
Part 1. An Explainer for Information
Retrieval Research

Part 2. Open Domain Complex Question
Answering

Sourav Saha
CS 1833

Supervised by Mandar Mitra

Indian Statistical Institute, Kolkata

Signature

Date / /

Abstract

This thesis is organised in two parts. First, an explainability in Information retrieval

(IR) research where we focus on the performance of the IR models. We present a toolkit

I-REX to illustrate the performance and explainability of IR systems. It is an interactive

interface built on top of Lucene and gives a white box view of any proposed method. It

is implemented as a web based and as well as shell based interface to provide an intuitive

explanations and performance of IR systems. The baseline retrieval models such as LM,

BM25 and DFR, and a set of well-defined features enable debugging the performance

of retrieval experiments such as ad-hoc IR or query expansion. Next we worked on an

open domain complex factoid Question Answering (QA). Creating annotated data in QA

problem requires lot of resources and it is very time consuming. The available datasets

are often domain specific and most of the times created for some specific languages.

Therefore we mainly focus on answering the questions in an unsupervised way. As a

benchmark data we used the data provided by Lu et al. (Quest)[26]. It mainly focuses on

complex questions which cannot be answered by knowledge graphs (KGs) directly. Our

architecture uses corpus signals over the various documents along with the traditional

QA pipeline to answer the complex questions. We proposed a set of modified evaluation

protocols to overcome some serious pitfalls in the evaluation measure used in Quest.

We also compared the performances of our architecture with another neural benchmark

model DrQA [11]. Experiments on this benchmark datasets have shown that our model

significantly outperforms Quest and DrQA. We find this very encouraging since DrQA

is trained on SQuAD [32], TREC Questions [4], WebQuestion [5], WikiMovies [30] while

our proposed method is unsupervised in nature.

i

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Mandar Mitra. People

like him are extremely rare in this world. He has been an inspiration for me to do good

research in the field of IR. I would be forever indebted to him for his academic as well

as non-academic help towards my career at ISI. This work would not be possible without

his strong encouragement, motivation and support.

Many thanks to Dwaiapayan Roy for being an awesome mentor, colleague and a senior.

He helped me a lot in the initial days of my IR research by answering my silly naive

questions and also guiding me on what not to do regarding research. Thanks to Debasis

Ganguly for his everlasting inspiration, enthusiasm and all the academic help I required.

I would also thank other lab members Ayan da, Suchana di.

Thanks to Professor Soumen Chakrabarti for his generous help towards giving a short

survey of what’s going on about QA, corpus and KG across IR, NLP and AI communities.

Special thanks to Professor Dipti Prasad Mukherjee and his lab members for providing us

with the GPU support, without that a lot of experiments would have never been possible.

I am indebted to the faculty members at ISI for providing the wonderful courses, slides,

lecture notes and giving a friendlier teacher student relationship.

Finally, I would like to thank my friends, family for their love and support.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 I-REX 1

1.1 Abstract . 1

1.2 Introduction . 1

1.3 Background . 4

1.4 I-REX features . 5

1.5 Illustrative workflows . 7

1.6 Conclusion and future work . 10

2 Open Domain Complex Question Answering 12

2.1 Introduction . 12

2.1.1 Background and problem statement 12

2.2 Baseline Unsupervised QA System . 16

2.2.1 Quest . 16

2.2.2 DrQA . 19

2.3 Proposed Evaluation Measure . 19

2.4 Our Work . 22

2.4.1 Question Type Classifier . 24

2.4.2 Extracting Named Entities . 25

2.4.3 Answer Extraction . 27

v

2.4.4 Answer Ranking . 29

2.4.5 Result and Discussions . 30

2.5 Conclusion and Future Work . 34

Bibliography 34

Appendices 47

A I-REX 47

A.1 Language Model . 47

A.1.1 Jelinek-Mercer smoothing (LMJM) 47

A.1.2 Dirichlet smoothing (LMDIR) . 48

A.2 WT10g Dataset . 48

A.3 Trec Eval . 48

B Question Answering 49

B.1 Mapping from TREC 04 Domain to Ontonotes 49

vi

List of Tables

2.1 TREC 2004 coarse and fine grained labels. Upper case labels are of type

coarse and lower cases are fine grained type. 25

2.2 Ontonotes coarse and fine grained labels. Upper case labels are of type

coarse and lower cases are fine grained type. 27

2.3 Baseline result for CQ-W questions for Top10 data set. 33

2.4 baseline result for CQ-T questions for Top10 data set. 33

2.5 Baseline result for CQ-W questions for Top10 data set with our proposed

metric. 33

2.6 Baseline result for CQ-T questions for Top10 data set with our proposed

metric . 33

2.7 Result for CQ-W data Set. 35

2.8 Result for CQ-T data Set. 36

2.9 Result for CQ-W data set with our new metric. 37

2.10 Result for CQ-T data set with our new metric. 38

2.11 Performance comparison of baseline results with our best model for CQ-W

questions on Top10 data set. Evaluated with old metric. 39

2.12 Performance comparison of baseline results with our best model for CQ-T

questions for Top10 data set. Evaluated with old metric. 39

2.13 Performance comparison of baseline results with our best model for CQ-W

questions for Top10 data set. Evaluated with our proposed metric. 39

vii

2.14 Performance comparison of baseline results with our best model for CQ-T

questions for Top10 data set. Evaluated with our proposed metric. 39

A.1 TREC Web Corpus WT10g dataset overview 48

B.1 TREC 04 Entity label to Ontonotes . 49

viii

List of Figures

1.1 Use of sigtest on a pair of result files. Significance is tested for three

evaluation metrics: AP, P@5, and recall at rank 1000. 7

1.2 A subset of the output of diff on a pair of result files. This identifies

query-document pairs that contribute most to the performance difference. 8

1.3 Use of explain on document WTX025-B13-23 for LM-Dir and LM-JM. . . 8

1.4 Use of search with a query and a retrieval model on the index. The dl

flag causes document length to be displayed. 9

1.5 Use of compare on a pair of documents to see the relative scores for the

individual query terms. 10

1.6 Use of expansion to see a set of potentially related terms that can be used

for use expansion. 10

1.7 Use of the command dv with flag -d to see the 5 discriminating terms of

the document WTX037-B40-290. 11

2.1 Question Answering in Search Engine. 13

2.2 Complex Question in Google. 13

2.3 Complex Question in Bing. 14

2.4 Top GST result by Quest. 18

2.5 1st correct answer at ith rank. 21

2.6 Ranked list pictorial view. 22

2.7 Question Answering architecture. 23

2.8 Similarity measure of entities. 23

ix

2.9 Flair embedding of words. 26

2.10 Entity extraction from questions and embedding. 31

2.11 Some snippet of P@1 answer retrieval where other baselines (Quest and

DrQA) fails to retrieve. 32

x

Chapter 1

I-REX 1

1.1 Abstract

Providing high-level, intuitive explanations of the performance of IR systems is gener-

ally difficult due to their complexity, and the various low-level implementation details

involved. We present I-REX, a tool built on top of Lucene, that is intended to provide

a systematic view into the inner workings of retrieval models and methods (specifically

query expansion). This should help researchers study, compare, understand and explain

the performance of these models and methods. I-REX can be run either as a Web service

accessible through a browser, or as a terminal-based tool with a shell-like interactive in-

terface. In this article, we describe a session that illustrates how I-REX can be used to

explain the observed difference in the performance of two variants of the Language Model.

1.2 Introduction

In recent times, as technology, particularly Artificial Intelligence and Machine Learning,

make remarkable advances, there is a growing interest in the explainability of these tech-

nologies, i.e., in understanding why a technique performs the way it does, rather than

1This chapter is based on Dwaipayan Roy, Sourav Saha, Mandar Mitra, Bihan Sen, Debasis Ganguly
I-REX: A Lucene Plugin for EXplainable IR. 28th ACM International Conference on Information
and Knowledge Management (CIKM 2019), pp. 2949–2952.

1

2 Chapter 1. I-REX

simply finding whether it works well or poorly. In Information Retrieval (IR) too, many

well-known studies have provided high-level, intuitive explanations of the performance

of retrieval models and methods. For example, Singhal et al. [36] explained that the

traditional normalisation method used in the Vector Space Model (VSM) over-penalises

long documents, leading to poor retrieval effectiveness. This in turn led to an improved

term-weighting scheme within VSM. Smucker and Allan’s analysis [37] provides a similar

explanation for why Dirichlet smoothing works better than Jelinek-Mercer smoothing in

the language modeling framework. Likewise, the axiomatic frameworks for retrieval [18]

and pseudo-relevance feedback (PRF) [13] encode several intuitions in the form of ax-

ioms that can be used to easily explain the relative performances of different models and

methods. As in [36], the insights thus obtained lead to improved methods for PRF. Re-

cently, researchers have applied local linear approximation approaches for model agnostic

explanations of IR models [38, 19].

A tool for gaining insights into an IR model. Because IR systems are complex, and

there are numerous sources of variation, the process of analysing experimental observa-

tions in order to identify and validate high-level explanations can be both difficult and

tedious. Researchers generally resort to ad hoc combinations of search systems, scripts

and visualisation tools for this task. As a first step towards addressing this situation,

we contribute I-REX, an interactive tool, implemented as an additional layer built upon

Lucene’s API. Two example features that I-REX provides are outlined below. A more

complete description can be found in Section 1.4. To the best of our knowledge, no

available version of Lucene provides such information in a convenient way.

1. For a given query Q, a document D, and a retrieval model M, the tool may be used

to analyse the similarity score of D with respect to Q under M. Following [28], we

view any ranking formula as a linear function of the form S
(
D,Q

)
=
∑

t∈D∩Qw
(
t,D

)
,

where w(t,D) denotes the weight of query term t in document D. Our tool displays the

value of w(t,D) for each matching query term, along with the individual components

(e.g., term frequency, collection frequency, document length) that are used to compute

1.2. Introduction 3

w(t,D), thus explaining how these contribute to the overall score for D.

A related feature can be used to analyse the similarity scores of two documents at a

time, in order to understand why one of them is ranked higher than the other by a

given IR model in response to a query.

