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Abstract

Quantum computers have potential applications in cryptography, optimization prob-
lems and recently proposed quantum-enhanced machine learning. Theoretical re-
search into this novel framework of computation has found ways to complement and
enhance the abilities of classical computers. Practical large scale quantum computers
with sufficient computing capacity suffer from various kinds of errors, which destroy
any meaningful computation.
Fault tolerant computation is an active area of research to realize quantum comput-
ers that are robust to noise. Quantum threshold theorem states that, if the physical
error rates are below certain threshold (estimates give a figure around 1%) then by
using error correction schemes, one can push the logical error rates to arbitrary low
values. Benchmarking or quantifying the effect of noise induced in practically imple-
menting quantum gates has been a topic of interest in recent years. Several protocols
to effectively benchmark the physical error rates have been proposed that empirically
calculate various metrics to quantify error rates of quantum gate operation irrespec-
tive of how the quantum computer works. This thesis is about one such protocol
known as Unitarity Randomized Benchmarking (URB).
In this paper, we have firstly, implemented the URB protocol using Qiskit which is an
open source library to program and execute quantum programs in simulators or on
actual IBM-Q devices. To the best of our knowledge, our work presents the first step
in the direction of experimentally benchmarking the ‘coherence’ of noise induced dur-
ing execution of quantum programs on any commercially available device. Secondly,
we experimentally validate the effectiveness of our slightly modified URB protocol, to
gauge the ‘coherence’ of noise channels. We perform URB experiments by simulating
two well studied noise channels namely, the single qubit depolarising channel and the
single qubit bit-flip channel and as a result, validate our implementation by comparing
with the theoretical unitarity values. Thirdly, we propose yet another modification
to the URB protocol, which we call the Native Gate URB, in order to study the noise
in the native gates, i.e., the gates ultimately into which the quantum circuits are
compiled and executed in the actual IBM-Q devices. Finally, We comment on the
ability of Native Gate URB protocol to detect cross talk. We find experimentally and
to the best of our knowledge, that both the IBM-Q processors have noticeable but
considerably low cross talk when applying native CNOT gate, based on the unitarity
values. However, there is considerable difference (∼ 10−2) in the unitarity of CNOT
gate for 5-qubit processor (burlington) as compared to 15-qubit one (melbourne).

Keywords: Quantum Computing, Randomized Benchmarking, Fault tolerant Com-
putation, IBM Quantum Experience, IBM Qiskit
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Chapter 1

Introduction

1.1 Hello Many Worlds

1.1.1 Motivation

Quantum Computing is novel framework, to perform computation which is fundamen-
tally different from how information is processed in classical machines. The striking
difference between quantum computing principles and that of classical computing, is
the ability to dramatically increase the scale of computation and perform non trivial
information processing tasks which are guided by peculiarities or ‘spookiness’ of quan-
tum mechanics. There are many motivating reasons (other than purely complexity
theoretic reasons) to study this framework and think of it’s practical implementation
and application in real world use cases.

In the recent years, the computational requirements have sky rocketed with the ad-
vent of Deep learning and processing of Big Data, such as the data accumulated from
social media which are highly unstructured and the sheer size of it is in the order
of petabytes. This has resulted in the manufacturing of high throughput processing
units that efficiently perform certain mathematical operations, mostly linear algebra
routines, for instance, GPU (Graphical Processing Units) or TPU (Tensor Processing
Units). Simply the need of storing this huge data in data warehouses is increasing at
a striking rate and is bound to increase even more in the future.

The computational power increases with the increase in the number of transistors
in the processor or core. But through the technique of VLSI (Very Large Scale In-
tegration) used to manufacture these processors must then decrease the size of the
transistors present in the core. The famous Moore’s law [1] which states that the com-
putational resources are being consumed at a rate such that the number of transistors
in a core is doubling about every two years. So, the transistor sizes are reducing by
a factor of two every about two years. Continuing this trend dictated by the Moore’s
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law, ultimately the size of a single transistor must decrease to the size of a single
atom, from the current size of a few hundreds of atoms large. When that happens,
due to quantum tunnelling, it will be hard to maintain fault tolerant computation
in classical computers as it will make the charge present in a DRAM transistor itself
uncertain, so even a single bit of information will become uncertain.

Quantum computing offers an alternative solution, by defining new ways to store
information as quantum data and allows one to perform truly parallel computation
thereby increasing the computational power. In the field of cryptography, the fa-
mous Shor’s Algorithm [2] gave the first significant evidence that quantum computers
may perform some tasks (here, is was factoring large primes) more efficiently than
classical computers. Several quantum algorithms were then proposed, which were
toy problems that theoretically showed that quantum algorithms are certainly better
than their classical counterparts [3, See Deutsch-Jozsa, Simon’s Algorithm, Bernstein-
Vazirani Algorithm] which is termed as the ‘quantum advantage’. On the other hand,
in 2019, Google claimed to experimentally demonstrate the ‘quantum supremacy’ on
a sampling problem, comparing the performance of Sycamore to IBM’s Summit su-
percomputer [4]. ‘Quantum supremacy’ is said to have been demonstrated when a
problem is easily solved by a quantum computer, while a classical computer takes un-
reasonable amount to solve it, i.e. extreme quantum advantage so to speak. One can
say that from a theoretical perspective, this was important since, quantum computers
became a serious candidate to challenge the Extended Church-Turing Thesis [5] but
at the same time, it also fuelled the research into real world applications, that are
significant and not efficient to solve on classical machines.

Quantum computing today, has evolved from being a theoretical framework to per-
form computation that mimics nature, to a practical means of computation for both
industrial and academic research purposes and with promising potential applications
in a variety of fields ranging from machine learning [6, 7, 8, 9, 10] and optimiza-
tion problems to quantum chemistry problems for drug manufacturing to many body
quantum simulations [11, 12, 13]. In the recent times, big technology companies and
research labs around the world have developed indigenous quantum archetypes for re-
search and industrial purposes which are based on different technologies, from super-
conducting transmon qubits (such as IBM-Q devices or Google’s Sycamore)[14, 4], to
ion-trap based (such as the one manufactured by Ion-Q[15]) to photonic devices [16].
Today’s quantum computers fall under the category of NISQ (Noisy-Intermediate
Scale Quantum) [17] devices,which have few qubits (around 10-50 qubits) and are
noisy in the sense, that error detection and correction schemes are required to per-
form fault tolerant computation. Significant research is being done into scale these
computers to the point, they can demonstrate practical quantum advantage in real
world applications.
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1.1.2 Postulates of Quantum Mechanics

Below, we state the basic postulates of quantum mechanics which will be the un-
derlying principles behind the framework of quantum computing. We define these
postulates in the way which is defined in the description of quantum mechanics, his-
torically termed as the ‘matrix mechanics’ (which of talk of quantum systems as states
in a vector space) different from ‘wave mechanics’ (which talk of wave functions of
quantum systems), although both descriptions are equivalent in some sense. Note
that, these postulates talk of pure quantum systems (which we shall define later) and
the postulates are slightly changed when we want to talk of general quantum systems
(or ensembles).

Postulate 1 States of a quantum system are represented by vectors of unit length in
a Hilbert space (i.e. complex vector space with inner product).

States are usually written in Dirac-ket notation as |ψ〉, which are vectors associated
with the Hilbert space H. Associated with the Hilbert space H is the dual vector
space H̄ such that the (natural) inner product between two vectors in H say, |ψ〉 and
|φ〉 is given by, |ψ〉 multiplied with dual vector of |φ〉 written in Dirac-bra notation
as 〈φ|. Succinctly, the inner product is written as

〈φ|ψ〉 = 〈ψ|φ〉∗

where, ∗ denotes the complex conjugate. The vectors in H and H̄ are related by,

|ψ〉 = 〈ψ|†

where, † represents the Hermitian conjugate or adjoint of an operator (i.e. in terms of
matrices, it is the combined operation of transposition and taking complex conjugate
of all entries in the matrix). Valid quantum states are represented by unit length
vectors in this space i.e,

〈ψ|ψ〉 = 1.

In particular, from this postulate, we get the idea of ‘superposition’ of states as a
consequence. For any two states |ψ〉 and |φ〉 and two scalars α and β in C i.e. field
of complex numbers, we get a new state |ξ〉 as,

|ξ〉 = α |ψ〉+ β |φ〉 .

Note that, mathematically speaking, the vectors representing valid quantum states
do not form a strict vector subspace of H, although one can transform any vector in
H to a valid state by normalizing it i.e dividing the vector by it’s norm with respect
to the inner product in H i.e dividing a vector |ψ〉 by 〈ψ|ψ〉 . This will be important,
when we discuss measurement principle in quantum mechanics.
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Postulate 2 Physical properties associated with a quantum system, such as spin,
energy, momentum etc are represented by Hermitian operators (also known as self-
adjoint operators) acting on the Hilbert spaceH. They are also known as ’observables’.

A Hermitian operator A is defined to be it’s own Hermitian conjugate i.e.

A = A†.

These operators change the quantum state by acting on it, which mathematically is
represented by left multiplication of matrix associated with A to the vector |ψ〉

A : |ψ〉 → A |ψ〉

where, left side A should be treated as abstract operator while right side A is the
matrix representation of operator A. We will use the same notation of an observable
to mean both it’s matrix representation and the abstract operator.
Observables represent the information that we can extract from a quantum system,
which can be any valid physical quantity. Note here, that this ‘extraction’ or retrieving
some physical information about the system is itself mathematically described by
action of an operator. All operations (interactions) that we can perform on the system
are represented by operators acting on the corresponding Hilbert space. They may or
may not result in valid quantum states with normalization required if later is the case.
Observables are also important in viewing a quantum system with respect to certain
physical quantity of interest, so that we now talk of evolutions and interactions of the
systems with respect to say their spin interactions, position etc, as described more
clearly in the next postulate.

Postulate 3 (Measurement Principle) : Measurement is an interaction with a
quantum system, which measures some physical property i.e observable of the system.
Following are the properties of this interaction:

• The only allowed values that can be observed are the eigenvalues an for n =
0, 1, 2...,m (where, m can be smaller or equal to dimension of the Hilbert space
H) of the corresponding observable A.

• (Born’s Rule) The probability of obtaining a particular eigenvalue an when the
measurement is performed, is given by the squared absolute value of the inner
product of the state of the quantum system say, |ψ〉 with the eigenstate |an〉
corresponding to the eigenvalue an i.e,

Pr(an is the measurement outcome) = | 〈an|ψ〉 |2

• (Collapse of the ‘wavefunction’) After the quantum system is observed the state
of the system becomes the normalized eigenstate |an〉 of the measured outcome
of the experiment i.e an.
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This postulate gives the subject it’s probabilistic interpretation and ‘quantum’ (dis-
crete) nature. The state description of the system enocodes both the probabilistic
nature (Born Rule) and ‘quantum’ nature (measurement outcomes belong to a dis-
crete set) which gives the subject it’s notorious difficulty in providing physical inter-
pretation.
One can show that, Hermitian operators have real eigenvalues. If an is an eigenvalue
of Hermitian operator A, corresponding to the eigenstate |an〉 then,

A |ψ〉 = an |ψ〉

Taking adjoint both sides; adjoint of a scalar is just the complex conjugate,

=⇒ 〈ψ|A† = a∗n 〈ψ|

Since, A is Hermitian.
=⇒ 〈ψ|A = a∗n 〈ψ|

Left multiplying by 〈ψ| in the first equation and right multiplying by |ψ〉 in the third
equation,

=⇒ 〈ψ|A |ψ〉 = a∗n 〈ψ|ψ〉 = an 〈ψ|ψ〉
=⇒ a∗n = an

i.e, an is real.
Also, one can show (along the same lines as above), if the vector space is equipped
with an inner product, then eigenstates corresponding to different eigenvalues are
always orthogonal with respect to the equipped inner product. In other words, one
can show that if

A |ψ〉 = an |ψ〉
and

A |φ〉 = am |φ〉
for two eigenstates |ψ〉 and |φ〉 with different eigenvalues an and am, n 6= m then,

〈ψ|φ〉 = 〈φ|ψ〉 = 0.

If all the eigenvalues are different (non-degenerate) then, the eigenstates of the ob-
servable A form an orthonormal basis (if we normalize the eigenstates) for the Hilbert
space associated with the system H. This means that any valid quantum state say,
|ψ〉 can be written in a superposition of eigenstates of an observable A (since, it is
the definition of a basis of a vector space).

|ψ〉 =
∑
n

αan |an〉

where, αan is the complex scalar coefficient multiplying the eigenstate |an〉 associated
with eigenvalue an.
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We can give more meaning to the complex scalar coefficients stated above. Tech-
nically, they are called the probability amplitudes because of the Born’s Rule. The
Born’s Rule gives the probabilistic interpretation to the state description of the sys-
tem with respect to a basis associated with the eigenstates of an observable. Using
the Born Rule we get,

Pr(am is the measurement outcome) = | 〈am|ψ〉 |2 =
∑
n

|αan 〈am|an〉 |2

where, we are left multiplying by 〈am| on both sides. Now, using the result derived
above, eigenstates of different eigenvalues are orthogonal, the sum boils down to,

Pr(am is the measurement outcome) = | 〈am|ψ〉 |2 = |αam|2.

Therefore, |αam|2 associated with eigenstate |am〉 give the probability that the out-
come of the measurement will be the eigenvalue am. By following this interpretation,
we can physically give meaning to the orthogonality of the eigenstates of an observ-
able. Physically, this represents the fact that, different outcomes of an observable
correspond to physically distinguishable states. This is a trivial, but key feature that
gives quantum mechanics a reproducible nature, in spite of being probabilistic, so
that the results of the theory can be experimentally verified. If we prepare a state in
the eigenstate of an observable, then we will see that whenever we measure the value
of observable A, we will always get the result as the corresponding eigenvalue and
not any other.
The expected value of an observable A in some arbitrary state |ψ〉 expressed with the
basis given by the eigenstates of A is,

〈A〉 = 〈ψ|A |ψ〉 =
∑
n

an|αan|2 (1.1)

One can derive above equation by using previous equations. This makes intuitive
sense when we compare to the usual definition of an expectation in statistics. Note
here, that in order experimentally calculate the expected value of an observable, we
have to take several counts i.e we must have copies of the same arbitrary state, mea-
sure each one of them, record the measurement outcome and then take the weighted
average of all the outcomes. One can also deduce from this, that outcome of the
measurement, when the system is in an eigenstate of an observable is fixed and not
probabilistic.
The collapse of the wavefunction represents, what happens to the system when mea-
suring some observable. This interpretation is also known as the Copenhagen Inter-
pretation of Quantum Mechanics [3, See Postulates of Quantum Mechanics] which
is the widely accepted theory of measurement of quantum systems. Measurement
or observation has always been a subject of active debate even today, regarding the
mechanism behind which the collapse of the wave function or the state description
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takes place. Another popular theory proposed by Hugh Everett was the Many-Worlds
Interpretation [18] which states that the wavefunction does not collapse but, there
exist some other universe where the wavefunction collapsed to all other possible val-
ues upon measurement.
We can mathematically represent the measurement process similar to an operator
acting on the state in an Hilbert space. The one we use in this thesis throughout is
the POVM (Positive Operator Valued Measurement).

