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Abstract

Graph is a popular model to represent highly structured data which involves entities
who have pairwise relations between them. In many applications, computing graph
theoretic properties after modelling the entire dataset as graph, provides us interesting
informations which gives us insights about the whole dataset. However, in case of
application, the datasets in question can be so large that it’s difficult to store in the
main memory and the dataset can even be dynamic(can change with time). These
days in so many applications, the algorithm that requires to solve the problem which
takes massive dataset as input, has limitations on time as well as space taken to store
the information. These constraints leads us for the development of new techniques.
Streaming model of computation takes all these challenges into account and provides
us solutions with limited resources in cost of accuracy. Graph stream is a sequence of
imcoming edges and we are only allowed to insert(insertion only model) or both insert
and delete(dynamic model) into an initially empty graph. Finally our objective is to
find out certain properties of the graph at the end of the stream which minimizes the
amount of space the algorithm uses. Sometimes this algorithm needs to provide the
trade of between the space usage and the time taken.

There is a large volume work on undirected graphs in streaming model but the area of
directed graph stream is a pretty unexplored. In this project, we study the problem
of testing acyclicity in dense digraphs in semi-streaming model. Here the graph on n
vertices is presented as a stream of edges and using O(n polylog(n))-space, we must
determine if it is acyclic or not.

Keywords: semi-streaming algorithm, digraphs, acyclicity.
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Chapter 1

Introduction

1.1 Introdution to Small Space Algorithm and it’s

Desire

Small space algorithms are algorithms that takes limited amount of space to cal-
culate some function of a massively long input stream σ. Formally, a sequence
σ = 〈x1, x2, · · · , xm〉 comes as a “stream”(which is the input) in the given order where
the elements of the sequence are picked from the universe [n] := {1, 2, 3, · · · , n}. Here,
the stream length, m, and the universe size, n are two important parameters.

The main goal is to process the input stream to calculate the desired function using
a small amount of space s , i.e., to use s bits of memory. Since it’s believed that m
and n are “huge”, we want to make s to be as small as possible. Specifically, we want
s to be sublinear in both m and n. In symbols, we want s = o (min {m,n}). To be
precise, we want s to be O(logm+ log n).

This amount of usage of space is possible only when we store a constant number of
elements from the stream and a constant number of counters that can count up to the
length of the stream. Sometimes we can only come close and achieve a space bound
of the form s = polylog(min {m,n}), where f(n) = polylog(g(n)) means that there
exists a constant c > 0 such that f(n) = O((log g(n))c).

The input is called a stream because we are allowed to access the input in “streaming
fashion” i.e. we do not have random access to the elements and we can only scan the
sequence in the given order. We are happy with the algorithms that make p passes
over the stream, for some “small” integer p, with the target of achieving p = 1.

Sometimes we can only compute an estimated value or approximated value of the
function φ(σ)(the function that we wish to calculate) because for many functions, we
can not compute the exact value using sublinear space in which case, we often allow
randomized algorithms that err with some small, but controllable probability.
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Chapter 2

Graph Streaming

2.1 Motivation

A large body of research has been developed to process and analyze massive dataset.
We specifically concentrate on the dataset which can be modeled as graph and then
we try to find algorithms to compute it’s properties using limited amount of space.

Graph is a popular model to represent highly structured data which involves enti-
ties who have pairwise relations between them. In many applications, computing
graph theoretic properties of the entire datasets provides us interesting informations
which gives us insights about the whole dataset. However, in case of application,
the datasets in question can be so large that it’s difficult to store in the main mem-
ory and the datasets can even be dynamic(can change with time). These days in
so many applications, the algorithm that requires to solve the problem which takes
massive dataset as input, has limitations on time as well as space taken to store
the information. These constraints leads us for the development of new techniques.
Streaming model of computation takes all these challenges into account and provides
us solutions with limited resources in cost of accuracy. Graph stream is a sequence of
incoming edges and we are allowed to only insert(insertion only model) or both insert
and delete(dynamic model) into an initially empty graph. Finally our objective is to
find out certain properties of the graph at the end of the stream which minimizes the
amount of space the algorithm uses. Sometimes this algorithm needs to provide the
trade of between the space usage and the time taken.

There is a large volume work on undirected graphs in streaming model but the area of
directed graph stream is a pretty unexplored. In this project, we study the problem
of testing acyclicity in dense digraphs in semi-streaming model. Here the graph on n
vertices is presented as a stream of edges and using O(n polylog(n))-space we must
determine if it is acyclic or not.
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6 2. Graph Streaming

2.2 Difficulties with Classical Model

Classical graph algorithms use random access to the entire input graph which is stored
in the memory. However, in practice the datasets in question can be so large that
it is difficult to store in the main memory. These days in so many applications,
the algorithm that requires to solve the problem and which takes massive dataset as
input, has limitations on time as well as space taken to store the information. These
constraints leads us for the development of new techniques.

2.3 Graph Streaming

A graph stream is defined by a sequence of edge insertions (and sometimes insertions
and deletions both) into an initially empty graph and after the stream finishes, we
compute certain properties of the graph.

2.3.1 Objective

The objective is to compute a certain property of the graph at the end of the stream
while minimizing the amount of space the algorithm uses. The space used by the
streaming algorithm is called as streaming complexity of the algorithm.

2.3.2 Models of Computation

There several models of computation in streaming listed below.

1. Edge Insertion Model : The stream consists of edges of G and we are allowed to
insert the edge or to let it pass in the stream.

2. Dynamic Edge Model : The stream consists of edges of G and we are allowed to
insert the edge or to delete the edge(if it already exists in the graph) or let it
pass in the stream.