2. I-REX can also display the candidate expansion terms for a query (and their weights),

as determined by various standard PRF methods. Additional statistics about these

terms, e.g., their occurrence counts in relevant and non-relevant documents, may be

obtained to further understand how ‘appropriate’ these are as expansion terms.

I-REX can be run as a Web service that can be accessed via a browser. It also has

a text-based front-end that can be used like an interactive shell from any terminal.

A version of I-REX that provides access to several TREC ad hoc collections is avail-

able at http://irlab.isical.ac.in:8080/i-rex. The source code for the tool, along

with instructions for installing and running the service, may be obtained from https:

//github.com/souravsaha/I-REX.

Key contributions. We believe I-REX makes the following useful contributions.

1. It provides researchers with a more interactive interface to Lucene, along with tools

that help to understand or explain what is going on beneath the hood. Note that,

while end-users who use Lucene as a “black box” for searching also need an interactive

interface, these users’ requirements are quite different from the needs of researchers.

2. I-REX aids reproducibility / repeatability by potentially providing a white box view of

any proposed method. If the re-implementation of a proposed technique gives signifi-

cantly different results from those reported by the original authors, the details provided

by I-REX should help in identifying precisely where the results diverge.

3. I-REX also helps as a teaching tool, as it provides a look at the ‘nuts and bolts’ of

standard IR operations like term-weighting and query expansion.

In the next section, we justify our choice of Lucene as our starting point, and explain

why we believe that I-REX addresses a need that is not currently fulfilled. A summary

http://irlab.isical.ac.in:8080/i-rex
https://github.com/souravsaha/I-REX
https://github.com/souravsaha/I-REX

4 Chapter 1. I-REX

of commands provided within I-REX is provided in Section 1.4. Next, in Section 1.5, we

present an example workflow to illustrate how the features of I-REX may prove useful to

researchers. Section 1.6 concludes this article with some of our ideas for extending I-REX.

1.3 Background

The IR community has a long tradition of building and sharing open source IR systems,

with SMART [8] likely being the oldest. A number of other systems have become avail-

able over the years (both [2] and [43] provide lists of such systems), with Lemur / Indri2

and Terrier3 being the most notable among them. These systems are naturally large and

complex. Thus, it is usually difficult for others to effectively use them in the way the

designers meant them to be used; implementing one’s own ideas within the framework of

such a system is even harder. This may explain why no single system has emerged as a

standard. The lack of a standard has, in turn, become somewhat of a barrier to repro-

ducibility, sound baselines, and fair comparisons. In such an environment, the persuasive

arguments of Lucene ‘evangelists’ and the increasing use of Lucene in the academic com-

munity [43, 42, 2, 3] offer some hope. We thus chose to build our tool on top of Lucene.

Preliminary efforts surrounding Lucene (e.g., [2]) focused simply on “how to use Lucene to

perform typical IR operations (i.e. indexing, retrieval, etc.) as well as how to extend and

modify Lucene to extract term statistics, implement different ranking models, etc.” More

recently, the Anserini system [43, 42] was created on top of Lucene with the objective

of enabling its users to very easily conduct TREC-style ad hoc retrieval experiments

on standard test collections (including modern web-scale collections), and to replicate

competitive baselines “right out of the box.”

Other systems with somewhat similar aims as I-REX include Luke4, Clue5, and Splainer6.

Luke and Clue are relatively simple tools that provide, respectively, a graphical user

2https://www.lemurproject.org/indri.php
3http://terrier.org/
4https://code.google.com/archive/p/luke/
5https://github.com/javasoze/clue
6splainer.io

https://www.lemurproject.org/indri.php
http://terrier.org/
https://code.google.com/archive/p/luke/
https://github.com/javasoze/clue
splainer.io

1.4. I-REX features 5

interface and a command-line application. These tools may be used for browsing and

modifying Lucene indexes and posting lists, as well as searching in the index with keyword

queries. Although these tools provide basic functionality like showing the term vector for

a document, and performing simple interactive searches, they lack several useful features

that could be useful to IR researchers. Splainer appears to be more ambitious, and claims

to provide insights into existing systems based on Solr and Elasticsearch. However, it

only seems to provide search-term highlighting; there does not seem to be a way to find

useful expansion terms for a given query and a document collection, or to compare the

rank of a document within a collection, as determined by two different retrieval models

for the same query.

1.4 I-REX features

I-REX can be run as a Web service accessible through any browser. It also provides a

shell-like interface that may be invoked from the command-line. Various default settings

(e.g., the path to the Lucene index for a document collection, the retrieval model to use

and its parameters) can be specified in a configuration file, and overridden through the

Web interface (or using command-line options). Below, we list the commands supported

by I-REX. The argument(s) accepted by a command are written in a constant-width font

(like this).

• cf returns the collection frequency of the term.

• compare compares a pair of documents for the query and the retrieval model

(see Fig 1.5 for an example).

• diff compares a pair of .res files — result files in TREC format (see Fig 1.2

for an example).

• df returns the document frequency of the term.

• dl returns the length (# tokens) of the document.

6 Chapter 1. I-REX

• dump dumps the textual content of the document.

• dv returns the document vector of the document.

• expansion returns candidate expansion terms for the query.

• explain explains the selection of the document by the retrieval model using the

query (see Fig 1.3 for an example).

• pl returns the posting list of the term.

• rank returns the rank of the document for the query, set of documents and the

retrieval model.

• search performs search using the query with the retrieval model provided as

parameters.

• sigtest takes a pair of res files, computes standard evaluation measures (e.g.,

MAP) for these files, and reports whether the metrics are statistically significantly

different (as determined by a paired t-test).

• stats returns basic statistics about the index.

• tf returns the term frequency of the term in document.

• docsimilar computes the similarity score of a pair of documents i.e how similar

two documents are.

The use of basic commands like cf, df, tf etc. are straightforward. In the following

section, the utility of the other commands is explained with examples.

Usability features.. The Web interface to I-REX is organised into three columns: the

first column contains a menu of available commands; the middle column displays a short

message about the usage of a selected command; the third column consists of a sequence

of cards or panels, each of which contains the output of a command that was run earlier.

These panels may be individually collapsed or expanded as required; they may also be

1.5. Illustrative workflows 7

deleted. An entire session can be saved for later perusal. The I-REX shell makes use of

apache.commons.cli, and thus provides standard convenience features such as command-

line editing and navigating the command history.

1.5 Illustrative workflows

To highlight some of the important features of I-REX, we consider the problem of explain-

ing the difference in the performance of the Language Model when Dirichlet smoothing

(LM-Dir) and Jelinek-Mercer smoothing (LM-JM) are used (with their respective optimal

parameter settings) on a particular test collection: the WT10G document collection and

the TREC 9 topic set for this example.

Let trec9-lmdir1000.res and trec9-lmjm0.2.res denote the two result files obtained

for this collection using LM-Dir and LM-JM, respectively. We start by running sigtest,

as shown in Figure 1.1.7 This internally runs trec eval8, and displays some standard

evaluation metrics (configurable) as well as the result of a paired t-test. From the output of

$ sigtest trec9-lmdir1000.res trec9-lmjm0.2.res

AP avg1 = 0.2237 avg2 = 0.1555 p-value = 0.001414

P@5 avg1 = 0.3440 avg2 = 0.2160 p-value = 0.000745

Recall avg1 = 0.6771 avg2 = 0.5980 p-value = 0.058544

Figure 1.1: Use of sigtest on a pair of result files. Significance is tested for three
evaluation metrics: AP, P@5, and recall at rank 1000.

sigtest, we observe that MAP and P@5 values for LM-Dir and LM-JM are significantly

different. This warrants a more detailed investigation.

Next, we use diff to identify the queries that contribute most to the observed difference.

A subset of the output of diff is shown in Figure 1.2. The figure displays some docu-

ments retrieved by the two models for TREC topic 472 (Antique Appliance Restoration).

diff focuses on relevant documents that are retrieved at top ranks by the better per-

forming model (trec9-lmdir1000.res), but are ranked poorly, or not retrieved at all,

7In this paper, we show the output as produced by the text-based interface for better readability. The
Web interface is available at http://irlab.isical.ac.in:8080/i-rex.

8https://trec.nist.gov/trec_eval/

http://irlab.isical.ac.in:8080/i-rex
https://trec.nist.gov/trec_eval/

8 Chapter 1. I-REX

by the model with inferior performance (trec9-lmjm0.2.res). The complete output also

includes non-relevant documents that are retrieved at top ranks by the inferior model,

but are ranked poorly, or not retrieved at all, by the better model. In Figure 1.2, the

$ diff -f1 trec9-lmdir1000.res -f2 trec9-lmjm0.2.res

QID DOCID R1 SIM1 R2 SIM2 RANK-DIFF REL

472 WTX048-B17-92 239 7.23 INF 0.00 INF 1

472 WTX074-B30-101 61 8.50 720 11.48 659 1

472 WTX076-B18-261 57 8.57 451 12.19 394 1

472 WTX063-B44-202 229 7.31 316 12.41 87 1

472 WTX025-B13-23 6 10.30 81 13.94 75 1

472 WTX005-B03-27 12 9.45 36 14.88 24 1

472 WTX017-B02-111 11 9.54 31 14.98 20 1

472 WTX037-B40-290 1 10.61 16 16.55 15 1

Figure 1.2: A subset of the output of diff on a pair of result files. This identifies query-
document pairs that contribute most to the performance difference.

columns R1, Sim1, R2 and Sim2 indicate ranks and similarity scores for a document as

determined by the two models specified using -f1 and -f2. The column ‘RANK-DIFF’

corresponds to R1−R2. The last column ‘REL’ indicates whether the document is rele-

vant or non-relevant for the query named in the QID column. From Figure 1.2, we identify

WTX048-B17-92 and WTX025-B13-23 as relevant documents that have noticeably better

ranks for LM-Dir as compared to LM-JM.

