.1.6). The precise result is the following:

Theorem 4.1.6. Let R be a PID containing Q with field of fractions L and

B := R[X,Y, Z] = R[3]. Let D(6= 0) ∈ LNDR(B), and A := Ker D. Suppose

that D is irreducible and D2X = D2Y = D2Z = 0. Then there exists a

coordinate system (U, V,W ) of B related to (X,Y, Z) by a linear change such

that the following hold:

(i) A contains a nonzero linear form of {X,Y, Z}.

(ii) rank D 6 2. In particular, A = R[2].

(iii) A = R[U, gV − fW ], where DV = f , DW = g, and f, g ∈ R[U ] such

that gcdR[U ](f, g) = 1.

(iv) Either f and g are comaximal in B or they form a regular sequence in

B. Moreover if they are comaximal (i.e., D is fixed-point free), then
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B = A[1] and rank D = 1; and if they form a regular sequence, then B

is not A-flat and rank D = 2.

As a consequence of Theorem 4.1.6, we have the following result in response

to Question 4.

Corollary 4.1.8. Let k be a field of characteristic zero and let k[X1, X2, X3, X4] =

k[4]. Let D ∈ LND(k[X1, X2, X3, X4]), be such that D is irreducible and

DX1 = 0 and D2Xi = 0 for i = 2, 3, 4. Then Ker D = k[3].

In Section 4.1, we will also present a few examples and results which will

explore how far Theorem 4.1.6 can be extended to more general rings in the

context of Question 5. Example 4.1.3 will show that the kernel of a nice

derivation on R[X,Y, Z] need not be a polynomial ring, even when R is a

Dedekind domain (cf. Theorem 4.1.6(ii)). However, Proposition 4.1.9 will

show that the kernel is always generated by at most three elements when R is

a Dedekind domain. We will construct a nice derivation D on R = k[1] with

rank D = 2 (Example 4.1.5) showing that Wang’s result over fields does not

extend to PIDs. We will also construct a nice derivation D on R = k[2] with

rank D = 3 (Example 4.1.10) showing that Theorem 4.1.6 does not extend to

two-dimensional regular or factorial domains.

The following question on quasi-nice derivations arises in view of Wang’s

result that rank D is less than 3 when m = 2.

Question 6. If D is a locally nilpotent derivation on R[X,Y, Z], such that D

is irreducible and D2X = D2Y = 0, is then rank D < 3?

In Section 4.2, we will investigate this question and present some partial

results when R is a PID (Proposition 4.2.4) and a Dedekind domain (Propo-

sition 4.2.6). Example 4.2.5 will show that Question 6 has a negative answer

in general, even when R is a PID.

When k is a field of characteristic zero and D is a locally nilpotent deriva-

tion on k[X,Y, Z] with D2(X) = 0, D. Daigle had proved that the rank of

D is less than 3 ( [10, Theorems 5.1 and 5.2]). Moreover, he had shown

that there exist T1, T2, T3 ∈ k[X,Y, Z] such that k[X,Y, Z] = k[T1, T2, T3] and

D2(T1) = D2(T2) = 0. However, we shall construct a locally nilpotent deriva-

tion on R[X,Y, Z] when R = k[1], such that D2(X) = 0 and there does not ex-

ist any coordinate system (T1, T2, T3) of R[X,Y, Z] with D2(T1) = D2(T2) = 0

(Example 4.2.9).



Chapter 2

Preliminaries

Hence onwards by a “ring”, we shall mean a “commutative ring with unity”

and by an “algebra” a “commutative algebra”. For a ring R, an R-algebra

A and an integer n (> 1), we shall use the notation “A = R[n]” to denote

that A is isomorphic to a polynomial ring in n variables over R. Let A =

R[X1, X2, . . . , Xn](= R[n]) and F ∈ A. F is said to be a coordinate in A,

if there exist F2, . . . , Fn ∈ A such that A = R[F, F2, . . . , Fn]. A set of n

polynomials f1, f2, . . . , fn in A are said to form a coordinate system if A =

R[f1, f2, . . . , fn].

An integral domain B containing a field k will be called an “affine domain

over k” if B is finitely generated as a k-algebra. For a ring A and a nonze-

rodivisor f ∈ A, we use the notation Af to denote the localisation of A with

respect to the multiplicatively closed set {1, f, f2, . . . }. We denote the Krull

dimension of a ring B by dim B. Capital letters like X,Y, Z, T, U, V will be

used as indeterminates over respective ground rings; thus, k[X,Y, Z] = k[3],

R[U, V ] = R[2], etc.

A subring A ⊆ B is defined to be factorially closed in B if, given nonzero

f, g ∈ B, the condition fg ∈ A \ {0} implies f ∈ A and g ∈ A. When the

ambient ring B is understood, we will simply say that A is factorially closed.

A routine verification shows that a factorially closed subring of a UFD is a

UFD. If A is a factorially closed subring of B, then A is algebraically closed in

B; further if S is a multiplicatively closed set in A then S−1A is a factorially

closed subring of S−1B.

9
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2.1 Definitions and some known results

Let k be a field of characteristic zero, R a k-domain, and B an R-domain.

Definition 2.1.1. (D1) An R-derivation D on B is an R-linear map

D : B → B, which satisfies the Leibniz rule i.e., D(ab) = aD(b) + bD(a)

for all a, b ∈ B. In addition, if for each a ∈ B, there exists n ∈ N such

that Dn(a) = 0, then D is said to be a locally nilpotent derivation on

B. The set of all locally nilpotent R-derivations on B is denoted by

LNDR(B). When R is understood from the context (e.g. when R = k),

we simply denote it by LND(B).

(D2) For any D ∈ LNDR(B), the kernel of D is defined to be the subring

{a ∈ B | D(a) = 0}.

We denote the kernel of a locally nilpotent derivation D by Ker D.

(D3) A locally nilpotent derivation D is said to be reducible if there exists

a non-unit b ∈ B such that DB ⊆ (b)B; otherwise D is said to be

irreducible. If B is a UFD and ∆ ∈ LNDR(B), then there exists an

irreducible D ∈ LNDR(B) and a ∈ B such that ∆ = aD where D is

unique up to multiplication by a unit ( [21, Proposition 2.2]).

(D4) When B := R[n] and D ∈ LNDR(B), the rank of D, denoted by rank

D, is defined to be the least integer i for which there exists a coordinate

system (X1, X2, . . . , Xn) of B satisfying R[Xi+1, . . . , Xn] ⊆ Ker D.

(D5) An element s ∈ B is called a slice if Ds = 1, and a local slice if Ds ∈
Ker D and Ds 6= 0. Moreover, D is said to be fixed-point free if the B

ideal (DB) = B.

(D6) Let B be a k-domain and D an element of LND(B) with a local slice

r ∈ B. The Dixmier map induced by r is defined to be the k-algebra

homomorphism πr : B → BDr, given by

πr(f) =
∑
i>0

(−1)i

i!
Dif

ri

(Dr)i
.

(D7) Let B be a k-domain. The Makar-Limanov invariant of B, denoted by
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ML(B), is defined to be

ML(B) :=
⋂

D∈LND(B)

Ker D.

Consider the subset LND∗(B) of LND(B) defined by

LND∗(B) = {D ∈ LND(B) | Ds = 1 for some s ∈ B}.

Then we define

ML∗(B) :=
⋂

D∈LND∗(B)

Ker D.

This invariant occurs in [21, p. 237]. If LND∗(B) = ∅, we de-

fine ML∗(B) to be B. Note that if ML∗(B) = k then automatically

ML(B) = k. Also note that ML∗(k[n]) = ML(k[n]) = k for each n > 1.

(D8) An affine k-domain B is defined to be rigid if it does not have any non-

zero locally nilpotent derivation. Thus for a rigid ring B, ML(B) =

ML∗(B) = B. B is defined to be semi-rigid if there exists a non-zero

locally nilpotent derivation D on B such that LND(B) = {fD | f ∈
Ker D}. Thus for an affine k-domain B, with LND(B) 6= {0}, B is

semi-rigid if and only if ML(B) = Ker D for all non-zero D ∈ LND(B).

(D8) We say two locally nilpotent derivations D1 and D2 ∈ LNDR(B) are

distinct if Ker D1 6= Ker D2.

(D9) Let k be a field of characteristic zero, R a k-domain, B := R[n] and m

be a positive integer 6 n. We will call a locally nilpotent derivation D on B

quasi-nice or m-quasi if D2(Ti) = 0 for all i ∈ {1, . . . ,m} for some coordinate

system (T1, T2, . . . , Tn) of B. Thus for any two positive integers r and m such

that 1 6 m < r 6 n, it is easy to see that an r-quasi derivation is also an

m-quasi derivation. We shall call an m-quasi derivation to be strictly m-quasi

if it is not r-quasi for any positive integer r > m. When m = n, such a locally

nilpotent derivation D on B is said to be a nice derivation.

Next we state a necessary and sufficient criterion, due to Nagata, for an

integral domain to be a UFD ( [29, Theorem 20.2]).

Lemma 2.1.2. Let R be a Noetherian domain. If there exists a prime element

x in R such that Rx is a UFD, then R is a UFD.
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We now quote a well-known result (for a reference, see the proof of [21,

Lemma 2.8]).

