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Notations & Abbreviations

N Set of all natural numbers

N0 Set of all whole numbers; N ∪ {0}

C Set of all complex numbers; Complex plane

D Unit disk {z ∈ C : |z| < 1}

T Unit circle {z ∈ C : |z| = 1}

Cθ Half-plane {s ∈ C : Re s > θ}

T Homogeneous rooted tree with root o

v− Parent of a vertex v

|v| Number of edges between v and o

ζ Riemann zeta function

χA Characteristic function on a set A

χv Characteristic function on the set {v}; χ{v}
Mψ Multiplication operator induced by ψ

Cφ Composition operator induced by φ

Wψ,φ Weighted composition operator induced by ψ and φ

σe(A) Point spectrum of an operator A

σa(A) Approximate point spectrum of an operator A

σ(A) Spectrum of an operator A

aN (A) N th approximation number of an operator A

B(X) Set of all bounded linear operators on X

K(X) Set of all compact operators on X

H(Ω) Space of all analytic functions defined on Ω.
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Chapter 1

Introduction

1.1 Outline of the thesis

In analytic function theory, the study of multiplication and composition operators has a
rich structure for various analytic function spaces of the unit disk D = {z ∈ C : |z| < 1}
such as the Hardy spaces Hp, the Bergman spaces Ap and the Bloch space B. This
theory connects the operator theoretic properties such as boundedness, compactness,
spectrum, invertibility, isometry with that of the function theoretic properties of the
inducing map (symbol) such as bijectivity, boundary behaviour and vise versa.

Literature on multiplication operators is exhaustive. See for example the survey
articles [3, 18, 52, 70] on multiplication operators on various function spaces of the unit
disk. The study of composition operators on various analytic function spaces defined
on D becomes a popular branch of analytic function theory and operator theory. There
are excellent text books and articles on composition operators, see [29, 68, 69] and the
references therein.

Around 50 years ago, E. A. Nordgren begun a systematic study of composition oper-
ators. Composition operators have arisen in the study of commutants of multiplication
operators and more general operators. Also, they play a role in the theory of dynamical
systems. De Brange’s original proof of the Bieberbach conjecture relied on substitu-
tion operators (another name for composition operators). Ergodic transformations are
sometimes thought of as inducing composition operators on Lp spaces.

In 1955, Banach begun the study of weighted composition operators. Banach [14]
proved the classical Banach-Stone theorem which asserts that the surjective isometries
between the spaces of continuous real-valued functions on a closed and bounded interval
are certain weighted composition operators. In [37], Forelli proved that the isometric

3



4 Chapter 1. Introduction

isomorphism of the Hardy space Hp (p 6= 2) are also weighted composition operators.
The same result for the case of Bergman space is proved by Kolaski in [47].

The study of weighted composition operators can be viewed as a natural generaliza-
tion of the composition operators. Moreover, weighted composition operators appear
in applied areas such as dynamical systems and evolution equations. For example,
classification of dichotomies in certain dynamical systems is connected with weighted
composition operators, see [21].

In the recent years, there has been a considerable interest in the study of function
spaces on discrete sets such as tree (more generally on graphs). For example, Lipschitz
space of a tree (discrete analogue of Bloch space) [24], weighted Lipschitz space of a
tree [6], iterated logarithmic Lipschitz space of a tree [5], weighted Banach spaces of an
infinite tree [9] and Hp spaces on trees [48] are some in this line of investigation. In
[48], the Hp spaces on trees are defined by means of certain maximal or square function
operators associated with a nearest neighbour transition operator which is very regular,
and this study was further developed in [30].

Multiplication operators were considered on various discrete function spaces on infi-
nite tree such as Lipschitz space, weighted Lipschitz space, iterated logarithmic Lipschitz
spaces and weighted Banach spaces of an infinite tree. See [4, 5, 6, 8, 9, 24, 25] for more
details. The study of composition operators on discrete function spaces was first initi-
ated by Colonna et al. in [7] in which the Lipschitz space (discrete analogue of Bloch
space) of a tree was investigated. Composition operators on weighted Banach spaces of
an infinite tree were considered in [10]. Recently, some classes of operators including
Toeplitz operators with symbol from the Lipschitz space of a tree were considered in
[26]. The study of composition operators is not well developed unlike multiplication
operators in the discrete settings.

In this thesis, we mainly study the composition operators in three different settings,
namely, the following:

1. Discrete analogue of generalized Hardy spaces (Tp). See Chapter 4.

2. The Hardy-Dirichlet space H2, the space of Dirichlet series with square summable
coefficients. See Chapter 5.

3. The class Pα of analytic functions subordinate to 1+αz
1−z for |α| ≤ 1, α 6= −1. See

Chapter 6.

All these settings are very different in nature. In particular, for each p, Tp is a Banach
space but is not a Hilbert space. Observe that H2 has a Hilbert space structure by its
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own, whereas the class Pα does not have a linear space structure. We note that Pα is a
compact convex family in H(D).

In Chapter 2, we define discrete analogue of generalized Hardy spaces (Tp) and
their separable subspaces (Tp,0) on a homogenous rooted tree and study some of their
properties such as completeness, inclusion relations with other spaces, separability and
growth estimate for functions in these spaces and their consequences.

In Chapter 3, we obtain equivalent conditions for multiplication operators Mψ on
Tp and Tp,0 to be bounded and compact. Furthermore, we discuss point spectrum,
approximate point spectrum and spectrum of multiplication operators and discuss when
a multiplication operator is an isometry.

In Chapter 4, we give an equivalent conditions for the composition operator Cφ to
be bounded on Tp and on Tp,0 spaces and compute their operator norms. We have
considered the composition operators induced by special symbols such as univalent and
multivalent maps and automorphism of a homogenous tree. We also characterize in-
vertible composition operators and isometric composition operators on Tp and on Tp,0
spaces. Also, we discuss the compactness of Cφ on Tp spaces and finally we prove that
there are no compact composition operators on Tp,0 spaces.

In Chapter 5, we consider the composition operators on the Hardy-Dirichlet space
H2, the space of Dirichlet series with square summable coefficients. By using the Schur
test, we give some upper and lower estimates on the norm of a composition operator on
H2, for the affine-like inducing symbol ϕ(s) = c1 + cqq

−s, where q ≥ 2 is a fixed integer.
We also give an estimate for approximation numbers of a composition operators in our
H2 setting.

In Chapter 6, we study the weighted composition operators preserving the class
Pα. Some of its consequences and examples of certain special cases are presented.
Furthermore, we discuss about the fixed points of weighted composition operators.

1.2 Basic definitions and results

We refer to the books [27, 61, 67] for basic definitions and results on functional analysis
and [60, 63] for basic notions of complex analysis. Let us now recall several definitions
and some basic results that are needed in the sequel.

Definition 1.2.1. A normed space is a pair (X, ‖·‖), where X is a vector space and ‖·‖
is a norm on X. A Banach space is a normed space that is complete with respect to
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metric defined by d(x, y) = ‖x− y‖ for x, y ∈ X. If X has a countable dense subset A
i.e., A = X, then X is said to be separable.

Definition 1.2.2. A Hilbert space is a vector space H together with an inner product
〈·, ·〉 such that (H, ‖·‖) is Banach space, where the norm is induced by the inner product,
i.e., ‖a‖ :=

√
〈a, a〉 for all a ∈ H.

Proposition 1.2.3. (Cauchy-Schwarz Inequality) For any f and g in a Hilbert space
H, we have

|〈f, g〉| ≤ ‖f‖ ‖g‖ .

Proposition 1.2.4. (Parallelogram Law) If H is a Hilbert space and f, g ∈ H, then

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Definition 1.2.5. A linear map A on a normed space X is said to be bounded linear
operator or bounded operator if the operator norm ‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} is finite.
The set of all bounded linear operators on X is denoted by B(X).

Remark 1.2.6. B(X) becomes a Banach space under the operator norm defined above
if X is a Banach space.

Definition 1.2.7. A linear map A on a normed space X is said to be closed operator
if its graph G(A) = {(x,Ax) : x ∈ X} is closed in X ×X, or equivalently, xn → x and
Axn → y imply y = Ax.

Theorem 1.2.8. (Closed graph theorem) Every closed operator A on a Banach space
X is a bounded linear operator on X.

Definition 1.2.9. A bounded linear operator A on a normed space X is said to be a
compact operator if the closure of the image of the closed unit ball {Ax : ‖x‖ ≤ 1} is
compact. The set of all compact operators on X is denoted by K(X).

Proposition 1.2.10. K(X) is a closed subspace of B(X). In particular, limit of a
sequence of compact operators is a compact operator.

Definition 1.2.11. A bounded linear operator A on a normed space X is said to be a
finite rank operator if the range {Ax : x ∈ X} has finite dimension.

Remark 1.2.12. It is easy to see that, every finite rank operator is compact operator.
Consequently, the limit of finite rank operators is also a compact operator.

Definition 1.2.13. The essential norm ‖A‖e of a bounded operator A on X is defined
to be the distance between A and K(X):

‖A‖e = dist(A,K(X)) = inf{‖A−K‖ : K ∈ K(X)}.
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Definition 1.2.14. A bounded operator A on a normed space X is said to be an
isometry if ‖Ax‖ = ‖x‖ for all x ∈ X.

Definition 1.2.15. A bounded linear operator A on a normed space X is said to be
an invertible if there exists a bounded linear operator B on X such that B(A(x)) =
A(B(x)) = x for all x ∈ X. Such an operator B is called the inverse of A and is denoted
by A−1.

Definition 1.2.16. A bounded linear operator A on an inner product space X is said
to have an adjoint if there exists a bounded linear operator B on X such that

〈Ax, y〉 = 〈x,By〉 for all x, y ∈ X.

Such an operator B is called an adjoint of A and is denoted by A∗.

Remark 1.2.17. Every bounded linear operator A on a Hilbert space has the adjoint.
Moreover, ‖A‖ = ‖A∗‖ for all A ∈ B(X).

Definition 1.2.18. A bounded linear operator A on a Hilbert space H is called a normal
operator if it commutes with its adjoint, i.e., AA∗ = A∗A.

Definition 1.2.19. Let A be a bounded linear operator on a normed space X. The
point spectrum σe(A) of A consists of all λ ∈ C such that A− λI is not injective. Thus,
λ ∈ σe(A) if and only if there exists a nonzero x ∈ X such that Ax = λx.

Definition 1.2.20. Let A be a bounded linear operator on a normed space X. The
approximate point spectrum σa(A) of A consists of all λ ∈ C such that A − λI is not
bounded below. Thus, λ ∈ σa(A) if and only if there is a sequence {xn} in X such that
‖xn‖ = 1 for each n and ‖A(xn)− λxn‖ → 0 as n→∞.

Definition 1.2.21. Let A be a bounded linear operator on a normed space X. The
spectrum σ(A) of A consists of all λ ∈ C such that A− λI is not invertible.

Definition 1.2.22. For a bounded linear operator A, the spectral radius, denoted by
r(A) is defined by

r(A) := sup{|λ| : λ ∈ σ(A)}.

If r(A) = ‖A‖, then the operator A is called normaloid operator. For example, every
normal operator is normaloid.

Proposition 1.2.23. Let A be a bounded linear operator on a complex Banach space
X. Then,

(1) σe(A) ⊆ σa(A) ⊆ σ(A).
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(2) The boundary of the spectrum of A is contained in the approximate point spectrum
of A.

(3) Approximate point spectrum σa(A) is a closed subset of C.

(4) σ(A) is a nonempty compact subset of C (Gelfand-Mazur theorem).

(5) r(A) ≤ ‖A‖. That is, |λ| ≤ ‖A‖ for all λ ∈ σ(A).

Proposition 1.2.24. Let A be a compact linear operator on normed space X. Then,

(1) σe(A) \ {0} = σ(A) \ {0}.

(2) 0 is the only possible limit point of σ(A).

(3) σ(A) is countable set.



Chapter 2

Discrete Hardy spaces (Tp)

2.1 Introduction

The theory of function spaces defined on the unit disk D is particulary a well developed

subject. The recent book by Pavlović [58] and the book of Zhu [71] provide us with a

solid foundation in studying various function spaces on the unit disk. One can also refer

[33] for Hardy spaces (Hp), [43] for Bergman spaces (Ap), [36] for Dirichlet spaces (Dp)

and [11] for Bloch space (B).

In the recent years, there has been a considerable interest in the study of function

spaces on discrete sets such as tree (more generally on graphs). For example, Lipschitz

space of a tree (discrete analogue of Bloch space) [24], weighted Lipschitz space of a tree

[6], iterated logarithmic Lipschitz space of a tree [5] and Hp spaces on trees [48] are some

in this line of investigation. In [48], the Hp spaces on trees are investigated by means

of certain maximal or square function operators associated with a nearest neighbour

transition operator which is very regular, and this study was further developed in [30].

In this chapter, we define discrete analogue of generalized Hardy spaces (Tp) and

their separable subspaces (Tp,0) on a homogenous rooted tree and study some of their

properties such as completeness, inclusion relations with other spaces, separability and

growth estimate for functions in these spaces and their consequences. This chapter is

based on our article [54].

9
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2.2 Preliminaries

A graph G is a pair G = (V,E) of sets satisfying E ⊆ V × V . The elements of V and E

are called vertices and edges of the graph G, respectively. Two vertices x, y ∈ V (with

the abuse of language, one can write as x, y ∈ G) are said to be neighbours or adjacent

(denoted by x ∼ y) if there is an edge connecting them. A regular (homogeneous)

graph is a graph in which every vertex has the same number of neighbours. If every

vertex has k neighbours, then the graph is said to be k−regular (k−homogeneous)

graph. A path is part of a graph with finite or infinite sequence of distinct vertices

[v0, v1, v2, . . .] such that vn ∼ vn+1. If P = [v0 − v1 − v2 − · · · − vn] is a path then the

graph C = [v0 − v1 − v2 − · · · − vn − v0] (path P with an additional edge vn − v0) is

called a cycle. A non-empty graph G is called connected if any two of its vertices are

linked by a path in G. A connected and locally finite (every vertex has finite number

of neighbours) graph without cycles is called a tree. A rooted tree is a tree in which a

special vertex (called root) is singled out. The distance between any two vertex of a tree

is the number of edges in the unique path connecting them. If G is a rooted tree with

root o, then |v| denotes the distance between o and v. Further the parent (denoted by

v−) of a vertex v 6= o is the unique vertex w ∈ G such that w ∼ v and |w| = |v| − 1. For

basic issues concerning graph theory, one can refer to standard texts such as [31].

Let T be a rooted tree. By a function on a graph, we mean a function defined on its

vertices. The Lipschitz space [24] and the weighted Lipschitz space [6] of T are denoted

by L and Lw, respectively. These are defined as follows:

L =
{
f : T → C : sup

v∈T, v 6=o
|f(v)− f(v−)| <∞

}

and

Lw =
{
f : T → C : sup

v∈T,v 6=o
|v| |f(v)− f(v−)| <∞

}
,

respectively. Throughout the discussion, T denotes a (q + 1)−homogeneous rooted tree

for some q ∈ N. For n ∈ N0, let Dn denote the set of all vertices v ∈ T with |v| = n and

denote the number of elements in Dn by cn. Thus,

cn =

 (q + 1)qn−1 if n ∈ N,

1 if n = 0.
(2.2.1)
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For p ∈ (0,∞], the generalized Hardy space Hp
g (D) consists of all those measurable

functions f : D→ C such that Mp(r, f) exists for all r ∈ [0, 1) and ‖f‖p <∞, where

‖f‖p =


sup

0≤r<1
Mp(r, f) if p ∈ (0,∞),

sup
z∈D
|f(z)| if p =∞,

and

Mp
p (r, f) = 1

2π

∫ 2π

0
|f(reiθ)|p dθ.

The classical Hardy spaceHp is a subspace ofHp
g (D) consisting of only analytic functions.

See [20] for recent investigation on Hp
g (D) and some related function spaces.

For our investigation, this definition has an analog in the following form.

Definition 2.2.1. Let T be a (q + 1)−homogeneous tree rooted at o. For every n ∈ N,

we introduce

Mp(n, f) :=



 1
cn

∑
|v|=n

|f(v)|p
 1

p

if p ∈ (0,∞),

max
|v|=n

|f(v)| if p =∞,

Mp(0, f) := |f(o)| and

‖f‖p := sup
n∈N0

Mp(n, f). (2.2.2)

The discrete analogue of the generalized Hardy space, denoted by Tq,p, is then defined

by

Tq,p := {f : T → C such that ‖f‖p <∞}.

Similarly, the discrete analogue of the generalized little Hardy space, denoted by Tq,p,0,

is defined by

Tq,p,0 := {f ∈ Tq,p : lim
n→∞

Mp(n, f) = 0}

for every p ∈ (0,∞]. For the sake of simplicity, we shall write Tq,p and Tq,p,0 as Tp

and Tp,0, respectively. Unless otherwise stated explicitly, throughout ‖·‖p is defined as

above.
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2.3 Completeness

Theorem 2.3.1. For 1 ≤ p ≤ ∞, ‖·‖p induces a Banach space structure on the space

Tp.

Proof. First we begin with the case p = ∞. In this case, (2.2.2) reduces to ‖f‖p =

sup
v∈T
|f(v)| and thus, the space T∞ coincides with the set of all bounded functions on T

with sup-norm which is known to be a Banach space.

Next, we consider the case 1 ≤ p <∞. We have the following.

(i) If f ≡ 0, then ‖f‖p = 0. Conversely, if ‖f‖p = 0 then Mp(n, f) = 0 for all n ∈ N0

showing that ∑
|v|=n

|f(v)|p = 0 for all n ∈ N0 and thus, f ≡ 0.

(ii) For each n ∈ N0 and α ∈ C, it is easy to see by the definition that Mp(n, αf) =

|α|Mp(n, f) and thus, ‖αf‖p = |α| ‖f‖p.

(iii) For each n ∈ N and f, g ∈ Tp, one has (since p ≥ 1)

Mp(n, f + g) ≤

 1
cn

∑
|v|=n

(|f(v)|+ |g(v)|)p


1
p

≤

 1
cn

∑
|v|=n

|f(v)|p
 1

p

+

 1
cn

∑
|v|=n

|g(v)|p
 1

p

= Mp(n, f) +Mp(n, g).

The last inequality trivially holds for n = 0 and thus, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Hence (Tp, ‖·‖p) is a normed space. In order to prove that Tp is a Banach space, we

begin with a Cauchy sequence {fk} in Tp. Then {fk(v)} is a Cauchy sequence in C for

every v ∈ T and thus, {fk} converges pointwise to a function f . Now, for a given ε > 0,

there exists an N ∈ N such that Mp(n, fk − fl) < ε for all k, l ≥ N and n ∈ N0. Letting

l → ∞, we get Mp(n, fk − f) ≤ ε for all k ≥ N and n ∈ N0. Hence ‖fk − f‖p ≤ ε for

all k ≥ N , which gives that fk → f. The triangle inequality ‖f‖p ≤ ‖f − fN‖p + ‖fN‖p
gives that f ∈ Tp. This completes the proof of the theorem.

Remark 2.3.2. For 0 < p < 1, d(f, g) = ‖f − g‖pp defines a complete metric on Tp.
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A function f : T → C is said to be a radial constant function if f(v) = f(w) whenever

|v| = |w|.

Remark 2.3.3. Since the integral means Mp(r, f) of an analytic function f defined on

D is an increasing function of r, we have ‖f‖p = lim
r→1−

Mp(r, f). Thus, the little Hardy

space Hp
0 , defined by

Hp
0 := {f ∈ Hp : Mp(r, f)→ 0 as r → 1−},

consists of only a single element, namely, the zero function. But this is not the case

in the generalized Hardy space Hp
g (D) of measurable functions, This is because the

maximum modulus principle is not valid for a general element in Hp
g (D). Consequently,

the generalized little Hardy space Hp
0,g is non-trivial (i.e., not a zero subspace), where

Hp
0,g := {f ∈ Hp

g (D) : Mp(r, f)→ 0 as r → 1−}.

For example, if

fα(z) =

 1 for |z| ≤ α,

0 for α < |z| < 1,

then f ∈ Hp
0,g for each 0 ≤ α < 1.