We next run the explain command (see Figure 1.3) on document WTX025-B13-23, which

is ranked sixth by LM-Dir and at 81 by LM-JM. Note that the rank of a document

$ explain -q "antique appliance restoration" -n

WTX025-B13-23 "lmdir 1000" "lmjm 0.2"

term cf idf tf col-prob s(M1) s(M2)

antiqu 26750 4.8577 105 0.0000 6.7493 8.5732

restor 62932 3.9939 10 0.0001 3.5522 5.3708

rank(WTX025-B13-23, M1): 6

rank(WTX025-B13-23, M2): 81

doc-len(WTX025-B13-23): 1536

Total-Score(M1, WTX025-B13-23): 10.30154

Total-Score(M2, WTX025-B13-23): 13.94404

Figure 1.3: Use of explain on document WTX025-B13-23 for LM-Dir and LM-JM.

retrieved by an IR system is dependent on the ranks of other documents in the collection.

1.5. Illustrative workflows 9

Thus, a relevant document can drop to poor ranks in the ranked list generated by a model

because the model selects other, non-relevant documents at top ranks.

To see the n top-ranked documents retrieved by LM-JM for a given query, we run search

-t n (n = 20 by default). This command takes a number of flags that can be used

to view additional information about the retrieved documents. In Figure 1.4, the self-

explanatory flags -rank, -score and -dl have been used. The figure shows that the

top-ranked documents are mostly quite short. As explained in [37, 34], LM-JM is known

to preferentially retrieve short documents. We may thus attribute the relatively poor

rank of WTX025-B13-23 to its length (1536 tokens), which causes it to be retrieved behind

many short, non-relevant documents.

$ search -q "antique appliance restoration"

-r "lmjm 0.2" -rank -score -dl

docid rank score doclen

WTX018-B08-186 0 19.35 207

WTX098-B42-40 1 19.35 207

WTX099-B40-178 2 19.30 144

WTX099-B40-207 3 19.30 131

WTX038-B50-342 4 17.97 234

WTX095-B09-377 5 17.40 982

WTX046-B50-43 6 17.27 193

WTX063-B42-189 7 17.27 216

WTX102-B44-212 8 17.27 230

WTX103-B01-109 9 17.27 220

Figure 1.4: Use of search with a query and a retrieval model on the index. The dl flag
causes document length to be displayed.

Other commands provided by I-REX include compare, which analyses the scores of a pair

of documents for the same query and retrieval model. The use of the command is shown

in Figure 1.5. The output suggests that the non-relevant document WTX095-B09-377 is

ranked ahead of WTX037-B40-290, a relevant document, because it contains the query

term applianc (stem of appliance), which is missing from the relevant document.

The expansion command can be used to obtain a list of related terms for a given query.

In Figure 1.6, the command has been used with the query Antique Appliance Restoration.

These terms may be selectively added by a user to the query during an interactive IR

10 Chapter 1. I-REX

$ compare -n1 WTX037-B40-290 -n2 WTX095-B09-377

-q "antique appliance restoration"

WTX037-B40-290 WTX095-B09-377

relevance: 1 1

rank: 16 5

score: 16.5561 17.4025

docLen: 201 982

tf(antiqu): 16 4

tf(applianc): 0 9

tf(restor): 18 2

score(antiqu): 8.6480 5.8781

score(applianc): 0.0 7.1870

score(restor): 7.9080 4.3373

Figure 1.5: Use of compare on a pair of documents to see the relative scores for the
individual query terms.

session.

$ expansion "antique appliance restoration" 12

automobil art audio

equip transport air

advertis museum aircraft

classic manufactur architectur

Figure 1.6: Use of expansion to see a set of potentially related terms that can be used
for use expansion.

Finally, dv may be used to view the complete vector for a given document. When the -d

flag is passed, as in Figure 1.7, dv displays the most important or discriminative terms

for the document. In this example, the score for each term in WTX037-B40-290 (another

relevant document for TREC topic 471) has been computed using the Dirichlet-smoothed

language model, and the top 5 terms have been displayed. Of course, both the model and

the number of terms to be displayed are configurable.

1.6 Conclusion and future work

I-REX provides features that would help researchers to analyse, understand and explain

experimental results. Implementations of common term-weighting models (the Vector

Space Model, BM25, Language Modeling) are already provided by Lucene. As deep

1.6. Conclusion and future work 11

$ dv -n WTX037-B40-290 -d 5 "lmdir 1000"

term cf idf tf score

minicraft 80 10.99 1 8.7039

cabinetmak 336 8.98 2 7.9716

craftwork 211 9.31 1 7.7420

holtzman 249 9.20 1 7.5772

currier 491 8.43 1 6.9005

Figure 1.7: Use of the command dv with flag -d to see the 5 discriminating terms of the
document WTX037-B40-290.

and/or more complex IR models evolve, we have seen deep learning models can often be

biased [17] or represent myopic results [6]. Thus, a tool like I-REX is likely to become

even more useful in order to make sense of the massive number of word vector features,

parameters and the complex interactions between them. Accordingly, the next thing on

our agenda is incorporating support for analysing learning to rank retrieval systems. If

I-REX is adopted by a reasonable number of researchers, we expect the current version to

serve as a core around which additional functionality can be built.

Chapter 2

Open Domain Complex Question

Answering

2.1 Introduction
Traditional Information Retrieval (IR) techniques generally address the problem of re-

trieving some relevant documents for a given user query. If the query corresponds to a

specific and focussed information need, manually reading through various documents to

find the required information may be considered to be unnecessarily time-consuming. In

recent times, search engines (SEs) try to address this problem by displaying small and fo-

cussed information nuggets related to the query. Figure 2.1 shows an example: in response

to the question “Who is the founder of Kolkata?”, Google displays a short snippet with

the answer. However, most search engines usually fail to answer more complex questions.

Figures 2.2 and 2.3 show examples of such questions that were not answered by Google

and Bing, as of 19th June, 2020. Open-domain, complex question answering therefore

remains an active area of research within the IR and Natural Language Processing (NLP)

communities.

2.1.1 Background and problem statement

Prager [31] presents a comprehensive history of QA systems starting from the earliest

days, and provides a detailed discussion of the QA track organised by TREC, starting in

12

2.1. Introduction 13

Figure 2.1: Question Answering in Search Engine.

Figure 2.2: Complex Question in Google.

14 Chapter 2. Open Domain Complex Question Answering

Figure 2.3: Complex Question in Bing.

1999. The TREC 1999 QA track required systems to return 50-byte (or 250-byte) long

character sequences, instead of full-text documents [39]. Examples of questions asked in

that track are given below.

• Who leads the star ship Enterprise in Star Trek?

• Who played the part of the Godfather in the movie, “The Godfather”?

• What is the tallest building in Japan?

• Which country is Australia’s largest export market?

The track had around 200 questions, most of which have a fact-based, short answer that

may be found within a single document in the collection. In the next year, 500 questions

were added. The QA track continued till 2004. Over the years, newer and more challenging

types of questions were added. The document set considered in TREC QA track was the

Financial Times Limited (1991-1994), Congressional Record of the 103rd Congress (1993),

the Federal Register (1994), Foreign Broadcast Information Service (1996), and the Los

Angeles Times (1989-1990).

The development of Knowledge Graphs (KGs) such as YAGO, DBpedia, Wikipedia, pro-

vided a boost to QA research. A Knowledge Graph is a directed graph that models

subject (S), predicate (P), and object (O) relations found in text. The vertex set V of a

KG consists of {S,O}, while the predicates {P} correspond to the edges. Briefly, using

KGs for QA involves extracting entities from questions, and aligning them with the nodes

of a KG via structured query processing. An overview of recent work on QA with KG

can be found in [10].

2.1. Introduction 15

There has been a substantial amount of recent research work in this field, but many of the

best known methods are supervised in nature [45, 44, 12, 32]. Systems are trained using

a large number of samples consisting of question, paragraph and answer triples. Given

a test query and some text, the system tries to extract an answer using the model(s)

constructed on the basis of the training data. Creating adequate quantities of labeled

data can be very expensive. Yet, such expensive human annotations may be necessary

when training the system to handle new types of document collections. Further, state-of-

the-art methods for supervised QA generally employ Deep Learning based techniques that

are computationally expensive to develop, and which need GPUs for effective deployment.

Problem statement. In this dissertation, therefore, we focus on unsupervised, extractive

question answering.

• Unsupervised QA. In an unsupervised setting, QA involves finding an answer,

given only a question Q and the corpus C [22]. Note that, modules used within an

unsupervised QA pipeline could well involve supervised or transfer learning tech-

niques for particular sub-tasks. For example, the pipeline may make use of a Part of

Speech (POS) tagger that is trained on some text annotated with POS tags. How-

ever, we completely avoid the kind of training data that is required for a supervised,

end-to-end question answering system.

• Extractive QA. the answers provided by the system correspond to sequences of

words extracted from an existing document; no attempt is made to synthesize or

generate a natural language answer.

We base our investigations on the techniques and datasets described in a very recent

article on an unsupervised QA system called Quest (Lu et al., SIGIR 2019 [26]). The

techniques presented in this report are both conceptually and computationally simpler,

but the best results achieved by the proposed methods are significantly better than those

obtained using Quest.

Chapter outline. In the next section, we describe the Quest system, focusing both on

16 Chapter 2. Open Domain Complex Question Answering

the techniques used, as well as the dataset used for Lu et al.’s experiments. We also

briefly discuss DrQA [11], another QA system that is used as a point of comparison

in [26]. We believe there are certain serious drawbacks in the evaluation protocol used by

Lu et al. In Section 2.3, we propose a set of modified evaluation measures that address

these drawbacks. Next, in Section 2.4, we review the overall architecture of unsupervised

QA systems. For each component of this overall scheme, we tried a number of different

variations. These are described in Section 2.4. Experimental results are presented and

discussed in Section 2.4.5. Finally, Section 2.5 provides a summary of our findings, and

lists issues that we would like to study in further detail in the future.

2.2 Baseline Unsupervised QA System

The Quest dataset [26] consists of 150 complex fact-centric questions from WikiAnswers,

and another 150 complex questions using emerging entities from Google Trends. Two

examples are given below.