Lemma 2.1.3. Let k be an algebraically closed field of characteristic zero and

C be an affine UFD over k of dimension one. Then C = k[t, 1
p(t) ], where

k[t] = k[1] and p(t) ∈ k[t] \ {0}. As a consequence, if C∗ = k∗, then C = k[1].

2.2 Some results on locally nilpotent derivations

The following lemma states some basic properties of locally nilpotent deriva-

tions on an affine domain ( [21]).

Lemma 2.2.1. Let k be a field of characteristic zero and B be an affine k-

domain. Let D ∈ LND(B) and A := Ker D. Then the following hold:

(i) A is a factorially closed subring of B.

(ii) For any multiplicatively closed subset S of A\{0}, D extends to a locally

nilpotent derivation on S−1B with kernel S−1A and B ∩ S−1A = A.

(iii) Moreover, if D is non-zero, then tr. degAB = 1.

As a consequence, ML(B) and ML∗(B) are factorially closed subrings of B

and hence are algebraically closed in B.

The following important result is known as the Slice Theorem ( [21, Corol-

lary 1.22]).

Theorem 2.2.2. Let k be a field of characteristic zero and B a k-domain.

Suppose D ∈ LND(B) admits a slice s ∈ B, and let A = Ker D. Then

(a) B = A[s] and D = ∂
∂s .

(b) A = πs(B) and Ker πs = sB.

(c) If B is affine, then A is affine.

The following theorem of Daigle and Freudenburg characterizes locally

nilpotent derivations on R[2], where R is a UFD containing Q ( [11, Theorem

2.4]).

Theorem 2.2.3. Let R be a UFD containing Q with field of fractions K and

let B = R[X,Y ](= R[2]). For an R-derivation D 6= 0 on B, the following are

equivalent:
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(i) D is locally nilpotent.

(ii) D = α(∂F∂Y
∂
∂X −

∂F
∂X

∂
∂Y ), for some F ∈ B which is a variable of K[X,Y ]

satisfying

gcdB( ∂F
∂X ,

∂F
∂Y ) = 1, and for some α ∈ R[F ] \ {0}.

Moreover, if the above conditions are satisfied, then Ker D = R[F ] = R[1].

With the same notation as above, the following lemma gives interesting

results when D satisfies some additional hypothesis ( [39, Lemma 4.2]).

Lemma 2.2.4. Let R be a UFD containing Q, B = R[X,Y ](= R[2]) and

D ∈ LNDR(B) such that D is irreducible. Then the following hold:

(i) If D2X = 0, then Ker D = R[bY + f(X)], where b ∈ R and f(X) ∈
R[X]. Moreover, DX ∈ R and DY ∈ R[X].

(ii) If D2X = D2Y = 0, then D = b ∂
∂X − a

∂
∂Y for some a, b ∈ R. Moreover,

Ker D = R[aX + bY ].

(iii) If R is a PID and D2X = D2Y = 0, then D has a slice.

Over a Noetherian domain containing Q, a necessary and sufficient con-

dition for the kernel of a nonzero irreducible D ∈ LNDR(R[X,Y ]) to be a

polynomial ring is given by the following theorem ( [6, Theorem 4.7]).

Theorem 2.2.5. Let R be a Noetherian domain containing Q and let D

be a non-zero irreducible locally nilpotent derivation on the polynomial ring

R[X,Y ]. Then the kernel A of D is a polynomial ring in one variable over

R if and only if DX and DY either form a regular R[X,Y ]-sequence or are

comaximal in R[X,Y ]. Moreover if DX and DY are comaximal in R[X,Y ],

then R[X,Y ] is a polynomial ring in one variable over A.

An important result on fixed-point free locally nilpotent derivations is the

following ( [21, Theorem 4.16]).

Theorem 2.2.6. Let R be any Q-algebra, and let B = R[X,Y ] = R[2]. Given

D ∈ LNDR(R[X,Y ]), the following conditions are equivalent:

(1) D is fixed-point free, i.e., (DB) = B, where (DB) is the B-ideal gener-

ated by DB.

(2) There exists s ∈ B with Ds = 1.
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In addition, when one of these conditions hold, Ker D = R[1].

The following result ensures that LND∗(B) 6= ∅ whenever B is a two-

dimensional factorial affine domain over an algebraically closed field k of char-

acteristic zero with LND(B) 6= ∅ ( [21, Lemma 2.9]).

Lemma 2.2.7. Let k be an algebraically closed field of characteristic zero and

B an affine k-domain such that B is a UFD and dim B = 2. Then every

non-zero irreducible element of LND(B) has a slice.

We now state an important result for rigid domains by Crachiola and

Makar-Limanov ( [9, Theorem 3.1]).

Theorem 2.2.8. Let k be a field of characteristic zero, C an affine k-domain

and C[T ] = C [1]. Then the following hold:

(i) ML(C[T ]) ⊆ML(C).

(ii) C is rigid if and only if ML(C[T ]) = C.

The following result gives a characterization of k[1] in terms of the Makar-

Limanov invariant ( [8, Lemma 2.3]).

Theorem 2.2.9. Let k be a field of characteristic zero and A an affine k-

domain with tr. degk A = 1 such that k is algebraically closed in A. Then

A = k[1] if it has a non-zero locally nilpotent derivation.

We now recall a result proved by Makar-Limanov on Danielewski surfaces

( [21, Theorem 9.1]).

Theorem 2.2.10. Let k be a field of characteristic zero and B := k[X,Y,Z]
(XnZ−p(Y ))

where n ∈ N and p(Y ) ∈ k[Y ]. Let x be the image of X in B. Then the

following hold:

(i) If n = 1 or if deg p(Y ) = 1, then ML(B) = k.

(ii) If n > 2 and deg p(Y ) > 2, then ML(B) = k[x]. Moreover, Ker D =

k[x] for every non-zero D ∈ LND(B).
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2.3 Some results on polynomial rings and projective

modules

We now state some well-known results on polynomial rings and projective

modules which have been used to prove the results in this thesis.

For a ring containing Q, the following cancellation theorem was proved by

Hamann ( [23, Theorem 2.8]).

Theorem 2.3.1. Let R be a ring containing Q and A be an R-algebra such

that A[1] = R[2]. Then A = R[1].

The following is a well-known result of Abhyankar, Eakin and Heinzer

( [1, Proposition 4.8]).

Theorem 2.3.2. Let C be a UFD and let X1, . . . , Xn be indeterminates over

C. Suppose that A is an integral domain of transcendence degree one over

C and that C ⊆ A ⊆ C[X1, . . . , Xn]. If A is a factorially closed subring of

C[X1, . . . , Xn], then A = C [1].

The following local-global theorem was proved by Bass, Connell and Wright

( [4]) and independently by Suslin ( [38]).

Theorem 2.3.3. Let R be a ring and A a finitely presented R-algebra. Sup-

pose that for all maximal ideals m of R, the Rm -algebra Am is isomorphic to the

symmetric algebra of some Rm -module. Then A ∼= SymR(L) for some finitely

presented R-module L.

The following result is known as Serre’s Splitting Theorem ( [24, Theorem

7.1.8]).

Theorem 2.3.4. Let A be a Noetherian ring of finite Krull dimension. Let

P be a finitely generated projective A-module of rank greater than dimension

of A. Then P has a unimodular element.

Following is the famous Cancellation Theorem of Hyman Bass ( [24, The-

orem 7.1.11]).

Theorem 2.3.5. Let R be a Noetherian ring of dimension d and P a finitely

generated projective R-module of rank > d. Then P is “cancellative”, i.e.,

P ⊕ Q ∼= P
′ ⊕ Q for some finitely generated projective R-module Q implies

that P ∼= P
′
.
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We now state a local-global result for a graded ring ( [24, Theorem 4.3.11]).

Theorem 2.3.6. Let S = S0 ⊕ S1 ⊕ S2 ⊕ . . . be a graded ring and let M be

a finitely presented S-module. Assume that for every maximal ideal m of S0,

Mm is extended from (S0)m . Then M is extended from S0.

For convenience, we state below an elementary result.

Lemma 2.3.7. Let A and B be integral domains with A ⊆ B. If there exists

f in A, such that Af = Bf and fB ∩A = fA, then A = B.

Proof. Let b ∈ B. Suppose, if possible b /∈ A. Now since Bf = Af , we have

b ∈ Af . Hence there exist a ∈ A and an integer n > 0 such that b = a/fn.

We may assume that n is the least possible. But then a ∈ fB ∩A = fA. Let

a = fa1 for some a1 ∈ A. Then b = a1/f
n−1, contradicting the minimality of

n.



Chapter 3

On algebraic characterization

of the affine three space

3.1 A characterization of k[2]

In this section we will describe an algebraic characterization of k[2] over a field

k of characteristic zero (Theorem 3.1.8). We also investigate properties of a

two-dimensional affine k-domain (say B) such that ML(B) = ML∗(B). We

first begin with a few general lemmas.

Lemma 3.1.1. Let k be a field of characteristic zero, C an affine k-domain

and C[T ] = C [1]. Then the following hold:

(i) ML∗(C[T ]) ⊆ML(C).

(ii) C is rigid if and only if ML∗(C[T ]) = C.

