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Abstract

This research work is aimed to design a method for predicting the view count of a
video using deep neural network based analysis of subjective video attributes. With
more and more companies turning to online video content influencers to capture
the millennial audience, getting people to watch your videos on online platforms is
becoming increasingly lucrative. So we provide a solution to the problem by building
a model of our own. Our model takes four subjective video attributes as input and
predicts the probable view of the video as output. The attributes are the thumbnail
image, the title caption, the audio associated with the video and the video itself. We
preprocess each of the attributes seperately to obtain the feature vectors. Our model
contains four branches to deal with these attributes. We pass the feature vectors of
each of the component to the respective branches of the model to capture the salient
features with regards to the thumbnail image using a pre-trained CNN architecture,
AlexNet; the sentimental feature with regards to the title caption using Sentiment
Intensity Analyzer; the temporal feature with regards to the audio waveform using
LSTM and both the temporal and salient features with regards to the video using
Convolutional LSTM. Since a user, clicks a video based on the title and the thumbnail
associated with the video on most online platforms, the model tries to generate a
click affinity feature depicting the affinity of the user to click the video. After the
user clicked the video, the user decides to view the video based on the audio and
the video itself, so the view count of the video is predicted by taking into account
the click affinity feature alongwith the temporal feature of the audio waveform and
the spatial - temporal feature of the video using a regressor network called the viral-
video-prediction network. A loss function designed from this regression values is used
to train the last two stages of the pipeline. We obtain a test accuracy as high as
95.89%.

Keywords: AlexNet, deep neural network, Sentiment Intensity Analyzer, LSTM,
Convolutional LSTM
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Chapter 1

Introduction

1.1 Introduction

A viral video is a video that becomes popular through a viral process of Internet
sharing, typically through video sharing websites such as YouTube as well as social
media and email [1]. It’s usually a quick few days of exposure through which a viral
video can potentially gain the attention of millions of internet users. That is why
viral videos have a profound impact on many aspects of society, such as politics and
online marketing. Therefore the task of predicting the popularity as well as number
of views of an internet video is gaining attention to the researchers.

The factors which account for a video to be viral should be subjective as it should
reflect a personal appeal of an internet user towards the video. On the other hand, the
factors which contribute for a video to appeal to the majority of internet users needs
to be captured, implying that the factors be generically relevant to a large section of
these internet users as well. Therefore, to design a model that can infer whether a
video is going to be viral or not is a difficult problem.

The count of views is an important measure of the popularity of an online video. The
views of a video reflect how many times the video has been watched. A viral video
has typically a large number of views in a short period of time. But why do an online
video has millions of views while other videos do not?

Several studies show that viral videos typically have some common properties such
as short title, short duration, the element of surprise in the video content and high
quality of music [2, 3]. Some recent studies show that there are strong correlation
between the popularity of a video and sharing platform like blog, hosting channel
[4, 5]. But the task of predicting number of views of a video is still an unsolved
problem.
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1.2. WHAT MAKES A VIDEO VIRAL? 7

1.2 What makes a video viral?

To sum up, we can discuss on the factors which decides whether a video is going to
be viral or not. The answer to this question depends on the subjective analysis of
different facts. A video is said to be viral when the number of its views crosses a
threshold within a small amount of time after the release of the video. Therefore,
in order to know if a video is going to be viral, we need to predict its views. The
number of views in YouTube is calculated by finding the number of YouTube users
(from now on, user would mean YouTube user) who clicked the video and watched it
for at least 30 seconds or the full video duration whichever is smaller. Another factor
that affects the number of views is the number of shares. When a video is shared in
large numbers, it tends to have more views [6]. It is also evident that a majority of
the users who shares a video typically likes the video as well. Hence from a user’s
perspective, the number of views depends on the answer of two questions: (a) why
would a user click on a video? and (b) why would a user like the video and share it.
As these factors are crucial, we have tried to model these in our research work which
is discussed in details in chapter 4.

1.3 Related Work

Analysis of content popularity has attracted huge interest in recent years. One of the
first works that analyze the factors affecting the popularity of internet videos can be
found in [2]. However, the analysis has been performed on only a few videos making
it difficult to generalize. Deza et al. [7] have identified several visual attributes that
affect the virality of an image. Several characteristics of viral videos have been iden-
tified in [3]. The viewing pattern of popular videos in YouTube has been analyzed
by Broxton et al. [8] where it has been shown that the popular videos have a sud-
den rise and fall in the views compared to the less popular videos. More advanced
dependence between cross-platform contents have been explored in [9]. In this work,
the authors analyze the properties that helps to popularize a Tweet and a YouTube
video mentioned in the Tweet.

While researchers have tried to identify the factors influencing the popularity of a
content, several methods have been developed to predict the popularity of different
online contents. In [10], the authors have shown that the future view of a YouTube
video can be predicted using the early viewing pattern of the video. In this work,
the authors have trained a regression model to predicted the total number of views
that a video can have in future based on the past viewing pattern of the video.
Collection of the view count of a video at different time instants is major challenge
in the training of the above method. Furthermore, this method does not take into
account the different attributes of a video. Therefore it is impossible to relate the
viewership with video quality using the above method. Utilizing the visual cues, a
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spatial transformer model has been proposed in [11] to predict whether an image is
going to be viral. The popularity of an online content has been predicted in [12] using
only the title. A multimodal popularity prediction method for micro-videos can be
found in [13]. This method makes use of social, visual, acoustic and textual modalities
related with a video to find whether the video is going to be popular. However, the
definition of the popularity in the above model is ad-hoc and a relationship between
the different modalities and the popularity can not be defined. Further, this method
cannot predict the number of views of a video. See [14] for a multimodal popularity
prediction approach for images. Zhang et al. [15] propose fusion of visual, textual and
user information in an attention model for popularity prediction of Flickr images. In
[16], the authors propose a support vector regression model to predict the popularity
of online videos. A multimodal popularity prediction model for videos using self
attention has been proposed in [17]. However, the above popularity prediction models
lack a mathematical analysis of how the different controlling factors of popularity
relate to the number of views of the content.

1.3.1 Existing Methods

According to our literature survey, we have selected one of the existing methods that
target to predict the number of views of a video. This work is from a github project
[18]. The model discussed here takes into account the following attributes of the data
as follows:

� Thumbnail: The thumbnail image of the video in grayscale color space.

� Duration: The duration of the video.

� Dislike Count: The number of dislikes the video received.

� Comment Count: The number of comments the video received.

� Like Count: The number of likes the video received.

� Channel View Count: The number of view counts the channel publishing the
video received.

� Channel Subscriber Count: The number of subscribers of the channel.

� Channel Video Count: The number of videos published under the channel.

� Number of Tags: The number of tags the video received.

Based on these attributes the model tries to predict the number of views the video
would receive. The view counts that have been taken as ground truth is scaled to an
integer number from 0 to 9 and treated as labels. The model contains two stages.
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In the first stage, the thumbnail is fed into a convolutional neural network i.e. CNN
(described in details in section 2.2) comprising of two convolution layers followed by
two fully connected layers. The last layer of the CNN is the output layer comprising
of 10 neurons, essentially treating the problem as a 10 class classification problem
i.e.(class 0 to class 9) and assigning the class corresponding to the neuron with the
highest value among the 10 neurons as the value of the prediction from the thumbnail
which we denote here as thumbnail predictions.The CNN is trained against the labels
and the training loss function used in this case is Cross Entropy Loss. The Cross
Entropy Loss is explained in section 2.7.2. So, the thumbnail predictions contains
integral values ranging from 0 to 9. In the second phase, the thumbnail predictions
is considered as an attribute alongwith the other attributes mentioned above to form
a new dataset. This dataset is then trained on Support Vector Regressor against
the labels to output a fractional value from 0 to 9. This value when scaled to the
original scale is the predicted number of views. We have tried to compare the existing
method with our proposed model by training the existing model on our dataset and
the results are reported in Chapter 5.

1.4 The Problem Statement

Now let us provide a formal definition of the problem at hand and provides a basic
overview of the method we adopted to solve it.

The problem is formally defined as follows: Given a set of videos from YouTube
and their respective view counts which we consider here as ground truth, we need to
design a machine learning model that when trained on this set of videos alongwith its
subjective attributes is capable of predicting accurately the number of views a video
can get over a certain period of time. The model should have good generalization
capabilities and should not overfit the training set. Provided the desired levels of
accuracy achieved, the model could be deployed to predict how many views a new
video gathers under a certain period of time.

1.5 Overview of Our Solution

Figure 1.1 displays our solution strategy in the form of a block diagram. Our strategy
can be described as a two step process. In the first step, we extract the subjective
video attributes of the query video including its associated thumbnail, the title of the
video, the audio associated with the video and the video itself and featurize each of
them by employing appropriate feature extractors. In the second step, after featuriz-
ing these four subjective attributes of the video, we get Fth representing the feature
vector for thumbnail, Fti representing the feature vector for title, FA representing the
feature vector for audio and Fv representing the feature vector for video as shown in
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Figure 1.1: Block Diagram of our Deep Learning based solution

the figure 1.1. These four feature vectors are taken as input into our deep learning
module which is the view prediction network, that generates the number of views
the video can get over a certain duration of time. Both the featurizing and the deep
learning module have been explained in detail in chapter 4.

1.6 Contribution

We have proposed a first-of-its-kind mathematical model that relates the different
subjective attributes of video with its popularity in terms of the number of views.
Our model can potentially predict the view of a video at any time instant after
the release. Therefore, the proposed method, implemented using a complex deep
neural network architecture, can be used to identify the potentially viral videos as
well. Unlike the existing method mentioned in section 1.3.1, our model is quite
integrated or comprehensive taking into account all the different aspects of the video
involving thumbnail, title, audio and the video itself compared to considering only the
thumbnail along with the video and channel statistics in the existing method. Also,
in case of predicting the number of views of a new video which is yet to release, our
model can be a more feasible option compared to the one mentioned in the existing
method which requires the video statistics as input to the model including the number
of likes, dislikes, comments and tags the video receives. So, we have tried to design
a model that takes four attributes of a video namely, the thumbnail image, the title
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of the video, the audio associated with the video and the video itself to predict its
popularity.

1.7 Organization

The dissertation report is organised as follows:

� Chapter 2 explains the mathematical operators and models required to under-
stand our deep learning architecture. The chapter also explains the losses and
the training procedure employed to train our architecture.

� Chapter 3 explains the dataset and describes the various subjective video at-
tributes that are extracted from the dataset.

� Chapter 4 explains our proposed solution in details.

� Chapter 5 explains the results we obtained from our experiment and also the
performance compared between our model and the competing one.

� Chapter 6 involves the conclusion of our experiment.

� Chapter 7 explains the shortcomings of our experiment which can be directed
as future works.



Chapter 2

Prerequisites

In this chapter we provide a very brief description of concepts necessary to explain
our approach and experiments for easier understanding of the reader.

2.1 Preliminaries

We need to understand both Convolution and Maxpooling in order to understand the
Convolutional Neural Networks, which act as spatial feature extractors for images. So,
a brief understanding of these mathematical operations and how they are performed
on images is crucial and hence they are discussed here.

2.1.1 Convolution

The convolution operation involves sliding a matrix of weights known as the Kernel
over an image and extract meaningful features from it [19]. This is similar to applying
filters in image processing to extract edges, corners etc.