2.4 Notations

Symbols Meaning

G(V,E) An undirected graph G
V (G) Set of vertices of G.
E(G) Set of vertices of G.
D(V,A) A directed graph D
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V (D) Set of vertices of D.
A(D) Set of edges of D.
xy ∈ A(D) edge xy from the edge set A(D)
For U ⊆ V (G), G [U ] A subgraph of G induced on U .
V (G) = A ]B Graph G with bipartition on A & B



Chapter 3

Previous Works and Overview of
Results

There are lots of fundamental graph-theoretic problems that serve as important prim-
itives in massive graph analysis. There are several problems such as finding large
matching in a graph in Dynamic Edge Model, approximating the number of fixed
length cycles in a graph, topological sorting of a directed acyclic graph (DAG), check-
ing whether the input graph is indeed a DAG etc which have been already solved.
Most streaming algorithms are based on the surprising efficacy of using random
linear projections, aka linear sketching, for solving combinatorial problems. Prob-
lems admitting the use of this technique include testing edge connectivity[1] and
vertex connectivity[12], constructing sparsifiers[2, 3, 16], approximating the densest
subgraph[6, 10, 19], correlation clustering[4], and estimating the number of triangles[19].

3.1 Dynamic Graph Stream

1. Dynamic Graph Stream[2]:. A stream S = a1, · · · , at where ak ∈ [n] ×
[n] × {−1, 1} defines a multi-graph graph G = (V,E) where V = [n] and the
multiplicity of an edge (i, j) equals

A(i, j) = |k : ak = (i, j,+)| − |k : ak = (i, j,−)|

We assume that the edge multiplicity is non-negative and that the graph has
no self-loops.

2. Linear Measurements and Sketches[2]: A linear measurement of a graph
is defined by a set of coefficients c(i, j) for 1 ≤ i < j ≤ n. Given a multi-
graph G = (V,E) where edge (i, j) has multiplicity A(i, j), the evaluation of
this measurement is P ,

∑
1≤i<j≤n c(i, j)A(i, j). A sketch is a collection of linear

measurements.

8



3.2. Lower Bound Methods 9

3. Consider a turnstile stream S = a1, · · · , at where each si ∈ (ui,∆i) ∈ [n] × R
and the aggregate vector x ∈ Rn defined by this stream, i.e., xi =

∑
j:uj=i ∆i.

A δ-error `0-sampler for x 6= 0 returns FAIL with probability at most δ and
otherwise returns (i, xi) where i is drawn uniformly at random from

support(x) = i : xi 6= 0.

`0 Sampling[2]: There exists a sketch-based algorithm that performs `0 Sam-
pling using O(log2 n log δ−1) space assuming access to a fully independent ran-
dom hash function.

4. Sparse Recovery[2]: There exists a sketchbased algorithm, k-RECOVERY,
that recovers x exactly with high probability if x has at most k non-zero entries
and outputs FAIL otherwise. The algorithm uses O(k log n) space assuming
access to a fully independent random hash function.

3.2 Lower Bound Methods

If we want to compare amongst algorithms and try to find out an algorithm which
performs better than whatever we have in our hand, then lower bound comes in
picture. Lower bound of a problem says that the problem is hard instead of saying
that we can not come up with a better algorithm.

3.2.1 Difficulty with lower bound

The difficulty with lower bound of a problem is that it is very hard to write a lower
bound proof which cover all the algorithms including the ones no one has thought of
yet.

Communication Complexity is a very useful area which helps to prove space lower
bound for data streaming algorithms which are most often proved via reduction from
standard problem of communication complexity.

3.2.2 Communication Complexity

Let f : {0, 1}a×{0, 1}b → {0, 1} be a Boolean function.In communication complexity,
there are two parties, Alice and Bob. In the one-way communication model Alice
receives an input x ∈ {0, 1}a and Bob receives an input y ∈ {0, 1}b . Neither one has
any idea about other’s input. Alice is only allowed to send one message to Bob and
no message is allowed to be sent from Bob to Alice. The goal is for Bob to compute
f(x, y). The communication cost is measured by the number of bits Alice sends in the
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worst case. The communication protocol can be both deterministic and randomized
with error probability say almost δ.

• One-way deterministic communication complexity of a boolean function f ,denoted
by D→(f) is the minimum worst-case number of bits used by any one-way pro-
tocol that correctly calculates f .

• The one-way (bounded-error) randomized communication complexity of a boolean
function f ,denoted by R→(f) is the minimum worst-case number of bits used
by any one-way protocol that correctly decides the function with probability
at least ε. For a randomized protocol R, R has error probability at most ε if
Pr(R(x, y) = f(x, y)) ≥ 1− ε.

3.2.3 Connection to Streaming Algorithm

Communication lower bounds on D→(f) and R→(f) provide lower bounds on the
memory required for deterministic and randomized data streaming algorithms, re-
spectively, via reduction from the standard problems of Communication Complexity.
Let’s consider a problem that can be solved using a streaming algorithm S that uses
space s. The idea for Alice and Bob is to treat their input as a stream (x, y) with
all of x ∈ {0, 1}a arriving before all of y ∈ {0, 1}b i.e. Alice creates a stream σ(x)
from her input x ∈ {0, 1}a, and runs the streaming algorithm S on σ(x). Then Alice
passes the state of the algorithm to Bob. Bob creates a stream σ(y) from his input
y ∈ {0, 1}b, and continues the execution of the streaming algorithm S on σ(y). Now
If the output of the streaming algorithm on the concatenated stream σ(x) o σ(y)
can be used to solve the problem f , either deterministically or with constant error
probability, then the space complexity of the streaming algorithm must be at least
D→(f) or R→(f), respectively.

There are several communication complexity problems which have been studied before
and their lower bounds and further we will look at some existing lower bounds for
some undirected graph problems.

3.2.4 Some problems in Communication Complexity and their
results:

INDEXn Problem

In INDEXn problem, Alice holds a n-bit string x ∈ {0, 1}n and Bob holds an integer
i ∈ {0, 1, 2 · · · , n}. The goal for Bob is to calculate the ith bit of Alice’s input i.e. xi.