Proof. (i) Given D ∈ LND(C), we can extend D to D̃ ∈ LND∗(C[T ]) by

D̃T = 1. Then:

ML∗(C[T ]) ⊆ Ker D̃ ∩Ker ∂

∂T
= Ker D̃ ∩ C = Ker D.

Thus, for any D ∈ LND(C), we have ML∗(C[T ]) ⊆ Ker D, and hence

ML∗(C[T ]) ⊆ML(C).

(ii) Now suppose ML∗(C[T ]) = C. Then part (i) implies C ⊆ML(C), so

C is rigid. Conversely, if C is rigid, then by Theorem 2.2.8 and part (i) we

have:

C = ML(C[T ]) ⊆ML∗(C[T ]) ⊆ML(C) = C.

17
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Hence ML∗(C[T ]) = C.

Note that for an arbitrary affine k-domain B of dimension one, ML(B) =

ML∗(B). We have the following result on the equality of ML(B) and ML∗(B)

for affine domains of dimension greater than one.

Lemma 3.1.2. Let k be a field of characteristic zero and B be an affine k-

domain of dimension n > 2. If tr.degkML∗(B) = n − 1, then ML(B) =

ML∗(B) and B is a semi-rigid ring.

Proof. Since ML∗(B) 6= B, by Theorem 2.2.2, there exists an (n − 1)-

dimensional subring C of B such that B = C [1] and ML∗(B) ⊆ C. Since

tr. degkML∗(B) = n − 1 = tr. degk C and both ML∗(B) and C are alge-

braically closed in B, we have ML∗(B) = C. Hence, by Lemma 3.1.1, C is a

rigid ring. Therefore, by Theorem 2.2.8, ML(B) = C = ML∗(B).

Let D(6= 0) ∈ LND(B) and A = Ker D. Since ML(B) ⊆ A,

tr. degkML(B) = n − 1 = tr.degk A and both ML(B) and A are alge-

braically closed in B, we have A = ML(B), i.e., Ker D = ML(B) for all

D(6= 0) ∈ LND(B). Thus B is semi-rigid.

Lemma 3.1.3. Let k be a field of characteristic zero and B an affine k-domain

such that B is a semi-rigid ring. Then the following are equivalent:

(I) ML(B) = ML∗(B).

(II) There exist a k-subalgebra C of B such that C is rigid and B = C [1].

(III) ML(B) is rigid and B = ML(B)[1].

Proof. (I) ⇒ (II) Let D be a non-zero locally nilpotent derivation such that

LND(B) = {fD | f ∈ Ker D} and C := Ker D. SinceML∗(B) = ML(B), D

has a slice, say s. Thus by Theorem 2.2.2, B = C[s] = C [1]. If LND(C) 6= {0}
and d(6= 0) ∈ LND(C), then d extends to d̃ ∈ LND(B) with d̃(s) = 0. But

then Ker d̃ 6= C, contradicting that B is semi-rigid. Thus LND(C) = {0},
i.e., C is rigid.

(II)⇒ (III) Trivial.

(III)⇒ (I) Follows from Lemma 3.1.1 (ii).

As a consequence we have the following sufficient condition for equality of

the two invariants ML(B) and ML∗(B) for a two-dimensional affine domain

B.
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Lemma 3.1.4. Let k be a field of characteristic zero and B a two-dimensional

affine k-domain. Suppose that ML∗(B) 6= B. Then ML∗(B) = ML(B).

Proof. Clearly tr. degkML∗(B) 6 1. Since ML(B) and ML∗(B) are alge-

braically closed subrings of B and ML(B) ⊆ML∗(B), it is enough to consider

the case tr.degkML∗(B) = 1. The result now follows from Lemma 3.1.2.

Example 3.3.2 presents a two-dimensional affine domain B for which

ML(B) $ML∗(B) = B. However the following consequence of Lemma 2.2.7

shows that such an example is not possible when B is a UFD.

Corollary 3.1.5. Let k be an algebraically closed field of characteristic zero

and B a two-dimensional affine k-domain such that B is a UFD. Then

ML(B) = ML∗(B).

Proof. If ML(B) = B, then by definition, we have ML∗(B) = B. Now if

ML(B) 6= B, then by Lemma 2.2.7, LND∗(B) 6= ∅, i.e., ML∗(B) 6= B and

hence ML(B) = ML∗(B) by Lemma 3.1.4.

We have the following properties of a two-dimensional affine domain when-

ever the two invariants ML(B) and ML∗(B) are same.

Proposition 3.1.6. Let k be a field of characteristic zero and B a two-

dimensional affine k-domain. If ML(B) = ML∗(B), then ML(B) is rigid

and B is a polynomial ring over ML(B).

Proof. Suppose tr.degkML(B) = 2. Then B is rigid and ML(B) = B.

Now suppose tr.degkML(B) = 1. Then by Lemma 3.1.2, B is semi-rigid

and hence by Lemma 3.1.3 (III), ML(B) is rigid and B = ML(B)[1].

Finally suppose tr.degkML(B) = 0. Then we have ML(B) = ML∗(B) =

L, where L is the algebraic closure of k in B. Since ML∗(B) 6= B, by Theorem

2.2.2, there exists a one-dimensional subring C ofB such thatB = C [1]. Now C

is not rigid, otherwise by Theorem 2.2.8, ML(B) = ML(C [1]) = ML(C) = C

contradicting that ML(B) = L. Hence, by Theorem 2.2.9, C = L[1]. Thus

B = L[2].

Remark 3.1.7. The proof of Proposition 3.1.6 shows that for a two-

dimensional affine domain B over a field k of characteristic zero satisfying

ML(B) = ML∗(B) we have the following three cases:

(i) If tr.degkML(B) = 2, then B is rigid and ML(B) = B.
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(ii) If tr.degkML(B) = 1, then B is semi-rigid and B = C [1] where C =

ML(B) is rigid.

(iii) If tr.degkML(B) = 0, then B = L[2] where L = ML(B) is the algebraic

closure of k in B.

As a consequence of Lemma 3.1.4 and Proposition 3.1.6, we have the fol-

lowing characterization of the affine 2-space.

Theorem 3.1.8. Let k be a field of characteristic zero and B a two-

dimensional affine k-domain. Then the following are equivalent:

(I) B = k[2].

(II) ML∗(B) = k.

(III) ML(B) = k and ML∗(B) 6= B.

Proof. Clearly (I) ⇒ (II) ⇒ (III). We now show that (III) ⇒ (I). Since

ML∗(B) 6= B, by Lemma 3.1.4 we have ML∗(B) = ML(B) = k. As k(=

ML(B)) is algebraically closed in B, by Part (iii) of Proposition 3.1.6, we

have B = k[2].

3.2 A characterization of k[3]

In this section we will describe an algebraic characterization of k[3] over an

algebraically closed field k of characteristic zero (Theorem 3.2.6). We also

investigate properties of a three-dimensional affine k-domain (say B) over an

algebraically closed field of characteristic zero for which ML(B) = ML∗(B).

We first state a result for a polynomial ring in two variables over a one-

dimensional affine UFD.

Lemma 3.2.1. Let k be an algebraically closed field of characteristic zero,

R a one-dimensional affine UFD and B := R[2]. Then either B = k[3] or

ML(B) = R.

Proof. By Lemma 2.1.3, R = k[t, 1
p(t) ] where k[t] = k[1] and p(t) ∈ k[t] \ {0}.

Now, either p(t) ∈ k or p(t) /∈ k. If p(t) ∈ k, then R = k[1] and B = k[3]. If

p(t) /∈ k, then ML(B) = R since p(t) ∈ ML(B) and ML(B) is a factorially

closed subring of B.
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The next result shows that if a three-dimensional affine UFD B admits two

non-zero distinct locally nilpotent derivations with slices, then there exists a

k-subalgebra R of B, such that B = R[2]. Example 3.3.7 shows that such a

result does not extend to a four-dimensional affine UFD.

Lemma 3.2.2. Let k be an algebraically closed field of characteristic zero and

B an affine k-domain such that B is a UFD and dim B = 3. If B admits two

non-zero distinct locally nilpotent derivations with slices, then there exists a

k-subalgebra R of B, such that R is a UFD and B = R[2].

Proof. Let D1 and D2 be two non-zero distinct locally nilpotent derivations

on B with slices s1, s2. Let Ker Di = Ci for i = 1, 2. Then, by Theorem

2.2.2, B = Ci[si] = Ci
[1] for each i. Now ML(B) ⊆ ML∗(B) ⊆ C1 ∩ C2 $

Ci. It follows that Ci is not rigid, otherwise by Theorem 2.2.8, ML(B) =

ML(Ci
[1]) = ML(Ci) = Ci. Since C1 is a factorially closed subring of the

UFD B, C1 is a UFD. As C1 is not rigid, by Lemma 2.2.7, C1 has a locally

nilpotent derivation with a slice and therefore by Theorem 2.2.2, C1 = R[1]

for some k-subalgebra R of C1. Hence B = R[2]. As R is a factorially closed

subring of the UFD C1, R is a UFD.

The following result describes a classification of three-dimensional factorial

affine domains B for which ML(B) = ML∗(B).

Proposition 3.2.3. Let k be an algebraically closed field of characteristic zero

and B a three-dimensional affine UFD over k. If ML(B) = ML∗(B), then

ML(B) is a rigid UFD and B is a polynomial ring over ML(B).