In the discrete case, Tp,0 is non-trivial. In fact, the set of all radial constant functions

in Tp,0 is isometrically isomorphic to the sequence space c0 (set of all sequences that

converge to zero).

Here are few questions that arise naturally.

It is natural to ask whether T2 is a Hilbert space or not. The answer is indeed

no!. For example, choose two vertices v1 and v2 such that |v1| = 1 and |v2| = 2. Take

f =
√
q + 1χv1 and g =

√
q(q + 1)χv2 , where χv denotes characteristic function on the

set {v}. Then it is easy to see that f, g ∈ T2 with

‖f‖2 = ‖g‖2 = ‖f + g‖2 = ‖f − g‖2 = 1

and hence the parallelogram law

‖f + g‖22 + ‖f − g‖22 = 2(‖f‖22 + ‖g‖22)
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is not satisfied. Therefore, T2 cannot be a Hilbert space under ‖·‖2.

Remark 2.3.4. In the classical Hardy space H2 of the unit disk, it is known that

sup
0≤r<1

M2(r, f) = 1
2π

∫ 2π

0
|f(eiθ)|2 dθ,

which is due to Littlewood’s subordination theorem and mean convergence theorem (see

[33, Section 2.3]). Therefore H2 becomes a Hilbert space in a natural way. On the other

hand a similar situation does not occur in the Tp spaces.

Question 1. As with the lp and the Hp spaces, it is natural to ask whether Ts is not

isomorphic to Tr when s 6= r? What can be said about the dual of Ts?

These questions remain open.

Theorem 2.3.5. For 1 ≤ p ≤ ∞, ‖·‖p induces a Banach space structure on Tp,0.

Proof. For n ∈ N0 and f, g ∈ Tp, we easily have

Mp(n, αf) = |α|Mp(n, f) and Mp(n, f + g) ≤Mp(n, f) +Mp(n, g)

so that Tp,0 is a subspace of Tp. Suppose {fk} is a Cauchy sequence in Tp,0. Since Tp is

a Banach space, {fk} converges to some function f ∈ Tp. Next, we need to prove that

f ∈ Tp,0, i.e., Mp(n, f) → 0 as n → ∞. To do this, let ε > 0 be given. Then there

exists a k ∈ N such that ‖fk − f‖p < ε/2. Since fk ∈ Tp,0, we can choose N ∈ N so that

Mp(n, fk) < ε/2 for all n ≥ N . From the inequality

Mp(n, f) ≤Mp(n, f − fk) +Mp(n, fk),

it follows that Mp(n, f) < ε for all n ≥ N . Thus, f ∈ Tp,0 and this completes the

proof.

2.4 Inclusion relations

Lemma 2.4.1. For 0 < r < s ≤ ∞ and for every complex-valued function f on T ,

Mr(n, f) ≤Ms(n, f) holds for all n ∈ N0.
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Proof. The result for s =∞ follows from the definition of Mr(n, f) and thus, it suffices

to prove the lemma for the case 0 < r < s <∞. Again by Definition 2.2.1, we see that

Mr(0, f) = |f(o)| = Ms(0, f).

For n ∈ N, we have cn vertices with |v| = n. Recall that on the Euclidean space CN ,

the following norm equivalence is well-known for 0 < r < s:

‖x‖s ≤ ‖x‖r ≤ N
1
r
− 1
s ‖x‖s , (2.4.1)

where p-norm ‖·‖p on CN is given by ‖x‖pp = ∑N
k=1 |xk|p. The second inequality in

(2.4.1), is an easy consequence of Hölder’s inequality for finite sum. We may now use

this with N = cn. As a consequence of it, we have

∑
|v|=n

|f(v)|r
 1

r

≤ (cn)
1
r
− 1
s

∑
|v|=n

|f(v)|s
 1

s

which may be rewritten as

 1
cn

∑
|v|=n

|f(v)|r
 1

r

≤

 1
cn

∑
|v|=n

|f(v)|s
 1

s

.

This shows that Mr(n, f) ≤Ms(n, f) for all n ∈ N0. The proof is complete.

As an immediate consequence of Lemma 2.4.1, one has the following.

Theorem 2.4.2. For 0 < r < s ≤ ∞, we have Ts ⊂ Tr and Ts,0 ⊂ Tr,0.

We now show by an example that the inclusions in Theorem 2.4.2 are proper. Let

0 < r < p < s ≤ ∞. Choose a sequence of vertices {vn} such that |vn| = n for all n ∈ N.

Consider the function f defined by

f(v) =

 (cn)
1
p if v = vn for some n ∈ N,

0 elsewhere.

Then, for n ∈ N, one has

Mr(n, f) = (cn)
1
p
− 1
r
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so that Mr(n, f)→ 0 as n→∞, since p > r. Also, we have

Ms(n, f) =

 (cn)
1
p
− 1
s if s <∞,

(cn)
1
p if s =∞,

and in either case, we find that Ms(n, f)→∞ as n→∞. This example shows that Ts,0
is a proper subspace of Tr,0 for r < s. From this example, it can be also seen that Ts is

a proper subspace of Tr for r < s.

Lemma 2.4.3. For f ∈ T∞, we have lim
s→∞

‖f‖s = ‖f‖∞.

Proof. For n ∈ N0 and 0 < s < t ≤ ∞, we see that Ms(n, f) ≤ Mt(n, f) and thus,

‖f‖s ≤ ‖f‖t for s < t which in turn gives that

lim sup
s→∞

‖f‖s ≤ ‖f‖∞ .

On the other hand, for each n ∈ N0, we find that

(cn)−1/sM∞(n, f) ≤Ms(n, f) ≤ ‖f‖s .

Now, by letting s→∞ and taking supremum over n ∈ N0, we get

‖f‖∞ ≤ lim inf
s→∞

‖f‖s .

Hence, lim
s→∞

‖f‖s = ‖f‖∞.

Remarks 2.4.4. 1. The unbounded function f(v) = |v| belongs to L but is not in Tp

for any 0 < p <∞. On the other hand, let us now fix an infinite path o−v1−v2 · · ·

with |vk| = k. Define g(v) = (ck)
1
p if v = vk and 0 otherwise. It is then easy to

check that g belongs to Tp for all 0 < p < ∞ but is not in L. Thus, L is not

comparable with Tp for all 0 < p <∞.

2. Consider the radial constant function h defined by h(o) = 0 and

h(v) =
|v|∑
k=1

1
k

if |v| ≥ 1.
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By simple calculations, we find that h belongs to Lw but is not in Tp for any

0 < p < ∞. For the other direction, we fix an infinite path o − v1 − v2 · · ·

with |vk| = k. If A = {o, v1, v2, . . .} then the characteristic function χA, namely,

χA(v) = 1 for v ∈ A and zero elsewhere, belongs to Tp for all 0 < p < ∞ but is

not in Lw. This concludes the proof that Lw is not comparable with Tp for all

0 < p <∞.

3. Clearly, T∞ ⊆
( ⋂

0<p<∞
Tp

)⋂
L, whereas Lw is not comparable with T∞. For

2−homogeneous trees, this inclusion relation becomes an equality. This is because

of the fact that there is no unbounded function in Tp for 2−homogeneous trees,

which can be observed from the definition of Tp.

2.5 Separability

In order to state results about the separability of Tp,0 and Tp, we need to introduce the

following. Denote by Cc(T ) the set of all functions f : T → C such that Mp(n, f) = 0

for all but finitely many n’s.

Lemma 2.5.1. For 0 < p ≤ ∞, closure of Cc(T ) under ‖·‖p is Tp,0.

Proof. Let f ∈ Tp,0 and, for each n, define fn by

fn(v) =

 f(v) if |v| ≤ n,

0 otherwise.

Clearly, fn ∈ Cc(T ) for each n ∈ N and

Mp(k, f − fn) =

 Mp(k, f) if k > n,

0 otherwise.

Therefore, we see that

‖f − fn‖p = sup
m∈N0

Mp(m, f − fn) = sup
m>n

Mp(m, f)

and, because Mp(m, f)→ 0 as m→∞, it follows that ‖f − fn‖p → 0 as n→∞. This

completes the proof.
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Theorem 2.5.2. For 0 < p ≤ ∞, Tp,0 is a separable space.

Proof. It is easy to verify that B = {χv : v ∈ T} is a basis for Cc(T ). Since B is

countable, it follows that Cc(T ) is separable. Since Cc(T ) is dense in Tp,0, we conclude

that Tp,0 is separable and the theorem follows.

We remark that Cc(T ) cannot be a Banach space with respect to any norm, since it

has a countably infinite basis.

Theorem 2.5.3. For 0 < p ≤ ∞, Tp is not separable.

Proof. Let E ⊂ Tp denote the set of all radial constant functions f whose range is

a subset of {0, 1}. Let f, g ∈ E and f 6= g. Then there exists a v ∈ T such that

f(v) 6= g(v). Since f, g ∈ E, we have Mp(n, f − g) ≤ 1 for all n. On the other hand,

Mp(|v|, f − g) = 1 and hence,

‖f − g‖p = sup
n∈N0

Mp(n, f − g) = 1.

It is easy to check that E is an uncountable subset of Tp. Since any two distinct elements

of E must be of distance 1 apart and E is uncountable, it follows that any dense subset

of Tp cannot be countable. Consequently, Tp is not a separable space.

2.6 Growth estimate and consequences

Lemma 2.6.1. Let T be a (q+1)−homogeneous tree rooted at o and 0 < p <∞. Then,

for v ∈ T \ {o}, we have the following:

(a) If f ∈ Tp, then |f(v)| ≤ ((q + 1)q|v|−1)
1
p ‖f‖p .

(b) If f ∈ Tp,0, then

lim
|v|→∞

f(v)
((q + 1)q|v|−1)

1
p

= 0.

The results are sharp.
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Proof. Fix v ∈ T \ {o} and let n = |v|. Then,

|f(v)|p ≤
∑
|w|=n

|f(w)|p = cnM
p
p (n, f)

so that |f(v)| ≤ (cn)
1
pMp(n, f) and thus,

|f(v)|
(cn)

1
p

≤Mp(n, f) ≤ ‖f‖p .

The desired results follow.

In order to prove the sharpness, we fix v ∈ T \{o}. Define f(v) = ((q+ 1)q|v|−1)
1
p for

the fixed v and 0 elsewhere. We now let m = |v| so that Mp(n, f) = 0 for every n 6= m

and

Mp(m, f) =

 1
cm

∑
|w|=m

|f(w)|p
 1

p

=
( 1
cm
|f(v)|p

) 1
p

= 1.

We obtain that ‖f‖p = sup
n∈N0

Mp(n, f) = 1 and hence,

|f(v)| = f(v) = ((q + 1)q|v|−1)
1
p ‖f‖p .

We conclude the proof.

Remark 2.6.2. For v = o, we have |f(o)| ≤ ‖f‖p . Sharpness of this inequality is easy

to verify ( for example, f = χo).

Proposition 2.6.3. Convergence in ‖·‖p (0 < p ≤ ∞) implies uniform convergence on

compact subsets of T .

Proof. The edge counting distance on T induces the discrete metric. So, finite subsets

are the only compact sets in T . Let K be an arbitrary compact subset of T . Then there

exists an N ∈ N such that |v| ≤ N for every v ∈ K. The proposition trivially holds

for the case p =∞, because given a function f and a sequence {fn} converging to f in

norm,

sup
v∈K
|(fn − f)(v)| ≤ ‖fn − f‖∞ .
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Next, we consider the case 0 < p <∞. From Lemma 2.6.1, given a function f in Tp, we

have

|f(v)| ≤ ((q + 1)q|v|−1)
1
p ‖f‖p ≤ (cN )

1
p ‖f‖p for every v ∈ K.

This gives

sup
v∈K
|f(v)| ≤ (cN )

1
p ‖f‖p

and thus, by replacing f by fn−f , we conclude that the convergence in ‖·‖p implies the

uniform convergence on compact subsets of T .

Uniform convergence on compact subsets of T does not necessarily imply the conver-

gence in ‖·‖p (0 < p ≤ ∞) as can be seen from the following example.

Example 2.6.4. Consider the function f ≡ 1. For each n, define fn by

fn(v) =

 f(v) (= 1) if |v| ≤ n,

0 otherwise.

Then

Mp(k, f − fn) =

 Mp(k, f) (= 1) if k > n,

0 otherwise.

Let K be a compact subset of T . Then there exists an N ∈ N such that |v| ≤ N for every

v ∈ K and supv∈K |(fn − f)(v)| = 0 for every n > N . It follows that {fn} converges

uniformly on compact subsets of T to f . On the other hand,

‖f − fn‖p = sup
m∈N0

Mp(m, f − fn) = 1 for every n ∈ N.

Hence, {fn} does not converge to f in ‖·‖p.

From Proposition 2.6.3, we observe that the topology of uniform convergence on

the compact subsets of T on Tp is similar to that of analytic cases such as Hp spaces.

This observation raises a natural question. Is Tp complete in the topology of uniform

convergence on compact sets? The following example shows that the answer is negative.

For each n, define fn by

fn(v) =

 |v| if |v| ≤ n,

0 otherwise.
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Let K be a compact subset of T . Then there exists an N ∈ N such that |v| ≤ N for

every v ∈ K. For N < n < m, fn(v) = fm(v) for all v ∈ K. It is easy to see that {fn}

is a Cauchy sequence in the topology of uniform convergence on compact sets and {fn}

converges pointwise to the function f(v) = |v|. Note that f can be the only possible

limit of {fn} in the topology of uniform convergence on compact sets. Since Tp contains

the sequence {fn} but not f , Tp cannot be complete under the topology of uniform

convergence on compact sets.





Chapter 3

Multiplication operators on Tp

3.1 Introduction

Let Ω be a nonempty set and X a complex Banach space of complex-valued functions f

defined on Ω. For a given complex-valued function ψ on Ω, the multiplication operator

Mψ induced by the symbol ψ is defined as

Mψ(f) = ψf for f ∈ X.

In the study of operators on analytic function spaces, multiplication and composition

operators arise naturally and play an important role. Literature on these topics are

exhaustive. See for example the survey articles [3, 18, 52, 70] on multiplication operators

on various function spaces of the unit disk D. The systematic study of operator theory

on discrete structure specially on infinite trees has been the subject of several recent

papers [4, 5, 6, 7, 8, 9, 10, 24, 25, 26, 54, 53]. Discrete function spaces are mostly

defined to be analogs of analytic function spaces.

Multiplication and composition operators are mainly considered on discrete function

spaces. The basic questions such as boundedness, compactness, estimates for operator

norm and essential norm, isometry and spectrum were considered for multiplication op-

erators between the various discrete function spaces on infinite trees such as Lipschitz

space, weighted Lipschitz space, iterated logarithmic Lipschitz spaces and weighted Ba-

nach spaces of an infinite tree. See [4, 5, 6, 8, 9, 24, 25] for more details.

23
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In this chapter, we obtain equivalent conditions for multiplication operators on Tp

and Tp,0 to be bounded and compact. Furthermore, we discuss about point spectrum,

approximate point spectrum and spectrum of multiplication operators and discuss when

a multiplication operator is an isometry. This chapter is based on our article [54].

3.2 Bounded multiplication operators

A Banach space X of functions on Ω is said to be a functional Banach space if for each

v ∈ Ω, the point evaluation map ev : X → C defined by ev(f) = f(v) is a bounded linear

functional on X. The following result is well-known.

Lemma 3.2.1. [35, Lemma 11] Let X be a functional Banach space on the set Ω and

ψ be a complex-valued function on Ω such that Mψ maps X into itself. Then Mψ is

bounded on X and |ψ(v)| ≤ ‖Mψ‖ for all v ∈ Ω. In particular, ψ is a bounded function.

Proof. The boundedness of Mψ follows from the closed graph theorem. For each v ∈ Ω,

there exists a f ∈ X with f(v) 6= 0 so that ‖ev‖ > 0 for all v ∈ Ω. For f ∈ X and v ∈ Ω,

we have

|ψ(v)f(v)| = |Mψf(v)| ≤ ‖Mψf‖ ‖ev‖ ≤ ‖Mψ‖ ‖f‖ ‖ev‖ .

By taking supremum over ‖f‖ = 1, we get

|ψ(v)| ‖ev‖ ≤ ‖Mψ‖ ‖ev‖ ,

which completes the proof.

It is natural to ask whether Tp and Tp,0 are functional Banach spaces or not.

Proposition 3.2.2. For 1 ≤ p ≤ ∞, Tp and Tp,0 are functional Banach spaces.

Proof. First we consider the case when p =∞. Since |ev(f)| = |f(v)| ≤ ‖f‖∞ for every

v ∈ T , it follows that T∞ is a functional Banach space.

Let us now consider the case when 1 ≤ p < ∞. The point evaluation map at o,

namely, eo, is a bounded linear functional on Tp because of the fact that |f(o)| ≤ ‖f‖p
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for every f in Tp. Now, we fix v ∈ T and v 6= o. Then, from Lemma 2.6.1, we have

|ev(f)| = |f(v)| ≤ ((q + 1)q|v|−1)
1
p ‖f‖p for every f ∈ Tp.

So ev is a bounded linear functional on Tp with ‖ev‖ ≤ ((q + 1)q|v|−1)
1
p . Hence Tp is

a functional Banach space. A similar proof works also for the space Tp,0. The proof is

complete.

Throughout this chapter, X denotes either Tp or Tp,0 with the norm ‖·‖p defined by

(2.2.2), where 1 ≤ p ≤ ∞.

Theorem 3.2.3. Let T be a (q+ 1)−homogeneous tree rooted at o and ψ be a complex-

valued function on T . Then the following are equivalent (compare with [70, Proposi-

tion 2]).

(a) Mψ is a bounded linear operator on X,

(b) ψ is a bounded function on T , i.e., ψ ∈ T∞.

Moreover, ‖Mψ‖ = ‖ψ‖∞.

Proof. (a)⇒ (b) : We will prove this implication by a method of contradiction. Suppose

that ψ is an unbounded function on T . Then there exists a sequence of vertices {vk}

such that

|v1| < |v2| < |v3| · · · , and |ψ(vk)| ≥ k.

For each k, define fk : T → C by fk = Ck,pχvk , where the constants Ck,p’s are chosen in

such a way that ‖fk‖p = 1. Note that fk ∈ X for each k ∈ N. We obtain that

k = k ‖fk‖p ≤ |ψ(vk)| ‖fk‖p = Mp(|vk|, ψfk) ≤ ‖ψfk‖p = ‖Mψfk‖p

for every k ∈ N, which gives a contradiction to our assumption. Hence, ψ is a bounded

function on T .
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(b) ⇒ (a) : Suppose that ψ is a bounded function on T and 1 ≤ p < ∞. Then for

any f ∈ X,

Mp(n,Mψf) =

 1
cn

∑
|v|=n

|(Mψf)(v)|p
 1

p

=

 1
cn

∑
|v|=n

|ψ(v)|p|f(v)|p
 1

p

,

which shows that

Mp(n,Mψf) ≤ ‖ψ‖∞Mp(n, f). (3.2.1)

For p = ∞, the inequality (3.2.1) is trivially holds. From (3.2.1), one can also observe

that Mψf ∈ X whenever f ∈ X. Taking the supremum over n ∈ N0 on both sides of

(3.2.1), we deduce that ‖Mψf‖p ≤ ‖ψ‖∞ ‖f‖p and thus, Mψ is bounded linear operator

from X to X with ‖Mψ‖ ≤ ‖ψ‖∞.

Since X is a functional Banach space, by Lemma 3.2.1, one has |ψ(v)| ≤ ‖Mψ‖ for

all v ∈ T which by taking the supremum gives ‖ψ‖∞ ≤ ‖Mψ‖. Therefore, it follows that

‖Mψ‖ = ‖ψ‖∞.

3.3 Spectrum

In this section, we compute point spectrum, approximate point spectrum and spectrum

of multiplication operator Mψ.

Theorem 3.3.1. Let Mψ be a bounded multiplication operator on X. Then

(a) σe(Mψ) = Range of ψ = ψ(T );

(b) σ(Mψ) = σa(Mψ) = ψ(T ).

