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ABSTRACT

For a set of geometric objects, the associative geometric intersection graph is the
graph with a vertex for each object and an edge between two vertices if and only if the
corresponding objects intersect. Geometric intersection graphs are very important
due to their theoretical properties and applicability. Based on the different geometric
objects, several types of geometric intersection graphs are defined. Given a graph G,
an induced (either vertex or edge) subgraph H ⊆G is said to be an well-structured
subgraph if H satisfies certain properties among the vertices in H.

This thesis studies some well-structured subgraphs finding problems on various
geometric intersection graphs. We mainly focus on computational aspects of the
problems. In each problem, either we obtain polynomial-time exact algorithm or
show NP-hardness. In some cases, we also extend our study to design efficient
approximation algorithms and fixed-parameter tractable algorithms.

We study the construction of the planar Manhattan network (between every pair of
nodes there is a minimum-length rectilinear path) of linear size for a given convex
point set.

We consider the maximum bipartite subgraph problem, where given a set S of n
geometric objects in the plane, we want to compute a maximum-size subset S′ ⊆ S
such that the intersection graph of the objects in S′ is bipartite.

We consider a variation of stabbing (hitting), dominating, and independent set prob-
lems on intersection graphs of bounded faces of a planar subdivision induced by a set
of axis-parallel line segments in the plane.

We investigate the problem of finding a maximum cardinality uniquely restricted
matching (having no other matching that matches the same set of vertices) in proper
interval graphs and bipartite permutation graphs.

Finally, we consider the balanced connected subgraph problem on red-blue graphs (the
color of each vertex is either red or blue). Here the goal is to find a maximum-sized
induced connected subgraph that contains the same number of red and blue vertices.
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INTRODUCTION

Contents
1.1 Well-structured Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Geometric Intersection Graphs . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

In the real world scenario, there are many types of networks such as social networks,

transportation networks, information networks which can be modeled as graphs. For

example, think for an instance that consists of a set of people from a state, and from

the instance, we want to select the maximum number of people who are pairwise

unknown to each other. A natural model for this scenario is to construct a graph

such that each person corresponds to one vertex, and we join an edge between two

vertices whenever the corresponding pair of people know each other. Now our goal

corresponds to finding a maximum independent set, i.e., a maximum-sized set of

pairwise non-adjacent vertices in the resulting graph. Unfortunately, there is no

polynomial-time algorithm that solves the problem for all instances. Like this, several

problems in graph theory and combinatorial optimization involve determining if a

given graph has a subgraph satisfying certain properties [W+96]. Thus a typical

graph theory problem consists of selecting the best among potential vertices or edges,

subject to the constraints requiring that the corresponding vertices (or, edges) satisfy

certain conditions. The objective of the problem is to minimize (or, maximize) the

effective cost which is the number of the chosen vertices (or, edges). Examples include

1



CHAPTER 1. INTRODUCTION

seeking vertex cover, matching, independent set, clique, feedback vertex set, odd cycle

transversal, etc with optimum size. The optimal subgraph finding problems have a

significant theoretical interest and arise in various practical applications of graph

algorithms. In this thesis, we introduce a notion of well-structured subgraph and

we are mainly concerned about finding an optimal size well-structured subgraph in

a given graph. In most of cases, we try to solve a graph theoretic problem in the

graphs that is restricted to a certain class. A graph class is a set of graphs that have

a common property. For example, the class of bipartite graphs is the graphs that have

no odd cycle. Below we define well-structured subgraphs and geometric intersection

graphs, a class of graphs corresponding to a similar type of geometric objects.

1.1 Well-structured Subgraph

Let G = (V ,E) be a given graph. Now H = (V ′,E′) is called as subgraph of G if V ′ ⊆V
and E′ ⊆ E. A vertex induced subgraph of G is defined by V ′ ⊆ V together with

E′ = {(u,v) : u,v ∈ V ′ & (u,v) ∈ E} and an edge induced subgraph of G is defined by

E′ ⊆ E together with their incident vertices. Now we define well-structured subgraph.

An induced (either vertex or edge) subgraph H ⊆ G is said to be a well-structured

subgraph if H satisfies certain property among the vertices in H. Following are

examples of such subgraphs.

Independent set (vertex induced): no pair of vertices are adjacent to each other

Clique set (vertex induced): each pair of vertices are adjacent to each other

Matching (edge induced): set of edges without common vertices

spanning tree (edge induced): connectedness, acyclic

Note that, vertex cover, dominating set, feedback vertex set are examples of sub-

graphs that are not well-structured as there is no certain property that should be

satisfied among the vertices in the subgraph. In particular, the definitions of these

substructures also involve edges or vertices that are not in the subgraph H.

1.2 Geometric Intersection Graphs

An intersection graph is a graph such that each vertex corresponds to a set and there

is an edge between two vertices if and only if their corresponding sets intersect. Any
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graph can be represented as an intersection graph over some sets. In this thesis,

we consider geometric intersection graph families. It consists of intersection graphs

for which the underlying collection of sets is restricted to geometric objects. Some

of the important graph classes in this family that we consider in this thesis are

interval graphs (intervals on the real line), circular-arc graphs (arcs on a circle),

permutation graphs (line segments with endpoints lying on two parallel lines), unit-

disk graphs (unit-disks in R2), unit-square graphs (unit-squares in R2), outer-string

graphs (curves lying inside a disk, with one endpoint on the boundary of the disk),

rectangle intersection graphs (rectangle in R2). In the past several decades, geometric

intersection graph classes became very popular and they were extensively studied due

to their interesting theoretical properties and applicability. There are many graph-

theoretic problems that are NP-Hard for general graphs but polynomially solvable

for a special class of geometric intersection graphs. For example, the clique decision

problem is NP-Complete for general graphs [Kar72], however polynomially solvable

for interval graphs [IA83], circular-arc graphs [IA83], permutation graphs [PW10],

unit-disk graphs [CCJ91]. Our hope is to exploit the geometric properties of these

restricted graph families to achieve theoretical results. This serves our two-fold

interests behind this direction of research. It enables us to design algorithms and

obtain theoretical results. This thesis is a study of the computational aspects of

various well-structured subgraph finding problems with several new and other little-

studied parameters mainly (we also study them for few other class of graphs as well)

in different geometric intersection graph classes. Formally, the general framework of

the problems we consider is as follows:

Well-structured Subgraph Finding Problems: Given a geometric intersec-

tion graph G , a problem Π, and a property π, find an optimum sized subgraph

H ⊆ G such that H is a feasible solution of Π in G and satisfy the property π

among the vertices in H.

1.3 Scope of the Thesis

As mentioned earlier, we mainly study various well-structured subgraph finding

problems. The problems that we consider in the thesis are motivated by facility

location, art gallery problems, guarding regions, geometric spanners, graph matching,

odd cycle transversal problems, etc. We analyze the complexity classes of the problems

for different graph classes, mainly focus on several geometric intersection graph

classes. We obtain polynomial-time exact algorithm for some problems. At the same
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time, we produce NP-Hardness results in some of the other problems. We also extend

our study to design efficient approximation algorithms and fixed-parameter tractable

algorithms. The main contributions of the thesis comprise the following problems.

Manhattan Network for Convex Point Sets

Let G = (V ,E) be a graph drawn in the plane such that every edge is horizontal or

vertical. The weight of each edge uv ∈ E is the length of the segment. Let WG(u,v)

denote the length of the shortest path between a pair of vertices u and v in G. For

a pair of points p and q, a Manhattan path between p, q is a rectilinear path whose

length is equal to the distance between p and q in the L1 metric. For a given point

set, a graph G is said to be a Manhattan network for P if P ⊆V and between every

pair of nodes in P there is a Manhattan path. In the Manhattan network problem,

the objective is to construct a Manhattan network of small size for a set of n points.

This problem was first considered by Gudmundsson et al. [GKKS07]. They give a

construction of a Manhattan network of size Θ(n logn) for general point sets in the

plane. We study the construction of a Manhattan network for a given convex point

set. More specifically, we consider the following problem.

Problem 1: Given set S of n points, is given as input where the points are

in convex position in R2, construct a planar Manhattan network for S using a

linear (in terms of cardinality of S) number of Steiner points.

Considering an arbitrary point set P of size n as input, we can always construct a

Manhattan network (say, G∞) such that between any pair of points in P there are

infinitely many Manhattan path between them in the network G∞. Now we can claim

that the Problem 1 is a well-structured subgraph finding problem due to the sense

that we have to choose the edges in G∞ such that the edge induced subgraph, say H
in G∞ satisfy the property: H contains a Manhattan path between each pair of points

in P.

Maximum Bipartite Subgraphs

Odd Cycle Transversal (OCT) and Feedback Vertex Set (FVS) problems are two well-

studied problems in graph theory. Given a graph G = (V ,E), the objective of the OCT

problem is to find a minimum cardinality of U ⊆V such that G[V \U] is odd-cycle free,

whereas the goal of FVS is G[V \U] is cycle free. We have considered the following

problem which is closely related two these two above-mentioned problems, but in

geometric settings.
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Problem 2: Given a set S of n geometric objects in the plane, we want to

compute a maximum-size subset S′ ⊆ S such that the intersection graph of the

objects in S′ is bipartite, i.e., G[S′] is odd-cycle free.

By the definition of the problem, we have to find an optimum sized vertex induced

subgraph, say G[S′] such that it satisfy bipartiteness property among S′. So, we can

easily say that the Problem 2 is a well-structured subgraph finding problem. We

have studied this problem on circular-arcs, unit squares, unit disks, and unit-height

rectangles, and on some variants of unit-disks. We obtained several approximation

algorithms along with some algorithmic results.

Covering and Packing of Rectilinear Subdivision

We study variations of some well-studied problems such as Set Cover, Independent

Set, and Dominating Set problems in geometric settings. In the Set Cover problem,

we are given a set of points and a set of geometric objects such that they together

contain the set of points, and our aim is to find a minimum cardinality collection of

objects that contains all of the input points. In the Independent Set problem, a set

of objects is given as input and the goal is to find a maximum cardinality subset of

objects that are pairwise independent, i.e., non-intersecting. In the Dominating Set

problem, a set of objects is given as input and goal and choose a minimum cardinality

subset of objects such that each of the remaining objects intersects with some of the

chosen objects. We consider the following problems in the thesis.

Problem 3: Given a set of m axis-parallel line segments that induce a planar

subdivision F , find a minimum cardinality set of points in the plane such that

each face (closed) in F is intersected by one of the selected points (STABBING-

SUBDIVISION), select a maximum cardinality subset F ′ ⊆ F of faces (closed) such

that any pair of faces in F ′ is non-intersecting (INDEPENDENT-SUBDIVISION),

and lastly seek a minimum cardinality subset F ′ ⊆ F of faces (closed) such that

any face in F \ F ′ has a non-empty intersection with a face in F ′ (DOMINATING-

SUBDIVISION).

Earlier we mentioned that an independent set is a well-structured subgraph. So by the

definition of the Problem 3, we can claim that INDEPENDENT-SUBDIVISION problem is

a well-structured subgraph finding problem. Here we mainly show the NP-Hardnesses

on the problems we consider.
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Uniquely Restricted Matchings

Let G = (V ,E) be a graph. A set of edges M ⊆ E(G) is said to be a matching if no two

edges of M share a common vertex. A matching M in a graph G is said to be uniquely

restricted if there is no other matching in G that matches the same set of vertices as

M. We have studied the following problem in proper interval graphs and bipartite

permutation graphs.

Problem 4: Given a graph G = (V ,E), find a maximum cardinality matching

M ⊆ E such that M is uniquely restricted.

Now we can say that the Problem 4 is a well-structured subgraph finding problem due

to the sense that in the problem we need to choose the edges in G such that the edge

induced subgraph, say G′ in G satisfy the property: there is no other matching in G′

matches all the vertices in V (G′). We obtain linear-time algorithms for computing

maximum cardinality uniquely restricted matchings in proper interval graphs and

bipartite permutation graphs.

Balanced Connected Subgraphs

In the Graph Motif problem, given a graph G = (V ,E), a color function col : V → 2C

on the vertices, and a multiset M of colors from C , the objective is to find a subtree

T ⊆ G and a coloring that assigns a color from col(v) to each vertex v in T, such

that T carries exactly (also with respect to multiplicity) the colors in M. Note that if

C = {red, blue}, the function col gives one color of C to each vertex of G and the motif

has same number of blues and reds then the solution of the Graph Motif problem

gives a balanced connected subgraph (not necessarily a maximum balanced connected

subgraph) of G. We have studied the following problem on red-blue graphs (each

vertex is colored by either red or blue).

Problem 5: Given a graph G = (V ,E), with each vertex in the set V having an

assigned color, “red” or “blue” as input, our goal is to find a maximum-cardinality

subset V ′ ⊆V of vertices that is color-balanced (having equal number of red and

blue vertices), such that G[V ′] is connected.

By the definition of the problem, we have to find a maximum sized vertex induced

subgraph, say G′′ such that it satisfy balancedness and connectedness property among

the vertices in G′. So we can claim that the Problem 5 is a well-structured subgraph

finding problem. We have considered this problem on bipartite graphs, chordal
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graphs, planar graphs, trees, split graphs, etc along with some well known geometric

intersection graphs like interval, circular-arc, permutation, unit-disk, outer-string

graphs, etc. We mainly present several hardness and algorithmic results.

1.4 Organization of the Thesis

Following is the organization of this thesis which consists of nine chapters. In Chapter

2, we describe basic notations, a few definitions, and concepts that have been used

throughout the thesis. In this chapter, we define each of the graph classes formally.

Chapter 3 presents the literature survey of the works relevant to this thesis. The next

five chapters are devoted to five specific problems that we mentioned in the scope of

the thesis. More specifically, in Chapter 4, we study on the construction of the planar

Manhattan network of linear size for a given convex point set. Next in Chapter 5, we

consider maximum bipartite subgraph problem, where given a set S of n geometric

objects in the plane, we want to compute a maximum-size subset S′ ⊆ S such that the

intersection graph of the objects in S′ is bipartite [JMMR20]. Chapter 6 is devoted

to a variation of stabbing (hitting), dominating, and independent set problem on

intersection graphs of bounded faces of a planar subdivision induced by a set of axis-

parallel line segments in the plane [JP19, JP20]. Chapter 7 is based on the problem

of finding a maximum cardinality uniquely restricted matching in proper interval

graphs and bipartite permutation graphs [FJJ18]. In Chapter 8, we consider balanced

connected subgraph problem on red-blue graphs [BJPR19, BCJ+21, BCJ+19]. Finally,

in Chapter 9, the thesis ends with mentioning some possible directions for further

research.
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We consider only finite graphs. Wherever it is not specified otherwise, “graph” shall

mean an undirected graph. We use G = (V ,E) to denote a simple undirected graph

G on the vertex set V with edge set E. We shall denote the vertex set and edge set

of a graph G by V (G) and E(G), respectively. All graphs considered are simple, i.e.,

there are no loops or multiple edges. We make use of (u,v) and uv interchangeably

to denoted an edge between the vertices u and v. For a subset of vertices U ⊆V , we

use G[U] to denote the subgraph induced by U in a graph G. The open and closed

neighborhood of a vertex v in a grah G are denoted by N(v) and N[v], respectively,

where N(v) = {u : (u,v) ∈ E} and N[v] = N(u)∪ {v}. Here we mention few definitions

and concepts that have been used in this thesis.
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2.1 Some Simple Graphs

Below we mention some simple undirected graph classes that have been considered

throughout the thesis. For an introduction to graph theory one may refer to [W+96].

Also, a well-organized survey of more than 200 graph classes can be found in [BS+99].

Definition 2.1 (Geometric Graphs). A geometric graph is a graph that is drawn in

the plane so that the vertices are represented by points and the edges are represented

by line segments connecting the corresponding points.

Definition 2.2 (Planar Graphs). A planar graph is a graph that has a planar embed-

ding that means it can be drawn in the plane so that there is no intersection on the

edges except at their endpoints.

Definition 2.3 (Plane Graphs). A plane graph is a planar graph drawn with its

planar embedding.

Definition 2.4 (k-Plane Graphs). A geometric graph G = (V ,E) is said to be a k-plane

graph for some k ∈ N if E can be partitioned into k disjoint subsets, E = E1 ∪· · · ·∪· Ek,

such that G1 = (V ,E1), . . . ,Gk = (V ,Ek) are all plane graphs, where ∪· represents the

disjoint union.

Definition 2.5 (Cubic/3-Regular/Trivalent Graphs). A cubic graph is a graph in which

all the vertices have degree three.

Definition 2.6 (Subcubic Graphs). A subcubic graph is a graph in which all the

vertices have degrees at most three.

Definition 2.7 (Tolerance Graphs). A graph is a tolerance graph if every vertex v of

the graphs can be assigned a closed interval Iv on the real line and a tolerance tv

such that x and y are adjacent iff |Ix ∩ I y| ≥min{tx, ty}.

Definition 2.8 (Clique Separable Graphs). A graph is clique separable if every primi-

tive (it has no clique cutset) induced subgraph of the graph is either complete k-partite

or can be partitioned into a connected bipartite graph A and a clique B such that

there is a join between A and B.

Definition 2.9 (i-Triangulated Graphs). A graph is i-triangulated if every odd cycle

of length at least 5 has at least two non-crossing chords.

Definition 2.10 (Split Graphs). A split graph is a graph in which the vertices can be

partitioned into a clique and an independent set.

10
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Definition 2.11 (Threshold Graphs). A graph is a threshold graph if it can be con-

structed from the empty graph by repeatedly adding either an isolated vertex or

a dominating vertex. Equivalently, a graph is a threshold graph if there is a real

number S (the threshold) and for every vertex v there is a real weight av such that:

vw is an edge iff av +aw ≥ S.

Definition 2.12 (Block Graphs). A graph is a block graph if every block (maximal

2-connected component) is a clique. Equivalently, block graphs are exactly the graphs

for which, for every four vertices u,v, x, and y, the largest two of the three distances

d(u,v)+d(x, y),d(u, x)+d(v, y), and d(u, y)+d(v, x) are always equal.

Definition 2.13 (k-Connected Graphs). A k-connected graph is a graph such that it

is not possible to make it disconnected by removing k−1 vertices.

Definition 2.14 (Cactus/Cacti Graphs). A cactus is a connected graph in which any

two simple cycles have at most one vertex in common.

Definition 2.15 (Star Graphs). A star Sk is the complete bipartite graph K1,k.

Definition 2.16 (Claw Graphs). A claw is the star S3.

Definition 2.17 (Perfect Graphs). A perfect graph is a graph in which the chro-

matic number of every induced subgraph equals the size of the largest clique of that

subgraph.

Definition 2.18 (Line Graphs). The line graph of an undirected graph G is another

graph L(G) that represents the adjacencies between edges of G.

Definition 2.19 (Comparability Graphs). A graph is a comparability graph if its

edges can be oriented such that the orientation connects pairs of elements that are

comparable to each other in a partial order.

Definition 2.20 (Co-comparability Graphs). A graph is co-comparability if and only

if the complement graph of the graph is comparability. Equivalently, A graph is a

co-comparability if it is the intersection graph of curves from a line to a parallel line.

Definition 2.21 (Graphs of diameter k). A graph has a diameter k if the distance

between any pair of vertices is at most k. Here, the distance between a pair of vertices

is defined as the number of edges in a shortest path between them.

11
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2.2 Geometric Intersection Graphs

The class of geometric intersection graphs has been studied for many years for its

theoretical aspects as well as for its applications. This class of graphs now appears

in discrete and computational geometry. It has deep connections with complexity

theory [SSŠ03, Sch09] and order dimension theory [Fel14, CHO+14, CFHW18]. The

geometric intersection graphs are basically intersection graphs of geometric objects.

More precisely, given a collection O of geometric objects, the geometric intersection

graph of O is the graph with a vertex for each object and between a pair of vertices,

there is an edge between them if the corresponding objects in O intersect. So every

geometric intersection graph has some underlying geometric objects. In this thesis, we

focus on the following classes of geometric intersection graphs where all underlying

geometric objects should lie in the plane.

Definition 2.22 (Interval Graphs). A graph G is called an interval graph if and only

if there exists a set I of intervals such that G is the Intersection Graph of I. The set

of intervals is called the interval representation of G.

Definition 2.23 (Proper Interval Graphs). Proper interval graphs are interval graphs

that have an interval representation in which no interval properly contains any other

interval.

Definition 2.24 (Circular-arc Graphs). A graph G is called a circular-arc graph if and

only if there exists a set A of arcs of a circle, such that G is the Intersection Graph of

A. The set of arcs is called the circular-arc representation of G.

Definition 2.25 (Outerstring Graphs). A graph G is called outerstring graph if and

only if there exists a set C of curves lying inside a disk with one endpoint on the

boundary, such that G is the Intersection Graph of C. The set of curves is called the

outerstring representation of G.

Definition 2.26 (Permutation Graphs). A graph G is called a permutation graph if

and only if there exists a pair of parallel lines, a set L of line segments such that

endpoints of each segment lie on the parallel lines, and G is the Intersection Graph of

L. The set of segments along with the parallel lines is called the representation of G.

Definition 2.27 (Unit Disk Graphs). A graph G is called a unit disk graph if and

only if there exists a set D of unit disks such that G is the Intersection Graph of D.

The set of intervals is called the unit disk representation of G.

12
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Definition 2.28 (Unit Square Graphs). A graph G is called a unit square graph if

and only if there exists a set S of unit squares such that G is the Intersection Graph

of S. The set of squares is called the unit square representation of G.

Definition 2.29 (Unit-height Rectangle Graphs). A graph G is called a unit-height

rectangle graph if and only if there exists a set R of unit-height rectangles such

that G is the Intersection Graph of R. The set of rectangles is called the unit-height

rectangles representation of G.

2.3 Complexity Theory

In complexity theory, a decision problem deals with “yes” or “no” question for an input.

Below we mention some basic complexity classes, defined on decision problems, that

will be used throughout the thesis.

Complexity Class P

P is a complexity class that represents the set of all decision problems that can

be solved in polynomial time, i.e., in time O(nO(1)). Thus, given an instance of the

problem, the answer yes or no can be decided in polynomial time.

Complexity Class NP

NP (nondeterministic polynomial time) is a complexity class that represents the set

of all decision problems having the property that their solutions can be verified in

polynomial time.

Reducibility

For a pair of problems Π1 and Π2, we say problem the Π1 is polynomial time reducible

to the problem Π2, if there exists a polynomial time computable function f from the

instance set of I(Π1) of Π1 to the instance set I(Π2) of π2, such that Y ∈ I(Π1) is a

yes-instance for Π1 if and only if f (Y ) ∈ I(Π2) is a yes-instance for Π2.

Complexity Class NP-hard

NP-Hard is the complexity class that represents the set of all decision problems to

which all problems in NP can be reduced to in polynomial time by a deterministic

Turing machine.

13
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Complexity Class NP-Complete

A problem Π that is said to be NP-Complete if and only if Π is in NP and every other

problem in NP is polynomial time reducible to the problem Π.

For a detailed discussion on the topic of complexity theory and the theory of NP-

completeness, one may refer to [GJ79b, AB09].

2.4 Asymptotic Analysis

The efficiency of an algorithm depends on the amount of time (time complexity),

storage or memory (space complexity), and other resources required to implement

the algorithm. To analyze the efficiency, we need to do an asymptotic analysis. For

that, asymptotic notations can help us to measure efficiency. For a particular problem,

an algorithm may not have the same performance for different types of inputs. It

depends on the type of the input, size of the input, etc. Hence, asymptotic analysis is

a study of change in performance for an algorithm with the change in the order of the

input size. There are mainly five asymptotic notations.