Proof. Suppose tr. degkML(B) = 3, then B is rigid and ML(B) = B. Now

suppose tr. degkML(B) = 2. Then by Lemmas 3.1.2 and 3.1.3, B = ML(B)[1]

and ML(B) is rigid. Since B is a UFD, ML(B) is also a UFD.

Now suppose tr.degkML(B) 6 1. Then B admits two non-zero distinct

locally nilpotent derivations on B with slices. Hence, by Lemma 3.2.2, there

exists a one-dimensional k-subalgebra S of B such that B = S[2]. Since B is

a UFD, S is a UFD. If tr.degkML(B) = 1, then B 6= k[3] and hence S 6= k[1].

Hence, by Theorem 2.2.9, S is rigid, and by Lemma 2.1.3, there exists t ∈ B
such that S = k[t, 1

p(t) ], where k[t] = k[1] and p(t) ∈ k[t] \ k. In particular,

k∗ $ B∗. Thus ML(B) = S and B = S[2]. Again if tr. degkML(B) = 0, then

ML(B) = k 6= S. Hence by Lemma 3.2.1, B = k[3].
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Remark 3.2.4. The proof of Proposition 3.2.3 shows that for a three-

dimensional affine UFD B over an algebraically closed field of characteristic

zero satisfying ML(B) = ML∗(B), we have the following four cases:

(i) If tr.degkML(B) = 3, then B is rigid.

(ii) If tr.degkML(B) = 2, then B = C [1], where C is rigid.

(iii) If tr. degkML(B) = 1, then B = S[2], where S = k[t, 1
p(t) ] for some

p(t) ∈ k[t] \ k.

(iv) If tr.degkML(B) = 0, then B = k[3].

The following result shows that for a three-dimensional factorial affine

domain over an algebraically closed field, the equality of ML(B) and ML∗(B)

holds whenever ML∗(B) 6= B.

Lemma 3.2.5. Let k be an algebraically closed field of characteristic zero and

B an affine k-domain such that B is a UFD and dim B = 3. If ML∗(B) 6= B,

then ML(B) = ML∗(B).

Proof. SinceML∗(B) 6= B, we have tr.degkML∗(B) ≤ 2. If tr. degkML∗(B) =

2, then the result follows from Lemma 3.1.2.

Now suppose tr. degkML∗(B) = 1. Then, by Lemma 3.2.2, there exists

a k-subalgebra R of B such that R is a one-dimensional UFD and B = R[2].

Thus ML∗(B) ⊆ R. As both ML∗(B) and R are algebraically closed in B

and have the same transcendence degree over k, we have ML∗(B) = R. As

ML∗(B) 6= k, B 6= k[3] and hence ML(B) = R by Lemma 3.2.1. Thus

ML(B) = ML∗(B).

If tr.degkML∗(B) = 0, then ML∗(B) = k and hence ML(B) = k =

ML∗(B).

We now state our main result.

Theorem 3.2.6. Let k be an algebraically closed field of characteristic zero

and B an affine k-domain such that B is a UFD and dim B = 3. Then the

following are equivalent:

(I) B = k[3].

(II) ML∗(B) = k.

(III) ML(B) = k and ML∗(B) 6= B.
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Proof. Clearly (I) ⇒ (II) ⇒ (III). We now show that (III) ⇒ (I). Since

ML∗(B) 6= B, by Lemma 3.2.5, ML(B) = ML∗(B). Now by Part (iv) of

Proposition 3.2.3, B = k[3].

Remark 3.2.7. (i) The hypothesis that ML∗(B) 6= B is necessary in Lemma

3.2.5. We will show that for a three-dimensional affine UFD B, containing an

algebraically closed field of characteristic zero, it may happen that ML∗(B) =

B but tr.degkML(B) is zero (Example 3.3.5), one (Example 3.3.4), or two

(Example 3.3.3) i.e. ML∗(B) 6= ML(B).

(ii) Example 3.3.1 will show that both the hypotheses “k is an algebraically

closed field” and “B is a UFD” are needed for the implication (III) =⇒ (I)

in Theorem 3.2.6.

Lemma 3.1.2 shows that there does not exist any three-dimensional affine

k-domain B such that ML(B) $ML∗(B) but tr. degkML∗(B) = 2. However

we pose the following question.

Question 3.2.8. Does there exist a three-dimensional affine k-domain B over

a field k of characteristic zero such that ML(B) = k but tr.degkML∗(B) = 1?

Note that Theorem 3.2.6 shows that Question 3.2.8 has negative answer

when k is an algebraically closed field and B is a UFD. If the answer to

Question 3.2.8 is negative in general then the implication (III) =⇒ (II) will

hold in Theorem 3.2.6 even without the additional hypotheses that “k is an

algebraically closed field” and “B is a UFD”.

3.3 Some examples

In this section we shall present some examples to illustrate the hypotheses

of the results stated earlier. The following example shows that both the hy-

potheses “k is algebraically closed” and “B is a UFD” are needed in Theorem

3.2.6.

Example 3.3.1. Let k be a field of characteristic zero, R := k[X,Y,Z]
(XY−Z2−1) and

B := R[T ]. Then the following hold:

(i) If k is an algebraically closed field, then B is not a UFD.

(ii) If k = R, then B is a UFD.

(iii) ML∗(B) = k.
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(iv) B 6= k[3].

Thus the conditions (II) and (III) of Theorem 3.2.6 hold but not (I).

Proof. Let x, y and z denote the images in B of X, Y and Z respectively.

(i) One can see that x is an irreducible element of B. Now if k is an

algebraically closed field, then clearly x is not a prime element in B.

(ii) Suppose k = R. Then x is a prime element in B and since B[1/x](=

k[x, 1/x][2]) is a UFD, we have B is a UFD by Lemma 2.1.2.

(iii) Consider two locally nilpotent k-derivations on B, say D1 and D2

given by

D1(x) = 0, D1(y) = 2z, D1(z) = x, D1(T ) = 1 and

D2(x) = 2z, D2(y) = 0, D2(z) = y, D2(T ) = 1.

Let Ai = Ker Di for i = 1, 2. Then by Theorem 2.2.2,

A1 = k[x, y − 2zT + xT 2, z − xT ] and

A2 = k[y, x− 2zT + yT 2, z − yT ].

We now show that A1∩A2 = k. Consider A1 as a subring of A1[
1
x ] = k[x, 1x ,

z
x−

T ] and A2 as a subring of A2[
1
y ] = k[y, 1y ,

z
y −T ]. Let α ∈ A1 ∩A2 and n := T -

degree of α. Then there exist elements ai(x) ∈ k[x, 1x ] and bj(y) ∈ k[y, 1y ] for

i, j ∈ {0, 1, . . . , n} such that

α =
n∑

i=0

ai(x)(
z

x
− T )

i
=

n∑
j=0

bj(x)(
z

y
− T )

j
.

Comparing the coefficients of Tn from the two expressions, we have (−1)nan(x) =

(−1)nbn(y) ∈ k[x, 1x ]∩k[y, 1y ] = k (since x and y are algebraically independent

over k). Again, comparing the coefficients of zn from the two expressions we

have an(x)
xn = bn(y)

yn . Hence n = 0 and consequently α ∈ k. Thus ML∗(B) = k.

(iv) Let k̄ denote the algebraic closure of k. Then B
⊗

kk̄ is not a UFD by

(i). Hence B 6= k[3].

We now present examples of affine domains B for which ML(B) $
ML∗(B) = B. We first present an example for dimB = 2. By Corollary

3.1.5, such an example is not possible for two-dimensional factorial affine do-

mains.
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Example 3.3.2. Let k be an algebraically closed field of characteristic zero,

n > 1 be an integer and p(Y ) ∈ k[Y ] be such that deg p(Y ) > 2. Let B =
k[X,Y,Z]

(XnZ−p(Y )) . Let x denote the image of X in B. B is not a UFD (since x is

irreducible but not a prime in B). We have

(i) If n = 1, then ML(B) = k by Theorem 2.2.10(i) but ML∗(B) = B by

Theorem 3.1.8 (since B 6= k[2]).

(ii) If n > 2, then ML(B) = k[x] and B is a semi-rigid ring by Theorem

2.2.10(ii) but ML∗(B) = B by Theorem 2.2.2 (since B 6= k[2]).

We now present examples of three-dimensional affine UFD B for which

ML∗(B) = B but ML(B) $ML∗(B). In the three examples tr. degkML(B)

is two, one and zero respectively.

Example 3.3.3. Let R := C[X,Y,Z]
(X2+Y 3+Z7)

and B := R[U,V ]
(X2U−Y 3V−1) . It has been

proved by D.R. Finston and S. Maubach that B is a semi-rigid UFD of dimen-

sion 3 and ML(B) = R ( [19, Theorem 2]); in particular, tr. degkML(B) = 2.

But ML∗(B) = B by Theorem 2.2.2 (since B 6= R[1]).

Example 3.3.4. Let B := C[X,Y,Z,T ]
(X+X2Y+Z2+T 3)

. Let x denote the image of X

in B. Since Bx is a UFD, by Lemma 2.1.2, B is a UFD. It has been proved

by L.G. Makar-Limanov that ML(B) = C[x] = C[1] ( [28, Lemma 8]); in

particular tr. degkML(B) = 1. Since B∗ = C∗, we have ML(B) 6= ML∗(B)

by Proposition 3.2.3 (iii) and hence ML∗(B) = B by Lemma 3.2.5.