Definition 1 (POVM Measurement) : A POVM is a set of positive semi-definite
matrices Fi on a Hilbert space H that sum to the identity matrix I, i.e.

n∑
i=1

Fi = I

. When a quantum system is observed, then a measurement outcome of i correspond-
ing to the positive semi-definite (eigenvalues are non-negative) Fi is mathematically
expressed as the action of Fi on |ψ〉. The state of the system after measurement

is given by Fi|ψ〉
〈ψ|F †i Fi|ψ〉

. One can check that this corresponds to the eigenstate associ-

ated with the outcome i. The operators Fi are usually projection operators onto the
eigenspace corresponding to the outcome i.

Postulate 4 The time evolution of quantum systems are governed by unitary evolu-
tion.

Here, we talk about another type of interaction with the system, which is different
from measurement and does not lead to wave function collapse.
Unitary operator U is a linear operator acting on the Hilbert space H such that

UU † = U †U = I.

Why unitary operators ? Since, time evolution in quantum mechanics is reversible
(makes no difference between forward and backward evolution of a system) given no
measurements are being made, we naturally lead to the conclusion that if we have two
orthogonal states, say two eigenstates corresponding to two different eigenvalues, then
under this transformation, they must evolve again into two orthogonal states. This
preserves the history of the states. Indeed for every unitary operator U there exists U †

such that the later ‘undo’ the computation of the former. Not only orthogonal states
but unitary operators preserve the inner product between any two given quantum
states, before and after measurement (which is again not hard to prove). It can also
be shown that, corresponding to every observable A there exists a unitary operator
eiAt and vice-versa, where t is a scalar (can be treated as time elapsed).
Unitary evolution plays an important role in quantum computation. But, not all
interactions with a quantum system are unitary for instance, measurement. Apart
from measurement, there are general forms of interactions that we discuss below.
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1.1.3 Density matrix formalism and quantum ensembles

It was found that, not all quantum systems can have a state vector representation.
The problem arises when we want to have a mathematical description of a subsystem
which is part of a larger entangled system. Consider the maximally entangled Bell
state known as the triplet state of two qubits (in this case, two electrons with their
spin observable)

|ψ+〉 =
|00〉+ |11〉√

2

. This state has the property that, if we measure the spin observable, (which for each
qubit (electron) can be either 1 or -1 corresponding to eigenstates |0〉 or |1〉) even if
one of the qubits is measured, we can instantly know the state of the other qubit,
since the state when collpased, can collapse into either state with both spins down
i.e |00〉 or both spins up i.e |11〉. Entanglement in quantum mechanics refer to this
correlation between two quantum systems (i.e particles such as electrons or whole
atoms etc). We will define entanglement more formally below. One can show that,
there exists no state vector in the Hilbert space associated with a single spin, which
can be used to describe either of the spins. This is counter intuitive in the sense
that one can only know about the system when taken together, but cannot formally
describe each qubit (each subsystem) as a quantum state in it’s own right (within the
postulates describes in the previous section).
Another motivation behind the density matrix formalism is to mathematically de-
scribe systems known as quantum ensembles or quantum mixtures. These are statis-
tical mixtures of quantum systems, which represent our lack of knowledge about the
system we are studying. For instance, a mixture of 1000 qubits, 500 in state |0〉 and
rest in state |1〉 does not have a state vector representation and we have to invoke
density matrices into the picture. Note that, the density matrix formalism ‘contains’
the postulates described previously and is a general formalism of quantum mechanics.
Consider a single quantum system represented with respect to a Hilbert space H.

Definition 2 (Density Matrix) : A density matrix ρ is a positive semi-definite
linear operator acting on the Hilbert space H which has the following properties:

• ρ = ρ† (Hermiticity)

• Tr(ρ) = 1 (Normalization)

• ρ ≥ 0 (Same as saying positive semi-definiteness)

The matrix form of these density matrices are written with respect to some basis of
the space H. One can show that, using the above properties, that the set of density
matrices form a convex set (proof omitted).

Theorem 1 The set of density matrices acting on H form a convex set D i.e for two
density matrices ρ and σ in D with λ ∈ [0, 1]

λρ+ (1− λ)σ ∈ D

13



The extreme elements of this convex set, i.e. the density matrices which cannot
be written as a convex combination of two other density matrices are exactly the
projection operators (square of a projection operator is the operator itself), which
are used in POVM. One can also prove the fact that all projection operators are
just the outer product of some vector in H with itself. These are the pure state
density matrices, i.e that quantum states which have a state vector representation.
By construction, one can see that every state vector in H can be associated (mapped)
to a projection operator, which is the pure state density matrix representation.

Definition 3 (Pure state) : A pure state is of the form |ψ〉 〈ψ| where, |ψ〉 is a
vector (normalized) in the Hilbert space H.

Now, we can try to put things together and define general density matrices which are
the most general descriptions of quantum states.

Definition 4 (General Density Matrix) : From the theorem stated above and the
definition of pure states, we can conclude that a general density matrix ρ can be written
as

ρ =
∑
k

pk |ψk〉 〈ψk|

For some real numbers pk ∈ [0, 1] such that
∑
k

pk = 1.

The general density matrices can then be thought of statistical mixtures of pure
states, which represents our lack of knowledge about the exact state of the system.
Sometimes, (for instance, in entangled states) the description about the quantum sub-
system can be stated as a statistical ensemble of pure states, and the coefficients (pk
in the above definition) are the probabilities with which we ‘think’ that the quantum
state when observed will collapse to the respective pure states.
All density matrices which are not projection operators, are representations of mixed
states. We can also write this more formally as follows.

Definition 5 (Mixed State) : If a density matrix ρ, is such that Tr(ρ2) < 1, then
the density matrix represents a mixed state. One can also show that, Tr(ρ2) = 1 iff
ρ represents a pure state, i.e ρ is a projection operator.

Till now, we looked at general state representations for a single quantum system.
When we want to talk of multiple quantum subsystems together as part of large
system, we consider the question, whether we can describe each subsystem irrespec-
tive of the other subsystems or not. This kind of independence associated with the
subsystems is termed as separability and we call the larger system as separable. If a
quantum state with possibly many subsystems, is separable, then we can safely ignore
the subsystems that are not of our interest since, the subsystems are ‘non-interacting’
and we then treat our subsystem of interest different from the larger system, as a stan-
dalone. Similar to the notion of mixed states being the most general descriptions of
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a system with a single Hilbert space H, we can talk of general state description for
say, a combined large system of two quantum systems with respective Hilbert spaces
HA and HB and the Hilbert space for the combined system is then represented by
the direct product of the two spaces i.e HA ⊗HB. We formally define the notion of
a separable quantum system (with two subsystems as mentioned previously)

Definition 6 (Separable State) : A quantum system represented with density ma-
trix ρAB acting on the Hilbert space HA⊗HB (which is the direct product of the Hilbert
spaces associated with subsystems A and B) is said to be separable, if ρAB can be ex-
pressed as

ρAB =
∑
i

piρAi ⊗ ρBi

where, ρAi and ρBi are density matrices acting on the Hilbert spaces HA and HB
respectively and

∑
i

pi = 1, pi ∈ [0, 1].

This definition can be easily extended for systems having more than two subsystems.
Each of the terms ρAi ⊗ ρBi are called product states, which means that we have a
description of each subsystem independently of the other (in other words, they are
uncorrelated). Essentially, a separable quantum system is a probability distribution
over the possible product states of it’s subsystems. Note that, here too we can have the
knowledge of a subsystem if we know the state of the larger system, and measure other
subsystem, similar to the Bell state example discussed previously. But we said that
the Bell state is an example of entangled system. Entanglement comes into picture,
when the assumption of separability fails and we cannot write in the form mentioned
in the above definition as a probability distribution over product states. This means
that, the subsystems are interacting in such a way, that we cannot know the complete
information about a subsystem by ignoring the other subsystem. However, we can
represent our limited knowledge as a density matrix, called the reduced density matrix
by the operation of reduce trace which mathematically represent the idea of ‘ignoring’
a subsystem.

Definition 7 The information (possibly limited) about a quantum subsystem extracted
by ‘ignoring’ the other subsystem is mathematically represented by the reduce trace
operation. Suppose we ignore subsystem B and want to know the information about
subsystem A, ρ̄A from the combined density matrix ρAB. We perform the reduce trace
operation as follows

ρ̄A = TrB(ρAB)

Suppose, P ∈ HA ⊗HA and Q ∈ HB ⊗HB are some linear operators over respective
Hilbert spaces then, TrB(P ⊗Q) = Tr(Q)P i.e tracing over the basis for the Hilbert
space to be ‘ignored’.

Note that, for a separable state ρAB, the mixed state representation we get after
‘ignoring’ subsystem B, is exactly the same if we had multiple copies of the ρAB and
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measured both the subsystems and formed a distribution over the states that we got
for subsystem A. This is the essence of a separable state, that we can ignore the
other subsystem and still extract maximum information about the other subsystem.
In entangled systems, the reduce trace operation provides us with less information
about the state of the subsystem than what we could know, when we have both the
subsystems. In particular, the mixed state description is different, if we take reduce
trace or not. One can show that, the density matrix of the triplet state mentioned
previously is a non-separable state and hence is entangled. But the general problem
of deciding whether a system is entangled or not for arbitrary number of subsystems
is NP-hard [19].

Definition 8 (Entangled State) : (For a system made of two subsystems) A state
ρAB composed of subsystems A and B is said to be entangled, if it is not separable.

1.1.4 Introduction to Quantum Computing

We’ve given a brief introduction to Quantum Mechanics and defined the tools and
machinery to understand quantum computing. For further clarification, we refer the
reader to [3] for more on quantum information theory, quantum computation and
related fields. Now, we briefly review the basic elements of quantum computing and
different phases of a typical quantum computation.

Qubits

The basic unit of information in quantum computing is the idea of qubit. Formally, it
can be any quantum system (electron, photon, ions etc) and associated with it some
observable such as spin, energy etc limited to only two levels i.e, the Hilbert space of a
qubit is two dimensional. In other words, when the measurement is made on a single
qubit, there are only two possible values that can be obtained. We can also think
of performing computation using quantum systems associated with d-dimensional
Hilbert space, called qudits. Computation with qudits is also an area of active re-
search, although equivalence of both the models with respect to computational power
is debatable.

The quintessential example of a qubit is described by the spin of an electron in say
Z direction and the associated observable is written as σz. The basis for the Hilbert
space of the qubit is given by {|0〉 , |1〉}, where |0〉 is usually the ‘up’ spin or the
eigenstate corresponding to eigenvalue of 1, of the observable σz and |1〉 is the ‘down’
spin or the eigenstate corresponding to eigenvalue of -1 of σz. By the postulates of
quantum mechanics, a general qubit state is given by

|ψ〉 = α |0〉+ β |1〉
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where, α, β ∈ C and | 〈ψ|ψ〉 |2 = 1. Other observables can be the spin along X (σx), Y
(σy) or any arbitrary direction. The matrices corresponding to the spin observables
along X,Y and Z directions together with the 2 × 2 identity matrix form the Pauli
group for two dimensional Hilbert space and the matrices {σx, σy, σz} are known as
the Pauli matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Here, the basis chosen to express the Pauli matrices is the {|0〉 , |1〉}, sometimes also
known as the computational basis or the default basis. This is the basis which is used
most widely in quantum computation. At any point of computation, we are allowed to
change our basis from one observable to other, which may be useful in some scenarios.
For example, with respect to observable σx the basis is given by {|+〉 , |−〉} where,
|+〉 = (|0〉 + |1〉)/

√
2 has eigenvalue 1 and |−〉 = (|0〉 − |1〉)/

√
2 has eigenvalue -1,

written in the computational basis.
Other examples for a qubit may be the the ground state and the first excited state
acting as the two levels of the qubit, which is used in trapped ions archetype [20].
In superconducting transmon or Xmon qubits [21] the two levels are designated to
the ground state and excited states of ‘artificial atoms’ which are Cooper-pairs of
electrons. In terms of qubit quality, it has been observed that Trapped Ions have
longer decoherence [22] times as compared to superconducting qubits although the
gate times of later are much shorter than the former [23].

Quantum Register

Similar to the terminology in classical computer architectures, where an array of bits is
called a bit register, an array of quantum bits or qubits is called a quantum register.
Mathematically, a n-qubit quantum register is a quantum system, represented by
the direct product (⊗) of the two dimensional Hilbert space with itself n times.
Since, the computational basis for a single qubit is the set {|0〉 , |1〉}, naturally the

computational basis for the n-qubit quantum register is the set
n⊗
i=1

{|0〉 , |1〉}. For

instance, for a 2-qubit quantum register the computational basis is represented by
{|00〉 , |01〉 , |10〉 , |11〉}. We can also write the basis set for a general n-qubit register
in a more compact form as {|x〉 : x ∈ Fn2} where, Fn2 is the set of n-bit binary numbers
or strings.