Proof. In order to prove (a), we begin by letting λ ∈ σe(Mψ). Then there exists a

non-zero function f ∈ X such that ψf = Mψf = λf . Since f 6= 0, there is a vertex

v such that f(v) 6= 0 and (ψ(v) − λ)f(v) = 0. Thus, λ = ψ(v) ∈ ψ(T ) and therefore,

σe(Mψ) ⊆ ψ(T ).
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Conversely, suppose that α ∈ ψ(T ). Then there exists a vertex v such that ψ(v) = α.

Thus, Mψ(χv) = αχv and 0 6= χv ∈ X. This gives α ∈ σe(Mψ). Hence, σe(Mψ) = ψ(T ).

Before proving (b), we observe that for every λ ∈ C,Mψ − λI = Mψ−λ. Thus,

λ ∈ σ(Mψ) if and only if Mψ−λ is not invertible if and only if 1
ψ−λ is not a bounded

function on T (see Theorem 3.2.3). Now, we let λ /∈ ψ(T ). Since the complement of

ψ(T ) is open, there exists an r > 0 such that the disk of radius r centered at λ is a

subset of C \ψ(T ). So, |ψ(v)− λ| ≥ r for every v ∈ T . Thus 1
ψ−λ is a bounded function

and therefore, by Theorem 3.2.3, M 1
ψ−λ

is a bounded operator on X. It is easy to verify

that M 1
ψ−λ

is the inverse of Mψ−λ and hence, Mψ−λ is invertible. We conclude that λ

cannot be in the spectrum, which in turn implies that σ(Mψ) ⊆ ψ(T ).

On the other hand, ψ(T ) = σe(Mψ) ⊆ σa(Mψ) ⊆ σ(Mψ) ⊆ ψ(T ) and the fact that

the approximate point spectrum and the spectrum are closed subsets of C, give that

σ(Mψ) = σa(Mψ) = ψ(T ).

Remark 3.3.2. The operator Mψ : X → X is not injective if and only if 0 ∈ σe(Mψ) =

ψ(T ). So, 0 is in the range of ψ is a necessary and sufficient condition for Mψ not being

injective on X.

3.4 Compact multiplication operators

Theorem 3.4.1. Let Mψ be a bounded multiplication operator on X. Then Mψ is a

compact operator on X if and only if ψ(v)→ 0 as |v| → ∞.

Proof. Let Mψ be a compact operator on X. Then, from [67, Theorem 4.25], σe(Mψ) =

ψ(T ) (as well as σ(Mψ)) is a countable set with 0 as the only possible limit point.

Suppose ψ(v) 6→ 0 as |v| → ∞. Then there exist an ε > 0 and a sequence {vk} in T such

that |vk| → ∞ and |ψ(vk)| ≥ ε for all k. By Bolzano-Weierstrass theorem, {ψ(vk)} has

a limit point. Because |ψ(vk)| ≥ ε for all k, we obtain a contradiction to the fact that 0

is the only possible limit point. Hence, ψ(v)→ 0 as |v| → ∞.

For the proof of the converse part, we use the fact that the set of compact operators

is a closed subspace of the set of all bounded operators (see [67, Theorem 4.18 part (c)]).
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Consider a function ψ from Cc(T ). Then there exists an N ∈ N such that ψ(v) = 0

for every |v| > N . So, (Mψf)(v) = ψ(v)f(v) = 0 for every |v| > N and for every

f ∈ X. Thus, the range of Mψ is a finite dimensional subspace, which shows that Mψ

is a compact operator ([67, Theorem 4.18 part (a)]).

Let ψ be a arbitrary function such that ψ(v) → 0 as |v| → ∞. For each n, define

{fn} by

fn(v) =

 ψ(v) if |v| ≤ n,

0 otherwise.

By definition fn ∈ Cc(T ) for every n. Thus, Mfn is a compact operator for every n.

Moreover,

‖Mfn −Mψ‖ = ‖Mfn−ψ‖ = ‖fn − ψ‖∞ = sup
|v|>n

|ψ(v)|,

which approaches zero as |v| → ∞, because ψ(v) → 0 as |v| → ∞. Thus, Mψ is the

limit (in the operator norm) of a sequence {Mfn} of compact operators, and hence, Mψ

is compact on X. The proof is now complete.

Lemma 3.4.2. If Mψ is a compact operator on X, then, for every bounded sequence

{fn} in X converging to 0 pointwise, the sequence ‖ψfn‖ → 0 as n→∞.

Proof. Suppose that {gn} in X is a bounded sequence converging to 0 pointwise. Since

Mψ is a compact operator, there is a subsequence {gnk} of {gn} such that {ψgnk} =

{Mψ(gnk)} converges in ‖·‖p to some function, say, g. It follows that {ψgnk} converges

to g pointwise. Since the convergence of {gn} to 0 implies that g ≡ 0, we deduce that

{ψgnk} converges to 0 in ‖·‖p.

Let {fn} be a bounded sequence in X converging to 0 pointwise. We claim that

‖Mψ(fn)‖ = ‖ψfn‖ → 0 as n → ∞. Suppose that ‖Mψ(fn)‖ 6→ 0 as n → ∞. Then

there exists a subsequence {fnj} and an ε > 0 such that
∥∥∥Mψ(fnj )

∥∥∥ ≥ ε for all j. By

taking gn = fnj in the last paragraph, we find that {ψgnk} converges to 0 in ‖·‖p, which

is not possible because
∥∥∥Mψ(fnj )

∥∥∥ ≥ ε for all j. Hence, ‖Mψ(fn)‖ = ‖ψfn‖ → 0 as

n→∞, and the proof is complete.
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3.5 Upper bound for the essential norm

The following theorem is a natural generalization of Theorem 3.4.1.

Theorem 3.5.1. Let Mψ be a bounded multiplication operator on X. Then

‖Mψ‖e ≤ lim sup
n→∞

M∞(n, ψ) = lim
n→∞

sup
|v|≥n

|ψ(v)|.

Proof. For each n ∈ N, define {ψn} by

ψn(v) =

 ψ(v) if |v| < n,

0 otherwise.

Clearly, Mψn is a compact operator for every n ∈ N and thus, for every n ∈ N,

‖Mψ‖e = inf{‖Mψ −K‖ : K ∈ K(X)}

≤ ‖Mψ −Mψn‖ = ‖ψ − ψn‖∞

= sup
|v|≥n

|ψ(v)| = sup
m≥n

M∞(m,ψ).

Hence, ‖Mψ‖e ≤ inf
n∈N

sup
|v|≥n

|ψ(v)| = lim sup
n→∞

M∞(n, ψ) and the proof is complete.

We would like to point out that one way implication of Theorem 3.4.1 follows from

Theorem 3.5.1. Indeed if ψ(v)→ 0 as |v| → ∞, then Theorem 3.5.1 gives that ‖Mψ‖e = 0

and thus, Mψ is a compact operator.

3.6 Isometry

The following result tells us that isometric multiplication operators are induced by uni-

modular symbols.

Theorem 3.6.1. Let Mψ : X → X be a bounded multiplication operator. Then Mψ is

an isometry on X if and only if |ψ(v)| = 1 for all v ∈ T .

Proof. Suppose that |ψ(v)| = 1 for all v ∈ T . Then Mp(n, ψf) = Mp(n, f) for all n,

which shows that ‖f‖p = ‖ψf‖p = ‖Mψ(f)‖p and thus, Mψ is an isometry on X.
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Conversely, suppose that Mψ is an isometry on X. First we consider the case p =∞.

Let f be χv. Because Mψ is an isometry on X, we have

|ψ(v)| = ‖Mψ(f)‖∞ = ‖ψf‖∞ = ‖f‖∞ = 1,

which holds for every v ∈ T . Hence |ψ(v)| = 1 for all v ∈ T .

Next, we consider the case 1 ≤ p < ∞. Let f be χo. Since Mψ is an isometry, we

obtain that

|ψ(o)| = ‖Mψ(f)‖∞ = ‖ψf‖∞ = ‖f‖∞ = 1,

Next, take an arbitrary element v ∈ T with |v| ≥ 1 and let f be χv. Moreover, since

Mψ is an isometry, we have

( |ψ(v)|p
cn

) 1
p

= ‖Mψ(f)‖p = ‖f‖p =
( 1
cn

) 1
p

,

which shows that |ψ(v)| = 1 for all v ∈ T . It completes the proof.



Chapter 4

Composition operators on Tp

4.1 Introduction

Let Ω be a nonempty set and X be a complex Banach space of complex-valued functions

defined on Ω. For a self-map φ of Ω, the composition operator Cφ induced by the symbol

φ is defined as

Cφ(f) = g where g(x) = f(φ(x)) for all x ∈ Ω and f ∈ X.

The study of composition operators on analytic function spaces has a rich structure.

In the classical case, Ω is the unit disk D and the choices for X are analytic functions

spaces, eg. the Hardy spaces Hp, the Bergman spaces Ap, the Bloch space B. The study

of composition operators on various analytic function spaces defined on D is well known.

There are excellent books on composition operators, see [29, 68, 69] and the references

therein. The approach in the first two books [29, 68] are function theoretic whereas [69]

deals in measure theoretic point of view.

Book of Cowen and MacCluer [29] deals with composition operators defined on var-

ious spaces of analytic functions on the unit disk, whereas the book of Shapiro [68] is

devoted mainly to composition operators on the Hardy space H2. The composition

operators on various measure spaces are discussed in the book of Singh and Manhas

[69]. These books bring together many well-developed aspects of the subject along with

31



32 Chapter 4. Composition operators on Tp

several open problems. Also, there is a number of articles dealing with composition

operators on different transform spaces, see for example [1, 2, 22].

The study of composition operators on discrete function space was first initiated by

Colonna et al. [7]. In that paper, Lipschitz space of a tree was investigated. Composition

operators on weighted Banach spaces of an infinite tree were considered in [10].

In this chapter, we give equivalent conditions for the composition operator Cφ to

be bounded on Tp and on Tp,0 spaces and compute their operator norms. We also

characterize invertible composition operators and isometric composition operators on

Tp and on Tp,0 spaces. Also, we discuss the compactness of Cφ on Tp spaces and finally

we prove that there are no compact composition operators on Tp,0 spaces.

This chapter is based on our articles [53, 56].

4.2 Bounded composition operators on Tp

Before we proceed to discuss our results, it is appropriate to recall some basic results

about bounded composition operators in the classical setting. For example (see [29,

Corollary 3.7]), every analytic self-map φ of D induces bounded composition operator

Cφ on Hp, 1 ≤ p <∞. Moreover,

‖Cφ‖p ≤
1 + |φ(0)|
1− |φ(0)| . (4.2.1)

It is also known that (see [29, Theorem 3.8]) equality holds in (4.2.1) for every inner

function of D (for example, for every automorphism of D). For the case p = ∞, it is

easy to see that ‖Cφ‖ = 1 for every analytic self-map φ of D.

In this section, we discuss boundedness of composition operator Cφ on Tp spaces and

compute their norm. Before we move on to further discussion, let us fix some notation.

We let φ be a self-map of (q+1)−homogeneous rooted tree T . For n ∈ N0 and w ∈ T ,

let Nφ(n,w) denote the number of pre-images of w for φ in |v| = n. That is, Nφ(n,w)

is the number of elements in {φ−1(w)}⋂{|v| = n}. Finally, for each m and n ∈ N0, let

Nm,n denote the maximum of Nφ(n,w) over |w| = m. It is obvious that
∞∑
m=0

Nm,n ≤ cn
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for each n. For w ∈ T , we define the weight function W as follows:

W (w) :=

 (q + 1)q|w|−1 if w ∈ T \ {o},

1 if w = o.
(4.2.2)

Note that W (w) is nothing but c|w|. For the boundedness of Cφ, we will discuss case by

case.

Theorem 4.2.1. Every self-map φ of T induces bounded composition operator Cφ on

T∞ with ‖Cφ‖ = 1.

Proof. For each f ∈ T∞ and every self-map φ of T , we have

‖Cφ(f)‖∞ = ‖f ◦ φ‖∞ = sup
w∈φ(T )

|f(w)| ≤ ‖f‖∞ .

Thus, Cφ is bounded on T∞ with ‖Cφ‖ ≤ 1.

For the converse, note that

‖Cφ(χv)‖∞ = ‖χv ◦ φ‖∞ = 1 = ‖χv‖∞

for each v ∈ φ(T ), where χv denotes the characteristic function on {v}. It gives that

‖Cφ‖ ≥ 1. Hence the result follows.

In order to study the boundedness of the composition operators on Tp for 1 ≤ p <∞,

it is convenient to deal with the case q = 1 and q ≥ 2 independently. First, we begin

with the case q = 1.

Next, we consider composition operators on Tp for 1 ≤ p <∞ over 2−homogeneous

trees.

Theorem 4.2.2. Let T be a 2−homogeneous tree with root o and let Dn = {an, bn} for

each n ∈ N. Furthermore, let φ be a self-map of T and Cφ be the composition operator

on Tp, 1 ≤ p <∞. We have the following:

(1) If φ(o) 6= o, then ‖Cφ‖p = 2.

(2) If φ(o) = o, then any one of the following distinct cases must occur:
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(a) Either φ ≡ o or for every n ∈ N, if φ maps Dn bijectively onto Dm for some

m ∈ N then ‖Cφ‖p = 1.

(b) If φ maps exactly one element of Dn to o for each n ∈ N then ‖Cφ‖p = 3
2 .

(c) Either there exists an n ∈ N such that φ(an) = φ(bn) 6= o or if there exists an

n ∈ N such that |φ(an)| and |φ(bn)| are not equal and different from 0 then

‖Cφ‖p = 2.

Proof. From the growth estimate (see Lemma 2.6.1) for 2−homogeneous trees, it follows

that for each n ∈ N0,

Mp
p (n,Cφf) = 1

cn

∑
|v|=n

|f(φ(v))|p ≤ 2 ‖f‖p for every f ∈ Tp.

This yields that ‖Cφ‖p ≤ 2. Thus every self-map φ of T induces a bounded Cφ on Tp

with ‖Cφ‖p ≤ 2.

Suppose that w = φ(o) 6= o. For f = 2
1
pχw, we have ‖f‖ = 1 and ‖Cφ(f)‖p = 2 and

hence, ‖Cφ‖p = 2.

Now suppose that φ(o) = o. Then we need to consider all the five possible cases.

Suppose that φ ≡ o. Then for each n ∈ N0,

Mp
p (n,Cφf) = |f(o)|p ≤ ‖f‖p for every f ∈ Tp.

This yields that ‖Cφ‖p ≤ 1. For f = χo, we obtain that ‖f‖p = ‖Cφ(f)‖p and thus,

‖Cφ‖p = 1.

Suppose that for every n ∈ N, φ maps Dn bijectively onto Dm for some m ∈ N.

Then, Mp
p (n,Cφf) = Mp

p (m, f) for every n ∈ N and for some m ∈ N. Thus

‖Cφf‖p ≤ ‖f‖p for every f ∈ Tp,

which gives that ‖Cφ‖p ≤ 1. As in the previous case, by considering f = χo, we get

‖Cφ‖p = 1.
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Suppose that φ maps exactly one element of Dn to o for each n ∈ N. Then, in view

of growth estimate for 2−homogeneous trees along with this assumption, we see that

‖Cφf‖p ≤
3
2 ‖f‖

p for every f ∈ Tp

which gives ‖Cφ‖p ≤ 3/2. On the other hand, by assumption, either a1 or b1 maps

to o. Without loss of generality, we assume that φ(a1) = o. Take φ(b1) = w and

f = χo + 2
1
pχw. Then, ‖f‖ = 1 and

Mp
p (1, Cφf) = 3

2 = ‖Cφ(f)‖p .

Thus, ‖Cφ‖p = 3/2.

Now assume that there exists an n ∈ N such that w = φ(an) = φ(bn) 6= o. We have

already observed that ‖Cφ‖p ≤ 2. For f = 2
1
pχw, we have

‖f‖ = 1 and ‖Cφ(f)‖p = 2

and therefore, ‖Cφ‖p = 2.

Finally, assume that there exists an n ∈ N such that |φ(an)| and |φ(bn)| are not equal

and are different from 0. Now, we take

f = 2
1
p (χu + χv),

where φ(an) = u and φ(bn) = v. It follows that ‖f‖ = 1 and ‖Cφ(f)‖p = 2, which gives

that ‖Cφ‖p = 2. The proof is complete.

Corollary 4.2.3. For every self-map φ of 2−homogeneous tree T , Cφ is bounded on Tp

with ‖Cφ‖p ≤ 2, 1 ≤ p <∞.

Theorem 4.2.4. If T is a (q + 1)−homogeneous tree with q ≥ 2 such that

sup
n∈N

∑
|v|=n

q|φ(v)|−n

 <∞, (4.2.3)

then Cφ is bounded on Tp, 1 ≤ p <∞.
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Proof. For n ∈ N, w ∈ T and f ∈ Tp, by Lemma 2.6.1 on growth estimate, we have

Mp
p (n,Cφf) ≤ 1

cn

∑
|v|=n

(q + 1)q|φ(v)|−1 ‖f‖p =
∑
|v|=n

q|φ(v)|−n ‖f‖p .

Moreover,

Mp
p (0, Cφf) = |f(φ(o))|p ≤ (q + 1)q|φ(o)|−1 ‖f‖p

and thus,

‖Cφf‖p ≤ max

(q + 1)q|φ(o)|−1, sup
n∈N

(
∑
|v|=n

q|φ(v)|−n)

 ‖f‖p
showing that Cφ is bounded on Tp.

Theorem 4.2.5. Let T be a (q+1)−homogeneous tree and 1 ≤ p <∞. If Cφ is bounded

on Tp, then

sup
w∈T

sup
n∈N0

{
W (w)
cn

Nφ(n,w)
}
≤ ‖Cφ‖p .

Proof. For each w ∈ T , define fw = {W (w)χw}
1
p , where W is defined in (4.2.2). It is

easy to verify that for every w ∈ T , Mp(n, fw) = 1 when n = |w| and 0 otherwise. This

observation gives that ‖fw‖ = 1 for all w ∈ T . Now, for each fixed w ∈ T , we have for

n ∈ N0,

Mp
p (n,Cφfw) = 1

cn

∑
|v|=n

W (w)χw(φ(v))

= 1
cn

∑
|v|=n
φ(v)=w

W (w) = W (w)
cn

Nφ(n,w)

which yields that

‖Cφfw‖p = sup
n∈N0

{
W (w)
cn

Nφ(n,w)
}
.

Consequently,

‖Cφ‖p = sup
‖f‖=1

‖Cφ(f)‖p ≥ sup
w∈T
‖Cφ(fw)‖p = sup

w∈T
sup
n∈N0

{
W (w)
cn

Nφ(n,w)
}

and the desired conclusion follows.
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Corollary 4.2.6. If Cφ is bounded on Tp, then

sup
{
q|w|−nNφ(n,w) : w ∈ T \ {o}, n ∈ N

}

is finite.

Proof. For w ∈ T \ {o} and n ∈ N, we note that

W (w)
cn

= q|w|−n.

The desired result follows by Theorem 4.2.5.

Corollary 4.2.7. If φ fixes the root, namely, φ(o) = o, then ‖Cφ‖ ≥ 1.

Proof. Let f be the characteristic function on the root o. Clearly, ‖f‖ = 1 and

Mp(0, Cφf) = |f(φ(o))| = |f(o)| = 1. We see that

‖Cφ‖ = sup
‖g‖=1

‖Cφ(g)‖ ≥ ‖Cφ(f)‖ ≥Mp(0, Cφf) = 1

and the result follows.

Corollary 4.2.8. If φ does not fix the root, i.e. φ(o) 6= o, then

‖Cφ‖p ≥ (q + 1)q|φ(o)|−1.

Proof. Let w = φ(o) and, as before, consider fw = {W (w)χw}
1
p . Now, we observe that

‖fw‖ = 1 and Mp
p (0, Cφfw) = |fw(φ(o))|p = (q + 1)q|w|−1

which shows that ‖Cφ(fw)‖p ≥ (q + 1)q|w|−1 and the desired conclusion follows.

Next, we consider composition operators on Tp for 1 ≤ p <∞ over (q+1)−homogeneous

tree with q ≥ 2. A self-map φ of T is called bounded if {|φ(v)| : v ∈ T} is a bounded set

in N0. From Theorem 4.2.4, it is easy to see that every bounded self-map of T induces
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a bounded composition operator. Recall that Nm,n denotes the maximum of Nφ(n,w)

over |w| = m.