To understand the operation of convolution, let us consider an image I and a filter
(kernel) K of dimensions k1× k2, then the convolution operation at (i, j) pixel of the
convolved image is given by:

(I ∗ k)ij =

k1−1∑
m=0

k2−1∑
n=0

I(i−m, j − n).K(m,n), (2.1)

where 0 ≤ i ≤ h; 0 ≤ j ≤ w; h and w be the size of the convolved image; (I ∗K) is the
convolved image, I(i−m, j−n) is the pixel value at the (i−m, j−n) position of the
image I and K(m,n) is the weight in the (m,n) position of the matrix of weights of
kernel K. It is to be noted that when we are running the sum m,n across the kernel
dimensions we are essentially placing an inverted kernel over a particular region of the

12



2.2. CONVOLUTIONAL NEURAL NETWORK 13

image I of the size same as that of kernel and calculate element wise multiplication
to find the convolution output at the (i, j) position of the convolved image. Now on
further observation we can visualize that in order to calculate the entire convolved
image, we essentially need to slide the inverted kernel over the entire image I to get
(I ∗K).

In order to draw a relationship between the size of the convolved image and the orig-
inal image we need to understand two additional terms associated with convolution
operation which are stride and padding.

Stride

We observed that in order to find the convolved image (I ∗K), we slide the inverted
kernel K over the entire image I. So the term stride refers to the the amount of slide
the kernel K is shifted on the image I to carry out the next convolution operation
along any dimension of the image I. Let us denoted stride as s.

Padding

Padding involves bordering the image with a layer of zeros, often used to handle odd
dimensions. Let us denote padding as p.

Relation between the size of convolved image and original image

For simplicity, let us consider a square input image I of size n × n, a square kernel
K of size k× k, stride s, padding p and the square convolved image of size q× q. So,
the relation between q and n is as follows:

q =

(⌊
n− k + 2× p

s

⌋
+ 1

)
. (2.2)

2.1.2 Maxpooling

This operation simply chooses the pixel value that is maximum among a group of
pixels that occur within the pooling filter as the maxpooling kernel slides over the
input image. It is mainly used to reduce dimensions of extracted feature maps [19].

2.2 Convolutional Neural Network

Convolution Neural Networks or CNN was developed for image classification [19].
We are focusing our point of discussion on the topic CNN with the sole objective
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to extract salient spatial features from thumbnail images associated with the video.
CNN is made up of successive convolution layers having varying kernel sizes. They
are followed by conventional hidden (also known as dense) layers that are present in
traditional neural networks. Successive convolution layers act as automatic feature
extractors while the dense layers serve as conventional neural network classifiers.
Typically as we progress deeper into the network, the size of the extracted feature
maps from the previous layer goes on decreasing. To ensure that an optimal number of
features gets extracted the number of feature maps extracted in is gradually increased.
So we have discussed here the first variant of CNN and that is AlexNet.

2.2.1 Why AlexNet?

Krizhevsky et al. [19] describes the Deep Convolutional Neural Network for Image
Classification. The architecture contains eight learned layers - five convolutional layers
and three fully connected layers. We have chosen AlexNet because it is light in the
terms of parameters involving only the convolutional layers and utilizes properties like
ReLU as activation function, local response normalization and overlapping pooling.
We discuss here the justification of utilizing these features as follows:

Why is ReLU as an activation function?

The model that we are trying to develop involves a lot of layers rendering our model
to be deep enough. So, inspite of modelling a neuron’s output using tanh or sigmoid
activation function which suffers from saturating nonlinearities, the network uses
Rectified Linear units as an activation function which performs faster in training
times. ReLU provides non-saturating nonlinearity f(x) = max(0, x) as described by
Nair and Hinton [20]. Consequently, the derivation of the ReLU activation function
being non-saturating does not suffer from vanishing gradient problem as that in case
of tanh or sigmoid activation.

Why local response normalization?

Local response normalization (LRN) implements a form of lateral inhibition inspired
by the type found in real neurons, creating competition for big activities among neuron
outputs computed using different kernels. So, LRN allows to diminish responses that
are uniformly large for the neighborhood and make large activation more pronounced
within a neighborhood i.e. create higher contrast in activation map. This is why
LRN is particularly useful with unbounded activation functions as ReLU. However, it
is found that the following local normalization scheme aids generalization. Denoting
by aix,y the activity of a neuron computed by applying kernel i at position (x, y) and
then applying the ReLU nonlinearity, the response-normalized activity bix,y is given
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by the expression:

bix,y = aix,y/(k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2)β, (2.3)

where the sum runs over n “adjacent” kernel maps at the same spatial position, and
N is the total number of kernels in the layer. The ordering of the kernel maps is of
course arbitrary and determined before training begins. This sort of response nor-
malization implements a form of lateral inhibition inspired by the type found in real
neurons, creating competition for big activities amongst neuron outputs computed
using different kernels. The constants k,n,α and β are hyper-parameters whose val-
ues are determined using a validation set. This normalization is applied after ReLU
nonlinearity in certain layers of the AlexNet architecture.

Why overlapping pooling?

Pooling layers in CNNs summarize the outputs of neighboring groups of neurons in
the same kernel map. Now, if the pooling layers do not overlap, the pooling regions
are disjointed and a lot of information is lost in each pooling layer. But if some overlap
is allowed, the pooling regions overlap with some degree and less spatial information
is lost in each layer.Loss of spatial information by pooling even if is thought to give
some degree of spatial invariance to CNNs can be detrimental if abused because it
can lead to overfitting as the network will focus only on some dominant features; but
because the pooling regions are disjointed, it looses quickly any information (in higher
layers) of where the feature is located in the image. This obviously can happens for
high capacity, deep, models. Letting the pooling regions overlap allows to mitigate
for this effect.

2.3 Sentiment intensity analyzer

Sentiment analysis, or Opinion mining, is a sub-field of Natural Language Processing
(NLP) that tries to identify and extract opinions within a given text. The aim of
sentiment analysis is to gauge the attitude, sentiments, evaluations, attitudes and
emotions of a speaker/writer based on the computational treatment of subjectivity in
a text. With respect to our project, we need Sentiment intensity analyzer to extract
salient sentimental features of the title caption associated with the video, giving a
polarity score of positive, neutral and negative sentiment of the title respectively.
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2.3.1 Why sentiment analysis is so important?

Businesses today are heavily dependent on data. Majority of this data however,
is unstructured text coming from sources like emails, chats, social media, surveys,
articles, and documents. The micro-blogging content coming from Twitter and Face-
book poses serious challenges, not only because of the amount of data involved, but
also because of the kind of language used in them to express sentiments, i.e., short
forms, memes and emoticons. Sentiment Analysis is also useful for practitioners and
researchers, especially in fields like sociology, marketing, advertising, psychology, eco-
nomics, and political science, which rely a lot on human-computer interaction data.
Sentiment Analysis enables companies to make sense out of data by being able to
automate this entire process! Thus they are able to elicit vital insights from a vast
unstructured dataset without having to manually indulge with it.

2.3.2 Why do we use VADER for sentiment analysis?

We chose VADER [21] because it has a lot of advantages over traditional methods of
Sentimental analysis, including:

� It works exceedingly well on social media type text, yet readily generalizes to
multiple domains

� It is fast enough to be used online with streaming data, and

� It does not severely suffer from a speed-performance trade-off.

2.3.3 Sentiment analysis using VADER

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-
based sentiment analysis tool that is specifically attuned to sentiments expressed in
social media. VADER uses a combination of A sentiment lexicon is a list of lexical fea-
tures (e.g., words) which are generally labelled according to their semantic orientation
as either positive or negative. VADER has been found to be quite successful when
dealing with social media texts, NY Times editorials, movie reviews, and product
reviews. This is because VADER not only tells about the Positivity and Negativity
score but also tells us about how positive or negative a sentiment is.

So the Sentiment intensity analyzer used in this research work is a model implemented
in NLTK package using VADER motivated from the research paper [21].

2.3.4 How VADER works?

VADER analyzes sentiments based on certain key points. They are:
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� Punctuation: The use of an exclamation mark(!), increases the magnitude of
the intensity without modifying the semantic orientation.

� Capitalization: Using upper case letters to emphasize a sentiment-relevant word
in the presence of other non-capitalized words, increases the magnitude of the
sentiment intensity.

� Degree modifiers: Also called intensifiers, they impact the sentiment intensity
by either increasing or decreasing the intensity.

� Conjunctions: Use of conjunctions like “but” signals a shift in sentiment polar-
ity, with the sentiment of the text following the conjunction being dominant.

� Preceding Tri-gram: By examining the tri-gram preceding a sentiment-laden
lexical feature, we can catch nearly 90% of cases where negation flips the polarity
of the text.

2.4 Long Short Term Memory

One of the appeals of Recurrent Neural Networks (RNNs) is the idea that they might
be able to connect previous information to the present task, such as using previous
video frames might inform the understanding of the present frame. Sometimes, we
only need to look at recent information to perform the present task. In such cases,
where the gap between the relevant information and the place that it’s needed is
small, RNNs can learn to use the past information. But there are also cases where we
need more context. Unfortunately, as that gap grows, RNNs become unable to learn
to connect the information. On the other hand Long Short Term Memory (LSTMs)
[22] are explicitly designed to avoid the long-term dependency problem thereby re-
membering information for long periods of time. With respect to our research project,
we would necessarily require LSTMs in order to learn long-term dependencies to gain
an information of the overall waveform of the audio signal and also to extract salient
temporal features of the audio waveform associated with the video.

The LSTMs achieve these objectives by maintaining two internal states along the
entire input sequence known as the hidden state denoted by h and the cell state
denoted by c. The hidden state usually contains the output of the LSTM module at
every instant of the input sequence and the cell state usually contains the information
that needs to be passed across all the instants of the input sequences. Let the input
sequence of audio waveform be denoted by XA, and let the sequence comprise of T
time steps, then at time step t, the LSTM module receives the following inputs:

� Previous cell state denoted as ct−1

� Previous hidden state denoted as ht−1
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� Present preprocessed audio input denoted as X
(t)
A , as discussed in detail in

section 3.6.3.

At any instant t, the LSTM module outputs the following:

� Present cell state denoted as ct to pass the information to LSTM module at
time step t+1.

� Present hidden state denoted as ht which is the output of the LSTM module at
time step t and is also passed to the LSTM module at time step t+1.

LSTMs achieve this ability to learn long term dependencies using four gates which
are as follows:

2.4.1 The Forget Gate

The forget gate consists of a fully connected layer with sigmoid activation. At time
step t, the gate takes the concatenated vector of ht−1 and X

(t)
A as input denoted by

[ht−1,X
(t)
A ] and outputs a vector ft. This gate decides the degree to which each dimen-

sion of the vector ct−1 is to be forgotten based on the contents of the concatenated

vector of [ht−1,X
(t)
A ] using a fully connected layer with sigmoid activation. If the ith

dimension of ft is 0 (which we state here as degree), then we completely forget the
ith dimension of ct−1 and if the ith dimension of ft is 1, then we completely retain the
ith dimension of ct−1. So we define ft as follows:

ft = σ(Wf .[ht−1, X
(t)
A ] + bf ). (2.4)

The weights Wf and bf are the parameters of the gate.