Example 3.3.5. Let k be an algebraically closed field of characteristic zero

and B := k[X,Y,Z,T ]
(XY−ZT−1) . Let the images of X, Y , Z and T in B be denoted by

x, y, z and t respectively. Since Bx is a UFD, by Lemma 2.1.2, B is a UFD.

Moreover B is regular. Consider four non-zero locally nilpotent derivations

D1, D2, D3 and D4 on B given by

(i) D1x = 0, D1y = z, D1z = 0, D1t = x.

(ii) D2x = 0, D2y = t, D2z = x, D2t = 0.

(iii) D3x = z, D3y = 0, D3z = 0, D3t = y.

(iv) D4x = t, D4y = 0, D4z = y, D4t = 0.
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Let Ker Di = Ai for each i = 1, 2, 3, 4. Now k[x, z] ⊆ A1 ⊆ B. Since both

k[x, z] and A1 are algebraically closed in B and have the same transcendence

degree over k, we have A1 = k[x, z]. Similarly A2 = k[x, t], A3 = k[y, z],

A4 = k[y, t] and
⋂

iAi = k. Thus ML(B) = k, i.e. tr.degkML(B) = 0.

But B 6= k[3] (since the Whitehead group K1(B) 6= k∗) and it follows from

Theorem 3.2.6 that ML∗(B) = B.

We now present an example which shows that Theorem 3.2.6 does not

extend to a four-dimensional affine regular UFD, i.e., a four-dimensional affine

UFD B̃ need not be k[4], even when ML(B̃) = ML∗(B̃) = k. We will follow

the notation of Example 3.3.5.

Example 3.3.6. Let B be as in Example 3.3.5 and B̃ := B[u] = B[1]. B̃ is a

regular UFD of dimension four. For each i = 1, 2, 3, 4, we extend the locally

nilpotent derivation Di on B to a locally nilpotent derivation D̃i on B̃, by

defining D̃iu = 1. Let

D̃5 =
∂

∂u
and Ker D̃i = Ãi.

By Theorem 2.2.2, we have

Ã1 = k[x, z, y − zu, t− xu],

Ã2 = k[x, t, z − xu, y − tu],

Ã3 = k[y, z, x− zu, t− yu],

Ã4 = k[y, t, x− tu, z − yu] and

Ã5 = k[x, y, z, t].

Clearly k[x, z + t − xu] ⊆ Ã1 ∩ Ã2. Since k[x, z + t − xu] and Ã1 ∩ Ã2 are

algebraically closed in B[u] and they have the same transcendence degree over

k, we have

Ã1 ∩ Ã2 = k[x, z + t− xu].

Similarly,

Ã3 ∩ Ã4 = k[y, z + t− yu].

Again,

Ã5 ∩ k[x, z + t− xu] = k[x] and Ã5 ∩ k[y, z + t− yu] = k[y].
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Hence
⋂

i Ãi = k. Thus ML∗(B̃) = ML(B̃) = k. But B̃ 6= k[4] (for instance,

K1(B̃) = K1(B) 6= k∗).

The following example shows that Lemma 3.2.2 need not be true for a

four-dimensional affine UFD B, even if ML(B) = ML∗(B).

Example 3.3.7. Let k be an algebraically closed field of characteristic zero

and R = k[X,Y, Z]/(X2 + Y 3 + Z7) = k[x, y, z], where x, y and z denote the

images of X, Y and Z in R. Let C = R[U, V ]/(xU − yV − 1) = R[u, v], where

u and v denote the images of U and V in C and B = C[T ] = C [1]. Then the

following hold.

(i) B is a UFD of dimension 4.

(ii) ML(B) = ML∗(B) = R.

(iii) B 6= R[2].

(iv) B 6= S[2] for any k-subalgebra S of B.

Proof. (i) By Lemma 2.1.2, R and C are UFDs. Hence B is a UFD. Clearly

dim B = 4.

(ii) By [19, Lemma 2], R ⊆ ML(B) ⊆ ML∗(B). Consider the R-linear

derivations δ1 and δ2 on B as follows:

δ1(u) = y, δ1(v) = x and δ1(T ) = 1

and

δ2(u) = yT, δ2(v) = xT and δ1(T ) = 1.

Clearly they are locally nilpotent derivations with slices T . By Theorem 2.2.2,

A1 := Ker δ1 = R[u− yT, v−xT ] and A2 := Ker δ2 = R[2u− yT 2, 2v−xT 2].

Then A1x = Rx[v − xT ] and A2x = Rx[2v − xT 2] and the two rings A1 and

A2 are clearly different. Therefore A1 ∩ A2 $ A2. As A1 ∩ A2 is a factorially

closed subring of B containing R, we have A1 ∩ A2 = R by comparing the

dimensions.

(iii) Since (x, y)B = B, it follows that B 6= R[2].

(iv) Suppose there exists a k-subalgebra S of B such that B = S[2]. Then

R = ML(B) ⊆ S. Since tr. degk R = tr. degk S and both R and S are alge-

braically closed in B, it follows that R = S, contradicting (iii). Hence the

result.
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Remark 3.3.8. An important problem in Affine Algebraic Geometry asks

whether, for the Russell-Koras threefold B defined in Example 3.3.4, B[1] =

C[4]. An affirmative answer will give a negative solution to the Zariski Can-

cellation Problem for the three-space in characteristic zero. It was shown by

A. Dubouloz in [16] that ML(B[1]) = C and A. Dubouloz and J. Fasel have

shown that X = Spec(B) is A1-contractible [17, Theorem 1.1]. It follows from

Lemma 3.1.1 that ML∗(B[2]) ⊆ ML(B[1]) = C. As a consequence, we have

ML∗(B[n]) = C for any n > 2. This leads to the question:

Question : Let B be as in Example 3.3.4. Is ML∗(B[1]) = C ?

A negative answer to this problem will confirm that B[1] 6= C[4]. However,

it is possible that B[n] = C[n+3] for some n > 2.



Chapter 4

On Nice and Quasi-Nice

Derivations

4.1 Nice Derivations

In this section, we shall explore generalisations of the following theorem of Z.

Wang ( [39, Proposition 4.6]).

Theorem 4.1.1. Let k be a field of characteristic zero and k[X,Y, Z] = k[3].

Suppose that D( 6= 0) ∈ LND(k[X,Y, Z]) satisfies D2X = D2Y = D2Z = 0.

Then the following hold:

(i) Ker D contains a nonzero linear form of {X,Y, Z}.

(ii) rank D = 1.

(iii) If D is irreducible, then for some coordinate system (X
′
, Y
′
, Z
′
) of

k[X,Y, Z] related to (X,Y, Z) by a linear change,

D = f(X
′
)
∂

∂Y ′
+ g(X

′
)
∂

∂Z ′

where f , g ∈ k[X
′
] and gcdk[X′ ](f, g) = 1.

We first observe the following result.

Lemma 4.1.2. Let R be a UFD containing Q and D(6= 0) ∈ LNDR(R[X,Y, Z])

and rank D < 3. Then Ker D = R[2].

29
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Proof. Let A := Ker D. Since rank D < 3, there exists X
′ ∈ R[X,Y, Z] such

that R[X,Y, Z] = R[X
′
][2] and X

′ ∈ A. Then taking C = R[X
′
], it follows

from Theorem 2.3.2 that A(= Ker D) = R[X
′
][1] = R[2].

The following example shows that Lemma 4.1.2 does not extend to a

Noetherian normal domain R which is not a UFD.

Example 4.1.3. Let R[a, b] = R[2] and R := R[a,b]
(a2+b2−1) . Let B := R[X,Y, Z] =

R[3] and D be an R-linear LND of B, such that

DX = a, DY = b− 1 and DZ = aY + (1− b)X.

Setting u = aY + (1 − b)X, v = (1 + b)Y + aX and w = 2Z + uY − vX, we

see that Du = Dv = Dw = 0 and D2X = D2Y = D2Z = 0.

Let A := Ker D. Now B(1+b) = R(1+b)[v, w,X] and B(1−b) =

R(1−b)[u,w, Y ]. Thus it follows that A(1+b) = R(1+b)[v, w] = R(1+b)
[2] and

A(1−b) = R(1−b)[u,w] = R(1−b)
[2]. Since (1 + b) and (1 − b) are comaximal

elements of R, A = R[u, v, w] and Am = Rm
[2] for every maximal ideal m of R.

Now B = R[X,Y, Z] = R[X,Y,w] and w ∈ A; so rank D < 3. Setting

T = u
a , we see that A = R[aT, (1 + b)T,w]. By Theorems 2.3.3 and 2.3.4,

A = SymR(F ⊕ P ), where F is a free R-module of rank 1 and P is a rank

1 projective R-module given by the ideal (a, 1 + b)R, which is not principal.

Hence P is not stably free and so A 6= R[2] ( [18, Lemma 1.3]).

Remark 4.1.4. In Proposition 4.1.9, we will see that over any Dedekind

domain R, the kernel of a nice derivation on R[3] is generated by (at most)

three elements.