Theorem 4.2.9. If T is a (q + 1)−homogeneous tree with q ≥ 2 and φ is a self-map of

T such that sup
v∈T
|φ(v)| = M , then ‖Cφ‖p ≤ cM . Moreover, ‖Cφ‖p = cM if and only if

sup
n∈N0

NM,n

cn
= 1.

Proof. For n ∈ N0 and f ∈ Tp, by Lemma 2.6.1 on growth estimate, we have

Mp
p (n,Cφf) ≤ cM ‖f‖p .

Thus, φ induces a bounded Cφ with ‖Cφ‖p ≤ cM .

Let us now prove the equality case. Suppose that

sup
n∈N0

NM,n

cn
= 1.

Then there are two cases. First we consider the case NM,k = ck for some k ∈ N0. This

means that φ : Dk → DM is a constant, say, φ(v) = w ∈ DM for all v ∈ Dk. For

f = (cM )
1
pχw, we have

‖f‖ = 1 and ‖Cφ(f)‖p = cM

which proves that ‖Cφ‖p = cM .

Next, we suppose that NM,k 6= ck for all k ∈ N0. Then, there is a sequence {nk} such

that
NM,nk

cnk
→ 1 as k →∞.

For each k ∈ N, choose wk ∈ DM such that NM,nk = Nφ(nk, wk). Take fk = (cM )
1
pχwk

so that ‖fk‖ = 1 and

cM
NM,nk

cnk
≤Mp

p (nk, Cφ(f)) ≤ ‖Cφ(f)‖p ≤ ‖Cφ‖p .

By allowing k →∞, we get cM ≤ ‖Cφ‖p, and thus, ‖Cφ‖p = cM in either case.
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For the converse part, we assume that ‖Cφ‖p = cM . Suppose on the contrary that

sup
n∈N0

NM,n

cn
≤ δ < 1.

Then, NM,n ≤ δcn for every n. Note that, there are at least NM,n vertices from Dn

mapped into DM and therefore, there are at most cn−NM,n vertices of Dn mapped into

{v : |v| < M} for each n. For f ∈ Tp, we obtain

Mp
p (n,Cφf) = 1

cn

∑
|φ(v)|=M
|v|=n

|f(φ(v))|p + 1
cn

∑
|φ(v)|<M
|v|=n

|f(φ(v))|p

≤ NM,n

cn
cM ‖f‖p + cn −NM,n

cn
cM−1 ‖f‖p

≤ (1 + (q − 1)δ)cM−1 ‖f‖p .

Therefore,

‖Cφ‖p ≤ (1 + (q − 1)δ)cM−1 < cM ,

which is a contradiction. Hence, ‖Cφ‖p = cM if and only if sup
n∈N0

NM,n

cn
= 1.

Now, we consider general self-maps on (q + 1)−homogeneous trees.

Theorem 4.2.10. Let T be a (q + 1)−homogeneous tree and 1 ≤ p < ∞. Then Cφ is

bounded on Tp if and only if

α = sup
n∈N0

{
1
cn

∞∑
m=0

Nm,ncm

}
<∞.

Moreover, ‖Cφ‖p = α.

Proof. Assume that α < ∞. First we show that Cφ is bounded on Tp. To do this, for

n ∈ N0 and f ∈ Tp, we find that

Mp
p (n,Cφf) = 1

cn


∞∑
m=0

∑
|φ(v)|=m
|v|=n

|f(φ(v))|p


≤

{
1
cn

∞∑
m=0

Nm,ncm

}
‖f‖p

≤ α ‖f‖p ,
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which yields that Cφ is bounded on Tp and

‖Cφ‖p ≤ α = sup
n∈N0

{
1
cn

∞∑
m=0

Nm,ncm

}
. (4.2.4)

Conversely, suppose that Cφ is bounded on Tp. In order to show that α is finite, we

fix n ∈ N0. For each m ∈ N0, choose vm ∈ Dm such that Nφ(n, vm) = Nm,n. Take

f =
∞∑
m=0

(cm)
1
pχvm ,

so that ‖f‖ = 1 and

Mp
p (n,Cφf) = 1

cn

∞∑
m=0

Nm,ncm,

which gives that

α = sup
n∈N0

{
1
cn

∞∑
m=0

Nm,ncm

}
≤ ‖Cφ‖p , (4.2.5)

and hence the desired result follows. Moreover, by (4.2.4) and (4.2.5), it follows that

‖Cφ‖p = α. The proof is complete.

4.3 Norm of Cφ for automorphism symbol

A self-map φ of T is called an automorphism of T , denoted as φ ∈ Aut(T ), if φ is bijective

and any two vertices v, w are neighbours (v ∼ w) if and only if φ(v) ∼ φ(w). Now we

will compute the norm of the composition operator Cφ when the inducing symbol φ is

an automorphism of T .

Theorem 4.3.1. Let T be a (q + 1)−homogeneous tree and consider Cφ on Tp, where

1 ≤ p <∞, q ≥ 1 and φ ∈ Aut(T ). Then we have

(i) ‖Cφ‖ = 1 if φ(o) = o,

(ii) ‖Cφ‖p = (q + 1)q|φ(o)|−1 if φ(o) 6= o.

In particular, every φ ∈ Aut(T ) induces bounded composition operator Cφ on Tp.
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Proof. First, we consider the case φ(o) = o. Then, for each n, φ is a bijective map from

Dn to Dn (since φ ∈ Aut(T ) and φ(o) = o). For n ∈ N0 and f ∈ Tp, we thus have

Mp
p (n,Cφf) = 1

cn

∑
|φ(v)|=n

|f(φ(v))|p = Mp
p (n, f).

Taking supremum on both sides, we get ‖Cφ(f)‖ = ‖f‖ which proves the first part.

Next, we consider the case φ(o) 6= o. The result is obviously true for q = 1, by

Theorem 4.2.2. Thus, it suffices to prove the theorem for (q + 1)−homogeneous tree

with q ≥ 2. Let k = |φ(o)|. Since φ ∈ Aut(T ), it is easy to see that

Domain Range of φ contained in

D0 Dk

Dm Dk+m, Dk+m−2, . . . , Dk−m

(1 ≤ m ≤ k − 1)

Dk D2k, D2k−2, . . . , D2, D0

Dk+m+1 (m ≥ 0) D2k+m+1, D2k+m−1, . . . , D2m+1

Mp
p (0, Cφf) = |f(φ(0))|p ≤ (q + 1)qk−1 ‖f‖p .

For the remaining part of the proof, we need to deal with the cases n = m (1 ≤ m ≤

k − 1), n = k, and n ≥ k + 1 separately. We begin with

Mp
p (m,Cφf) = 1

cm

∑
|v|=m

|f(φ(v)|p

≤ 1
cm

 ∑
|v|=k+m

|f(v)|p +
∑

|v|=k+m−2
|f(v)|p + · · ·+

∑
|v|=k−m

|f(v)|p


≤ 1
cm

{
(q + 1)qk+m−1 + (q + 1)qk+m−3 + · · ·+ (q + 1)qk−m−1

}
‖f‖p

=
{
qk + qk−2 + · · ·+ qk−2m

}
‖f‖p

≤ (q + 1)qk−1 ‖f‖p

showing that Mp
p (n,Cφf) ≤ (q+ 1)qk−1 ‖f‖p for n = 1, 2, . . . , k− 1. Next, for n = k, we

find that

Mp
p (k,Cφf) = 1

(q + 1)qk−1

∑
|v|=k

|f(φ(v)|p
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≤ 1
(q + 1)qk−1

 ∑
|v|=2k

|f(v)|p +
∑

|v|=2k−2
|f(v)|p + · · ·+

∑
|v|=2
|f(v)|p + |f(o)|p


≤ 1

(q + 1)qk−1

{
(q + 1)q2k−1 + (q + 1)q2k−3 + · · ·+ (q + 1)q + 1

}
‖f‖p

=
{
qk + qk−2 + · · ·+ q2−k + 1

(q + 1)qk−1

}
‖f‖p

≤
{
qk + qk−2 + · · ·+ q2−k + q1−k

}
‖f‖p

≤ (q + 1)qk−1 ‖f‖p .

Finally, for each m ∈ N0,

Mp
p (m+ k + 1, Cφf)

= 1
(q + 1)qm+k

∑
|v|=m+k+1

|f(φ(v)|p

≤ 1
(q + 1)qm+k

 ∑
|v|=m+2k+1

|f(v)|p +
∑

|v|=m+2k−1
|f(v)|p + · · ·+

∑
|v|=2m+1

|f(v)|p


≤ 1
(q + 1)qm+k

{
(q + 1)qm+2k + (q + 1)qm+2k−2 + · · ·+ (q + 1)qm

}
‖f‖p

=
{
qk + qk−2 + · · ·+ q−k

}
‖f‖p

≤ (q + 1)qk−1 ‖f‖p .

The above discussion implies that

Mp
p (n,Cφf) ≤ (q + 1)qk−1 ‖f‖p for all n ∈ N0

and thus, ‖Cφ‖p ≤ (q + 1)q|φ(o)|−1. Other way inequality follows from Corollary 4.2.8

and the proof is complete.

From Theorems 4.2.1 and 4.3.1, we have the following result:

Corollary 4.3.2. Let Cφ be a composition operator on Tp induced by an automorphic

symbol φ of T . Then we have the following:

(i) ‖Cφ‖ = 1 if p =∞.

(ii) For q ≥ 1 and 1 ≤ p <∞,

‖Cφ‖p =

 (q + 1)q|φ(o)|−1 if φ(o) 6= o,

1 if φ(o) = o.
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4.4 Injective symbols

Every self-map φ of T induces a bounded composition operator Cφ on T∞, or Tp spaces

over 2−homogeneous trees. Unlike the classical Hardy space settings, there are self-maps

φ of T which do not induce bounded Cφ on Tp with 1 ≤ p <∞ over (q+1)−homogeneous

trees, q ≥ 2.

Example 4.4.1. For each n ∈ N0, choose the vertex vn such that vn ∈ Dn. Define

φ1(v) = vn if |v| = n. Consider the function f defined by

f(v) =

 (cn)
1
p if v = vn for some n ∈ N,

0 elsewhere.

Then f ∈ Tp with ‖f‖ = 1 and for each m ∈ N, we see that

Mp
p (m,Cφ1f) = 1

cm

∑
|v|=m

|f(vm)|p = cm

showing that ‖Cφ1f‖ = sup
m∈N0

Mp(m,Cφ1f) which is not finite for q ≥ 2. This example

shows that there are self-maps of T which induce unbounded composition operators on

Tp

The following example shows that there are bijective self-maps of T which do not

induce bounded composition operator Cφ for (q + 1)−homogeneous trees with q ≥ 2.

Example 4.4.2. For each n ∈ N which is not of the form n = 4k, k ∈ N0, choose vn ∈ T

such that |vn| = n. Define

φ(v) =


v4k+2 if v = v2k+1 for some k ∈ N0,

v2k+1 if v = v4k+2 for some k ∈ N,

v elsewhere.

Clearly, φ is bijective on T . For k ∈ N, let fk = (c4k+2)
1
pχv4k+2 . Then ‖f‖ = 1 and

‖Cφ‖p ≥ ‖Cφ(fk)‖p ≥Mp
p (2k + 1, Cφ(fk)) = q2k+1.

Since q ≥ 2, it follows that Cφ is an unbounded operator on Tp.
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Motivated by the above example, we wish to characterize all the bounded composition

operators that are induced by univalent (injective) symbols (see Corollary 4.4.4).

Proposition 4.4.3. Let φ be a self-map of (q+1)−homogeneous tree T with q ≥ 2, and

1 ≤ p <∞. If Cφ is bounded on Tp, then there exists an M > 0 such that |φ(v)| ≤ |v|+M

for all v ∈ T .

Proof. Suppose that Cφ is bounded on Tp. Set an = max
|v|=n

|φ(v)| for n ∈ N0, and

for each n, choose vn ∈ Dn such that |φ(vn)| = an. Furthermore, for each n, take

fn = (can)
1
pχφ(vn). Then

Mp
p (n,Cφfn) = qan−n ≤ ‖Cφ‖p ,

which gives that {an − n} is a bounded sequence. The desired result follows.

Converse of Proposition 4.4.3 holds if, in addition, φ is injective or finite-valent.

Corollary 4.4.4. If φ is an injective self-map of (q+1)−homogeneous tree T with q ≥ 2

and 1 ≤ p < ∞, then Cφ is bounded on Tp if and only if there exists an M > 0 such

that |φ(v)| ≤ |v|+M for all v ∈ T .

Proof. Suppose that there exists an M > 0 such that |φ(v)| ≤ |v| + M for all v ∈ T .

Therefore, an ≤ n + M for all n, where an is taken as in Proposition 4.4.3. For an

arbitrary function f with ‖f‖ = 1, we have

Mp
p (n,Cφf) ≤ 1

cn

an∑
m=0

∑
|w|=m

|f(w)|p (since φ is injective)

≤ 1
cn

an∑
m=0

cm = 1
cn

+ 1
(q + 1) qn−1

an∑
m=1

(q + 1) qm−1

= 1
cn

+ 1
qn−1

an−1∑
k=0

qk = 1
cn

+ qan − 1
qn−1(q − 1)

≤ 1
cn

+ qan

qn−1(q − 1) = 1
cn

+ qan−n
q

q − 1

≤ 1 + qM
(

q

q − 1

)
.

Thus, Cφ is bounded on Tp. The converse part is a consequence of Proposition 4.4.3.
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Definition 4.4.5. Let φ be a self-map of T and k ∈ N be fixed. We say that φ is

k−valent map if every vertex of T has at most k pre-images and there is a vertex of T

which has exactly k pre-images. The map φ is said to be finite-valent if there exists a

k ∈ N such that φ is k−valent.

Corollary 4.4.6. Let φ be a finite-valent self-map of (q + 1)−homogeneous tree T with

q ≥ 2, and 1 ≤ p <∞. Then the operator Cφ is bounded on Tp if and only if there exists

an M > 0 such that |φ(v)| ≤ |v|+M for all v ∈ T .

Proof. Consult the proof of Proposition 4.4.3 and Corollary 4.4.4.

Remark 4.4.7. Finite-valentness cannot be removed in Corollary 4.4.6. To do this, for

each n, fix vn ∈ Dn and φ(v) = vn if |v| = n. For each n, choose fn = (cn)
1
pχvn so that

Mp
p (n,Cφfn) = cn ≤ ‖Cφ‖p ,

which gives that Cφ cannot be a bounded operator.

4.5 Bounded composition operators on Tp,0

Proposition 4.5.1. Let φ be a self-map of T and f ∈ Tp. If |φ(v)| → ∞ and |f(v)| → 0

as |v| → ∞, then |Cφf(v)| → 0 as |v| → ∞.

Proof. Assume the hypothesis. Let ε > 0 be given. Then there exists an N1 ∈ N

such that |f(w)| < ε for all |w| ≥ N1. Given N1 > 0, there exists an N ∈ N such

that |φ(v)| ≥ N1 for all |v| ≥ N . This gives that |Cφf(v)| < ε for all |v| ≥ N , i.e.,

|Cφf(v)| → 0 as |v| → ∞.

Lemma 4.5.2. 1. h ∈ T∞,0 if and only if |h(v)| → 0 as |v| → ∞.

2. Let T be a 2-homogeneous tree. For 1 ≤ p <∞, h ∈ Tp,0 if and only if |h(v)| → 0

as |v| → ∞.
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Proof. For n ∈ N and h ∈ T∞, we have

M∞(n, h) = max
|v|=n

|h(v)| = h(vn) for some vn with |vn| = n.

In view of this, it is easy to see that h ∈ T∞,0 if and only if M∞(n, h)→ 0 as n→∞ if

and only if |h(v)| → 0 as |v| → ∞.

Let T be a 2-homogeneous tree and for n ∈ N, take Dn = {an, bn}. For h ∈ Tp, we have

Mp
p (n, h) = 1

2(|h(an)|p + |h(bn)|p).

This yields that h ∈ Tp,0 if and only if Mp(n, h)→ 0 as n→∞ if and only if |h(v)| → 0

as |v| → ∞.

Theorem 4.5.3. The composition operator Cφ is bounded on T∞,0 if and only if |φ(v)| →

∞ as |v| → ∞. Moreover, ‖Cφ‖ = 1.

Proof. Since ‖Cφ(f)‖∞ ≤ ‖f‖∞ for all f ∈ T∞, it is enough to prove that T∞,0 is

invariant under Cφ if and only if |φ(v)| → ∞ as |v| → ∞.

Suppose that |φ(v)| → ∞ as |v| → ∞. Then, by Proposition 4.5.1 and Lemma 4.5.2,

|Cφf(v)| → 0 as |v| → ∞ for all f ∈ T∞,0. That is, T∞,0 is invariant under Cφ.

For the converse part, assume that |φ(v)| 6→ ∞ as |v| → ∞. Then there exist a

sequence {vk} and an M > 0 such that |vk| ≥ k and |φ(vk)| ≤M for all k ∈ N. Define

f(v) =


1 if |v| ≤M,

1/|vk| if |v| > M and v = vk for some k ∈ N,

0 elsewhere.

Then f ∈ T∞,0. But M∞(f ◦ φ, |vk|) = 1 for all k and so, f ◦ φ /∈ T∞,0. Finally, it is

easy to verify that ‖Cφ‖ = 1. This completes the proof.

Theorem 4.5.4. Let T be a 2−homogeneous tree with root o and let Dn = {an, bn}

for each n ∈ N and φ be a self-map of T . Then, Cφ is a bounded operator on Tp,0,

1 ≤ p < ∞, if and only if |φ(v)| → ∞ as |v| → ∞. Moreover, we have the following

norm estimates:
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(1) If φ(o) 6= o, then ‖Cφ‖p = 2.

(2) If φ(o) = o, then any one of the following distinct cases occurs:

(a) For every n ∈ N, if φ maps Dn bijectively onto Dm for some m ∈ N, then

‖Cφ‖p = 1.

(b) Either there exists an n ∈ N such that φ(an) = φ(bn) 6= o or if there exists an

n ∈ N such that |φ(an)| and |φ(bn)| are not equal and different from 0 then

‖Cφ‖p = 2.

Proof. For 2−homogeneous trees, every self-map φ induces a bounded composition

operator on Tp. Therefore it suffices to prove that Tp,0 is invariant under Cφ if and only

if |φ(v)| → ∞ as |v| → ∞.

Necessary part follows from Proposition 4.5.1 and Lemma 4.5.2. For the proof of the

sufficiency part, assume on the contrary that |φ(v)| 6→ ∞ as |v| → ∞. Take f as in

Theorem 4.5.3. Then f ∈ Tp,0. But f(φ(vk)) = 1 for all k which gives Mp
p (f ◦ φ, |vk|) ≥

1/2 for all k and so, f ◦ φ /∈ Tp,0.

The proof of norm estimates is similar to that of Theorem 4.2.2. This completes the

proof.

Theorem 4.5.5. Let q ≥ 2 and 1 ≤ p <∞. If 1
cn

∞∑
m=0

Nm,ncm → 0 as n→∞, then Cφ

is bounded on Tp,0. Moreover, ‖Cφ‖p = α, where

α = sup
n∈N0

{
1
cn

∞∑
m=0

Nm,ncm

}
.

Proof. By Theorem 4.2.10, for the boundedness of Cφ on Tp,0, it is enough to prove that

Cφ maps Tp,0 into Tp,0. It follows from the proof of Theorem 4.2.10 that

Mp
p (n,Cφf) ≤

{
1
cn

∞∑
m=0

Nm,ncm

}
‖f‖p ,

which forces that Tp,0 is invariant under Cφ whenever

1
cn

∞∑
m=0

Nm,ncm → 0 as n→∞.
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Moreover, we have ‖Cφ‖p ≤ α.

To prove that the equality holds in the last inequality, we fix n ∈ N0. For each

m ∈ N0, choose vm ∈ Dm such that Nφ(n, vm) = Nm,n. Then,

fk =
k∑

m=0
(cm)

1
pχvm ∈ Tp,0 and ‖fk‖ = 1 for all k.