Quantum Gates

We stated in the postulates, that operations or interactions with the quantum state
which preserve the history (or in other words, are reversible) are the unitary transfor-
mations. Quantum gates are the unitary operators which are acted on the quantum
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register (possibly a 1-qubit register, which is just a single qubit) to evolve the quan-
tum state of the register and perform meaningful computation. Most of the research
into design of quantum algorithms and computing is being done, to study the power
of these gates which allows us to implement all the weirdness of quantum mechanics
(superposition, entanglement), from the perspective of complexity (i.e how efficient
the quantum computation is with respect to classical computation). This is similar
to the gates we encounter in the digital electronics of a classical computer such as
AND, OR, NOT etc, but in quantum setting, the gates are much more rich. Ad-
ditionally, since they are unitary transformations, all computations can be ‘undone’
as these transformations are reversible (though some extra qubits may be required
for it which do not involve in the computation explicitly. Such ‘helper’ qubits are
called ancillary qubits). Physically speaking, this means that quantum computers
basically don’t heat up or lose energy (like classical computers) when processing data
(quantum data). All quantum gates acting on n-qubit register will take all n-qubits
as input and output a quantum state for n-qubit register (in other words, input and
output dimensions of the Hilbert space of the quantum register is same).
Now, we briefly discuss the single and two-qubit quantum gates. The most trivial
gate is the identity gate, which does nothing to the qubit.

I =

(
1 0
0 1

)
.

Similarly, n-qubit identity gate is represented by n× n identity matrix. The Pauli
group itself, represent a set of quantum gates for a single qubit. The Pauli-X matrix
(σx) or just ‘X’ gate (all these terms are used interchangeably) is also called the
quantum NOT gate since, it essentially perform the classical NOT operation on the
computational basis states i.e {|0〉 , |1〉}.

X |0〉 = |1〉

X |1〉 = |0〉
The Pauli-Z matrix (σz) or just ‘Z’ gate just adds a phase (phase means to multiply
a quantum state by a complex number whose norm is 1) of -1 to the state |1〉.
Another example of single qubit gate is the Hadamard Gate (H) which is the unitary
transformation that changes the basis from {|0〉 , |1〉} to {|+〉 , |−〉} and vice-versa.

H =
1√
2

(
1 1
1 −1

)
, H |0〉 = |+〉 , H |1〉 = |−〉

Note that, the Hadamard gate is it’s own inverse i.e H = H† and H2 = 1. In
fact, all elements of the Pauli group are self inverses, hence are both observables and
unitary gates. Same is true for n-qubit Pauli group (n-qubit Pauli group is just the

generalization of Pauli group written as
n⊗
i=1

{I,X, Y, Z}, shortly denoted by Pn). By
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linearity, any ‘real’ linear combination of Pauli gates also has the same property (for
instance, H = (X + Z)/

√
2). Finally, we define another important single qubit gate

which is the T gate.

T =

(
1 0
0 ei

π
4

)

We can also show that, any single qubit gate can be decomposed into the X, Y, Z
and identity gates. Any unitary matrix U can be written as (using a result stated in
the postulates)

U = exp(−in̂.−→σ )

where, n̂ is a unit vector (in 3-dimensional Euclidean space) and −→σ is shorthand for
an operator Xî+ Y ĵ + Zk̂ along the usual î, ĵ, k̂ directions.
Coming to the two-qubit gates (in general, multi-qubit), the gates are either applying
two different single qubit gates simultaneously (for example, XX or XZ gates mean
that apply X gate to both qubits simultaneously in the former and apply Z gate
to first qubit and X gate on second qubit simultaneously in the latter) or are the
‘controlled’ versions of the single qubit gates. Essentially, these ‘controlled’ gates
perform a ‘if-then’ operation. For example, CNOT (CX) (Controlled-NOT) is the
‘controlled’ version of NOT gate. This gate takes two qubits as input, out which one
of them is the ‘control’ qubit and the other is the ‘target’ qubit. If the ‘control’ qubit
is |0〉, then the gate does nothing to both of the qubits and if ‘control’ qubit is |1〉
then, it does nothing to ‘control’ qubit but flips the ‘target’ qubit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


All n-qubit quantum gates, i.e quantum gates which take n qubits as input and output
form a mathematical group structure, formally written as U(2n) called the Unitary
group and here ‘n’ represents the number of qubits the operators in the group act
on. It has been proved that, universal quantum computation (i.e any valid unitary
evolution) can be realized by a set of gates called the universal gate set similar to
the property of NAND or NOR gates being universal for classical computation. One
such universal set is the Clifford gates + T gate. Clifford gates are the elements of a
group called the n-qubit Clifford group (Cn) which is defined to be the normalizer of
the Pauli group or that the Pauli group is the normal subgroup of the Clifford group.

Cn := {U ∈ U(2n) : UPU † ∈ Pn, P ∈ Pn}

. Clifford gates have been known to be efficiently implemented using the Pauli
gates [?]. Also, later in this thesis, we will be working with this group extensively.
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Measurement

After the application of quantum gates on the quantum register, the act of measuring
the state of the register with respect to some observable is explicitly made clear
by using the term measurement gates. Measurement, as already mentioned in the
postulates, leads to ‘collapse of the wavefunction’ and we get as output a scalar (real
number). Because of the ‘irreversible’ nature of measurement, usually (except in some
quantum communication protocols) measurement is the last step of the quantum
computation. Also, theoretically it is possible to measure only a subset of qubits
in the register at the time of measurement, however in the commercial quantum
computers today, the entire quantum register is measured by default (such as in
IBM-Q devices). Note that, without loss of generality, we can always assume that
necessary basis change has been made by applying unitary gates, so that we always

measure a n-qubit register in the computational basis
n⊗
i=1

{|0〉 , |1〉}.

There can be two utilities of the measurement, firstly to sample from the distribution
generated as the output, over the basis states (or a subset of them) and secondly,
to calculate a scalar expected value of a given observable in the output state of the
quantum register. Often, we have to repeat a quantum computation many times
(in quantum computing terminology, sometimes these repetitions are called shots) to
generate statistics (distribution) of the basis states. Often for clarity we say that, the
quantum data (unobserved quantum wavefunction or state) is collapsed to generate
classical data (collapsed eigenstate’s eigenvalue or some encoding of the eigenstate
itself) at the time of measurement and this classical data is stored in the classical
register. Note that, we often are interested in knowing the eigenstate into which
the state of the register (quantum register) collapsed to, instead of the measurement
value (eigenvalue) of the collapsed state with respect to the observable used in the
measurement (Often we measure Z (σz) because we want to sample the distribution
of the computational basis).

Quantum Circuit

The collection of the quantum register (possibly along with classical register), the uni-
tary gates and followed by the measurement gates (of the whole register or a subset
of them) is termed as a quantum circuit. Usually, in actual quantum circuit imple-
mentation, the register starts in the ‘all up state’ or ‘all zero state’ i.e the state |0〉⊗n
where, all the qubits in the register, are in state |0〉. The entire quantum computation
is depicted in the form of a quantum circuit which is then boiled down to low level
code, for the quantum computer or processor to execute instructions specified by the
circuit. Instruction is similar to what we intuitively think of, given our experience
with classical computers, which is any register allocation, applying unitary gates or
measurement gates.
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In this section, we basically reviewed the postulates of quantum mechanics and density
matrix formalism of quantum systems. Next, we reviewed the elements we encounter
in a typical quantum computation. In the next section, we describe about the general
quantum operations, provide formal definitions and use this as a tool to study noise
and decoherence in quantum systems. Next, we introduce the concept of randomized
benchmarking and provide a literature review, which is fundamental for our work in
this thesis.

1.2 Noise in Quantum Computation

In the previous section, we discussed mainly about two types of interactions with a
quantum system, namely unitary transformations and measurement. One can say
that, these interactions are determined by the user, in the sense that, we have full
control over these interactions such as when do we need to apply which particular
gate, when to include measurement gates or when do we have to ‘reset’ (transforming
n-qubit register to |0〉⊗n ) the register etc.
Classical computers, which are quite fault tolerant, with the probability of error (or
noise) in a single bit which was 1 previously and accidentally reading it to be 0 (be-
cause of discharging of the transistor) is in the order of 10−9 [24]. So, in a sense
we can say that, the state of a classical system (a computer or even a large enough
mechanical machine) can only be changed by a user and is robust to changes in it’s
environment which are not in power of (or authorized by) the user. However, quan-
tum world is different.

1.2.1 Coherent Noise

There are many sources of error (noise) when performing quantum computation.
Fault tolerant computation in case of quantum computers are currently a big deal
in the NISQ era. One source of error in quantum computers, is an engineering issue
of calibration of parts of the computer (lasers, electronic circuits, sensors etc) that
perform actual unitary gates on the quantum register. This type of noise is some
unitary transformation on the register. Suppose, we want to apply multiple T gates
on a qubit, but somehow, every time we give an instruction to apply T gate, the
processor applies Z gate. Note that, we won’t be able to get the state that we
desire and there will be an error in the computation, but still register’s state remains
coherent (or in other words, it evolves into some other pure state) since we are always
performing a unitary transformation (i.e the incorrect gate Z), although not calibrated
properly. This kind of error or noise is known as coherent error or coherent noise or
unitary noise.

21



1.2.2 Incoherent Noise

Quantum systems are heavily subjected to another type of interaction called decoher-
ence [25, 22] due to the surrounding environment, which is another of the source of
error induced in the computation. It is a non-unitary interaction with the environ-
ment, resulting from the entanglement of the quantum system with it’s surrounding.
The system along with the surrounding together evolve unitarily, but the reduced den-
sity matrix of the system alone turns out to be a mixed state or in other words, the
density matrix of the combined system and it’s surroundings taken together turns
out to be non-separable. Measurement itself is a process of decoherence, however,
unlike the decoherence due to the environment, it is controlled by the user and is
desirable since we may want to the results of the experiment at the end of running
the circuit. We have also stated in the previous section that, measurement is the
last operation we perform on the register, since the interaction is irreversible. This
is exactly the problem with decoherence due to environment as it can take place at
any point of time (or for some duration) during computation. Often, we see that all
the ‘magic’ in quantum algorithms happens due the coherence of the wavefunction.
When a quantum system transforms into a mixed state, we are essentially losing in-
formation contained in the coherent wavefunction, to the surrounding, which hinders
any potential quantum advantage. That’s why, the quantum computations require
very low temperatures and vacuum surrounding it so that the decoherence is as low
as possible. This type of noise is also known as incoherent noise or incoherent error
because of the destruction of the coherence in the wavefunction due to entanglement
with the surrounding quantum state.

In this thesis, we are concerned only with the incoherent noise and it’s characteriza-
tion. Noise in quantum systems are studied under the framework of open quantum
systems and how they evolve by possible interaction with the environment. Actual
noise characterization may be hard to perform, hence only partial characterization is
possible, one of the techniques for which we discuss later in this thesis. We now briefly
explain the mathematical formalism to study noise (or error) induced in a quantum
system, which is in interaction with the environment, thus defining quantum channels
(noise channels) and general quantum operations.

1.2.3 Interactions in open quantum systems

An open quantum system is a system which is interacting with the environment i.e,
is entangled with it’s surrounding. The combined system and surroundings form an
isolated quantum system and it evolves under unitary evolution (as stated by the
postulates). But, if we consider the system alone by ‘ignoring’ the interaction with
the environment (the interaction may not be known in full detail) then we find that
the evolution of the system can be non-unitary.
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Definition 9 (Quantum channels) : Let ρ be the state of the system before inter-
acting with the environment. Define a superoperator (a map that takes an operator
to an operator) E, which maps space of density operators to itself as follows:

E(ρ) =
∑
a

MaρM
†
a

where, Ma are operators that satisfy the completeness criterion as follows:∑
a

MaM
†
a = I

where, I has same dimensions as ρ.

The operators Ma are known as Kraus operators and they ‘encode’ the non-unitary
interaction of the system with the environment. These operators are obtained by tak-
ing the reduce trace with respect to the environment of the combined state vector for
the system and environment. This type of representation of the evolution of density
operators is known as the operator-sum representation.
Quantum channel is the form of interaction in which we are completely ’oblivious’ to
the outcome of interaction of the system with the surroundings, in other words, we
have no information about how much the coherent information has been ‘leaked’ into
the surroundings. This is highlighted by the fact that, the Kraus operators satisfy the
completeness criterion which can be interpreted as, we are completely ‘ignoring’ the
exact effect of the surrounding on the system and just taking an ‘expected effect’ on
our system. This type of map is also known as Completely Positive Trace Preserving
(CPTP) maps, since they map density operators to density operators. Noise channels
are mostly studied as a CPTP maps however, more general type of noise channels
also exist, which are studied as quantum operations. Note that, in general, the su-
peroperator E maps pure state density operators to mixed state density operators,
signifying the non-unitary interaction of the system with it’s surroundings, but as a
special case, if there is only one Kraus operator in the operator-sum representation
of the action of E then, together with the completeness criterion, one can easily see
that Ma must be unitary and hence, unitary evolution of a system is a special case of
quantum channels. In particular, coherent noise can always be viewed as this special
case.

Definition 10 (Operator-sum representation of coherent noise channel) : Let
E be a coherent noise channel and ρ be initial state of a system, then action of E has
a operator-sum representation

E(ρ) = UρU †

where, U is some (approximate) unitary operator.

where, by approximate, we mean that U can be ‘approximated’ to sufficient degree,
by a exact unitary operator Ũ with respect to reasonable norm (for instance, Hilbert-
Schmidt norm).
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We now define general quantum operations, which are the most general form of the
representation of our ‘knowledge’ about the interaction between a system and it’s
environment.

Definition 11 (Quantum operations) : Let ρ be the state of the system before
interacting with the environment. Let E be a superoperator whose action is defined
by the Kraus operators {Maµ} (which satisfy the completeness criterion), where, we
have two indices per operator. Suppose that we know the value of index a but don’t
know the value of index µ, so that, we only know ‘partial outcome’ of the interaction.
Then, the effective state of the system according to our updated knowledge is given by
(upto a normalization factor):

Ea(ρ) =
∑
µ

MaµρM
†
aµ

where, Maµ are operators that satisfy the inequality :∑
µ

MaµM
†
aµ ≤ I

where, I has same dimensions as ρ.

Note that, for some Hermitian operator A ≤ I means that, eigenvalues of A are less
than or equal to 1.
We can think of the operators Maµ for a fixed a, as a sort of representing the con-
ditional effect on the system that we observe, given that we know some part of the
interaction, in this case, the index a. In general, these operations do not map density
operators to density operators, as they can be in general, trace decreasing because of
the inequality constraint. Hence, we apply a normalization (dividing) by Tr(Ea(ρ)) to
get the final reduced density matrix of the system. If there is only one value for index
a, then we essentially don’t know anything about the system and we are again tracing
over all possible outcomes of the interaction with the environment, thus reducing to a
quantum channel. On the other hand, if there is only one value for index µ, then we
essentially know the complete outcome of the interaction and hence it corresponds to
measurement of the system. Therefore, this is the most general definition for inter-
action with a quantum system.