Big Oh notation (O): asymptotic upper bound

Big Omega notation (Ω): asymptotic lower bound

Theta notation (Θ): asymptotic tight bound

Little Oh notation (o): asymptotic upper bound that cannot be tight

Little Omega notation (ω): asymptotic lower bound that cannot be tight

Now we describe the notations. Below is the table that summarizes the key restrictions

to make the definition of notations: Let f (n) and g(n) be a pair of functions from

N to R\ {0}. We say f (n) ∈ 〈notation〉(g(n)), if 〈condition〉 c > 0 where c ∈ R, and

there exists an integer constant n0 > 1, such that f (n)〈relation〉 c× g(n), for every

integer n ≥ n0. For example, f (n) ∈ O(g(n)), if ∃ c > 0 where c ∈ R, and there exists

an integer constant n0 > 1, such that f (n) ≤ c× g(n), for every integer n ≥ n0. “Big-

Theta” is combination of O() and Ω(). More specifically, f (n) ∈Θ(g(n)) if and only if

f (n) ∈O(g(n)) and f (n) ∈Ω(g(n)).
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Family of notations

notation condition relation
O ∃ ≤
o ∀ <
Ω ∃ ≥
ω ∀ >

2.5 Fixed Parameter Algorithm

A central notion in Parameterized Complexity is fixed-parameter tractability which is

defined below. In the context of this thesis, we could obtain fixed-parameter tractable

algorithms in some of the chapters to be discussed later.

Definition 2.30 (Parameterized Problem). An instance of a parameterized problem

is a tuple (X ,k), where X is the given instance of the problem and k is called the

parameter.

Definition 2.31 (Fixed-parameter Tractable). A parameterized problem Π is called

fixed-parameter tractable if there is an algorithm such that, given an instance I =
(X ,k) of the problem, the algorithm correctly decides whether or not (X ,k) ∈ Π in

time O( f (k)pol y(|X |)), where f (k) is an arbitrary (may be exponential) function on

k that does not at all involve |X |, and pol y(|X |) is a polynomial function in |X |. The

complexity class containing all fixed-parameter tractable problems is called FPT.

For a detailed discussion on the topic of parameterized complexity theory, one may

refer to [CFK+15].

2.6 Approximation Algorithm

In the thesis, we work on obtaining approximation algorithms for several problems

on different geometric intersection graphs. Below we mention the various types of

approximation schemes.

Definition 2.32 (Approximation Algorithms). Let Π be a maximization (resp. min-

imization) problem. An algorithm A for the problem Π is called an t factor ap-

proximation algorithm for Π if and only if for any instance X of Π, A runs in time

polynomial in |X | and produces a feasible solution, such that OPT(X ) ≤ t× A(X )

(resp. A(X ) ≤ t×OPT(X ) ). Here A(X ) and OPT(X ) are the values of the output
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of the algorithm and optimum solution of the problem Π for the given instance X ,

respectively.

Definition 2.33 (Polynomial-Time Approximation Scheme). Let Π be a maximization

(resp. minimization) problem. An algorithm A for the problem Π is a polynomial-time

approximation scheme (PTAS) for Π if and only if for any instance X of Π and for any

fixed ε> 0, A runs in time polynomial in |X | and produces a feasible solution, such

that A(X )≥ (1−ε)×OPT(X ) (resp. A(X )≤ (1+ε)×OPT(X ) ). Here A(X ) and OPT(X )

are the values of the output of the algorithm and optimum solution of the problem Π

for the given instance X , respectively.

For a detailed discussion on the topic of approximation algorithms, one may refer to

[Vaz01].
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3.1 Construction of Geometric Spanner

A graph G is said to be a Manhattan network for a given point set P in the plane

if P ⊆ V and for each pair of points p and q in P, WG(p, q) = ‖pq‖1, where WG(u,v)

denotes the length of the shortest path between a pair of vertices u and v in G. In

addition to P, graph G may also include a set T of Steiner points in its vertex set V .

The Minimum Manhattan Network (MMN) problem on P is to construct a Manhat-

tan network for P of minimum possible length. By length we mean the sum of all

edge lengths in G, i.e.,
∑

e=(u,v)∈E
‖uv‖1. Below in Figure 3.1, we show examples of a

Manhattan network and a minimum Manhattan network, respectively, on a set P of

points.

The MMN problem problem has a wide number of applications in city planning,

network layouts, distributed algorithms [NS07], VLSI circuit design [GLN01], and
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(a) (b)

Figure 3.1: Blue circles represent the points in P, and red circles represent Steiner
points. (a) A Manhattan network, and (b) a minimum Manhattan network.

computational biology [LAP03]. It was first introduced in 1999 by Gudmundsson et

al. [GLN01]. Several approximation algorithms (with factors 4 [GKKS07], 2 [KIA02],

and 1.5 [SU05]) with time complexity O(n3) have been proposed in the last few years,

where n denotes the size of the given point set. Also, there are O(n logn) time approx-

imation algorithms with factors 8 [GKKS07], 3 [BWWS06], and 2 [GSZ11]. Recently

Chin et al. [CGS11] proved that the decision version of the MMN problem is strongly

NP-Complete and Knauer et al. [KS11] presented a fixed-parameter algorithm run-

ning in O∗(214h) time (neglecting a factor that is polynomial in n) where the parameter

h is the minimum number of axis-parallel straight-lines (either all horizontal or all

vertical) that contain all the points in P.

In 2007, Gudmundsson et al. [GKKS07] considered a variant of the MMN problem

where the goal is to minimize the number of vertices (Steiner points) and edges. In

O(n logn) time, they constructed a Manhattan network with O(n logn) vertices and

edges using a divide and conquer strategy. They also proved that there are point

sets in R2 where every Manhattan network for these point sets will need Ω(n logn)

vertices and edges.

We mention two other problems related to Manhattan Network. One is the generalized

minimum Manhattan network (GMMN) problem, and the other one is the rectilinear

Steiner arborescence (RSA) problem. In the GMMN problem, given a set R of n pairs

of terminals, which are points in R2, the target is to find a minimum-length rectilinear

network similar to a Manhattan network with the sole difference that only the pairs

in R are required to be connected by Manhattan paths. This problem is known to be

NP-Hard. Also, there is an O(logn)-factor approximation algorithm for the GMMN

problem [DFK+18]. The RSA problem is defined as the special case of GMMN where

the origin appears in every pair (hence, every terminal has to be connected by a

Manhattan path to the origin) and all terminals lie in the first quadrant. This is
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also known to be NP-Hard [SS05]. It also admits a 2-factor approximation algorithm

[RSHS92] and a PTAS (shown independently by Zachariasen [Zac00] and Lu and

Ruan [LR00]).

A closely related problem is to construct a geometric spanner for a given point set.

For a real number t> 1 and a point set S, a geometric graph G = (S,E) is said to be

a t-spanner of S if for any two points p and q in S, WG(p, q)6 t|pq|, where |pq| is

the Euclidean distance between two points p and q. The stretch factor of G is the

smallest real number t such that G is a t-spanner of S. A number of algorithms have

been proposed for constructing t-spanners for any given point set [NS07, AdBF+11].

Keil et al. [KG89] showed that the Delaunay triangulation of S is a 2.42-spanner of

S. For convex point sets, Cui et al. [CKX11] proved that the Delaunay triangulation

has a stretch factor of at most 2.33. For general point sets, Xia [Xia13] provided a

1.998-spanner, having a linear number of edges, applying Delaunay triangulation.

Steiner points are also used for constructing spanners. For example, Arikati et al.

[ACC+96] used Steiner points to answer exact shortest-path queries between any two

vertices of a geometric graph. The authors also considered the problem of finding an

obstacle-avoiding L1-path between a pair of query points in the plane. They found

a (1+ε)-spanner with space complexity O
(
n2/

p
r
)
, preprocessing time O(n2/

p
r ) and

O(logn+p
r ) query time, where ε is an arbitrarily small positive constant and r is an

arbitrary integer, such that 1< r < n. Recently, Amani et al. [ABB+16] showed how to

compute a plane 1.88-spanner in L2-norm for convex point sets in O(n) time without

using Steiner points. For general point sets of size n, Gudmundsson et al. [GKKS07]

constructed a
p

2 ≈ 1.41-spanner (which may not be planar) in the L2-norm and it

uses O(n logn) Steiner points. As a corollary of our construction in the thesis, for a

convex point set, we obtain a planar
p

2 ≈ 1.41-spanner in the L2-norm using O(n)

Steiner points (Chapter 4). Given a rectilinear polygon with n vertices, Schuierer

[Sch96] presented a data structure that can report a shortest path (in the L1-metric)

for any pair of query points in that polygon in O(logn+k) time where k is the number

of segments in the shortest path. De Berg [DB91] proved that given two arbitrary

points inside a polygon, the L1-distance between them can be reported in O(logn)

time.

3.2 Maximum Bipartite Subgraph Problem

The Maximum Bipartite Subgraph (MBS) problem is defined as follows. Given a

graph G = (V ,E), the goal is to compute a maximum-size subset V ′ ⊆V such that the
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induced subgraph G[V ′] is bipartite. This MBS problem is NP-Complete for planar

graphs with maximum degree four [CNR89]. For graphs with maximum degree three,

Choi et al. [CNR89] showed that for a given constant k there is a vertex set of size k
or less whose removal leaves an induced bipartite subgraph if and only if there is an

edge set of size k or less whose removal leaves a bipartite spanning subgraph. As edge

deletion graph bipartization problem is NP-Complete for cubic graphs [Yan78], the

MBS problem is NP-Complete for cubic graphs. Moreover, the maximum edge deletion

graph bipartization problem is solvable in O(n3) time for planar graphs [Had75, AI77]

where n denotes the number of vertices of the input graph. Therefore, MBS is O(n3)

time solvable for planar graphs with maximum degree three. For the vertex-weighted

version of the MBS problem, Baiou et al. [BB16] showed that the MBS problem

can be solved in O(n3/2 logn) time for planar graphs with maximum degree three.

Cornaz et al. [CM07] studied a weighted variant of this problem: given a graph with

non-negative weights on the edges, the goal is to find a maximum-weight bipartite

subgraph. An edge subset F ⊆ E is called independent if the subgraph induced by

the edges in F (incident vertices) is bipartite; otherwise, it is called dependent. They

showed that the minimum dependent set problem with non-negative weights can be

solved in polynomial time.

The MBS problem is closely related to the Odd Cycle Transversal (OCT) problem.

More explicitly, MBS and OCT are equivalent for the class of graphs on which OCT

is polynomial-time solvable: an exact solution S for OCT gives V (G)\ S as an exact

solution for MBS within the same time bound. Given a graph G = (V ,E), the objective

of the OCT problem is to compute a minimum-cardinality U ⊆V such that G[V \U]

is bipartite. The OCT problem is known to be NP-Complete on planar graphs with

degree at most 6 [CNR89]. For planar graphs with degree at most 3, OCT can be

solvable in O(n3) time [CNR89] (even the weighted version of the problem). There are

several results known concerning the parameterized complexity of OCT (i.e., given a

graph G on n vertices and an integer k, is there a vertex set U in G of size at most k
such that G \U is bipartite). Reed et al. [RSV04] first gave an algorithm with running

time O(4kkmn). Lokshtanov et al. [LSS09] improved this running time to O(3kkmn).

For planar graphs, Lokshtanov et al. [LSW12] provided an algorithm with running

time O(2O(k logk)n). Moreover, assuming the exponential time hypothesis [CEF12], i.e.,

3SAT cannot be solved in subexponential time, the running time cannot be improved

to 2O(k)nO(1).

Another problem that is related to MBS is the Feedback Vertex Set (FVS) prob-

lem. The objective of FVS is to compute a minimum-cardinality U ⊆ V such that
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G[V \U] is acyclic. In the last 30 years, various works on the complexity of feed-

back vertex set problems for different type of graphs have been published. Let

us briefly give an overview of the complexity of FVS problem on related graph

classes. This problem is known to be NP-Complete on bipartite graphs [Yan81] and

planar graphs [GJ79b]. A minimum (weight) FVS can be computed by a polyno-

mial time algorithm for bounded clique-width graphs (O(n22O(w logw))) [BSTV13],

chordal graphs [CF89, Spi03], interval graphs (O(m+n)) [LT97], permutation graphs

(O(mn)) [Bra92, BK85, BK87, Lia94], co-comparability graphs (O(n2m)) [LC97], con-

vex bipartite graphs (O(n2m)) [LC97], AT-free graphs (O(n8m2)) [KMT08], Trape-

zoid Graph (O(n2.68 +γn)) [HKM11], normal Helly circular-arc graph (O(n+m+γ))

[HNS16], circular-arc graphs [Spi03] where w is the clique width, γ depends on the

number of maximal cliques, m and n are the number of edges and vertices of the corre-

sponding graph. Also, there are exact algorithms that find a minimum FVS in a graph

of n vertices in time O(1.8899n) [Raz06] and in time O(1.7548n) [FGPR08]. Concern-

ing approximation algorithm, FVS approximating a minimum one within a constant

factor can be efficiently found in undirected graphs. There are 2-factor approximation

algorithm for general graph with running time O(min{|E| log |V |, |V |2}) [BBF99] and

2− (2/(3∆−2))-factor approximation algorithm for graphs with maximum degree ∆ in

O(|V |2) time [BBF95]. While considering parameterized (FPT) version of this problem:

given a graph on n vertices and an integer k, the feedback vertex set problem asks for

the deletion of at most k vertices to make the graph acyclic, several results have been

obtained. Cao [Cao18] gave an O(ckn2) (for some constant c) time algorithm to solve

this. Chen at al. [CFL+08] provided an O(5kkn2) time algorithm. To our knowledge,

the running time of fastest FPT algorithm is O(3.619knO(1)) [KP14].

In the maximum k-colorable subgraph (MkCS) problem, we are given a graph G =
(V ,E), and a positive integer k; the objective is to find a maximum sized-subset U ⊆V
such that the vertices in U can be colored using k colors and no two adjacent vertices

of U in G are assigned the same color. When k = 1, the MkCS problem is the same

as the maximum independent set (MIS) problem. Given a graph G, the objective of

MIS is to seek a maximum-cardinality subset of vertices such that no pair of them are

adjacent. The MkCS problem with k = 2 can be viewed as the MBS problem. Lewis

and Yannakakis [LY80] showed that for any k, MkCS problem is NP-Hard. For an

arbitrary k, this problem remains NP-Hard for chordal graphs [YG87]. However, this

problem is polynomial time solvable for chordal graphs for fixed k [YG87], interval

graphs for any k [YG87], circular-arc graphs for k = 2 [Nar89], tolerance graphs

for k = 2 [Nar89], clique-separable graphs for k = 2 [ABKK+10], and i-triangulated

graphs for any k [ABKK+10]. Considering interval graphs, this problem is polynomial
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time solvable using the algorithm designed by Frank [Fra80]. It was shown that a

simple greedy algorithm can solve M2CS (i.e., MBS) problem for interval graphs in

O(|V |+|E|) time [YG87]. Later Narasimhan [Nar89] designed a linear time algorithm

for this problem assuming that the intervals are sorted with respect to their right

endpoints. Lu and Tang [LT97] studied the MBS problem on weighted interval graphs

where the goal is to find an induced bipartite subgraph with maximum weight. They

obtain an O(|V |+ |E|)-time algorithm for this problem.

3.3 Covering and Packing

The set cover problem [CLRS09] is a classical and fundamental question in computer

science. This problem is usually formulated in terms of hypergraphs: the input of

the problem is a hypergraph H = (X ,F ) where F ⊆ 2X is a collection of subsets of X
and our goal is to find a subset F ′ ⊆F of smallest cardinality that covers X . It is one

of Karp’s 21 NP-Complete problems shown to be NP-Complete in 1972 [Kar72]. This

problem is even NP-Hard to approximate [CLRS09, Fei98].

The Set Cover, Independent Set, and Dominating Set problems are NP-Hard for simple

geometric objects such as disks [FPT81], squares [FPT81], rectangles [FPT81], etc.

We refer to page 5 for definitions of these problems in the geometric setting. There is

a long line of research of these problems and its various variants and special cases

[HM85a, MR10, MRR14, CH12, AW13, MP15, CE16, Pan17, vL09].

Korman et al. [KPR18] studied an interesting variation of the Set Cover problem,

the Line-Segment Covering problem. In this problem, they cover all the cells of an

arrangement formed by a set of line segments in the plane using a minimum number

of line segments. Here covering a cell with a segment means the segment is a part

of the boundary of the cell. They showed that the problem is NP-Hard, even when

all segments are axis-aligned. In fact, they also proved that it is NP-Hard to cover

all rectangular cells of the arrangement by a minimum number of axis-parallel line

segments. In [GIK02], Gaur et al. studied the rectangle stabbing problem. Here given

a set of rectangles, the objective is to stab all rectangles with a minimum number of

axis-parallel lines. They provided a 2-factor approximation algorithm for this problem.

We mention another related problem called the art gallery problem. Here the goal is

to place guards so that the guards together see the whole gallery. Many variants of

this have been studied. Bose et al. [BCC+12] studied guarding and coloring problems

between lines. In [DS08], Dom et al. study the parameterized complexity of the

rectangle stabbing problem and its variants. In d-dimensional rectangle stabbing
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problem, we are given a set of axis-parallel d-dimensional hyperrectangles, a set of

axis-parallel (d−1)-dimensional hyperplanes and a positive integer k; the question

is whether one can select at most k hyperplanes so that every hyperrectangle is

intersected by at least one of them. The authors showed that the case d ≥ 3 is W[1]-

hard with respect to the parameter k. In [CRCS+94], Czyzowicz et al. condisered the

guarding problem in rectangular art gallerys. They showed that if a rectangular art

gallery is divided into n rectangular rooms, then dn/2e guards are always sufficient to

protect all rooms in that rectangular art gallery. They also extended their result in

non-rectangular galleries and 3-dimensional art galleries [CRCS+94].

Chen [Che01] studied the problem of finding a maximum independent set in a given

map graph (on both vertex-weighted and unweighted graphs). A map graph is an

intersection graph of faces in the plane, where two vertices share an edge of the graph

if and only if their corresponding faces have at least one point in common. A map

graph is a k-map graph if on its corresponding map has no more than k faces meet at

a point. It is known that the Independent Set problem on planar graphs is NP-Hard.

In [CGP98, CGP02], the authors showed that each planar graph is exactly a 3-map

graph. Thus the unweighted version of the Independent Set problem restricted to

map graphs is also NP-Hard. When the underlying maps are also given along with

the map graphs, Chen [Che01] provided a PTAS for the unweighted Independent Set

problem. Thorup [Tho98] gave a polynomial-time algorithm that constructs a map

from a given map graph. However, this algorithm is very complicated and its running

time is very high. In [Che01], Chen gave a PTAS for the k-map graph for some fixed

integer k. The author also provided a PTAS for the Independent Set problem on

the vertex weighted k-map graph for some fixed integer k. Further, Chen obtained

two nontrivial polynomial-time approximation algorithms for the Independent Set

problem on map graphs. Interestingly, in all of these cases, the algorithm did not

construct a map for the given map graph. Recently, Fomin et al. [FLP+19] obtained

parameterized subexponential time algorithms for various problems on map graphs.

Mustafa et al. [MR10] considered the problem of computing minimum geometric

hitting sets in which, given a set of geometric objects and a set of points, the goal is to

compute the smallest subset of points that hit all geometric objects. The problem is

known to be strongly NP-Hard even for simple geometric objects like unit disks in the

plane.

In [CGK+17], Claverol et al. considered the problem of stabbing line segments with

rectilinear objects. In this problem, given a set S of n line segments in the plane, we

say that a region R ⊆R2 is a stabber for S if R contains exactly one endpoint of each
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segment of S . The authors of [CGK+17] provided optimal algorithms for reporting

all combinatorially different stabbers for several shapes of stabbers. The problem of

computing stabbing circles of a set S of n line segments in the plane has been studied

very recently by Claverol et al. [CKP+18]. Edelsbrunner et al. [EMP+82] showed that

the geometric problem of determining a line (called a stabbing line) which intersects

each of n given line segments in the plane is solvable in O(n logn) time.

3.4 Uniquely Restricted Matching

Let G = (V ,E) be a graph. A set of edges M ⊆ E(G) is said to be a matching if no

two edges of M share a common vertex. The set of vertices in V that have an edge

of M incident on them are called the vertices matched by M. A matching M is said

to be uniquely restricted if there is no other matching that matches the same set of

vertices as M. Golumbic at al. [GHL01] proved that the problem of finding a maximum

cardinality uniquely restricted matching in an input graph is NP-Complete even for

the special cases of split graphs and bipartite graphs. The authors also presented

linear time algorithms for the problem on threshold graphs, proper interval graphs,

cacti, and block graphs. In Chapter 7, we will show that the linear-time algorithm

described for the problem for proper interval graphs in [GHL01] does not appear to

work in all cases. This problem also has been studied in the approximation paradigm.

Mishra [Mis11] showed that for bipartite graphs, the problem is hard to approximate

within a factor of O(n
1
3−ε), for any ε> 0, unless NP=ZPP, and also that the problem

is APX-Complete even for bipartite of degree at most 3. For 3-regular bipartite graphs,

there was a 2-factor approximation algorithm for this problem [Mis11]. Later Baste

et al. [BRS19] improved it and produced a 5/9-factor approximation algorithm for

subcubic bipartite graphs. Penso at al. [PRdSS18] showed that the graphs having the

property that every maximum matching is uniquely restricted can be recognized in

polynomial time. Even if they showed that for a given graph, in polynomial time it is

possible to check whether some maximum matching in the graph is uniquely restricted.

Chaudhary and Panda [CP20] studied a variation of this problem called Min-Max-UR

Matching problem. Here the goal is to find a maximal uniquely restricted matching

of minimum cardinality in the given graph. The author showed that this problem is

NP-Hard for chordal bipartite graphs. Further, they obtained an exact polynomial-time

algorithm for bipartite permutation graphs and proper interval graphs. They also

showed that this problem is APX-Complete for bounded degree graphs.
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3.5 Balanced Subgraph Problem

Bichromatic input points, often referred to as “red-blue” input, has appeared exten-

sively in numerous problems in computational geometry. Recently, Bandyapadhyay et

al. [BBBN20] studied four fundamental graph-theoretic problems: Hamiltonian path,

Traveling salesman, Minimum spanning tree, and Minimum perfect matching on

geometric graphs induced by bichromatic (red and blue) points. Many of these prob-

lems are NP-Hard on Euclidean plane [Aro98, BvKL+09]. In [BBBN20], the authors

showed almost all of these problems can be solved in linear time in two restricted set-

tings such as colinear points and equidistant points on a circle. For a detailed survey

on geometric problems with red-blue points see [KK03]. In [BMS14, DK01, DP02],

colored points have been considered in the context of matching and partitioning prob-

lems. In [AAFM+15], Aichholzer et al. considered the balanced island problem and

devised polynomial algorithms for points in the plane. On the combinatorial side,

Balanchandran et al. [BMMP17] studied the problem of unbiased representatives

in a set of bicolorings. Kaneko et al. [KKW17] considered the problem of balancing

colored points on a line. Later on, Bereg et al. [BHK+15] studied balanced partitions

of 3-colored geometric sets in the plane. In a biological population, vertex-colored

graphs can be used to represents the connections and interactions between species

where different species have different colors. In [FFHV11, IMTP18], the authors

mentioned that the vertex colored graph problems have numerous applications in

bioinformatics. Now, we define one problem, which is on vertex colored graph, called

Graph Motif problem [LFS06, FFHV11, BS17].