Therefore,
1
cn

k∑
m=0

Nm,ncm = Mp
p (n,Cφfk) ≤ ‖Cφ‖p for all k,

which gives that α ≤ ‖Cφ‖p, and this completes the proof.

Proposition 4.5.6. If Cφ is bounded on Tp,0, 1 ≤ p <∞, then

c|v|
cn
Nφ(n, v)→ 0 as n→∞ for every v ∈ T. (4.5.1)

Proof. For each v ∈ T , define fv = (c|v|)
1
pχv. Then fv ∈ Tp,0 with ‖fv‖ = 1 and

Mp
p (n,Cφfv) =

c|v|
cn
Nφ(n, v).

Since Cφ(Tp,0) ⊆ Tp,0, we have

c|v|
cn
Nφ(n, v)→ 0 as n→∞ for every v ∈ T.

The proof is complete.

Remark 4.5.7. The condition (4.5.1) is equivalent to Cφ(χv) ∈ Tp,0 for every v ∈ T .

This in turn is also equivalent to saying that Cφ(E) ⊆ Tp,0, where E = Span{χv : v ∈ T}

is a dense subspace of Tp,0 under ‖·‖p.

4.6 Invertible composition operators

In this section, we will discuss about invertible composition operators on Tp spaces.

Lemma 4.6.1. If Cφ is an invertible operator on Tp, p ≥ 1, then φ is bijective on T .

Moreover, C−1
φ = Cφ−1.
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Proof. Assume that Cφ is invertible.

Suppose on the contrary that φ is not onto. Pick a vertex w ∈ T \ φ(T ), where φ(T )

denotes the image of T under φ. Then for f = χw, we find that f 6≡ 0 and Cφ(f) = 0.

Therefore, Cφ is not injective which leads to a contradiction. Hence φ is onto.

Suppose on the contrary that φ is not injective on T . Then there exist v1, v2 ∈ T

such that v1 6= v2 and φ(v1) = φ(v2) = w (say). Take g = χv1 ∈ Tp. But there is no

f ∈ Tp such that Cφ(f) = g, because 0 = g(v2) = f(w) = g(v1) = 1. Therefore, Cφ is

not onto which is again a contradiction. Thus φ is injective and onto.

Since Cφ is invertible, φ is bijective and there is a bounded linear operator S on Tp

such that Cφ ◦ S = S ◦ φ = I, where I is the identity operator on Tp. Now, it is easy to

see that S = Cφ−1 and thus C−1
φ = Cφ−1 . The proof is complete.

Theorem 4.6.2. A bounded operator Cφ on Tp is invertible if and only if φ is bijective

on T and Cφ−1 is a bounded operator on Tp.

Proof. Suppose Cφ is an invertible operator on Tp. Then by Lemma 4.6.1, φ is bijective

on T and C−1
φ = Cφ−1 is a bounded operator on Tp. Converse holds trivially, since Cφ−1

will be an inverse of Cφ.

Since every self-map φ of T induces a bounded operator Cφ on T∞ (resp. on Tp

spaces over 2−homogeneous trees), it is easy to obtain the following results.

Corollary 4.6.3. The operator Cφ is invertible on T∞ if and only if φ is bijective on

T .

Corollary 4.6.4. Let T be a 2−homogeneous tree and let 1 ≤ p <∞. The operator Cφ
is invertible on Tp if and only if φ is bijective on T .

Corollary 4.6.5. 1. The operator Cφ is invertible on T∞,0 if and only if φ is bijective

on T and |φ(v)| → ∞ and |φ−1(v)| → ∞ as |v| → ∞.

2. The operator Cφ is invertible on Tp,0 space over 2−homogeneous trees if and only

if φ is bijective on T and |φ(v)| → ∞ and |φ−1(v)| → ∞ as |v| → ∞.
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Example 4.4.2 shows that there are bijective self-maps of T which do not induce

bounded composition operator Cφ for the case of (q+1)−homogeneous trees with q ≥ 2.

Indeed, there are bijective self-maps φ of T which induce a bounded composition operator

Cφ on Tp over (q+1)−homogeneous trees with q ≥ 2, but φ−1 does not necessarily induce

a bounded composition operator Cφ−1 .

Example 4.6.6. For each k ∈ N, choose a subset A2k−1 of k − 1 vertices in D2k−1

and choose a subset A2k of k vertices in D2k. Label the elements of An as An =

{vn,1, vn,2, vn,3, . . .} for each n ∈ N.

Define φ as follows: φ(o) = o, φ(v) = v if v ∈ Dk \ Ak and φ(v2k,1) = vk,1. For

each k ∈ N, we see that A2k−1 and A2k \ {v2k,1} have the same number of elements.

We can thus define φ : A2k−1 → A2k \ {v2k,1} bijectively and so does for defining

φ : A2k \ {v2k,1} → A2k+1 \ {v2k+1,1} bijectively. Thus, φ : T → T becomes a bijective

self-map of T .

Take an arbitrary function f ∈ Tp with ‖f‖ = 1. Fix n = 2k − 1 for some k ∈ N.

Then

Mp
p (n,Cφf) = 1

cn

 ∑
v∈Dn\An

|f(φ(v))|p +
∑
v∈An

|f(φ(v))|p


= 1
cn

 ∑
w∈Dn\An

|f(w)|p +
∑

w∈An+1\{vn+1,1}
|f(w)|p


≤ 1

cn
(cn ‖f‖p + cn+1 ‖f‖p)

= (1 + q) ‖f‖p = 1 + q.

Next, fix n = 2k for some k ∈ N. Then

Mp
p (n,Cφf) = 1

cn

 ∑
v∈Dn\An

|f(φ(v))|p +
∑

v∈An\{vn,1}
|f(φ(v))|p + |f(φ(vn,1))|p


= 1

cn

 ∑
w∈Dn\An

|f(w)|p +
∑

w∈An+1\{vn+1,1}
|f(w)|p + |f(vk,1)|p


≤ 1

cn
(cn ‖f‖p + cn+1 ‖f‖p + ck ‖f‖p)

≤ (2 + q) ‖f‖p = 2 + q.

Thus, φ induces a bounded composition operator with ‖Cφ‖p ≤ 2 + q.
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Finally, we consider the composition operator induced by φ−1. Recall that φ−1(vn,1) =

v2n,1 for each n. For n ∈ N, take fn = (c2n)
1
pχv2n,1 . Then

Mp
p (n,Cφ−1fn) = qn ≤

∥∥∥Cφ−1

∥∥∥p ,
which gives that φ−1 cannot induce a bounded composition operator.

The following result characterizes invertible composition operators on Tp over (q +

1)−homogeneous trees with q ≥ 2.

Theorem 4.6.7. Let T be a (q+1)−homogeneous tree with q ≥ 2, and 1 ≤ p <∞. The

operator Cφ is invertible on Tp, if and only if φ is invertible and there exists an M > 0

such that | |φ(v)| − |v| | ≤M for all v ∈ T .

Proof. Suppose Cφ is an invertible operator on Tp. Then, by Theorem 4.6.2, φ is bijective

on T and both Cφ, Cφ−1 are bounded operators on Tp. By Corollary 4.4.4, there exist

M1,M2 > 0 such that for all v ∈ T , |φ(v)| ≤ |v|+M1 and |φ−1(v)| ≤ |v|+M2. Since φ

is bijective, we have, |φ(v)| ≤ |v| + M1 and |v| ≤ |φ(v)| + M2 for all v ∈ T . By taking

M = max{M1,M2}, we get | |φ(v)| − |v| | ≤M for all v ∈ T .

For the converse part, assume φ is bijective and there exists an M > 0 such that

| |φ(v)| − |v| | ≤M for all v ∈ T . This gives that |φ(v)| ≤ |v|+M and |v| ≤ |φ(v)|+M

for all v ∈ T . Equivalently, |φ(v)| ≤ |v|+M and |φ−1(v)| ≤ |v|+M for all v ∈ T . Then,

by Corollary 4.4.4 we get that both Cφ, Cφ−1 are bounded operators on Tp. Thus, Cφ
is an invertible operator on Tp with an inverse Cφ−1 .

4.7 Isometry

This section devoted to isometric composition operators on various Tp spaces.

Theorem 4.7.1. The operator Cφ is an isometry on T∞ if and only if φ : T → T is

onto.

Proof. Suppose that φ is onto. Then, since φ(T ) = T , we have ‖f ◦ φ‖∞ = ‖f‖∞ for all

f ∈ T∞, and hence Cφ is an isometry on T∞.
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Conversely, assume that Cφ is an isometry on T∞. Now, suppose on the contrary

that φ is not onto. Then, choose w /∈ φ(T ). If f = χw, then ‖f ◦ φ‖∞ 6= ‖f‖∞, which is

a contradiction. The result follows.

Corollary 4.7.2. The operator Cφ is an isometry on T∞,0 if and only if φ : T → T is

onto and |φ(v)| → ∞ as |v| → ∞.

Theorem 4.7.3. Let T be a 2−homogeneous tree and let 1 ≤ p < ∞. Then Cφ is an

isometry on Tp if and only if the following properties hold:

(1) φ(o) = o.

(2) φ is onto.

(3) |φ(v)| = |φ(w)| whenever |v| = |w|.

(4) If φ(w) 6= o for some w ∈ T , then φ is injective on D|w|.

Proof. Assume that Cφ is an isometry on Tp.

First let us suppose that φ(o) 6= o. If f = χo + (2)
1
pχφ(o), then ‖f ◦ φ‖ 6= ‖f‖, which

is a contradiction. Thus (1) holds.

Secondly, let us suppose that φ is not onto. Then pick a w /∈ φ(T ). If f = χw, then

‖f ◦ φ‖ 6= ‖f‖, which is again a contradiction. So, (2) holds.

Thirdly, let us assume that there exist v1, v2 ∈ T such that |v1| = |v2| and |φ(v1)| 6=

|φ(v2)|. Let w1 = φ(v1) and w2 = φ(v2). Then take

f = (c|w1|)
1
pχw1 + (c|w2|)

1
pχw2 ,

and observe that ‖f‖ = 1. But,

‖Cφ(f)‖p ≥Mp
p (|v1|, Cφ(f)) ≥ 3/2,

which is not possible. Thus property (3) holds.

Finally, let us suppose that there exists a v1 ∈ T such that φ(v1) 6= o and φ is not

injective on D|v1|. By property (3), φ 6≡ o on D|v1|. Since φ is not injective on D|v1|,
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we have φ(v1) = φ(v2) = w (say), where |v1| = |v2|. Now, we take f = 2
1
pχw. Then,

‖f‖ = 1. But,

‖Cφ(f)‖p ≥Mp
p (|v1|, Cφ(f)) = 2,

which is a contradiction, and hence (4) holds.

Conversely, assume that all the four properties (1)− (4) hold. We need to show that

Cφ is an isometry on Tp. To do this, we fix f ∈ Tp. Then, by the property (1), we have

|f(φ(o))|p = |f(o)|p ≤ ‖f‖p .

Fix n ∈ N. By properties (3) and (4), it follows that either φ ≡ o on Dn or φ is bijective

from Dn onto Dm for some m ∈ N. In either case, Mp
p (n,Cφ(f)) ≤ ‖f‖p, and thus

‖Cφ(f)‖p ≤ ‖f‖p .

Now, fix m ∈ N. By properties (2) and (4), there exists an nm ∈ N such that φ maps

bijectively from Dnm onto Dm. Therefore,

Mp
p (m, f) = Mp

p (nm, Cφ(f)) ≤ ‖f ◦ φ‖p ,

and thus ‖f‖p ≤ ‖Cφ(f)‖p. Hence, Cφ is an isometry on Tp.

Corollary 4.7.4. Let 1 ≤ p < ∞. The operator Cφ is an isometry on Tp,0 over

2−homogeneous trees if and only if |φ(v)| → ∞ as |v| → ∞ and all the properties (1) to

(4) in Theorem 4.7.3 hold.

Remark 4.7.5. If the operator Cφ is an isometry on Tp (or Tp,0) over 2−homogeneous

trees, then the properties (3) and (4) in Theorem 4.7.3 hold. However, this is not the

case for (q + 1)−homogeneous trees with q ≥ 2. We will now provide an example to

demonstrate this fact.

For v 6= o, let v− denote the parent of v. Fix k ∈ N with k ≥ 2. For each element of

Dk, choose one of its child and call them as v1, v2, . . . , vck . Define,

φ(v) =


v if |v| < k,

o if v ∈ Dk, v 6= v1, v2, . . . , vck ,

v− elsewhere.
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For f ∈ Tp, we can easily see that

Mp
p (n,Cφ(f)) =

 Mp
p (n, f) if n < k,

Mp
p (n− 1, f) if n > k,

and Mp
p (k,Cφ(f)) ≤ ‖f‖p. This gives that, Cφ is an isometry on Tp (or Tp,0).

Note that some vertices of Dk are mapped into its parents, but all other vertices in

Dk are mapped to o. Consequently, φ violates both the properties (3) and (4). The

desired assertion follows.

It is natural to characterize isometric composition operators Cφ over (q+1)−homogeneous

trees with q ≥ 2.

Theorem 4.7.6. Let T be a (q + 1)−homogeneous tree with q ≥ 2 and let 1 ≤ p < ∞.

Denote ckNk,n
cn

by λk,n. Then, Cφ is an isometry on Tp if and only if the following

properties hold:

(1) |φ(v)| ≤ |v|. In particular, φ(o) = o.

(2)
n∑
k=0

λk,n = 1 for all n ∈ N0.

(3) For each k ∈ N0, Nφ(n,w) = Nk,n whenever |w| = k.

(4) sup
n∈N0

λk,n = 1 for all k ∈ N0. In particular, φ is onto.

Proof. Assume that Cφ is an isometry on Tp.

Suppose that there exists a v ∈ T such that |v| < |φ(v)|. Let w = φ(v). Then the

function f = (c|w|)
1
pχw contradicts the fact that Cφ is an isometry. Hence, property (1)

holds.

Fix n ∈ N0. By property (1), φ(Dn) ⊆
n⋃

m=0
Dm. For each k = 0, 1, 2, . . . , n, choose

vk ∈ Dk such that Nk,n = Nφ(n, vk). Take f =
n∑
k=0

(ck)
1
pχvk so that

1
cn

n∑
k=0

ckNk,n = Mp
p (n, f ◦ φ) ≤ ‖f ◦ φ‖p = ‖f‖p = 1, i.e.,

n∑
k=0

ckNk,n ≤ cn.
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By the definition of Nk,n, one can note that the number of vertices in Dn which are

mapped into Dk under φ is less than or equal to ckNk,n. Again by (1), we get

cn ≤
n∑
k=0

ckNk,n.

Therefore,
n∑
k=0

λk,n = 1 for all n ∈ N0.

Suppose that there exist an n1 ∈ N, and a w ∈ T such that Nφ(n1, w) < Nk,n1 . Then

the number of vertices in Dn1 which are mapped into Dk is strictly less than ckNk,n1 .

Then by (2), the total number of elements in Dn1 is strictly less than

n1∑
m=0

cmNm,n1 = cn1 ,

which is a contradiction. Thus, the property (3) is verified.

Fix k ∈ N0 and w ∈ Dk. Take f = (c|w|)
1
pχw. By (3), for each n ∈ N0, we see that

Mp
p (n, f ◦ φ) =

c|w|
cn

Nφ(n,w) = ckNk,n

cn
= λk,n

and hence,

sup
n∈N0

λk,n = ‖f ◦ φ‖p = ‖f‖p = 1.

Conversely, assume that all the four properties (1)− (4) hold. In order to prove that

Cφ is an isometry on Tp, we fix f ∈ Tp. Then, for n ∈ N0, we have

Mp
p (n,Cφf) = 1

cn

n∑
k=0

∑
|φ(v)|=k
|v|=n

|f(φ(v))|p (by (1))

= 1
cn

n∑
k=0

ckNk,nM
p
p (k, f) (by (3))

=
n∑
k=0

λk,nM
p
p (k, f).

Thus, ‖Cφf‖p = supA, where

A =
{
sn =

n∑
k=0

λk,nM
p
p (k, f) : n ∈ N0

}
.
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For each n ∈ N0, sn ≤ ‖f‖p which implies supA ≤ ‖f‖p. Fix m ∈ N0. Then, by

(4), we have sup
n∈N0

λm,n = 1 and that there exists an n1 ∈ N0 such that λm,n1 = 1, or

else, there exists a subsequence {λm,nk} converging to 1 as k → ∞. In the first case,

sn1 = Mp
p (m, f) ∈ A so that Mp

p (m, f) ≤ supA. In the later case,

|Mp
p (m, f)− snk | ≤

nk∑
k=0
k 6=m

λk,nkM
p
p (k, f) + (1− λm,nk)Mp

p (m, f)

≤ 2(1− λm,nk) ‖f‖p ,

which implies that Mp
p (m, f) is a limit point of A and therefore, Mp

p (m, f) ≤ supA.

Since m was arbitrary, we have ‖f‖p ≤ supA. Hence, ‖f‖p = supA = ‖f ◦ φ‖p. The

desired conclusion follows.

Corollary 4.7.7. Let 1 ≤ p < ∞ and Cφ be a bounded composition operator on Tp,0

over (q + 1)−homogeneous tree with q ≥ 2. Then Cφ is an isometry on Tp,0 if and only

if all the four properties (1)− (4) of Theorem 4.7.6 hold.

Corollary 4.7.8. Let 1 ≤ p < ∞. Suppose that Cφ is an isometry either on Tp or on

Tp,0, and |φ(v)| = |v| for some v 6= o. Then φ is a permutation on D|v|.

Proof. The results holds easily for all 2−homogeneous trees and thus, we assume that T

to be a (q + 1)−homogeneous tree with q ≥ 2. Assume that there exist v1, v2 ∈ T with

|v1| = |v2| 6= 0, |φ(v1)| = |v1| and |φ(v2)| 6= |v2|. Consider the function

f = (c|v1|)
1
pχw1 + (c|w2|)

1
pχw2 ,

where w1 = φ(v1) and w2 = φ(v2). Since |w1| 6= |w2|, we have ‖f‖ = 1. But

‖Cφ(f)‖p ≥Mp
p (|v1|, Cφ(f)) ≥ 1,

which contradicts the hypothesis. Thus, φ(D|v1|) ⊆ D|v1|.

Next, we claim that φ is a permutation on D|v1|. Suppose not. Then there exist

w1, w2 ∈ D|v1| with φ(w1) = φ(w2) = w (say). The function f = (c|v1|)
1
pχw leads to

non-isometry of Cφ. Thus, φ is injective on D|v1| and the result follows.
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Corollary 4.7.9. Suppose φ ∈ Aut(T ). Then, Cφ is an isometry on Tp if and only if

φ(o) = o.

Proof. Suppose that φ ∈ Aut(T ) and φ(o) = o. Then, φ is a bijective map from Dn

to Dn for each n. Therefore, for n ∈ N0 and f ∈ Tp, we have Mp
p (n,Cφf) = Mp

p (n, f).

Hence, Cφ is an isometry on Tp.

Converse part is already contained in Theorems 4.7.3 and 4.7.6.

4.8 Compact composition operators

Before we move on to discuss the results on compact composition operators on Tp spaces,

we recall certain well-known classical results on Hardy spaces.

In the classical case, for an analytic self-map φ of D, the following statements are

equivalent (see [68, Section 2.7 and Compactness Theorem, Chapter 10]):

(a) Cφ is compact on Hp for 1 ≤ p <∞,

(b) Cφ is compact on H2,

(c) lim
|w|→1−

Nφ(w)
log 1

|w|
= 0, where Nφ is the Nevanlinna counting function of φ.

Also, Cφ is compact on H∞ if and only if sup{|φ(z)| : z ∈ D} < 1 (see [68, Problem 10,

Chapter 2]).

For the discrete setting, we now consider the compactness of composition operators

on Tp spaces.

Theorem 4.8.1. Every bounded self-map φ of T induces compact composition operator

on Tp for 1 ≤ p ≤ ∞.

Proof. Suppose φ is a bounded self-map of a (q + 1)−homogeneous tree T . Then

Range (φ) is finite set, say, Range (φ) = {v1, v2, . . . , vk}. For each 1 ≤ i ≤ k, denote by

Ei for the pre-image of vi under φ. If φ(v) = vi, then f ◦ φ(v) = f(vi) so that

f ◦ φ = f(v1)χE1 + f(v2)χE2 + · · ·+ f(vk)χEk
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and Range (Cφ) = Span {χE1 , χE2 , . . . , χEk}. Thus, Cφ is a finite rank operator and

hence it is compact.