In case of deterministic communication complexity protocol, the intuition is as Alice
is unaware of Bob’s input which makes her to send entire input of it’s own for Bob
to answer the question.
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The one-way randomized communication complexity of Index problem is Ω(n).

DISJOINTNESSn Problem

In DISJOINTNESSn Problem, Alice holds a n-bit string x ∈ {0, 1}n and Bob holds
a n-bit string x ∈ {0, 1}n. The goal for Bob is to output 0 if there is an index i for
which xi = yi = 1, otherwise output 1.

In case of deterministic communication complexity protocol, D→DISJOINTNESSn ≥
n.

EQUIVALENCEn Problem

In EQUIVALENCEn Problem, Alice holds a n-bit string x ∈ {0, 1}n and Bob holds
a n-bit string x ∈ {0, 1}n. The goal for Bob is to output 1 if there is an index i for
which xi 6= yi, otherwise output 0.

In case of deterministic communication complexity protocol, D→EQUIV ALENCEn ≥
n.

PERMn Problem

In PERMn problem, Alice holds a permutation σ of {1, 2, 3, · · · , n}, represented as
an ordered list σ(1), σ(2), · · · , σ(n) which has n log n bits. Bob holds an index i ∈
[n log n] and the goal for Bob is to determine the ith bit of σ.

In case of randomized communication complexity protocol, R→PERMn ≥ n log n.

3.3 Lower Bounds for undirected Graph Problems

There are several undirected graph problems whose lower bounds has been proved
via reduction from previous Communication Complexity problems published by Sun
et.al [20]

3.3.1 Connectivity

In Connectivity problem, Alice holds a subset EA of edges of an undirected graph G
with the set V of n vertices, while Bob has a disjoint subset EB of the edges of G.
Alice sends a randomized message M(EA) to Bob. The goal for Bob is to decide if
the graph (V,EA ∪ EB) is connected. Bob should succeed with probability at least
9/10.

Theorem 1. R→(Connectivity) = Ω(n log n)
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3.3.2 Diameter

In diameter problem, for a given k ∈ [n− 1] and a given sparse graph with O(n)
edges, the goal for Bob is to decide if the diameter d of (V,EA ∪ EB) is at most k.

Theorem 2. For any k ≥ 4, R→(diameter − k) = Ω(n log n)

3.3.3 Eulerian Testing

In Eulerian Testing problem, a graph G(V,E) is given and the goal for Bob is to
decide if (V,EA ∪ EB) is an Eulerian graph.

Theorem 3. R→(Eulerian) = Ω(n log n)

3.3.4 Bipartiteness

In Bipartiteness problem, Alice holds a subset EA of edges of an undirected graph G
with the set V of n vertices and Bob holds a disjoint subset EB of the edges of G.
Alice sends a randomized message M(EA) to Bob. The goal for Bob is to decide if
the graph (V,EA ∪ EB) is bipartite.

Theorem 4. R→(bipartite) = Ω(n log n)

3.3.5 Cycle-free

In Cycle-free problem, Alice holds a subset EA of edges of an undirected graph G
with the set V of n vertices and Bob holds a disjoint subset EB of the edges of G.
Alice sends a randomized message M(EA) to Bob. The goal for Bob is to decide if
the graph (V,EA ∪ EB) is cycle-free.

Theorem 5. R→(Cyclefree) = Ω(n log n)



Chapter 4

Cycle Detection Problem and
Previous Work

4.1 Introduction to cycle detection problem

In this project we study the problem which is defined as: for a given dense digraph
D on n vertices as a stream of edges, can we test if it is acyclic using O(n polylog(n))
space. Semi-streaming model of computation has been used here, where the stream
of edges can be either insertion-only, or dynamic which means both insertion and
deletion of edges are allowed. This model of computation is very well suited to study
massive data-sets with an underlying graph structure.

4.2 Previous Work

Undirected graphs are quite well studied in this model [18], but problems on directed
graphs are not yet well explored. Some results are known on space lower-bounds
for finding sinks in digraphs [15] and reachability [11], ruling out constant-pass algo-
rithms for directed reachability [13] and a few others. In a recent work, Chakrabarti
et.al [7] considered several problems related to vertex ordering problems in (acyclic)
digraphs, e.g. the space complexity of computing a topological ordering∗. They ob-
tain upper and lower-bounds on testing acyclicity and computing topological orders
in tournaments and arbitrary digraphs. In particular, they show that Ω(n2) space is
required for testing acyclicity in arbitrary digraphs in constant-passes.

Ahn et.al. [1] initiated the study of graph sketching, by giving algorithms for several
problems on undirected graphs using bounded-space, using a limited number of linear

∗This problem was explicitly raised in an open problems session at the Shonan Workshop “Pro-
cessing Big Data Streams” (June 5-8, 2017).

13



14 4. Cycle Detection Problem and Previous Work

measurements. These include testing connectivity, bipartiteness, spanning trees etc in
the semi-streaming model. While there are a number of results on undirected graphs
in this model [18], not much is known on digraphs.

This work is motivated by the above results, in particular, whether we can do better
than the Ω(n2) lower-bound when the input digraph is more structured.

Other than the works mentioned earlier, some results are known about computing
DFS-trees [17] and shortest-path trees [9] in O(n/ polylog(n)) passes. These results
remark upon the “implicit hardness” of problems in digraphs. Some super-linear(in
n) lower-bounds are known for solving certain decision problems, such as perfect
matching and short s− t path [13].

Some graph problems and their lower bounds of Chakrabarti et.al. [7] are listed below.

• Solving topological sort in one pass requires Ω(n2) space in streaming model.

• Solving strongly connected DAG in one pass requires Ω(n2) space in streaming
model.