• “Which aspiring model split with Chloe Moretz and is dating Lexi Wood?”

• “What movie did Russell Crowe and Denzel Washington work on together?”

The questions are described as complex because the answer to a question is not found

in any single document within the collection. Instead, evidence from multiple documents

must be combined in order answer these questions. In the rest of this section, we provide

an overview of the Quest architecture, as well as DrQA.

2.2.1 Quest

Quest focuses on complex questions which refer to multiple entities and their relation-

ships. It finds answers by building and analysing a Quasi Knowledge Graph that is

constructed using documents that are retrieved by a search engine in response to the

question. Quest uses a completely unsupervised approach. A brief overview of the Quest

processing pipeline is given below.

2.2. Baseline Unsupervised QA System 17

Question Pipeline

• Given a question Q, Quest starts by using Q as a keyword query to retrieve a set

of documents D from the Web.

• From the 10 top-ranked documents, subject-predicate-object (SPO) triples are ex-

tracted using Open Information Extraction (OpenIE) tools [27, 21].

• It merges the extracted SPO triples from all the 10 documents to build a noisy KG.

The entity nodes in the graph are then annotated with their types. For example, if

the question is “Which Nolan films won an Oscar but missed a Golden Globe?”, the

quasi-KG contains an entity node labeled Inception. Two nodes labeled type and

science thriller are added to the graph and connected to the Inception node to form

a chain of the form Inception → type → science thriller.

• Next, for each node, a similarity score is computed based on word overlap with the

question. Nodes having a high similarity are designated as cornerstones.

• A Group Steiner Tree (GST) [20] algorithm is run on the KG to find a minimum

weight spanning tree T containing all the cornerstones. More specifically they used

GST-k [20, 16, 23] to obtain top-k trees for their experiments.

• From the resultant tree T , they removed the cornerstones and rank the remaining

entities based on their type and their presence in the multiple GSTs and merge the

similar entities.

Figure 2.4 shows an example of the output obtained by running the GST algorithm on a

quasi-KG constructed by Quest. The input question was Who played for FC Munich and

was born in Karlsruhe? and the node kahn got the 1st rank.

Dataset

As mentioned above, Quest contains two sets of questions: 150 complex questions from

WikiAnswers (denoted CQ-W), and another 150 complex questions from Google Trends

18 Chapter 2. Open Domain Complex Question Answering

Figure 2.4: Top GST result by Quest.

(denoted CQ-T). The document corpus from which answers were extracted was con-

structed in one of several possible ways.

• The document collection consists of the top 10 documents retrieved by the Google

Search API when the question Q is issued as the query. To ensure reproducibility

and to eliminate dependencies on Google, these documents are also distributed as

a part of their dataset.

• To simulate small variations in the search algorithm, additional collections were

constructed using stratified sampling [40]. They took x1% from the top 10 docu-

ments, x2% from (0.1*x1 + 1) to 25, x3% from 26 to 50 documents. The settings of

x1-x2-x3 are: 60-30-10 (Strata 1), 50-40-10 (Strata 2), 50-30-20 (Strata 3), 40-40-20

(Strata 4), 40-30-30 (Strata 5).

Because we tried a very large number of variations when formulating our approach,

we used only the first document collection in our experiments.

Evaluation

Mean Reciprocal Rank (MRR), Precision@1 (P@1), and Hit@5 values are reported in [26].

MRR is regarded as the main metric. MRR and P@1 have their usual interpretations;

the Hit@5 value for a query is 1 or 0 depending on whether the correct answer is found

within the top 5 positions or not.

2.3. Proposed Evaluation Measure 19

2.2.2 DrQA

DrQA [11] is used as the main point of comparison for Quest in [26]. It is a distantly

supervised model, that has been trained on SQuAD [32], TREC Questions [4], WebQues-

tions [5] and WikiMovies [30]. DrQA has two modules.

• Document Retriever : This module retrieves 5 relevant articles related to each

question. A TF-IDF based weighting scheme is used to compare the questions and

the articles, and to rank the documents. Also they are considering bigram count

between the query and document pair to improve the performances.

• Document Reader : It takes the retrieved documents from the previous stage

and extracts all the paragraphs {p1, p2, ...pn} from those. The model encodes each

paragraph pi as a multi layered bidirectional long short term memory (LSTM) by

encoding all the words present in pi with four features the embedding of each word,

exact match with the question, {part-of-speech (POS), whether it is a named entity

or not, and normalized term frequence (tf)}, attention with the similar words present

in the paragraph to the question. For questions q, it is using a simple recurrent

neural network (RNN) on top of the word embeddings for each query words. Now

to generate the start and end token of the answer they trained two classifiers to

predict the two ends of the tokens for each paragraph vector pi with the q vector.

Finally take the argmax over all the paragraph present in the retrieved documents.

As described in the Quest paper they ran both of the above modules on the Quest datasets.

2.3 Proposed Evaluation Measure

The ranked lists of answers returned by Quest often contain ties, i.e., the system retrieves

a number of different entities as possible answers at the same position of the ranked list.

The authors confirmed that they did not implement any tie-breaking mechanisms. More

importantly, the evaluation script used by Quest1 does not take these ties into account

1https://quest-sys.mpi-inf.mpg.de/

https://quest-sys.mpi-inf.mpg.de/

20 Chapter 2. Open Domain Complex Question Answering

when computing MRR, P@1 and Hit@5. The figures reported in [26] are therefore likely to

be highly inflated over-estimates. For example, suppose that, in response to a particular

question, Quest returns a list of possible answers that contains 10 different entities at

rank 1. If any one of these matches the gold-standard answer, then the MRR and P@1

values (and obviously Hit@5 as well) calculated for this query is 1!

To overcome this significant drawback of Quest’s evaluation method, we propose the

adjusted P@1, adjusted MRR, and adjusted Hit@5 measures, which can be calculated for

lists with ties, but which are not as over-optimistic as the figures reported in [26]. These

measures are essentially the expected values of the original measures under the assumption

that ties are broken randomly, and all permutations of the answers at a particular rank i

are equally likely.

• adjusted P@1 : We take the number of correct entity retrieved at 1st position di-

vided by the total number of entities retrieved at the same position. Mathematically

it can be defined as,

1

|Q|
∑
q∈Q

of correct answers retrieved at position 1

total # of answers at position 1

• adjusted MRR :

Rank # entities

1 n1
...

...
i ni ←− 1st correct answer here

Let ni denote the number of answers retrieved at rank i, and also Ni =
∑i

j=1 nj; i.e.,

Ni denotes the total number of answers retrieved up to rank i (inclusive). Suppose

at rank i, k answers are correct and ni − k many answers are incorrect.

The idea is to find the expected rank of the first correct answer. Assume that at

rank i the position of 1st correct answer is j (Figure 2.5). Now, fill jth position

in 1 of k distinct ways and after jth position i.e remaining answers can permute

2.3. Proposed Evaluation Measure 21

ni

j

all incorrect answers

1st correct
answer

Figure 2.5: 1st correct answer at ith rank.

in (ni − j)! ways. For the first j − 1 positions we can select it from ni − k wrong

answers i.e ni−kPj−1ways.

So, in total ni−kPj−1× k× (ni− j)! many arrangements for the correct answer at j.

Let, r be a random variable denoting the rank of the first correct answer within the

ith group. Assume P(aj) = Probability of observing the 1st correct answer at the j

th position within ith group. Expected value of the rank of the answer (within the

i th group) of the 1st correct answer,

E(r) =

ni−k+1∑
j=1

j ×
ni−kPj−1 × k× (ni − j)!

ni!︸ ︷︷ ︸
P(aj)

ExpectedCaseMRR =
1

Ni−1 + E(r)

BestCaseMRR =
1

Ni−1 + 1

WorstCaseMRR =
1

Ni − k + 1

• adjusted Hit@5 : Hit@5 is defined as whether a correct answer is found within top 5

positions. Let i be such that Ni−1 < 5 and Ni ≥ 5 i.e the position where the first correct

answer found have more than 5 answers as shown in Figure 2.6. Note that if Ni < 5,

Hit@5 will be 1. We don’t need to do anything extra. For the former case we proceed as

follows,

Probability that at least one correct is in 1st of m positions = 1 - Probability that all 1st

22 Chapter 2. Open Domain Complex Question Answering

5

m

ni

Ni−1

Figure 2.6: Ranked list pictorial view.

m positions are occupied by incorrect answers

ni =

k correct

ni − k incorrect

Hit@5 = 1−
ni−kP5−Ni−1

× (Ni − 5)!

ni!

We assume if ni − k < 5 − Ni−1 =⇒ The 1st k positions are less than the number of

incorrect answers. No way the incorrect answers can occupy all the 1st k positions. Hence

we make, ni−kP5−Ni−1 = 0.

Corner case, if more than 5 answers are retrieved at 1st position i.e N1 ≥ 5 then we

consider N0 = 0.

2.4 Our Work

Fig 2.7 shows the general Question Answering (QA) architecture. At first, given a question

Q usually we retrieve top k documents using various IR models. Then we are running

a classifier on the questions and determine the type of it. Next we extract the named

entities from the retrieved documents and apply some methods and algorithms to rank

and re-rank the entities. Next section will discuss the each sub module in detail.

In our case we got the top 10 and various stratified sampled documents retrieved from

Quest which we are using for our QA problem, therefore not running any retrieval to

retrieve top k documents.

2.4. Our Work 23

Figure 2.7: Question Answering architecture.

D1 D5 D10... ...

... ...

e1 e5 e10

Top 5 answers... ...

Figure 2.8: Similarity measure of entities.

24 Chapter 2. Open Domain Complex Question Answering

2.4.1 Question Type Classifier

We used UIUC benchmark set (TREC 2004) [24] to train the question type classification

module. The dataset contains 50 finer classes and 6 coarse type (Table 2.1). We are using

named entities, lemmas, POS tags, syntactic dependency relation as a set of features F

from the training dataset. The idea is each type of the question classes will have the same

semantic similarities [24] and those set of features will be activated for that specific type

of question class.