Theorem 4.8.2. If φ is a self-map of (q + 1)−homogeneous tree T , then the following

are equivalent:

(a) Cφ is compact on Tp for 1 ≤ p ≤ ∞,

(b) ‖Cφfn‖ → 0 as n → ∞ whenever bounded sequence of functions {fn} that con-

verges to 0 pointwise.

Proof. (a) ⇒ (b): Assume that Cφ is compact on Tp and {fn} is a bounded sequence

in Tp that converges to 0 pointwise. Suppose on the contrary that ‖Cφ(fn)‖ 6→ 0 as

n → ∞. Then there exist a subsequence {fnj} and an ε > 0 such that
∥∥∥Cφ(fnj )

∥∥∥ ≥ ε

for all j. Denote {fnj} by {gj}. Since Cφ is compact, there is a subsequence {gjk} of

{gj} such that {Cφ(gjk)} converges to some function, say, g. It follows that {Cφ(gjk)}

converges to g pointwise and g ≡ 0 implying that {Cφ(gjk)} converges to 0 which is a

contradiction to ‖Cφ(gj)‖ ≥ ε for all j. Hence, ‖Cφ(fn)‖ → 0 as n→∞.

(b) ⇒ (a): Conversely, suppose that case (b) holds. First let us consider the case

1 ≤ p < ∞. Let {gn} be a sequence in the unit ball of Tp. By Lemma 2.6.1, for each

v ∈ T , the sequence {gn(v)} is bounded. By the diagonalization process, there is a

subsequence {gnn} of {gn} that converges pointwise to g (say). We see that, for each

m ∈ N0,

Mp
p (m, g) = lim

n→∞
1
cm

∑
|v|=m

|gnn(v)|p ≤ lim sup ‖gnn‖p ≤ 1

showing that g ∈ Tp with ‖g‖ ≤ 1. Consequently, if fn = gnn − g, then {fn} converges

to 0 pointwise and ‖fn‖ ≤ 2. By the assumption (b), ‖Cφfn‖ → 0 as n→∞ and thus,

{Cφ(gnn)} converges to Cφ(g). Hence Cφ is compact on Tp.

The proof for the case p =∞ is similar to the above.

Remark 4.8.3. Since edge counting metric on T induces discrete topology, compact

sets are only sets having finitely many elements. Thus uniform convergence on compact

subsets of T is equivalent to pointwise convergence. In view of this observation, Theorem
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4.8.2 is a discrete analog of weak convergence theorem (see [68, section 2.4, p. 29]) in

the classical case.

Corollary 4.8.4. Let φ be a self-map of T . Then Cφ is compact on T∞ if and only if

φ is a bounded self-map of T .

Proof. If φ is a bounded self-map of T , then Cφ is compact, by Theorem 4.8.1. Con-

versely, suppose φ is not a bounded map. Then, there exists a sequence of vertices

{vk} of T such that φ(vk) = wk and |wk| → ∞ as k → ∞. Take fk = χwk for each

k ∈ N. Then, ‖fk‖∞ = 1 for each k and {fk} converges to 0 pointwise. Since Cφ is

compact, ‖Cφ(fk)‖∞ → 0 as k → ∞, by Theorem 4.8.2. This is not possible, because

‖Cφ(fk)‖∞ = 1 for each k ∈ N, which can be observed from the definition of fk. Hence

φ should be a bounded map.

Corollary 4.8.5. Let T be a (q + 1)−homogeneous tree and 1 ≤ p < ∞. If Cφ is

compact on Tp, then

sup
n∈N0

{
q|w|−nNφ(n,w)

}
→ 0 as |w| → ∞.

Proof. As in the earlier situations, for each w ∈ T \{o}, we let fw = {W (w)χw}
1
p . Then,

‖fw‖ = 1 for all w and, since fw(v) = 0 whenever |w| > n = |v|, it follows that {fw}

converges to 0 ponitwise. Since Cφ is compact, we see that ‖Cφ(fw)‖ → 0 as |w| → ∞.

However, we have already shown that

‖Cφfw‖p = sup
n∈N0

{
W (w)
cn

Nφ(n,w)
}

= sup
n∈N0

{
q|w|−nNφ(n,w)

}

and the desired conclusion follows.

Remark 4.8.6. For 2−homogeneous trees, Corollary 4.8.5 takes a simpler form: If Cφ
is compact on Tp, then

sup
n∈N0

{Nφ(n,w)} → 0 as |w| → ∞.

This remark is helpful in the proof of Corollary 4.8.8.



60 Chapter 4. Composition operators on Tp

Corollary 4.8.7. If Cφ is compact on Tp, then |v| − |φ(v)| → ∞ as |v| → ∞.

Proof. We will prove this result by contradiction. Suppose that |v|−|φ(v)| 6→ ∞ as |v| →

∞. Then there exists a sequence of vertices {vk} and an M > 0 such that |vk|−|φ(vk)| ≤

M for all k which implies that |φ(vk)| → ∞ as k →∞. Since Nφ(|vk|, φ(vk)) ≥ 1 for all

k, we obtain that

Nφ(|vk|, φ(vk))q|φ(vk)|−|vk| ≥ q−M

which yields that

sup
n∈N0

{
Nφ(n, φ(vk))q|φ(vk)|−n

}
≥ q−M for all k

and thus,

sup
n∈N0

{
q|w|−nNφ(n,w)

}
6→ 0 as |w| → ∞

which gives that Cφ is not compact, by Corollary 4.8.5. This contradiction completes

the proof.

Corollary 4.8.8. Let T be a 2−homogeneous tree. Then Cφ is compact on Tp if and

only if φ is a bounded self-map of T .

Proof. Since every bounded self-map φ of T induces compact composition operator

on Tp, one way implication is true. For the proof of the converse part, we suppose

that φ is not bounded. Then the range contains an infinite set, say {w1, w2, . . .}. For

each k, choose vk ∈ T such that φ(vk) = wk. This gives Nφ(|vk|, wk) ≥ 1 and thus

sup
n∈N0

Nφ(n,wk) ≥ 1 for all k. It follows that sup
n∈N0

{Nφ(n,w)} 6→ 0 as |w| → ∞ and

hence, Cφ cannot be compact.

Remark 4.8.9. It is worth to recall from [68, Chapter 3, p. 37] that if a “big-oh”

condition describes a class of bounded operators, then the corresponding “little-oh”

condition picks out the subclass of compact operators”. We have already shown that

if ∑|v|=n q|φ(v)| = O(qn), then Cφ is bounded on Tp. So it is natural to ask whether∑
|v|=n q

|φ(v)| = o(qn) guarantees the compactness of Cφ on Tp. Indeed, the answer is

yes. Clearly the later observation is not useful because no self-map φ of T will satisfy

this condition. This is because ∑|v|=n q|φ(v)| ≥
∑
|v|=n q

0 = (q + 1)qn−1 and thus,∑
|v|=n q

|φ(v)| = o(qn) cannot be possible.
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Theorem 4.8.10. Let T be a (q + 1)−homogeneous tree with q ≥ 2, and 1 ≤ p < ∞.

Then Cφ is compact operator on Tp whenever

1
cn

∞∑
m=0

Nm,ncm → 0 as n→∞.

Proof. Let {fk} be a bounded sequence such that {fk} converges to 0 pointwise. Without

loss of generality, we may assume that ‖fk‖ ≤ 1 for all k. Then, by Theorem 4.8.2, it

suffices to show that ‖Cφ(fk)‖ → 0 for all k →∞.

Fix ε > 0. Then, by the hypothesis, there exists an N1 ∈ N such that

1
cn

∞∑
m=0

Nm,ncm ≤ εp for all n ≥ N1. (4.8.1)

Set S = {φ(v) : |v| < N1}. Then, since {fk} converges to 0 pointwise and S is a finite

set, it follows that {fk} converges to 0 uniformly on S and thus, there exists an N ∈ N

such that

sup
w∈S
|fk(w)| ≤ ε for all n ≥ N.

Fix k ≥ N . Then, for n ∈ N0 with n < N1, we have Mp
p (n,Cφfk) ≤ εp. Next, for

n ≥ N1, we have

Mp
p (n,Cφfk) = 1

cn

∞∑
m=0

∑
|φ(v)|=m
|v|=n

|fk(φ(v))|p

≤ 1
cn

∞∑
m=0

cmNm,n ‖fk‖p

≤ εp (by (4.8.1))

which shows that ‖Cφfk‖ → 0 as k →∞. Thus, Cφ is compact on Tp.

Following example shows that there are bounded composition operators on Tp which

are not compact.

Example 4.8.11. Consider the following self-map φ2 of T defined by

φ2(v) =

 o if v = o,

v− otherwise,
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where v− denotes the parent of v. Then it follows easily that

Mp
p (0, Cφ2f) = Mp

p (0, f) and Mp
p (1, Cφ2f) = 1

(q + 1)
∑
|v|=1
|f(o)|p = Mp

p (0, f).

Finally, for n ≥ 2, we have

Mp
p (n,Cφ2f) = 1

cn

∑
|v|=n

|f(v−)|p

= q

cn

∑
|w|=n−1

|f(w)|p

= Mp
p (n− 1, f)

and thus,

‖Cφ2f‖ = sup
m∈N0

Mp(m,Cφ2f) = sup
m∈N0

Mp(m, f) = ‖f‖

showing that Cφ2 is bounded on Tp. On the other hand, since |v| − |φ2(v)| = 1 for all

|v| ≥ 1, we have |v| − |φ2(v)| 6→ ∞ as |v| → ∞. Hence Cφ2 is not compact, by Corollary

4.8.7.

Remark 4.8.12. Let φ3 be a map on T such that φ3 maps every vertex into any one

of its child. Then, as in the case of Cφ2 , it is easy to see that Cφ3 is bounded but not

compact. Moreover, it can be seen that, for each n ∈ N, (Cφ2)n and (Cφ3)n are also

bounded but not compact.

By Corollaries 4.8.4 and 4.8.8, we see that, only bounded self-maps of T induces

compact composition operator for 2−homogeneous trees or on T∞. Thus, it is natural

to ask whether only bounded self-maps of T induces compact composition operators on

Tp spaces for the case of (q + 1)−homogeneous trees with q ≥ 2.

Example 4.8.13. For each n ∈ N0, choose a vertex vn such that |vn| = n. Define a

self-map φ4 by

φ4(v) =

 vk if v = v2k for some k ∈ N,

o otherwise.

Then we obtain that

Mp
p (0, Cφ4f) = |f(φ4(o))|p = |f(o)|p = Mp

p (0, f).
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Next, for an odd natural number n, we see that

Mp
p (n,Cφ4f) = 1

cn

∑
|v|=n

|f(o)|p = |f(o)|p.

Finally, for an even natural number, say n = 2k, for some k ∈ N, we find that

Mp
p (n,Cφ4f) = 1

cn


∑
|v|=n
v 6=v2k

|f(φ4(v))|p + |f(φ4(v2k))|p


≤ |f(o)|p + |f(vk)|p

cn
.

Thus, by Lemma 2.6.1, we have

‖Cφ4f‖
p ≤ |f(o)|p + sup

k∈N

{
f(vk)|p

(q + 1)q2k−1

}
≤ 2 ‖f‖p

which shows that Cφ4 is bounded on Tp.

Suppose now that T is a (q + 1)−homogeneous tree with q ≥ 2. Let {fn} be a

sequence in the unit ball of Tp which converges to 0 pointwise. Note that

fn(vk)|p
(q + 1)q2k−1 ≤

1
qk
,

by Lemma 2.6.1. We now claim that ‖Cφ4fn‖
p → 0 as n→∞.

Let ε > 0 be given. Then there exists a natural number N1 such that q−k < ε/2 for

all k ≥ N1. Consider the set S = {v1, v2, . . . , vN1}. Since {fn} converges to 0 pointwise,

we can choose a natural number N > N1 such that |fn(o)|p < ε/2 and |fn(v)|p < ε/2 for

all v ∈ S and for all n ≥ N . Thus,

‖Cφ4fn‖
p ≤ |fn(o)|p + sup

{
ε

2 ,
1
qN1

,
1

qN1+1 , · · ·
}
≤ ε for all n ≥ N

which gives that ‖Cφ4fn‖
p → 0 as n→∞ and hence, Cφ4 is compact on Tp. This exam-

ple shows that there are unbounded self-maps of T which induce compact composition

operators on Tp for the case of (q + 1)−homogeneous trees with q ≥ 2.

Proposition 4.8.14. If Cφ is compact on Tp,0 for 1 ≤ p ≤ ∞, then ‖Cφfn‖ → 0 as

n→∞ whenever {‖fn‖ : n ∈ N} is bounded, and {fn} converges to 0 pointwise.
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Proof. Proof of this result is similar to the proof of the implication “(a) ⇒ (b)” in

Theorem 4.8.2.

Theorem 4.8.15. There are no compact composition operators on T∞,0.

Proof. Suppose that φ is a bounded self-map of T . Then, by Theorem 4.5.3, Cφ is not

bounded and hence, it is not compact. Suppose that φ is an unbounded self-map of T .

Then, there exists a sequence of vertices {vn} such that φ(vn) = wn and |wn| → ∞ as

n→∞. Take fn = χ{wn} for each n ∈ N. Then it easy to see that {fn} converges to 0

pointwise and ‖Cφ(fn)‖∞ = ‖fn‖∞ = 1 for each n. Therefore, Cφ cannot be a compact

operator on T∞,0 by Proposition 4.8.14.

Theorem 4.8.16. Let T be a 2−homogeneous tree and 1 ≤ p <∞. Then, there are no

compact composition operators on Tp,0.

Proof. By Theorem 4.5.4, no bounded self-map of T can induce a bounded (in particular,

compact) composition operator. Suppose that φ is an unbounded self-map of T . Then,

choose a sequence of vertices {vn} such that {wn} is unbounded, where φ(vn) = wn.

Take fn = 21/pχ{wn} so that {fn} converges to 0 pointwise and ‖fn‖ = 1 for each n.

Finally, since
1
2 ≤M

p
p (|vn|, fn ◦ φ) ≤ ‖Cφ(fn)‖p for all n ∈ N,

it follows that Cφ cannot be a compact operator on Tp,0 by Proposition 4.8.14.

Theorem 4.8.17. Let T be a (q + 1)−homogeneous tree with q ≥ 2. Then the operator

Cφ cannot be compact on Tp,0, 1 ≤ p <∞, for any self-map φ of T .

Proof. Suppose Cφ is compact for a self-map φ of T . Consider the sequence of functions

defined by

gn(v) = n

n+ |v| for v ∈ T, n ∈ N.

It is easy to see that

Mp(m, gn) = n

n+m
for n ∈ N, m ∈ N0.
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Therefore, gn ∈ Tp,0 with ‖gn‖ = 1 for all n ∈ N. For each fixed v ∈ T , gn(v) → 1

pointwise. Since Cφ is compact on Tp,0, there exists a subsequence {gnk} of {gn} and

g ∈ Tp,0 such that Cφ(gnk) → g in ‖·‖p. Then, by the growth estimate (see Lemma

2.6.1), we have gnk(φ(v)) → g(v) pointwise for v ∈ T , which gives that g ≡ 1. Since

g /∈ Tp,0, Cφ cannot be compact on Tp,0. The desired conclusion follows.





Chapter 5

Composition operators on the

Hardy space of Dirichlet series

5.1 Introduction

In this chapter, we consider composition operators on the Hardy-Dirichlet space H2,

the space of Dirichlet series with square summable coefficients, which is a Dirichlet

series analogue of the classical Hardy space. Necessary and sufficient conditions for the

boundedness of a composition operator on H2 are given in [38], but good estimates for

norm of such operators are not known. By using the Schur test, we give some upper

and lower estimates on the norm of a composition operator on H2, for the affine-like

inducing symbol ϕ(s) = c1 + cqq
−s, where q ≥ 2 is a fixed integer. We also give an

estimate for approximation numbers of a composition operator in our H2 setting.

Determining the value of the norm of composition operators is not an easy task and

hence, not much is known on this problem even in the case of classical Hardy space

except for some special cases. For example, the norm of a composition operator on H2

induced by the simple affine mapping of D is complicated (see [28, Theorem 3]). Not to

speak of the approximation numbers of Cφ, even though the latter were computed in [23].

In case of the space H2, there are no good lower and upper bounds even for the norm

of such operators except for some special cases. As a first step, we give some upper and

lower estimates on the norm of a composition operator on H2, for the inducing symbol

φ(s) = c1 + cqq
−s with q ∈ N, q ≥ 2. Without loss of generality, we will assume that

67
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q = 2. One significant difference is that some properties of the Riemann zeta function,

be it only in the half-plane C1, are required. For a real number θ, we denote the half

plane {s ∈ C : Re s > θ} by Cθ.

One may refer to [71] for basic information about analytic function spaces of D and

operators on them. Basic issues on composition operators on various function spaces on

D may be obtained from [29]. See also [45] for results related to analytic number theory.

This chapter is based on our paper [57].

5.2 Hardy-Dirichlet space H2

The Hardy-Dirichlet space H2 is defined by

H2 =
{
f(s) =

∞∑
n=1

ann
−s : ‖f‖2 =

∞∑
n=1
|an|2 <∞

}
. (5.2.1)

The space H2 has been used in [44] for the study of completeness problems of a system

of dilates of a given function. The following properties are obvious:

• If f ∈ H2, then the Dirichlet series in (5.2.1) converges absolutely in C1/2, and

therefore H2 is a Hilbert space of analytic functions on C1/2.

• The functions {en} defined on C1/2 by en(s) = n−s, n ≥ 1, form an orthonormal

basis for H2.

• Accordingly, the reproducing kernel Ka of H2 (f(a) = 〈f,Ka〉 for all f ∈ H2) is

given by

Ka(s) =
∞∑
n=1

en(s)en(a) = ζ(s+ a), with a, s ∈ C1/2,

where ζ denotes the Riemann zeta function.

• C∗φ(Ka) = Kφ(a), where C∗φ denotes the adjoint of an operator Cφ.

Let H(Ω) denote the space of all analytic functions defined on Ω. If φ : C1/2 → C1/2

is analytic, then the composition operator

Cφ : H2 → H(C1/2), Cφ(f) = f ◦ φ,
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is well defined and we wish to know for which “symbols” φ, the operator Cφ maps H2

to itself. Then, Cφ is a bounded linear operator on H2 by the closed graph theorem. A

complete answer to this fairly delicate question was obtained in [38]. A slightly improved

version of the same may be stated in the following form, as far as uniform convergence

on all half-planes Cε is concerned. See [65] for details.

Theorem A. The analytic function φ : C1/2 → C1/2 induces a bounded composition

operator on H2 if and only if

φ(s) = c0s+
∞∑
n=1

cnn
−s =: c0s+ ψ(s), (5.2.2)

where c0 ∈ N0 and the Dirichlet series
∞∑
n=1

cnn
−s converges uniformly in each half-plane

Cε, ε > 0. Moreover, ψ has the following mapping properties:

1. If c0 ≥ 1, then ψ(C0) ⊂ C0 and so φ(C0) ⊂ C0.

2. If c0 = 0, then ψ(C0) = φ(C0) ⊂ C1/2.

In addition to the above formulation, it is worth to mention that ‖Cφ‖ ≥ 1 and

‖Cφ‖ = 1⇐⇒ c0 ≥ 1.

This result follows easily from the fact that Cφ is contractive on H2 if c0 ≥ 1 (See [38]).

5.3 A special, but interesting case

To our knowledge, except the recent work of Brevig [17] in a slightly different context, no

result has appeared in the literature on sharp evaluations of the norm of Cφ when c0 = 0.

The purpose of this work is to make some attempt, in the apparently simple-minded

case

φ(s) = c1 + c22−s with Re c1 ≥
1
2 + |c2|. (5.3.1)

The condition on c1 and c2 in (5.3.1) is the exact translation of the mapping conditions

of “affine map” to be a map of C0 into C1/2.
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We should point out the fact that, even though the symbol φ is very simple, the

boundedness of Cφ, and its norm, are far from being clear. This is already the case for

affine maps φ(z) = az+ b from D into D whose exact norm has a complicated expression

first obtained by Cowen [28] and then by Queffélec (see [64]) with a simpler approach

based on an adequate use of the Schur test, which we recall in Lemma B below, under

an adapted form.