• Solving acyclicity requires Ω(n2) space in one pass and n1+Ω(1/p)/pO(1) space in
p passes.



Chapter 5

Our Work

To recall the problem, for a given dense digraph D on n vertices as a stream of edges,
whether we can test if it is acyclic usingO(n polylog(n)) space. Semi-streaming model
of computation has been used here, where the stream of edges can be either insertion-
only, or dynamic which means both insertion and deletion of edges are allowed.

5.0.1 Model of Computation:

We design algorithms in the graph semi-streaming model, where an n-vertex digraph
G is presented as a stream of edges. This stream could be insertion-only where edges
are added one by one, or it could be dynamic where edges can be both added and
deleted. In the case of dynamic stream we assume that the length of the stream is
O(nc) where c is a constant. Our algorithms are allowed to use O(n polylog(n)) space
and output a solution at the end of the stream. When the digraph G has Ω(nc) edges
for any c > 1, we call it a dense digraph, and note that the space allowed in the
semi-streaming model is sub-linear in the input-size for such graphs.

5.1 Notations and Definitions

We use the term “digraph” for a simple digraph without self-loops, labels, and parallel
edges. That is, for a digraph D, there do not exist two vertices x and y such that
both xy and yx are arcs in D. For a digraph D, V (D) and A(D) denote the set of
vertices and arcs of D, respectively. For a digraph D and v ∈ V (D), the in-degree
and out-degree of v are |{uv ∈ A(D) : u ∈ V (D)}| and |{vu ∈ A(D) : u ∈ V (D)}|,
respectively. The underlying (undirected) graph of a digraph D is a undirected graph
G on the vertex set V (D) that contains an edge (u, v) whenever one of the arc (u, v)
or (u, v) are present in D.

We study this question of testing acyclicity on several classes of dense digraphs. These

15



16 5. Our Work

are defined in terms their underlying undirected graph, corresponding to some very
well studied dense graph classes, namely tournaments and digraphs k-close to tour-
naments, split digraphs, co-bipartite digraphs and cluster digraphs. For each of these
classes, we give algorithms that test the acyclicity of these class of digraphs. We
use the term “graph” for a simple undirected graph without self-loops, labels, and
parallel arcs. For a graph G, V (G) and E(G) are the set of vertices and edges of
G, respectively. For a graph G and U ⊆ V (G), G[U ] denote the subgraph of G in-
duced on U . A graph G is a bipartite graph if there is a bipartition of the vertex set
V (G) = A]B such that A and B are independent sets in G. The partition A]B is
called a bipartition of G.

A cycle of length `, where ` ≥ 3, in a directed graph D, is a sequence of vertices
v1, . . . , v`, v1 such that vi 6= vj for all 1 ≤ i < j ≤ `, vivi+1 ∈ A(D) for all i ∈ [`− 1],
and v`v1 ∈ A(D). We use C` to denote a cycle of length ` and C3 is also called a
triangle. For a cycle C in a digraph, we use V (C) to denote the set of vertices in
the cycle. For a digraph D and U ⊆ V (D), D[U ] denote the subgraph of D induced
on U . For a digraph D, the underlying undirected graph of D, is the graph G with
vertex set V (G) = V (D) and the edge set E(G) = {{x, y} : xy ∈ A(D)}. For an
acyclic digraph D, there is an ordering < of the vertices V (D), called the topological
order, where for any arc uv ∈ A(D), u < v. Moreover, if a digraph has a topological
order, then it is acyclic. A tournament is a digraph D such that for any two distinct
vertices u, v ∈ V (D), either uv ∈ A(D) or vu ∈ A(D) and not both. Formally we
prove the following.

Theorem 6. Let D be a digraph on n vertices that is presented as an edge stream.
Then in O(n polylog(n)) space and constant-passes we can recognize if D is an acyclic
digraph that belongs to one of the following graph classes:

• tournaments or digraphs k-close to a tournament for a dynamic edge stream,

• split digraphs for a stream of edge insertions,

• co-bipartite digraphs for a stream of edge insertions,

• or cluster digraphs for a dynamic edge stream.

We remark that, our algorithms not only need to test for acyclicity, but also determine
if the input digraph actually lies in the digraph class. Indeed, while the idea behind
our algorithms is to exploit the structure of the underlying undirected graph, as a
first step we must obtain a “structured decomposition” of the graph. For example,
for digraphs k-close to tournaments, we must first partition it into a tournament
and a sub-graph on k vertices. In the next step, we test for acyclicity using this
decomposition.
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Definition 1 (k-sparse-subgraph). Let G be a graph and k be an integer. Then a
subgraph H of G is called a k-sparse-subgraph if for every vertex v ∈ V (G), we have
2k ≥ dH(v) ≥ min{k, dG(v)}.

To compute k-sparse subgraph, we require the following result of Barkay et.al. [5].

Proposition 1. Let U be a universe on n elements, and let k be an integer. There
is a randomized data-structure that accepts insertion and deletion of elements from
U such that, at any moment it can provide a (uniformly at random) sample of size
min{k, `} from the currently stored elements with probability at least 1− 1/nc0. Here,
c0 is some constant and ` denotes the number of currently stored elements in the data
structure. This data-structure requires O(k polylog(n)) space.

Lemma 1. Let G be a graph on n vertices that is given as a dynamic stream, and let
k be an integer. Then, there is a randomized algorithm uses O(nk polylog(n)) space
and in one-pass outputs a k-sparse subgraph of the graph G with probability at least
1− 1/nc for some constant c.