2.4.2 The Candidate Gate

The candidate gate consists of a fully connected layer with tanh activation. At time
step t, the gate takes the concatenated vector of ht−1 and X

(t)
A as input denoted by

[ht−1,X
(t)
A ] and outputs a vector c̃t. This gate extracts the new information at the

time step t, which we denote here as c̃t based on the present input [ht−1,X
(t)
A ] that

can ”potentially” be incorporated into the new cell state ct. The degree of inclusion
of c̃t in ct depends on the output of the input gate discussed in the section 2.4.3. So
we define c̃t as follows:

c̃t = σ(Wc̃.[ht−1, X
(t)
A ] + bc̃). (2.5)

The weights Wc̃ and bc̃ are the parameters of the gate.
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2.4.3 The Input Gate

The input gate consists of a fully connected layer with sigmoid activation. At time
step t, the gate takes the concatenated vector of ht−1 and X

(t)
A as input denoted

by [ht−1,X
(t)
A ] and outputs a vector it. This gate decides the degree to which each

dimension of the vector c̃t is incorporated into the new cell state ct based on the
contents of the present input [ht−1,X

(t)
A ] using a fully connected layer with sigmoid

activation. If the ith dimension of it is 0 (which we state here as degree), then we
completely ignore the ith dimension of c̃t in the ith dimension of ct and if the ith

dimension of it is 1, then we completely include the ith dimension of c̃t at the ith

dimension of ct. So we define it as follows:

it = σ(Wi.[ht−1, X
(t)
A ] + bi). (2.6)

The weights Wi and bi are the parameters of the gate.

2.4.4 The Output Gate

The output gate consists of a fully connected layer with sigmoid activation. At time
step t, the gate takes the concatenated vector of ht−1 and X

(t)
A as input denoted

by [ht−1,X
(t)
A ] and outputs a vector zt. This gate decides the degree to which each

dimension of the scaled version of the new cell state ct (where the scaling factor is
discussed in detail in section 2.4.5) is to be revealed as output of the LSTM module
at the time instant t i.e ht (discussed in section 2.4.5), based on the present input

[ht−1,X
(t)
A ]. If the ith dimension of zt is 0 (which we state here as degree), then we

completely surpress the ith dimension of the scaled ct in the ith dimension of output
vector i.e. ht (discussed in section 2.4.5) and if the ith dimension of zt is 1, then we
completely reveal the ith dimension of the scaled ct in the ith dimension of output
vector i.e. ht (discussed in section 2.4.5). So we define zt as follows:

zt = σ(Wz.[ht−1, X
(t)] + bz). (2.7)

The weights Wz and bz are the parameters of the gate.

2.4.5 The Cell State and Hidden State

As discussed earlier, the cell state is a passage containing the necessary information
that needs to be carried across all the time steps of the input sequence to capture
the long-term dependencies. The content of the new cell state at time instant t is
obtained by necessary deleting the contents needed to be forgotten controlled by the
forget gate based on the input at time step t and the hidden state obtained until time
step t-1 i.e.[ht−1,X

(t)
A ] and adding the contents from the candidate gate controlled by
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the input gate based on the input at time step t and the hidden state obtained until
time step t-1 i.e.[ht−1,X

(t)
A ]. The new cell state ct can be defined as follows:

ct = ft ∗ ct−1 + it ∗ c̃t, (2.8)

where * stands for element-wise multiplication.

The hidden state captures the output of the LSTM by observing the input sequence
upto a certain time instant. So if we want to observe an audio waveform with T time
steps as input, we would definitely obtain its salient temporal features from observing
the hidden state of the LSTM at the end of the sequence i.e. hT . The contents of the
new hidden state at any time instant t is obtained after appropriately scaling the the
contents of the new cell state through a tanh function, thereby rescaling it between
-1 to 1 and then surpressing or revealing the scaled new cell state by the output gate
in the output vector i.e. ht. The new hidden state ht can be defined as follows:

ht = zt ∗ tanh(ct), (2.9)

where * stands for element-wise multiplication.

2.5 Convolutional Long Short Term Memory

Convolutional LSTM is a different variant of LSTM, where it is used to handle se-
quence of images as input such as video. Let the input sequence of video be denoted
by XV , and let the sequence comprise of T time steps, then at time step t, the LSTM
module receives the following inputs:

� Previous cell state denoted as ct−1

� Previous hidden state denoted as ht−1

� Present preprocessed video input denoted as X
(t)
V , as discussed in detail in

section 3.6.4

The LSTM module outputs the following:

� Present cell state denoted as ct to pass the information to LSTM module at
time step t+1.

� Present hidden state denoted as ht which is the output of the LSTM module at
time step t and is also passed to the LSTM module at time step t+1.

Convolutional LSTMs achieve this ability to learn long term dependencies using four
gates which are as follows:
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2.5.1 The Forget Gate

The forget gate consists of a 2D convolutional layer alongwith sigmoid activation. At
time step t, the gate takes the concatenated tensor of ht−1 and X

(t)
V along the channel

axis as input denoted by [ht−1,X
(t)
V ] which is a 3-dimensional tensor and outputs a

vector ft which is also a 3-dimensional tensor. This gate decides the degree to which
each dimension of the tensor ct−1 is to be forgotten based on the contents of the
input tensor. If the ith dimension of ft is 0 (which we state here as degree), then we
completely forget the ith dimension of ct−1 and if the ith dimension of ft is 1, then we
completely retain the ith dimension of ct−1. So we define ft as follows:

ft = σ(Wf ∗ [ht−1, X
(t)
V ]). (2.10)

The weights Wf is the parameter of the gate. Here * denotes convolution operation.

2.5.2 The Candidate Gate

The candidate gate consists of a 2D convolutional layer with tanh activation. At time
step t, the gate takes the concatenated vector of ht−1 and X

(t)
V as input denoted by

[ht−1,X
(t)
V ] and outputs a vector c̃t which is a 3-dimensional tensor. This gate extracts

the new information from the frame at time step t, which we denote here as c̃t, based
on the input tensor that can ”potentially” be incorporated into the new cell state ct.
The degree of inclusion of c̃t in ct depends on the output of the input gate discussed
in the section 2.5.3. So we define c̃t as follows:

c̃t = σ(Wc̃ ∗ [ht−1, X
(t)
V ]). (2.11)

The weights Wc̃ is the parameter of the gate. Here * denotes convolution operation.

2.5.3 The Input Gate

The input gate consists of a 2D convolutional layer alongwith sigmoid activation. At
time step t, the gate takes the concatenated vector of ht−1 and X

(t)
V as input denoted

by [ht−1,X
(t)
V ] and outputs a vector it.This gate decides the degree to which each

dimension of the tensor c̃t is incorporated into the new cell state ct based on the
contents of the input tensor. If the ith dimension of it is 0 (which we state here as
degree), then we completely ignore the ith dimension of c̃t in the ith dimension of ct
and if the ith dimension of ft is 1, then we completely include the ith dimension of c̃t
at the ith dimension of ct. So we define it as follows:

it = σ(Wi ∗ [ht−1, X
(t)
V ]). (2.12)

The weights Wi is the parameter of the gate. Here * denotes convolution operation.
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2.5.4 The Output Gate

The output gate consists of a 2D convolutional layer with sigmoid activation. At
time step t, the gate takes the concatenated vector of ht−1 and X

(t)
V as input denoted

by [ht−1,X
(t)
V ] and outputs a vector zt. This gate decides the degree to which each

dimension of the scaled version of the new cell state ct (where the scaling factor is
discussed in detail in section 2.5.5) is to be revealed as output of the Convolutional
LSTM module at the time instant t i.e. ht (discussed in section 2.5.5), based on
the present input tensor. If the ith dimension of zt is 0 (which we state here as
degree), then we completely surpress the ith dimension of the scaled ct tensor in
the ith dimension of output vector i.e. ht (discussed in section 2.5.5) and if the ith

dimension of zt is 1, then we completely reveal the ith dimension of the scaled ct
tensor in the ith dimension of output vector i.e. ht (discussed in section 2.5.5). So we
define zt as follows:

zt = σ(Wz ∗ [ht−1, X
(t)
V ]). (2.13)

The weights Wz is the parameter of the gate. Here * denotes convolution operation.

2.5.5 The Cell State and Hidden State

As discussed earlier, the cell state is a passage containing the necessary information
that needs to be carried across all the time steps of the input sequence to capture
the long-term dependencies. The content of the new cell state at time instant t is
obtained by forgetting certain features from the past frames upto time instant t-1
and adding the new features or information obtained from the present frame at time
instant t of the video sequence. The contents needed to be forgotten are controlled
by the forget gate based on the input at time step t and the hidden state obtained
until time step t-1 i.e. [ht−1,X

(t)
V ] and adding the contents from the candidate gate

controlled by the input gate based on the input at time step t and the hidden state
obtained until time step t-1 i.e. [ht−1,X

(t)
V ]. The new cell state ct can be defined as

follows:

ct = ft � ct−1 + it � c̃t, (2.14)

where � denotes the Hadamard operator.

The new hidden state at time instant t i.e ht defines the salient information obtained
by processing the frames of the video upto a time instant t. The contents of the new
hidden state are the contents from the new cell state but are controlled by the output
gate. The new hidden state ht can be defined as follows:

ht = zt � tanh(ct), (2.15)

where � denotes the Hadamard operator.
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2.6 Support Vector Regressor

Support Vector Machines (SVM) [23] are well known in classification problems.The
use of SVMs in regression finds applications typically through models such as Support
Vector Regressors (SVR) [24]. We are discussing SVR in this section in order to
explain the method which is implement in the model that we discussed in section
1.3.1. SVR gives us the flexibility to define how much error is acceptable in our
model and find an appropriate line (or hyperplane in higher dimensions) to fit the
data. The objective function of SVR is to minimize l2-norm of the coefficient vector.
The error term is instead handled in the constraints, where we set the absolute error
less than or equal to a specified margin, called the maximum error, ε (epsilon). We can
tune epsilon to gain the desired accuracy of our model. The new objective function
and the constraints are as follows:

min
w

1

2
‖w‖2

s.t. |yi − wi.xi| ≤ ε,∀i
.

(2.16)

This algorithm doesn’t work for all data points. The algorithm solved the objective
function as best as possible but some of the points still fall outside the margins. As
such, we need to account for the possibility of errors that are larger than ε. We can
handle such situations with the help of slack variables which denoted for any value
that falls outside of ε by its deviation from the margin denoting as ξ as shown in
the figure 2.1. So we add these deviations to the objective function and get the new
objective function as follows:

min
w,ξ

1

2
‖w‖2 + C

N∑
i=1

|ξi|

s.t. |yi − wi.xi| ≤ ε+ |ξi|,∀i
.

(2.17)

2.7 Losses and Metrics

Neural networks fall in the domain of supervised learning. Training a neural network
involves presenting it with a set of data for which the correct output, named as the
ground truth is already known to us. The network provides us a predicted output.
The difference between the ground truth and the predicted output is known as the
loss. Metrics are methods of evaluating the output of the network. While loss is used
to train the network, metric is used only for evaluation. A brief description of the
loss functions and metrics used is provided in this section.
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Figure 2.1: Illustrative Example of SVR with Slack Variables

2.7.1 Mean Squared Error

The loss function that we used to train our model is Mean Squared Error. The Mean
Squared Error function used is as follows:

L =
1

N

N∑
i=1

(V predicted
i − V actual

i )2, (2.18)

where V actual
i is the actual number of views ith video gets, V predicted

i is the number
of views ith video can get predicted by the model and N is the number of training
observations.

2.7.2 Binary Cross Entropy

Binary Cross Entropy (BCE) is a loss function derived from information theory [25].
Lets say the ground truth data comes from a distribution known as the true distri-
bution q(y) while the neural network predicts a result that comes from a distribution
p(y). Entropy is a measure of uncertainity of a distribution. Thus cross entropy
becomes a measure of estimating how far away p(y) is from q(y). The purpose of
training is to make p(y) as close to q(y) as possible. This loss is used to train the first
stage of the model discussed in the section 1.3.1. Mathematically:
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Hp(q) = − 1

N

N∑
i=1

yi · log (p(yi)) + (1− yi) · (1− log (p(yi))), (2.19)

where N is the total number of datapoints. yi is the ground truth value of the ith
datapoint and p(yi) is the predicted value for the current datapoint.