As, we have seen from the past literature [35] that Support Vector Machine (SVM) per-

forms very well for this task, we ran a linear SVM with the above features. However,

removing the syntactic dependency relation slightly increases the accuracy, so we removed

it from the feature space F . For the CQ-T and CQ-W we use this model to determine

the coarse and fine grained type of the questions.

To avoid the engineered features we also used a recent deep learning based transfer learning

architecture to classify questions. [9] We are using Google Universal Sentence Encode

(USE) [9] to embed the questions into a Rd dimensional vector. Next we fed a simple

feed forward neural network with one dense layer and a softmax layer as the output layer.

We train the network with adam optimizer and relu as an activation unit. We used cross

entropy as the loss function defined as follows.

L = −
N∑
i=1

K∑
k=1

Ii∈k logP (yi)

Here N is the batch size, K is the number of labels at output layer i.e number of different

types of coarse or fine category respectively, Ii∈k is an indicator random variable denoting

the ith sample belongs to kth class, logP (yi) is the output softmax probability. We

trained two network separately for the coarse and fine grained category. Similar to initial

approach we ran CQ-T, CQ-W questions on this network and predict the coarse and fine

grained type of the questions.

2.4. Our Work 25

Class Class

ABBREV description

abb manner

exp reason

ENTITY HUMAN

animal group

body individual

color title

creative description

currency LOCATION

dis.med. city

event country

food mountain

instrument other

lang state

letter NUMERIC

other code

plant count

product date

religion distance

sport money

substance order

symbol other

technique period

term percent

vehicle speed

word temp

DESCRIPTION size

definition weight

Table 2.1: TREC 2004 coarse and fine grained labels. Upper case labels are of type coarse
and lower cases are fine grained type.

2.4.2 Extracting Named Entities

First we pre-process the retrieved documents D by normalizing the unicode characters

and then expanding the contractions present in the sentences like, “I can’t do...” to “I

can not do...”, etc. Named entities (NEs) capture the semantic relationship in a sentence

as well as in a paragraph. Next we extract the named entities E present in the each

26 Chapter 2. Open Domain Complex Question Answering

Figure 2.9: Flair embedding of words.

set of documents D. Initially we started with spaCy2 to harvest the named entities and

later we used state-of-the-art deep learning based embeddings. Spacy has been trained on

OntoNotes 5 corpus and their entity label information is shown in the Table 2.2. We also

used a recent contextualized based embedding Flair [1] to extract the down straem named

entity recognition (NER) tasks. It uses a pooling based contextual string embeddings to

recognize the named entities. They are using a character level contextualized embeddings

for each words. Next it uses a memory to store the embeddings of each unique word tokens

and take the pooling (min, max, avg) operation of this memory. It then concatenates the

pooled version of embeddings with the original contextualize embeddings. It has achieved

a recent state-of-the-art result and good accuracy (F1 score). In our case as compared to

spaCy, entities like “...fc barcelona...” of type ORG from sentences can be captured by

using Flair. Figure [1] shows an example of their model.3 At this stage we are having a

bag of entities E collected from the retrieved set of documents D which are relevant for

the Question Q in a broader aspect.

2https://spacy.io/
3The figure is taken from [1] paper

2.4. Our Work 27

Class Description

PERSON People, including fictional.

NORP Nationalities or religious or political groups.

FAC Buildings, airports, highways, bridges, etc.

ORG Companies, agencies, institutions, etc.

GPE Countries, cities, states.

LOC Non-GPE locations, mountain ranges, bodies of water.

PRODUCT Objects, vehicles, foods, etc. (Not services.)

EVENT Named hurricanes, battles, wars, sports events, etc.

WORK OF ART Titles of books, songs, etc.

LAW Named documents made into laws.

LANGUAGE Any named language.

DATE Absolute or relative dates or periods.

TIME Times smaller than a day.

PERCENT Percentage, including ”%”.

MONEY Monetary values, including unit.

QUANTITY Measurements, as of weight or distance.

ORDINAL “first”, “second”, etc.

CARDINAL Numerals that do not fall under another type.

Table 2.2: Ontonotes coarse and fine grained labels. Upper case labels are of type coarse
and lower cases are fine grained type.

2.4.3 Answer Extraction

Now after extracting the named entities E we order them based on the decreasing document

frequency (df t
l).

df t
l =

k∑
n=1

I(c(t, l) > 0)

I is an Indicator random variable and c(t, l) = number times the named entity Ei with

text t and label l is present in the document. Notice that the maximum value of df t
l can

be 10 as there are 10 retrieved documents in the set D. The labels for named entities E for

Trec 2004 benchmark data and OntoNotes 5 dataset are different. We wrote rules to map

lables from Trec 2004 domain to OntoNotes 5 domain (Appendix B.1). This is bascially

a many-to-many mapping. For each questions type (T) we apply the above mapping to

transform it into a OntoNotes 5 domain. We filter out the entities that are not classified

28 Chapter 2. Open Domain Complex Question Answering

by the question type T . Next, we pull out the sentences S from which the entities were

curated. The idea is there may be some semantic relatedness in the question Q and the

answer containing the sentences. To measure the semantic context we embed the input

question Q and these sentences S to a vector space by using sentence embeddings from

Infersent [14].

Infersent was trained on Stanford Natural Language Inference (SNLI) [7] datasets and uses

a bidirectional LSTM with max pooling for learning the universal sentence embeddings.

For each sentences they concatenated the hidden states of the forward and backward

LSTM network and on top of it they are taking maximum (max pool) value over each

dimension of the representations.

Now, we process top k many entities {E1, E2...Ek} based on df t
l as computed above and

we compute score Score(Ei) for each of the entity Ei in the following ways

• Approach 1 We are taking average Cosine Similarity across all S ′ with Q i.e

Sim(Q,S ′), where S ′ ∈ S over all the retrieved documents D.

Score(Ei) =
1

|S|
∑
S′∈S

Sim(Q,S ′)

• Approach 2 For each document d ∈ D we take the max Cosine Similarity score

of Sim(Q,Sd) , where Sd is the all sentences in Document d. Then we take the avg

of this measure for each document.

Score(Ei) =
1

|D|
∑
d∈D

max
S′∈Sd

Sim(Q,S ′)

• Approach 3 We are taking maximum Cosine Similarity across all S ′ with Q i.e,

Sim(Q,S ′), where S ′ ∈ S over all the retrieved documents D. It basically tries to

see over the document sets the entity that we extracted out how much similar the

2.4. Our Work 29

sentence with respect to the question.

Score(Ei) = max
S′∈S

Sim(Q,S ′)

Figure 2.8 shows the pictorial diagram of this method, where the entities ei are pulled out

from the document setD and ranked based on the approaches defined above. Alternatively

one can use various other sentence embedding techniques like USE [9], Sentence-Bert [33]

etc. However, these are very expensive requires lot of gpu computations.

We have also used Sentence-Bert as an alternative to Infersent [14] based Sentence em-

bedding.

It uses pretrained BERT [15] and RoBERTa [25] and adds a mean pooling over the output

of [CLS]-token to create a useful sentence embeddings and as discussed in [33] it works

much faster than BERT [15] and gives better representation.

Resolving Coreferences : Coreference resolution refers to the problem of finding the

linguistic mentions in the text that refers to the same entities to the sentences. We also

resolve the coreferences from the documents by using NeuralCoref4 model.

2.4.4 Answer Ranking

We rank the entities based on the following measure,

• Approach 0 We are taking just Score(Ei) obtained from previous stage.

• Approach 1 We add the normalize document frequency value with the above

Score(Ei).

Rerank Score(Ei) = Score(Ei) +
df(t, l)

|D|

• Approach 2 We multiply the normalize document frequency value with the above

4https://github.com/huggingface/neuralcoref

30 Chapter 2. Open Domain Complex Question Answering

Score(Ei).

Rerank Score(Ei) = Score(Ei)×
df(t, l)

|D|

• Approach 3 We take a mixture of Score(Ei) and the normalize document fre-

quency value, as shown below.

Rerank Score(Ei) = α× Score(Ei) + β × df(t, l)

|D|

Here α and β are the parameters to be tuned. Now retrieved the top 5 answers for each

of the questions Q.

Re-ranking : For doing re-ranking we are extracting named entities from each question

Qi ∈ Q. We are using the approaches mentioned in Section 2.4.2 to do so. Next we used

Entity2vector model from [41] to turn the entities in a embedding space (Figure 2.10).

The idea is to use the traditional skipgram model [29] to learn the embeddings of the

entities into a d dimensional vector space. The skipgram model learns by predicting the

context words for each input word.

By using the above model we project the answer entities as well as question entities in

the embedding space. Then for each entity {q1, q2...qk} ∈ Qi compute centroid Cosine

Similarity measure. We re-rank the answer entities {a1, a2, a3, a4, a5} based on the above

similarity measure.

Finally we run the evaluation metric with MRR, P@1, Hit@5 as well as our proposed MRR

(adjusted), P@1 (adjusted) and Hit@5 (adjusted) to avoid the over optimistic ranking of

the system.

2.4.5 Result and Discussions

There are two types of evaluation protocol we considered. In the first one, we assume there

is some oracle which will resolve ties present in the answers. Later we explicitly resolve the

type and use our adjusted MRR, adjusted P@1 and adjusted Hit@5. Table 2.3, 2.4 shows

2.4. Our Work 31

Figure 2.10: Entity extraction from questions and embedding.

the benchmark reported result and our obtained result for CQ-W and CQ-T questions

respectively. The obtained benchmark results with our modified evaluation measure can

be found in Table 2.5, 2.6. Some of the different methods tried out for those two complex

QA sets can be found in Table 2.7, 2.8, 2.9, 2.10 for both the evaluation protocols. Result

file conventions are as follows,

• Sent-Emb refers to the [14] based embedding for the sentences as described in Sec-

tion 2.4.3. Sent-bert refers to the alternative embedding used as described in Sec-

tion 2.4.3.

• spacy : The named entities were extracted by using spacy. Flair [1] refers to the

alternate approach tried as described in Section 2.4.2.