1.2.4 Sources of noise in quantum computation

In the previous section, we described the basic elements of a quantum computation
such as the quantum circuit, gates, measurement etc. More formally, we define three
different stages of computation, namely, State preparation, Gate application or the
Evolution of quantum register and the Measurement.
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State preparation

This stage comprises of preparing the quantum register in some pre-defined state
which often, is just the default vacuum state or |0〉⊗n for a n-qubit register in the
computational basis. Sometimes, we may want to work or perform our computation in
some different basis (for example, in the {|+〉 , |−〉} basis) or start with some specific
initial state (for instance, many quantum algorithms require the register to be initially
prepared in a state which is in equal superposition of the computational basis states,

which is written compactly as 1√
2n

2n−1∑
x=0

|x〉 for n-qubit register). Such transformations

on the quantum register are performed in the state preparation stage. All ancillary
qubits are also ‘replenished’ in this stage. In variational circuits, which are becoming
recently popular models for quantum machine learning [11, 26], often need to encode
the classical data into quantum data, which is performed in this stage.

Gate Application

In this stage, the implementation of some algorithm or model is performed, by ap-
plying gates to transform the quantum register state to some pre-defined or expected
target state. The bulk of quantum computation takes place in this stage. The com-
putation is divided into several time steps such that in a single time step, any number
of non overlapping gates can be simultaneously performed. Suppose, CNOT gate is
being applied on first and second qubits in the register in some time step, then no
other gate can be performed on these two qubits in the same time step and should
be postponed for the next time step. The total time steps required to perform the
required computation (till possibly, measurement stage) is known as the depth of the
quantum circuit.
There are numerous practical considerations when implementing quantum algorithms
in this stage. In NISQ era, the actual quantum processors have restricted connectiv-
ity which means that, we can only apply two qubit gates to a pair of qubits which
are connected according to the connectivity in the processor, therefore, we need to
construct instructions for the processor accordingly. Additionally, we also need to
consider the quality of qubits (on the basis of their deocoherence times) present in
the processor when choosing our ‘working’ and ‘ancillary’ qubits to ensure less error
in our computation. Therefore, it is crucial to perform the gate operations in an effi-
cient manner by taking into consideration the ‘quantum hardware’ that the platform
has to offer, in terms of connectivity and decoherence times [22, 27] of the qubits that
we want to work with, for our desired application.

Measurement stage

In this stage, the quantum register is measured in preferred basis and classical data is
extracted from the quantum circuit. This stage includes any unitary transformations
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required to change the basis to the preferred measurement basis. Additionally, any
classical processing of the data is also included in this stage.

Noise can be induced into the system at any of these stages. The errors introduced
in the state preparation and measurement stages are known as State Preparation and
Measurement (SPAM) errors. We always want to treat, the noise induced in the
state preparation and measurement stages separately from the noise induced in the
gate application stage. Here, we are assuming that for all practical purposes the
platform/archetype is capable of ‘reseting’ the register to vacuum state and the mea-
surement apparatus is sensitive enough to reduce the uncertainty in a single outcome.
Hence, any model on the characterization of noise that we may wish to propose must
be robust to SPAM errors, so that the error rate in actual quantum computation
performed on the device by using the gates allowed by the platform/archetype (also
known as native gates) can be studied. In this thesis, we ask, how the noise affects the
computation when the depth of circuits are large. This is typical in many quantum
algorithms such as Shor’s algorithm, where we require many gates and ‘deep’ circuits
to perform our required computation and we want to know the affect of noise induced
as a result of ‘long’ computation in the gate application phase, assuming that SPAM
stages are noiseless or the overall affect of SPAM errors on our computation is not of
interest for our computation.

We conclude the discussion of noise in quantum computation. Ideally we may some-
times want to fully characterize the effect of noise on the quantum register which
can be done through expensive techniques of quantum process tomography, since it
is a statistical experiment and requires a number of trials to be done. Also, it has
been shown that quantum process tomography is not robust to SPAM. Instead for
NISQ devices, there has been research into partial characterization of noise by using
certain figures of merit as metrics. These metrics are used to benchmark the ‘quality’
of quantum computation on a device, irrespective of platform/archetype. Such tech-
niques have been named as ‘Benchmarking Protocols’ using randomization as a tool.

In the next section, we review the ‘benchmarking’ protocols proposed in the literature.
Most of the protocols proposed, do not try to characterize gate noise in terms of
it’s coherence. Building onto this motivation, we propose the URB protocol, it’s
significance and practical implementation later in this thesis.

1.3 Randomized Benchmarking: Literature Review

In the previous section, we introduced the concept of open quantum systems and how
it acts a theoretical framework and as a tool to study noise in real quantum comput-
ers. We also mentioned that, we are interested in characterizing the noise induced
when applying quantum gates, therefore our theory (model) to characterize must be
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robust to SPAM errors.

1.3.1 Figure of merit to characterize noise

In this thesis, we are only interested in errors induced in the computation involving
arbitrarily long sequences of ‘noisy’ unitary gates, however, significant research has
also been made to ‘benchmark’ or in other words, evaluating a metric that captures
the performance of the quantum computing platform in a more holistic manner, that
includes initial qubit state preparation errors and final measurement errors. There
are mainly two aspects regarding a metric or some figure of merit, that needs to be
ascertained:
firstly, that the metric that is to be evaluated must not depend on the intrinsic
parameters involved in actual gate implementation in any device archetype since, we
are interested in contrasting the performance of gate implementation across various
platforms such as superconducting or ion-trap.
Secondly, the metric must be a good indicator of the error induced by noisy gates,
for arbitrarily long computation or in other words, it must faithfully provide a value
representing the error rate (though may not actually be the probability of error)
irrespective of the depth of quantum circuits.
Several metrics have been proposed in recent times which are mostly clubbed under
the name Randomized Benchmarking while, other metrics different from it have also
been proposed such as Quantum Volume [28]. Today, many quantum programming
software frameworks such as IBM Qiskit [29] and Forest SDK [30] provide libraries
to benchmark single and two-qubit errors in their respective processor architectures
which are based on randomized benchmarking (here on, referred to as the ’Standard
Randomized Benchmarking’ (SRB)) though many variants have been proposed, which
are claimed to be suited for different scenarios, as discussed below.
Apart from comparing and contrasting the performance of various quantum devices
for computation, benchmarking of quantum devices is also vital to show empirically,
that infact, fault tolerant computation is possible in NISQ devices by using the bench-
mark metric to show that error correction indeed improves the quality of quantum
computation. Benchmarking of the performance of quantum devices also gives a per-
spective on the characterization and power or influence of noise on the computation,
so that the errors can be better analysed and hence contribute to research in manu-
facturing better quantum systems with efficient architectures that allow fault tolerant
computation, as is discussed below.
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1.3.2 Standard Randomized Benchmarking (SRB)

Randomization has been studied as an effective tool in empirically, studying and
characterising the noise associated with quantum transformations. Emerson et al. [31]
studied circuits which apply a random sequence of noisy unitary gates followed by
a reversal gate (ideally reproducing identity quantum channel) and showed that the
rate of decrease of average sequence fidelity over the number of gates applied, is a
strong indicator of the strength of the noise induced by the gates (assuming, that
noise induced by individual gates is independent of the specific gate applied). The
noteworthy aspect about this protocol of applying sequence of (Haar-random) gates
is that the average noise map (average with respect to Haar measure) generated,
effectively, behaves like a depolarising channel whose strength parameter λ controls
the decay rate of the noise and the average fidelity of the noise channel itself is a
function of this decay rate. It has been shown in [31] that average sequence fidelity
for sequences of varying depth depend exponentially on the decay parameter of the
depolarising channel (which essentially is the Haar-averaged noise channel). Hence,
decay rate is experimentally derived (as a fit parameter) by considering gate sequences
of varying depths and calculating the average sequence fidelity for each depth (by
performing the aforementioned procedure of producing identity channel by applying
random unitary gates followed by undoing them) and fitting an exponential curve to
the plot of average sequence fidelities vs depths. The work of Emerson et al. [31] show
that average fidelity is a good metric that characterizes the nature of the noise map.
Based on this technique, Knill et al. [32] proposed SRB protocol and implemented it
on trapped ion qubits. They used the single qubit Clifford group as the gate set from
which random unitaries were chosen, motivated by the fact that Clifford unitaries can
be constructed easily from Pauli gates, which constitute the native gate set (by native,
we mean, specific dedicated instructions are present to implement these gates on a
given quantum computer archetype and all other unitary gates have to ultimately
complied into compositions of these native gates). Dankert et al. [33] validated their
choice of gate set by showing that Clifford group is an instance of a unitary 2-design
and sampling gates from any such unitary 2-design uniformly at random effectively
approximates the mathematical operation of twirling which maps a quantum channel

Λ 7→
∫
dUÛΛÛ †,

where, the integral is with respect to uniform Haar-measure over the unitary group
U(2n) and Û is the unitary channel with respect to unitary gate U and twirling of the
gate independent noise map over the unitary group exactly produces a depolarising
channel as noted firstly by Emerson et al. in [31].
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1.3.3 Interleaved Randomized Benchmarking (IRB)

SRB protocol calculates the average fidelity (infidelity) of noise channel for a gate set
(preferably, a unitary 2-design) which is assumed to be invariant (or approximately
invariant) for all gates in gate set. Magesan et al. [34] proposed Interleaved Ran-
domized Benchmarking (IRB) protocol that benchmarks the error rate for a given
computational gate (G) (in contrast to a preferred gate set), again in terms of aver-
age gate fidelity similar to SRB. They propose a protocol that firstly, performs the
SRB and extracts the decay rate (say, λ1) and secondly, again performs SRB, but this
time by applying the gate G after applying each Clifford unitary (authors mention
this as ’interleaving’ of the computational gate) and extracting new decay rate (say,
λ2). The required average gate fidelity of G is then a function of λ1 and λ2.

1.3.4 Real Randomized Benchmarking (RRB)

Another variant of SRB proposed by Hashagen et al. [35] known as Real Randomized
Benchmarking (RRB) measures the average gate fidelity for a restricted gate set
which is not an unitary 2-design. The motivation for the protocol as discussed by
authors in [35] is firstly that, it provides more fine grained estimate for average
gate fidelity when performing computations that result only in real valued density
operators (in other words, when one is interested only in unitary transformations
which do not induce complex parts to the values in the input density operators) and
secondly, when working with an error correction scheme, the whole Clifford group
may not be accessible under the scheme and hence, to benchmark the performance
of such a scheme one has to work with a restricted gate set, as noted by the authors,
for example, for [4,2,2] code in [36].
Brown et al. [37] also claim that, it is certainly sufficient but not necessary for the gate
set to be a unitary 2-design to conclusively benchmark error rates through similar
procedures as prescribed in SRB, rather subgroups of a unitary 2-design like the
real Clifford group (used in RRB as proposed in [35]) which is a subgroup of the
Clifford group can provide approximate average gate fidelities within a factor of two
or less. Aforementioned protocols benchmark the performance of computation with
respect to a chosen gate set and independent of the actual implementation of gates
in a practical device, hence, the protocols do not take into consideration the errors
specifically introduced due to compilation of gates in the chosen gates into the native
gates allowed by the processor and evidently, may underestimate the performance of
an actual processor due to sub optimal compilation of circuits.

1.3.5 Direct Randomized Benchmarking (DRB)

We finally mention Direct Randomized Benchmarking (DRB) proposed by Proctor et
al. [38] to benchmark the performance of gate set made of native gates and not of
a unitary 2-design (or it’s subgroup) and hence, directly providing the error rate of
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gates which are directly implemented in the quantum computing processor (and hence
is archetype dependent). Still, we note that the original SRB protocol is prevalent
in the error correction literature and as a practical standard for benchmarking error
rates of gates.

In this chapter, we introduced the basic mathematical tools and provided intuition
to understand the problem at hand, mainly to characterize noise in actual quantum
computers which can be treated as a figure of merit to compare between platforms
and archetypes. We specifically looked at some prevalent techniques for partial char-
acterization using benchmarking protocols.
In the next chapter, we discuss at length about a variant of SRB known as the Uni-
tarity Randomized Benchmarking (URB) which highlights the type of error (coherent
or incoherent error) introduced by the noise.

30



Chapter 2

Unitarity Randomized
Benchmarking (URB)

2.1 Motivation

In SRB and other variants discussed above, the primary metric of interest was the
average gate infidelity of a gate set (may or may not be native gate set) or of a single
computational gate, which was interpreted as a strong indicator for the probability of
error per gate chosen randomly from our gate set. However, we can further charac-
terize the noise, distinct from quantifying the error introduced by the map, in terms
of the coherence of the error. For measuring the actual error rates, as discussed in
threshold theorems for fault tolerant quantum computation, the metric of interest to
quantify the error rate is the diamond distance between the ideal quantum channel
and actual channel [39]. It has been shown, that the upper bound on the worst case
error scales as square root of the average gate infidelity and is saturated by unitary
noise channel and in the case of Pauli channels it scales linearly [40]. Since, the actual
error per gate scales with average fidelity differently for different channels, based on
the nature of the channel, it is imperative to characterize the type of channel in order
to claim the effectiveness of the average infidelity to quantify the gate error precisely.
If the noise channel is (approximately) a unitary channel, then the errors induced in
the density operators are termed to be (approximately) coherent, for example, for sin-
gle qubit gates applied to single qubit pure state, unitary noise correspond to over or
under rotation of the state vector on the surface of Bloch sphere. Note, that unitary
noise channels map pure states to pure states since they are both trace preserving
and unital maps and hence, the state of the qubit(s) remain in a ’coherent’ state. On
the other hand, if the noise channel is not a unitary channel (or rather, is far from
being an ideal unitary channel; such a map may be non-unital or non-trace preserv-
ing or both) for instance, a depolarising channel then, the errors introduced by the
noisy gates are defined to be ’incoherent’. In the case of a single qubit, a depolarising
channel maps pure states to mixed states, thereby reducing the norm of the state
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vector, in the Bloch sphere representation. Wallman et al. [41] define unitarity as a
metric that captures intuitively, the idea of the extent to which the noise associated
with a unitary gate is itself not unitary. They propose a protocol similar to SRB that
benchmarks this metric for a noise channel attached to noisy gates, with respect to a
gate set which is a unitary 2-design.