Proof. LetH denote the k-sparse subgraph ofG that we will compute. Initially, H has
no edges. And For each vertex v ∈ V (G), we have an instance of the data-structure
given by Proposition 1 that stores the edges incident on v in the edge stream. Now
we consider the stream of edges, and for each v ∈ V (G) whenever an edge incident
to v is inserted or deleted, we update the data-structure for v. At the end of the
stream, for every v ∈ V (G), we compute a min{k, dG(v)} sample of edges incident
to v, and add them to H. Note that this succeeds with probability at least 1− 1/nc

over all n vertices, where c = c0 − 1. Further, the 2k ≥ dH(v) ≥ min{k, dG(v)} for
every vertex v, i.e. H is a k-sparse subgraph of G. Finally obeserve that, we require
O(nk polylog(n)) space in total.

We require the following result of Ahn et.al. [1] on dynamic connectivity in the semi-
streaming model.

Proposition 2. Let G be a graph on n vertices that is presented as a dynamic edge
stream. There is a single-pass algorithm for computing a spanning forest of G using
O(n polylog(n)) space.

5.2 Some Results

5.2.1 Tournaments and digraphs k-close to Tournaments

In this section we describe an algorithm for testing acyclicity in tournaments and
in digraphs that are close to tournaments. Let us begin with the simple case of
tournaments, and let us recall that in a tournament there is an arc between each pair
of vertices. We also require the following well known properties of tournaments [8].
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Proposition 3. Let D be a tournament. Then D contains a cycle if and only if D
contains a C3.

Proposition 4. Let D be a tournament on n vertices. Then D is acyclic if and only
if D has a unique topological order, and hence the in-degree of every vertex is distinct
and belongs to {0, 1, 2, · · · , n− 1}.

We now describe a one-pass streaming algorithm for testing the acylicity of a tour-
nament in the semi-streaming model.

Theorem 7. Let D be a digraph on n vertices that is given as an dynamic edge
stream. Then in one-pass and using O(n log n) space we can test if D is an acyclic
tournament, and further output it’s unique topological order.

Proof. We maintain n counters {countIn-Deg(v)}|v∈V (D), each of O(log n) bits, that
maintain the in-degree of every vertex. When an arc e = (u, v) is added, we in-
crement the counter countIn-Deg(v), and when it is deleted we decrement the counter
by one. Observe that at the end of the stream, countIn-Deg(v) is the in-degree of
v ∈ D. When the stream ends, we check if the following two conditions are satisfied:
(i)
∑

v∈V (G) countIn-Deg(v) =
(
n
2

)
, and (ii) for every vertex v ∈ V (D) it’s in-degree

countIn-Deg(v) is a distinct number in {0, 1, · · · , n − 1}. If so, we output that the
graph is an acyclic tournament. Further, when D is acyclic, we sort the vertices by
their in-degree and output it as the topological order of D. The correctness of this
algorithm follows directly from Proposition 4. Further, it is clear that it requires
O(n log n).

An n vertex digraph D is k-close to a tournament if there exists X ⊆ V (D) such
that D −X is a tournament and |X| ≤ k. Let us now consider the more challenging
problem of testing acyclicity in digraphs that are k-close to a tournament. We require
the following property of this class of digraphs.

Observation 1. Let D be a digraph that is k-close to a tournament. Let G be the
underlying graph of D. Then the complement graph G admits a vertex cover of size
k.

We also require the following subroutine in our algorithm.

Lemma 2. Let G be an undirected graph that is presented as a dynamic stream.
Suppose that G admits a vertex-cover of size k. Then in one-pass and O(nk log n)
space we can compute a 2-approximate vertex cover of G.

Proof. Our algorithm computes a (2k + 1)-sparse subgraph H of G, by applying
Lemma 1 to the dynamic stream of G in a single-pass, and using O(nk polylog(n)}
space. Note that for every vertex v ∈ V (G), in the graph H, 4k + 2 ≥ dH(v) ≥
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min{2k + 1, dG(v)}. Observe that, as H is a subgraph of G, H also admits a vertex
cover of size k.

In the reverse direction, we claim that if X is a vertex cover of H of size 2k, then it
is also a vertex cover of G. Suppose not, and consider an edge (u, v) ∈ E(G) such
that u, v /∈ X. This means (u, v) /∈ E(H), and since dH(v) ≥ min{2k + 1, dG(v)},
this means dH(u), dH(v) ≥ 2k + 1. Now observe that as dH(v) ≥ 2k + 1, it must be
in X, otherwise X has to contain all its neighbors (i.e at least 2k + 1 vertices). But
this is a contradiction. Hence X is a vertex cover of G.

To compute a vertex cover X of H of size 2k, we simply compute a maximal matching
M of H. Since H admits a vertex cover of size H, M contains at most k-edges. Hence
X = V (M) is a vertex cover of G of size at most 2k.

Theorem 8. Let D be a digraph on n vertices that is given as an dynamic edge stream.
Then in two-passes and using O(nk log n) space we can test if D is an acyclic digraph
that is k-close to a tournament.

Proof. Let G denote the underlying undirected graph of D. By Observation 1, the
complement graph G has a vertex cover of size k. In the first pass of the graph stream,
we compute a 2-approximate vertex cover X of G, by applying Lemma 2 as follows.
Initially, insert every edge to G which corresponds to the state when G is empty.
Then whenever an edge (u, v) is added to G, we delete it from G and vice-versa. At
the end of the stream we obtain the vertex cover X of G and by Lemma 2 this requires
O(nk log n) space. For the next stage of the algorithm, we consider the partition of
V (D) into X and Y = V (D) \X. Observe that D[Y ] is a tournament and |X| ≤ 2k.

In the second pass of the graph stream, we collect the following data. We store
every arc that is incident on a vertex in X. Note that, as |X| ≤ 2k, this requires
O(nk log n) space. Further, we also apply Theorem 7 to the tournament D[Y ] to test
it’s acyclicity. At the end of the stream, we either obtain that D[Y ] contains a cycle,
or it is an acyclic tournament with the unique topological order <Y

top.