The following example shows that part (ii) of Theorem 4.1.1 does not hold

when K is replaced by a PID R.

Example 4.1.5. Let k be a field of characteristic zero, R = k[t](= k[1]) and

B := R[X,Y, Z](= R[3]). Let D ∈ LNDR(B) be such that

DX = 0, DY = X − t and DZ = X + t.

Let A = Ker D and G := (X − t)Z − (X + t)Y . We will show that

(i) A = R[X,G].

(ii) B 6= A[1]; in fact, B is not even A-flat.
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(iii) rank D = 2.

Proof. (i) Let C := R[X,G]. We show that C = A. Clearly C ⊆ A. Set

f := X − t. Then Bf = R[X,G, Y ]f = Cf
[1]. Hence, as both Cf (⊆ Af ) and

Af are factorially closed subrings of Bf and as tr.degCf
Bf = 1 = tr.degAB,

we have Cf = Af .

Now B/fB may be identified with R[Y,Z](= R[2]). Clearly C/fC = R[1]

and the image of C/fC in B/fB is R[tY ](= R[1]). Thus the natural map

C/fC → B/fB is injective, i.e, fB ∩C = fC. Since A is factorially closed in

B, we also have fB∩A = fA and hence fA∩C = fB∩A∩C = fB∩C = fC.

Therefore as Cf = Af , we have C = A by Lemma 2.3.7.

(ii) (X−t,X+t)B is a prime ideal of height 2 in B and (X−t,X+t)B∩A =

(X, t,G)A is a prime ideal of height 3 in A, violating the going-down principle.

Hence B is not A-flat and therefore B 6= A[1].

(iii) Since DX = 0, rank D < 3. If rank D = 1, then clearly B = A[1]

contradicting (ii). Hence rank D = 2.

We now prove an extension of Theorem 4.1.1 over a PID.

Theorem 4.1.6. Let R be a PID containing Q with field of fractions L and

B := R[X,Y, Z] = R[3]. Let D(6= 0) ∈ LNDR(B) and A := Ker D. Suppose

that D is irreducible and D2X = D2Y = D2Z = 0. Then there exists a

coordinate system (U, V,W ) of B related to (X,Y, Z) by a linear change such

that the following hold:

(i) A contains a nonzero linear form of {X,Y, Z}.

(ii) rank D 6 2. In particular, A = R[2].

(iii) A = R[U, gV − fW ], where DV = f , DW = g, and f, g ∈ R[U ] such

that gcdR[U ](f, g) = 1.

(iv) Either f and g are comaximal in B or they form a regular sequence in

B. Moreover if they are comaximal, (i.e., D is fixed-point free) then

B = A[1] and rank D = 1; and if they form a regular sequence, then B

is not A-flat and rank D = 2.

Proof. (i) D extends to an LND of L[X,Y, Z] which we denote by D. By

Theorem 4.1.1 there exists a coordinate system (U, V
′
,W

′
) of L[X,Y, Z] re-

lated to (X,Y, Z) by a linear change and mutually coprime polynomials p(U),
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q(U) in L[U ] for which

D = p(U)
∂

∂V ′
+ q(U)

∂

∂W ′ .

Multiplying by a suitable nonzero element of R, we can assume U ∈ R[X,Y, Z].

Clearly A = Ker D ∩R[X,Y, Z] and U ∈ A. Moreover without loss of gener-

ality we can assume that there exist l,m, n ∈ R with gcdR(l,m, n) = 1 such

that U = lX + mY + nZ. As R is a PID, (l,m, n) is a unimodular row of

R3 and hence can be completed to an invertible matrix M ∈ GL3(R). LetU

V

W

 = M

XY
Z

.

Then R[U, V,W ] = R[X,Y, Z] and as U ∈ A, A contains a nonzero linear form

in X,Y, Z.

(ii) Follows from (i) and Lemma 4.1.2.

(iii) R[U ] is a UFD and B = R[U, V,W ] = R[U ][2]. So D is a locally

nilpotent R[U ]-derivation on B. Now the proof follows from part (ii) of Lemma

2.2.4.

(iv) Since B = R[U, V,W ] = R[U ][2], the first part follows from Theorem

2.2.5. Moreover, when f and g are comaximal in B, it also follows from

Theorem 2.2.5 that B = A[1]. Hence in this case rank D = 1.

If f and g form a regular sequence inB (and hence in A since A is factorially

closed in B), (f, g)B ∩ A = (f, g, gV − fW )A. But (f, g, gV − fW )A is an

ideal of height 3, while (f, g)B is an ideal of height 2, violating the going-down

principle. It follows that in this case B is not A-flat. In this case indeed rank

D = 2, or else if rank D = 1, we would have B = A[1].

The proof of Theorem 4.1.6 shows the following:

Corollary 4.1.7. With the notation as above, the following are equivalent:

(i) B = A[1].

(ii) rank D = 1.

(iii) B is A-flat.

Proof. (i)⇔(ii) and (ii)⇒(iii) are trivial. (iii)⇒(i) follows from Theorem

4.1.6(iv).
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As mentioned in the Introduction, Theorem 4.1.6 shows that the kernel of

an irreducible nice derivation on k[4] of rank 6 3 is k[3]. More precisely, we

have:

Corollary 4.1.8. Let k be a field of characteristic zero and let k[X1, X2, X3, X4] =

k[4]. Let D ∈ LND(k[X1, X2, X3, X4]) be such that D is irreducible and

DX1 = 0 and D2Xi = 0 for i = 2, 3, 4. Then Ker D = k[3].

By a result of Bhatwadekar and Daigle ( [5, Proposition 4.13]), we know

that over a Dedekind domain R containing Q, the kernel of any locally nilpo-

tent R-derivation on R[3] is necessarily finitely generated. We now show that if

D is a nice derivation, then the kernel is generated by at most three elements.

Proposition 4.1.9. Let R be a Dedekind domain containing Q and B :=

R[X,Y, Z](= R[3]). Let D ∈ LNDR(B) such that D is irreducible and D2X =

D2Y = D2Z = 0. Let A := Ker D. Then the following hold:

(i) A is generated by at most 3 elements.

(ii) Moreover, if D is fixed-point free, then rank D < 3 and D has a slice.

In particular, rank D = 1.

Proof. (i) By Theorem 4.1.6, Ap = Rp
[2] for each p ∈ Spec(R). Hence by

Theorem 2.3.3, A ∼= SymR(Q) for some rank 2 projective R-module Q. Since

R is a Dedekind domain, by Theorem 2.3.4, Q ∼= Q1 ⊕M where Q1 is a rank

1 projective R-module and M is a free R-module of rank 1. Again, since R

is a Dedekind domain Q1 is generated by at most 2 elements. Hence A is

generated by at most 3 elements.

(ii) Now assume D is fixed-point free. Let DX = f1, DY = f2 and

DZ = f3. Then, by Theorem 2.2.2, Bfi = Afi
[1] for each i ∈ {1, 2, 3}. Since

(f1, f2, f3)B = B, we have Bp̃ = Ap̃
[1], for each p̃ ∈ Spec(A). Hence, by

Theorem 2.3.3, B = SymA(P ), where P is a projective A-module of rank

1. Now for each p ∈ Spec(R), Pp is an Ap-module and as Ap = Rp
[2], we

have Pp is a free Ap-module since Rp is a discrete valuation ring and hence

extended from Rp. Therefore, by Theorem 2.3.6, P is extended from R. Let

P = P1 ⊗R A, where P1 is a projective R-module of rank 1. Hence B =

SymA(P ) = SymR(M ⊕ Q1 ⊕ P1), where M is a free R-module of rank 1.

Since B = R[3], M ⊕Q1⊕P1 is a free R-module of rank 3 ( [18, Lemma 1.3]).

By Theorem 2.3.5, Q1 ⊕ P1 is free of rank 2. Let M = Rf and set S := R[f ].

Then B = R[f ][2] and as f ∈ A, we have rank D < 3. Now B = S[2] and
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D ∈ LNDS(B) such that D is fixed-point free. Hence, by Theorem 2.2.6, D

has a slice.

Let B = R[f, g, h](= R[3]) and s ∈ B be such that Ds = 1. Then by

Theorem 2.2.2, B(= S[2]) = A[s](= A[1]). Hence by Theorem 2.3.1, A = S[1].

Let A = R[f, t]. Then B = R[f, g, h] = R[f, t, s] and f, t ∈ A. So rank

D = 1.

The following example shows that Theorem 4.1.6 does not extend to a

higher-dimensional regular UFD, not even to k[2].

Example 4.1.10. Let k be a field of characteristic zero and R = k[a, b] = k[2].

Let B = R[X,Y, Z](= R[3]) and D(6= 0)∈ LNDR(B) be such that

DX = b, DY = −a and DZ = aX + bY.

Let u = aX+bY , v = bZ−uX, and w = aZ+uY . Then Du = Dv = Dw = 0,

D is irreducible and D2X = D2Y = D2Z = 0. Let A = Ker D. We show

that

(i) A = R[u, v, w].

(ii) A = R[U, V,W ]/(bW − aV − U2), where R[U, V,W ] = R[3] and hence

A 6= R[2].

(iii) rank D = 3.