In this thesis, we’ve tried to implement a slightly modified version of the protocol
mentioned in [41], which is more suited for experimental purposes, as proposed by
Dirkse et al. [42]. We first introduce key concepts related to URB followed by a dis-
cussion on what URB actually measures and it’s significance in complementary with
SRB and possibly, it’s aforementioned other variants. Our main experimental results
are summarised in next chapter, where we first present our results on simulations of
URB protocol for various noise channels using Aer simulator in IBM-Qiskit and it’s
consistency with the theoretical results. Finally, we present the unitarity benchmark
results for simulated noise maps for native gates present in two of the IBM-Q de-
vices, burlington (display name: ibmq burlington) [43] and melbourne (display name:
ibmq 16 melbourne) [44], which are 5-qubit and 15-qubit processors respectively.

2.2 Concepts

We begin this section by introducing (revisiting) important concepts to understand
URB protocol namely, purity and unitarity. While purity is essentially the Hilbert-
Schmidt norm of a density operator, unitarity of a noise channel is the figure of merit,
estimated by the URB protocol which we define below and highlight it’s similarity
with the concept of purity.

2.2.1 Purity

Purity of a quantum state (of qubits) which when expressed as a density operator,
ρ (a self adjoint operator with Tr[ρ] = 1) is given by, Tr(ρ†ρ) ∈ [0, 1]. Note, that
Tr[ρ†ρ] = 1 if and only if ρ is a pure state or in other words, has a state vector
representation in the Hilbert space H of dimension d = 2n where, n is the number of
qubits.

2.2.2 Unitarity

Let E be a noise channel which is a superoperator that maps the space of quantum
states (which are represented by density operators over Hilbert space H) to itself.
Note, that for the sake completeness, here we assume that noise channels are non-
trace-increasing and in particular, a noise channel can be trace decreasing so, we define
E as a general quantum operation. A natural candidate to quantify the coherence
of a noise channel (loosely speaking, the extent to which it behaves as a unitary
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transformation) or unitarity can be
∫
dψTr[E(ψ)†E(ψ)] where, the integral is with

respect to uniform Haar measure over the space of pure states in H. In other words,
it is the average purity of the output state, averaged over all possible input pure
states. But, as Wallman et al. [41] argue that this definition of unitarity may not
work for general quantum operations and not just CPTP (Completely Positive Trace
Preserving) maps. The general definition for unitarity proposed by Wallman et al.
in [41, Eq. 4] is

u(E) =
d

d− 1

∫
dψTr[E ′(ψ)†E ′(ψ)]. (2.1)

Here, E ′(ψ) = E(ψ)− Tr[E(ψ)]√
d

I. However, for this paper we define unitarity as in [42]

(Note, in this definition E is a CPTP map and hence, we differentiate it from a
quantum operation by calling it a quantum channel):

u(E) =
d

d− 1

∫
dψTr

{[
E
(
|ψ〉 〈ψ| − I

d

)]2}
(2.2)

where, the integral is again with respect to uniform Haar measure over the space of
pure states in H. It is noteworthy, that in order to convert unitarity as a normalized
metric (i.e, take values in [0, 1], similar to average gate fidelity in SRB and other
variants) the constant factor d

d−1 has been included. An equivalent definition of
unitarity as noted in [15,16] is:

u(E) =
1

d2 − 1

∑
σ,τ∈P∗

{
Tr[τE(σ)]

}2

(2.3)

Here, P∗ is the normalized Pauli group, excluding the normalized identity (the nor-
malization is with respect to Hilbert-Schmidt norm, ||σ||2 =

√
Tr[σ†σ]). This is the

form of unitarity that we use in it’s estimation protocol through URB as suggested
in [42]. We discuss the interpretation and possible merits and demerits of this form
later.

2.3 The protocol

Now, we formally state the URB protocol followed by a discussion on the user defined
parameters used in it. Authors in [41, 42] propose two equivalent implementations
of URB known as the single copy and two copy implementation. We remark here,
that we follow single copy implementation in our experiments and hence, we describe
here only the single copy implementation. We suggest the reader to refer [42] for
the two copy implementation and it’s equivalence and comparison with single copy
implementation.
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Input: Gate set G, sequence lengths (depths) M, Num-
ber of iterations (or number of random sequences) Nm for
every depth m ∈M.
Begin:

For all depth m ∈M:
Repeat Nm times:
Sample a sequence of m gates Gj1 ,Gj2 , ...,Gjm
uniformly at random from G.
Compose the sequence Gj = Gjm ...Gj2Gj1 .
For all non-identity Pauli’s P, Q:

Prepare ρ(P ) = I+P
d and ρ̂(P ) = I−P

d . Apply Gj
to each state. Measure E(Q) = Q large number

of times. Estimate shifted purities, qj =
1

d2−1

∑
P,Q 6= I

{Tr[E(Q)Gjρ(P )]−Tr[E(Q)Gjρ̂(P )]}2

Average over all sequences q̃m = 1
Nm

∑
j

qj

Fit exponential curve q̃m = Bum−1 where, u is
unitarity and B is a constant absorbing SPAM.

End
Algorithm 2.3. Pseudocode for URB Protocol (single copy implementation)

We remark here, that the actual implementation of the protocol is slightly different
from the one mentioned above, a discussion of the precise experimental implementa-
tion is included in subsequent section. Below, we discuss the parameters used in the
protocol mentioned in Algorithm 2.3 above.

Gate set (G)

The set of gates from which random gates are sampled and applied to the initial state.
The motivation for defining a gate set for choosing random gates, is similar in spirit,
to that of averaging the noise channel over all possible input states, as described in
SRB protocol. Wallman et al. in [41] mention that the gate set to be preferably
a unitary 2-design, so that the integral as mentioned in Eq. (2.1) can be effectively
approximated through experiments. We remark here, that in [41, 42] as well as in
this paper, E , or the noise channel in question, is gate-independent. For our results,
we choose our gate set to be the Clifford group (single and two-qubit Clifford groups
for estimating unitarity of noise maps of single and two-qubit gates respectively).

Sequence lengths (depths) (M)

An array of number of unitary operators from the G that has to be chosen to em-
pirically estimate the unitarity. Ideally, it is recommended to use many values for
m so that the error introduced in the estimate of unitarity, (due to variance in the
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experimental results, between two different depth values) when fitting the curve, can
be minimized.

Number of iterations (Nm)

For each depth chosen in the M, in each iteration, the average sequence purities are
calculated for Nm different sequences sampled from G and they are averaged to get
the empirical average purity q̃m for given depth m. Again, it is recommended to
choose high enough Nm so that between sequence variance V[qj] is minimized. Dirkse
et al. in [42] gave a theoretical lower bound on Nm for given confidence parameters
ε and δ, where, ε can be treated as the accuracy or the deviation of the empirical
average q̃m from E[qj] and δ as upper bound on the probability that q̃m is ’more than
ε away’ from E[qj], which is mathematically expressed by the concentration inequality,

Pr[|qj − E[qj]| ≥ ε] ≤ δ.

This concludes a high level discussion on the URB protocol. Here, we would like to
mention two comments, firstly, that Wallman et al. in [41] derive that the unitarity,
similar to average gate fidelity, decays exponentially with increasing number of gates
in the gate sequence applied given by, E[qj] = A + Bum−1. Dirkse et al. in [42]
propose a modification, to prepare two separate initial states ρ and ρ̂ and apply the
same sequence Gj to each of the states simultaneously, so that we effectively work
with a traceless density operator ρ̃ := 1

2
(ρ− ρ̂) that changes the form of the fit curve

to q̃m = Bum−1, which is easier to fit since, by taking the log of the empirical aver-
age purities and plotting them against depths we can reduce it to a linear regression
problem.
Secondly, the mathematical form of the two initial states (ρ(P ) and ρ̂(P )) to be pre-
pared, as mentioned in the single copy URB implementation mentioned previously,
is advocated in [42]. The authors argue that the SPAM absorbing constant B in the
fit model q̃m = Bum−1 has the property that |B| ≤ 1 [42, Lemma 11.] and since,
we would ideally want to maximize the ’signal strength’ i.e, the experimental val-
ues of average sequence purities in case, for the channels which are vastly incoherent
(0 ≤ u ≤ 0.5), we want to choose our initial states and measurement operators so
that the B = 1 and the choice of ρ(P ) = I+P

d
, ρ̂(P ) = I−P

d
and E(Q) = Q (for single

copy implementation) is one such choice for which B = 1. Another reason for this
choice, is the fact that, Pauli operators are natural observables, for which the we can
easily calculate the expectation values (i.e, the trace terms inside the expression for
shifted purities) and though the initial states proposed are mixed states for n ≥ 2
qubits, the mixed state can be easily expressed as convex sum of pure states that can
be easily prepared in actual implementation, as is discussed in detail later.
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2.4 Significance of URB

In this section, we discuss how exactly the definition of unitarity in Eq.s 2.1, 2.2, 2.3,
captures the deviation of a noise channel from being a unitary channel. Specifically,
we will focus on the form of unitarity defined in Eq. 2.3 and establish the theoretical
correctness of URB protocol, specifically by drawing similarity between Eq. 2.3 and
the definition of shifted purities in the aforementioned protocol. Next, we compare
URB with SRB and it’s other variants and conclude by highlighting the role of URB,
complementary to SRB and other variants in the theory of benchmarking and error
correction.

Let, E be a CP (Completely Positive) map from the space of quantum states in H to

itself. A density operator ρ can be expanded in the Pauli operator basis {σi}d
2−1
i=0 as

follows: (where, d is the dimension of H and for now, d = 2n, n being the number of
qubits)

ρ =
d2−1∑
i=0

ρiσi (2.4)

We can then write E as a d2×d2 matrix. Assuming, that the E is also trace preserving
(note, it is not a restrictive assumption for our case), the matrix for E looks like:

E =


1 0 0 . . . 0
...

. . .

En Eu
...

. . .


Here, En (of dimension d2 − 1× 1) is the non-unital part of E , since, if this vector is
non-zero then the map E is said to be non-unital, i.e, doesn’t map identity (σ0) to
itself. On the other hand, Eu (of dimension d2− 1× d2− 1) is the unital part of E . It
has been shown that, Eu is orthogonal matrix (for, real quantum channels i.e, E maps
Hermitian operators to Hermitian operators) if and only if E is an unitary channel or
mathematically, E is of the form UρU † for some unitary operator U over the Hilbert
space H [39]. Wallman et al. in [41, Proposition 1] prove that the definition of
unitarity defined in Eq. 2.1 is equivalent to:

u(E) =
Tr[E†uEu]
d2 − 1

(2.5)

Here, we note that, if the noise channel E is unitary then, since, Eu has to be orthogo-
nal, we see that u(E) = 1. The converse of this statement is also true and in fact, for
channels other than unitary channels, Wallman et al. in [41, Proposition 7] show that
u(E) < 1. We establish that, in fact, unitarity is a viable figure of merit, to measure
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the deviation in the behaviour of a noise channel from being a unitary channel.

We now discuss, how the URB protocol mentioned in 2.3, lets us calculate empirically,
the unitarity for arbitrary noise channels. By a slight algebraic manipulation, the
equivalence of the form of Eq. 2.3 and Eq. 2.5 can be established as follows. Firstly,
note that, with respect to form of a density operator mentioned in Eq. 2.4, we can
write the action of E on ρ in an algebraic manner as:

E(ρ) =
∑
i,j

(Eijρj)σi

Now, Eq. (3) can be written as:

u(E) = 1
d2−1

∑
σ,τ∈P∗

{
Tr[τE(σ)]

}2

= 1
d2−1

d2−1∑
i,j=1

{
Tr[σjE(σi)]

}2

Using Eq. (7),

= 1
d2−1

d2−1∑
i,j=1

{
Tr
[
σj

d2−2∑
k=0

Eukiσk
]}2

= 1
d2−1

d2−1∑
i,j=1

{ d2−2∑
k=0

EukiTr[σjσk]
}2

Since, Tr[σjσk] = δjk, (where, δab = 1 if and only if a = b and is zero otherwise and
using the fact that, σi ∈ P∗ (normalized Pauli group) ∀ i)

= 1
d2−1

d2−2∑
i,j=0

(Euji)2

= 1
d2−1Tr[E†uEu]

(where, the last equality is true for real noise channels).
Now, we show that the expression for shifted purities specified in the URB protocol
is equal to the unitarity of composed noise map of the sequence of unitaries applied,
upto a constant factor. By slightly modifying the expression for shifted purities given
by:

qj = 1
d2−1

∑
P,Q 6= I

{
Tr[E(Q)Gjρ(P )]−Tr[E(Q)Gjρ̂(P )]

}2

= 1
d2−1

∑
P,Q 6= I

{
Tr[QGj( I+Pd )]−Tr[QGj( I−Pd )]

}2

= 4
d2−1

∑
P,Q 6= I

{
Tr[QGj(Pd )]

}2
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More precisely, since, P and Q here are ordinary Pauli gates, by normalizing them
(with respect to Hilbert-Schmidt norm), the final expression for shifted purities looks
like,

= 4
d2−1

∑
σ,τ∈P∗

{
Tr[τGj(σ)]

}2

Here, we see that, shifted purities for sequence Gj is equal to the unitarity of the
noise map induced by applying the sequence (assuming, Gj is noisy) upto a constant
factor. We note here that, this constant factor is consumed in the constant B when
extracting u by fitting the exponential curve. We also mention the intuitive reason
behind the curve fitting step in the protocol, that the empirical average purity for
given sequence length correspond to the unitarity of the noise channel (upto constant
factor) composed ’length of the sequence many’ times and thus the unitarity is raised
to power of the sequence length. We therefore, conclude the significance and correct-
ness of URB protocol as proposed in [41] with modification in state preparation and
measurement for single copy implementation suggested in [42].