In the Graph Motif problem, we are given a graph G = (V ,E), a coloring col : V →C

of the vertices in V where C is a set of colors, and a multiset M of colors of C ;

the objective is to find a subset V ′ ⊆ V such that the induced subgraph on V ′ is

connected and col(V ′) = M, where col(V ′) denotes the multiset of colors of vertices

in V ′. The basic motivation of the Graph Motif problem comes from the domain

of biological network analysis [LFS06]. This problem has applications in social,

technical networks [FFHV11, BvBF+11] and in the context of mass spectrometry

[FFHV11, BRS09]. Fellows et al. [FFHV11] showed that the Graph Motif problem

is NP-Complete for trees of maximum degree 3 where the given motif is a colorful

set instead of a multiset (that is, no color occurs more than once). They also proved

that the Graph Motif problem remains NP-Hard for bipartite graphs of maximum

degree 4 and the motif contains only two colors. In this thesis, we will study balanced

connected subgraph (BCS) problem. Here, a red-blue graph is given as input and our

goal is to find a maximum-sized induced subgraph that is balanced (contains an equal
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number of red and blue vertices) as well as connected. We note that if C = {red, blue}

and the motif has a same number of blues and reds, then the solution of the Graph

Motif problem gives a balanced connected subgraph (not necessarily a maximum

balanced connected subgraph). It is easy to observe that a solution to the Graph

Motif problem (essentially) gives a solution to the BCS problem, with an impact of a

polynomial factor in the running time. On the other hand, the NP-Hardness result for

the BCS problem on a particular graph class implies the NP-Hardness result for the

Graph Motif problem on the same class. So, the BCS problem is a special case of the

Graph Motif problem.

The BCS problem is closely related to the Maximum Node Weight Connected Subgraph

(MNWCS) problem [Joh85, EK14]. In the MNWCS problem, we are given a connected

graph G(V ,E), with an integer weight associated with each vertex (node) in V , and

an integer bound B; the objective is to decide whether there exists a subset V ′ ⊆ V
such that the subgraph induced by V ′ is connected and the total weight of the vertices

in V ′ is at least B. In the MNWCS problem, if the weight of each vertex is either +1

(red) or −1 (blue), and if we ask for a largest connected subgraph whose total weight

is exactly zero, then it is equivalent to the BCS problem. The MNWCS problem along

with its variations have numerous practical applications in various fields (see [EK14]

and the references therein). We believe some of these applications also serve well to

motivate the BCS problem.

Kobayashi et al. [KKM+19] provided an exact exponential-time algorithm of BCS

problem for general graphs (in 2n/2nO(1) time). The authors also considered a weighted

version of BCS (called as WBCS) problem and showed weakly NP-Hardnesses on star

graphs and strongly NP-Hardness on split graphs and properly colored bipartite

graphs. Darties et al. [DGKP19] proved the NP-Completeness of the decision variant

of BCS problem in bounded-diameter and bounded- degree graphs: bipartite graphs

of diameter four, graphs of diameter three and bipartite cubic graphs. Recently, Bhore

et al. [BHK+20] considered a new version of independent set and dominating set

problem on vertex colored interval graphs, called f -Balanced Independent Set ( f -BIS)

and f -Balanced Dominating Set ( f -BDS). Given a vertex-colored graph with k colors,

a subset of vertices is said to be f -balanced if it contains f vertices from each color

class. In the f -BIS and f -BDS problems, the goal is to find an independent set and a

dominating set, respectively, that is f -balanced. They showed NP-Completeness for

both the problems on proper interval graphs.
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4.1 Introduction

In computational geometry, constructing a minimum-length Manhattan network is a

well-studied topic [GLN01]. Let G = (V ,E) be an edge-weighted geometric graph such
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that every edge is horizontal or vertical. The weight of an edge in E is the L1-distance

between its endpoints. For a pair of vertices u and v in G, we use WG(u,v) to denote

the length of a shortest path between u and v in G.

Definition 4.1 (Manhattan network). For a given point set P in the plane, a graph

G is said to be a Manhattan network of P if P ⊆V and for every p, q ∈ P, WG(p, q)=
‖pq‖1, where ‖pq‖1 is the distance between p and q in L1-norm.

In other words, G is said to be a Manhattan network of P if P ⊆V and for each pair

of points in P there exists a Manhattan path (or, shortest L1-path), that is, a path

of axis-parallel line segments whose total length equals the pair’s L1-distance. The

graph G may also include a set T of Steiner points in its vertex set V .

A set of points is said to be a convex point set if all of the points are vertices of

their convex hull. A Manhattan network is said to be planar if there exists a planar

embedding (embedded in the plane without any edge crossings). It is said to be plane

if itself is a planar embedding. Gudmundsson et al. [GKKS07] showed that there

exists a convex point set for which a plane Manhattan network requires Ω(n2) vertices

and edges. We describe their construction: Let P be the set of 4(n−1) points in the

plane defined as follows (see Figure 4.1(a)):

P =
n−1⋃
i=1

{(i,0), (i,n), (0, i), (n, i)}

If G is a plane Manhattan network for P, then there must be a shortest L1-path

between every pair of points (i,0), (i,n) and (0, i), (n, i), where i is an integer satisfying

16 i6 (n−1). These paths need to be orthogonal straight-line segments because in

the first case, the x-coordinates are the same, and in the second case, the y-coordinates

are the same. This would force us to add Steiner points at all the Θ(n2) intersection

points. For an illustration, see Figure 4.1(b).

A natural question that arises is what if we want the network to be planar (and

not necessarily plane)? For the above example, we can construct a planar Manhat-

tan network G = (V = P ∪T,E) of O(n) size. Figure 4.1(c) depicts a planar Manhattan

network for the above example that uses four Steiner points q00 = (0,0), q0n = (0,n),

qn0 = (n,0), qnn = (n,n). Its planarity can be verified in Figure 4.1(d) where a corre-

sponding planar embedding is given. The correctness of the construction, that is G is

a Manhattan network, can be trivially seen by looking at Figure 4.1(d). For example,

for the pair ((0,n−2), (n,2)) there is a Manhattan path, in G, consisting of the edges

((0,n−2), (n,n−2)) and ((n,n−2), (n,2)).

In this work, we focus on the following problem:
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q0n qnn

q00 qn0

(a) (b) (c) (d)

Figure 4.1: Blue circles represent the points in P, and red circles represent Steiner
points. (a) The point set P, (b) construction of a plane Manhattan network for the
point set P, (c) a planar Manhattan network G∗ of P, and (d) a planar embedding of
G∗ where the curved edges have weight/length n.

A set S of n points, is given as input where the points are in convex position in R2,

í construct a planar Manhattan network for S using a linear (in terms of

cardinality of S) number of Steiner points.

Showing planarity of the network is important as the all-pairs shortest-path com-

putation is much faster on planar graphs than on general graphs [Fre91]. Also, the

running time to compute shortest paths does not depend on a planar embedding; the

planarity condition is sufficient.

4.1.1 Our contributions

In linear time, we construct a planar Manhattan network G for a convex point set S of

size n, assuming the points of S are given in sorted order along their convex hull. The

network G uses O(n) Steiner points as vertices. Our network is also a
p

2 - spanner in

L2-norm. We also show that the construction in Gudmundsson et al. [GKKS07] needs

Ω(n logn) points even for a convex point set. Also, their network might not be planar

even for a convex point set.

4.2 Manhattan Network for General Point Sets

In this section, we compare our algorithm with the best-known Manhattan network

algorithm for general point sets by Gudmundsson et al. [GKKS07]. We consider

the case that the input is a convex point set and we observe that the algorithm of

Gudmundsson et al. needs asymptotically more Steiner points in the worst case and
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in contrast to our network, the network costructed by Gudmundsson et al. might not

be planar.

For general point sets, Gudmundsson et al. [GKKS07] proved the following theorem.

Theorem 4.1. [GKKS07] Let P be a set of n points. A Manhattan Network for P
consisting of Θ(n logn) vertices and edges can be computed in O(n logn) time.

p1

p2

p3

p4

p5

p6

p7

p8

Figure 4.2: Construction of the Manhattan network for S. Points in S are in blue
color and Steiner points are in red color.

Their construction is as follows: Assuming that no two points in P are on the same

vertical line, sort the points in P according to their x-coordinate. Let m be the median

x-coordinate in P. Then draw a vertical line Lm through (m,0). For each point p of P,

take an orthogonal projection on the line Lm. Add Steiner points at each projection

and join p with its corresponding projection point. Then recursively do the same, on

the points that have smaller x-coordinate than p and on the points that have greater

x-coordinate than p. Add a Steiner point at each projection. Figure 4.2 illustrates the

algorithm of Gudmundsson et al. [GKKS07].

Now, we make two observations on the construction of Gudmundsson et al. [GKKS07].

First, there are convex point sets where this construction needs Ω(n logn) Steiner

points. For instance, this is the case for any convex point set of size n where no

two points have the same x or y- coordinate. According to the construction of Gud-

mundsson et al. [GKKS07], the vertical line Lm through (m,0) would contain the

projection of all points p of P. This process would run recursively on two subsets

Sl and Sr of points. Here Sl = {q ∈ S|x(q) < x(m)} and Sr = {q ∈ S|x(q) > s(m)}. Thus

most of the points are projected onto O(logn) different vertical lines and the result

holds. Secondly, there are convex point sets for which this construction is not planar.

Figure 4.3 depicts such an instance of 16 points in convex position. The Manhattan
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4.3. Planar Manhattan Network FOR CONVEX POINT SETS

network, as computed by the algorithm of Gudmundsson et al. [GKKS07], has a minor

homeomorphic to K3,3. Hence, it is not planar. We summarize our observations of

Gudmundsson et al.’s algorithm in the lemma below.

Lemma 4.1. There exist convex point sets for which the algorithm of Gudmundsson et
al. [GKKS07] produces a non-planar Manhattan network. Also, for every n, there is a
convex point set of n points where this construction needs Ω(n logn) Steiner points.
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Figure 4.3: (a) The Manhattan network GA of a convex point set A = {p1, . . . , p16} (blue
color) as produced by the algorithm of Gudmundsson et al. [GKKS07]. Points colored
in red are Steiner points. (b) A subgraph of GA that is homeomorphic to K3,3 (vertices
of K3,3 are depicted as boxes/rectangles).

Thus, our algorithm that we present in Section 4.3 is an improvement for convex

point sets as it uses only O(n) Steiner points and is always planar.

4.3 Planar Manhattan Network for Convex Point Sets

In this section, we construct a linear-size planar Manhattan network G for a convex

point set S. The network G uses O(n) Steiner points and can be constructed in linear

time. We organize this section as follows. In Section 4.3.1, we construct a histogram

partition H (OC P (S)) of an ortho-convex polygon OC P (S) of the convex point set S.

In Section 4.3.2, we construct our desired graph G = (V ,E) where S ⊆V . We also show

that the graph G is of linear size, and it can be computed in linear time. Section 4.3.3

is devoted to prove that the graph G is a Manhattan network for S. In Section 4.3.4,

we show that G is planar. Our main idea is as follows: Draw a straight-line Manhattan

network for S where crossings occur only between vertical and horizontal edges. To

get a planar embedding, we then redraw all, say, vertical edges by non-intersecting
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curves within the exterior face around the convex hull. Hence, only horizontal edges

remain in the convex hull’s interior and, thus, all crossings are eliminated.

A polygonal chain, with n vertices in the plane, is defined as an ordered set of vertices

(v1, . . . ,vn), such that any two consecutive vertices vi,vi+1 are connected by the line

segment vivi+1, for 16 i < n. It is said to be closed when it divides the plane into at

least two disjoint regions with v1 = vn. A simple polygon is a bounded region that

is enclosed by a closed polygonal chain in R2. In our definition, we consider that

the region of a polygon includes both its boundary and interior. A line segment is

orthogonal if it is parallel either to the x-axis or to the y-axis.

Definition 4.2. (Orthogonal polygon) A polygon is said to be orthogonal if all of

its sides are orthogonal.

Definition 4.3. (Ortho-convex polygon)[DR90] An orthogonal polygon P is said

to be ortho-convex if every horizontal or vertical line segment connecting a pair of

points in P lies entirely in P .

Definition 4.4. (Shortest L1-path) A path between two points p and q is said to

be a shortest L1-path between them if the path consists of orthogonal line segments

with total length ‖pq‖1.

Lemma 4.2. [CNV08] For all point pairs in an ortho-convex polygon P , there exist a
shortest L1-path between them in P .

4.3.1 Ortho-convex polygon OC P (S) and histogram partition
H (OC P (S))

Let S = {p1, . . . , pn} be a convex point set of size n in R2. For any point p ∈ S, let

x(p) and y(p) be its x- and y-coordinate1, respectively. We assume that the points

in S are ordered with respect to a counter-clockwise orientation along their convex

hull. Without loss of generality, let this ordering be p1, . . . , pn and also assume that

p1 is the top-most point in S, i.e., the point having the largest y-coordinate in S
(for multiple points having the largest y-coordinate, we take the one that has the

smallest x-coordinate). We denote the top-most point of S as t. Analogously, let

`, b, and r denote the left-most (for multiple points, we take the one that has the

smallest y-coordinate), the bottom-most (for multiple points, we take the one that

has the smallest x-coordinate) and the right-most point of S (for multiple points,
1we assume the coordinate axes are horizontal and vertical in the plane where the x-axis is oriented

to the right and the y-axis is oriented to the bottom.
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we take the one that has the smallest y-coordinate), respectively. So t = p1. The

overall idea to construct an ortho-convex polygon OC P (S) for S is as follows: we

connect the points in order such that between any pair of consecutive points there

is at most one Steiner point such that the set of all Steiner points is convex. Now

we describe the construction in detail. We will consider the point set for the case

that x(p1)6 x(b). For the case of x(p1)> x(b), both the construction and the proof are

symmetric (by vertical reflection with respect to the x-axis). A polygonal chain is said

to be xy-monotone if any orthogonal line segment intersects the chain in a connected

set. Now we will construct an ortho-convex polygon OC P (S), where the points in

S lie on the boundary of OC P (S). The ortho-convex polygon OC P (S) consists of

four xy-monotone chains. Let us denote these chains as Ct`, C`b,Cbr and Crt. The

chain Ct` is composed of the points p1(= t), p2, . . . ,`. Analogously, C`b, Cbr, and Crt

are defined. While constructing the chain Ct`, we do the following: For any pair

of consecutive points pi, pi+1, if x(pi+1) < x(pi) and y(pi+1) < y(pi) then we draw

two line segments pi si,i+1, si,i+1 pi+1, where si,i+1 = (x(pi+1), y(pi)), else we draw

the line segment pi pi+1. In Algorithm 1, we describe the construction of Ct`. The

construction for all the other monotone chains follow the same set of rules. We use

si,i+1 to denote the Steiner point (if it exists 2) that is in between pi and pi+1 with

respect to a counter-clockwise orientation in the boundary of the polygon OC P (S).

See Figure 4.4 for an illustration.

Algorithm 1 Construction of the chain Ct`
Input: A set of m points p1(= t), p2, . . . , pm(= `) such that x(p j+1)6 x(p j), y(p j+1)6
y(p j) for 16 j < m
Output: The chain Ct`

1: for j = 1 to (m−1) do
2: if x(p j)= x(p j+1) or y(p j)= y(p j+1) then
3: Join the points p j and p j+1 with the line segment p j p j+1
4: else
5: Create a Steiner point s j, j+1 = (x(p j+1), y(p j))
6: Join the points p j and p j+1 with the line segments p j s j, j+1 and s j, j+1 p j+1
7: end if
8: end for

In Figure 4.5, we illustrate an example of a convex point set S of size 15 and an

ortho-convex polygon OC P (S).

Definition 4.5. (Histogram) A histogram H is an orthogonal polygon consisting of

a boundary edge e, called its base, such that for any point p ∈ H, there exists a point
2it does not exist if pi and pi+1 have a same coordinate, i.e., x(pi)= x(pi+1) or y(pi)= y(pi+1).
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p1 = t

s2,3 = (x(p3), y(p2))

pm−1

p2

pm = `

p3

Figure 4.4: Construction of the chain Ct` from a given convex point set (blue color).
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Crt
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Figure 4.5: (a) Example of a set S of 12 points in convex position, (b) OC P (S) of S.

q ∈ e such that the line segment pq is orthogonal and lies completely in H.

If the base is horizontal (respectively, vertical) we say that H is a horizontal (res-

pectively, vertical) histogram. If its interior is above the base, it is called an upper
histogram. Similarly, we can define the lower, left, and right histograms. Figure

4.6 depicts some examples of histograms with their bases. In this work, we have

considered histograms both in general as well as in the degenerate case. Figure

4.6(b) illustrates an example of a degenerate histogram. Note that a histogram can

have multiple bases. There is a base edge containing another base edge of the same

histogram in a degenerate histogram.

Definition 4.6. (Histogram Partition) A histogram partition of an orthogonal

polygon is a partition of the interior of that polygon into histograms.

We can always construct a histogram partition of any given orthogonal polygon [Sch96].

Now we construct a histogram partition H (OC P (S)) of OC P (S).
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p q

(a)
a b c

(b)

Figure 4.6: Examples of histograms. (a) general case: base pq, (b) degenerate case:
ab and ac are bases.

Let L = pq be a vertical line segment such that both the points p and q are on the

boundary of OC P (S). We use Hr
L to denote a right-vertical histogram with base

L = pq where this unique histogram is obtained by cutting the orthogonal polygon

OC P (S) by L into two halves and taking the part of the right half that does not lie

below ymin(L) or above ymax(L) as Hr
L. Formally we can write Hr

L = OC P (S)∩Lr ,

where Lr = {(x, y) : x> x(L), ymin(L)6 y6 ymax(L)}. Similarly, we use H`
L to denote a

left-vertical histogram with the base L. For an horizontal line segment L′ = p′q′, in

same way, we define Hu
L′ and Hb

L′ as upper-horizontal and lower-horizontal histograms,

respectively, with base L′. Let projL(x) be the orthogonal projection of a point x on

the line containing an horizontal or vertical segment L. For a set A of orthogonal

line segments and a point set S, we say A can see S if for every x ∈ S there is at least

one line segment L ∈ A such that projL(x) ∈ L. For a vertical (resp. horizontal) line

segment L, we define x(L) (resp. y(L)) to be the x-coordinate (resp. y-coordinate) of L.

We obtain a histogram partition H (OC P (S)) of OC P (S) by iteratively drawing

vertical and horizontal lines as follows (see Figure 4.7):

Step 1: Let q1 be the intersection point of the boundary of OC P (S) with the vertical

line containing p1. Note that, as we consider the point set for the case that x(t)6
x(b), we have q1 ∈ C`b. First, we draw a vertical line segment L1 = p1q1. We

define two sets S(H`
L1

) and S(Hr
L1

) such that S(H`
L1

)= {q ∈ S : y(t)> y(q)> y(q1)

and x(q)6 x(q1)}, S(Hr
L1

)= {q ∈ S : y(t)> y(q)> y(q1) and x(q)> x(q1)}. In this

step, we construct two vertical histograms H`
L1

and Hr
L1

. If S(H`
L1

)∪S(Hr
L1

)= S,

i.e., L1 can see S we stop, else we proceed to Step 2.

Step 2: Let q2 (∉ C`b) be the intersection point of the boundary of OC P (S) with

the horizontal line containing q1. Then we draw a horizontal line segment

L2 = q1q2. Here we define the set S(Hb
L2

) = {z ∈ S : x(q1) 6 x(z) 6 x(q2) and

y(z)6 y(q2)}. In this step, we construct the lower histogram Hb
L2

with base
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L1

L4

L3

L2

p1 = t

`
pn

pn,1

Hr
L1

H`
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q1
q2

pj,j+1

pj

Hb
L2

q3
q4

Hr
L3

Figure 4.7: H (OC P (S)) of a convex point set S.

L2. Note that boundary of Hb
L2

(degenerate) is defined by the points q1, q2, p j

and q3. If S(H`
L1

)∪S(Hr
L1

)∪S(Hb
L2

)= S, i.e., {L1,L2} can see S we stop, else we

proceed to the next step.

Step 3: Let q3 (∉ Crt) be the intersection point of the boundary of OC P (S) with

the vertical line containing q2. Then we draw a vertical line segment L3 =
q2q3. Here we define the set S(Hr

L3
)= {w ∈ S : y(q2)> y(w)> y(q3) and x(q)>

x(q3)}. In this step, we construct the right histogram Hr
L3

with base L3. Here

boundary of Hr
L3

(degenerate) is defined by the points q2, p j, q3 and q4. If

S(H`
L1

)∪S(Hr
L1

)∪S(Hb
L2

)∪S(Hr
L3

)= S, i.e., {L1,L2,L3} can see S we stop, else

we proceed in a similar manner.

Notice that, in each step of our construction, we draw an axis-parallel line segment

through some points from S inside the polygon. Also after each step, the set of still-

invisible points in S gets smaller and forms an ortho-convex polygon that we partition

recursively into histograms. This ensures that our process terminates. We assume

that it terminates after k steps, and we obtain a set L of k orthogonal line segments

{L1, . . . ,Lk} for some k ∈N such that {L1, . . . ,Lk} can see S. In this process, we add k
Steiner points {qi : 16 i6 k}. Each qi belongs to the boundary of OC P (S).

The process terminates in one of the following four configurations. These four con-

figurations depend on whether Lk is vertical or horizontal and whether b and r are

contained in the same histogram with base Lk or lie in different ones (see Figure 4.8).
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• Type-1 Lk is vertical and projLk−1
(b) ∈ Lk−1, i.e., Lk−1 sees b.

• Type-2 Lk is vertical and projLk−1
(b) ∉ Lk−1.

• Type-3 Lk is horizontal and projLk−1
(r) ∈ Lk−1, i.e., Lk−1 sees r.

• Type-4 Lk is horizontal and projLk−1
(r) ∉ Lk−1.

So for any point p ∈ S, there is at least one line segment L ∈L such that projL(p) ∈ L
and the segment p projL(p) completely lies in OC P (S) where L = ∪n

i=1L i. From

now onwards, we assume that L1, . . . ,Lk are the segments inserted in OC P (S) while

constructing H (OC P (S)).

Lk

Lk−1

b

r

(a) Type 1

Lk

Lk−1

r

b

(b) Type 2

Lk−1

Lk

b

r

(c) Type 3

Lk−1

Lk

b

r

(d) Type 4

Figure 4.8: Types of the histograms containing b and r in OC P (S).

Lemma 4.3. H (OC P (S)) is a histogram partition of OC P (S) and it can be con-
structed in linear time.