Proof. (i) Let C := R[u, v, w]. We show that C = A. Clearly C ⊆ A. Note

that, Ba = Ca
[1], so Ca is algebraically closed in Ba. But A is algebraically

closed in B. So Aa = Ca. Similarly Ab = Cb. Since a, b is a regular sequence

in C, Ca ∩ Cb = C. Therefore A ⊆ Aa ∩Ab = Ca ∩ Cb = C.

(ii) Let φ : R[U, V,W ](= R[3]) � A be the R-algebra epimorphism

such that φ(U) = u, φ(V ) = v and φ(W ) = w. Then (bW − aV −
U2) ⊆ Ker φ and bW − aV − U2 is an irreducible polynomial of the UFD

R[U, V,W ]. Now tr. degR (R[U, V,W ]/(bW − aV − U2)) = 2 = tr.degRA.

Hence A ∼= R[U, V,W ]/(bW − aV − U2). Let F = bW − aV − U2. Now

(∂F∂U ,
∂F
∂V ,

∂F
∂W , F )R[U, V,W ] 6= R[U, V,W ]. So A is not a regular ring, in par-

ticular, A 6= R[2].

(iii) rank D = 3 by Lemma 4.1.2.
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4.2 Quasi-nice Derivations

In this section we discuss quasi-nice derivations. Let k be a field of charac-

teristic zero, R a k-domain, B := R[n] and m be a positive integer 6 n. We

shall call a quasi-nice R-derivation on B to be m-quasi if, for some coordinate

system (T1, T2, . . . , Tn) of B, D2(Ti) = 0 for all i ∈ {1, . . . ,m}. Thus for any

two positive integers r and m such that 1 6 m < r 6 n, it is easy to see that

an r-quasi derivation is also an m-quasi derivation. We shall call an m-quasi

derivation to be strictly m-quasi if it is not r-quasi for any positive integer

r > m.

Over a field k, Z. Wang ( [39, Theorem 4.7 and Remark 5]) has proved the

following result for 2-quasi derivations.

Theorem 4.2.1. Let k be a field of characteristic zero and k[X,Y, Z] = k[3].

Let D(6= 0) ∈ LND(k[X,Y, Z]) be such that D is irreducible and D2X =

D2Y = 0. Then one of the following holds:

(I) There exists a coordinate system (L1, L2, Z) of k[X,Y, Z], where L1 and

L2 are linear forms in X and Y such that

(i) DL1 = 0.

(ii) DL2 ∈ k[L1].

(iii) DZ ∈ k[L1, L2] = k[X,Y ].

In this case, rank D can be either 1 or 2.

(II) There exists a coordinate system (V,X, Y ) of k[X,Y, Z], such that DV =

0 and DX,DY ∈ k[V ]. In particular, rank D = 1.

Conversely, if D ∈ Der(k[X,Y, Z]) satisfies (I) or (II), then D ∈ LND(k[X,Y, Z])

and D2X = D2Y = 0.

The following two examples illustrate the cases rank D = 1 and rank

D = 2 for part (I) of Theorem 4.2.1.

Example 4.2.2. Let D ∈ LND(k[X,Y, Z]) be such that DX = DY = 0 and

DZ = 1. Then rank D = 1.

Example 4.2.3. Let D ∈ LND(k[X,Y, Z]) such that

DX = 0, DY = X,DZ = Y.
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Setting R = k[X], we see that D ∈ LNDR(R[Y,Z]) and D is irreducible. By

Theorem 2.2.3, D = ∂F
∂Z

∂
∂Y −

∂F
∂Y

∂
∂Z for some F ∈ R[Y, Z] = K[X,Y, Z] such

that k(X)[Y,Z] = k(X)[F ][1], gcdR[Y,Z](
∂F
∂Y ,

∂F
∂Z ) = 1. Moreover Ker D =

R[F ] = R[1]. Setting F = XZ − Y 2

2 we see ∂F
∂Y = −Y = −DZ and ∂F

∂Z = X =

DY .

Therefore, Ker D = k[X,F ]. But F is not a coordinate in k[X,Y, Z] since

( ∂F
∂X ,

∂F
∂Y ,

∂F
∂Z )k[X,Y, Z] 6= k[X,Y, Z]. So rank D = 2.

We now address Question 2 of the Introduction, which gives a partial

generalisation of Theorem 4.2.1.

Proposition 4.2.4. Let R be a PID containing Q with field of fractions K.

Let D ∈ LNDR(R[X,Y, Z]), where R[X,Y, Z] = R[3] such that D is irreducible

and D2X = D2Y = 0. Let D ∈ LND(K[X,Y, Z]) denote the extension of D

to K[X,Y, Z]. Let A := Ker D. Suppose D satisfies condition (I) of Theorem

4.2.1. Then the following hold:

(i) rank D < 3.

(ii) There exists a coordinate system (L1, L2, Z) of R[3], such that L1, L2 are

linear forms in X and Y , DL1 = 0, DL2 ∈ R[L1] and DZ ∈ R[L1, L2] =

R[X,Y ]. Moreover, A = R[L1, bZ+f(L2)], where b ∈ R[L1] and f(L2) ∈
R[L1, L2].

Proof. (i) Let (L1, L2, Z) be a coordinate system of K[X,Y, Z] such that D

satisfies condition (I) of Theorem 4.2.1. Multiplying by a suitable nonzero

constant from R, we can assume L1 ∈ R[X,Y ]. Let L1 = aX + bY where

a, b ∈ R. Without loss of generality we can assume gcdR(a, b) = 1. Since R is

a PID, (a, b, 0) is a unimodular row in R3 and hence can be completed to an

invertible matrix (say N) in GL3(R). Thus L1 is a coordinate in R[X,Y, Z].

As L1 ∈ KerD = KerD ∩ R[X,Y, Z], rank D is at most 2 and hence rank

D 6 2 < 3.

(ii) Now set L1 = L1. Since gcdR(a, b) = 1, there exist c, d ∈ R such that

ad− bc = 1. Hence we can choose N as

a b 0

c d 0

0 0 1

. Then N

XY
Z

 =

L1

L2

Z

.

Now the proof follows from part (i) of Lemma 2.2.4.

With the notation as above, if D satisfies condition (II) of Theorem 4.2.1,

rank D need not be 1. The following example shows that rank D can even

be 3.
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Example 4.2.5. Let k be a field of characteristic zero, R = k[t](= k[1]) with

field of fractions L and B := R[X,Y, Z](= R[3]). Let D ∈ LNDR(B) be

defined by

DX = t, DY = tZ +X2 and DZ = −2X.

Then D is irreducible and D2X = D2Y = 0. Let D denote the extension of D

to L[X,Y, Z]. Let F = −GX + tY where G = tZ +X2. Then F 2 −G3 = tH,

where H = tY 2 − 2tX2Z2 − 2tXY Z − 2X3Y −X4Z − t2Z3 ∈ R[X,Y, Z]. Set

C := R[F,G,H]. We show that

(i) D satisfies condition (II) of Theorem 4.2.1.

(ii) Then C ∼= R[U, V,W ]/(U2 − V 3 − tW ), where R[U, V,W ] = R[3] and

hence C 6= R[2].

(iii) Ker D = C.

(iv) rank D = 3.

Proof. (i) L[X,Y, Z] = L[X,Y,G], DG = DG = 0 and DX,DY ∈ L[G]. By

Theorem 2.2.3, Ker D = L[F,G](= L[2]).

(ii) Consider the R-algebra epimorphism φ : R[U, V,W ] � R[F,G,H](=

C), given by φ(U) = F , φ(V ) = G and φ(W ) = H. Clearly (U2 − V 3 − tW )

⊆ Ker φ. Since U2 − V 3 − tW is an irreducible polynomial in R[U, V,W ] =

k[t, U, V,W ] = k[4] and tr.degk R[U, V,W ]/(U2 − V 3 − tW ) = 3, we have Ker

φ = (U2 − V 3 − tW ) and hence C ∼= R[U, V,W ]/(U2 − V 3 − tW ).

Set f := U2−V 3−tW . Since (∂f∂t ,
∂f
∂U ,

∂f
∂V ,

∂f
∂W , f) ⊆ (t, U, V,W )k[t, U, V,W ],

C is not regular and hence C 6= R[2].

(iii) Let A := Ker D. Then A = L[F,G] ∩R[X,Y, Z]. We note that since

Ker D is factorially closed, H ∈ Ker D and hence H ∈ A.

Now Ct = Rt[F,G,H] = Rt[F,G] and Rt[X,Y, Z] = Rt[X,Y,G] =

Rt[X,F,G]. D extends to a locally nilpotent Rt-derivation (say D̃) on

Rt[X,Y, Z] and D̃X ∈ Rt
∗. So by Theorem 2.2.2, Ct = At.

Clearly C ⊆ A. By Lemma 2.3.7, it is enough to show that the map

C/tC → A/tA is injective. Since A is factorially closed in B, the natural map

A/tA ↪→ B/tB is an inclusion. So we will be done if we show the composite

map ψ : C/tC → B/tB is injective. For g ∈ B, let g denote the image of

g in B/tB. In ψ(C/tC), G = X
2
, F = −X3

and H = −2X
3
Y − X

4
Z.

Since X and Z are algebraically independent over k, tr. degk ψ(C/tC) = 2.