2.7.3 Mean Absolute Percentage Error

It is a measure of prediction accuracy of forecasting in statistics [26]. It is usually
represented by the formula:

M =
1

N

N∑
i=1

|V actual
i − V predicted

i |
V actual
i

× 100, (2.20)

where V actual
i is the actual number of views ith video gets, V predicted

i is the number of
views ith video can get predicted by the model and N is the total number of instances
or datapoints. We have used this metric to evaluate our model in testing phase as
well as to compare our model with the existing model discussed in section 5.5.

2.8 Training Neural Networks

As we will extensively use neural network layers in our model to generate a view
count, so that involves a lot of weights or parameters to learn. This section describes
in brief how the training of neural networks takes place in order to learn these weights
to achieve a trained model desirable for our purpose.

2.8.1 The Gradient Descent Algorithm

Originally developed by Cauchy [27] this algorithm is used extensively for training
neural networks. Training data is presented to the network and corresponding pre-
dictions are obtained. The value of the loss is calculated by comparing predictions
with ground truth values. The objective of gradient descent is to minimize the loss
by updating the weights of the network in the direction of steepest descent i.e the
gradient. The algorithm converges when we have reached a local minima and no
further reduction of the loss value is possible. Mathematically:

w
′

i = wi − η∇(J), (2.21)

where η is known as the learning rate which controls how fast the network reaches
the local minima, wi is the weight value, w

′
i is the updated value of the weight wi
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and J is the calculated loss. Presenting the input to the network and obtaining
the prediction is known as forward propagation while calculating loss, and updating
weights using equation (2.21) is known as backpropagation. If backpropagation occurs
after every forward propagation then it is called Stochastic Gradient Descent. When
backpropagation occurs after forward propagating a batch of data and accumulation
the net loss then it is known as Mini-batch Gradient Descent. We have used Mini-
batch Gradient Descent as our training algorithm.

2.8.2 Regularization

This is a method used to fine tune predictions made by the network. It also helps in
better training by reducing overfitting.

Dropout

Dropout regularization [28] is a technique that distributes the decision making process
over the entire network. During training it may so happen that the weight value
associated to a particular hidden neuron may become very high and it may start
behaving as the deciding neuron for a particular class. Drop out randomly selects
neurons and sets their activations to zero. This ensures the weight of those neuron
don’t get updated for the current pass. This maintains uniformity within the network.

2.8.3 ADAM Optimization

This optimization technique speeds up the training process. Instead of using a fixed
learning rate η, ADAM [29] uses an adaptive learning rates for different parameters.
Adaptability is achieved by using exponentially moving averages computed on gra-
dients of the current mini-batch. We have utilized ADAM optimization to speed up
our training process.
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The Dataset and its Description

This chapter describes the dataset that we used in this experiment. Several methods
of preprocessing were needed to be carried out to featurize the different subjective
attributes of the video dataset that we are trying to handle in this experiment. The
dataset has been downloaded from kaggle [30].

3.1 General Description

The dataset contains the most daily trending videos from the countries like US, Great
Britain, Germany, Canada and France, with the following attributes:

� Video ID: The unique ID assigned to the video in YouTube based on which you
can access the video.

� Publishing Date: The date the video was released in YouTube.

� Trending Date: The date in which the video became trending after the date of
it being published in YouTube.

� Thumbnail URL: The URL to download the thumbnail image corresponding to
the video in YouTube.

� Title: The caption or title of the video in YouTube.

� Likes: The number of likes received by the video.

� Share: The number of people shared this video.

This dataset was collected using the YouTube API. We are concentrating on the
trending videos from US only.

27
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The four subjective attributes of video that we have focused on this research project
are namely, the thumbnail image, the title of the video, the audio of the video and
the video itself. The dataset that we considered here are of different genres involv-
ing Film and animation, Autos and vehicles, music, pets and animals, sports, short
movies,travels and events,gaming, video blogging, people and blogs, comedy, enter-
tainment,news and politics,education, science and technology,classics, drama, family
and many more.

The dataset of trending videos from US contains on an overall of 6351 videos out of
which we have focused on 800 videos of duration ranging between 30 seconds to 40
minutes. The video file size varies from 50 Mb to 500 Mb.

3.2 Thumbnail attribute

The thumbnail image of a video plays an important role to attract the user to click
the video to view it in YouTube. So to capture the attractiveness, we have focused
on this attribute.

3.3 Title attribute

The title of the video captures the sentimental context based on which the video
might appeal to the user to click the video to view it. So this is the reason why we
selected title as an attribute.

3.4 Audio attribute

The audio plays an important role in determining how pleasant the user responds to
the video. In a study [31], it has been found that the audio in form of music is more
appealing and has a greater effect than visuals implying the importance of audio. So
due to this feature, we have focused on this subjective attribute as well.

3.5 Video attribute

The video is the most important aspect for determining whether the user will view
it or not, because it has both spatial and temporal crucial features to decide this
important factor. Due to this property, we have focused to include this subjective
attribute as well.
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Figure 3.1: Example of a thumbnail image [33]

3.6 Data Preprocessing

In this step, the data for the four subjective attributes namely, the thumbnail, the ti-
tle, the audio and the video are pre-processed differently to featurize the data suitable
enough to be used as input to the deep learning model.

3.6.1 Thumbnail

The thumbnail images downloaded from the YouTube, resized to a specific size de-
pending on the pretrained model being used at its input. The resized thumbnail image
is changed to RGB scale using OpenCV library package [32]. The image is then stan-
dardized locally by finding out the mean and standard deviation of the images per
channel. An example of a thumbnail image is shown in the figure 3.1.

3.6.2 Title

The title as a text is preprocessed as follows:

� Removing Stop words: Stop words are those which do not affect the meaning
of the sentence, thus are better removed. The NLTK package [34] contains a
set of stop words based on which we can remove stop words.

� Stemming: : Replacing words with their roots, reducing different types of words
with similar meanings. This helps in reducing the dimensionality of the feature
set. We try to achieve text stemming using the Porter Stemmer algorithm [35]
using the NLTK package [34].

� Generating a dictionary of words that are important for emoticons.

� Part of Speech Tagging: It assigns a tag to each word in the text and classifies
a word to a specific category like a noun, verb, adjective etc. We implement
POS tagging using the NLTK library package [34]. POS taggers are efficient for
explicit feature extraction.
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The title associated with the example of the thumbnail shown in the figure 3.1 is
”Red Sparrow—Official Trailer [HD]—20th Century FOX”.

3.6.3 Audio

The audio signal associated with the video is first convert to .wav file and using
the input-output wavfile function of the SciPy package [36] we read the signal at
its designated sampling rate. We then proceed to preprocess each of the signal as
directed in one of the article [37] as follows:

� Pre-Emphasis: The first step is to apply a pre-emphasis filter on the signal to
amplify the high frequencies. A pre-emphasis filter is useful in several ways:

1. Balance the frequency spectrum since high frequencies usually have smaller
magnitudes compared to lower frequencies

2. avoid numerical problems during the Fourier transform operation

3. may also improve the Signal-to-Noise Ratio (SNR).

The pre-emphasis filter can be applied to a signal x using the first order filter
in the following equation:

y(t) = x(t)− α ∗ x(t− 1). (3.1)

� Framing: After pre-emphasis, we need to split the signal into short-time frames.
The rationale behind this step is that frequencies in a signal change over time,
so in most cases it doesn’t make sense to do the Fourier transform across the
entire signal in that we would lose the frequency contours of the signal over time.
To avoid that, we can safely assume that frequencies in a signal are stationary
over a very short period of time. Therefore, by doing a Fourier transform over
this short-time frame, we can obtain a good approximation of the frequency
contours of the signal by concatenating adjacent frames. Typical frame sizes
in speech processing range from 20 ms to 40 ms with 50% (+/-10%) overlap
between consecutive frames. Popular settings are 25 ms for the frame size,and
a 10 ms stride (15 ms overlap).

� Window: After slicing the signal into frames, we apply a window function such
as the Hamming window to each frame. A Hamming window has the following
form:

w[n] = 0.54− 0.46. cos
2.π.n

N − 1
, (3.2)

where 0 ≤ n ≤ N − 1, N is the window length. We apply the window function
to the frames in order to counteract the assumption made by the FFT that the
data is infinite and to reduce spectral leakage.
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� Filter Banks: We compute the filter banks by applying triangular filters nearly
40 filters,on a Mel-scale to the power spectrum to extract frequency bands.
The Mel-scale aims to mimic the non-linear human ear perception of sound, by
being more discriminative at lower frequencies and less discriminative at higher
frequencies. We can convert between Hertz (f) and Mel (m) using the following
equations:

m = 2595. log10

(
1 +

f

700

)
. (3.3)

Each filter in the filter bank is triangular having a response of 1 at the center
frequency and decrease linearly towards 0 till it reaches the center frequencies
of the two adjacent filters where the response is 0 as shown in the figure 3.2.
This can be modelled as follows:

Figure 3.2: Filter Banks with triangular filters.

Hm(k) =



0 if k < f(m− 1)
k−f(m−1)

f(m)−f(m−1) if f(m− 1) ≤ k < f(m)

1 if k = f(m)
f(m+1)−k

f(m+1)−f(m)
if f(m) < k ≤ f(m+ 1)

0 if k > f(m+ 1).

(3.4)

After applying the filter bank we obtain the spectogram as shown in the figure
3.3.

� Mel Frequency Cepstral Coefficients: It turns out that filter bank coefficients
computed in the previous step are highly correlated, which could be problem-
atic in some machine learning algorithms. Therefore, we can apply Discrete
Cosine Transform (DCT) to decorrelate the filter bank coefficients and yield a
compressed representation of the filter banks. Typically, for Automatic Speech
Recognition (ASR), the resulting cepstral coefficients 2-13 are retained and the
rest are discarded. The mean normalized Mel Frequency Cepstral Coefficients
is shown in the figure 3.4.
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Figure 3.3: Spectogram obtained after applying filter banks.

Figure 3.4: Mel Frequency Cepstral Coefficients.

� Delta MFCC: The Delta MFCC is obtained in order to understand the move-
ment of formant frequencies. They can be understood using the equation:

delta mfcc[n] = mfcc[n+ 1]−mfcc[n]. (3.5)

The MFCC and Delta MFCC are concatenated together to form the 24 dimensional
feature vector for each frame, with 1024 frames in overall for a single audio file.

3.6.4 Video

The videos that we have in our database are of varying length ranging from 5 minutes
to 35 minutes approximately. Considering an average frames per second to be around
25 fps, we would realize it would consist a lot of frames in the entire video duration.
So in order to capture the essence of the entire video, we need to extract only essential
frames which are informative enough thereby rejecting the redundant frames. These
essential informative frames is what we term as I-frames also called Inter-coded frames
or keyframes. These I-frames are detected observing the neighboring frames and
thereby deducting to the fact whether the frame is informative or redundant, making
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Figure 3.5: A snapshot of the video taken while playing in YouTube. [39]

it an I-frame or not. So this kind of video compression takes advantage from temporal
redundancy between neighboring frames enabling higher compression rates. Since
the videos are of unequal duration we have decided to sample equally spaced 25 I-
frames from each video, such that these 25 I-frames best summarizes the entire video.
These I-frames are extracted using ffmpeg software [38] and each frame is resized
to a predetermined size using OpenCV library package [32]. The resized frames are
then normalized using the local standardization where the mean and the standard
deviation is obtained for each frame per channel. The snapshot of the video associated
with the thumbnail shown in the figure 3.1 playing in YouTube is shown in the figure
3.5.