Proof. Let L i(S) = {p ∈ S : L i can see p}. First we show that H (OC P (S)) is a

histogram partition of OC P (S), i.e., ∪k
i=1L i(S) = S. The segment L1 sees every

point q ∈ S with the property that y(q1)6 y(q)6 y(t) as OC P (S) is an ortho-convex

polygon and these points are part of the xy-monotone chains {Crt,Ct`,C`b,Cbr}. So

L1(S) consists of all the points in S that lie above L2. Moreover, all the points above
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L2 are part of the histograms H`
L1

and Hr
L1

. Now our concern is only about the points

of S that are below L2. Now the segment L2 can see every point q ∈ (S \ L1(S))

having the property that x(q1)6 x(q)6 x(q2). These points are part of the histogram

Hb
L2

. Now we can apply the same argument iteratively. This leads to the claim that

∪k
i=1L i(S) = S, i.e., L = {L1, . . . ,Lk} can see S. Observe that the segments in L can

be computed by walking around the boundary of OC P (S) in linear time. We achieve

this by using two pointers moving along the border of OC P (S). One pointer moves

counter-clockwise from ` to b while the other moves clockwise from t to b. (Note that

we do not need to visit the points between t and ` as the chain Ct` entirely belongs to

the first histogram H`
L1

.) Hence, the proof. �

4.3.2 Construction of a planar Manhattan network

Now we describe our construction of a planar Manhattan network G = (V ,E) for a

convex point set S. We construct the graph by adding, step by step, Steiner points and

rectilinear edges into the drawing of H (OC P (S)). The resulting Manhattan network

is straight-line, and crossings occur only between vertical and horizontal edges. We

discuss this redrawing in Section 4.3.4 where we argue that the resulting drawing is

planar as only horizontal edges remain in the interior of the convex hull and, thus, all

crossings are eliminated. In the following, by Algorithm 2 we construct a straight-line

drawing of G (Manhattan network for the convex point set S) by adding Steiner points

and rectilinear edges into the drawing of H (OC P (S)). For an illustration of the

steps of this algorithm, see Figure 4.9. Recall that projL(p) denotes the orthogonal

projection of the point p on the line containing the segment L and further, let H(q) be

the set of histograms containing q ∈ S in H (OC P (S)). In the histogram partition,

there exists a unique histogram containing the point `. But it may happen that

|H(b)| > 1 (resp. |H(r)| > 1). If |H(`)| = |H(b)| = |H(r)| = 1, we assume that e1, e2, and

e3 are the bases of the unique histograms in H(`),H(b), and H(r), respectively. In

the other case, when |H(b)| > 1 (resp. |H(r)| > 1), we consider Lk−1 as e2 (resp. e3).

First, we draw the segments e′1 = ` proje1(`), e′2 = b proje2(b), and e′3 = r proje3(r) in

OC P (S). Note that b or r might be a convex vertex. For instance, suppose that

in Figure 4.7(a), r is identical with the red point below it. In this special case we

draw e′3 not as a straight line segment but as a curve that is very close to the border

but only touches the border in r. Or, more generally, e′3 is a curve connecting r to

proje3(r) within the interior of the respective histogram. A similar kind of argument

can be applied when b is convex. Let L ′ =L ∪ {e′1, e′2, e′3}. Next, for each q ∈ S and

each L ∈L ′∩H where H ∈ H(q), if projL(q) ∈ L, we draw the line segment q projL(q)
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in OC P (S). If Lk is vertical and projLk−1
(b) ∈ Lk−1 (i.e., the configuration of Type

1 holds), we draw the segments z proje′2(z), for each point z ∈ S∩Hr
Lk

. Also if Lk is

horizontal and projLk−1
(r) ∈ Lk−1(i.e., the configuration of Type 3 holds), we draw the

segments w proje′3(w), for each point w ∈ S∩Hb
Lk

. In this process, we add into E, all

the line segments that we draw except {e′1, e′2, e′3}. Also all the extra points we created

to make an orthogonal projection, we add them into the set T of Steiner vertices. Our

algorithm ends with removing some specific line segments on e′1, e′2, e′3, that is stated

in the Steps 27-33 in Algorithm 2. This step is required only to keep planarity of

the network. We illustrate this algorithm in Figure 4.12. Recall that we use si,i+1

to denote the vertex (Steiner point) that is in between pi and pi+1 with respect to a

counter-clockwise orientation in the boundary of the ortho-convex polygon OC P (S).

Note that si,i+1 does not exist if x(pi)= x(pi+1) or y(pi)= y(pi+1).

Algorithm 2 Construction of G = (V = S∪T,E)

Input: H (OC P (S)) of a convex point set S = {p1(= t), p2, . . . , pn}.

Let {L1, . . . ,Lk} be the segments and {qi : 16 i6 k} be the set of points

inserted in OC P (S) during the construction of H (OC P (S)).

Output: A planar Manhattan network G = (V = S∪T,E) of S.

1: T ← { si,i+1 : 16 i6 (n−1)}∪ {sn,1}∪ { qi : 16 i6 k}; . The vertex si,i+1 is the

Steiner point that is in between pi and pi+1 with respect to a counter-clockwise

orientation in the boundary of the ortho-convex polygon OC P (S). si,i+1 does not

exist if x(pi)= x(pi+1) or y(pi)= y(pi+1).

2: E ← {pisi,i+1 : 16 i6 (n−1)}∪ {pi+1si,i+1 : 16 i6 (n−1)}∪ pnsn,1∪ p1sn,1; . Add

an edge (pi, pi+1) in the case that si,i+1 does not exist. See Figure 4.9(i)

3: Draw the line segments e′1 = l proje1(l), e′2 = b proje2(b), and e′3 = r proje3(r) .

e1, e2, and e3 are the bases of the histograms H(`),H(b), and H(r), respectively.

4: T = T ∪ {proje1(`),proje2(b),proje3(r)}

5: L ′ = {L1, . . . ,Lk, e′1, e′2, e′3}

6: for each point q ∈ S do
7: for each line segment L ∈L ′∩H where H ∈ H(q) do
8: if projL(q) ∈ L then
9: T = T ∪projL(q);

10: E = E∪ q projL(q) . See Figure 4.9(ii)

11: end if
12: end for
13: end for
14: if the configuration of Type 1 holds then
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15: for each point z ∈ S∩Hr
Lk

do
16: T = T ∪proje′2(z);

17: E = E∪ z proje′2(z) . See Figure 4.9(iii)

18: end for
19: end if
20: if the configuration of Type 3 holds then
21: for each point w ∈ S∩Hb

Lk
do

22: T = T ∪proje′3(w);

23: E = E∪w proje′3(w) . See Figure 4.9(iv)

24: end for
25: end if
26: for each horizontal line segment L ∈L ′ do
27: Let L contain k1 vertices a1, . . . ,ak1 of T, where x(ai)< x(ai+1) for 16 i < k1

28: for 16 i6 (k1 −1) do
29: E = E∪aiai+1 . See Figure 4.9(v)

30: end for
31: end for
32: for each vertical line segment L ∈L ′ do
33: Let L contain k2 vertices b1, . . . ,bk2 of T, where y(bi)> y(bi+1) for 16 i < k2

34: for 16 i6 (k2 −1) do
35: E = E∪bibi+1 . See Figure 4.9(vii)

36: end for
37: end for
38: Delete the following edges if they exist.

39: (i) If there is a vertex (say, u1) on the line segment e′1 such that u1 6= ` and closest

to proje1(`), then we remove the edge (u1,proje1(`)) for all such u1. . See Figure

4.9(vi)

40: (ii) For Types 1 or 4, if there is a vertex (say, u2) on the line segment e′2 such

that u2 6= b and closest to proje2(b), then we remove the edge (u2,proje2(b)) for all

such u2. . See Figure 4.9(viii)

41: (iii) For Types 2 or 3, if there is a vertex (say, u3) on the line segment e′3 such

that u3 6= r and closest to proje3(r), then we remove the edge (u3,proje3(r)) for all

such u3. . See Figure 4.9(ix)

42: For Types 1 or 3, if there is a vertex (say, v) on the line segment Lk where

v ∉ {proje3(r),proje2(b)} and v is not a point on the boundary of OC P (S), then

remove the single edge (w,projLk
(w)), where v = projLk

(w). . See Figure 4.9(x)

and Figure 4.9(xi)
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43: For Type 1, if the line segment e′3 contains a vertex other than r and proje3(r),

then we remove the edge (r,proje3(r)). . See Figure 4.9(xii)

44: For Type 3, if the line segment e′2 contains a vertex other than b and proje2(b),

then we remove the edge (b,proje2(b)). . See Figure 4.9(xiii)

45: return G = (S∪T,E)

Notice that for each point in S, Algorithm 2 adds at most three Steiner vertices in

G. Specifically, |V (G)|6 4n and |E(G)|6 5n. So both the number of vertices and the

number of edges in G are O(n). Now we prove the following lemma.

Lemma 4.4. For the convex point set S, the graph G can be constructed in O(n) time,
assuming the points of S are given in sorted order along their convex hull.

Proof. The construction of G from S consists of three phases. In phase 1, we construct

OC P (S ) from S. For each point p ∈ S, we add exactly one Steiner point and draw

two edges. Now for a pair of points creating a Steiner point takes constant time.

As |S| = n, phase 1 takes O(n) time. In phase 2, we construct a histogram partition

H (OC P (S)) of OC P (S). In Lemma 4.3, we show that this construction takes O(n)

time. In the third and final phase, we apply Algorithm 2 on H (OC P (S)) to construct

our desired graph G = (V ,E) = (S ∪T,E). Now we show that Algorithm 2 runs in

O(n) time. In this algorithm, Steps 1-3 take linear time. In Steps 6-10, for each

point q ∈ S, we perform orthogonal projections at most two times, i.e., we add at most

two Steiner vertices and two edges. The points of S are given in sorted order along

their convex hull. Also, we have an ordered set of k line segments L1, . . . ,Lk with

the ordering based on occurrence while constructing H (OC P (S)). Now, for any pair

of points pi and pi+1, where 16 i 6 n if the point pi has an orthogonal projection

on Lm for some m then pi+1 lies in the same or in a neighboring histogram and,

consequently, pi+1 can not have an orthogonal projection onto any line segment in

L \{Lm−1,Lm,Lm+1}. For example, if p2 has an orthogonal projection on L1, then p3

can not have orthogonal projection onto any line segment in {L3,L4, . . . ,Lk}. So we

can do the Steps 6-10 by walking along the boundary of OC P (S) and by traversing

L in its given order L1, ...,Lk. So, overall it takes O(n+ k) time to perform all the

projections. Steps 11-14 occur only when the configuration of Type 1 holds. We have

to make one more projection for each point of S∩Hr
Lk

to e′2. Each projection can be

computed in constant time. Therefore, Steps 11-14 take linear time. Similarly, Steps

15-18 take linear time. In Steps 19-26, we add edges to E by looking at each line

segment of {L1, . . . ,Lk, e′1, e′2, e′3}. Here the total number of projections is linear, and for

a pair of projection, adding the edge into E takes constant time. So Steps 19-26 takes
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Figure 4.9: Illustration of the steps 2-33 in Algorithm 2. We use purple color for the
line segments of the set L ′. Blue and red color points identify points from S and
Steiner points, respectively. In (iii) and (iv), we only highlight the edges (dashed cyan)
that we added in that step. 42
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linear time. In Step 27-33, we delete some vertices and edges from {e′1, e′2, e′3,Lk}. So

the total time complexity is O(n+k). As k6 n, Algorithm 2 produces G in O(n) time

as claimed. �

4.3.3 G is a Manhattan network

To show that G is a Manhattan network for the point set S, we have to prove that G
contains a shortest L1-path between every pair of points in S. In a simplified view,

the proof is as follows. Recall that we partitioned the ortho-convex polygon of the

input points into a sequence of histograms (which are rectilinear polygons that have

‘bases’ to which all the vertices can be projected orthogonally). Within each histogram,

we connected the input points to the bases via vertical and horizontal edges. Since the

bases of all histograms form a xy-monotone path, any pair of input points is connected

by a shortest L1-path (either on the boundary or via this xy-monotone path of the

bases). In the following, we give a detailed proof that G is a Manhattan network.

Recall that H(p) denotes the set of histograms containing p ∈ S in H (OC P (S)) and

L = {L1, . . . ,Lk} denotes the set of k segments inserted in OC P (S) while constructing

H (OC P (S)). The ortho-convex polygon OC P (S) consists of four xy-monotone chains

Crt,Ct`,C`b,and Cbr. Let pi and p j be two arbitrary points of S where i, j ∈ {1, ...,n}.

We define πG(x, y) as the set of all shortest L1-paths between a pair of vertices x and y
in G. We use 〈x, y〉 to denote an arbitrary shortest L1-path between x and y. For any

two paths π1 and π2, where the two paths intersect exactly once and share a common

endpoint, by π1 ;π2 we denote the path that is obtained by concatenating the paths

π1 and π2. Let πG(x, y) and πG(y, z) be two sets of paths in G where any pair of paths

from different sets share exactly one point, which is nothing but y. Then by πG(x, y) ;

πG(y, z), we mean the set of all possible paths that is obtained by concatenating the

paths from πG(x, y) and πG(y, z), i.e., {π1 ; π2 : π1 ∈ πG(x, y) and π2 ∈ πG(x, y)}. Now

we prove the following lemmas which together imply that G is a Manhattan network

for S.

Lemma 4.5. For each pair of points pi and p j of S in a same histogram, i.e., H(pi)∩
H(p j) 6= ;, there exists a shortest L1-path between them in G .

Proof. If both pi and p j belong to the same xy-monotone chain then the claim holds

as each xy-monotone chain of the ortho-convex polygon OC P (S) is a Manhattan

network for the points it contains. Now we consider the case when pi and p j belong to

different chains. Let H be the histogram that contains both pi and p j. For the special

case, where both the points pi and p j lie on a same line segment in L , there exists a
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shortest path between them through that line segment. For the rest of the cases, the

proof can be divided into following four cases (we omit the symmetric cases where the

roles of pi and p j are swapped). For an illustration of these cases see Figure 4.10.

Case A. H ∈ H(`): If pi ∈ L1 then the concatenated path 〈pi,projL1(p j)〉; 〈projL1(p j),

p j〉 belongs to πG(pi, p j). In other cases, if pi ∈ Ct`, p j ∈ C`b then the concate-

nated path 〈pi,proje′1(pi)〉; πG(proje′1(pi),proje′1(p j)) ; 〈proje′1(p j), p j〉 belongs

to πG(pi, p j).

p1 = pi

`

L2

L1

projL1
(`)

pj

(a)

b

r

Lk−1

Lk

pi

pj

(b)

Lk

b

Lk−1

pi

pj

r

(c)

p1

`

L2

L1 pi

pj

(d)

Figure 4.10: Examples of a shortest L1-path (blue colored) between the pair of points
pi and p j for the Case A (a), Case B (b), Case C (c), and Case D (d). For the clarity
of figures, we do not depict some edges and vertices that are not part of the shortest
L1-path.

Case B. H ∈ H(r): For Type 1, if pi ∈ Lk then the concatenated path 〈pi,projLk
(r)〉;

〈projLk
(r),proje′3(p j)〉 ; 〈proje′3(p j), p j〉 belongs to πG(pi, p j). For Type 2 or

4, if one of pi and p j (say, pi) belongs to Lk then the concatenated path

〈pi,projLk
(p j)〉

; 〈projLk
(p j), p j〉 belongs to πG(pi, p j). We are unable to do the same for Type

1 as in step 31 of Algorithm 2. We might have removed the edge (projLk
(p j), p j).

For Type 3, if one of pi and p j (say, pi) belongs to Lk−1 then the concatenated
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path 〈pi,projLk−1
(p j)〉; 〈projLk−1

(p j), p j〉 belongs to πG(pi, p j). In other cases,

for Types 1, 2, or 3, if pi ∈ Crt and p j ∈ Cbr ∪C`b, then the concatenated path

〈pi,proje′3(pi)〉;πG(proje′3(pi),proje′3(p j)) ; 〈proje′3(p j), p j〉 belongs to πG(pi, p j).

For Type 3, if pi ∈ C`b and p j ∈ Cbr then the concatenated path 〈pi,projLk
(b)〉;

πG(projLk
(b), p j) belongs to πG(pi, p j). For Type 4, if pi ∈ C`b and p j ∈ Cbr then

the concatenated path 〈pi,proje′2(pi)〉;πG(proje′2(pi),proje′2(p j)) ; 〈proje′2(p j), p j〉
belongs to πG(pi, p j).

Case C. H ∈ H(b): For Type 1, if pi ∈ Lk−1 then the concatenated path 〈pi,projLk−1
(p j)〉

; 〈projLk−1
(p j), p j〉 belongs to πG(pi, p j). For Type 3, if pi ∈ Lk then the concate-

nated path 〈pi,projLk
(b)〉 ; 〈projLk

(b),proje′2(p j)〉 ; 〈proje′2(p j), p j〉 belongs to

πG(pi, p j). In other cases, for Types 1 or 3, if pi ∈ C`b and p j ∈ Cbr∪Crt, then the

concatenated path 〈pi,proje′2(pi)〉 ; πG(proje′2(pi),proje′2(p j)) ; 〈proje′2(p j), p j〉
belongs to πG(pi, p j). For Type 1, if pi ∈ Crt and p j ∈ Cbr then the concatenated

path 〈pi,projLk
(r)〉;πG(projLk

(r), p j) belongs to πG(pi, p j). For Types 2 or 4, as

H(b)∩H(r) 6= ;, it is similar as subcase Case B.

Case D. H ∉ H(`)∪H(b)∪H(r): Let these histograms contain two elements say L
and L′ of L . Notice that in this case at least one of pi and p j already lies on L
or L′. Assume that pi lies on the line segment L. Then the concatenated path

〈pi,projL(p j)〉; 〈projL(p j), p j〉 belongs to πG(pi, p j).

Lemma 4.6. For any two points w and z in S where no histogram in H (OC P (S))

contains both w and z, i.e., H(w)∩H(z)=; , there always exist line segments L and
L′ in L such that (i) projL(w) ∈ L, projL′(z) ∈ L′ and (ii) w and z lie on different sides
of the lines through L and L′.

Proof. Without loss of generality, x(w)≤ x(z). First we observe that in our construc-

tion each histogram H (with the exception of the first and last one) is surrounded

by two line segments L j and L j+1 in L such that L j is the base of the histogram H.

Also for a point p in S, |H(p)| > 1 if and only if p belongs to some line segment in

L . If w belongs to the first histogram H l
L1

, take L = L1. If w belongs to some line

segment L i then L = L i+1. Otherwise, let L i be the base of the unique histogram in

H(w). Then we take L = L i+1. Similarly, if z belongs to the last histogram Hr
Lk

or

Hb
Lk

, take L′ = Lk. If z belongs to some line segment L j+1 then L′ = L j. Otherwise, let

L j be the base of the unique histogram in H(z). Take L′ = L j. Observe that the line

through L cuts the polygon into two halves with one half containing w and the other

half containing all histograms with bases L i+1, . . . ,Lk. Similarly, the line through
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L′ separates z from all histograms with bases L1, . . . ,L j−1 (assuming j > 1). Given

x(w)≤ x(z) and H(w)∩H(z)=;, we have either i = j = 1 or i+1≤ j. In either case, w
and z lie on different sides of the lines through L and L′. �

Lemma 4.7. For each pair of points w and z of S satisfying H(w)∩H(z) =;, there
exists a shortest L1-path in G between them.

Proof. Let w and z be a pair of points in S such that no histogram in H (OC P (S))

contains both w and z. First, we find line segments L,L′ ∈ L such that (i) L can

see w, L′ can see z, and (ii) if we draw a line L∗ that contains the line segment L
(respectively, L′) then w and z belong to opposite sides of L∗. By Lemma 4.6, both L
and L′ exist in L and it may happen that L = L′ (we say “w and z belong to opposite

histograms").

Without loss of generality, we assume that x(w) < x(z). If L = L′ 6= Lk (for example,

w = p2, z = pn, L = L′ = L1) then πG(projL(w),projL′(z)) is along the line segment L
and thus the concatenated path 〈w,projL(w)〉;πG(projL(w),projL′(z)) ; 〈projL′(z), z〉
belongs to πG(w, z). Next we consider L = L′ = Lk. For Type 2 or 3, the concatenated

path 〈w,projLk
(w)〉; πG(projLk

(w),projLk
(z)) ; 〈projLk

(z), z〉 belongs to πG(w, z). For

the Type 1 or 3, this proposed path might not exist as projLk
(w) or projLk

(z) might not

exist because of Step 31 of the Algorithm 2. We do a case analysis for the Type 1. The

case of Type 3 will follow similar kind of arguments (the difference is that in Type 3, Lk

is horizontal instead of vertical as the Type 1). If x(w)≤ x(b), then the concatenated

path 〈w,proje′2(w)〉 ; πG(proje′2(w),proje′2(z)) ; 〈proje′2(z), z〉 belongs to πG(w, z). If

x(w) > x(b) and y(z) ≤ y(r), then w and z belong to the same xy-monotone chain;

thus they are connected by a shortest L1-path. Finally, if x(w)> x(b) and y(z)> y(r),

then the concatenated path πG(w,projLk
(r)) ; πG(projLk

(r),proje′3(z)) ; 〈proje′3(z), z〉
belongs to πG(w, z).

Now we are left with the case when L 6= L′. For example, in Figure 4.12, considering

l as w and r as z we find L = L1 and L′ = Lk. The rest of the proof can be divided

into two cases. One is for vertical L and the other one is for horizontal L. Recall that

{L1, . . . ,Lk} are the segments inserted in OC P (S) while constructing H (OC P (S)).

The point set {qi : 16 i6 k} comes from the construction of H (OC P (S)). Also, we

use si,i+1 to denote the vertex (Steiner point) that is in between pi and pi+1 with

respect to a counter-clockwise orientation along the boundary of OC P (S). Assuming

t = q0, L i is the segment with endpoints qi−1 and qi, where 16 i 6 k. We assume

that L is vertical, the case in which it is horizontal being similar.

Let L = Lm for some m,16m < k. So Lm = qm−1qm. If w = qm then the horizontal
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Figure 4.11: Shortest L1-path between a pair of points from different histograms.

segment Lm+1 also contains w. In this case we repeat the proof by considering Lm+1

as L. Else if w 6= qm, then by the construction of H (OC P (S)), qm is not only a

point on the boundary of OC P (S) but also there exists a point say p j in S such

that qm ∈ s j−1, j p j (in case of collinearities, qm ∈ p j−1 p j ). Since L 6= L′, z lies either

below Lm+1 or on Lm+1. In both cases, we find a Manhattan path 〈p j, z〉 for the pair

p j, z: in the former case, by recursively applying our proof and taking Lm+1 as the

separating line, in the latter case by applying Lemma 5. Also recursively, we obtain a

Manhattan path 〈w, p j〉. Observe that the concatenation πG(w, p j) ;πG(p j, z) yields

a Manhattan path in πG(w, z) and our claim follows. For an illustration, see Figure

4.11.

Lemma 4.5 and Lemma 4.7 together conclude that every pair of vertices of S is

connected by a Manhattan path in G. Hence we conclude the following theorem.

Theorem 4.2. G is a Manhattan network for the point set S.

4.3.4 Planarity of G

In this section, we show that the graph G = (V ,E) is planar by providing a planar

embedding. For an illustration, see Figure 4.12.

To show planarity, note that there might be crossings in the current drawing as

each input point may contribute to horizontal and vertical edges inside the polygon.

Therefore, we remove all vertical or all horizontal edges from every histogram and

redraw them in the exterior face. In detail, we start with the first two histograms and

draw their common base edge which is vertical in the exterior (not as a straight-line

segment but as a curve that goes around the polygon). In the exterior, we also redraw
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Figure 4.12: (a) The output G of Algorithm 2 for a point set in blue color. (b) A planar
embedding of G.

in a crossing-free manner the formerly horizontal edges of the input points that are

connected to this base edge. Now in their interior, all crossings are eliminated. In

the same manner, we redraw all the remaining histogram pairs and obtain a planar

drawing. Now we describe in detail how we obtain a planar embedding. The union

of two graphs G1 = (V1,E1) and G2 = (V2,E2) is defined as the graph (V1 ∪V2,E1 ∪E2)

[W+96]. We will make use of the following theorem.