Now, we try to compare and contrast URB protocol with SRB protocol and it’s other
variants, by carefully inspecting the significance of each of it’s metrics and how they
are related. Firstly, in SRB protocol, after the sequence of gates (preferably from a
unitary 2-design) are applied, an inverting gate is applied, so that ideally the quan-
tum operation is equivalent to the identity channel, since, we were interested in the
average survival probability of a given input state, under the action of the averaged
noise map of the gate set. Hence, we require efficient implementation (and reversal)
of unitary gates in the gate set, since, errors in compiling inefficient circuit implemen-
tations might affect the average infidelity. However, we see that, in URB protocol,
there is no such need for an inverting gate and the gates can be applied on the fly,
without concerning about storing the gates being applied in the memory, in order to
implement the inverting gate, as is required in SRB.
Secondly, SRB protocol can be implemented theoretically, with any arbitrary pure
state as the input state and calculating it’s survival probability, whereas, we notice
that in URB (both for single copy and two copy implementations) there exist opti-
mal input state and measurement operator, so that the shifted purity values are of
maximum strength (i.e, they are sufficiently larger than 0) [42].
Thirdly, in SRB, we experimentally determine the probability that an arbitrary input
state ’survives’ the noisy channel, averaged over many iterations, as compared to,
the expectation values of Pauli operators for the output states (by output states, we
mean, the resulting state, after applying the sequence of noisy gates) in URB. In this
paper, we discuss URB with the assumption of gate-independent Markovian noise,
but we suspect that it can be easily extended to gate-dependent Markovian noise, as
with SRB.
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Wallman et al. in [41, Proposition 8] deduce the following upper bound on aver-
age gate fidelity Favg, in terms of unitarity of the average noise map of the gate set ,
u: (dFavg − 1

d− 1

)2
≤ u

This inequality shows that, if u is strictly less than 1, then the maximum (non-trivial)

average gate fidelity for the gate set can be
√
u(d−1)+1

d
, but if the noise is unitary, i.e,

u = 1 then, there is no non-trivial upper bound for the average gate fidelity and
indeed, with unitary noise, the gate fidelity may be close to zero. Therefore, we see
that, gate fidelity alone is not sufficient to characterize and quantify the performance
of a noisy computation, since a low value for average gate fidelity with respect to
a non-unitary noise map, may be the best case benchmark under given, operating
characteristics (noisy gate implementations in the quantum processor under consid-
eration) of the computation which, directly affects the unitarity of the noise map.
Hence, URB protocol must be treated as a complementary procedure, along with
SRB, in order to safely benchmark the quality of quantum computation. In quan-
tum error correction literature and specifically with respect to threshold theorems for
fault tolerant computation, diamond distance of the noise map with respect to the
identity channel is regarded as the proper metric for noise strength. Mathematically,
the diamond norm of a superoperator E is defined as:

||E||♦ = max
ρ
||E ⊗ I(ρ)||1 (2.6)

where, E acts on H and I is the identity map acting on H′ and maximization is with
respect to density operators on the combined Hilbert space H ⊗ H′ . The diamond
distance of a noise channel N from the identity channel I is then given by [39]:

D♦(N ) := ||N − I||♦ (2.7)

We note here, that the diamond distance quantifies the worst case error rate of a
noise channel with respect to the identity channel and the average gate infidelity
quantifies the average error rate of the noise channel. Experimentally estimating the
diamond distance is hard, but it can be bounded using experimental benchmarking
protocols. Kueng et al. [45], gave the following bounds on the diamond distance D♦

of a noise channel N , whose average gate infidelity, r(N ) = (d−1)(1−p)
d

, where, p is the
benchmarking parameter (fit parameter) in SRB and unitarity of N is u:√

(d2 − 1)(1− 2p+ u)

2d
≤ D♦ ≤

d
√

(d2 − 1)(1− 2p+ u)

2
(2.8)

We would like to conclude this section by an important corollary of the above in-
equality, that if the noise channel is unitary, then the worst case error rate of the
noise channel, D♦ scales as

√
r(N ) whereas, if the channel is far from unitary, for
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instance a depolarising channel, with depolarising parameter p, D♦ scales as r(N ).
Therefore, unitarity and infidelity together can provide insights into worst case error
rate of a noise channel which is the theoretical metric used for benchmarking fault
tolerant computation.

In this chapter, we introduced the concepts related to Unitarity Randomized Bench-
marking (URB) and provided it’s significance. We argued that, URB should be
treated as a complementary procedure along with SRB in effectively bounding the
worst case error rate of a noise channel. In the next chapter, we present the results
of our work, followed by it’s discussion.
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Chapter 3

URB Simulations and Experiments
in IBM-Q devices using Qiskit

3.1 Overview

We now present, our work of programming the URB protocol (single copy imple-
mentation) in Qiskit. Firstly, we mention in detail, our implementation of modified
version of URB as proposed in [41, 42] in Qiskit. Secondly, we discuss the results
we obtained via simulations of various well defined noise channels, in particular,
(completely) depolarising channel and single qubit bit-flip noise channels, using Aer
simulator in Qiskit. Thirdly, we showcase the consistency of our experimental results
with that of predicted values with sub-percent implementation errors. Finally, we
discuss our results on benchmarking the noise map of single and two-qubit gates in
actual IBM-Q devices (5-qubit [43] and 15-qubit [44]) by simulating noise in these
devices.
Here, we again mention for completeness, that we use Clifford group as our gate set
and implemented the protocol for single and two-qubit Clifford unitaries. For imple-
menting a Clifford gate in our protocol, we use the library QuaEc: Quantum Error
Correction Analysis in Python [46], for generating the single and two-qubit Clifford
group and randomly sampling a Clifford unitary, decomposed into basic gates namely,
I, X, Y, Z, H, T, Controlled-X, Controlled-Z and SWAP gates. Using the functions
available in the library, we extract QASM (Quantum Assembly Language) [47] string,
specifying the decomposition and implement it manually in Qiskit.

3.2 Details of URB Implementation in Qiskit

In this subsection, we first explain our implementation of the state preparation for
single and two-qubit URB implementation as prescribed in Algorithm 2.3. Next,
we describe how we experimentally calculate the shifted purity, by calculating the
expectation with respect to normalized Pauli operators, mentioned in Algorithm 2.3.
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3.2.1 Single and two-qubit state preparation for benchmark-
ing

As mentioned in the URB protocol in Algorithm 2.3, in each iteration of given depth,
we first sample a sequence of depth many Clifford unitaries using QuaEc. After which,
we prepare two states, ρ(P ) = (I+P )

d
and ρ̂(P ) = (I−P )

d
, for each non identity Pauli gate

P over n qubits.

For single qubit case, there are only three choices for P namely, X,Y ,Z gates (Pauli
X, Y and Z respectively) and the states. ρ(P ) and ρ̂(P ) are respectively the density
matrices corresponding to positive and negative eigenstates of the respective Pauli
operator P . For instance, if P = X then, (I+X)

2
= |+〉 〈+| and (I−X)

2
= |−〉 〈−|

where, |+〉 and |−〉 are respectively the positive and negative eigenstates of Pauli
X. So for single qubit, for each choice of P , we initialize two separate circuits, one
for each input state and apply the same randomly generated sequence of Clifford
unitaries to both of the circuits. For n > 1, both ρ(P ) and ρ̂(P ) are mixed state den-

sity matrices, as Tr
[
(I+P )(I+P )

d2

]
= Tr[2I

d2
] = 2

d
< 1, (P 2 = I,Tr[I] = d and Tr[P ] =

0 for all non identity Pauli gates P ). Similarly, Tr
[
(I−P )(I−P )

d2

]
= Tr[2I

d2
] = 2

d
< 1.

For two-qubit state preparation, we decompose the mixed states into convex sum of
pure state density matrices, for instance, if P = X ⊗X,

I +X ⊗X
4

=
1

4


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

=
|ψ+〉 〈ψ+|+ |φ+〉 〈φ+|

2
,

where |ψ+〉 = |00〉+|11〉√
2

and |φ+〉 = |01〉+|10〉√
2

and

I −X ⊗X
4

=
1

4


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 ,

=
|ψ−〉 〈ψ−|+ |φ−〉 〈φ−|

2
.

where, |ψ−〉 = |00〉−|11〉√
2

and |φ−〉 = |01〉−|10〉√
2

.

Similarly, for each non identity Pauli gate P , ρ(P ) and ρ̂(P ) each can be written as sum
of two pure state density matrices, so for two-qubit case, we initialize four circuits per
choice of P, where the input state for each circuit is one of each pure states that make
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up the mixed states ρ(P ) and ρ̂(P ). For example, we initialize two circuits with initial
states prepared in the Bell states, |ψ+〉 and |φ+〉, apply the same random sequence
to each of the circuits to carry out the computation for ρ(P ). Similarly, initialize two
circuits with Bell states |ψ−〉 and |φ−〉 as initial states and apply the same sequence
to each of them, to simulate the step for ρ̂(P ). We note here, that the factor of 0.5
in the representation of ρ(P ) and ρ̂(P ) in terms of pure states, is taken into account in
the measurement step, as discussed below.

3.2.2 Calculating the expectation of Pauli observable

For completeness, we state here, the expression for shifted purity:

qj =
1

d2 − 1

∑
P,Q 6= I

{
Tr[E(Q)Gjρ(P )]− Tr[E(Q)Gjρ̂(P )]

}2

.

Here, E(Q) = Q, where Q is any non identity Pauli gate. We see that the term in
the summation is nothing but the square of the difference in the expected values of
the Pauli observable Q in the states resulting, after the application of the random
sequence of gates to the input states ρ(P ) and ρ̂(P ).
In our implementation, for all circuits initialized in the previous state preparation step
in Sec 3.2.1, we calculate the expected value of Q. It is known that, since any Pauli
observable has only two eigenspaces, corresponding to it’s two possible values after
measurement viz. +1 and -1, we then, essentially perform a positive operator valued
measurement (POVM). If POVM element corresponding to positive eigenspace of Q
is M, then we can write Q = 2M − I and then Tr[Qρ] = 2Tr[Mρ]− 1, where Tr[Mρ]
is nothing but the probability that the state ρ collapses to positive eigenspace of Q.
In our implementation, we always measure in the computational basis, hence, we first
rotate the basis as follows. Mathematically, we can write,

Tr[Qρ] = Tr[U †Z̃Uρ] = Tr[Z̃UρU †],

where U is a unitary operator that satisfies U †Z̃U = Q and the second equality
corresponds to change of basis transformation to Z̃ (a n-qubit Pauli observable) basis.
Note that, for single qubit case, Z̃ = Z (Pauli Z) and for two-qubit case, Z̃ here,
represents the Pauli observables Z ⊗ I for cases Q = X ⊗ I and Q = Y ⊗ I, I ⊗Z for
cases Q = I⊗X and Q = I⊗Y and Z⊗Z for cases Q = X⊗X and Q = Y ⊗Y . Hence,
we empirically calculate the probability that the state collapses to |0〉, for single qubit
implementation and for two-qubit implementation of the protocol, depending on the
observable Q, we consider only the subset of computational basis states spanning
the positive eigenspace of Pauli observable Z̃ as mentioned above and calculate the
empirical probability of the state collapsing into one of these basis states.
For instance, if Q = X, then U = H (Hadamard Gate), as it is known that
HZH = X, so we apply an additional Hadamard gate to each of the circuits and
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then count the number of instances, the quantum register in each circuit collapses in
|0〉 (|00〉). Considering single qubit implementation for this example, let p1 and p2
be the empirical counts we obtained for circuits initialized with ρ(P ) and ρ̂(p) respec-
tively, then Tr[XGjρ(P )] = 2p1 − 1 and Tr[XGjρ̂(P )] = 2p2 − 1 for some choice of P
and sequence Gj. As mentioned before, for single qubit case, both ρ(P ) and ρ̂(p) are
pure states which can be directly implemented and hence we have to calculate the
expectation of Q for two circuits for every choice of pair (P,Q), but for two-qubit
case, we calculate the expectation of Q for the 2 circuits initialized in the two pure
states appearing in the mixed state corresponding to ρ(P ) and ρ̂(p) and then multiply
by the factor 0.5, as each of ρ(P ) and ρ̂(p) are equal mixtures of their constituent pure
states for each P, as shown in the example for P = X ⊗X above. More concretely,
if the number of instances the quantum register collapses to positive eigenspace of
Q = X ⊗ X for circuits initialized with pure states |ψ+〉, |φ+〉, |ψ−〉 and |φ−〉 for

the case of P = X ⊗ X be, p1, p2, p3, p4 respectively, then, Tr
[
X ⊗ XGjρ(P )

]
=

1
2

(
Tr
[
X ⊗ XGj |ψ+〉 〈ψ+|

]
+ Tr

[
X ⊗ XGj |φ+〉 〈φ+|

])
= 1

2
(2p1 − 1 + 2p2 − 1) and

Tr
[
X ⊗XGjρ̂(P )

]
= 1

2

(
Tr
[
X ⊗XGj |ψ−〉 〈ψ−|

]
+ Tr

[
X ⊗XGj |φ−〉 〈φ−|

])
= 1

2
(2p3−

1+2p4−1) again, for some choice of two qubit non identity Pauli gate P and sequence
Gj.

After calculating the shifted purity, we further divide by a factor of 4, so as to match
with the theoretical calculation of unitarity, which comes out to be one-fourth times
the shifted purity calculated empirically, as mentioned in Sec. 2.4. We suspect that
authors in [42] didn’t mention to divide by 4, to keep the signal strength, i.e., shifted
purity values for each iteration high enough for extreme noise channels which have
very low unitarity. However, we adopt to divide by a factor of 4 in our implemen-
tation. Since, IBM-Q devices are sufficiently robust, the noise induced by the gate
operations lie in high unitarity range and hence, we do not gain much by keeping the
factor of 4. Additionally, now the shifted purity values itself are good indicators of
unitarity of the noise channel composed with itself depth or sequence length many
times. However, this is only valid if the SPAM errors are quite low, which we maintain
in our simulations.