Chapter 4

The Proposed Solution

4.1 Proposed Solution

This section provides an elaborate description of our contribution to the research
problem at hand. We firstly try to explain what makes a video viral, why would
a video be clicked, liked and shared by the user and therefore try to mathemati-
cally model the number of views the video could get. We then try to explain the
function our architecture tries to learn alongwith the implementation of the network
architecture itself followed by the training details.

4.2 Factors that decide virality of a video from a

user’s perspective

As discussed earlier in section 1.2 we had come across some of the factors from a
user’s perspective regarding the number of views a video can get. They are: (a) why
would a user click on a video? and (b) why would a user like the video and share it.
In the next few paragraphs, we will aim to get the answer to these two questions.

4.2.1 Why would a User Click on a Video?

When a video appears in the search result of YouTube, we find the following manda-
tory items corresponding to each video: a thumbnail, a title, and the number of views
(the number of YouTube users who have already viewed the video). An user typically
tends to click on a video it if has

� an attractive thumbnail

� an attractive, relevant, informative title

34
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� a large number of views

Therefore, the probability of clicking on a video can be modeled in terms of the
attractiveness of the thumbnail, the attractiveness, the relevance, and the information
contained in the title and the number of views the video already have.

Let Fth and Fti be feature vectors corresponding to the thumbnail and the title.
Assume that Fth captures the attractiveness of the thumbnail. Also assume that Fti

captures the attractiveness, the relevance and the information contained in the title.
Let V (t) be the total number of views of the video until time t and PC(t) be the
probability that a new user (an user who have not already viewed the video) clicks
the video at time t. Then based on the above discussion, we can model PC(t) as a
function of Fth, Fti, and V (t):

PC(t) = g1(Fth,Fti, V (t)), (4.1)

where the function g1(·) relates the probability of clicking the video at time t with
Fth, Fti, and V (t).

4.2.2 Why would a User Like a Video and Share it?

Whether one would like a video or not strongly depends on primarily the quality of the
video and the quality of the audio. As discussed earlier, the number of shares of video
is dependent on how many users like the video. Another subtle factor that affects
the number of sharing is the number of views a video already have. A highly viewed
video tends to get shared more frequently. Therefore, we can model the probability
of liking and sharing a video in terms of audio and video quality and the number of
views it already has.

Let FA and FV be feature vectors corresponding to the audio and the video. Assume
that FA and FV capture the quality of the audio and the video respectively. Let
PLS(t) be the probability that a user likes and shares the video at time t. We can
model PLS(t) in terms of FA, FV, and V (t):

PLS(t) = g2(FA,FV, V (t)), (4.2)

with g2(·), being the function that relates PLS(t) with FA, FV, and V (t).

4.3 Modeling the Number of Views

As discussed earlier, the number of views depends on the probability of clicking a
video PC(·) and the probability of liking and sharing the video PLS(·). Let V (t) be
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the total number of views of the video until time t and ∂V (t)
∂t

be the time rate of change
of views at time t. Hence, using (4.1) and (4.2), we write

∂V (t)

∂t
= G∗(PC(t), PLS(t))

= G∗(g1(Fth,Fti, V (t)), g2(FA,FV, V (t))).

(4.3)

The function G∗(·) is unknown and we need to learn it from the training data. Notice
that the right hand side of (4.3) has time dependent component V (t) and also time
independent components Fth, Fti, FA, and FV. We rearrange the time dependent
and the time independent components of G∗(·) in terms of a composite function Gr(·)
as follows:

∂V (t)

∂t
= G∗(g1(Fth,Fti, V (t)), g2(FA,FV, V (t)))

= Gr(V (t),Fth,Fti,FA,FV). (4.4)

It is challenging to find an exact expression for the function Gr(·). However, we can
have some idea about the nature of the function Gr(·). Let the maximum possible
number of YouTube users be N which is a constant. Therefore as V (t) increases, the

maximum possible value ∂V (t)
∂t

has to decrease. Consider the following expression:

Gr(V (t),Fth,Fti,FA,FV)

= (N − V (t))G(Fth,Fti,FA,FV) (4.5)

This form of Gr(·) satisfies our requirement. Putting (4.5) in (4.4), we get:

∂V (t)

∂t
= (N − V (t))G(Fth,Fti,FA,FV). (4.6)

The solution of (4.6) leads us to the number of views at time instant t:

V (t) = N − exp {−G(Fth,Fti,FA,FV)t+ C} , (4.7)

where C is the integration constant. The value of C can be found considering zero
views at the beginning (t = 0).

Based on the definition of a viral video, let us call a video to be a viral video if the
view crosses a threshold Nth within a time tv after the release of the video. From
(4.7), we can find the number of views till time tv:

Nv = N − exp {−G(Fth,Fti,FA,FV)tv + C} . (4.8)

A video would be called viral if Nv > Nth. Therefore, from (4.8), in order for a video
to be viral, we need
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Figure 4.1: The block diagram of the proposed model

N − exp {−G(Fth,Fti,FA,FV)tv + C} > Nth

⇒ G(Fth,Fti,FA,FV) >
1

tv
(C − ln (N −Nth)) . (4.9)

Notice that we know all the quantities in the right hand side of (4.9). The only
unknown quantity in the above equation is the function G(·). Therefore, in order to
predict whether a video would be viral, we need to learn G(·). We propose a neural
network model to learn G(·).

4.4 The Network Model

In order to learn G(·), we need the thumbnail feature vector Fth, title feature vector
Fti, audio feature vector FA, and video feature vector FV. Next we discuss how to
find these feature vectors.

4.4.1 Thumbnail Feature Vector Fth

The feature vector corresponding to the thumbnail is generated using a AlexNet
network, pre-trained on ImageNet.
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4.4.2 Title Feature Vector Fti

We use an emotion detector to find the title feature vector Fti. We take the pre-trained
model of Sentiment intensity analyzer [40] on VADER that generates a feature vector
corresponding to the title of the video. In particular, we take the output from the
network as Fti expressing the polarity scores of positivity, negativity and neutral
sentiments associated with the title.

4.4.3 Click-affinity Network

We have already argued that the probability of clicking a video is dependent on Fth

and Fti. Hence we use Fth and Fti to predict the probability of clicking on video
through a neural network regressor. The regressor is trained with the view counts
corresponding to the training videos. We can find the click probability corresponding
to the training videos but YouTube does not provide any click probability correspond-
ing to a video. Therefore, we define the click probability of a video. Consider a video
released by some YouTube channel with Nch number of subscribers. When the video
is released, all the subscribers of the channel receives a notification. Therefore, Nch

is the minimum number of users who are aware of the release of the video. Let the
total number of views of the video be Nv at t = tv. If a video is viral, Nv usually
becomes much greater than Nch at t = tv. In that case, we assign a click-probability
value PC(tv) = 1 to the video; indicating that the number of clicks on the video has
crossed the number of subscribers. Otherwise, we define PC(tv) as a ratio of Nv and
Nch:

PC(tv) =

{
Nv

Nch
, if Nv < Nch

1, otherwise.
(4.10)

The input to the regressor is the the concatenation of the thumbnail feature vector
Fth and the title feature vector Fti. Once trained, the click-prediction network can
predict the probability that a user clicks the video. The output from the penultimate
layer of the click-prediction network indicates the quality of the thumbnail and the
title in making a user click a video. Let this vector be Ftt. We use Ftt to predict the
view of the video.

4.4.4 Audio and Video Feature Vectors (FA, FV)

We have already explained that the number of likes and shares are strongly dependent
on the qualities of the audio and the video. Therefore, we extract the temporal
feature vectors corresponding to the audio using a LSTM network and the spatial
temporal feature vectors corresponding to the video using a Convolutional LSTM
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Figure 4.2: The proposed model

network. We find a composite audio-video feature vector FAV by concatenating the
two feature vectors. The concatenated feature vector FAV represents the features
which are relevant for a user to decide to like or share a video.

4.4.5 Viral-video-prediction Network

Finally, we design the viral video prediction network that takes the outputs from the
click-affinity network and the concatenated feature vector FAV . Ftt from the click-
prediction network and FAV are concatenated and fed to the viral-video-prediction
network which is a regressor designed to predict Nv, the number of views at t = tv.
If Nv > Nth, the video is said to be viral. Thus, from the viral-prediction network,
we find the number of views and can predict if the video is going to be viral. A block
diagram of the proposed model is presented in Fig 4.1.

4.5 Understanding the function G(·)

There are many components in the network which are crucial for understanding the
function G(·) that the network learns.



40 CHAPTER 4. THE PROPOSED SOLUTION

4.5.1 Thumbnail network

The feature vector corresponding to the thumbnail is generated using a Alexnet net-
work, pre-trained on ImageNet, keeping initial five convolution layers fixed, followed
by two fully connected layers denoted by FCa1 and FCa2, as shown in the figure
4.2. The pretrained Alexnet provides a mapping: gth1(·) : Th −→ Fth, where Th ∈
IR227∗227∗3 represents the input image and Fth ∈ IR43264∗1.

Fth = gth1(Th). (4.11)

The two fully connected layers denoted by FCa1 and FCa2 as shown in figure 4.2,
learns a mapping: gth2(·) : Fth −→ Fth1, where Fth1 ∈ IR1024∗1.

Fth1 = gth2(Fth),
gth2(Fth) = Wth.Fth, (4.12)

where Wth ∈ IR1024∗43264 represents the mapping learnt by the two fully connected
layers FCa1 and FCa2 as shown in figure 4.2. So the thumbnail network represents a
mapping: gth(·) : Th −→ Fth1 where:

gth(·) = gth2 ◦ gth1(·),

where f ◦ g represents a composite function i.e f(g(·)). So we get:

Fth1 = gth2 ◦ gth1(Th),

= gth2(gth1(Th)).

From equation (4.11), we get:

Fth1 = gth2(Fth).

From equation (4.12), we get:
Fth1 = Wth.Fth. (4.13)

The partial derivative of Fth1 with respect to Fth is:

∂Fth1
∂Wth

= Fth. (4.14)

4.5.2 Title Network

The feature vector corresponding to the title is generated using a Sentiment intensity
analyzer [40], pretrained on irony and sarcasm based tweets alongwith punctuations
and special symbols, to capture the strong emotion of the Twitter users for sentiment
analysis task, followed by two fully connected layers denoted by FCb1 and FCb2, as
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shown in the figure. In our case we utilize the model to extract sentiments from the
title of the video. The input to the Sentiment intensity analyzer model is the title of
the video in the form of one hot encoded vector and the output is the vector of length
three depicting the probability score of a title to be positive, negative and neutral
sentiment, denoted by Fti as shown in the figure 4.2. We had taken these sentiments
into account as they reflect the affinity of a viewer to click the video. The pretrained
Sentiment Intensity Analyzer provides a mapping: gti1(·) : Ti −→ Fti, where Ti ∈
IR|V | represents the one hot vector of the title, |V |: represents the vocabulary size of
the corpus on which the Sentiment instensity analyzer is pretrained and Fti ∈ IR3×1

represents the three polarity scores.

Fti = gti1(Ti). (4.15)

The two fully connected layers denoted by FCb1 and FCb2 as shown in figure, learns
a mapping: gti2(·) : Fti −→ Fti1, where Fti1 ∈ IR1024×1.

Fti1 = gti2(Fti),
gti2(Fti) = Wti.Fti, (4.16)

where Wti ∈ IR1024×3 represents the mapping learnt by the two fully connected layers
FCb1 and FCb2 as shown in the figure. So the title network represents a mapping :
gti(·) : Ti −→ Fti1 where:

gth(·) = gth2 ◦ gth1(·),
where f ◦ g represents a composite function i.e f(g(·)). So we get:

Fti1 = gti2 ◦ gti1(Ti),
= gti2(gti1(Ti)).