Theorem 4.3. [Gib85] A planar embedding of a graph can be transformed into another
planar embedding such that any specified face becomes the exterior face.

Relation to k-plane graphs [GHK+15] A geometric graph G = (V ,E) is said to

be a k-plane graph for some k ∈ N if E can be partitioned into k disjoint subsets,

E = E1∪· · · ·∪· Ek, such that G1 = (V ,E1), . . . ,Gk = (V ,Ek) are all plane graphs, where

∪· represents the disjoint union. For a finite general point set P in the plane, Gk(P)

denotes the family of k-plane graphs with vertex set P. As per our construction, the

graph that we construct to form a Manhattan network for the convex point set is a

2-plane graph because we can partition the edges into horizontal and vertical edge

sets and each such set is crossing-free.

Theorem 4.4. The graph G computed in Algorithm 2 is planar.
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In the following, we prove Theorem 4.4. We decompose G into two subgraphs H and

K such that G = H ∪K . This decomposition depends on whether the line Lk−1 is

horizontal or vertical. For Types 1 and 2 of our histogram partition H (OC P (S)), the

line segment Lk−1 is horizontal, for Types 3 and 4, it is vertical. We will define the

decomposition later and explain how the decomposition depends on the line Lk−1.

Let V ′ = V (H)∩V (K). We want to show that G is planar, i.e., there exists a planar

embedding G̃ of G. If we can show that (i) there exist two planar embeddings, H̃ for

H and K̃ for K , such that V ′ belongs to the exterior faces of both H̃ and K̃ , (ii) there

does not exist any edge (u,v) ∈ E such that u ∈ V (H)\ V ′,v ∈ V (K)\ V ′, and (iii) the

vertices in V ′ appear in the same order in the two embeddings in the path on the

exterior face they induce, then we can obtain a planar embedding G̃ of G by attaching

the embeddings of H̃ with K̃ , and this can be done in the following way:

We transform the planar embedding H̃ of H to another planar embedding ˜̃H
such that exterior face of H̃ becomes an interior face say F of ˜̃H (by Theorem

4.3).

Now V ′ is contained in both F and the exterior face of K̃ . Because of (ii) and

(iii), we can attach the embedding K̃ inside F of ˜̃H.

Given a planar drawing or embedding of a graph G in the plane, we define its boundary

as follows. We can assume that the drawing of G is surrounded by a rectangular box

B and let u be an imaginary vertex outside of B. We say a point p in G (either p
is a vertex or belongs to an edge) belongs to its boundary if p can be joined with u
by a curved line that does not intersect any edges of G. This boundary gives us an

outer-face of the drawing. For an illustration of both boundary and outer-face of a

drawing, see Figure 4.13.

Figure 4.13: Black colored edges form the boundary of the drawing of a graph. All
blue vertices are part of the boundary, whereas no red vertex belongs to the boundary.
The non-shaded region is the outer-face of the graph.

49



CHAPTER 4. MANHATTAN NETWORK

Here we consider the drawing of G constructed by Algorithm 2 from which we later

construct the planar embedding as another drawing. We use V f to denote the vertices

on the outer-boundary of G which are exactly the vertices along the boundary of

OC P (S ). We analyze each of the following two cases.

b

Lk−1
projLk−1(b)

V ′

Lk

r

z1

α1

α2

α4

(a)

Lk−1
projLk−1(b)

V ′

z1

α′1
α′2

α′4

Lk

r

b

(b)

Figure 4.14: (a) The subgraph K of G for Type 1 with the exterior face containing V ′.
(b) A planar embedding of K . The edges of Eb are shown by dashed cyan segments.

Case 1 (Lk−1 is horizontal) : H and K are the subgraphs of G induced by the

vertices lying above and below, respectively, of the line segment Lk−1, i.e., V (H) =
{v : v ∈ V , y(v)> y(Lk−1)}. Similarly, V (K) = {v : v ∈ V , y(v)6 y(Lk−1)}. Recall that

V ′ =V (H)∩V (K). We also consider the drawing of K (similarly, H) obtained from the

drawing of G by removing the vertices lying strictly above (similarly, below) Lk−1 (see

Figure 4.14).

By our construction, it is easy to verify that there does not exist any edge (u,v) ∈ E
such that u ∈ V (H) \ V ′,v ∈ V (K) \ V ′. Now we show that there exist two planar

embeddings, H̃ for H and K̃ for K , such that V ′ belongs to the exterior faces of both

H̃ and K̃ , and also the vertices in V ′ appear in the same order in the two embeddings

in the path on the exterior face they induce.

Lemma 4.8. For the case that Lk−1 is horizontal, the graph K has a planar embedding
K̃ such that V ′ is contained in the exterior face of K̃ . The vertices of V ′ induce a path
on the exterior face and are in the same order as on Lk−1 in the original drawing of G.

Proof. Let us consider the drawing of K obtained from G. Let V f
K ⊆V be the set of

vertices in G along the boundary of K . So V f
K = (V f ∩V (K))∪V ′. For Type 1, let Eb

be the set of horizontal edges that have one endpoint in S and the other endpoint

50



4.3. Planar Manhattan Network FOR CONVEX POINT SETS

on the segment e′2 = b projLk−1
(b). Let z1 be the top-most vertex on the segment e′2

having y(z1)< y(projLk−1
(b)). In the planar embedding, all the Steiner points on the

line segment bz1 will go to the exterior of the polygon along with their incident edges.

Below we describe this procedure.

Lk−1
V ′

b

projLk
(r)

Lk

r

(a)

Lk−1

projLk
(r)

Lk

r

V ′

b

(b)

Figure 4.15: (a) The subgraph K of G for Type 2 with the exterior face containing V ′.
(b) A planar embedding of K . The edges of Ek are shown by dashed cyan segments.

Let the segment bz1 contain d Steiner points α1, . . . ,αd (= z1) with y(α1) ≤ . . . ≤
y(αd). Also let bLeft be the set of those vertices in S ∩C`b that are incident to an

edge in Eb, i.e., bLeft = {v : v ∈ S ∩C`b and proje′2(v) ∈ e′2}. Similarly, let bRight be

the set of those vertices in S ∩ (C`b ∪Crt) that are incident to an edge in Eb, i.e.,

bRight = {v : v ∈ S∩ (C`b ∪Crt) and proje′2(v) ∈ e′2}. Let F (K) denote the outer-face of

K . Now we define two non-intersecting regions R1 = {p : x(p) < x(b)}∩F (K) and

R2 = {p : x(p) > x(b)}∩F (K) with respect to the line segment bz1. Next we do the

following:

We remove the segment bz1 and redraw it below b in the outer-face F (K).

In this newly added segment, we add d vertices α′
1, . . . ,α′

d satisfying y(α1) ≥
. . .≥ y(αd) that correspond to the vertices α1, . . . ,αd, respectively.

We draw the edges in Eb incident to bLeft in the region R1. Similarly, we draw

the edges in Eb incident to bRight in the region R2.

As R1 ∩R2 =;, no edge in R1 can intersect an edge in R2. It is easy to verify that it

is possible to draw the edges in Eb incident to bLeft (similarly, bRight) in the region R1

(similarly, R1 ) such that there is no pair of crossing edges. For an illustration see

Figure 4.14.
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Figure 4.16: (a) The graph G1, (b) A planar embedding of G1 with the exterior face
containing V1 as a path (in the same order as in L2).

For Type 2, let Ek be the set of horizontal edges that have at least one incident vertex

on the line Lk. To obtain a planar embedding of K (similar as in the case of Type 1

for bz1), we first redraw Lk as L′
k (removing Lk and its vertices) in the outer-face,

then place the vertices of Lk in the same order on L′
k and finally draw the edges of Ek

without crossings and in such a way that Lk−1 remains in the outer-face (because it is

possible to make the redrawing such that Lk−1 is not in the outer-face anymore). For

an illustration see Figure 4.14. So for both cases of Type 1 and Type 2, V ′ remains in

the exterior face of the planar embedding. Hence, we obtain a planar embedding K̃ of

K such that V ′ is contained in the exterior face of K̃ . By our construction, it is easy to

verify that V ′ appears as a path in the same order in K and K̃ . �

Lemma 4.9. For the case that Lk−1 is horizontal, the graph H has a planar embedding
H̃ such that V ′ is contained in the exterior face of H̃. The vertices of V ′ induce a path
on the exterior face and are in the same order as on Lk−1 in the original drawing of G.

Proof. We prove this by weak induction. As Lk−1 is horizontal, (k−1) must be even.

Let (k−1) = 2m for some m ∈ N. Let Vi consist of all the vertices in G on the line

segment L2i and G i be the subgraph induced by the vertices lying on or above the

line segment L2i, where i6m. So Gm = H. By induction, we prove that Gm is planar

and it has a planar embedding H̃ such that V ′ is contained in the exterior face of H̃.

Let P(i) be the following statement: G i is planar and it has a planar embedding G̃ i

such that Vi is contained in the exterior face of G̃ i. Now we need to show that P(m) is

true. We prove the statement by induction.

Base Case: P(1) is true: Let us consider the drawing of G1 obtained from G. We

divide the edges of G1 into three sets E11,E12, and E13. The edge set E11 consists of

all the edges in G1 that are along the boundary of G1. The edge set E12 consists of all
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the edges in G1 that have at least one endpoint on the segment L1. We define the edge

set E13 as E13 = E(G1)\ (E11 ∪E12). Let G11 be the subgraph of G1 consisting of the

edges E11 ∪E12, and G12 be the subgraph of G1 consisting of the edges E11 ∪E13. So

G1 =G11∪G12, where both G11 and G12 are plane graphs. Now G11 (simultaneously,

G12) itself is a planar embedding obtained from the drawing of G. In G11 there exists

an interior face containing V1. Let V f
12 be the set of vertices in the exterior face of

G12 (and G11, note that both the graphs G11 and G12 have the same set of vertices

in their exterior face). By Theorem 4.3, we can transform the planar embedding G12

into another planar embedding G̃12 such that there exists an interior face, say f1,

that contains V f
12. As V f

12 is also the set of vertices in the exterior face of G11, and

the vertices in V f
12 appear in the same order in the two embeddings in the path on

the exterior face they induce, we can attach G11 to G12 in f1 and obtain a planar

embedding G′
1 of G1. In G′

1 there exists an interior face containing V1. Applying

Theorem 4.3, we get a planar embedding G̃1 of G1 such that V1 is contained in the

exterior face of G̃1. We illustrate this step in Figure 4.16.

Vi

Vi+1

G̃i

L2i+1

(a)

Vi

Vi+1

G̃i

L2i+1

(b)

Figure 4.17: (a) The graph G where G i has the planar embedding G̃ i where the
exterior face of G̃ i contains Vi, (b) The graph G where G i+1 has the planar embedding
G̃ i+1 where the exterior face of G̃ i+1 contains Vi+1.

Inductive Case: P(i) is true ⇒ P(i+1) is true: Assume that P(i) is true, i.e., G i has

a planar embedding G̃ i such that Vi is contained in the exterior face of G̃ i (see Figure

4.17).

Let H1 be the subgraph of G i+1 induced by the vertices lying on or below the line

containing L2i. Now Vi = V (G̃ i)∩V (H1). Recall that Vi is contained in the exterior

face of G̃ i, and also the vertices in Vi appear as a path in the same order in G̃ i and

H1 (that is, in the same order as in L2i in G i). As G i+1 = G i ∪H1 and since there

are no edges between V (G i)\Vi and V (Hi)\Vi so in G i+1, we can replace G i by its
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planar embedding G̃ i within the embedding of G i+1. Here G i+1 = G̃ i ∪H1 with the

drawing obtained from G. Now we divide the edges of G i+1 into three sets E1,E2,E3.

The edge set E1 consists of all the edges in G i+1 that are along the boundary of H1.

The edge set E2 consists of all the edges in H1 that have at least one endpoint on

the segment L2i+1. E3 = E(H1)\ (E1 ∪E2). Let I1 be the subgraph of G i+1 consisting

of the edges E1 ∪E2 ∪E(G̃ i), and I2 be the subgraph of G i+1 consisting of the edges

E1 ∪E3 ∪E(G̃ i). So G i+1 = I1 ∪ I2, where both I1 and I2 are plane graphs. Now I1

(simultaneously, I2) itself is a planar embedding obtained from the drawing of G. In

I1 there exists an interior face containing Vi+1. Let V f
(i+1)2 be the set of vertices in the

exterior face of I2. By Theorem 4.3, we can transform the planar embedding I2 into

another planar embedding such that there exists an interior face, say f , that contains

V f
(i+1)2. As V f

(i+1)2 is also the set of vertices in the exterior face of I1 and the vertices

in V f
(i+1)2 appear in the same order in the two embeddings in the path on the exterior

face they induce, we can attach I1 to I2 in f and obtain a planar embedding G′
i+1 of

G i+1. In G′
i+1 there exists an interior face containing Vi+1. Applying Theorem 4.3, we

get our desired planar embedding G̃(i+1) of G i+1 such that Vi+1 is contained in the

exterior face of G̃(i+1).

Hence by the induction hypothesis, P(m) is true, i.e., Gm is planar and it has a planar

embedding G̃m such that Vm is contained in the exterior face of G̃m. Here the set Vm

consists of all the vertices on the line L2m. Now 2m = k implies that Vm = V ′. Also

Gm = H. So H has a planar embedding H̃ (= G̃m) such that V ′ is contained in the

exterior face of H̃. By our construction, it is easy to verify that V ′ appears as a path

in the same order in H and H̃ �

Case 2 (Lk−1 is vertical) :

In this case, we use the same idea as in case 1 to prove that G is planar. When Lk−1

is vertical, we partition G into H and K as follows: H and K are the subgraphs of

G induced by the vertices lying to the left and right, respectively of the line Lk−1.

Both H and K must include the vertices on Lk−1. Now in case 1, when we do a

planar embedding for H, we leave the horizontal L i ’s inside the polygon OC P (S )

and move the vertical segments L1,L3, . . . ,Lk−2 outside the polygon. Also, we move

one more vertical segment (depends on the type of the configuration) outside the

polygon but that is the part of planar embedding for K . Here in case 2, we can get a

planar embedding for H by moving the horizontal segments L2,L4, . . . ,Lk−2 outside

the polygon and leaving the vertical L i ’s inside. We will not describe this (planarity

for H) as we can do it in a similar way as case 1. Hence the following lemma.
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Lemma 4.10. For the case that Lk−1 is vertical, the graph H has a planar embedding
H̃ such that V ′ is contained in the exterior face of H̃. The vertices of V ′ induce a path
on the exterior face and are in the same order as on Lk−1 in the original drawing of G.

Also, by our construction, it is easy to verify that V ′ appears as a path in the same

order in H and H̃. Now we show planarity for K where we move one more horizontal

segment (either Lk or z3r, depends on the type of the configuration) outside the

polygon.
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Figure 4.18: (a) The subgraph K of G for Type 3 with the exterior face containing V ′,
(b) a planar embedding of K . The edges of Er are shown by dashed black segments.
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Figure 4.19: (a) The subgraph K of G for Type 4 with the exterior face containing V ′,
(b) a planar embedding of K . The edges of Ek are shown by dashed black segments.

Lemma 4.11. For the case that Lk−1 is vertical, the graph K has a planar embedding
K̃ such that V ′ is contained in the exterior face of K̃ . The vertices of V ′ induce a path
on the exterior face and are in the same order as on Lk−1 in the original drawing of G.
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Proof. Let us consider the drawing of K obtained from G. Let V f
K ⊆ V be the set

of vertices in G along the boundary of K . So V f
K = (V f ∩V (K))∪V ′. For Type 3,

let Er be the set of vertical edges that have at least one adjacent vertex on the

line e′3 = r projLk−1
(r). To obtain a planar embedding of K we draw the edges of Er

in the outer-face of K . Let z3 be the left-most vertex on the segment e′3 having

x(z3) > x(projLk−1
(r)). In the planar embedding, all the Steiner points on the line

segment rz3 will go to the exterior of the polygon along with its incident edges (see

Figure 4.18). For Type 4, let Ek be the set of vertical edges that have at least one

adjacent vertex on the line Lk. In this case, we draw the edges Ek in the exterior

faces of K in such a way that we obtain a planar embedding of K . In the embedding,

all Steiner points on the line segment Lk will go to the polygon exterior along with

its adjacent edges (see Figure 4.19). For both types, the procedure for doing the

embedding is the same as described in Lemma 4.8. In this planar embedding V ′ still

remains in the exterior face. Hence, we get a planar embedding K̃ of K such that V ′

is contained in the exterior face of K̃ Also, by our construction, it is easy to verify that

V ′ appears as a path in the same order in K and K̃ . �

This completes the proof of Theorem 4.4.

Summary

In this chapter, we construct a planar Manhattan network G for a given convex point

set S of size n in linear time, where G contains O(n) Steiner points. Our construction

for convex point sets is optimal with respect to the number of Steiner points as there

exist convex points sets requiring Ω(n) Steiner points for any planar Manhattan

networks; for instance S = {(1,1), ...(n,n)}. As a corollary of our construction, for a

convex point set, we obtain a
p

2 (≈ 1.41) planar spanner in L2-norm using O(n)

Steiner points.
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Related Publication:

1. Satyabrata Jana, Anil Maheshwari, Saeed Mehrabi, and Sasanka Roy. "Max-

imum bipartite subgraph of geometric intersection graphs." In International
Workshop on Algorithms and Computation, pp. 158-169. Springer, 2020.

5.1 Introduction

In this chapter, we study the following problem on geometric objects.

Given a set S of n geometric objects in the plane

í compute a maximum-size subset S′ ⊆ S such that the intersection graph

induced by the objects in S′ is bipartite.

We refer to this problem as the Maximum Bipartite Subgraph (MBS) problem. The

MBS problem is closely related to the Odd Cycle Transversal (OCT) problem: given

a graph G, the objective of the OCT problem is to compute a minimum-cardinality

subset of S ⊆V (G) such that the intersection of S and the vertices of every odd cycle

of the graph is non-empty. Notice that MBS and OCT are equivalent for the class

of graphs on which OCT is polynomial-time solvable: an exact solution S for OCT

gives V (G)\ S as an exact solution for MBS within the same time bound. However,

an α-approximation algorithm for OCT might not provide any information on the

approximability of MBS on the same classes of graphs.

We also study a simpler variant of MBS, called the Maximum Triangle-free Subgraph

(MTFS) problem. Let S be a set of n geometric objects in the plane. Then, the

objective of the MTFS problem is to compute a maximum-size subset S′ ⊆ S such that

the intersection graph induced by the objects in S′ is triangle-free (as opposed to being

bipartite).

The MBS problem is also closely related to the Maximum Independent Set (MIS)

problem. Given a graph G, the objective of MIS is to compute a maximum-cardinality

subset of vertices such that no two of them are adjacent. Observe that any feasible

solution for MIS is also a feasible solution for MBS and, moreover, a feasible solution

S ⊆V (G) for the MBS problem provides a feasible solution of size at least |S|/2 for the

MIS problem. This gives us the following observation.

Observation 5.1. An α-approximation algorithm for MIS on a class of graphs is a
2α-approximation for MBS on the same class with the same time bound.
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In particular, the PTASes for MIS on unit disks and unit squares [HM85b] imply

polynomial-time (2+ ε)-approximation algorithms for MBS on unit disks and unit

squares. Also, 2-factor for MIS on unit disks [NPR17] , which runs in O(n2) time

gives an O(n2) time 4-factor algorithm for the MBS problem on unit disks. Moreover,

A O(loglogn)-approximation [CC09] (or, O(logOPT)-approximation [BCK+19]) algo-

rithm is known for MIS on rectangles. As a corollary of Observation 5.1, we can say

the following.

Corollary 5.1. A f (n)-time exact algorithm for MIS on a class of graphs produces
2-approximation algorithms for MBS on the same class with the same time bound.

There are many graph classes like perfect graphs [KN13], P6-free graphs, [GKPP19,

DFJ+20], line graphs [LM08, DFJ+20] for which MBS is NP-Hard but MIS is polytime

solvable; hence it gives us 2-approximation for MBS problem in same polytime.

5.1.1 Our contributions

We have considered the MBS problem on several geometric objects. We show that,

If the input is a set of n circular-arcs (arcs of the same circle) then we can

compute an almost optimal solution O(n2) time.

Hardness on the classes of geometric graphs for which the MIS problem is

NP-Hard.

If the input is a set of n unit disks intersecting a horizontal line where all the

centers of the disks lie on one side of the line then the problem can be solved in

O(n2)-time.

2-factor approximate solution when the input is a set of n unit disks intersecting

a common line.

PTAS, O(logn) and 2-factor approximate solutions when the input is a set of n
arbitrary unit disks.

PTAS when the input is a set of n unit squares.

2-factor approximate solution when the input is a set of n unit-height rectangles.

Hardness of MTFS problem on the intersection graph of axis-parallel rectangles

in the plane.
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5.2 Algorithmic Result on Circular-arc Graphs

A circular-arc graph is the intersection graph of a set of arcs on a circle. That is, every

vertex is represented by an arc, and there is an edge between two vertices if and

only if the corresponding arcs intersect. Observe that interval graphs are a proper

subclass of circular-arc graphs. Let G = (V ,E) be a circular-arc graph with |V | = n.

Narasimhan [Nar89] showed that this problem can be solved optimally with running

time O(n3) assuming that a corresponding family of arcs is given. Now we present a

quadratic time almost optimal solution for the MBS problem on circular-arc graphs.

We say a solution S to a maximization problem is almost optimal with respect to its

optimum solution X if |X | ≤ |S|+1. Given a circular graph, its intersection model or

circular-arc representation can be obtained using Tucker’s O(n3) algorithm [Tuc80].

For the rest of this section we assume that a geometric representation of G (i.e., a

set of n arcs on a circle C ) is given as part of the input, First, we prove the following

lemmas.

Lemma 5.1. If G is triangle-free, then it can have at most one cycle.

Proof. Suppose for the sake of contradiction that G has more than one cycle. Let

A1 and A2 be two cycles of G. Now, since G is a triangle-free circular-arc graph, the

corresponding arcs of the vertices of any cycle in G together cover the circle C . So,

there must exist three distinct vertices v ∈ A1,u ∈ A1 and w ∈ A2 such that v,u,w are

pairwise adjacent. Which is a contradiction to the fact that G is triangle-free. �

Lemma 5.2. If B and T are optimal solutions for the MBS and MTFS problems on G,
respectively, then |T|−1≤ |B| ≤ |T|.

Proof. Since a bipartite subgraph contains no triangle, |B| ≤ |T|. Now, if G[T] (i.e.,

the subgraph of G induced by T) is odd-cycle free, then it induces a bipartite subgraph.

Otherwise, G[T] can have at most one cycle by Lemma 5.1. If this cycle is odd, then

by removing any single vertex form the cycle, we obtain a bipartite subgraph of G
with size at least |T|−1. �

Since G[T] contains at most one cycle, the following lemma trivially holds.

Lemma 5.3. If H is a maximum-size induced forest in G, then |V (H)| ≥ |T|−1.