Finally it remains to check if there are any cycles in D that contain a vertex from X.
Towards this, we construct a digraph H from D[X] by introducing some additional
arcs to it. Note that H may contain anti-parallel arcs (e.g. (u, v), (v, u)) and self-loops
(v, v). For each ordered pair of vertices (u, v) ∈ X ×X, we test if there is a path in
D starting from u and ending at v with all internal vertices in Y . Observe that such
a path exists whenever u has an out neighbor p ∈ Y and v has an in-neighbor q such
that p <Y

top q. If such a path exists, we add an arc (u, v) to H, if it is not already
present. Further, it is easy to see that every cycle in D maps to a cycle in H, and
any cycle in H maps to a closed walk in D. Therefore, H is acyclic if and only if D
is acyclic. This fact can be easily checked, and we output an answer accordingly. It
is also clear that the algorithm requires O(nk log n) space.
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5.2.2 Split digraph

In this section we give a streaming algorithm for testing the acyclicity of directed
split graphs. Recall that an undirected graph G is called a split graph if V (G) can be
partitioned into K ] I such that K is a clique and I is an independent set in G. This
partition is called a split partition of the graph G.

Definition 2. A digraph D is called a directed split graph if the underlying undirected
graph of D is a split graph. In other words, if D is a directed split graph, then V (D)
can be partitioned into K]I, called the split partition, such that D[K] is a tournament
and I is an independent set in D.

We establish some basic properties of cycles in directed split graphs.

Lemma 3. Let D be a directed split graph, with a split-partition K ] I, where the
tournament D[K] is acyclic. Let <top denote the unique topological order of D[K].
Then D contains a C3 if and only if there is a vertex v ∈ V (I) such that it has an
in-neighbor u ∈ K and an out-neighbor w ∈ K such that w <top u.

Proof. If such a vertex v exists, then clearly D contains a C3. In the reverse direction,
let u, v, w, u be a C3 in D . As I is an independent set and D[K] is an acyclic
tournament, the cycle u, v, w, u has exactly one vertex, say v, from I and exactly two
vertices, say u,w, from K. Notice that u is an in-neighbor and w is an out-neighbor
of v. Moreover, as wu ∈ A(D) and w, u ∈ K, we have that w <top u. This completes
the proof of the lemma.

Lemma 4. A directed split graph contains a cycle if and only if it contains a C3.

Proof. Let D be a directed split graph that contains a cycle. Let K ] I be the split
partition of D. If the tournament D[K] contains a cycle, then by Proposition 3
it contains a C3, as required. Otherwise, consider the shortest cycle C in D, and
consider a vertex v ∈ V (C)∩I. Let u and w be the in-neighbor and the out-neighbor,
respectively, of v in C. Observe that u,w ∈ K and hence there is an arc between
them in D. If we have the arc wu ∈ A(D), then u, v, w, u is a C3 in D. Otherwise,
we have an arc uw and D[V (C) \ v] contains cycle C ′ shorter than C obtained by
replacing the sub-path u, v, w in C with u,w. This is a contradiction to the choice of
C. The reverse direction of the proof is trivial.

We also require a well-known characterization of split graphs via their degree-sequences.

Proposition 5 ([14]). Let G be an undirected graph on n vertices and let the degree
sequence of G be d1 ≥ d2 ≥ ... ≥ dn. Let m be the largest index i such that di ≥ i−1.
Then G is a split graph if and only if the following holds.

m∑
i=1

di = m(m− 1) +
n∑

i=m+1

di
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Further, there is a split partition of G where the first n − m vertices of the degree-
sequence form an independent set and the remaining m vertices form a clique.

Theorem 9. Let D be a digraph on n vertices that is given as a stream of edge
insertions. Then in O(n log n) space and 3-passes we can determine if D is a acyclic
split digraph.

Proof. Our algorithm is implemented in 3-passes. We will describe each pass along
with the data-structures required for it. Let G denote the underlying undirected
graph of D. In the first pass, we maintain n degree-counters {countDeg(v)}|v∈V (G)

for the vertices in G. At the end of the first pass, we check if G is a split graph by
applying Proposition 5, and if so, we also obtain a split partition K ] I of G (and D).
In the second pass, we apply Theorem 7 to the subgraph D[K] to test if it is acyclic
and if so, also obtain a topological order <top of D[K]. If D[K] is not acyclic, then
we declare that D is not acyclic.

Finally, in the third pass, we test if there is a cycle in D. Here, we assume that
D[K] is an acyclic tournament. By Lemma 3, it is enough to test for a C3 in D.
As D[K] is an acyclic tournament, by Lemma 4, it is enough to test if there is a
vertex v ∈ I such that it has an in-neighbor u ∈ K and an out-neighbor w ∈ K
such that w <top u. Towards this, for each vertex v ∈ I, we maintain two vertices
uv, wv ∈ K ∩N(v) that denote the largest in-neighbor and the smallest out-neighbor
of v as per the topological order <top of D[K]. Whenever we see an arc that is incident
on v, we update uv and wv accordingly. At the end of the stream, we check if there
exists a vertex v ∈ I such that wv <top uv. If so, we output that D contains a cycle,
otherwise we output that D is acyclic. To conclude the proof, observe that we only
require O(n log n) space in total during the algorithm.

5.2.3 Complement of Bipartite Graphs

In this section we describe a streaming algorithm to test acyclicity of digraphs whose
underlying undirected graph is the complement of a bipartite graph. We require the
following result of Ahn et.al. [1].

Proposition 6. There exists a single-pass dynamic streaming algorithm for testing
whether a graph G is bipartite using O(n polylog(n)) space. Furthermore, the algo-
rithm outputs a bipartition of G if G is bipartite.

We require the following properties for our algorithm.