From (ii), it follows that C/tC is an integral domain and tr. degk C/tC =
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tr.degk ψ(C/tC) = 2. Hence ψ is injective. So C/tC ↪→ A/tA and hence

C = A as desired.

(iv) By Lemma 4.1.2, rank D = 3.

Over a Dedekind domain R, we have the following generalisation of Propo-

sition 4.1.9 and Proposition 4.2.4.

Proposition 4.2.6. Let R be a Dedekind domain containing Q with field of

fractions K, and B := R[X,Y, Z](= R[3]). Let D ∈ LNDR(B) be irreducible

and D2X = D2Y = 0 and D denote the extension of D to K[X,Y, Z]. Let

A := Ker D. If D satisfies condition (I) of Theorem 4.2.1, then the following

hold:

(i) A is generated by at most 3 elements.

(ii) Moreover, if D is fixed-point free, then rank D < 3 and D has a slice.

In particular, rank D = 1.

Proof. (i) By Proposition 4.2.4 and Lemma 4.1.2, Ap = Rp
[2] for each p ∈

Spec(R). Now the proof follows from the proof of part (i) of Proposition

4.1.9.

(ii) For each p ∈ Spec(R), let Dp denote the extension of D to Bp. Then by

Proposition 4.2.4 and Theorem 2.2.6, Dp has a slice. Thus Bp = Ap
[1] for each

p ∈ Spec(R). Now the proof follows from the proof of part (ii) of Proposition

4.1.9.

Remark 4.2.7. Example 4.1.10 shows that Proposition 4.2.4 does not extend

to a higher-dimensional UFD, not even to k[2], where k is a field of character-

istic zero. In fact, in that example, taking L1 = u and L2 = cX+dY for some

c, d ∈ k[a, b] such that ad − bc 6= 0, we find that D satisfies condition (I) of

Theorem 4.2.1 and considering the coordinate system (u,X,Z), of K[X,Y, Z]

where K is the field of fractions of k[a, b], we also see that D satisfies condition

(II).

The following theorem of Daigle shows that over a field k of characteristic

zero, there does not exist any strictly 1-quasi derivation on k[3] ( [10, Theorem

5.1]).

Theorem 4.2.8. Let k be a field of characteristic zero , B = k[3] and D : B →
B be an irreducible locally nilpotent derivation. Assume that some variable Y
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of B satisfies DY 6= 0 and D2Y = 0. Then there exist X,Z such that

B = k[X,Y, Z], DX = 0, DY ∈ k[X] and DZ ∈ k[X,Y ].

We now present an example of a strictly 1-quasi derivation on R[3] over a

PID R containing Q. Thus, Theorem 4.2.8 does not extend to a PID.

Example 4.2.9. Let k be a field of characteristic zero, R = k[t](= k[1]) and

B = R[X,Y, Z](= R[3]). Let D ∈ LNDR(B) be such that

DX = t, DY = X and DZ = Y.

Then D is irreducible and D2X = 0. Let F := 2tY −X2, G = 3t2Z−3tXY +

X3 and H = 8tY 3+9t2Z2−18tXY Z−3X2Y 2+6X3Z. Then F 3+G2 = t2H.

Set C := R[F,G,H]. We now show the following:

(i) Then C ∼= R[U, V,W ]/(U3 + V 2 − t2W ), where R[U, V,W ] = R[3].

(ii) Ker D = C.

(iii) There does not exist any coordinate system (U1, U2, U3) of B, such that

D2(U1) = D2(U2) = 0.

Proof. (i) Consider theR-algebra epimorphism φ : R[U, V,W ]� R[F,G,H](=

C), given by φ(U) = F , φ(V ) = G and φ(W ) = H. Clearly (U3+V 2−t2W ) ⊆
Ker φ. Since U3 + V 2 − t2W is an irreducible polynomial in R[U, V,W ] =

k[t, U, V,W ] = k[4], and tr. degk R[U, V,W ]/(U3 +V 2− t2W ) = 3 we have Ker

φ = (U3 + V 2 − t2W ) and hence C ∼= R[U, V,W ]/(U3 + V 2 − t2W ).

(ii) Let A := Ker D. Since A is factorially closed in B, H ∈ A. Ct =

Rt[F,G,H] = Rt[F,G]. Also Rt[X,Y, Z] = Rt[X,F,G]. D extends to a locally

nilpotent Rt-derivation (say D̃) on Rt[X,Y, Z] and D̃X ∈ Rt
∗. So by Theorem

2.2.2, Ct = At.

Clearly C ⊆ A. By Lemma 2.3.7, it is enough to show that the map

C/tC → A/tA is injective. Since A is factorially closed in B, the natural map

A/tA ↪→ B/tB is an inclusion. So we will be done if we show the composite

map ψ : C/tC → B/tB is injective. For g ∈ B, let g denote the image of

g in B/tB. In ψ(C/tC), F = −X2
, G = X

3
and H = −3X2Y 2 + 6X3Z.

Since X, Y and Z are algebraically independent over k, tr. degk ψ(C/tC) = 2.

From (ii), it follows that C/tC is an integral domain and tr. degk C/tC =
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tr.degk ψ(C/tC) = 2. Hence ψ is injective. So C/tC ↪→ A/tA and hence

C = A as desired.

(iii) For f ∈ B, let α := coefficient of X in f , β := coefficient of Y in f and

deg f := total degree of f . Then ∂f
∂X (0, 0, 0) = α and ∂f

∂Y (0, 0, 0) = β. If f ∈ A,

let f = p(F,G,H) for some p ∈ R[3]. Then ∂f
∂X = ∂p

∂F
∂F
∂X + ∂p

∂G
∂G
∂X + ∂p

∂H
∂H
∂X . We

also have

∂F

∂X
= −2X,

∂G

∂X
= −3tY + 3X2 and

∂H

∂X
= −18tY Z − 6XY 2 + 18X2Z.

Thus α = 0. Again, since

∂F

∂Y
= 2t,

∂G

∂Y
= −3tX, and

∂H

∂Y
= 24tY 2 − 18tXZ − 6X2Y,

similarly we have β = λt, for some λ ∈ R. Let U be a coordinate in B such

that D2U = 0. Since U is a coordinate, there exist a, b, c ∈ R, not all 0 and

V ∈ B with deg V > 2 and no linear term, such that U = aX + bY + cZ + V .

Then DU = at+ bX + cY + ( ∂V
∂X )t+ (∂V∂Y )X + (∂V∂Z )Y . Let γ := coefficient of

X in ∂V
∂X and δ := coefficient of Y in ∂V

∂X . Then the coefficient of X in DU

is b + γt and the coefficient of Y in DU is c + δt (we can ignore terms from

(∂V∂Y )X and (∂V∂Z )Y since neither of them has any linear term). Thus b+γt = 0

and c+ δt = λt for some λ ∈ R. Therefore, b ∈ (t)R and c ∈ (t)R.

Let (U1, U2, U3) be a coordinate system of B such that D2(U1) = D2(U2) =

0 and let Ui = aiX + biY + ciZ + Vi where ai, bi, ci ∈ R, not all 0 and Vi ∈ B
with deg Vi > 2 and no linear term, for i = 1, 2. Thus for each i, we have

bi, ci ∈ (t)R. For f ∈ B, let f denote its image in B/tB(= k[3]). Since

B/tB = k[U1, U2, U3], U1, U2 form a partial coordinate system in B/tB. But

Ui = aiX + Vi and since Vi has no linear term, ai 6= 0, for each i. Then

a2U1−a1U2 has no linear term, but it is a coordinate in B/tB. Hence we have

a contradiction.

Let R be a Dedekind domain containing Q and B := R[X,Y, Z] = R[3].

Let D ∈ LNDR(B) such that D is irreducible and D2X = D2Y = D2Z = 0

(i.e. D is nice). It has been proved in Proposition 4.1.9 that if D is fixed-point

free, then rank D = 1. However, we do not know whether the result is true

without the additional hypothesis that D is fixed-point free.

Example 4.2.10. Let R := R[a, b]/(a2 + b2 − 1) and B := R[X,Y, Z]. Set

u = aY + (1 − b)X, v = (1 + b)Y + aX, f = (1 − b)uZ − (a + 1)(u + 1)Y ,
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g = (a+ 1)(u+ 1)X + auZ and h = auZ − (1 + b)(u+ 1)Y − vY +X. Then

we have the following relations:

(i) au = (1− b)v (or (1 + b)u = av).

(ii) ag − (1 + b)f = (a+ 1)(u+ 1)v.

(iii) u = (1− b)h− af ( or v = ah− (1 + b)f).

Let D ∈ LNDR(B) such that

DX = −au, DY = (1− b)u and DZ = (a+ 1)(u+ 1).

Set A := Ker D. Then B(1+b) = R(1+b)[X,Z, v]. Since R(1+b) is a PID,

by Theorem 4.1.6, A(1+b) = R(1+b)[v, g] = R(1+b)[v, h]. Similarly A(1−b) =

R(1−b)[v, f ] = R(1−b)[h, f ]. Since (1 + b) and (1 − b) are comaximal in R,

A = R[v, h, f ] = R[h, f ] (by (iii)).

Question: Is rank D < 3?
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probléme de Hilbert. (French), Bull. Sci. Math. 78(2) (1954) 155–168.