By the above lemmas, our goal now is to find a maximum acyclic subgraph H of

G. So instead of solving MBS problem, we actually solve maximum induced forest
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problem (maximum-cardinality subset of vertices such that the subgraph induced

by them is acyclic) in circular-arc graphs. Notice that there must be a clique K
(|K | ≥ 1) in G that is not in H. Now, for each arc u in the circular-arc representation

of G, let l(u) and r(u) denote the two endpoints of u in the clockwise order of the

endpoints. Then, we consider two vertex sets S1
u = {w : w ∈ V , l(u) ∉ (l(w), r(w)]} and

S2
u = {z : z ∈ V , r(u) ∉ [l(z), r(z))}. Both S1

u and S2
u are interval graphs. Since there

are n vertices in G, we compute 2n interval graphs in total. Then, for each of these

interval graphs, we apply the Narasimhan’s O(n) algorithm [Nar89] to compute an

optimal solution for MBS, and will return the one with maximum size as the final

solution. So the total time to find H is O(n2); hence the following theorems.

Theorem 5.1. Given a circular-arc graph G with its corresponding family of arcs, in
quadratic time we can solve the maximum acyclic subgraph problem on G.

Theorem 5.2. Given a circular-arc graph G with its corresponding family of n arcs, in
O(n2) time we can compute an induced bipartite subgraph H of G such that |V (H)| ≥
|MBS(G)|−1, where MBS(G) denotes an optimal solution of MBS problem in G.

5.3 Hardness

In this section, we show that the MBS problem is NP-Complete on the classes of

geometric intersection graphs for which MIS is NP-Complete. The MIS problem is

known to be NP-Complete on a wide range of geometric intersection graphs, even

restricted to unit disks and unit squares [CCJ90], 1-string graphs [KN90], and B1-

VPG graphs [LMS15]. Let G = (V ,E) be an intersection graph induced by a set S of n
geometric objects in the plane. We construct a new graph G′ from the disjoint union

of two copies of G by adding edges as follows. For each vertex in V , we add an edge

from each vertex in one copy of G to the corresponding vertex in the other copy. For

each edge (u,v) ∈ E, we add four edges (u,v), (u′,v′), (u,v′), and (v,u′) to G′, where u′

and v′ are the corresponding vertices of u and v, respectively in the other copy. Graph

G′ is the intersection graph of 2n geometric objects S, where each object has occurred

twice in the same position. See Figure 5.1 for an illustration.

Clearly, the number of vertices and edges in G′ are polynomial in the number of

vertices of G; hence, the construction can be done in polynomial time.

Lemma 5.4. G has an independent set of size at least k if and only if G′ has a bipartite
subgraph of size at least 2k.
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(a) G (b) G′

v1

v2

v3

v4

v1 v3v2 v4

v′1 v′3v′2 v′4

Figure 5.1: (a) A graph G, (b) The graph G′ constructed from G.

Proof. Let U be an independent set of G with |U | ≥ k. Let H be the subgraph of G′

induced by U along with all the corresponding vertices of U in the other copy. Then,

H is a bipartite subgraph with size at least 2k. Conversely, let G′ has a bipartite

subgraph of size at least 2k. Now for a pair of integers i and j, if any pair of vertices

from {vi, v j, v′i, v′j} is non-adjacent in G′ then vi must be non-adjacent to v j in G. So

if G′ has an independent set of size at least 2k, then G must have an independent set

of size at least k. �

By Lemma 5.4, we have the following theorem.

Theorem 5.3. The MBS problem is NP-Complete on the classes of geometric intersec-
tion graphs for which MIS is NP-Complete.

Recall that, MBS is NP-Hard but MIS is polynomial time solvable for many graph

classes, e.g., perfect graphs [KN13], P6-free graphs, [GKPP19, DFJ+20], line graphs

[LM08, DFJ+20].

Remark. By the definition of parameterized reduction we have the following result.

Corollary 5.2. The MBS problem is W[1]-complete on the classes of geometric inter-
section graphs for which MIS is W[1]-complete.

Marx [Mar05, Mar06] proved that MIS is W[1]-complete on unit squares, unit disks,

and even unit line segments. As such, by Corollary 5.2, the MBS problem is W[1]-

complete on all these geometric intersection graphs.
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5.4 MBS on Unit Disks intersecting a Line

In this section, we first look at the MBS problem where the inputs are a set of unit

disks that intersect a horizontal line and all centers lie on one side of the line. Next, we

give a 2-approximation algorithm for the MBS problem on the unit disks intersecting

a horizontal line (i.e., without requiring the centers to lie on the same side of the line).

Our 2-approximation algorithm is based on (i) partitioning the input disks into two

sets, depending on which side of the line their centers lie, and (ii) solving the MIS

problems independently in these two sets. Then we will discuss how to obtain the

factor-2 approximation.

5.4.1 Unit disks intersecting a line and centers lie on one side

Here, we are given n unit disks D = {D1, · · · ,Dn} intersecting a straight line L, where

the center of every disk in D lies on one side of L. We assume w.l.o.g. that all the

disks intersect the x-axis and all the centers have non-negative y-coordinates. So,

D is a set of n unit disks in the plane that are intersected by the X -axis and all

the centers of the disks have non-negative y-coordinate. We use following notations

in this section. GD denotes the intersection graph of disks in D. That means each

disk in D corresponds to a vertex in GD and there is an edge between vertices if the

corresponding disks intersect. In the rest of this section, we use “disks” and “vertices”

in GD interchangeably. We also use x(p) and y(p) to denote, respectively, the x- and

y-coordinates of a point p. Let d(p, q) denote the Euclidean distance between two

points p and q. Let ci denote the center of the disk D i for all 1 ≤ i ≤ n. W.l.o.g., we

assume that x(c1) ≤ x(c2) ≤ ·· · ≤ x(cn). By <=(p1, p2, p3, p4), we mean the rectangle

with corner points p1, p2, p3, p4 in clockwise order. In this section, we give an O(n4)

time algorithm to solve the MBS problem on GD ; we assume that the optimal solution

has size greater than 2 (if it is at most 2, then we can find it easily).

We first show that the MBS problem and the MTFS problem are equivalent on GD .

To this end, we need the following lemmas.

Lemma 5.5. [NPR17] Let D i,Dk be a pair of disks in D with centers ci and ck,
respectively, where x(ci) ≤ x(ck). If D i ∩Dk 6= ;, then for any j where i < j < k either
D i ∩D j 6= ; or D j ∩Dk 6= ;.

Proof. We prove this by contradiction. Suppose that D i ∩Dk 6= ;. Let R be the

rectangle such that R =<=((x(ci),0), (x(ci),1), (x(ck),1), (x(ck),0)). Since x(ci)≤ x(c j)≤
x(ck), c j must belong to R. Let m = (x(ci)+ x(ck))/2. We partition the rectangle R into
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two rectangles A and B in the following way:

A =<=((x(ci),0), (x(ci),1), (m,1), (m,0)),

B =<=((m,0), (m,1), (x(ck),1), (x(ck),0)).

Since D i∩Dk 6= ;, we have d(ci, ck)≤ 2. Then, d((x(ci),0), (m,0))≤ 1 and d((m,0), (x(ck),0))≤
1. Now, if c j ∈ A then d(ci, c j) ≤

p
2 and so D i ∩D j 6= ;. Otherwise, if c j ∈ B, then

d(c j, ck)≤p
2 and so D j ∩Dk 6= ;. See Figure 5.2 for an illustration. Since both cases

lead to a contradiction, the lemma holds. �

y=0

A Bci
ck

cj

Di

Dk

Dj

Figure 5.2: An illustration in supporting the proof of Lemma 5.5.

Lemma 5.6. Let D i,Dk be a pair of disks in D with centers ci and ck, respectively,
where x(ci) ≤ x(ck). If D i ∩Dk 6= ;, then for any pair j, j′ where i < j < j′ < k either
D j ∩D j′ 6= ; or D i ∩D j 6= ;, D j′ ∩Dk 6= ;. Moreover, there always exists a set Z of at
least d(k− i)/2e pairwise adjacent disks in {D i+1, . . . ,Dk−1} such that either D i ∩ z 6= ;,
for all z ∈ Z, or Dk ∩ z 6= ;, for all z ∈ Z.

Proof. It is given that D i intersects the disk Dk. Let R be the rectangle such

that R =<=((x(ci),0), (x(ci),1), (x(ck),1), (x(ck),0)). Since x(ci) ≤ x(ck), each c j, where

i < j < k must belong to R. Let m = (x(ci)+ x(ck))/2. We partition the rectangle R into

two rectangles A and B in the following way:

A =<=((x(ci),0), (x(ci),1), (m,1), (m,0)),

B =<=((m,0), (m,1), (x(ck),1), (x(ck),0)).

From the construction of the partition, we can say that if there is a pair of centers

lying in the same ractangle, then the corresponding pair of disks should have non-

empty intersection. Now for any pair of disks D j and D j′ , if c j and c j′ belongs to

the same rectangle of A,B then D j ∩D j′ 6= ;. Else c j ∈ A and c j′ ∈ B together imply

D i ∩D j 6= ;, D j′ ∩Dk 6= ;. By pigeonhole principle, at least one of A and B contain

the centers of dk− i/2e disks from {D i+1, . . . ,Dk−1}. So there always exists a set Z of at

least d(k− i)/2e pairwise adjacent disks in {D i+1, . . . ,Dk−1} such that either D i ∩ z 6= ;,

for all z ∈ Z, or Dk ∩ z 6= ;, for all z ∈ Z. �
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Relation to co-comparability graph [Mou18]. A graph G is said to be a co-

comparability graph if and only if the edge set of its complement graph Gc admits a

transitive orientation. That means it is possible to orient the edges in E(Gc) such that

for every triple u,v,w in V (Gc) , if the edge (u,v) is oriented u → v and the edge (v,w)

is oriented v → w, then the edge (u,w) should exists and have orientation u → w. To

prove GD is a co-comparability graph, we give a transitive orientation on the edges

of Gc
D

. For any pair of non-intersecting disks D i,D j in D where i < j, we make use

of the orientation as follows: D i → D j. The correctness of this orientation directly

follows from Lemma 5.12. Hence the following lemma holds.

Lemma 5.7. Let D be a set of unit-disks intersecting a straight line where all the
centers lie on one side of the line. Then D induces a co-comparability graph.

It is easy to observe that GD can contain an induced 4-cycle; see Figure 5.3 for an

example.

D3

D4

D1

D2

Figure 5.3: An example of a 4-cycle.

Now we prove the following lemma.

Lemma 5.8. There is no induced cycle of length at least 5 in GD .

Proof. We prove this lemma by contradiction. Let GD contains an induced cycle

C = 〈D1,D2, . . . ,Dr, . . . ,Dk〉 of length k ≥ 5. W.l.o.g. we assume that ∀i, 2 ≤ i ≤
k, x(c1) ≤ x(ci). Let Dr be the right-most disk according to the increasing order of

x-coordinates of the centers of disks in the cycle C. Now there are two disjoint paths

π1 and π2 in C between the vertices corresponding to D1 and Dr. Further we assume

that the number of disks in π1 is at most the number of disks in π2. The other case is

analogous. Our proof is based on the number of vertices in π1.

First consider the case that D1∩Dr 6= ;. In this case π1 consists of disks {D1,D2(= Dr)}

and π2 consists of disks {D2,D3, . . . ,Dk,D1}. Note that the number of disks in π2 is at

least 5. So there must be a disk D i ∈ π2 such that D i ∩D1 =; and D i ∩D2 =;. As

x(c1)≤ x(ci)≤ x(c2), by Lemma 5.5, D1 ∩D2 =;. This contradicts our assumption.
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Now we consider the case that π1 = (D1,D2, . . . ,Dr), where r is at least 3 and π2 =
(D1,Dk, . . . ,Dr+1,Dr). Note that the number of disks in π1 is at least three and the

number of disks in π2 is at least four. Now we consider following three subcases based

on location of centers of D2, . . . ,Dr−1.

Case 1: x(ck)≤ x(c j)≤ x(ck−1) holds for at least one j {2, . . . , r−1}. As Dk∩D j =; and

D j ∩Dk−1 =;, so by Lemma 5.5, Dk and Dk−1 should not intersect each other. This

contradicts our assumption that Dk ∩Dk−1 6= ;.

Case 2: x(ci)≤ x(ck), ∀i, 2≤ i ≤ r−1. As Dr−1∩Dk =; and Dk∩Dr =;, so by Lemma

5.5, Dr−1 and Dr should not intersect each other. This contradicts our assumption

that Dr−1 ∩Dr 6= ;.

Case 3: x(ck−1) ≤ x(ci), ∀i, 2 ≤ i ≤ r−1. As D1 ∩Dk−1 = ; and Dk−1 ∩D2 = ;, so

by Lemma 5.5, D1 and D2 should not intersect each other. This contradicts our

assumption that D1 ∩D2 6= ;. �

By Lemma 5.8, the MBS and MTFS problems are equivalent on GD . Therefore, in the

following, we focus on solving the MTFS problem on GD .

A dynamic-programming algorithm. Let D[i]= {D i,D i+1, . . . ,Dn}. For each triple

(i, j,k), where 1 ≤ i < j < k ≤ n, we define B[i, j,k] to be the size of a maximum

induced triangle-free subgraph containing D i,D j and Dk ∈ D i ∪ D j ∪D[k]. Let

D[i, j,k] = {Dl : Dl ∈ D[k+ 1] and {D i,D j,Dk,D`} induces a K3-free subgraph}. We

now describe how to compute B[i, j,k] for each triple (i, j,k). If D i,D j and Dk form

a K3, then clearly B[i, j,k] = 0 as there is no bipartite subgraph containing D i,D j

and Dk. If D i,D j and Dk do not form a K3 and D[i, j,k] =;, then B[i, j,k] = 3 and

in that case D i,D j and Dk are the disks that induce maximum induced triangle-free

subgraph in D i ∪D j ∪D[k]. On the other hand, if D i,D j,Dk do not form a K3 and

D[i, j,k] 6= ;, then B[i, j,k] is one more than the size of a maximum induced triangle-

free subgraph containing D j,Dk,Dl among all Dl ∈ D[i, j,k]. Hence, we obtain the

following recurrence for B[i, j,k].

B[i, j,k]=


0, D i,D j,Dk form a K3,

3, D i,D j,Dk do not form a K3 and D[i, j,k]=;,

1+ max
∀Dl∈D[i, j,k]

B[ j,k, l], otherwise.

The size of an optimal solution is the maximum value in the table B. To show the

correctness of our algorithm, we prove the following.
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Lemma 5.9. Let B[i, j,k]> 3, and D` ∈ D[i, j,k]. Then, no two disks corresponding to
B[ j,k,`] form a triangle with D i.

We need several helper lemmas before proving Lemma 5.9.

Lemma 5.10. Let D i,D j,Dk,D` ∈D be four disks with x(ci)≤ x(c j)≤ x(ck)≤ x(c`). If
D i ∩D` 6= ;, then the subgraph induced by {D i,D j,Dk,D`} is K1,3-free.

Proof. We prove the lemma by contradiction. Suppose that the subgraph induced

by {D i,D j,Dk,D`} is isomorphic to K1,3. Then either (i) D i intersects both D j and

Dk, where D j,Dk,D` are pairwise independent, or (ii) D` intersects both D j and Dk,

where D i,D j,Dk are pairwise independent. Now by Lemma 5.6 either D j ∩Dk 6= ;
or D i ∩D j 6= ;, Dk ∩D` 6= ;. Since both the cases lead to a contradiction, the lemma

holds. �

ci c`

cj

y=0

D`
Di

Dj

Figure 5.4: Existence of K1,2 in one side.

y=0

D4

D3

D2
D1

c1
c2

c3

c4

Figure 5.5: Existence of K1,3 in GD .

Lemma 5.11. The graph GD is K1,4-free.

Proof. We prove the lemma again by contradiction. Suppose there is an induced

subgraph K1,4 with vertex set {D i : 1 ≤ i ≤ 5}. Assume w.l.o.g. that x(c1) ≤ x(c2) ≤
x(c3) ≤ x(c4) ≤ x(c5). In {D i : 1 ≤ i ≤ 5}, there must be four pair-wise independent
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disks and one disk (say, D) that intersects each of that four disks. If D = D1 or D4.

Then the subgraph induced by {D i : 1≤ i ≤ 4} is isomorphic to K1,3. This contradicts

Lemma 5.10. Similarly if D = D2 or D5. Then the subgraph induced by {D j : 2≤ j ≤ 5}

is isomorphic to K1,3. This contradicts Lemma 5.10. Hence only possibility is that

D = D3 and the edge set in K1,4 is {(D1,D3), (D2,D3), (D3,D4), (D3,D5)}.

Now, consider the rectangle R =<=((x(c3)−2,0), (x(c3)−2,1), (x(c3)+2,1), (x(c3)+2,0))).

We partition R into three rectangles A,B and C as follows:

A =<=((x(c3)−2,0), (x(c3)−2,1), (x(c3)−0.5,1), (x(c3)−0.5,0)),

B =<=((x(c3)−0.5,0), (x(c3)−0.5,1), (x(c3)+0.5,1), (x(c3)+0.5,0)),

C =<=((x(c3)+0.5,0), (x(c3)+0.5,1), (x(c3)+2,1), (x(c3)+2,0)).

Since ci belongs to R, for 1≤ i ≤ 5, by the pigeonhole principle, one of A, B and C must

contain two of {c1, c2, c4, c5}. The distance between any two points in the rectangles A,

B or C is ≤ 2. Therefore, {D1,D2,D4,D5} are not pairwise independent. Hence, GD is

K1,4-free. �

Lemma 5.12. Let D1,D2,D3,D4,D5 be five disks in D with x(ci) ≤ x(ci+1) where
1≤ i ≤ 4 . If D1 ∩D5 6= ;, then the disks D2,D3,D4 do not form an independent set.

Proof. The proof directly follows from Lemma 5.6 as D1∩D5 6= ; implies there always

exist a pair of adjacent disks in {D2,D3,D4}. �

We are now ready to prove Lemma 5.9.

Proof of Lemma 5.9 By our assumption, we consider that B[i, j,k] > 3 and D` ∈
{Dk+1, . . . ,Dn} where the subgraph induced by {D i,D j,Dk,D`} is triangle-free. Let

Ψ j,k,` be the set of disks that defines B[ j,k,`]. Since B[i, j,k]> 3, Ψ j,k,` 6= ;. We need

to show that for any pair of disks D,D′ ∈Ψ j,k,`, the subgraph induced by {D i,D,D′}
is triangle-free. We prove this by contradiction. Suppose for a contradiction that D
and D′ be two disks corresponding to B[ j,k,`] such that D i,D and D′ form a triangle.

As the subgraph induced by {D j,Dk,D`,D,D′} is triangle-free. By the definition of

D[i, j,k], at most one of D and D′ belongs to {D j,Dk,D`}.

Case 1: {D,D′}∩ {D j,Dk,D`} 6= ;. Assume w.l.o.g. that D′ ∈ {D j,Dk,D`}. We consider

several cases.

D′ = D j. Since D i ∩D 6= ;, by Lemma 5.5, (i) either D i ∩Dk 6= ; or Dk ∩D 6= ;
as well as (ii) either D i ∩D` 6= ; or D`∩D 6= ;. Similarly, since D j ∩D 6= ;, by
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Lemma 5.5, (i) either D j ∩D` 6= ; or D`∩D 6= ;. Suppose that Dk ∩D 6= ;. Now,

if D`∩D 6= ;, then {D j,Dk,Dl ,D} forms a K1,3. This contradicts Lemma 5.10.

Therefore, D`∩D = ;; consequently, D j ∩D` 6= ; and D i ∩D` 6= ;. Then, the

disks D i,D j,D` form a triangle. A contradiction. So, Dk and D should not

intersect each other. Then, D i∩Dk 6= ; and D j∩Dk 6= ;. Consequently, the disks

D i,D j,Dk form a triangle and so B[i, j,k]= 0. This contradicts our assumption

that B[i, j,k]> 3.

D′ = Dk. Since D i ∩D 6= ;, by Lemma 5.5, either D i ∩D j 6= ; or D j ∩D 6= ;.

Suppose that D j ∩D 6= ;. Since Dk ∩D 6= ;, either Dk ∩D` 6= ; or D`∩D 6= ;
(again by Lemma 5.5). Let D`∩D 6= ;. Then, {D j,Dk,D`,D} forms a K1,3. This

contradicts Lemma 5.10. So, D`∩D = ;, that means that Dk ∩D` 6= ; and

D i ∩D` 6= ;. Consequently, the disks D i,Dk,D` form a triangle. A contradiction.

This means that the disks D j and D do not intersect each other and so D i∩D j 6=
;. Now, if D i ∩D` 6= ;, then {D i,D j,Dk,D`} forms a K1,3. This contradicts

Lemma 5.10. Thus, the disks D i and D` do not intersect each other and so

D` ∩ D 6= ;. We know that previously D i ∩ D 6= ; and D i ∩ D j 6= ;. Since

D j ∩Dk =; and Dk ∩D` =;, we have D j ∩D` =;. Thus, the disks D j,Dk,D`

are now pairwise independent. In this case, the disks D i,D j,Dk,D`,D together

contradict Lemma 5.12.

D′ = D`. Proof is analogous to the case D′ = D j. Since D i∩D 6= ;, by Lemma 5.5,

(i) either D i∩D j 6= ; or D j∩D 6= ; as well as (ii) either D i∩Dk 6= ; or Dk∩D 6= ;.

Similarly, since D i ∩D` 6= ;, by Lemma 5.5, (i) either D i ∩D j 6= ; or D j ∩D` 6= ;.

Suppose that D i∩Dk 6= ;. Now, if D i∩D j 6= ;, then {D i,D j,Dk,D`} forms a K1,3.

A contradiction to Lemma 5.10. Therefore, D i∩D j =;; consequently, D j∩D` 6= ;
and D`∩D 6= ;. Then, the disks D j,D`,D form a triangle. A contradiction. So,

D i and D j should not intersect each other. Then, D j ∩D` 6= ; and D`∩D 6= ;.

Consequently, the disks D j,D`,D form a triangle. This contradicts the fact the

subgraph induced by Ψ j,k,` is triangle-free.

Case 2: {D,D′}∩ {D j,Dk,D`}=;. Since D i ∩D 6= ;, by Lemma 5.5, either D i ∩D j 6= ;
or D j ∩D 6= ;. Assume that D j ∩D 6= ;. If D j and D′ intersects, then we get a

triangle formed by D j,D,D′. This contradicts the definition of B[ j,k,`]. But, since

D i ∩ D′ 6= ;, by Lemma 5.5, either D i ∩ D j 6= ; or D j ∩ D′ 6= ;. We have already

shown that D j ∩ D′ = ; and so D i ∩ D j 6= ;. Then, the disks {D i,D j,D} forms a

triangle. Observe that this is Case 1 and so D j ∩D = ;. By a similar argument,

one can show that Dk ∩D = ; and D`∩D = ;. By Lemma 5.5, since D i ∩D 6= ;,
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D i ∩D j 6= ;,D i ∩Dk 6= ;,D i ∩D` 6= ;. This implies that {D j,Dk,D`} are pairwise

independent. Then {D i,D j,Dk,D`} forms a K1,3. This contradicts to Lemma 5.10. �

Complexity. For each triple (i, j,k) we find B[i, j,k]. Then we output one that

maximizes the size. To compute B[i, j,k], we have to compare O(n) subproblems. So

the total time complexity is O(n4). Since table B is of size O(n3), the total space

complexity is O(n3). Therefore, we have the following theorem.