We also remark here, that following the suggestion of Dirkse et al. in [42], we also
run the same experiment for given choice of P , Q and Gj, multiple number of times,
to take into account for the within sequence variance in the estimation of unitarity
which we call number of samples. Finally, we mention here just as a fact that, if
Nm,M and Sm be the number of iterations for given depth m, array of depths and
number of samples respectively, then for single qubit, number of circuits that needs
to be initialized is 18 ×Nm.Sm.|M| and for two-qubit it is 900 ×Nm.Sm.|M|. Here,
|M| is the number of depths or sequence lengths for which the protocol needs to be
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implemented. Dirkse et al., give estimates of around 250 for both Nm and Sm which
amount to around 11 million for single qubit implementation and around 2.25 billion
two qubit implementation (for number of depths = 10) different experiment circuits
to be executed either on simulator or real device to get unitarity estimate with ac-
curacy error around 10−2 and probability of error rate around 10−2. Although, we
didn’t execute the circuits prescribed many times, but as documented below, we did
achieve sub-percent accuracy error rate for sufficiently smaller number of iterations.

In order to test the credibility of our implementation (or rather, proof of satisfactory
implementation) of URB single copy protocol, we performed various experiments
(both on single and two-qubit registers) considering different noise models, for which
we can theoretically calculate the unitarity and tried to benchmark our own imple-
mentation. We now present the results of such simulations along with the confidence
values. For the purposes of simulating theoretical noise models, we’ve used Qiskit
Aer framework and all simulations have been performed using the QasmSimulator.

3.3 URB Results of Custom Noise Simulation

3.3.1 Unitarity of a depolarising noise map

The superoperator E corresponding to a (completely) depolarising noise over the
Hilbert space C2n , where n is the number of qubits and with depolarising parameter
p (treated as the probability, that a given quantum state ρ is unchanged after the
noise is applied) is given by:

E(ρ) = pρ+ (1− p)Tr[ρ]
I

2n

Here, I is the 2n × 2n identity matrix. Using Eq. 2.3 and the fact that Tr[σ] = 0,
∀σ ∈ P∗, theoretical unitarity of a depolarising channel is given by,

u(E) =
1

4n − 1

∑
σ,τ∈P∗

{
Tr
[
pτσ + (1− p)Tr[σ]

τ

2n

]}2

=
1

4n − 1

∑
σ,τ∈P∗

{
pTr[τσ]

}2

=
1

4n − 1

∑
σ∈P∗

p2 = p2

where, we have used the fact that σ, τ ∈ P∗ are orthonormal with respect to Hilbert-
Schmidt inner product and |P∗| = 4n − 1.
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(a) (b)

(c) (d)

Figure 3.1: URB curves showing the relationship between average shifted purities and sequence
lengths (in Clifford unitaries) as a result of simulations of URB single copy protocol for depolarising
noise with different values of parameter p, applied to single qubit register. (a) Depolarising parameter
p = 0.9, estimated unitarity u = 0.81015. (b) Depolarising parameter p = 0.8, estimated unitarity
u = 0.64081. (c) Depolarising parameter p = 0.7, estimated unitarity u = 0.49238. (d) Depolarising
parameter p = 0.6, estimated unitarity u = 0.36072. For each simulation, the sequence lengths were
taken to be m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, number of iterations were 15 and for each iteration, the
sample size was 5. Variance in the estimated unitarity was found to be 2.3× 10−5 over 10 iterations
of repeating the entire experiment.

Fig. 3.1 shows the exponential curves plotted for single-qubit URB implementation
with noisy simulation of (completely) depolarising noise per single-qubit Clifford gate
for different values of p. We take the depths or the number of Clifford unitaries
applied to be m ∈ {1, 2, . . . , 10}. For each depth, we run 15 iterations and for take
5 samples for given depth and iteration. In each plot, the blue line represents the
best fit curve given by q̃m = Bum−1, where u is the estimated unitarity from the
experiment and m is the number of noisy gates applied and the colored dots are the
shifted purities for different iterations and given depth. Concentration of the colored
dots along the blue line indicate that the variance in the shifted purities is quite low
and is centered around the average shifted purity.
Fig. 3.1 (a), shows the fit curve for p = 0.9, which result in unitarity of 0.81015,
as compared to theoretical unitarity of 0.81. Fig. 3.1 (b), shows the fit curve for
p = 0.8, which result in unitarity of 0.64081, as compared to theoretical unitarity of
0.64. Fig. 3.1 (c), shows the fit curve for p = 0.7, which result in unitarity of 0.49238,
as compared to theoretical unitarity of 0.49. Finally, Fig. 3.1 (d), shows the fit curve
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for p = 0.6, which result in unitarity of 0.36072, as compared to theoretical unitarity
of 0.36.

3.3.2 Unitarity of a single qubit bit-flip channel

A mixed unitary noise map is defined as the convex sum of unitary noise channels.
Mathematically, it is defined as:

E(ρ) =
n∑
k=0

pkUkρU
†
k

Here, {U1, U2, U3..., Un} is the set of unitary operators and {pk}nk=0 is the probability
that the quantum state ρ is subjected to unitary noise UkρU

†
k associated with Uk.

One particular mixed unitary noise channel which is widely studied, with respect to
quantum error correction literature, is the bit-flip channel (for a single qubit) which
is given by:

E(ρ) = pρ+ (1− p)XρX (3.1)

i.e, with probability p, the qubit is left unchanged (applying identity channel) and
with probability 1 − p, Pauli X is applied to the qubit. We are only considered
here with single qubit bit-flip channel, though generalisation for multi-qubits is also
possible. For multi-qubit case, we have to consider the independence (dependence)
of errors in the qubits i.e, do the bit flips occur simultaenously for all the qubits
or for any subset of them. This will make the compuation of unitarity a bit more
involved and hence, for the sake of theoretically calculating the unitarity, we stick to
the simplest case of single qubit bit-flip channel.
Now, we derive the theoretical unitarity of the bit flip channel defined in Eq. (3.1) as
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follows.

u(E) =
1

4n − 1

∑
σ,τ∈P∗

{
Tr
[
τ(pσ + (1− p)XσX)

]}2

=
1

4n − 1

∑
σ,τ∈P∗

(
pTr[τσ] + (1− p)Tr[τXσX]

)2
=

1

4n − 1

∑
τ∈P∗
σ=X̃

(
pTr[τX̃] + (1− p)Tr[τXX̃X]

)2
+

1

4n − 1

∑
τ∈P∗
σ 6=X̃

(
pTr[τσ] + (1− p)Tr[τXσX]

)2

=
1

4n − 1

∑
τ∈P∗
σ=X̃

(Tr[τX̃])2

+
1

4n − 1

∑
τ∈P∗
σ 6=X̃

(
pTr[τσ]− (1− p)Tr[τσ]

)2

=
8p2 − 8p+ 3

3
.

Here, X̃ is normalized Pauli X in P∗ (normalized Pauli group for single qubit). We
also use the fact that, for a single qubit, XωX = −ω ∀ω ∈ P∗.

The results of our experiments are shown in Fig. 3.2. Similar to the depolarising chan-
nel case as before, we take the depths or the number of Clifford unitaries applied to
be m ∈ {1, 2, . . . , 10}. For each depth, we run 15 iterations and for take 5 samples for
given depth and iteration. In Fig. 3.2(a), we show the fit curve of a bit-flip channel,
which does not ‘flip’ the qubit state with probability p = 0.975. The unitarity was
found to be 0.935424, while the theoretical unitarity calculated through the deriva-
tion above is 0.935. In Fig. 3.2(b), we show the fit curve of the bit-flip channel, with
probability parameter p = 0.95. The unitarity was found to be 0.876434, while the
theoretical unitarity calculated through the derivation above is 0.873. In Fig. 3.2(c),
we show the fit curve of the bit-flip channel, with probability parameter p = 0.9.
The unitarity was found to be 0.772098, while the theoretical unitarity calculated
through the derivation above is 0.76. In Fig. 3.2(d), we show the fit curve of the
bit-flip channel, with probability parameter p = 0.8. The unitarity was found to be
0.624513, while the theoretical unitarity calculated through the derivation above is
0.573.

In the above experiments, we find that in extreme conditions, when the noise strength
is considerably high, leads to overestimation of unitarity when URB protocol is used
to calculate it. For instance, in the depolarising channel case, the regime of p < 0.5
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(a) (b)

(c) (d)

Figure 3.2: URB curves showing the relationship between average shifted purities and sequence
lengths (in Clifford unitaries) as a result of simulations of URB single copy protocol for bit-flip
channel with different values for probability p, applied to single qubit register. (a) For p = 0.975,
estimated unitarity wa found to be u = 0.935424. (b) For p = 0.95, estimated unitarity was found
to be u = 0.876434. (c) For p = 0.9, estimated unitarity was found to be u = 0.772098. (d) For
p = 0.8, estimated unitarity wa found to be u = 0.624513. For each simulation, the sequence lengths
were taken to be m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, number of iterations were 15 and for each iteration, the
sample size was 5. Variance in the estimated unitarity was found to be 3.6× 10−4 over 10 iterations
of repeating the entire experiment.

or in bit-flip channel, if the probability of survival, i.e., the probability that the noise
channel will not disturb the state is less than 0.9. This is largely because of the
very weak signal strengths, i.e., the shifted purity values for modest increase in depth
size. As it is evident from Fig. 3.1 and 3.2, the shifted purities for depth sizes of
more than 5, in the ‘strong’ regimes for respective noise channels, the shifted purities
are close to zero. This induces error in the fitting of the exponential curve and as a
result, the empirical unitarity is overestimated by the protocol. However, in the high
unitarity regimes, i.e., for the cases in which the shifted purities are sufficiently larger
than zero, the results of URB protocol are validated by the theoretical prediction
with sub-percent variance in the results. We conclude that, our experiments are
completely consistent with the theoretical prediction of unitarity and hence, establish
the soundness of our implementation.
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3.4 Benchmarking noise in native gates of IBM-Q proces-
sors

3.4.1 Native Gate URB

In the previous section, we provided evidence for the soundness of our implementation
of URB. We considered depolarising channel and mixed unitary channel as toy noise
models for gate errors and experimentally calculated the unitarity which is consistent
with the theoretical calculations. In this section, we present the main contribution,
in which we calculate the unitarity of the noise map generated naturally in the op-
eration of native gates present in two of the quantum processors of IBM-Q devices
suite, namely burlington (5-qubit) and melbourne (15-qubit).

For every quantum computing archetype and platform (be it superconducting trans-
mon qubits of IBM or Google or trapped ions archetype manufactured by IonQ),
each particular gate operation requested by the user, with respect to running a cer-
tain user fabricated quantum circuit, has to ultimately be decomposed into sequence
of specific chosen gates (called the native gates) which have dedicated instruction
for applying them on the processor, at the time of actual circuit execution on the
processor. Since, universal quantum computation is ensured by a universal gate set,
for example {CNOT, H, S and T} gates, these native gates are a superset of such
a universal gate set (some gates may not belong to the universal gate set but nev-
ertheless, have explicit instruction for it’s implementation on the processor). The
process of transforming a given circuit, by decomposing each gate operation into se-
quence of gates from the native gate set is sometimes known as ‘compiling’ the circuit.

We mention here, that although, URB protocol that has been proposed in the liter-
ature is a theoretical procedure which suggests a method to experimentally calculate
the unitarity of averaged noise map of a chosen gate set (preferably a unitary 2-
design). It is similar to SRB to the extent that both need a gate set and fitting an
exponential curve. However, when it comes to implementing the procedure practi-
cally, caution must be practiced, regarding the interpretation of it’s results. Speaking
along the lines of the argument provided by [38] and previously discussed in the
Introduction, both the results of SRB and URB are dependent on the actual compi-
lation of the individual clifford gates in the platform/processor. Since, most of the
archetypes/platforms do not generally have the whole clifford group in the native
gate set, a sub optimal compilation of a clifford gate can affect the results of the
experiment. For instance, one may think of implementing identity gate (assuming for
the sake of argument, is not a part of native gate set) by applying two CNOTs suc-
cessively to the target and nearest neighbour qubit. Although, this implementation
of identity gate is logically equivalent to an identity operation, a noisy CNOT gate
applied twice imparts considerable noise in the form of cross talk (for a single qubit
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gate operation) than, a specific native gate for identity operation.

We therefore, because of the reason mentioned in the preceding paragraph, perform
a variant of URB protocol (here on referred to as Native Gate URB), which is similar
in spirit to the proposal of IRB and DRB protocols, that benchmarks the unitarity
of the noise of a given native gate from the set of native gate set pertaining to a
processor or platform. This variant is although, not drastically different from the
proposed URB protocol (here on, referred to as Standard URB or SURB), is mainly
different with respect to two facts:
(1) Firstly, we no longer require a gate set.
(2) Secondly, We do not require sampling of a random sequence from a gate set, since
there is no gate set.

The reason lies in the interpretation of the definition of metrics associated with SRB
and SURB. The metric of interest for SRB is average gate fidelity and as mentioned
in section 2.4, it essentially quantifies the average error rate of a noise channel (think
of it, as the average behaviour exhibited by the noise channel averaged with respect
to set of pure states). This ‘averaging’ is signified by the twirling operation of the
noise map over the unitary group U(2n) and essentially to approximate this operation
in practice, we employ the use of a unitary 2-design gate set such as a Clifford group.
Hence, the role of a gate set in SRB is important in extracting average gate fidelity of
a gate set (as in SRB) or individual gate (as in IRB) by an experimental procedure.
On the other hand, as discussed in section 2.4, definition of unitarity is concerned
with the unital part of the noise and hence, is directly related to the noise channel.
The role of gate set in SURB, is to obtain the average noise map for a gate set (not
necessarily a unitary 2-design) and not for a mandatory operation, like twirling, to
perform ‘averaging’ over the pure states. Although Wallman et al. initially propose
the definition of unitarity in the form of an ‘average over pure states’, they prove that
essentially that reduces to focusing only on the unital part of the channel.

To summarise, unitarity is a concept which discriminates the nature of noise channel
and is not a metric about actual behaviour of the noise channel (i.e the error rate
of the channel like average gate fidelity or diamond distance) and hence, does not
require a mandatory gate set to perform ‘averaging’ of noise. Hence, there exist sep-
arate protocols (DRB, IRB, RRB etc.) which are variants of SRB, but for SURB, all
other similar variants are just just ‘re-interpretation’. In our main contribution, we
perform a analog of mix of IRB and DRB protocols (which exist for SRB) for SURB.
We discuss our exact procedure used to benchmark unitarity of noise in IBM-Q de-
vices below.