Lemma 5. Let D be a digraph whose underlying undirected graph is the complement
of a bipartite graph. Then, D contains a cycle if and only if D contains a C3 or a C4

with |V (C4) ∩ A| = 2 and |V (C4) ∩B| = 2.
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Proof. Let G be the underlying undirected graph of D. By assumption we know that
G is a complement of a bipartite graph. That is, G is a bipartite graph. Let A]B be
a bipartition of V (G). Observe that D[A] and D[B] are both tournaments. If D[A] or
D[B] contains a cycle, then by Proposition 3, there is a C3. Otherwise both D[A] and
D[B] are acyclic, and let <A

top and <B
top denote the unique topological order of D[A]

and D[B], respectively. Now consider, a shortest cycle C in D, and note that it must
intersect both A and B. If the length of C is at most 3, then we are done. Otherwise,
we claim that C intersects A in at most two vertices and B in at most two vertices.
This will imply that C is a cycle of length 4 and |V (C) ∩ A| = |V (C) ∩ B| = 2.
Next we prove that |V (C) ∩ A| ≤ 2. The proof for the statement |V (C) ∩ B| ≤ 2 is
symmetric.

Now we prove that |V (C) ∩ A| ≤ 2. Let v1, v2, . . . , v`, v1 be the cycle C, where
` ≥ 4. Suppose |V (C) ∩ A| > 2. Then there exist 1 ≤ i < j < k ≤ ` such
that vi, vj, vk ∈ V (C). Suppose j 6= i + 1. That is j > i + 1. As vi, vj ∈ A,
and D[A] is a tournament, either there is an arc vivj or there is an arc vjvi in
D. If vivj is an arc, then v1, . . . vi, vj, vj+1, . . . , vk, . . . , v`, v1 is a cycle of length less
than `– a contradiction to the assumption that C is a shortest cycle. If vjvi is
an arc in D, then vi, vi+1 . . . , vj, vi is a cycle of length less than ` in D which is a
contradiction to the assumption that C is a shortest cycle in D. Thus, it should
be the case that j = i + 1, By using similar arguments as above, one can prove
that k = j + 1 = i + 2. That is, vi, vi+1, vi+2 ∈ A. Since vi and vi+2 are two
distinct vertices in the tournament D[A], either vivi+2 ∈ A(D) or vi+2vi ∈ A(D). If
vi+2vi ∈ A(D), then vi, vi+1, vi+2, vi is a shorter cycle that C which is a contradiction.
If vivi+2 ∈ A(D), then v1, . . . , vi, vi+2, . . . , v`, v1 is a cycle of length less than ` which
is a contradiction. Thus we have proved that |V (C) ∩A| ≤ 2 and this completes the
proof of the lemma.

Lemma 6. Let D be a digraph whose underlying undirected graph G is the complement
of a bipartite graph. Let A]B be a bipartition of the bipartite graph G. Furthermore,
let D[A] and D[B] be acyclic tournaments, and let <A

top and <B
top be their topological

orders, respectively. Then D contains a cycle if and only if at least one of the following
holds.

(i) There exist vertices v ∈ A, u,w ∈ B such that uv ∈ A(D), vw ∈ A(D), and
w <B

top u.

(ii) There exist vertices v ∈ B, u,w ∈ A such that uv ∈ A(D), vw ∈ A(D), and
w <A

top u.

(iii) There exist vertices u, v ∈ A and x, y ∈ B such that yu ∈ A(D), vx ∈ A(D),
u <A

top v, and x <B
top y,
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Proof. It is easy to verify that if at least one of the condition (i) − (iii) holds, then
there is a cycle in D. Now we prove the forward direction. By Lemma 5, if D contains
a cycle, then it contains a C3 or a C4. Suppose there is a triangle u, v, w, u in D.
Suppose |{u, v, w} ∩ A| = 1 and |{u, v, w} ∩ B| = 2. Without loss of generality
v ∈ A and u,w ∈ B. Then, uv, vw ∈ A(D) and w <B

top u because wu ∈ A(D).
This implies that condition (i) of the lemma holds. Now, if |{u, v, w} ∩ A| = 2 and
|{u, v, w}∩B| = 1, by using arguments similar to above, one can show that condition
(ii) of the lemma holds.

Now suppose that there is a no C3 in D and there is a cycle C of length 4 in D such
that |V (C) ∩ A| = |V (C) ∩ B| = 2. Let u, v, x, y, u be the cycle C. We claim that
two consecutive vertices in C are in A and two consecutive vertices in C are in B.
Suppose not. Then, without loss of generality let u, x ∈ A and v, y ∈ B. As u and
x are two distinct vertices in the tournament D[A], either ux ∈ A(D) of xu ∈ A(D).
If ux ∈ A(D), then u, x, y, u is a C3 in D which is a contradiction to the assumption
that there is no C3 in D. If xu ∈ A(D), then x, u, v, x is a C3 in D which is a
contradiction to the assumption that there is no C3 in D. Thus, we have proved that
two consecutive vertices in C are in A and two consecutive vertices in C are in B.
Without loss of generality u, v ∈ A and x, y ∈ B. As uv ∈ A(D) and u, v ∈ A, we
have that u <A

top v. Similarly, as xy ∈ A(D) and x, y ∈ A, we have that x <B
top y.

Also note that vx, yu ∈ A(D). This implies that condition (iii) of the lemma holds.

Theorem 10. Let D be a digraph on n vertices such that the underlying undirected
graph G of D is the complement of a bipartite graph. Then, there is 3-pass insertion
only streaming algorithm using O(n polylogn) space to test whether D is acyclic or
not.

Proof. First we check whether G is bipartite and if yes, obtain a bipartition A]B of
G using one pass.