Finally, we would like to mention the following: In [46], Hurst obtained the norm

of Cφ on weighted Bergman spaces for the affine symbols whereas in [41], Hammond

obtained a representation for the norm of Cφ on the Dirichlet space for such affine

symbols.

Lemma B. [40, page 24] Let A = (ai,j)i≥0,j≥1 be a scalar matrix, formally defining a

linear map A : `2(N) → `2(N0) by the formula A(x) = y with yi =
∞∑
j=1

ai,jxj. Assume

that there exist two positive numbers α and β and two sequences (pi)i≥0 and (qj)j≥1 of

positive numbers such that

∞∑
i=0
|ai,j |qi ≤ αpj for all j ≥ 1 (5.3.2)

and
∞∑
j=1
|ai,j |pj ≤ βqi for all i ≥ 0. (5.3.3)

Then, A defines a bounded operator with ‖A‖ ≤
√
αβ.

Remark 5.3.1. Let φ be a map as in (5.3.1). Then Cφ is a compact operator on H2 if

and only if Re c1 >
1
2 + |c2| (see [15, Corollary 3]). Also the spectrum of Cφ is

σ(Cφ) = {0, 1} ∪ {(φ′(α))k : k ∈ N},

where α is the fixed point of the map φ in C1/2 (see [15, Theorem 4]). Since the spectrum

σ(Cφ) is compact, we have |φ′(α)| < 1 and thus the spectral radius

r(Cφ) := sup{|λ| : λ ∈ σ(Cφ)}

is equal to 1.
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In [42], Hedenmalm asked for estimate from above for the norm ‖Cφ‖ in terms of

φ(+∞), that is, c1 for the map φ(s) = ∑∞
n=1 cnn

−s. We give a partial answer to his

question at least for this special choice of φ(s) = c1 + c22−s. To do this, we list below

some useful lemmas here.

Lemma 5.3.2. Let s > 1. Then, we have

1
s− 1 ≤ ζ(s) ≤ s

s− 1 .

Proof. The result follows, by comparison with an integral, from the fact that x 7→ x−s

is decreasing for s > 1. See for instance, [62, p. 299]. Indeed for f(x) = x−s = e−s lnx,

we have ∫ ∞
1

f(x)dx ≤
∞∑
k=1

f(k) ≤ f(1) +
∫ ∞

1
f(x)dx,

from which one can obtain the desired inequality, since
∫∞

1 f(x)dx = 1
s−1 .

Lemma 5.3.3. For all s > 1, we have

1
s− 1 +

(
s− 1
s

) 1√
2π
≤ ζ(s). (5.3.4)

Proof. Let

h(s) = 1
s− 1 +

(
s− 1
s

) 1√
2π
.

Then, we observe that both h and ζ are decreasing functions on (1,∞). Thus,

h(s) ≤ h(3) = 1
2 + 1

3

√
2
π
<

1
2 + 1

3 < 1 < ζ(s) for all s ≥ 3.

This shows that the inequality (5.3.4) is true for s ≥ 3. Now we need to verify the

inequality (5.3.4) only for 1 < s < 3. By setting s = x+ 1, it is enough to prove that

h(x+ 1) = 1
x

+ f(x) ≤ ζ(x+ 1) for 0 < x < 2,

where

f(x) = 1√
2π

(
x

x+ 1

)
.

Clearly, f is an increasing function on x > 0. From [17, Lemma 10], we have

1
x

+ g(x) ≤ ζ(1 + x) for x > 0,
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Figure 5.1: The range for x varies from 0.1 to 10

where

g(x) = 1
2 + x+ 1

12 − (x+ 1)(x+ 2)(x+ 3)
6! = 1

6!(414 + 49x− 6x2 − x3).

In view of [17, Lemma 10], it suffices to show that f(x) ≤ g(x) on (0, 2). For 0 < x < 2,

g′(x) = 1
6!(49− 3x(x+ 4)) > 0,

which shows that g is increasing on (0, 2). Since

f(2) = 1
3

√
2
π
<

1
3 < g(0) = 23

40 ,

we have f(x) ≤ f(2) ≤ g(0) ≤ g(x) for all 0 < x < 2. This proves the claim for 0 < x < 2,

i.e., 1 < s < 3. In conclusion, the inequality (5.3.4) is verified for all s > 1.

Remark 5.3.4. Consider the functions f and g as in Lemma 5.3.3. Thus, both 1
x +f(x)

and 1
x + g(x) form a lower bound for ζ(1 + x) for x > 0. For x > 3, we have

g′(x) = − 1
6!(3x(x+ 4)− 49) < 0,

which shows that g is decreasing on (3,∞) and therefore, g(x) ≤ f(x) for all x > s2 ≈

6.2102, where s2 is the unique positive root of the equation given by f(x) = g(x), i.e.,

(
x

x+ 1

) 1√
2π

= 1
2 + x+ 1

12 − (x+ 1)(x+ 2)(x+ 3)
6! .
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It follows that Lemma 5.3.3 is an improved version of [17, Lemma 10] for x ≥ s2. For

a quick comparison with the zeta function, in Figure 5.1, we have drawn the graphs of

(1/x) + f(x), (1/x) + g(x) and ζ(x+ 1).

Remark 5.3.5. Before seeing the work of [17], we made use of a result of Lavrik [50]:

For 1 < s < 3,

ζ(s)− 1
s− 1 − γ =

∞∑
n=1

γn
n! (s− 1)n,

where γ is the Euler constant and |γn| ≤ n!
2n+1 . We thus obtained an alternative proof

of (5.3.4).

Lemma 5.3.6. If s > 1, i ≥ 1 is an integer, and f(x) = (log x)i
xs , then one has

∞∑
k=1

f(k) ≤ i!
(s− 1)i ζ(s).

Proof. The function f increases for x ≤ ei/s and then decreases for x ≥ ei/s. By a simple

change of variables, we have

I =
∫ ∞

1
f(x)dx = i!

(s− 1)i+1 ·

Let N ≥ 1 be the integral part of ei/s, so that N ≤ ei/s < N + 1. Computations give,

with help of Stirling’s inequality (i/e)i ≤ i!√
2πi :

N−1∑
k=1

f(k) ≤
∫ N

1
f(x)dx

and
∞∑

k=N+2
f(k) ≤

∫ ∞
N+1

f(x)dx.

It follows that

∫ N+1

N
f(x)dx ≥

 f(N) if f(N) ≤ f(N + 1)

f(N + 1) otherwise,

and therefore,

f(N) + f(N + 1)−
∫ N+1

N
f(x)dx ≤ f(ei/s) = (i/s)i

ei
≤ i!√

2πisi
·
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From the above three inequalities, we get that

∞∑
k=1

f(k) ≤ I + f(ei/s)

≤ i!
[ 1

(s− 1)i+1 + 1√
2πisi

]
≤ i!

(s− 1)i
[ 1
s− 1 + 1√

2π

(s− 1
s

)]
≤ i!

(s− 1)i ζ(s).

The third and the fourth inequalities follow from s−1
s < 1 and Lemma 5.3.3, respectively.

This completes the proof of the lemma.

Our next result provides bounds for the norm estimate of Cφ on both sides.

Theorem 5.3.7. Let φ(s) = c1 + c22−s with Re c1 ≥ 1
2 + |c2| and c2 6= 0, thus inducing

a bounded composition operator Cφ : H2 → H2. Then, we have

ζ(2Re c1) ≤ ‖Cφ‖2 ≤ ζ(2Re c1 − r|c2|),

where r ≤ 1 is the smallest positive root of the quadratic polynomial

P (r) = |c2|r2 + (1− 2Re c1)r + |c2|.

Remark 5.3.8. Observe that P has two positive roots with product 1, so one of them

is less than or equal to 1 (because P (0) > 0 and P (1) ≤ 0) and by our assumption

2Re c1 − r|c2| ≥ 2Re c1 − |c2| ≥ 1 + |c2| > 1, so that ζ(2Re c1 − r|c2|) is well defined.

Proof of Theorem 5.3.7. Without loss of generality, we can assume that c1 and c2 are

positive. Indeed, in the general case, for φ(s) = c1 + c22−s, we set c1 = σ1 + it1 and

c2 = |c2|2iφ2 . Note that Re c1 = σ1 > 0 by our assumption of the theorem. Consider

the two vertical translations T1 and T2 defined respectively by T1(s) = s + it1 and

T2(s) = s− iφ2, and set ψ(s) = σ1 + |c2|2−s. Then, one has φ = T1 ◦ ψ ◦ T2 whence

Cφ = CT2 ◦ Cψ ◦ CT1 ,

where CT2 and CT1 are unitary operators.
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Note that Cφ(1) = 1. Now for j > 1, we see that

Cφ(j−s) = j−c1 exp(−c22−s log j) = j−c1
∞∑
i=0

(−c2 log j)i
i! (2i)−s.

In other terms, considering the orthonormal system {(2i)−s}i≥0 as the canonical basis

of the range of Cφ and the orthonormal system {j−s}j≥1 as the canonical basis of H2,

Cφ can be viewed as the matrix A = (ai,j)i≥0,j≥1 : `2(N)→ `2(N0) with

ai1 =

 1 if i = 0,

0 if i > 0,

and

ai,j = j−c1 (−c2 log j)i
i! for i ≥ 0, j > 1.

By Theorem A, we already know that Cφ is a bounded operator. We will give a direct

proof of this fact, and moreover an upper and lower estimates of its norm. To that effect,

we apply the Schur test with the following values of the parameters

α = 1, β = ζ(2c1 − rc2), pj = jrc2−c1 and qi = ri.

Now, we can check the assumptions of Schur’s lemma. Equality holds trivially in the

inequality (5.3.2) for the case of j = 1. For j > 1,

∞∑
i=0
|ai,j |qi =

∞∑
i=0

j−c1 (c2 log j)i
i! ri = jrc2−c1 = αpj .

Thus, the inequality (5.3.2) is verified. Now, we verify the inequality (5.3.3). For the

case i = 0, we have

∞∑
j=1
|a0,j |pj =

∞∑
j=1

j−(2c1−rc2) = ζ(2c1 − rc2) ≤ βq0.

Finally, for i ≥ 1, with the help of Lemma 5.3.6, we have

∞∑
j=1
|ai,j |pj = ci2

i!

∞∑
j=2

(log j)i
j2c1−rc2

≤ ci2
i!

i!
(2c1 − rc2 − 1)i ζ(2c1 − rc2) = βqi,

where c2
2c1−rc2−1 = r, that is, P (r) = 0. The assumptions of the Schur lemma with the

claimed values are thus verified, and the upper bound ensues.
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For the lower bound, we use reproducing kernels as usual (recall that C∗φ(Ka) =

Kφ(a)):

‖Cφ‖2 ≥ (S∗φ)2 := sup
a∈C1/2

‖Kφ(a)‖2

‖Ka‖2
= sup

a∈C1/2

ζ(2Reφ(a))
ζ(2Re a) = sup

x>1/2

ζ(2c1 − 2c22−x)
ζ(2x) ·

The last equality in the above is obtained from basic trigonometry and the fact that

ζ(s) is a decreasing function on (1,∞). Now by letting x→∞, we get the lower bound

for ‖Cφ‖.

Corollary 1. Let φ(s) = c1 + c22−s with Re c1 = 1
2 + |c2| and c2 6= 0. Then, for the

inducing composition operator Cφ : H2 → H2, we have

ζ(2Re c1) = ζ(1 + 2|c2|) ≤ ‖Cφ‖2 ≤ ζ(1 + |c2|) = ζ(2Re c1 − |c2|).

Proof. It suffices to observe that r = 1 in Theorem 5.3.7 when Re c1 = 1
2 + |c2|.

Remark 5.3.9. From the proof of Theorem 5.3.7, it is evident that the lower bound of

‖Cφ‖ continues to hold for any composition operator Cφ with c0 = 0 in (5.2.2), namely,

for any φ(s) =
∞∑
n=1

cnn
−s.

Remark 5.3.10. (a) Note that, if c2 = 0, then φ becomes a constant map and the

induced composition operator Cφ is the evaluation map at c1. Also it is known

that

‖Cφ‖2 = ζ(2Re c1).

(b) Let φ be a map as in (5.3.1). Then Cφ cannot be a normal operator. More

generally, it cannot be a normaloid operator because,

r(Cφ) = 1 <
√
ζ(2Re c1) ≤ ‖Cφ‖.

(see Remark 5.3.1 and Theorem 5.3.7).

5.4 Approximation numbers

Recall that the N th approximation number aN (A), N = 1, 2, . . ., of an operator A :

H → H, where H is a Hilbert space, is the distance (for the operator norm) of A to
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operators of rank < N . We refer to [19] for the definition and basic properties of those

numbers. In the case of Cφ on H2, for φ(z) = az + b with |a| + |b| ≤ 1, Clifford and

Dabkowski [23] computed exactly the approximation numbers aN (Cφ). In the compact

case |a|+ |b| < 1, they [23] showed in particular that

aN (Cφ) = |a|N−1QN−1/2 for all N ≥ 1,

where

Q = 1 + |a|2 − |b|2 −
√

∆
2|a|2

and where ∆ > 0 is a discriminant depending on a and b.

It is natural to ask whether we could get something similar for φ(s) = c1 + c22−s

and the associated Cφ acting on H2. We have here the following upper bound, in which

2 Re c1 − 2|c2| − 1 is assumed to be positive which is indeed a necessary and sufficient

condition for the compactness of Cφ.

Theorem 5.4.1. Assume that 2 Re c1 − 2|c2| − 1 > 0. Then the following exponential

decay holds:

aN+1(Cφ) ≤
√

(2 Re c1 − 1)(2 Re c1)
(2 Re c1 − 1)2 − (2|c2|)2

( 2|c2|
2 Re c1 − 1

)N
.

Proof. Without loss of generality, we can assume that c1 and c2 are non-negative. Let

f(s) = ∑∞
n=1 bnn

−s ∈ H2. Then

Cφf(s) =
∞∑
n=1

bnn
−c1 exp(−c22−s logn)

=
∞∑
k=0

(−c2)k
k!

( ∞∑
n=1

bnn
−c1(logn)k

)
2−ks.

Thus, designating by R the operator of rank ≤ N defined by

Rf(s) =
N−1∑
k=0

(−c2)k
k!

( ∞∑
n=1

bnn
−c1(logn)k

)
2−ks,

we obtain via the classical Cauchy-Schwarz inequality that

‖Cφ(f)−R(f)‖2 =
∞∑
k=N

c2k
2
k!2

∣∣∣∣∣
∞∑
n=1

bnn
−c1(logn)k

∣∣∣∣∣
2
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≤
∞∑
k=N

c2k
2
k!2

( ∞∑
n=1
|bn|2

)( ∞∑
n=1

(logn)2k

n2c1

)
.

By Lemma 5.3.6, the latter sum is nothing but

∞∑
n=1

(logn)2k

n2c1
= ζ(2k)(2c1)

≤ (2k)!
(2c1 − 1)2k ζ(2c1)

≤ (2k)!(2c1)
(2c1 − 1)2k+1 .

The last inequality follows by the simple fact that ζ(s) ≤ s
s−1 (see Lemma 5.3.2). Since

∞∑
n=1
|bn|2 = ‖f‖2 and (2k)!

(k!)2 ≤
2k∑
j=0

(
2k
j

)
= 4k,

we get the following:

‖Cφ −R‖2 ≤
∞∑
k=N

c2k
2

(k!)2
(2k)!(2c1)

(2c1 − 1)2k+1

≤
∞∑
k=N

( 2c2
2c1 − 1

)2k 2c1
2c1 − 1

= 2c1(2c1 − 1)
(2c1 − 1)2 − (2c2)2

( 2c2
2c1 − 1

)2N
.

Thus, we complete the proof.

Question 2. 1. Is there a symbol φ for which the strict inequalities

‖Cφ‖ > S∗φ > Sφ

hold for Cφ on H2? (refer to [12] for similar problem in the case of classical Hardy

space H2). In the case φ(s) = c1 + c22−s, we probably have

‖Cφ‖ = S∗φ = Sφ,

but this still needs a proof. Also observe that this φ is not injective on C1/2.

2. What can be said about ‖Cφ‖ acting on H2(Ω), where Ω is the ball Bd, or the

polydisk Dd, when φ(z) = A(z)+b with A : Cd → Cd a linear operator, i.e. when φ

is an affine map such that φ(Ω) ⊂ Ω? This might be difficult [16], but interesting.



Chapter 6

Weighted composition operators

on Pα

6.1 Introduction

In this chapter, we use the notion of topological vector space and few other related

definitions. A topological vector space is a vector space together with a topology such

that the vector space operations, namely, vector addition and scalar multiplication, are

continuous with respect to this topology. A set C in a topological vector space X is said

to be convex if tx+ (1− t)y ∈ C for all x, y ∈ C and 0 ≤ t ≤ 1.

Let E be a subset of a topological vector space X. Then the convex hull of E is

defined to be the intersection of all convex sets that contains E. The closed convex

hull of E, denoted by co(E), is defined to be the intersection of all closed convex sets

that contains E. A topological vector space X is said to be locally convex if there is a

collection of convex sets which forms a local base for the topology of X. A topological

vector space X is said to be metrizable if the topology of X is induced by some metric

d.

Let Ω be an open subset of C and let H(Ω) be the set of all analytic functions defined

on Ω. Consider the compact-open topology on H(Ω), i.e., the topology of uniform

convergence on compact subsets of Ω. Then H(Ω) becomes a metrizable, locally convex

topological vector space. On H(Ω), fn converges to f , denoted by fn
u.c−−→ f , we mean

that the convergence is locally uniformly on compact subsets of Ω.

79
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Weighted composition operator is a combination of multiplication and composition

operators. These operators are mainly studied in various Banach spaces or Hilbert

spaces of H(D). Recently, Arévalo et al. [13] initiated the study of weighted composition

operator restricted to the Carathéodory class P1, which consists of all f ∈ H(D) with

positive real part and with the normalization f(0) = 1. Clearly the class P1 is not

a linear space but it is helpful to solve some extremal problems in geometric function

theory. See [39].

We generalize the recent work of Arévalo et al. [13] by considering weighted com-

position operators preserving the class Pα of analytic functions subordinate to 1+αz
1−z for

|α| ≤ 1, α 6= −1. This class is connected with various geometric subclasses of H(D) in

the univalent function theory (see [34, 39, 59]). Since the class Pα is not a linear space,

for a given map on Pα, questions about operator theoretic properties are not meaningful.

However, one can talk about, for example, special classes of self-maps of Pα and fixed

points of those maps.

In this chapter, we discuss the weighted composition operators preserving the class

Pα. Some of its consequences and examples for some special cases are also presented.

Furthermore, we discuss about the fixed points of weighted composition operators.

This chapter is based on our paper [55].

6.2 Preliminaries about the class Pα

For f and g ∈ H(D), we say that f is subordinate to g (denoted by f(z) ≺ g(z) or

f ≺ g) if there exists an analytic function ω : D→ D such that ω(0) = 0 and f = g ◦ ω.

If f(z) ≺ z, then f is called Schwarz function (i.e., analytic function f : D → D with

f(0) = 0). For |α| ≤ 1, α 6= −1, define hα on D by hα(z) = 1+αz
1−z and the half plane Hα

is described by

Hα := hα(D) = {w ∈ C : 2Re {(1 + α)w} > 1− |α|2}.

In particular, if α ∈ R and −1 < α ≤ 1, then

hα(D) = {w ∈ C : Rew > (1− α)/2}
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so that Rehα(z) > (1− α)/2 in D.

For |α| ≤ 1, α 6= −1, it is natural to consider the class Pα defined by

Pα := {f ∈ H(D) : f(z) ≺ hα(z)}.

It is worth noting that for every f ∈ Pα, there is an unique Schwarz function ω such

that

f(z) = 1 + αω(z)
1− ω(z) .

It is well-known [59, Lemma 2.1] that, if g is an univalent (injective) analytic function

on D, then f(z) ≺ g(z) if and only if f(0) = g(0) and f(D) ⊆ g(D). In view of this

result, the class Pα can be stated in an equivalent form as

Pα := {f ∈ H(D) : f(0) = 1, f(D) ⊆ Hα}.