Native Gate URB details : In order to benchmark unitarity of noise map of actual
gate operation of native gates in IBM-Q processors we propose the following two
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modifications to existing SURB protocol:
(1) There is no gate set that we consider, so no sampling is required.
(2) In each iteration and each depth d of the circuit, single identity gate is applied,
(for two-qubit version, we apply I ⊗ I) followed by the native gate in consideration
and this is repeated d times.

The rest of the protocol remains same. We mention here, that although depth of the
circuit which played the role of approximating the average noise channel in SURB
now, becomes irrelevant for the calculation of unitarity of a fixed native gate, nev-
ertheless, we did perform experiments for various depths by being skeptical about
this assumption, simply because the unitarity then, derived from the exponential re-
gression can come out to be more accurate. Again, since sampling of gates is not
performed, there is no ‘in-sequence variance’ and hence number of samples becomes
irrelevant, but we still keep the number of samples parameter, which essentially means
that we perform same experiment many times for ‘averaging’ the noise from the native
gate. We present compact pseudocode for Native gate URB in Algorithm 3.4.1.

Input: Sequence lengths (depths) M, Number of
iterations (or number of random sequences) Nm for
every depth m ∈M, Number of samples Sm for each
depth and iteration, native gate to be benchmarked
G and ideal identity gate (on all qubits) I.
Begin:

For all depth m ∈M:
Repeat Nm times:
Compose the sequence Gm = G ◦ I...I ◦ G ◦ I ◦ G.
where, G ◦ I is applied m times (ignore first I)
For all non-identity Pauli’s P, Q:
Repeat Smtimes :
Prepare pure states corresponding to,
ρ(P ) = I+P

d and ρ̂(P ) = I−P
d

as mentioned in 3.2.1. Apply Gm
to each state. Measure E(Q) = Q large number
of times. Estimate shifted purity,

qs =
1

d2 − 1

∑
P,Q 6= I

{Tr[E(Q)Gjρ(P )]− Tr[E(Q)Gjρ̂(P )]}2

Average over all samples q̃n = 1
Sm

∑
s
qs

Average over all iterations q̂m = 1
Nm

∑
n
q̃n

Fit exponential curve q̂m = Bum−1 where, u is
unitarity and B is a constant absorbing SPAM.

End

Algorithm 3.4.1 Pseudocode for Native gate URB Protocol (single copy implementa-
tion).
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We mention here, that the unitarity experiments we performed are simulations using
QasmSimulator of IBM Qiskit, similar to the simulations of custom noise models,
discussed in 3.3. We have used the NoiseModel.from backend(backend) method pro-
vided by Qiskit Aer, that approximates the noise model of real backend device. We
treat this noise as the average noise of the native gate. It simulates the actual noise
imparted due to gate operation on qubits, in real backends, by considering an effective
depolarising channel followed by thermal relaxation of the qubit. We have consid-
ered both of these effects and also considered only the depolarising error (excluding
the thermal relaxation of the qubit), but we ultimately perform experiments by not
considering the thermal relaxation so that the approximate noise simulated is close
approximation of noise induced solely by the gate operation.

3.4.2 Results of Native Gate URB in IBM-Q processors

The native gate set for both burlington (5-qubit) and melbourne (15-qubit) backends
consist of the set {CNOT, I, U2, U3} where, I is the identity gate, and U2 and U3
correspond to single qubit rotations parameterized by two and three angles respec-
tively. Fig 3.3 and 3.4 provide the details of the results of the experiments of Native
Gate URB. We now elaborate on the actual implementation details of our experiment.

For each processor and native gate chosen, we apply a custom ‘unitary’ gate which
performs the identity operation, followed by the native gate chosen, repeated depth
many times in each sample and iteration. We remark here, that this custom unitary
gate is not decomposed into native gates, since Qiskit allows us to define custom
basis gates or gates from which we want our ‘compiled’ circuit to be executed and we
add this unitary gate (essentially, the non-noisy identity gate) and the native gate
chosen, to our set of basis gates. This means, in our ‘compiled’ circuit, the depth of
the circuit is composed of the ideal unitary gate performing identity operation and
the noisy native gate chosen which will be the sole source of noise in the circuit. The
reason we can be sure of ideal identity operation is because no IBM-Q device (real
backend) contains ‘unitary’ gate as it’s basis gate and since, we can only simulate
the backend noise of native gates of a given processor, therefore, the custom unitary
gate we construct is ideal. We also make sure to include this custom unitary gate
in our set of basis gates so that it does not decompose into noisy native identity
(‘id’) gate of real backend. We choose to apply ideal identity gate and native gate
to be benchmarked in an ‘interleaved’ fashion because, internally Qiskit tries to op-
timize the circuit when it compiles the circuit to be run. Since we explicitly want
the same noisy gate to be applied many times for each depth experiment, we specif-
ically want Qiskit to not optimize the circuit and remove the number of duplicate
gates. This case specifically arises for ’cx’ gate, for which Qiskit does not apply any
’cx’ in the compiled version if, the depth is even and applies a single ’cx’ if the depth
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(a) (b)

(c) (d)

Figure 3.3: Results of experimental implementation of variant of Standard URB procedure, to
benchmark unitarity of native gates of burlington processor (display name: ibmq burlington). URB
curves associated with experiments done with native gates chosen as Identity (‘id’), U2 (‘u2’), U3
(‘u3’) and CNOT (‘cx’) are shown in Fig (a),(b),(c),(d) respectively. The depths used for each
benchmarking experiment were, for identity and CNOT gates, m = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
and for U2 and U3 gates, m = 1, 2, 3, 4. Number of iterations for each benchmarking experiment
= 15 and number of samples = 5. Unitarity of approximate noise map of ’id’, ’u2’, ’u3’ and ’cx’
were found to be 0.998473, 0.998683, 0.997480, 0.971898 respectively.

is odd. By interleaving, an ideal identity gate, we disarm this optimization behaviour.

Fig 3.3 shows the results for the burlington device. Fig 3.3 (a), is the fit curve obtained
for the identity gate (‘id’) of the burlington device. The experiment was performed
with the sequence lengths of m = 5,10,15,20,25,30,35,40,45,50, number of iterations
being 15 and number of samples for the same depth and iteration were taken to be 5.
The unitarity was found to be 0.998473, which is high as expected, since identity is a
single qubit gate hence, there is little chance of any incoherent error in it’s execution.
The variance in the shifted purities for each depth value was also found to be low,
(which can be seen as colored blobs for different depth values along the curve). This
means that, the shifted purity values are concentrated about the mean.
Fig 3.3 (b), is the fit curve obtained for the ‘u2’ gate which takes two angle parameters.
The experiment was performed with the sequence lengths of m = 5,10,15,20,25,30,35,
40,45,50, number of iterations being 15 and number of samples for the same depth
and iteration were taken to be 5. The unitarity was found to be 0.998683, which is
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high as expected, again, since it is a single qubit gate. The variance in the shifted
purities for each depth value was also found to be very low.
Fig 3.3 (c), is the fit curve obtained for the ‘u3’ gate which takes three angle parame-
ters. The experiment was performed with the sequence lengths ofm= 5,10,15,20,25,30,
35,40,45,50, number of iterations being 15 and number of samples for the same depth
and iteration were taken to be 5. The unitarity was found to be 0.997480, which is
again high as expected as it is again, a single qubit gate. The variance in the shifted
purities for each depth value was again, found to be very low.
Fig 3.3 (d), is the fit curve obtained for the CNOT (‘cx’) gate. The experiment was
performed with the sequence lengths of m = 5,10,15,20,25,30,35,40,45,50, number of
iterations being 15 and number of samples for the same depth and iteration were
taken to be 5. In this case, the unitarity was found to be 0.971898 which is slightly
lower than the single qubit gates and is also expected. Since, the two qubit gates are
prone to cross talk between qubits, we suspect that unitarity of CNOT gate must be
lower than single qubit gates, as CNOT may induce incoherent errors. However, we
find that the unitarity is sufficiently high, signifying that IBM-Q burlington device
has significantly less cross talk and as a result, the incoherence in the errors is very
low. We argue that, this is expected evidently, due to simple connectivity and less
number of qubits in the burlington device.

Moving on to the 15 qubit processor (melbourne), Fig 3.4 (a), is the fit curve ob-
tained for the identity gate (‘id’) gate of the burlington device. The experiment was
performed with the sequence lengths of m = 5,10,15,20,25,30,35,40,45,50, number of
iterations being 15 and number of samples for the same depth and iteration were
taken to be 5. The unitarity was found to be 0.997995. We remark that, this is very
slightly lower than the unitarity of identity gate found for burlington device.
Fig 3.4 (b), is the fit curve obtained for the ‘u2’ gate which is single qubit gate taking
two angle parameters. The experiment was performed with the sequence lengths of m
= 5,10,15,20,25,30,35,40,45,50, number of iterations being 15 and number of samples
for the same depth and iteration were taken to be 5. The unitarity was found to be
0.997861.
Fig 3.4 (c), is the fit curve obtained for the ‘u3’ gate which is the single qubit gate
taking three angle parameters. The experiment was performed with the sequence
lengths of m = 5,10,15,20,25,30,35,40,45,50, number of iterations being 15 and num-
ber of samples for the same depth and iteration were taken to be 5. The unitarity
was found to be 0.995872, slightly lower than that of ‘u2’ gate.
Fig 3.4 (d), is the fit curve obtained for the CNOT (’cx’) gate. The experiment was
performed with the sequence lengths of m = 5,10,15,20,25,30,35,40,45,50, number of
iterations being 15 and number of samples for the same depth and iteration were
taken to be 5. We found the unitarity to be 0.930389, which is considerably lower
compared to the results till now. We therefore conclude that, there is significant cross
talk inducing incoherent errors in the case of two-qubit CNOT gate for the 15-qubit
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Figure 3.4: Results of experimental implementation of variant of Standard URB procedure, to
benchmark unitarity of native gates of melbourne processor (display name: ibmq 16 melbourne).
URB curves associated with experiments done with native gates chosen as Identity (‘id’), U2 (‘u2’),
U3 (‘u3’) and CNOT (‘cx’) are shown in Fig (a),(b),(c),(d) respectively. The depths used for each
benchmarking experiments are, for identity and CNOT gates m = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
and for U2 and U3 gates, m = 1, 2, 3, 4. Number of iterations for each benchmarking experiment
= 15 and number of samples = 5. Unitarity of approximate noise map of ’id’, ’u2’, ’u3’ and ’cx’
were found to be 0.997995, 0.997861, 0.995872, 0.930389 respectively.

IBM-Q melbourne device although still, it’s under reasonable limits. Again, this only
strengthens the argument we gave before, that simple connectivity and less number
of qubits induce less cross talk among the qubits, while rich connectivity and/or more
number of qubits (which is what we see in case of melbourne device) induces more
incoherent errors. The results are summarised in Table 3.1.

Table 3.1: Table summarising the Native gate URB experiments on 5-qubit and 15-qubit IBM-Q
processors.

Native Gate Burlington (5-qubit) Melbourne (15-qubit)
Identity (‘id’) 0.998473 0.997995

Single-Qubit (‘u2’) 0.998683 0.997861
Single-Qubit (‘u3’) 0.997480 0.995872
Two-Qubit (‘cx’) 0.971898 0.930389
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3.4.3 Discussion on the Results

Here, we comment on our results and discuss the extent of cross talk in the IBM-Q
processors which we have considered in this paper. Since, cross talk errors are cor-
related [48], cross talk between target qubits (which, the gate operation intended to
act on) and neighbouring qubits (extraneous qubits affected by the gate operation)
can induce incoherent errors in the target qubits. Conversely, target qubits of a given
gate operation can be subjected to incoherent noise after the gate is applied, either
due to decoherence of the targets qubits themselves or due to cross talk caused by the
gate operation itself. We have already ensured that, the simulation of the backend
noise is executed on ideal qubits with no thermal relaxation errors. This rules out
the decoherence of the target qubits themselves as the source of ‘incoherence’ in the
noise channel.
We therefore conclude from the results summarised in Table 3.1 that, there is signif-
icant cross talk inducing incoherent errors in the case of two-qubit CNOT gate for
both 5-qubit and 15-qubit processors. For the rest of the native gates, for both the
processors, we conclude that there is little ‘incoherence’ in the noise and practically
the noise remains unitary for low depths. Although, for large circuit depths of more
than 30 the ‘incoherence’ in the noise associated with single qubit gates for both
processors become significant, considering they only act on a single qubit.
We also conclude that, the cross talk induced by the CNOT gate for 15-qubit processor
induces more ‘incoherence’ in the noise than the 5-qubit one by observing that the
unitarity of CNOT gate in 15-qubit is about 0.04 less than that of 5-qubit processor.
We remark here, that we are only able to detect cross talk and it’s effect on target
qubits in terms of ‘incoherence’ induced in the noise channel through our Native Gate
URB protocol. We cannot comment on the further characterization of the cross talk
based on the obtained results. Although, quantifying and characterizing the cross talk
based on the concept of unitarity and estimating a figure of merit by employing a
randomized benchmarking type protocol might be an interesting question to consider.
Nevertheless, the least we can reason is, that simple connectivity and less number of
qubits induce less ‘incoherence’ as a result of cross talk, while rich connectivity and/or
more number of qubits (which is what we see in case of 15-qubit device) induces more
when applying the same entangling gate such as the CNOT gate. This is however
true, only when the ‘quality’ of qubits in both the processors are comparable i.e.,
either they are ideal qubits or their decoherence times are of the same order.
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Chapter 4

Conclusion and Future Work

In this paper, we experimentally verified the significance of URB, by running a mod-
ified protocol that we proposed to benchmark the noise in two of the IBM-Q devices.
In these experiments our control over the exact compilation and actual implemen-
tation on the IBM-Q devices were to the extent of simply performing Native gate
URB successfully. We propose more detailed experiments as future work, in which
the user chooses the qubits present on the device (based on the decoherence times
of the qubits) as the ‘working qubits’ and perform URB on these qubits, so that,
full characterization of noise can be performed on a given processor, considering it’s
restricted connectivity. Both SURB and Native Gate URB, require the whole Pauli
group to be accessed every time we try to benchmark the coherence in the noise,
which scales exponentially with the number of qubits. We propose the modification
of Native Gate URB, so that it can be practically tractable also as a future problem.
We hope that, this can be of potential use to quickly empirically calculate a figure
of merit that can give an idea about the amount of cross talk and incoherence in the
quantum computation performed on a given commercial device or archetype.
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