Towards this, we apply Proposition 6 in the following manner. Initially, we insert all(
n
2

)
pairs of V (G) as edges, then when the edge stream of G comes, we delete those

edges. At the end the graph will G, and by Proposition 6, the output is Yes if G is
bipartite. Moreover, if G is bipartite, the algorithm will output a bipartition A ] B
of G. The space used for this computation is O(n polylog(n)).

In the second pass, we test if the tournaments D[A] and D[B] are acyclic, and if
so we also obtain their respective topological orders <A

top and <B
top. Towards this we

apply Theorem 7 simultaneously for D[A] and D[B], which requires O(n log n) space.
If D[A] and D[B] are both acyclic tournaments, then we proceed to the next step.
Otherwise we declare that D is not acyclic.

Finally, in the third pass, we test if there is a cycle in D by using Lemma 6.

(a) Observe that to test whether there exist vertices v ∈ A, u,w ∈ B such that
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uv ∈ A(D), vw ∈ A(D), and w <B
top u (i.e., condition (i) of Lemma 6), it is

enough to store the following information for each vertex z ∈ A: the largest
vertex lz ∈ B and the smallest vertex sz ∈ B in the order <B

top such that
lzz, zsz ∈ A(D). At the end if there is a vertex z ∈ A such that sz <

B
top lz for

any z ∈ A, then condition (i) of the Lemma 6.

(b) Similarly, to test whether condition (ii) of Lemma 6 holds, it is enough to store
the following information for each vertex z ∈ B: the largest vertex lz ∈ A and
the smallest vertex sz ∈ A in the order <A

top such that lzz, zsz ∈ A(D). And at
the end if there is a vertex zinB such that sz <

A
top lz, then condition (ii) of the

Lemma 6.

(c) To test whether condition (iii) of Lemma 6 holds, it is enough to store the
following information for each vertex z ∈ B: the largest vertex lz ∈ A and the
smallest vertex sz ∈ A in the order <A

top such that lzz, zsz ∈ A(D). And at the
end if there exist two vertices x and y such that x <B

top y and sy <
A
top lx, then

condition (iii) of the Lemma 6 holds.

Now, in the third stream, for each vertex z we store two values lz and sz. Initially,
for each vertex z, we set lz and sz to be NULL. Then, when an arc wx comes where
w ∈ A and x ∈ B, if x <B

top sw, then we set sw := x. Also if lx <
A
top w, then we set

lx := w. Similarly, when an arc xw comes, where x ∈ B and w ∈ A, if w <B
top sx,

then we set sx := w. Also if lw <A
top x, then we set lw := x. When an arc e in D[A]

or D[B] comes, we ignore it. At the end of the arc stream we test the cases (a), (b)
and (c) and if at least one of them holds, then there is a cycle in D, by Lemma 6.
Otherwise D is acyclic.

Notice that in the third stream, for each vertex z, we keep two information lz and sz.
This implies that the space required in the third stream is O(n log n).

This completes the proof of the theorem.

5.2.4 Cluster digraphs

A cluster digraph is a digraph D that is a disjoint union of tournaments. Observe
that the underlying graph of D is a cluster graph, i.e. a disjoint union of complete
graphs.

In this section we present a streaming algorithm for testing acyclicity of cluster di-
graphs in the dynamic streaming model.

Theorem 11. Let D be a digraph on n vertices that is presented as a dynamic edge
stream. Then in O(n polylog(n)) space and one-pass we can determine if G is an
acyclic cluster digraph and also outputs a partition of V (G) such that each part induces
a tournament.
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Proof. Let G denotes the underlying undirected graph of D. We require the following
data-structures for our algorithm. We maintain a dynamic connectivity sketch of G,
using Proposition 2. Recall that this requires O(n polylog(n)) space for a single-
pass. We also store a collection of counters storing countIn-Deg(u) for each vertex u ∈
V (D). When an arc uv is added, we increment countIn-Deg(u) by one and conversely
when an arc uv is deleted, we decrement it. Observe that at the end of the stream,
countIn-Deg(u) is the in-degree of the vertex u ∈ V (D).

To determine if D is a cluster digraph, we obtain a spanning forest F of G using
Proposition 2. Let T be a tree in F , let nT = |V (T )| denotes the number of vertices
in this tree. By Proposition 4, to test if D[V (T )] is an acyclic tournament, it is enough
to check if for each v ∈ V (T ), countIn-Deg(v) is a distinct integer in {0, 1, · · · , nT − 1}.
We perform this test for every tree in the forest F . If they are all acyclic tournaments,
then we output that D is an acyclic cluster digraph.

Notice that the dynamic connectivity sketch uses O(n polylog(n)) space (see Proposi-
tion 4). Moreover, for each vertex u, we use a counter countIn-Deg(u). Thus, the total
space used by our algorithm is O(n polylog(n)).



Chapter 6

Conclusion and future work

6.1 Conclusion

In this project, we obtained several algorithms for the problem of Acyclicity Tests
in Classes of Dense Digraphs in Streaming Model for some special class of dense
digraphs whose underlying undirected graph belongs to the class of graphs such as
complement of bipartite graphs, split graphs,cluster graphs, k vertices away from
tournament. In a recent work, Chakrabarti et.al. [7] considered several problems
related to vertex ordering problems in (acyclic) digraphs, the space complexity of
computing a topological ordering. They obtain upper and lower-bounds on testing
acyclicity and computing topological orders in tournaments and arbitrary digraphs.
In particular, they show that Ω(n2) space is required for testing acyclicity in arbitrary
digraphs in constant-passes. Solving this problem for tournament is very easy. How-
ever, the problem becomes maximally hard without the promise of a tournament. So
we picked special classes of dense digraphs and addressed the problem.

6.2 Future Work

We are concentrating on few more dense digraphs and graphs with k vertices away
from several classes of dense digraph to get some good upper bound for the same
problem. We are also trying to prove lower bounds for the same problem of the some
classes of dense digraphs for which we have come up with upper bounds.
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