We continue the discussion by stating a few basic and useful properties of the class Pα.

Proposition 6.2.1. Suppose f ∈ Pα and f(z) = 1 +∑∞n=1 anz
n, then |an| ≤ |α+ 1| for

all n ∈ N. The bound is sharp as the function hα(z) = 1 +∑∞
n=1(1 + α)zn shows.

Proof. This result is an immediate consequence of Rogosinski’s result [66, Theorem X]

(see also [34, Theorem 6.4(i), p. 195]) because hα(z) (and hence, (hα(z)− 1)/(1 +α)) is

a convex function.

Proposition 6.2.2. (Growth estimate) Let f ∈ Pα. Then for all z ∈ D, one has

1− |αz|
1 + |z| ≤ |f(z)| ≤ 1 + |αz|

1− |z| .

Proof. This result trivially follows from clever use of classical Schwarz lemma and the

triangle inequality.

From the ‘growth estimate’ and the familiar Montel’s theorem on normal family, one

can easily get the following result.

Proposition 6.2.3. The class Pα is a compact family in the compact-open topology

(that is, topology of uniform convergence on compact subsets of D).
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Because the half plane Hα is convex, the following result is obvious.

Proposition 6.2.4. The class Pα is a convex family.

For p ∈ (0,∞), the Hardy space Hp consists of analytic functions f on D with

‖f‖p := sup
r∈[0,1)

{ 1
2π

∫ 2π

0
|f(reiθ)|p dθ

} 1
p

is finite and H∞ denotes the set of all bounded analytic functions on D. We refer to [33]

for the theory of Hardy spaces. By Littlewood’s subordination theorem [51, Theorem

2], it follows that if f ≺ g and g ∈ Hp for some 0 < p ≤ ∞, then f ∈ Hp for the same

p. As a consequence we easily have the following.

Proposition 6.2.5. The class Pα is a subset of the Hardy space Hp for each 0 < p < 1.

Proof. Because (1 − z)−1 ∈ Hp for each 0 < p < 1, it follows easily that hα ∈ Hp for

each 0 < p < 1 and for |α| ≤ 1, α 6= −1. The desired conclusion follows.

Remark 6.2.6. Although Pα does not posses the linear structure, due to being part

of Hp, the results on Hp space, such as results about boundary behavior, are valid for

functions in the class Pα

6.3 Weighted composition on Pα

For an analytic self-map φ of D, the composition operator Cφ is defined by

Cφ(f) = f ◦ φ for f ∈ H(D).

One can refer [29], for the study of composition operators on various function spaces on

the unit disk. Throughout the chapter, unless otherwise stated explicitly, α denotes a

complex number such that |α| ≤ 1, α 6= −1, and φ denotes an analytic self-map of D.

The following result deals with composition operator when it is restricted to the class

Pα.

Proposition 6.3.1. The composition operator Cφ induced by the symbol φ, preserves

the class Pα if and only if φ is a Schwarz function.
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Proof. Suppose that Cφ preserves the class Pα. Then Cφ(hα) ∈ Pα, and thus

1 + αφ(0)
1− φ(0) = 1.

This gives that φ(0) = 0 which implies that φ is a Schwarz function. The converse part

holds trivially.

For a given analytic self-map φ of D and analytic map ψ of D, the corresponding

weighted composition operator Wψ,φ is defined by

Wψ,φ(f) = ψ(f ◦ φ) for f ∈ H(D).

If ψ ≡ 1, then Wψ,φ reduced to a composition operator Cφ and if φ(z) = z for all

z ∈ D, then Wψ,φ reduced to a multiplication operator Mψ. For a given analytic map ψ

of D, the corresponding multiplication operator Mψ is then defined by

Mψ(f) = ψf for f ∈ H(D).

The characterization of Mψ that preserves the class Pα is given in Section 6.4.

In this section, we discuss weighted composition operator that preserves Pα. Before,

we do this, let us recall some useful results from the theory of extreme points.

Lemma 6.3.2. ([39, Theorem 5.7]) Extreme points of the class Pα consists of functions

given by

fλ(z) = 1 + αλz

1− λz , |λ| = 1.

A point p of a convex set E is called extreme point if p is not a interior point of any

line segment which entirely lies in E. We denote, the set of all extreme points of the

class Pα by Eα. That is, Eα = {fλ : |λ| = 1}. Now, we recall a well-known result by

Krein and Milman [49].

Lemma 6.3.3. ([39, Theorem 4.4]) Let X be a locally convex, topological vector space

and A be a convex, compact subset of X. Then, the closed convex hull of extreme points

of A is equal to A.
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The original version of it is proved in [49]. It is easy to see that Wψ,φ(fn) u.c−−→Wψ,φ(f)

whenever fn u.c−−→ f . Thus, Wψ,φ is continuous on H(D) (in particular on Pα).

Proposition 6.3.4. Suppose that Wψ,φ preserves the class Pα. Then φ is a Schwarz

function and there exists a Schwarz function ω such that

ψ = hα ◦ ω = 1 + αω

1− ω .

Proof. Suppose that Wψ,φ preserves the class Pα. Take f ≡ 1 to be a constant function,

which belongs to Pα. Thus, Wψ,φ(f) = ψ ∈ Pα and hence, there exists a Schwarz

function ω such that

ψ = hα ◦ ω = 1 + αω

1− ω .

In particular, ψ(0) = 1.

Since hα ∈ Pα, we have ψ(0)(hα(φ(0))) = 1, which gives φ(0) = 0. Hence φ will be a

Schwarz function.

In view of above result, from now on, we will assume that ψ = hα ◦ ω = 1+αω
1−ω and

φ, ω are Schwarz functions.

Theorem 6.3.5. Let φ, ω and ψ be as above. Then, Wψ,φ preserves the class Pα if and

only if

2Q(ω)|φ| < (1− |ω|2) + P (ω)|φ|2 on D, (6.3.1)

where, P (ω) = |αω|2 − |1 + (α− 1)ω|2 and Q(ω) = |(α− 1)|ω|2 + ω − αω|.

Proof. At first we prove that, Wψ,φ preserves the class Pα which is equivalent to the

inclusion Wψ,φ(Eα) ⊂ Pα. To do this, we suppose that Wψ,φ(Eα) ⊂ Pα. Since Pα is a

convex family, we obtain

Wψ,φ( convex hull (Eα)) ⊂ Pα.

Now, by Krein-Milman theorem and the fact that Wψ,φ is continuous on the compact

family Pα, we see that Wψ,φ(Pα) ⊂ Pα. The converse part is trivial.
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Next, we prove that Wψ,φ(Eα) ⊂ Pα if and only if

2Q(ω)|φ| < (1− |ω|2) + P (ω)|φ|2 on D.

Assume that Wψ,φ(Eα) ⊂ Pα. This gives ψ(fλ ◦ φ) ∈ Pα for all |λ| = 1. Thus, for all

|λ| = 1, there exists a Schwarz function ωλ such that ψ(fλ ◦ φ) = hα ◦ ωλ. That is,

1 + αω

1− ω
1 + αλφ

1− λφ = 1 + αωλ
1− ωλ

.

Solving this equation for ωλ, we get that

ωλ = ω + λφ+ (α− 1)λωφ
1 + αλφω

.

For each |λ| = 1, ωλ is a Schwarz function if and only if

|ω + λφ+ (α− 1)λωφ|2 < |1 + αλφω|2 for all |λ| = 1,

which is equivalent to

2Re (λφ{(α− 1)|ω|2 + ω − αω}) < (1− |ω|2) + |φ|2(|αω|2 − |1 + (α− 1)ω|2),

for all |λ| = 1. By taking supremum over λ on both sides, the last inequality gives (6.3.1).

The converse part follows by repeating the above arguments in the reverse direction.

Remark 6.3.6. Suppose that α = a+ ib and ω(z) = u(z) + iv(z). Then,

P (ω) = |αω|2 − |1 + (α− 1)ω|2

= a(|ω|2 − 1) + (a− 1)|ω − 1|2 + 2bv.

Set q(ω) = (α− 1)|ω|2 + ω − αω so that Q(ω) = |q(ω)|. Upon simplifying, we get that

q(ω) = (α− 1)ω (ω − 1)− 2iα v = (α− 1)(|ω|2 − ω)− 2iv

and thus

q(ω) = [(a− 1)(|ω|2 − u) + bv] + i[b(|ω|2 − u)− v(a+ 1)]. (6.3.2)
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Also, it is easy to see that

− q(ω) = |1− ω|2ψ + (|ω|2 − 1) with ψ = 1 + αω

1− ω . (6.3.3)

6.4 Special cases

In this section, first we recall some familiar results on Hardy space Hp which will help

the smooth traveling of this section. In what follows T denotes the unit circle {z ∈ C :

|z| = 1}.

Proposition 6.4.1. ([33, Theorem 1.3]) For every bounded analytic function f on D,

the radial limit lim
r→1

f(reiθ) exists almost everywhere (abbreviated by a.e.).

In view of Proposition 6.4.1, every Schwarz function has radial limit a.e. and using

the fact that the function hα has radial limit a.e., it is easy to see that, every function

f ∈ Pα has radial limit a.e. on T. Also, it is well-known that (see [33, Section 2.3])

sup
|z|<1
|f(z)| = ess sup

0≤θ≤2π
|f(eiθ)|,

for every f ∈ H∞. Now, we will state a classical theorem of Nevanlinna.

Proposition 6.4.2. ([33, Theorem 2.2]) If f ∈ Hp for some p > 0 and its radial limit

f(eiθ) = 0 on a set of positive measure, then f ≡ 0.

Since every Schwarz function f belongs to H∞ and every f ∈ Pα belongs to Hp for

0 < p < 1, the above result is valid for functions in the class Pα and in the class of

Schwarz functions.

An analytic function f on D is said to be an inner function if |f(z)| ≤ 1 for all

z ∈ D and its radial limit |f(ζ)| = 1 a.e. on |ζ| = 1.

Theorem 6.4.3. Suppose that φ and ω are Schwarz functions, φ is inner and ψ = 1+αω
1−ω .

Then, Wψ,φ preserves the class Pα if and only if ψ ≡ 1 (i.e., ω ≡ 0).

Proof. If ψ ≡ 1, then Wψ,φ becomes a composition operator Cφ and thus, Wψ,φ preserves

the class Pα, because φ is a Schwarz function.
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Conversely, suppose that Wψ,φ preserves the class Pα. Then, by Theorem 6.3.5, one

has the inequality

2Q(ω)|φ| < (1− |ω|2) + P (ω)|φ|2 on D.

With abuse of notation, we denote the radial limits of φ, ω and ψ again by φ, ω and

ψ, respectively. Also, let α = a + ib and ω(z) = u(z) + iv(z). By allowing |z| → 1 in

(6.3.1), we get that

2Q(ω) ≤ (1− |ω|2) + P (ω) a.e. on T,

which after computation is equivalent to

Q(ω) ≤ (a− 1)(|ω|2 − u) + bv a.e. on T.

In view of (6.3.2) in Remark 6.3.6, the above inequality can rewritten as

|q(ω)| ≤ Re [q(ω)] a.e. on T

which gives that Im [q(ω)] = 0 a.e. on T. Again, by using (6.3.3) in Remark 6.3.6, we

have

|1− ω|2Im(ψ) = 0 a.e. on T.

Analyzing the function ω through the classical theorem of Nevanlinna (see Proposition

6.4.2), one can get that Imψ = 0 a.e. on T. Now the proof of ψ ≡ 1 is as follows:

Consider the analytic map f = e−i(ψ−1). Then, |f | = eImψ = 1 a.e. on T and

1 = f(0) ≤ sup
|z|<1
|f(z)| = ess sup

0≤θ≤2π
|f(eiθ)| = 1.

Hence, by the maximum modulus principle, we get that f ≡ 1 which gives ψ ≡ 1.

Corollary 6.4.4. Mψ preserves the class Pα if and only if ψ ≡ 1.

Proof. The desired result follows if we set φ(z) ≡ z in Theorem 6.4.3.

Theorem 6.4.5. Suppose that α is a real number, φ and ω are Schwarz functions, ω is

an inner function and ψ = 1+αω
1−ω . Then, Wψ,φ preserves the class Pα if and only if φ is

identically zero.
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Proof. If φ ≡ 0, then Wψ,φ becomes a constant map ψ and hence it preserves Pα.

Conversely, suppose that Wψ,φ preserves the class Pα. Then, by Theorem 6.3.5,

2Q(ω)|φ| < (1− |ω|2) + P (ω)|φ|2 on D.

By allowing |z| → 1, we get that

2|1− ω|2|ψ| |φ| ≤ (2Imα Imω + (Reα− 1)|1− ω|2)|φ|2 a.e. on T,

from which we obtain that

|1− ω|2|ψ| |φ| ≤ 0 a.e. on T.

By the hypothesis on ω and ψ, and the classical theorem of Nevanlinna, we find that

φ ≡ 0.

Here is an easy consequence of Theorem 6.4.5.

Corollary 6.4.6. Let α be a real number, φ and ω are Schwarz functions and that

φ 6≡ 0. Suppose that Wψ,φ preserves the class Pα, and

E = {ζ ∈ T : |ω(ζ)| = 1}.

Then the Lebesgue arc length measure of the set E is zero, i.e., m(E) = 0.

6.5 Examples for special cases

In this section, we give specific examples of φ and ψ so that Wψ,φ preserves the class

Pα. For a bounded analytic function on D, we denote sup
|z|<1
|f(z)| by ‖f‖.

Example 6.5.1. Suppose that ‖φ‖ < 1. If ‖ω‖ < 1−‖φ‖
1+‖φ‖ , then Wψ,φ preserves the class

Pα, for α ∈ [0, 1].
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Proof. In view of Theorem 6.3.5, it suffices to verify the inequality (6.3.1). This inequal-

ity can be rewritten as

2|(1−α)ω (ω−1) + 2iα Imω| |φ|+ (1−α)(|ω|2 + |1−ω|2|φ|2−1) < α(1−|ω|2)(1−|φ|2).

We may set ‖ω‖ = A and ‖φ‖ = B. Thus, it is enough to check that

2(1− α)A(A+ 1)B + 4αAB + (1− α)(A2 + (1 +A)2B2 − 1) < α(1−A2)(1−B2)

which is equivalent to

[A+B +AB − 1][(1− α)(A+B +AB + 1) + α(A+B −AB + 1)] < 0.

This yields the condition A + B + AB − 1 < 0. This means that A < 1−B
1+B and the

desired conclusion follows.

Since the condition A+B+AB−1 < 0 gives B < 1−A
1+A , we have the following result.

Example 6.5.2. Suppose that ‖ω‖ < 1. If ‖φ‖ < 1−‖ω‖
1+‖ω‖ , then Wψ,φ preserves the class

Pα, for α ∈ [0, 1].

Example 6.5.3. Suppose that φ(z) = z(az+b), where a and b are non-zero real numbers

such that |a|+ |b| = 1. Take ω(z) = z(cz + d) with

c = −ab
K

and d = 1− (a2 + b2)
K

for K > 2 +
√

5.

Then Wψ,φ preserves the class P1.

Proof. Clearly |φ(z)|2 ≤ a2 + b2 + 2abx for z = x+ iy and thus,

0 < 1− (a2 + b2)− 2abx ≤ (1− |φ|2).

Also note that

|Imω| ≤ |2cx+ d| = 1− (a2 + b2)− 2abx
K

and

|ω(z)| ≤ |c|+ |d| = 1− |ab| − (|a| − |b|)2

K
≤ 1
K
.
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The inequality (6.3.1) for α = 1 reduces to

4|φ| |Imω| < (1− |ω|2)(1− |φ|2).

Since 4|φ| |Imω| ≤ 4|Imω| ≤ 4|2cx+ d| and

(
1− 1

K2

)
K|2cx+ d| ≤ (1− |ω|2)(1− |φ|2),

to verify the inequality (6.3.1), it suffices to verify the inequality

4
K

< 1− 1
K2 , i.e., K2 − 4K − 1 > 0.

This gives the condition K > 2 +
√

5 and the proof is complete.

Remark 6.5.4. By letting α = 0 in Theorem 6.3.5, we see that Wψ,φ preserves the class

P0 if and only if |1− ω| |φ|+ |ω| < 1 on D.

Example 6.5.5. If |φ| ≤ |ω| <
√

2− 1 on D, then Wψ,φ preserves P0.

Proof. In view of Remark 6.5.4 and the assumption that |φ| ≤ |ω|, it is enough to show

that |ω| |1−ω| < 1−|ω| which, by squaring and then simplifying, is seen to be equivalent

to the inequality

|ω|4 − 2Reω|ω|2 + 2|ω| − 1 < 0.

In order to verify the last inequality, we observe that

|ω|4 − 2Reω|ω|2 + 2|ω| − 1 ≤ |ω|4 + 2|ω|3 + 2|ω| − 1

= (|ω|2 + 1)(|ω|2 + 2|ω| − 1),

which is negative whenever |ω|2 + 2|ω| − 1 < 0, i.e., |ω| <
√

2 − 1. The desired result

follows.

Example 6.5.6. If either |φ| ≤ |ω| < s0 or |ω| ≤ |φ| < s0 on D, then Wψ,φ preserves

Pα for every α with −1 < α < 0, where s0 (≈ 0.2648) is the unique positive root of the

polynomial P (x) = 2x4 + 8x3 + 12x2 − 1.
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Proof. Without loss of generality, we assume that |φ| ≤ |ω|. In view of Remark 6.3.6

and the assumption that α ∈ (−1, 0), the inequality (6.3.1) can be rewritten as

2|(1−α)ω (ω−1)+2iα Imω| |φ|+(1−α)(|ω|2+|1−ω|2|φ|2−1)−α(1−|ω|2)(1−|φ|2) < 0.

By setting ‖ω‖ = A and ‖φ‖ = B (so that B ≤ A), it suffices to check that

2(1− α)A(A+ 1)B − 4αAB + (1− α)(A2 + (1 +A)2B2 − 1)− α < 0,

which is equivalent to

−α[(A+B +AB)2 + 4AB] + (A+B +AB)2 − 1 < 0.

Since B ≤ A and α ∈ (−1, 0), the last inequality holds if

(2A+A2)2 + 4A2] + (2A+A2)2 − 1 = 2A4 + 8A3 + 12A2 − 1 < 0.

Clearly, the function P (x) = 2x4 + 8x3 + 12x2 − 1 is strictly increasing on (0,∞) and

thus, P (x) < 0 for 0 ≤ x < s0, where s0 is the unique positive root of P (x). The desired

result follows.

6.6 Fixed points

In this section, we discuss the fixed points of weighted composition operators. It is time

to recall a well known result [32, Theorem V.10.5]. The modern way of writing it is as

follows:

Proposition 6.6.1. Let X be a metrizable topological vector space and C be a convex

compact subset of X. Then, every continuous mapping T : C → C has a fixed point in

C.

We set X = H(D), C = Pα, T = Wψ,φ and observe that every weighted composition

operator on Pα has a fixed point. Indeed, one has something more to conclude than this

as we can see below.
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Theorem 6.6.2. Let φ, ψ, ω be as before, and φ not a rotation. Suppose that Wψ,φ is a

self-map of Pα. Then, Wψ,φ has a unique fixed point which can be obtained by iterating

Wψ,φ for any f ∈ Pα. Further more, if φ is an inner function, then the fixed point is

the constant function 1.

Theorem 6.6.3. Let φ, ψ, ω be as before, and φ be a rotation. Suppose that Wψ,φ is a

self-map of Pα and F denotes the set of all fixed points of Wψ,φ. Then, there are three

distinct cases:

1. If φ(z) ≡ z, then F = Pα.

2. If φ(z) ≡ λz and λn 6= 1 for every n ∈ N, then F = {1}.

3. If φ(z) ≡ λz and λn = 1 for some n > 1, then

F = {f : f(z) = g(zn) for some g ∈ Pα}.

The proofs of these two theorems follow from the lines of the proofs of the corre-

sponding results of Section 4 of [13]. Moreover, the key tools for the proofs are from

Section 6.1 of Shapiro’s book [68]. So we omit the details.
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