Theorem 5.4. Let D be a set of n unit-disks intersecting a straight line where all
the centers lie on one side of the line. In O(n4) time and O(n3) space, we can find
maximum-sized D′ ⊆D such that D′ induces a bipartite subgraph.

5.4.2 A 2-approximation for MBS on unit disks intersecting a
line

We now consider the MBS problem when the set of disks in D intersect the x-axis

(denoted by L afterward) from both sides; that is, the centers can lie on both sides of

the x-axis. Observe that here the corresponding graph GD might have induced cycles

of arbitrary length (see Figure 5.6 for an example).

L

Figure 5.6: An induced cycle of 13 disks intersecting the line L.

We give an O(n+ |E(GD)|)-time 2-approximation algorithm for the MBS problem,

where E(GD) is the set of all edges in GD . To this end, we partition the set D into

two sets Da and Db, where Da is the set of all disks in D whose centers lie above or

on L and Db is the set of all disks in D whose centers are strictly below L. Let GDa

(resp. GDb ) be the intersection graph of disks in Da (resp. Db). A co-comparability

graph is a graph whose complement admits a transitive orientation. Now, using

Lemma 5.7, we can claim that both graphs GDa and GDb are co-comparability graphs.

Kohler et al. [KM16] gave an O(|V | + |E|)-time algorithm to compute a maximum-

weighted independent set on a co-comparability graph G = (V ,E). Let MIS(GDa) and

MIS(GDb ) be the maximum independent sets on GDa and GDb , respectively. Clearly,
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the vertices in MIS(GDa)∪MIS(GDb ) induce a bipartite subgraph of GD . Notice that

|MIS(GD)| ≤ |MIS(GDa)|+|MIS(GDb )|. Let MBS(GD) be an optimal solution for the MBS

problem on GD . Using Corollary 5.1, we obtain |MBS(GD)| ≤ 2(|MIS(GDa)|+|MIS(GDb )|).
Hence, MIS(GDa)∪MIS(GDb ) gives a factor-2 for the MBS problem on GD . Therefore,

we have the following theorem.

Theorem 5.5. Let D be a set of n unit disks intersecting a line in the plane and let
GD be the intersection graph of D. An induced bipartite subgraph of size at least
|MBS(GD)|/2 can be computed in O(n+|E(GD)|) time, where MBS(GD) is an optimal
solution for the MBS problem on GD .

Matsui [Mat98] showed a polynomial algorithm to solve the MIS problem for families of

unit disks contained in a slab of fixed height. Since a family of unit disks intersecting

a line is contained in a slab of height four, Matsui’s result together with Observation

5.1 generalize the above theorem.

5.5 MBS on arbitrary Unit Disks

Recall that since MIS is NP-Complete on unit disks, the MBS problem is NP-Complete

on these graphs by Theorem 5.3. Also, Nandy et al. [NPR17] designed a factor 2-

approximation algorithm for the MIS problem on unit disks, which runs in O(n2)

time. Consequently, by Observation 5.1 we obtain an O(n2) time 4-approximation

algorithm for the MBS problem on unit disks. In this section, we first give PTASes for

MBS, and will then consider the problem of finding several approximation algorithms.

More specifically, we give an O(n4) time 3-approximation and an O(n logn) time

O(logn)-approximation algorithm for MBS on unit disks.

5.5.1 PTAS

We first show the PTAS for MBS on unit disks, and will then discuss it for the weighted
MBS problem. Let S be a set of n unit disks in the plane, and let k > 1 be a fixed

integer. A PTAS running in O(nO(1) ·nO(1/ε2)) time, for any ε > 0, is straightforward

using the shifting technique of Hochbaum and Maass [HM85b] and the following

packing argument: for an instance of the MBS problem, where the unit disks lie inside

a k×k square, an optimal solution cannot have more than k2 unit disks. Hence, we can

compute an exact solution for such an instance of the problem in O(nO(1) ·nO(k2)) time.

Consequently, by setting k = 1/ε, we obtain a PTAS running in time O(nO(1) ·nO(1/ε2)).
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To improve the running time to O(nO(1) ·nO(1/ε)), we rely on the shifting technique

again, but instead of applying the plane partitioning twice, we only partition the

plane into horizontal slabs and solve the MBS problem for each of them exactly. This

gives us the desired running time for our PTAS. We next describe the details of how

to solve MBS exactly for a slab.

Algorithm for a slab. Let H be a horizontal slab of height k and let D ⊆ S be the

set of disks that lie entirely inside H. The idea is to build a vertex-weighted directed

acyclic graph G such that finding a maximum-weight path from the source vertex

to the target vertex corresponds to an exact solution for the MBS problem [Mat98].

To this end, let a and b (a < b) be two integers such that every disk in D lies inside

the rectangle R bounded by H and the vertical lines x = a and x = b. Partition R
vertically into width 2 boxes Bi, where the left side of Bi has the x-coordinate a+ i,
for all integers 0≤ i < b−a; let D i ⊆ D denote the set of disks whose centers lie inside

Bi. Since Bi has height k and width 2, we can compute all feasible (not necessarily

exact) solutions for the MBS problem on D i in O(nO(1) ·nO(k)) time; let Mi be the set

of all such feasible solutions. We now build a directed vertex-weighted acyclic graph

G as follows. Each feasible solution of Mi corresponds to some vertices. Note that

each feasible solution is a bipartite graph so there can be many way of bipartitioning.

We creat vertices for each possible bipartition. For a solution M, we denote each such

vertices as (M,V1(M),V2(M)). The vertex set of V (G) is V ∪{s, t}, where V has vertices

for each solution in Mi, for all i. Moreover, the weight of each vertex is the number

of disks in the corresponding bipartite graph. For every pair i, j, where 1≤ i < j < n,

consider two solutions (M,V1(M),V2(M)) ∈ Mi and (M′,V1(M′),V2(M′)) ∈ M j. Then,

there exists an edge from the vertex of M to that of M′ in G if the intersection graph

induced by the disks in M∪M′ is bipartite with one of the following two bipartition:

(V1(M)∪V1(M′),V2(M)∪V2(M′)) and (V1(M)∪V2(M′),V2(M)∪V1(M′)). Finally, for all i
and for all M ∈Mi: there exists an edge from s to (M,V1(M),V2(M)), and there exists

an edge from (M,V1(M),V2(M)) to t. The weights of vertices s and t are zero.

Lemma 5.13. The MBS problem has a feasible solution of size k on G if and only if
there exists a directed path from s to t with the total weight k.

Proof. For a given directed st-path with total weight k, let X be the union of all the

disks corresponding to the internal vertices of this path. Then, the intersection graph

of X is bipartite because the disks in X ∩Mi are disjoint from the disks in S∩M j

when j > i+1. Moreover, when j = i+1, the disks in X ∩ (Mi ∪M j) must form an

induced bipartite graph by the definition of an edge in G. Since the total weight of
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the vertices on the path is k, we have |X | = k. On the other hand, let Y be a feasible

solution of size k for the MBS problem on G. Then, the intersection graph of disks in

Y ∩D i is bipartite, for all i. Hence, selecting the vertices corresponding to Y ∩D i for

all i gives us a path with total weight k from s to t. �

By Lemma 5.13, the MBS problem for H reduces to the problem of finding the

maximum-weighted path from s to t on G. The number of vertices of G that correspond

to feasible solutions for the MBS problem on disks in S∩D i is bounded by O(nO(k)),

which is the bound on the number of vertices of G that correspond to these feasible

solutions. Hence, we can compute the edge set of G in O(nO(1) ·nO(k)) time (we can

check whether a subset of disks form a bipartite graph in O(nO(1)) time). Since G is

directed and acyclic, the maximum-weighted st-path problem can be solved in linear

time. Therefore, by setting k = 1/ε, we have the following theorem.

Theorem 5.6. There exists a PTAS for MBS on unit disks that runs in O(nO(1) ·nO(1/ε))

time, for any ε> 0.

5.5.2 2-approximation algorithm

Here we give an O(n4) time 2-approximation algorithm. Our approach is motivated

by the technique of Agarwal et al. [AvKS98], where they gave a O(n logn)-time 2-

approximation algorithm for the maximum independent set problem on a set of n
unit-height rectangles in the plane. Consider a set D of n unit-disks in the plane.

We first place a set of horizontal lines, two distance apart, such that each disk is

intersected by a line which is positioned below the centre of the disk. Note that such

a placement is always possible.

Suppose there are k ≤ n such horizontal lines that stab all the disks. Let {L1,L2, . . . ,Lk}

be the set of these lines and they partition the set D into subsets D1,D2, . . . ,Dk, where

Di ⊆ D is the set of those disks that are intersected by the line L i and centers are

lying above or on L i. Now we have the following observation.

Observation 5.2. Let D ∈ Di and D′ ∈ D j be two disks in D, where 1 ≤ i, j ≤ k. If
|i− j| ≥ 2 then D and D′ do not intersect.

We now apply the algorithm to solve the MBS problem on each Di (1≤ i ≤ k). Thus,

we compute a maximum bipartite subgraph Bi on each Di in O(|Di|4) time. Consider

the two bipartite subgraphs {B1 ∪B3, . . . ,B2dk/2e−1}, {B2 ∪B4, . . . ,B2bk/2c}. Let MBS(GD)

denote a maximum bipartite subgraph on the graph induced by the objects in D. It
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is easy to observe that
∑k

i=1 |Bi| ≥ |MBS(GD)|. So, the largest set among these two

must have size at least |MBS(GD)|/2. Thus, we obtain a 2-approximation algorithm.

To find the lines L i (and form the corresponding partition), we need to do a single

pass through the disks after sorting them by the y-coordinates of their centers. Thus,

running time of the algorithm is bounded by O(n4). We hence have the following

theorem.

Theorem 5.7. Let D be a set of n unit disks in the plane and let GD be the intersec-
tion graph of D. An induced bipartite subgraph of size at least |MBS(GD)|/2 can be
computed in O(n4) time, where MBS(GD) is a maximum induced bipartite subgraph of
GD .

5.5.3 O(logn)-approximation algorithm

Here, we describe an O(logn)-approximation algorithm for MBS problem in unit disk

graphs that runs in O(n logn) time. This algorithm is also motivated by Agarwal et

al. [AvKS98] who gave an O(n logn)-time O(logn)-approximation algorithm for the

maximum independent set problem for a set of n axis-parallel rectangles in the plane.

Let D = {D1,D2, . . .Dn} and let ci be the centers of the disks D i,1≤ i ≤ n. We sort the

centers of the disks in D by their x-coordinates. This takes O(n logn) time. If n ≤ 2,

we solve problem in constant time. Otherwise, we do the following.

1. Let cmed be the center having the median x-coordinate among all the centers.

2. Draw the vertical line x = x(cmed).

3. Partition the disks D into three sets D`, Dmed, and Dr defined by

D` = {D i : D i ∈D, x(cmed)− x(ci)> 1},

Dmed = {D i : D i ∈D, |x(cmed)− x(ci)| ≤ 1},

Dr = {D i : D i ∈D, x(ci)− x(cmed)> 1}.

4. Compute Bmed, a 2-approximation solution for the MBS problem on disks in

Dmed using Theorem 5.5.

5. Recursively compute B` and Br, the approximate maximum bipartite subgraph

induced by D` and Dr, respectively.

6. Return Bmed if |Bmed| ≥ |B`∪Br|; otherwise, return B`∪Br.
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Observe that for every pair of disks D ∈D` and D′ ∈Dr, D∩D′ =;. This implies that

B`∪Br induces a bipartite subgraph of GD , intersection graph of D. By Theorem 5.5,

we can obtain a 2-approximation solution for the problem on Dmed in linear time.

Since |D`| ≤ n/2 and |Dr| ≤ n/2, the overall running time is O(n logn+|E|), where E is

the set of edges in GD .

Next, we show that our algorithm computes a bipartite subgraph of size at least

|MBS(GD)|/max(1,2logn), where MBS(GD) is a maximum bipartite subgraph in GD .

The proof is by induction on n. For the base case, the claim is true for n ≤ 2 since we can

compute a maximum bipartite subgraph in constant time. For inductive step, suppose

the claim is true for all k < n. Let B∗
`
,B∗

r and B∗
med denote the maximum bipartite

subgraph on GD`
,GDr and GDmed , respectively. Since we compute a 2-approximation

solution for the problem on GDmed , we have

|Bmed| ≥
|B∗

med|
2

≥ |MBS(GD)∩Dmed|
2

.

By the induction hypothesis,

|B`| ≥
|B∗

`
|

2log(n/2)
≥ |MBS(GD)∩D`|

2(logn−1)
and similarly |Br| ≥ |MBS(GD)∩Dr|

2(logn−1)
.

Therefore,

|B`|+ |Br| ≥ |MBS(GD)∩D`|+ |MBS(GD)∩Dr|
2(logn−1)

= |MBS(GD)|− |MBS(GD)∩Dmed|
2(logn−1)

If |MBS(GD)∩Dmed| ≥ |MBS(GD)|/ logn, then |Bmed| ≥
|MBS(GD)|

2logn
and we are done.

Otherwise, |MBS(GD)∩Dmed| < |MBS(GD)|/ logn in which case

|B`|+ |Br| ≥ |MBS(GD)|− |MBS(GD)∩Dmed|
2(logn−1)

≥ |MBS(GD)|− |MBS(GD)|/ logn
2(logn−1)

= |MBS(GD)|
2logn

Therefore, max{|Bmed|, |B`|+ |Br|}≥ |MBS(GD)|/(2logn); hence, proving the induction

step.

Theorem 5.8. Let D be a set of n unit disks in the plane and let GD = (V ,E) be the in-
tersection graph of D. An induced bipartite subgraph of size at least |MBS(GD)|/(2logn)
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can be computed in O(n logn+|E|) time, where MBS(GD) denotes a maximum induced
bipartite subgraph in GD .

5.6 MBS on Unit Squares and Unit-height
Rectangles

In this section we give approximation algoritms for MBS problem on unit Squares

and unit-height rectangles.

5.6.1 PTAS on unit squares

Since MIS is NP-Complete on unit square graphs, the MBS problem is NP-Complete

on this class of graphs by Theorem 5.3. Here, we give a PTAS for MBS on a set of

n unit squares. One can verify that the algorithm to obtain Theorem 5.6 can be

applied to obtain a PTAS for MBS on a set of n unit squares, as well. Moreover, the

algorithm extends to the weighted MBS problem on unit disks and unit squares. The

only modification is, instead of assigning the number of disks (resp. squares) in a

solution as the weight of the corresponding vertex, we assign the total weight of the

disks (resp. squares) in the solution as the vertex weight.

Theorem 5.9. There exists a PTAS for the MBS problem on unit squares running in
O(nO(1) ·nO(1/ε)) time, for any ε> 0. Moreover, the weighted MBS problem also admits a
PTAS running within the same time bound on unit disks and unit squares.

5.6.2 2-approximation for unit-height rectangles

Here, we give an O(n logn) time 2-approximation algorithm for MBS on a set of n
unit-height rectangles. The technique used in this section is similar to the technique of

Agarwal et al. [AvKS98]. To this end, suppose that the bottom side of the bottommost

rectangle has y-coordinate a and the top side of the topmost rectangle has y-coordinate

b. Consider the set of horizontal lines y := a+ i+ ε for all i = 0, . . . ,b, where ε> 0 is

a small constant; we may assume w.l.o.g. that each rectangle intersects exactly

one line. Ordering the lines from bottom to top, let Si be the set of rectangles that

intersect the horizontal line i. We now run BIPARTITEINTERVAL(S), once for when

S = S1 ∪S3 ∪S5 . . . and once for when S = S2 ∪S4 ∪S6 . . . , and will then return the

largest of these two solutions.
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Algorithm 3 BIPARTITEINTERVAL(S)
1: let initially M =;;
2: x :=−∞ and y :=−∞;
3: for i := 1 to n do
4: if left(I i)> y then
5: M := M∪ I i and y := right(I i);
6: else if x < left(I i)< y then
7: M := M∪ I i, x := y, and y := right(I i);
8: end if
9: end for

10: return M;

We perform an initial sorting that takes O(n logn) time, and BIPARTITEINTERVAL(S)

runs in O(n) time. This gives us the following theorem.

Theorem 5.10. There exists an O(n logn) time 2-approximation algorithm for the
MBS problem on a set of n unit-height rectangles in the plane.

5.7 Hardness of MTFS

In this section, we show that MTFS problem is NP-Hard when geometric objects are

axis-parallel rectangles. We give a reduction from the independent set problem on

3-regular planar graphs, which is known to be NP-Complete [GJ79b].

Rim et al. [RN95] proved that MIS is NP-Hard for planar rectangle intersection graphs

with degree at most 3. They also gave a reduction from the independent set problem

on 3-regular planar graphs. Given a 3-regular planar graph G = (V ,E), they construct

an instance H = (V ′,E′) of the MIS problem on rectangle intersection graphs. First

we outline their construction of H from G. For any cubic planar graph G, it is always

possible [RN95] to get a rectilinear planar embedding of G such that each vertex v ∈V
is drawn as a point pv, and each edge e = (u,v) ∈ E is drawn as a rectilinear path,

connecting the points pu and pv, having at most four bends, and thus consisting of

at most five straight line segments. They [RN95] construct a family of rectangles

B in the following way. For each point pvi where vi ∈ V , a rectangle bi is placed

surrounding the point pvi . In each rectilinear path connecting pvi and pv j , they place

six rectangles b1
i j,b

2
i j, . . . ,b

6
i j such that i) bi intersects b1

i j, ii) b j intersects b6
i j, iii) bk

i j

intersects bk+1
i j for k = 1,2, . . . ,5 iv) b1

i j,b
2
i j, . . . ,b

6
i j do not intersect any other rectangles

in B. For an illustration see Figure 5.7.

Clearly, H(V ′,E′) is an axis-parallel rectangle intersection graph with degree at most

3 where |V ′| = |V |+6|E| and |E′| = 7|E|. In their reduction, the following lemma holds.
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Figure 5.7: (a) A cubic planar graph G, (b) A rectilinear embedding of G, (c) Family B
of rectangles.

Lemma 5.14. [RN95] G = (V ,E) has an independent set of size ≥ m if and only if H
has an independent set of size m+3|E|.

Given H, we construct an instance GH of MTFS problem in axis-parallel rectangles

intersection graphs. For the sake of understanding, let all rectangles corresponding to

vertices in H, i.e., all rectangles in B, be colored black. To get GH , we insert a family R
of red rectangles in the following way. For each pair of adjacent rectangles b and b′ in

B, we place a red rectangle Rb,b′ such that i) Rb,b′ intersects both b and b′, ii) Rb,b′ does

not intersect any other rectangles in B∪R. As per the construction of H, it is always

possible to place such a rectangle for each pair of adjacent rectangles in B. See Figure

5.8 for an illustration of this transformation. This completes the construction of our

instance of the MTFS problem on axis-parallel rectangles intersection graphs. Since

R contains 7|E| rectangles, the above transformation can be done in polynomial time.

Now GH is an axis-parallel rectangle intersection graph with underlying geometric

objects B∪R. Clearly, the number of vertices in GH is (|V |+13|E|). We now prove the

following lemma.
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Figure 5.8: Construction of an instance of MTFS problem from B.

Lemma 5.15. H has an independent set of size ≥ k if and only if GH has a triangle-free
subgraph on ≥ k+7|E| vertices.

Proof. Let H have an independent set of k vertices. Let B′ ⊆ B be the set of rectangles

corresponding to these k vertices. Note that the rectangles in R are independent. We

take the subgraph H′ of GH induced by the vertices corresponding to the rectangles

B′∪R. Now H′ is triangle-free. Because if H′ is not triangle-free then there is an

intersection between two black rectangles in B′, which leads to a contradiction. As

|R| = 7|E|, so the claim holds.

Now we show the other direction. Let GH have a triangle-free subgraph H′ on

≥ k+7|E| vertices. Let X (H′)= B1 ∪R1 be the set of rectangles corresponding to the

vertices of H′, where B1 ⊆ B and R1 ⊆ R . Also, let R2 ⊆ (R \R1) be the set of those red

rectangles that has at most one adjacent rectangle in B1. Then clearly the graph with

underlying rectangles B1∪R1∪R2 has no triangles. So each rectangle in R \ (R1∪R2)

has exactly two neighbours in B1. Let E(B1) denote the set of edges in the subgraph

induced by the vertices corresponding to the rectangles in B1. Note that if there is

a pair of adjacent rectangles bi and b j in B1 then the rectangle Ri, j should be part

of R3. It implies that |E(B1)| = |R3| so |E(B1)| = |R|− |R1 ∪R2|. Now |B1|+ |R1 ∪R2| ≥
k+7|E|, so |B1|− (7|E|− |R1 ∪R2|)≥ k. This implies |B1|− (|R|− |R1 ∪R2|)≥ k, hence

|B1|− |E(B1)| ≥ k. Now in B1 we repeatedly remove the rectangles from B1 to get an

independent set of rectangles. Finally, within at most |E(B1)| steps, we are left with a

set of independent rectangles in B1 with size ≥ k. So there exists an independent set

of size ≥ k in H. �

By Lemma 5.14 and Lemma 5.15, we have the following.
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Lemma 5.16. G = (V ,E) has an independent set of size ≥ m if and only if GH has a
triangle-free subgraph on m+10|E| vertices.

We can now conclude the following theorem.

Theorem 5.11. The MTFS problem is NP-Complete on axis-parallel rectangle inter-
section graphs.

Summary

In this chapter, we studied the problem of computing a maximum-size bipartite

subgraph on geometric intersection graphs. We showed that the problem is NP-Hard on

the geometric graphs for which the maximum independent set problem is NP-Hard. On

the positive side, we gave polynomial-time algorithms for solving the problem almost

optimally on circular-arc graphs. We also produce some approximation algorithms for

the problem on unit squares, variants of unit disks, and unit-height rectangles.
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6.1 Introduction

The Set Cover and Independent Set problems are two well-studied problems in many

fields. In the geometric Set Cover problem, we are given a set of points and a set

of geometric objects such that their union contains the set of points, and the goal is

to find a minimum cardinality collection of objects that covers all of the given set

of points. In the Independent Set problem, we are given a set of objects and seek

a maximum cardinality subset of objects that are pairwise non-intersecting. The

Dominating Set problem is a variation of the Set Cover problem in which we are given

a set of objects and seek a minimum cardinality subset of objects such that every

object has a non-empty intersection with one of the chosen objects.

In this chapter, we study variations of the Set Cover, Independent Set, and Dominating

Set problems. We are given m axis-parallel line segments that induce a planar

subdivision P with a set F of n bounded rectilinear faces. Further, we consider each

bounded face to be a closed region, i.e. including the boundary. We formally define

these problems as follows.

A planar subdivision with a set F of n bounded faces in R2, is given as input.

í (P1) STABBING-SUBDIVISION: find a minimum cardinality set of points

in the plane such that each face in F is stabbed (intersected) by one of the

selected points.

í (P2) INDEPENDENT-SUBDIVISION: find a maximum cardinality subset

F ′ ⊆ F of faces such that any pair of faces in F ′ is non-intersecting.

í (P3) DOMINATING-SUBDIVISION: find a minimum cardinality subset F ′ ⊆
F of faces such that any face in F \ F ′ has a non-empty intersection with a

face in F ′.