From equation (4.15) we get:
Fti1 = gti2(Fti).

From equation (4.16) we get:
Fti1 = Wti.Fti. (4.17)

The partial derivative of Fti1 with respect to Fti is:

∂Fti1
∂Wti

= Fti. (4.18)

4.5.3 Click-affinity Network

We have already argued that the affinity of clicking a video is dependent on Fth1 and
Fti1. Hence we use Fth1 and Fti1 to featurize the affinity of a user to click the video
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using a layer of neural network denoted by FCab1 as shown in the figure 4.2. The
input to the network is the the concatenation of the thumbnail feature vector Fth1 and
the title feature vector Fti1 denoted by Fthti. The output from the network indicates
the quality of the thumbnail and the title in making a user click a video. Let this
vector be Ftt. We use Ftt to predict the view of the video. So the network learns a
mapping: gca(·) : Fthti −→ Ftt, where Fthti ∈ IR2048×1 represents the concatenation
of Fth1 and Fti1 and Ftt ∈ IR1024×1.

Ftt = gca(Fthti),
gca(Fthti) = Wca.Fthti,

Ftt = Wca.Fthti, (4.19)

where Wca ∈ IR1024×2048 represents the mapping learnt by the fully connected layer
FCab1 as shown in the figure. The partial derivative of Ftt with respect to Wca is:

∂Ftt
∂Wca

= Fthti. (4.20)

4.5.4 Audio Network

The audio network consists of Long Short Term Memory network which inputs the
audio waveform in the form of frames where each frame is featured as a 24 dimensional
vector. The input signal corresponding to one frame is denoted by F (t)

A ∈ IR24×1. The
hidden vector is denoted by ht ∈ IR512×1.The cell state is denoted by ct ∈ IR512×1. The
input to the LSTM at time step t is the concatenation of ht−1 and F (t)

A denoted by

[ht−1,F (t)
A ] which we would like to represent here as X

(t)
A ∈ IR536×1 The four gates of

the LSTM include the forget gate, the input gate, the candidate gate and the output
gate. Let the output of the forget gate be denoted by ft then we can define ft as :

ft = σ(Wf .X
(t)
A + bf ), (4.21)

where the weight Wf ∈ IR512×536 and the bias bf ∈ IR512×1 denote the parameters of
the fully connected layer with sigmoid activation present in the forget gate. Let the
output of the input gate be denoted by it then we can define it as:

it = σ(Wi.X
(t)
A + bi), (4.22)

where the weight Wi ∈ IR512×536 and the bias bi ∈ IR512×1 denote the parameters of
the fully connected layer with sigmoid activation present in the input gate. Let the
output gate be denoted by c̃t then we can define c̃t as:

c̃t = tanh
(
Wc̃.X

(t)
A + bc̃

)
, (4.23)
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where the weight Wc̃ ∈ IR512×536 and the bias bc̃ ∈ IR512×1 denote the parameters of
the fully connected layer with tanh activation present in the candidate gate. Let the
output of the output gate be denoted by zt then we can define zt as:

zt = σ(Wz.X
(t)
A + bz), (4.24)

where the weight Wz ∈ IR512×536 and the bias bz ∈ IR512×1 denote the parameters of
the fully connected layer with sigmoid activation present in the output gate. Let the
cell state that we obtain at the time step t be denoted as ct, then we define ct as:

ct = ft ∗ ct−1 + it ∗ c̃t. (4.25)

Let the hidden state that we obtain at the time step t be denoted as ht, then we
define ht as:

ht = zt ∗ tanh(ct). (4.26)

where * denotes element wise multiplication. The final output of the LSTM is given
by:

FA1 = hT = zT ∗ tanh(cT ),

⇒ FA1 = gLSTM(FA). (4.27)

We observe that FA1 depends on input FA, hidden states h and cell states c of all T
time steps where FA1 ∈ IR512∗1.
So in general in order to observe the gradient equation for the weights that are
being learned, we can concatenate Wf , Wi,Wc̃ and Wz to form WLSTM . The partial
derivative of the output FA1 with respect to WLSTM is as follows:

∂FA1
∂WLSTM

=
∂FA1
∂cT

.
∂cT
∂cT−1

......
∂c2
∂c1
∗ ∂c1
∂WLSTM

,

⇒ ∂FA1
∂WLSTM

=
∂FA1
∂cT

.(
T∏
t=2

∂ct
∂ct−1

).
∂c1

∂WLSTM

. (4.28)

Similarly we can concatenate bf , bi,bc̃ and bz to form BLSTM . The partial derivative
of the output FA1 with respect to BLSTM is as follows:

∂FA1
∂BLSTM

=
∂FA1
∂cT

.
∂cT
∂cT−1

......
∂c2
∂c1

.
∂c1

∂BLSTM

,

⇒ ∂FA1
∂BLSTM

=
∂FA1
∂cT

.(
T∏
t=2

∂ct
∂ct−1

).
∂c1

∂BLSTM

. (4.29)

In both the cases, the ratio ∂ct
∂ct−1

can be expressed as follows:

∂ct
∂ct−1

= σ′(Wf .X
(t)
A ) + ft +

σ′(Wi.X
(t)
A ).Wi.zt−1 ∗ tanh′(ct−1).c̃t +

σ′(Wc.X
(t)
A ).Wc.zt−1 ∗ tanh′(ct−1).it. (4.30)
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4.5.5 Video Network

The video network consists of Convolutional LSTM which inputs video in the form
of frames, where each frame is denoted by F (t)

V ∈ IR64×64×3,hidden vector is denoted
by ht ∈ IR64×64×10 and the cell state by ct ∈ IR64×64×10. At any instant t, the frame
F (t)
V concatenated with the hidden state at time instant t along the channel axis to

form [F (t)
V , ht−1] which we can denote as X

(t)
V ∈ IR64×64×13. X

(t)
V is passed through

a 2D Convolutional layer present in each of the four gates of the LSTM namely the
forget gate, the input gate, the candidate gate and the output gate followed by their
respective activations. Let the output of forget gate be denoted by ft, then we can
define ft as:

ft = σ(X
(t)
V ∗Wf ), (4.31)

where the convolution layer involves 10 filters each filter is of size 3× 3, padding = 1
and stride = 1. So Wf ∈ IR3×3×13×10. Let the output of input gate be denoted by it,
then we can define it as:

it = σ(X
(t)
V ∗Wi), (4.32)

where the convolution layer involves 10 filters each filter is of size 3× 3, padding = 1
and stride = 1. So Wi ∈ IR3×3×13×10. Let the output of input gate be denoted by c̃t,
then we can define c̃t as:

c̃t = tanh
(
X

(t)
V ∗Wc̃

)
, (4.33)

where the convolution layer involves 10 filters each filter is of size 3× 3, padding = 1
and stride = 1. So Wc̃ ∈ IR3×3×13×10. Let the output of input gate be denoted by zt,
then we can define zt as:

zt = σ(X
(t)
V ∗Wz), (4.34)

where the convolution layer involves 10 filters each filter is of size 3× 3, padding = 1
and stride = 1. So Wz ∈ IR3×3×13×10. Let the cell state that we obtain at the time
step t be denoted as ct, then we define ct as:

ct = ft � ct−1 + it � c̃t. (4.35)

Let the hidden state that we obtain at the time step t be denoted as ht, then we
define ht as:

ht = zt � tanh(ct), (4.36)

where * denotes convolution and � denotes hadamard operation. Let us define a
function fl(·), which flattens any input tensor. The final output of the LSTM is
given by:

FV 1 = fl(hT ) = fl(zT � tanh(cT )),

⇒ FV 1 = fl(gConvLSTM(FV )). (4.37)
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We observe that FV 1 depends on input FV . So in general in order to observe the
gradient equation for the weights that are being learned, we can concatenate Wf ,
Wi,Wc and Wo to form WConvLSTM . Consequently, we find the expression:

∂FV 1

∂WConvLSTM

=
∂FV 1

∂cT
.
∂cT
∂cT−1

......
∂c2
∂c1

.
∂c1

∂WConvLSTM

,

⇒ ∂FV 1

∂WConvLSTM

=
∂FV 1

∂cT
.(

T∏
t=2

∂ct
∂ct−1

).
∂c1

∂WConvLSTM

. (4.38)

where the ratio ∂ct
∂ct−1

can be expressed as follows:

∂ct
∂ct−1

= σ′(Wf ∗X(t)
V ) + ft +

σ′(Wi ∗X(t)
V ).Wi.zt−1 ∗ tanh′(ct−1)� c̃t +

σ′(Wc̃ ∗X(t)
V ).Wc̃.zt−1 ∗ tanh′(ct−1)� it. (4.39)

The output of the convolutional LSTM denoted by FV 1 ∈ IR64×64×10×25, which repre-
sents both the temporal and salient features of all the frames of the video combined
in a single tensor. The feature is then passed through 3D maxpooling layer in or-
der to consider only the salient components of the feature from each channel and
also to reduce the number of parameters. The size of the tensor is reduced such that
FV 1 ∈ IR31×31×4×25. The resultant feature is then flattened and passed through a fully
connected layer denoted by FCd1, which learns the mapping: gvid(·) : FV 1 −→ FV 2,
where FV 1 ∈ IR96100∗1 and FV 2 ∈ IR1024∗1

FV 2 = gvid(FV 1),

gvid(FV 1) = Wvid.FV 1,

FV 2 = Wvid.FV 1. (4.40)

where Wvid ∈ IR1024∗96100 represents the mapping learnt by the fully connected layer
FCd1 as shown in the figure 4.2.

4.5.6 Viral-video-prediction Network

We concatenate FA1, FV 2 and Ftt to form a feature vector, denoted by F , of size
2560 × 1, as shown in the figure 4.2. This network consists of fully connected layers
which acts as a regressor model to produce a real value which denotes the predicted
value of number of views. This network plays a crucial role to generate the number
of views from the audio, video, thumbnail and title attributes combined in the vector



46 CHAPTER 4. THE PROPOSED SOLUTION

denoted by F . The networks tries to learn a mapping: gviral(·) : F −→ V , where
F ∈ IR2560∗1 and V ∈ IR.

V = gviral(F),

gviral(F) = Wviral.F ,
V = Wviral.F , (4.41)

where Wviral ∈ IR1×2560 represents the mapping learnt by the viral video prediction
network to predict the final view count.

So the function G(·) that the neural network wants to learn is a function of Fth, Fti,
FA and FV .

G(Fth,Fti,FA,FV ) = gviral(F).

As F is a concatenation of Ftt, FA1 and FV 1, then we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
FA1,FV 2,Ftt

]}
,

where if a vector A is a concatenation of vectors B,C and D then we can denote A as
[B, C,D].

As we know that Ftt is related to Fthti through equation (4.19), so we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
FA1,FV 2,Wca.Fthti

]}
.

We know that Fthti is a concatenation of Fth1 and Fti1, so we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
FA1,FV 2,Wca.[Fth1,Fti1]

]}
.

We know that Fth1 is related to Fth through equation (4.13) and Fti1 is related to Fti
through equation (4.17), then we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
FA1,FV 2,Wca.[Wth.Fth,Wti.Fti]

]}
.

We know that FA1 is related to FA through equation (4.27) and FV 2 is related to FV 1

through equation (4.40), then we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
gLSTM(FA),Wvid.FV 1,Wca.[Wth.Fth,Wti.Fti]

]}
.
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We know that FV 1 is related to FV through equation (4.37), then we get:

G(Fth,Fti,FA,FV ) = Wviral.

{[
gLSTM(FA),Wvid.(fl(gConvLSTM(FV ))),Wca.[Wth.Fth,Wti.Fti]

]}
.