• avg-score, avg-max-score, max-score are pointing to the approaches for scoring the

entities as described in Section 2.4.3 with Approach1, Approach2, Approach3 respec-

tively.

• re-rank1, re-rank2, re-rank3 are referring to Section 2.4.4 ranking strategies and if

no re-rank is mentioned, we are using Approach 0 in Section 2.4.4.

• co-ref : We are resolving the coreferences as described in Section 2.4.3 and entity-

re-rank is the reranking strategies adapted in Section 2.4.4 module.

32 Chapter 2. Open Domain Complex Question Answering

Figure 2.11: Some snippet of P@1 answer retrieval where other baselines (Quest and
DrQA) fails to retrieve.

• USE (ques type) is the neural question type classifier based method as in Sec-

tion 2.4.1. If no (ques type) is mentioned, we are using the old question type

classifier as described in the same section.

Note that for different stratified sampling strategies on top-k retrieved documents i.e

strata1, strata2, strata3, strata4 and strata5 the result do not change much. So, given

the amount of computational resources and processing time it requires we are considering

only top10 sampled document sets.

For, Quest the evaluation result changes with our proposed evaluation metric as it contains

many ties in the ranking list. On the other hand DrQA seems to be robust in this regard.

Figure 2.11 shows one example from each CQ-W and CQ-T set where our model retrieves

at top position, however other baseline fails to retrieve those.

For Spacy named entities, the result shows for the entities obtained from small web corpus.

We tried both the small as well as large web corpus. However, in the result it didn’t give

much differences. In the interests of conciseness, this section presents only the results for

the techniques corresponding to Sections 2.4. Detailed results for the techniques that we

tried, but which did not work very well, are not presented here. Next we compared our

best performing modules with the benchmark results (Table 2.11, 2.12, 2.13, 2.14) for

both the question set with the two set of evaluation protocols respectively. For CQ-W

question set, approach with Sent-Emb+Flair+max-score+re-rank1 is giving best result

2.4. Our Work 33

on our proposed evaluation measure and for old evaluation protocol approach with Sent-

Emb+Flair+max-score performs best. On CQ-T question set, Sent-Emb+Flair+max-

score+re-rank2 is giving best results across both the evaluation measure. We hope to do

a detailed failure analysis of these techniques in future work.

Metric
System MRR P@1 Hit@5

Quest(reported) 0.355 0.268 0.376
Quest(obtained) 0.2947 0.253 0.366
DrQA(reported) 0.226 0.184 0.313
DrQA(obtained) 0.228 0.186 0.313

Table 2.3: Baseline result for CQ-W questions for Top10 data set.

Metric
System MRR P@1 Hit@5

Quest(reported) 0.467 0.394 0.531
Quest(obtained) 0.401 0.36 0.48
DrQA(reported) 0.355 0.286 0.453
DrQA(obtained) 0.355 0.286 0.453

Table 2.4: baseline result for CQ-T questions for Top10 data set.

Metric
adjusted adjusted adjusted

System MRR P@1 Hit@5

Quest(obtained) 0.067 0.04 0.155
DrQA(obtained) 0.228 0.186 0.313

Table 2.5: Baseline result for CQ-W questions for Top10 data set with our proposed
metric.

Metric
adjusted adjusted adjusted

System MRR P@1 Hit@5

Quest(obtained) 0.065 0.043 0.154
DrQA(obtained) 0.355 0.286 0.453

Table 2.6: Baseline result for CQ-T questions for Top10 data set with our proposed metric

34 Chapter 2. Open Domain Complex Question Answering

2.5 Conclusion and Future Work

For this dissertation, we look at the problem of unsupervised question answering. We use a

very recent system (Quest) presented at SIGIR 2019 [26] as our baseline. Our best results

are substantially better than those reported for Quest (an unsupervised method) and

DrQA (a strong deep learning benchmark) on both the CQ-W and the CQ-T datasets.

Further, in terms of processing speed, our method is faster compared to Quest. As

confirmed from the Quest authors5, it takes around 3-3.5 hours to complete one question

set, i.e., 150 questions on a 256 GB server. Our model takes around 1 hour to complete

the same question set on a 128GM RAM and 24 GB GPU server. As a part of future

work, we plan to explore the issues listed below.

• In Entity2vec model we are getting some out of vocabulary (OOV) problem for

many entities, therefore the result is not as expected and also for CQ-W most of the

questions are not in capital case format. We hope to take care those for a better

coverage.

• It would be great to give key question focus to the supporting words present in the

questions.

• We are planning to do a detailed failure analysis for the various methods we tried

out.

• Instead of converting from TREC 04 to Ontonotes 05 label, we need some automated

mapping. It would be better to have a many to one or more finer grained mapping.

We also observed these handwritten rules are not sometimes correct so we need to

correct some of these.

5Personal communication

2.5. Conclusion and Future Work 35

Metric Method Top10

Sent-Emb+spacy+avg-score 0.069
Sent-Emb+spacy+avg-max-score 0.135

Sent-Emb+spacy+max-score 0.386
Sent-Emb+spacy+max-score+re rank 1 0.333
Sent-Emb+spacy+max-score+re rank 2 0.331

Sent-Emb+Flair+max-score 0.471
MRR Sent-Emb+Flair+max-score+re-rank1 0.431

Sent-Emb+Flair+max-score+re-rank2 0.427
Sent-bert+flair+re-rank1 0.381
Sent-bert+flair+re-rank2 0.389

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.341
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.329

Sent-Emb+flair+re-rank2+USE (ques type) 0.423
Sent-bert+flair+re-rank2+entity-rerank 0.38

Sent-Emb+spacy+max-score+co-ref 0.327

Sent-Emb+spacy+avg-score 0.04
Sent-Emb+spacy+avg-max-score 0.06

Sent-Emb+spacy+max-score 0.28
Sent-Emb+spacy+max-score+re rank 1 0.22
Sent-Emb+spacy+max-score+re rank 2 0.22

Sent-Emb+Flair+max-score 0.346
P@1 Sent-Emb+Flair+max-score+re-rank1 0.293

Sent-Emb+Flair+max-score+re-rank2 0.293
Sent-bert+flair+re-rank1 0.26
Sent-bert+flair+re-rank2 0.273

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.22
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.22

Sent-Emb+flair+re-rank2+USE (ques type) 0.293
Sent-bert+flair+re-rank2+entity-rerank 0.26

Sent-Emb+spacy+max-score+co-ref 0.2

Sent-Emb+spacy+avg-score 0.133
Sent-Emb+spacy+avg-max-score 0.286

Sent-Emb+spacy+max-score 0.56
Sent-Emb+spacy+max-score+re rank 1 0.54
Sent-Emb+spacy+max-score+re rank 2 0.54

Sent-Emb+Flair+max-score 0.646
Hit@5 Sent-Emb+Flair+max-score+re-rank1 0.646

Sent-Emb+Flair+max-score+re-rank2 0.646
Sent-bert+flair+re-rank1 0.62
Sent-bert+flair+re-rank2 0.6

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.52
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.533

Sent-Emb+flair+re-rank2+USE (ques type) 0.64
Sent-bert+flair+re-rank2+entity-rerank 0.62

Sent-Emb+spacy+max-score+co-ref 0.526

Table 2.7: Result for CQ-W data Set.

36 Chapter 2. Open Domain Complex Question Answering

Metric Method Top10

Sent-Emb+spacy+avg-score 0.068
Sent-Emb+spacy+avg-max-score 0.118

Sent-Emb+spacy+max-score 0.342
Sent-Emb+spacy+max-score+re rank 1 0.377
Sent-Emb+spacy+max-score+re rank 2 0.377

Sent-Emb+Flair+max-score 0.44
MRR Sent-Emb+Flair+max-score+re-rank1 0.441

Sent-Emb+Flair+max-score+re-rank2 0.442
Sent-bert+flair+re-rank1 0.409
Sent-bert+flair+re-rank2 0.414

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.377
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.377

Sent-Emb+flair+re-rank2+USE (ques type) 0.414
Sent-bert+flair+re-rank2+entity-rerank 0.387

Sent-Emb+spacy+max-score+co-ref 0.321

Sent-Emb+spacy+avg-score 0.04
Sent-Emb+spacy+avg-max-score 0.067

Sent-Emb+spacy+max-score 0.233
Sent-Emb+spacy+max-score+re rank 1 0.26
Sent-Emb+spacy+max-score+re rank 2 0.26

Sent-Emb+Flair+max-score 0.3
P@1 Sent-Emb+Flair+max-score+re-rank1 0.306

Sent-Emb+Flair+max-score+re-rank2 0.306
Sent-bert+flair+re-rank1 0.293
Sent-bert+flair+re-rank2 0.312

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.26
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.26

Sent-Emb+flair+re-rank2+USE (ques type) 0.286
Sent-bert+flair+re-rank2+entity-rerank 0.24

Sent-Emb+spacy+max-score+co-ref 0.206

Sent-Emb+spacy+avg-score 0.133
Sent-Emb+spacy+avg-max-score 0.24

Sent-Emb+spacy+max-score 0.52
Sent-Emb+spacy+max-score+re rank 1 0.54
Sent-Emb+spacy+max-score+re rank 2 0.54

Sent-Emb+Flair+max-score 0.653
Hit@5 Sent-Emb+Flair+max-score+re-rank1 0.646

Sent-Emb+Flair+max-score+re-rank2 0.646
Sent-bert+flair+re-rank1 0.599
Sent-bert+flair+re-rank2 0.566

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.54
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.54

Sent-Emb+flair+re-rank2+USE (ques type) 0.606
Sent-bert+flair+re-rank2+entity-rerank 0.6

Sent-Emb+spacy+max-score+co-ref 0.506

Table 2.8: Result for CQ-T data Set.