So the function G(·) learnt is given as follows:

G(Fth,Fti,FA,FV ) = Wviral.

{[
gLSTM(FA),Wvid.(fl(gConvLSTM(FV ))),Wca.[Wth.Fth,Wti.Fti]

]}
.

Since the function G(·) outputs the predicted number of views, so we get:

Vpred = Wviral.

{[
gLSTM(FA),Wvid.(gConvLSTM(FV )),Wca.[Wth.Fth,Wti.Fti]

]}
. (4.42)

4.6 Loss Function

We have used Mean Squared Error as our loss function to train our model. It is as
follows:

L =
1

N

N∑
i=1

(V predicted
i − V actual

i )2, (4.43)

where V actual
i is the actual number of views ith video gets, V predicted

i is the number
of views ith video can get predicted by the model and N is the number of training
observations.

4.7 Implementation Details

In this section, we focus on the implementation details of different sub-networks of
the network which extract different feature vectors representing different aspects of
the given video.

4.7.1 Extracting Thumbnail Feature Vector Fth

We have used the AlexNet [19] model, pretrained with ImageNet dataset [41] along-
with two fully connected layers denoted by FCa1 and FCa2 consisting of 10000 and
1024 neurons respectively, as shown in the figure 4.2. The thumbnail image is first
resized to 227 x 227 x 3 before passing to the AlexNet. We have frozen and kept only
the first five layers of the AlexNet network. The output of this pretrained model is
flattened and passed through a dropout layer [28] with probability of 0.4, in order to
prevent overfitting, and we obtain a feature vector of size 43264× 1, denoted by Fth
as shown in figure 4.2. The vector Fth is then passed through two fully connected
layers denoted by FCa1 and FCa2 to get the feature vector Fth1.
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4.7.2 Extracting Title Feature Vector Fti

We implement the Sentiment Intensity Analyzer [40] model to obtain the title feature
vector Fti from title of the video. The model is pretrained on irony and sarcasm based
tweets alongwith punctuations and special symbols, to capture the strong emotion
of the Twitter users for sentiment analysis task. In our case we utilize the model to
extract sentiments from the title of the video. The input to the Sentiment Intensity
Analyzer model is the title of the video in the form of one hot encoded vector and
the output is the vector of length three depicting the probability score of a title to be
positive, negative and neutral sentiment, denoted by Fti as shown in the figure 4.2.
We had taken these sentiments into account as they reflect the affinity of a viewer to
click the video. This vector Fti is then passed through two consecutive fully connected
layers denoted by FCb1 and FCb2, consisting of 512 and 1024 neurons respectively,
to get the feature vector Fti1 of size 1024× 1, as shown in the figure 4.2.

4.7.3 Extracting Audio Feature Vector FA

It is usually found that audio in form of music is more memorable to humans compared
to human speech[]. In order to capitalize on the above fact, we have extracted the mel
frequency cepstral coefficients (MFCC) and the delta mel frequency cepstral cofficients
(D-MFCC) using the librosa library [42] from the audio. The audio waveform is
sampled at 22000 Hz. We have tried to conduct our experiment with different number
of frames and hop length and obtained an optimal performance by sampling 1024
frames with hop length of 512 samples from the above samples. We take the fast
fourier transform for each frame to create a spectrum called the Short Time Fourier
Transform (STFT) [43, 44, 45]. We pass each of these frame through mel-frequency
filter banks and perform cepstral analysis to get a vector, corresponding to each
frame, consisting of mel frequency cepstral coefficients. We have taken mel-frequency
filter banks because we want our features match more closely with what humans
hear. Usually for this experiment we have taken only the first 24 cepstral coefficients
because these 24 coefficients are sufficient to capture the spectral structure of the
waveform as perceived by the human ear. This results in a 24 dimensional feature
vector corresponding to each frame denoted by FA ∈ IR1024×24 We feed each frame
at a time to a Long Short Term Memory (LSTM) network [22]. The LSTM network
accepts an input vector of size 24×1, the hidden vector of the LSTM is of size 512×1.
The output vector from the LSTM is a 512 dimensional vector denoted by FA1 as
shown in figure 4.2.

4.7.4 Extracting Video Feature Vector FV

To extract the video features, we have conducted our experiment varying the number
of frames to be extracted from the video. With respect to optimal performance, we
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found that it would be sufficient to extract only equally spaced 25 i-frames from the
video. In order to reflect the salient features present in each frame of the video, we
found it sufficient to resize the frames to 64×64×3 denoted by FV . In order to capture
both the temporal and salient aspect of each frame of the video, we decided to use a
Convolution-LSTM model [46]. The size of the convolution filters is experimentally
set to 3×3 with suitable zero-padding and stride is set to 1. The output feature tensor,
denoted by FV 1, is obtained from the last time-step of the Convolution-LSTM model
of size 64× 64× 10× 25, which represents both the temporal and salient features of
all the frames of the video combined in a single tensor. The feature tensor is flattened
and then passed through a fully connected layer denoted by FCd1, consisting of 512
neurons, to give a feature vector denoted by FV 2, of size 512 × 1, as shown in the
figure 4.2.

4.7.5 Building the click affinity network

The purpose of this network is to get a combined representation of thumbnail and title
associated with the video which reflects the affinity of the user to click that particular
video. We concatenate the thumbnail feature vector Fth1 and the title feature vector
Fti1, as shown in the figure 4.2 to produce a feature vector of size 2048 × 1. The
click affinity network transforms this vector to a lower dimensional space through a
fully connected layer, denoted by Ftt, as shown in the figure 4.2. In order to avoid
overfitting, we applied dropout [28] at the output with a probability of 0.4.

4.7.6 Building the viral video prediction network

The concatenation of FA1 and FV 2 gives a combined a representation of audio visual
aspect of the video. On further concatenating the vector Ftt gives a combined rep-
resentation of audio, visual, aesthetic and sentimental aspect of the video which are
the key attributes for a user to view the video. The view prediction network tries to
learn the hidden representation that maps these attributes of a video with the view
the video receives. We concatenate FA1, FV 2 and Ftt to form a feature vector, de-
noted by F , of size 2048× 1, as shown in the figure 4.2. F is transformed to a lower
dimensional space through a series of fully connected layers, denoted by FC1 and
FC2, consisting of 1024 and 512 neurons respectively, as shown in the figure 4.2. The
final layer in the network outputs a regression value, which is the predicted number
of views of the video. To avoid overfitting of the network, We add a dropout layer in
between the fully connected layers FC1 and FC2 with a dropout probability of 0.4.
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4.7.7 Training details

The part of the network comprising of the fully connected layers labelled FCa1, FCa2,
FCb1, FCb2, FCab1, FCd1, FC1, FC2, FC3 and both the LSTM and Convolutional
LSTM models, as shown in the figure 4.2, are trained with Adam optimizer [29] for
150 epochs on Nvidia TITAN RTX [47]. We have set a learning rate of 0.00001. We
have taken a batch size of 16. We have used Mean Square Error (MSE) loss between
the actual view and the predicted view of the videos, averaged over all batches for
each epoch, while training the network.

4.8 Summary

In this chapter we came across the factors that makes a video viral and tried to
model the factors accordingly. Based on these factors, we tried to mathematically
model the number of views of a video. We then discussed the utility of the four
subjective video attributes namely, the thumbnail, the title, the audio associated with
the video and the video itself. Based on the features of these subjective attributes,
we designed our proposed model, explaining the sub-networks of our model like the
click-affinity network and the viral-video-prediction network. Based on the results
of modelling the number of views of a video, we tried to give some mathematical
exposition of the function G(·) that the network tries to learn. Finally, we discussed
on the implementation details of the network.
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Results

This chapter elaborates the results obtained from this research work. The dataset
contains a collection of daily trending YouTube videos with attributes like the video
title, video, audio, thumbnail image and view count of the video over a selected
interval. The results obtained on the dataset through the experiment are discussed
in this section.

5.1 Training results

We have taken 800 videos for training and 200 videos for testing phase. The five-fold
cross validation result on 800 videos with 600 videos as training set and 200 videos as
validation set has the following results as shown in the figure 5.1. The interpretation
of the results with respect to the original model is as follows:

� Training Loss: 5.23% which means the model on average predicted the number
of views at a deviation of 5.23% from the ground truth number of views

� Validation Loss: 5.82% which means the model while training on average pre-
dicted the number of views at a deviation of 5.82% from the ground truth
number of views of unseen videos.

� Testing Accuracy: 83.38% which is derived from Mean Absolute Percentage
Error (MAPE) explained in details in section 5.2 involving equations (5.1) and
(5.2).

5.2 Evaluation metrices

The loss used to train our model is Mean Squared Error. The evaluation metric on
which we are evaluating our model is Mean Absolute Percentage Error (MAPE) [48]

51
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Figure 5.1: The training and validation loss for 150 epochs

Model Training Loss Validation
Loss

Testing
Accuracy

Original Model 5.23 5.82 83.38
Ablation study of thumb-
nail

90.25 89.83 9.95

Ablation study of title 10.35 9.74 74.17
Ablation study of Audio 27.85 26.86 49.98
Ablation study of video 29.66 28.63 48.18
Ablation study of
thumbnail-title

90.26 89.82 10.04

Ablation study of audio-
video

29.35 28.06 48.76

Table 5.1: Table showing the training, validation losses and testing accuracy of all
the possible ablation studies conducted.
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Figure 5.2: Plot of training and validation loss of ablation thumbnail model.

given by the equation:

M =
1

N

N∑
i=1

|V actual
i − V predicted

i |
V actual
i

× 100, (5.1)

where V actual
i is the actual number of views ith video gets, V predicted

i is the number
of views ith video can get predicted by the model and N is the total number of test
instances or datapoints. So, according to equation (5.1), the M for the test dataset
is 16.61%. Now we define our test accuracy as:

Test accuracy = 100−M, (5.2)

then, according to equation (5.2), we can state our test accuracy to be 83.38%. So
the model predicts an unseen video with a deviation of 16.61% on average from its
actual number of views.

5.3 Ablation study

To show the effectiveness of all four components of model, we have performed the
ablation study. In the ablation study, we have removed each particular component
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Figure 5.3: Plot of training and validation loss of ablation title model.

Figure 5.4: Plot of training and validation loss of ablation audio model.
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Figure 5.5: Plot of training and validation loss of ablation video model.

Figure 5.6: Plot of training and validation loss of ablation thumbnail-title model.
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Figure 5.7: Plot of training and validation loss of ablation audio video model.

and their combinations to study their corresponding importance in the model. To
compare their performance, we have trained the models, obtained after removing com-
ponent(s), on the same dataset. In order to understand the importance of individual
components, we conducted the following experiments:

� Ablation study of thumbnail: In this study, we have removed Pre-trained
AlexNet, FCa1, FCa2 and FCab1 from the original network shown in figure
4.2. The Fti1 feature vector is fed directly to the viral video prediction network.
The training of the model is shown in the figure 5.2.

� Ablation study of title: In this study, we have removed Sentiment Intensity
Analyzer, FCb1, FCb2 and FCab1 from the original network shown in figure
4.2. The Fth1 feature vector is fed directly to the viral video prediction network.
The training of the model is shown in the figure 5.3.

� Ablation study of audio: In this study, we have removed Long Short Term
Memory component from the original network shown in figure 4.2. So the final
feature vector feeding the viral video prediction network is a concatenation of
Ftt and FV 2. The training of the model is shown in the figure 5.4.