2.5. Conclusion and Future Work 37

Metric Method Top10

Sent-Emb+spacy+avg-score 0.064
Sent-Emb+spacy+avg-max-score 0.128

Sent-Emb+spacy+max-score 0.307
Sent-Emb+spacy+max-score+re rank 1 0.324
Sent-Emb+spacy+max-score+re rank 2 0.322

adjusted Sent-Emb+Flair+max-score 0.364
MRR Sent-Emb+Flair+max-score+re-rank1 0.416

Sent-Emb+Flair+max-score+re-rank2 0.412
Sent-bert+flair+re-rank1 0.379
Sent-bert+flair+re-rank2 0.388

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.333
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.32

Sent-Emb+flair+re-rank2+USE (ques type) 0.407
Sent-bert+flair+re-rank2+entity-rerank 0.378

Sent-Emb+spacy+max-score+co-ref 0.311

Sent-Emb+spacy+avg-score 0.036
Sent-Emb+spacy+avg-max-score 0.063

Sent-Emb+spacy+max-score 0.209
Sent-Emb+spacy+max-score+re rank 1 0.216
Sent-Emb+spacy+max-score+re rank 2 0.216

adjusted Sent-Emb+Flair+max-score 0.254
P@1 Sent-Emb+Flair+max-score+re-rank1 0.282

Sent-Emb+Flair+max-score+re-rank2 0.282
Sent-bert+flair+re-rank1 0.26
Sent-bert+flair+re-rank2 0.273

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.216
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.216

Sent-Emb+flair+re-rank2+USE (ques type) 0.282
Sent-bert+flair+re-rank2+entity-rerank 0.233

Sent-Emb+spacy+max-score+co-ref 0.186

Sent-Emb+spacy+avg-score 0.108
Sent-Emb+spacy+avg-max-score 0.24

Sent-Emb+spacy+max-score 0.488
Sent-Emb+spacy+max-score+re rank 1 0.526
Sent-Emb+spacy+max-score+re rank 2 0.526

adjusted Sent-Emb+Flair+max-score 0.559
Hit@5 Sent-Emb+Flair+max-score+re-rank1 0.64

Sent-Emb+Flair+max-score+re-rank2 0.633
Sent-bert+flair+re-rank1 0.613
Sent-bert+flair+re-rank2 0.593

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.52
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.52

Sent-Emb+flair+re-rank2+USE (ques type) 0.626
Sent-bert+flair+re-rank2+entity-rerank 0.613

Sent-Emb+spacy+max-score+co-ref 0.521

Table 2.9: Result for CQ-W data set with our new metric.

38 Chapter 2. Open Domain Complex Question Answering

Metric Method Top10

Sent-Emb+spacy+avg-score 0.067
Sent-Emb+spacy+avg-max-score 0.112

Sent-Emb+spacy+max-score 0.288
Sent-Emb+spacy+max-score+re rank 1 0.372
Sent-Emb+spacy+max-score+re rank 2 0.372

adjusted Sent-Emb+Flair+max-score 0.346
MRR Sent-Emb+Flair+max-score+re-rank1 0.433

Sent-Emb+Flair+max-score+re-rank2 0.433
Sent-bert+flair+re-rank1 0.408
Sent-bert+flair+re-rank2 0.413

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.372
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.372

Sent-Emb+flair+re-rank2+USE (ques type) 0.404
Sent-bert+flair+re-rank2+entity-rerank 0.371

Sent-Emb+spacy+max-score+co-ref 0.253

Sent-Emb+spacy+avg-score 0.04
Sent-Emb+spacy+avg-max-score 0.06

Sent-Emb+spacy+max-score 0.183
Sent-Emb+spacy+max-score+re rank 1 0.253
Sent-Emb+spacy+max-score+re rank 2 0.253

adjusted Sent-Emb+Flair+max-score 0.216
P@1 Sent-Emb+Flair+max-score+re-rank1 0.296

Sent-Emb+Flair+max-score+re-rank2 0.296
Sent-bert+flair+re-rank1 0.293
Sent-bert+flair+re-rank2 0.312

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.253
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.253

Sent-Emb+flair+re-rank2+USE (ques type) 0.276
Sent-bert+flair+re-rank2+entity-rerank 0.233

Sent-Emb+spacy+max-score+co-ref 0.145

Sent-Emb+spacy+avg-score 0.126
Sent-Emb+spacy+avg-max-score 0.213

Sent-Emb+spacy+max-score 0.466
Sent-Emb+spacy+max-score+re rank 1 0.526
Sent-Emb+spacy+max-score+re rank 2 0.526

adjusted Sent-Emb+Flair+max-score 0.579
Hit@5 Sent-Emb+Flair+max-score+re-rank1 0.646

Sent-Emb+Flair+max-score+re-rank2 0.646
Sent-bert+flair+re-rank1 0.599
Sent-bert+flair+re-rank2 0.566

Sent-Emb+spacy+max-score+ re-rank3 (α = 0.3, β = 0.7) 0.526
Sent-Emb+spacy+max-score+ re-rank3 (α = 0.8, β = 0.2) 0.526

Sent-Emb+flair+re-rank2+USE (ques type) 0.6
Sent-bert+flair+re-rank2+entity-rerank 0.587

Sent-Emb+spacy+max-score+co-ref 0.45

Table 2.10: Result for CQ-T data set with our new metric.

2.5. Conclusion and Future Work 39

Metric
System MRR P@1 Hit@5

Quest(reported) 0.355 0.268 0.376
Quest(obtained) 0.2947 0.253 0.366
Dr-QA(reported) 0.226 0.184 0.313
Dr-QA(obtained) 0.228 0.186 0.313

Our Best 0.471 0.346 0.646

Table 2.11: Performance comparison of baseline results with our best model for CQ-W
questions on Top10 data set. Evaluated with old metric.

Metric
System MRR P@1 Hit@5

Quest(reported) 0.467 0.394 0.531
Quest(obtained) 0.401 0.36 0.48
DrQA(reported) 0.355 0.286 0.453
DrQA(obtained) 0.355 0.286 0.453

Our Best 0.442 0.312 0.646

Table 2.12: Performance comparison of baseline results with our best model for CQ-T
questions for Top10 data set. Evaluated with old metric.

Metric
adjusted adjusted adjusted

System MRR P@1 Hit@5

Quest(obtained) 0.067 0.04 0.155
DrQA(obtained) 0.228 0.186 0.313

Our Best 0.416 0.282 0.64

Table 2.13: Performance comparison of baseline results with our best model for CQ-W
questions for Top10 data set. Evaluated with our proposed metric.

Metric
adjusted adjusted adjusted

System MRR P@1 Hit@5

Quest(obtained) 0.065 0.043 0.154
DrQA(obtained) 0.355 0.286 0.453

Our Best 0.433 0.296 0.646

Table 2.14: Performance comparison of baseline results with our best model for CQ-T
questions for Top10 data set. Evaluated with our proposed metric.

Bibliography

[1] Akbik, A., Bergmann, T., and Vollgraf, R. Pooled contextualized embed-

dings for named entity recognition. In NAACL 2019, 2019 Annual Conference of the

North American Chapter of the Association for Computational Linguistics (2019),

p. 724–728.

[2] Azzopardi, L., Crane, M., Fang, H., Ingersoll, G., Lin, J., Moshfeghi,

Y., Scells, H., Yang, P., and Zuccon, G. The Lucene for information access

and retrieval research (LIARR) workshop at SIGIR 2017. In Proc. SIGIR (2017),

pp. 1429–1430.

[3] Azzopardi, L., Moshfeghi, Y., Halvey, M., Alkhawaldeh, R. S., Balog,

K., Di Buccio, E., Ceccarelli, D., Fernández-Luna, J. M., Hull, C.,

Mannix, J., and Palchowdhury, S. Lucene4IR: Developing ir evaluation re-

sources using Lucene. SIGIR Forum 50, 2 (Feb. 2017), 58–75.

[4] Baudǐs, P., and Šedivý, J. Modeling of the question answering task in the yodaqa

system. In Proceedings of the 6th International Conference on Experimental IR Meets

Multilinguality, Multimodality, and Interaction - Volume 9283 (Berlin, Heidelberg,

2015), CLEF’15, Springer-Verlag, p. 222–228.

[5] Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic parsing on Free-

base from question-answer pairs. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing (Seattle, Washington, USA, Oct. 2013), As-

sociation for Computational Linguistics, pp. 1533–1544.

40

BIBLIOGRAPHY 41

[6] Bolukbasi, T., Chang, K., Zou, J. Y., Saligrama, V., and Kalai, A. Man

is to computer programmer as woman is to homemaker? debiasing word embeddings.

In Proc. of NIPS 29. 2016, pp. 4349–4357.

[7] Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. A large an-

notated corpus for learning natural language inference. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing (Lisbon, Portugal,

Sept. 2015), Association for Computational Linguistics, pp. 632–642.

[8] Buckley, C. Implementation of the smart information retrieval system. Tech. rep.,

Ithaca, NY, USA, 1985.

[9] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., St. John, R., Con-

stant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Strope, B., and

Kurzweil, R. Universal sentence encoder for English. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing: System Demon-

strations (Brussels, Belgium, Nov. 2018), Association for Computational Linguistics,

pp. 169–174.

[10] Chakrabarti, S. Interpretable complex question answering. In Proceedings of

The Web Conference 2020 (New York, NY, USA, 2020), WWW ’20, Association for

Computing Machinery, p. 2455–2457.

[11] Chen, D., Fisch, A., Weston, J., and Bordes, A. Reading Wikipedia to

answer open-domain questions. In Association for Computational Linguistics (ACL)

(2017).

[12] Clark, C., and Gardner, M. Simple and effective multi-paragraph reading

comprehension. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers) (Melbourne, Australia, July

2018), Association for Computational Linguistics, pp. 845–855.

42 BIBLIOGRAPHY

[13] Clinchant, S., and Gaussier, É. A theoretical analysis of prf models. In Proc.

of ICTIR ’13 (2013), pp. 6–13.

[14] Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A.

Supervised learning of universal sentence representations from natural language in-

ference data. In Proceedings of the 2017 Conference on Empirical Methods in Natu-

ral Language Processing (Copenhagen, Denmark, September 2017), Association for

Computational Linguistics, pp. 670–680.

[15] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers) (Minneapolis, Minnesota, June 2019), Association for Computational Lin-

guistics, pp. 4171–4186.