� Ablation study of video: In this model, we have removed Convolutional LSTM
and FCd1 from the original network shown in figure 4.2. So the final feature
vector feeding the viral video prediction network is a concatenation of Ftt and
FA1. The training of the model is shown in the figure 5.5.
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In order to understand the importance of components in combination, we conducted
the following experiments:

� Ablation study of thumbnail-title: In order to understand the importance of
thumbnail image and title that attracts a user to click a particular video before
being viewed, thereby affecting the view count of the video, we have removed
thumbnail and title attribute branches from the model. In this model, we
have removed Pre-trained AlexNet,Sentiment Intensity Analyzer, FCa1, FCa2,
FCb1, FCb2 and FCab1 from the original network shown in figure 4.2. So the
final feature vector feeding the viral video prediction network is a concatenation
of FA1 and FV 2. The training of the model is shown in the figure 5.6.

� Ablation study of audio-video: In order to understand the importance of the
audio visual appeal that plays a role in the number of views a video receives, we
have removed the audio and video attribute branches from the model. In this
model, we have removed Long Short Term Memory component, Convolutional
LSTM and FCd1 from the original network shown in figure 4.2. So the final
feature vector feeding the viral video prediction network is a concatenation of
Ftt. The training of the model is shown in the figure 5.7.

The results of these ablation studies are shown in the Table 5.1.

5.4 Some of the sample examples predicted by our

model

Since we are discussing some samples that have been predicted by our model in
this section, we would illustrate some good predicted instances as well as some bad
predicted ones.

5.4.1 Good Predicted Instances

We have shown in this section 4 samples which have been predicted by the model
accurately. The details of these samples are summarised in the table on the following
page.

5.4.2 Bad Predicted Instances

We have shown in this section 4 samples which have been predicted by the model not
so accurately. The details of these samples are summarised in the table on page 61.
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Instance Title URL
Thumbnail

Image
Actual
Views

Predicted
Views

1
EVERY

ELEVATOR
EVER

https://www.
youtube.com
/watch?v=
6Nr xHolP1Q

Refer figure 5.8a 1339479 1340380

2
I Dribbled A

Basketball For
An Entire Day

https://www.
youtube.com
/watch?v=
F8BdzL8OltM

Refer figure 5.8b 1162551 1163957

3

Tracy McGrady
on Isaiah

Thomas to the
Lakers: He can’t

bring an ego
with him — The
Jump — ESPN

https://www.
youtube.com
/watch?v=
FI3zMdqq4vE

Refer figure 5.8c 1051495 1054440

4

CELEBRATING
1 MILLION

SUBSCRIBERS
AT FALLON!!

https://www.
youtube.com
/watch?v=
nsjPEcRq 0c

Refer figure 5.8d 1090412 1084535

Table 5.2: Details of Good Predicted Instances
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(a) Thumbnail image of Instance 1 [49] (b) Thumbnail image of Instance 2 [50]

(c) Thumbnail image of Instance 3 [51] (d) Thumbnail image of Instance 4 [52]

Figure 5.8: Thumbnail images of good predicted instances
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(a) Thumbnail image of Instance 1 [53] (b) Thumbnail image of Instance 2 [54]

(c) Thumbnail image of Instance 3 [55] (d) Thumbnail image of Instance 4 [56]

Figure 5.9: Thumbnail images of bad predicted instances
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Instance Title URL
Thumbnail

Image
Actual
Views

Predicted
Views

1
NF - Let You

Down

https://www.
youtube.com
/watch?v=
fbHbTBP u7U

Refer figure
5.9a on the
facing page

1774018 914525

2
Kygo - Stranger

Things ft.
OneRepublic

https://www.
youtube.com
/watch?v=
3ChgRbqGi-E

Refer figure
5.9b on the

preceding page
1770318 886889

3
Incredibles 2 -

Olympics Sneak
Peek

https://www.
youtube.com
/watch?v=
YBpdL9hSac4

Refer figure
5.9c on the
facing page

1948452 1058699

4
Why the triple
axel is such a

big deal

https://www.
youtube.com
/watch?v=
7rOQv 6L9fQ

Refer figure
5.9d on the

preceding page
1960257 1009112

Table 5.3: Details of Bad Predicted Instances

5.5 Comparison with the Existing Method

The existing method as discussed in section 1.3.1, we have trained the model on our
dataset and tried to compare the results between the two models. Based on the
evaluation metric that we have discussed in section 5.2,in case of the model described
in existing method, we received a MAPE from the equation 5.1 as 20.11%. This
implies that we obtain our test accuracy in case of this model according to equation
5.2 as 79.89%.

While in case of our method we obtain a MAPE according to equation 5.1 as 16.61%
and test accuracy based on the equation 5.2 as 83.38%.

The graph shown in the figure 5.10 displays a comparison between the two models
with respect to the actual number of views and predicted ones from the respective
models.

We obtain the graph as follows:

� We grouped the videos in groups of 10. (As there are 208 video instances, so
we would get 20 groups of 10 video instances each and 21st group of 8 video
instances). So there are 21 groups in all.

� We then take the average of actual views of the 10 videos in each group .
Similarly we take average of ”prediction from our model” of the 10 videos in
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Figure 5.10: The comparison between the two models based on the number of views
predicted by the models against the actual number of views

each group and also the same for ”prediction from the competing model”.

� Therefore, we get 21 values for the actual views representing each of the group.
Similarly, we get 21 values for the ”prediction from our model” representing each
of the group and also the same for ”prediction from the competing model”.

� From these values, we construct the bar graph shown in the figure 5.10.

In the graph 5.10, since there are 208 test instances (videos), we have grouped them
in number of 10, so each bar represents a group of 10 instances (videos) averaged.

5.5.1 Time Complexity

Let us analyse the time complexity of our model and the competing model.

Our model

Let the input to the model be of size n. It is to be noted that the model architecture
is fixed. So, if we are focusing on the time complexity, let us analyze the algorithm 1
the model follows.

So observing the algorithm 1, the training process can be divided into three steps:

� single pass n update function call for each batch of input

� Repeat the above step for different batches of input
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Algorithm 1 Model Training

Input: Train dataset - Thumbnail, Title, Audio, Video, model, batch size, epochs
Output: model - Trained model
1: batches← Train dataset/batch size
2: i← 0
3: while i < epochs do
4: for batch in batches do
5: model← single pass n update(model, batch)
6: end for
7: i← i+ 1
8: end while
9: return model

� Repeat the above step for a given number of epochs

The single pass n update function which processes each batch of the input contains
three important procedures as follows:

� Forward Pass

� Loss Calculation

� Backward pass and parameter update

Both the forward pass and the backward pass have a time complexity of O(nh1)
[57] where nh1 is the number of hidden nodes in our model. The loss calculation is
O(1) time complexity. Therefore, the function single pass n update is O(nh1) time
complexity.

Suppose there are N training examples and we enter the value epochs and batch size
as hyperparameters, considering the loop of batches i.e. line 4 of algorithm 1, we
get that the time complexity as O(N/batch size). Considering the loop of epoch i.e.
line 3 of algorithm 1, we get the time complexity as O(epochs). Therefore, the time
complexity of the training algorithm is O(nh1 × epochs×N/batch size).
While testing since we use only the single pass n update function, so we get the time
complexity as O(nh1) [57], where nh1 is the number of hidden nodes in our model.

Competing Model

The model as discussed in section 1.3.1 consists of two stages. Let us consider that
there are N training samples, so in the first stage as it involves training a CNN,
so it follows the algorithm 1. Therefore, the time complexity of the first stage is
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O(nh2 × epochs × N/batch size), where nh2 is the number of hidden nodes in the
competing model.

In the second stage, the model involves training the Support Vector Regressor (SVR).
Considering the fact that N is the number of training example, the time complexity
of training SVR is O(N3) [57].

So, the time complexity of the competing model isO(nh2×epochs×N/batch size+N3)
during training.

In the testing phase, the time complexity of the first phase involving CNN is O(nh2)
and that of SVR is O(nSV ) [57], where nSV is the number of support vectors for the
SVR. So, the overall time complexity in testing for the competing model is O(nh2 +
nSV ).

Now, since nh1 is much greater than nh2, so the time complexity of training phase
for our model is much higher than the competing model. This agrees with the fact
that the execution time for training is 60 minutes for 150 epochs in case of our
model. While the execution time for training is only 10 mins for 150 epochs in case
of competing model.

In case of testing, the execution time for our model is only 1.3 seconds while that of
the competing model is 0.4 seconds.

These execution times are recorded while being executed on Nvidia TITAN RTX
GPU [47].



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The model that we have designed in our experiment have been able to predict views
of the video using a deep neural network based analysis of subjective video attributes
namely the thumbnail image, the title caption, the audio waveform and the video
itself. With an elaborate branching structure of the architecture, the model can
retain the spatial features of the thumbnail using a pretrained CNN architecture,
Alexnet; the sentimental features of the title caption using the pretrained Sentiment
Intensity Analyzer; the temporal features of the audio waveform using LSTM and
both the temporal and spatial features of the video using the Convolutional LSTM
at each respective branches of the network. Based on the spatial features of the
thumbnail and the sentimental features of the title the model generates a feature
that depicts the affinity of the user to click a video and together with this feature
alongwith the temporal feature of audio waveform and spatio-temporal features of the
video, the model predicts the number of views of the video using a regressor network
called the viral video prediction network. The videos prevailing in our dataset has
come from a varied genres involving Film and animation, Autos and vehicles, music,
pets and animals, sports, short movies,travels and events,gaming, video blogging,
people and blogs, comedy, entertainment,news and politics,education, science and
technology,classics, drama, family and many more. So our videos coming from such a
varied genre alongwith a wide range of view count ranging from 10,00,000 to 20,00,000;
our model is able to generalize the view count for these videos which is one of the main
advantage of our model. The purpose of solving our problem is the one associated with
online platforms so one of the most important aspect of online services is low latency.
We have developed our model considering videos from different genres and a view
count ranging from 10,00,000 to 20,00,000 implying it would require 150 epochs to
converge. This means a lot of time consumption even operating under high end GPU
such as Titan RTX [47]. We could try to solve the problem by employing a different
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approach towards optimizing our loss function. We had used Adam optimization
which is a gradient based optimization technique, that involves a lot of time to reach
the optimal values of the parameters. Instead we could use a gradient free approach to
attack the same optimization with the sheer interest to observe for faster convergence
to better optima. However since our model here tries to measure the response of
the success of the video published in an online platform, it might be useful in the
following aspects:

� Over the past 5 years YouTube has paid out more than $5 billion to YouTube
content creators according to the medium article [58]. With a growing demand
for online video content makers to capture the millennial audience, getting peo-
ple to watch your videos on YouTube is becoming increasingly lucrative. So the
model can help influencers predict the number of views for their videos.

� Since the model generates a feature vector revealing the attractiveness of the
thumbnail, title, audio and video attributes, we can derive a score through a
regressor model for each of these attributes to recommend about the quality
of attributes to the maker of the video with an objective to increase the view
count of the video.

6.2 Future Work

As discussed in section 6.1, the purpose of solving our problem is the one associated
with online platforms so one of the most important aspect of online services is low
latency. We have developed our model considering videos from different genres and a
view count ranging from 10,00,000 to 20,00,000 implying it would require 150 epochs
to converge. This means a lot of time consumption even operating under high end
GPU such as Titan RTX. We could try to solve the problem by employing a different
approach towards optimizing our loss function. We had used Adam optimization
which is a gradient based optimization technique, that involves a lot of time to reach
the optimal values of the parameters. Instead we could use a gradient free approach to
attack the same optimization with the sheer interest to observe for faster convergence
to better optima. So employing these needs a different kind of implementation where
both the forward and back-propagation mathematics needs to be derived. All training
functions has to be developed as the approach is a new one.
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