[16] Ding, B., Xu Yu, J., Wang, S., Qin, L., Zhang, X., and Lin, X. Finding top-

k min-cost connected trees in databases. In 2007 IEEE 23rd International Conference

on Data Engineering (2007), pp. 836–845.

[17] Dixon, L., Li, J., Sorensen, J., Thain, N., and Vasserman, L. Measuring

and mitigating unintended bias in text classification. In Proc. of 2018 AAAI/ACM

Conference on AI, Ethics, and Society (2018), ACM, pp. 67–73.

[18] Fang, H., and Zhai, C. An exploration of axiomatic approaches to information

retrieval. In Proc. of 28th SIGIR (2005), ACM, pp. 480–487.

[19] Fernando, Z. T., Singh, J., and Anand, A. A study on the interpretability of

neural retrieval models using deepshap. In Proc. of SIGIR’19 (2019), pp. 1005–1008.

[20] Garg, N., Konjevod, G., and Ravi, R. A polylogarithmic approximation al-

gorithm for the group steiner tree problem. In Proceedings of the Ninth Annual

BIBLIOGRAPHY 43

ACM-SIAM Symposium on Discrete Algorithms (USA, 1998), SODA ’98, Society for

Industrial and Applied Mathematics, p. 253–259.

[21] Kadry, A., and Dietz, L. Open relation extraction for support passage retrieval:

Merit and open issues. In Proceedings of the 40th International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval (New York, NY, USA,

2017), SIGIR ’17, Association for Computing Machinery, p. 1149–1152.

[22] Lewis, P., Denoyer, L., and Riedel, S. Unsupervised question answering by

cloze translation. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics (Florence, Italy, July 2019), Association for Computa-

tional Linguistics, pp. 4896–4910.

[23] Li, R.-H., Qin, L., Yu, J. X., and Mao, R. Efficient and progressive group

steiner tree search. In Proceedings of the 2016 International Conference on Manage-

ment of Data (New York, NY, USA, 2016), SIGMOD ’16, Association for Computing

Machinery, p. 91–106.

[24] Li, X., and Roth, D. Learning question classifiers. In Proceedings of the 19th

International Conference on Computational Linguistics - Volume 1 (USA, 2002),

COLING ’02, Association for Computational Linguistics, p. 1–7.

[25] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,

M., Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized BERT

pretraining approach. CoRR abs/1907.11692 (2019).

[26] Lu, X., Pramanik, S., Saha Roy, R., Abujabal, A., Wang, Y., and

Weikum, G. Answering complex questions by joining multi-document evidence

with quasi knowledge graphs. In Proceedings of the 42nd International ACM SIGIR

Conference on Research and Development in Information Retrieval (New York, NY,

USA, 2019), SIGIR’19, Association for Computing Machinery, p. 105–114.

44 BIBLIOGRAPHY

[27] Mausam, M. Open information extraction systems and downstream applications.

In Proceedings of the Twenty-Fifth International Joint Conference on Artificial In-

telligence (2016), IJCAI’16, AAAI Press, p. 4074–4077.

[28] Metzler, D., and B. Croft, W. Linear feature-based models for information

retrieval. Inf. Retr. 10, 3 (June 2007), 257–274.

[29] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. Dis-

tributed representations of words and phrases and their compositionality. In Pro-

ceedings of the 26th International Conference on Neural Information Processing Sys-

tems - Volume 2 (Red Hook, NY, USA, 2013), NIPS’13, Curran Associates Inc.,

p. 3111–3119.

[30] Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A., and Weston,

J. Key-value memory networks for directly reading documents. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing (Austin,

Texas, Nov. 2016), Association for Computational Linguistics, pp. 1400–1409.

[31] Prager, J. Open-domain question answering. Found. Trends Inf. Retr. 1, 2 (Jan.

2006), 91–231.

[32] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD: 100,000+

questions for machine comprehension of text. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing (Austin, Texas, Nov. 2016),

Association for Computational Linguistics, pp. 2383–2392.

[33] Reimers, N., and Gurevych, I. Sentence-bert: Sentence embeddings using

siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing (11 2019), Association for Computational Linguis-

tics.

BIBLIOGRAPHY 45

[34] Roy, D., Mitra, M., and Ganguly, D. To clean or not to clean: Document

preprocessing and reproducibility. J. Data and Info. Quality 10, 4 (Oct. 2018), 18:1–

18:25.

[35] Silva, J., Coheur, L., Mendes, A. C., and Wichert, A. From symbolic to

sub-symbolic information in question classification. Artificial Intelligence Review 35,

2 (Nov. 2010), 137–154.

[36] Singhal, A., Buckley, C., and Mitra, M. Pivoted Document Length Normal-

ization. In Proc. of SIGIR (1996), SIGIR ’96, pp. 21–29.

[37] Smucker, M., and Allan, J. An investigation of Dirichlet prior smoothing’s

performance advantage. Tech. rep., CIIR, U. Mass., Amherst, 2005.

[38] Verma, M., and Ganguly, D. LIRME: locally interpretable ranking model ex-

planation. In Proc. of SIGIR’19 (2019), pp. 1281–1284.

[39] Voorhees, E. M. The trec-8 question answering track report. In In Proceedings of

TREC-8 (1999), pp. 77–82.

[40] Voorhees, E. M. The effect of sampling strategy on inferred measures. In Proceed-

ings of the 37th International ACM SIGIR Conference on Research & Development

in Information Retrieval (New York, NY, USA, 2014), SIGIR ’14, Association for

Computing Machinery, p. 1119–1122.

[41] Yamada, I., Asai, A., Sakuma, J., Shindo, H., Takeda, H., Takefuji,

Y., and Matsumoto, Y. Wikipedia2vec: An efficient toolkit for learning and

visualizing the embeddings of words and entities from wikipedia. arXiv preprint

1812.06280v3 (2020).

[42] Yang, P., Fang, H., and Lin, J. Anserini: Enabling the use of lucene for informa-

tion retrieval research. In Proc. of the 40th SIGIR (2017), SIGIR ’17, pp. 1253–1256.

[43] Yang, P., Fang, H., and Lin, J. Anserini: Reproducible ranking baselines using

lucene. J. Data and Information Quality 10, 4 (Oct. 2018), 16:1–16:20.

46 BIBLIOGRAPHY

[44] Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov,

R., and Manning, C. D. HotpotQA: A dataset for diverse, explainable multi-

hop question answering. In Conference on Empirical Methods in Natural Language

Processing (EMNLP) (2018).

[45] Zhao, C., Xiong, C., Qian, X., and Boyd-Graber, J. Complex factoid ques-

tion answering with a free-text knowledge graph. In Proceedings of The Web Con-

ference 2020 (New York, NY, USA, 2020), WWW ’20, Association for Computing

Machinery, p. 1205–1216.

Appendix A

I-REX

A.1 Language Model

In the traditional language modeling, it is assumed that the query Q and the document

D are being generated from the same underlying same language model θD. Now, given a

query Q we want to know which document is the query most likely to have been drawn

from. Assume, if the query contains m many terms, i.e Q = {q1, q2, ..., qm}. Therefore,

Score(D,Q) = P (Q | θD)

=
∏
q∈Q

P (q | θD)

Estimation of θD from D is done using maximum likelihood estimator (MLE). For unigram

language model MLE of P (q | θ̂D) turns out to be tf(q,D)
|D| . Where, tf(q,D) is the term

frequency of q in document D and |D| is the document length.

A.1.1 Jelinek-Mercer smoothing (LMJM)

Now, to avoid the zero probability during MLE of unseen terms in the document D, the

language model is smoothed with a background model estimated from the collection C,

47

48 Chapter A. I-REX

as shown in below equation.

P (Q | θ̂D) =
∏
q∈Q

λ
tf(q,D)

|D|
+ (1− λ)

cf(q)

|C|

Here, λ is an interpolation parameter, lies from 0 to 1. cf(q) is the collection frequency

of the term q and |C| is the size of the collection altogether.

A.1.2 Dirichlet smoothing (LMDIR)

Another variant of smoothing is called dirichlet smoothing where instead of MLE it uses

Bayesian estimator which can impose a prior belief of θD. The final formulae is shown

below,

P (Q | θ̂D) =
∏
q∈Q

tf(q,D) + µ cf(q)
|C|

|D|+µ

Here, µ is a parameter which ranges from 100 to 5000 and all the other variables are same

as discussed above.

A.2 WT10g Dataset

Topic Set Documents # documents # topics #relevant-docs

TREC9, TREC10 WT10g 1,692,096 100 (451-550) 5980

Table A.1: TREC Web Corpus WT10g dataset overview

A.3 Trec Eval

trec eval is a utility maintained by TREC used for evaluating the ad-hoc retrieval run for

any result files and the corresponding relevance judgement files.

Appendix B

Question Answering

B.1 Mapping from TREC 04 Domain to Ontonotes

Trec04 Entity Type Ontonotes Entity Type

hum PERSON
loc GPE, LOC, ORG

enty NORP, FAC, PRODUCT, EVENT
LANGUAGE, LAW, WORK OF ART

num DATE, TIME, PERCENT, MONEY
QUANTITY, ORDINAL, CARDINAL

money MONEY
date DATE
gr ORG

Table B.1: TREC 04 Entity label to Ontonotes

49

	Abstract
	Acknowledgements
	I-REX
	Abstract
	Introduction
	Background
	I-REX features
	Illustrative workflows
	Conclusion and future work

	Open Domain Complex Question Answering
	Introduction
	Background and problem statement

	Baseline Unsupervised QA System
	Quest
	DrQA

	Proposed Evaluation Measure
	Our Work
	Question Type Classifier
	Extracting Named Entities
	Answer Extraction
	Answer Ranking
	Result and Discussions

	Conclusion and Future Work

	Bibliography
	Appendices
	I-REX
	Language Model
	Jelinek-Mercer smoothing (LMJM)
	Dirichlet smoothing (LMDIR)

	WT10g Dataset
	Trec Eval

	Question Answering
	Mapping from TREC 04 Domain to Ontonotes