A special case of the STABBING-SUBDIVISION problem has an application to the art

gallery problem [CRCS+94]. Suppose a rectangular art gallery is given. The gallery

is subdivided into rectangular rooms. The art gallery problem seeks to find the fewest

guards (points) so that every room (face) is protected (stabbed) by a guard point. This

problem is precisely the STABBING-SUBDIVISION problem in which the input faces

are all rectangular. More generally, we consider the case of rectilinear rooms (the

original input of the STABBING-SUBDIVISION problem), not just rectangular rooms,

and ask the same question, to find the fewest guards to protect all of the rectilinear
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rooms. We say a guard protects a rectilinear room if and only if guard belongs to the

room.

In this chapter, we sometimes use the term “rectangle” and “rectangular face” (of a

subdivision) interchangeably.

6.1.1 Our contributions

We show that each of the problems of STABBING-SUBDIVISION, INDEPENDENT-

SUBDIVISION, and DOMINATING-SUBDIVISION is NP-Hard. We even prove that these

problems remains NP-Hard when we concentrate only on the rectangular faces of

the subdivision. In addition, we provide a 2.083-approximation and a PTAS for the

STABBING-SUBDIVISION problem.

6.2 STABBING-SUBDIVISION

6.2.1 NP-hardness

We first prove that the STABBING-SUBDIVISION problem is NP-Hard when we are

only required to stab the rectangular faces of the subdivision. Next, we modify the

construction to show that the STABBING-SUBDIVISION problem is NP-Hard. We

give a reduction from the Rectilinear Planar 3SAT (RP3SAT) Problem. Lichtenstein

[Lic82] proved that the Planar 3SAT problem is NP-Complete. Later, Knuth and

Raghunathan [KR92] showed that every Planar 3SAT problem can be expressed as

an RP3SAT problem. We define the RP3SAT problem as follows. We are given a 3-
SAT formula φ with n variables x1, x2, . . . , xn and m clauses C1,C2, . . . ,Cm where each

clause contains exactly 3 literals. For each variable or clause, we take a rectangle. The

variable rectangles are placed on a horizontal line such that no two of them intersect

each other. The clause rectangles are placed above and below this horizontal line

such that they together form a nested structure. The clause rectangles connect to the

variable rectangles by vertical lines such that no two lines intersect. The objective is

to decide whether there is a truth assignment to the variables that satisfies φ. See

Figure 6.1 for an instance of the RP3SAT problem.

Variable gadget: The gadget of xi consists of 8m+4 vertical and 4 horizontal line

segments. See Figure 6.2 for the construction of the gadget. The 4 segments v1,v4,h1,

and h4 together form a rectangular region R. Next, the 2 vertical segments v2 and

v3 partition R vertically into 3 rectangles R1, R2, and R3. Further, two horizontal

segments h2 and h3 partition R2 horizontally into three rectangles R4, R5, and R6. Fi-
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Figure 6.1: An instance of the RP3SAT problem. We only show the clauses that
connect to the variables from above. The solid (resp. dotted) lines represent that the
variable is positively (resp. negatively) present in the corresponding clauses.

nally, the 4m vertical segments `1,`2, . . . ,`4m partition R4 vertically into 4m+1 small

rectangles r1, r2, . . . , r4m+1. Similarly, the 4m vertical segments `4m+1,`4m+2, . . . ,`8m

partition R6 vertically into 4m+1 small rectangles r4m+2, r4m+3, . . . , r8m+2. Finally we

have the total of 8m+5 rectangles R1,R3,R5, r1, r2, . . . , r8m+2 inside R. Clearly, these

rectangles except R5 form a cycle of size 8m+4. Observe that any point along the cycle

can stab at most two consecutive regions. Therefore, all solutions can be represented,

canonically, by exactly one of the two optimal solutions P i
1 = {p1, p3, . . . , p8m+3} and

P i
2 = {p2, p4, . . . , p8m+4} each of size 4m+2 (Note that these points are not as a part of

the input, they are one set of canonical points.). These two canonical solutions are

corresponding to the truth value of the variable xi.

Figure 6.2: Structure of a variable gadget.

Clause gadget: The gadget for clause Cα consists of a single rectangle rα that is

formed by four line segments. The rectangle rα can be interpreted as the same
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rectangle as Cα in the RP3SAT problem instance.

Interaction: Now we describe how the clause gadgets interact with the variable

gadgets. Observe that the description for the clauses which connect to the variables

from above are independent with the clauses which connect to the variables from

below. Therefore, we only describe the construction for the clauses which connect to

the variables from above. Let C i
1,C i

2, . . . ,C i
τ be the left to right order of the clauses

which connect to xi from above. Then we say that C i
k is the kth clause for xi. For

example, C3, C2, and C4 are the 1st, 2nd, and 3rd clause for the variable x4 in Figure

6.1. Let Cα be a clause containing the variable xi, x j, xt. We say that clause Cα is

the k1, k2, and k3
th clause for variable xi, x j, and xt, respectively based on the above

ordering. For example, C3 is the 3rd, 1st, and 1st clause for variable x2, x3, and x4,

respectively in Figure 6.1. Let rα be the rectangle corresponding to Cα. Now we have

the following cases.

If xi appears as a positive literal in Cα, then extend the 3 segments `4k1−3,

`4k1−2, and `4k1−1 vertically upward such that it touches the bottom boundary

of rα. Move p4k1−1 vertically upward to the bottom boundary of rα.

If xi appears as a negative literal in Cα, then extend the 3 segments `4k1−2,

`4k1−1, and `4k1 vertically upward such that it touches the bottom boundary of

rα. Move p4k1 vertically upward to the bottom boundary of rα.

Figure 6.3: Variable clause interaction.

The similar constructions can be done for x j and xt by replacing k1 with k2 and k3,

respectively. The construction for the clause Cα is shown in Figure 6.3. Note that, we

break the horizontal segment h1 in the variable gadgets into smaller intervals and

shifted the intervals vertically along with the extension of the vertical lines. We also

demonstrate the complete construction in Figure 6.4 for the formula shown in Figure

6.1. This completes the construction and clearly, it can be done in polynomial time.
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Figure 6.4: Complete construction for the formula in Figure 6.1.

Correctness: The correctness follows from the following lemma.

Lemma 6.1. φ is satisfiable if and only if there is a solution to the STABBING-

SUBDIVISION problem to stab only rectangular faces with n(4m+2) points.

Proof. Assume that φ is satisfiable, i.e., we have a truth assignment of the variables

in φ. Now consider a variable xi. If xi is true, we select the set P i
1, otherwise we select

the set P i
2. Clearly, the n(4m+2) selected points corresponding to all variable gadgets

stab all the rectangular faces of the construction.

On the other hand, assume that the STABBING-SUBDIVISION problem has a solution

with n(4m+2) points. Observe that at least (4m+2) points are needed to stab all

the faces of a variable gadget. Since the rectangular faces of variable gadgets are

disjoint from each other, exactly (4m+2) points must be selected from each variable

gadget. Now there are exactly two canonical solutions of size (4m+2), either P i
1 or P i

2.

Therefore, we set variable xi to be true if P i
1 is selected from the gadget of xi, otherwise

we set xi to be false. Note that for each clause Cα the six faces corresponding to three

literals it contains, touches the rectangle rα. Since rα is stabbed, at least one of the

selected points must be chosen in the solution. Such a point is either in one of the

sets P i
1 or P i

2 of the corresponding variable gadget based on whether the variable

is positively or negatively present in that clause. Hence, the above assignment is a

satisfying assignment. �

Theorem 6.1. The STABBING-SUBDIVISION problem is NP-Hard for stabbing only
rectangular faces of a subdivision.

The STABBING-SUBDIVISION problem for stabbing all rectilinear faces:
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We now prove that the STABBING-SUBDIVISION problem (i.e., stabbing all rectilinear

faces of a subdivision) is NP-Hard. Note that, after embedding the gadgets (i.e., the

complete construction) on the plane, the subdivision creates three types of faces, (i)

variable faces: the faces that are interior to the variable gadgets (ii) clause faces:

the faces that are associated with the clause gadgets, and (iii) outer faces: the faces

other than types (i) and (ii). See Figure 6.5 for these types of faces. Observe that the

variable and clause faces are all rectangular. The only non-rectangular faces are the

outer faces. We prove that Figure 6.1 is true even if we consider the outer faces as

well. Notice that each outer face shares a boundary with a variable face on either

h1 (coincides with a top boundary of a variable face), or h4 (coincides with a bottom

boundary of a variable face), or both h1 and h4. See Figure 6.5 for an illustration of

this fact.

Figure 6.5: Complete construction of the STABBING-SUBDIVISION problem for the
formula in Figure 6.1. Only two outer faces are highlighted in green color.

Note that, in the proof of the Lemma 6.1, we assume that the canonical points are on

the lines h2 and h3 (see Figure 6.2). At a later stage some of them are moved vertically

to stab clause rectangles. To get our result for the STABBING-SUBDIVISION problem,

we assume a different position of the canonical point-set in the variable gadgets. In

each variable gadget, to stab this rectangle R5, we keep only one point either on

h2 (say p1) or on h3 (say point p8m +4 and we shift the remaining points vertically

upward from h2 to h1 and vertically downward from h3 to h4. Since each outer face

shares a boundary with a variable face either top (coincides with line the h1) or bottom

(coincides with the line h4), or both boundaries. This implies that each clause face is

stabbed by at least two consecutive canonical points either on h1 or on h4 (see Figure

6.5) . Now to stab the variable rectangles we choose either P i
1 or P i

2 from the i-th
variable gadget. The chosen solution is also stabs the clause gadgets. Therefore the
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Lemma 6.1 is true even when we are intended to stab all the faces (rectilinear) of the

subdivision. Finally we have the following theorem.

Theorem 6.2. The STABBING-SUBDIVISION problem is NP-Hard.

6.2.2 Approximation algorithms

6.2.2.1 Factor 2.083 approximation

We are given m axis-parallel line segments that induce a planar subdivision P with

a set F of n bounded rectilinear faces. To provide the approximation algorithm, we

transform any instance of the STABBING-SUBDIVISION problem into an instance of

the Set Cover problem where the size of each set is at most 4. Observe that, there

exists an optimal solution to the STABBING-SUBDIVISION problem that only contains

vertices of P (we can call them corner points of F). Also, any corner point of F can

stab at most 4 rectilinear faces in P .

We now create an instance of the Set Cover problem as follows. The set of elements is

the set of all faces and the collection is all sets of faces corresponding to the corner

points of F. Note that each set in the collection is of size at most 4, since any corner

point can stab at most 4 faces. This Set Cover instance admits a 2.083 (H4, i.e., the

harmonic series sum of the first 4 terms) factor approximation (see Exercise 2.8 on

page 24 of [Vaz01]). Hence we have the following theorem.

Theorem 6.3. There exists a 2.083 factor approximation algorithm for STABBING-

SUBDIVISION problem in a planar subdivision by rectilinear line segments.

6.2.3 PTAS via local search

In this section, we show that a local search framework [MR10] leads to a PTAS for

the STABBING-SUBDIVISION problem. We are given a planar subdivision with a set F
of n bounded faces. Note that, we can choose points only from the vertex set V of the

subdivision. Therefore, R = (V ,F) be the given range space. Clearly V is a feasible

solution to the STABBING-SUBDIVISION problem. We apply the k-level local search

[MR10] (k is a given parameter) as follows.

1. Let X be some feasible solution to the STABBING-SUBDIVISION problem (ini-

tially take X as V ).

2. Do the following:
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a) Search for X ′ ⊆ X and Y such that |Y | ⊆V , |Y | < |X ′|6 k and (X \ X ′)∪Y
is a feasible solution.

b) If such X ′ and Y exist, update X with (X \ X ′)∪Y and repeat the above

step. Otherwise, return X and stop.

It is easy to see that, for a fixed k, the running time of the algorithm is polynomial

in n. Further, the local search algorithm always returns a local optimum solution.

A feasible solution X is said to be a local optimum if no X ′ exists in Step 2(a) in the

above algorithm. We show that given any ε> 0, a O(1/ε2)-level local search returns a

hitting set of size at most (1+ε) times an optimal hitting set for R.

Locality condition ([MR10]): A range space R = (V ,F) satisfies the locality condition

if for any two disjoint subsets R,B ⊆V , it is possible to construct a planar bipartite

graph G = (R∪B,E) with all edges going between R and B such that for any f ∈ F,

there exist two vertices u ∈ f ∩R and v ∈ f ∩B such that edge (u,v) ∈ E.

Theorem 6.4. [MR10] Let R = (V ,F) be a range space satisfying the locality condition.
Let R ⊆V be an optimal hitting set for F, and B ⊆V be the hitting set returned by a k-
level local search. Furthermore, assume R∩B =;. Then there exists a planar bipartite
graph G = (R∪B,E) such that for every subset B′ ⊆ B of size at most k, |NG(B′)| ≥ |B′|
where NG(W) denotes the set of all neighbours of the vertices of W in G.

The following lemma implies that given any ε> 0, a k-level local search with ε= cp
k

gives a (1+ε)-approximation for the STABBING-SUBDIVISION problem.

Lemma 6.2. [MR10] Let G = (R∪B,E) be a bipartite planar graph on red and blue
vertex sets R and B, |R| ≥ 2, such that for every subset B′ ⊆ B of size at most k, where k
is a large enough number, |NG(B′)| ≥ |B′|. Then |B| ≤ (1+ cp

k
)|R|, where c is a constant.

PTAS for the STABBING-SUBDIVISION problem: Let R (red) and B (blue) be dis-

joint subsets of the vertices in planar subdivision P where R and B be an optimum

solution and the solution returned by the k-level local search, respectively. For sim-

plicity, we assume that R∩B =;. Otherwise, we can remove the common elements

from each of R and B, and then do a similar analysis. As we remove the same number

of elements from both R and B, the approximation ratio of the original instance is

at most the approximation ratio of the restricted one. We construct the required

graph G on the vertices R ∪B in the following way. Since R and B are feasible so-

lutions of the STABBING-SUBDIVISION problem, every face f ∈ F must contain at
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least one red and one blue point. We simply join exactly one pair of red and blue

points by an edge for each face f ∈ F. Clearly, the edge for a face f ∈ F lies completely

inside f . Therefore G becomes a planar bipartite graph and hence R satisfies the

locality condition. Therefore, from Theorem 6.4 and Lemma 6.2, we say that the

STABBING-SUBDIVISION problem admits a PTAS.

6.3 INDEPENDENT-SUBDIVISION

In this section, we prove that the INDEPENDENT-SUBDIVISION problem is NP-Hard

by giving a reduction from the RP3SAT problem. The reduction follows the same

line of the reduction presented in Section 6.2. We construct an instance I of the

INDEPENDENT-SUBDIVISION problem from an instance φ of the RP3SAT problem

and prove that the construction is correct. Here our main result is that it remains

NP-Hard when considering the rectangular faces only.

Variable gadget: The variable gadget is similar to the variable gadget that is

described in the Section 6.2. See Figure 6.6 for the construction of a variable gadget.

The difference of this variable gadget from the gadget in the Section 6.2 is that

we partition R4 into 4m−2 smaller rectangles r1, r2, . . . , r4m−2 and R6 into 4m−2

smaller rectangles r4m−1, r4m, . . . , r8m−4. Finally, we have the total of 8m−1 rectangles

R1,R3,R5, r1, r2, . . . , r8m−4 inside R. Notice that, these rectangles except R5 form a

cycle of size 8m−2. Therefore, all solutions can be represented, canonically, by exactly

one of the two optimal solutions S i
1 = {R3, r1, r3, . . . , r4m−3, r4m, r4m+2, . . . , r8m−4} and

S i
2 = {R1, r2, r4, . . . , r4m−2, r4m−1, r4m+1, . . . , r8m−5}, each with size 4m−1. These two

canonical solutions are corresponding to the truth values of the variable xi.

Figure 6.6: Structure of a variable gadget.

Clause gadget: The gadget of the clause Cα includes 9 rectangles r1
α, r2

α, . . . , r9
α (see

green rectangles in Figure 6.7. The six rectangles r4
α, r5

α, . . . , r9
α are placed inside
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the rectangle of Cα in the RP3SAT problem instance and the other three rectangles

r1
α, r2

α, r3
α are corresponding to the three vertical legs between Cα and the three

variables it contains. Note that there is another rectangle present in the clause

gadget bounded by the above 9 rectangles. However, this rectangle has no effect in

the reduction, since picking this rectangle makes other 9 rectangles invalid (cannot

be selected).

Interaction: Here also we describe the construction for the clauses that connect to

the variables from above, since the construction is similar and independent from the

clauses that connect to the variables from below. Let Cα be a clause containing the

variables xi, x j, xt. Also assume that this is the left to right order of these variables in

which they appear in φ. Using the similar way as before (Section 6.2), we say that the

clause Cα is the k1, k2, and k3
th clause for the variables xi, x j, and xt, respectively.

If xi appears as a positive literal in the clause Cα, then attach the rectangle r1
α

to the rectangle r4k1−3.

If xi appears as a negative literal in clause Cα, then attach the rectangle r1
α to

the rectangle r4k1−2.

The similar constructions can be done for x j by replacing r1
α and k1 with r2

α and

k2, respectively and for xt by replacing r1
α and k1 with r3

α and k3, respectively. The

construction for the clause Cα is depicted in Figure 6.7. The complete construction

for the formula in Figure 6.1 is shown in Figure 6.8. Clearly, the construction can be

done in polynomial time. We now prove the correctness of the construction.

Figure 6.7: Variable clause interaction.

Lemma 6.3. φ is satisfiable if and only if there is a solution of size n(4m−1)+4m to
INDEPENDENT-SUBDIVISION problem while considering only rectangular faces.
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Figure 6.8: Complete construction for the formula in Figure 6.1.

Proof. Assume that φ has a satisfying assignment. For the variable xi, if xi is true,

select the set S i
2, otherwise select the set S i

1. Since each set is of cardinality (4m−1),

clearly we select n(4m−1) independent rectangles across all variable gadgets. Now

let Cα be a clause containing variables xi, x j, xt. Since Cα is satisfiable at least one of

the three rectangles r1
α, r2

α, r3
α is free to choose in a solution. This implies we can select

exactly 4 rectangles from the gadget of Cα. We can picked 4 rectangles independently

from each clause gadget. Hence, in total we can select n(4m−1)+4m rectangles.

On the other hand, assume that the INDEPENDENT-SUBDIVISION problem has a

solution S with n(4m−1)+4m rectangles. Note that for each variable gadget the size

of an optimal independent set is (4m−1), either the set S i
1 or S i

2. We set the variable

xi to be true if S i
2 is selected from the gadget of xi, otherwise we set xi to be false.

Now we have to show that this assignment is a satisfying assignment for φ, i.e., each

clause of φ is satisfied. Since the variable gadgets are independent, there are at most

n(4m−1) rectangles from the variable gadgets belongs to S. Also since the size of the

solution is n(4m−1)+4m, from each clause gadget exactly 4 rectangles are is in S. Let

Cα be a clause containing variables xi, x j, xt. As there are 4 independent rectangles

from the set {r1
α, r2

α, . . . , r9
α}, so one must be from the set {r1

α, r2
α, r3

α} that is in the given

solution. Without loss of generality, let r1
α be present, then surely xi is a true variable

as our assignment. Hence the above assignment is a satisfying assignment. �

Theorem 6.5. The INDEPENDENT-SUBDIVISION problem is NP-Hard by considering
only rectangular faces of a subdivision.

The INDEPENDENT-SUBDIVISION problem for all rectilinear faces:

We now prove that it is also NP-Hard to find a maximum independent set of rectilinear
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faces in a planar subdivision. Similar to the STABBING-SUBDIVISION problem, after

embedding the construction on the plane, the subdivision creates three types of faces,

(i) variable faces: the faces that are interior to the variable gadgets (note that all

variable faces are rectangular), (ii) clause faces: the faces that are associated with the

clause gadgets (each clause gadget consists of nine rectangles), and (iii) outer faces:

any other faces that are not included in any of (i) and (ii). We now show that with the

presence of outer faces also, Lemma 6.3 remains true.

Visualize that we are attaching each clause gadget one by one with the variable

gadgets from inner level to outer level (i.e., first C3, then, C4, then C2, and then

finally C1 in Figure 6.8). Then each clause gadget creates two additional rectilinear

faces (outer faces), on both sides of the rectangle corresponding to the middle leg (see

Figure 6.9). Note that, each such face is adjacent with at least 4 clause rectangles

from a single clause gadget and at least 4 variable rectangles, 2 consecutive rectangles

from 2 variable gadgets each. Therefore, picking one of these new faces to the optimal

solution makes the solution size strictly less than the original. Therefore, even if we

consider all rectilinear faces, Lemma 6.3 holds and so Theorem 6.5. Therefore we

have the following theorem.

Theorem 6.6. The INDEPENDENT-SUBDIVISION problem is NP-Hard.

Figure 6.9: Complete construction of the INDEPENDENT-SUBDIVISION problem for
the formula in Figure 6.1. Only two outer faces are highlighted.

6.4 DOMINATING-SUBDIVISION

In this section, we prove that the DOMINATING-SUBDIVISION problem is NP-Hard.

We give a reduction from the RP3SAT problem similar to Section 6.3. Here also our
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main result is that it remains NP-Hard when considering the rectangular faces only.

We construct an instance I of the DOMINATING-SUBDIVISION problem from an

instance φ of the RP3SAT problem and prove that the construction is correct.

Variable gadget: Variable gadgets are similar to the variable gadgets that are de-

scribed in Section 6.2. The difference between this variable gadget and that of in

Section 6.2 is as follows. We partition R4 into 3m+1 small rectangles r1, r2, . . . , r3m+1

and R6 into 3m+1 small rectangles r3m+4, r3m+5, . . . , r6m+4. We partition R1 into two

rectangles r6m+6, r6m+5 and R3 into r3m+2, r3m+3. Next we take 2m+2 mutually in-

dependent rectangles s1, s2, . . . , s2m+2 inside R5 such that rectangle si touches the two

regions r3i−2 and r3i−1, for 1≤ i ≤ 2m+2. Finally we have a total of 8m+8 rectangles

r1, r2, . . . , r6m+6, s1, s2, . . . , s2m+2 inside R. Figure 6.10 illustrate the construction of a

variable gadget just described.

Figure 6.10: Structure of a variable gadget.

Lemma 6.4. There exists exactly two optimal dominating sets of rectangles, D i
1 =

{r1, r4, . . . , r6m+4} and D i
2 = {r2, r5, . . . , r6m+5}, for the gadget of xi.

Proof. There is no rectangle that can dominate more than 4 rectangles. Since there

are in total (8m+8) rectangles, any dominating set cannot have size less than (2m+2).

Further, both D i
1 and D i

2, each of size (2m+2), dominate all the faces of the subdivision

and hence they are optimal solutions. Now we show that there is no other optimal

solution.

Clearly, no rectangle of the form r3k or sk where 1≤ k ≤ (2m+2) can be a part of an

optimal solution, since each of them dominates exactly 3 rectangles. As a result, any

optimal solution contains only rectangles of the form r3k−1 or r3k−2, for 1≤ k ≤ (2m+2).

Also, two rectangles, one of the form r3k−1 and other of the form r3k−2, together cannot

be a part of an optimal solution. �
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Clause gadget: The gadget for the clause Cα is a rectangle rα (Figure 6.11).

Interaction: Here we describe the construction for the clauses that connect to the

variables from above. A similar construction can be done for the clauses that connect

to the variables from below. As before, we interpret Cα that contains variables xi, x j,

and xt as the k1, k2, and k3
th clause for the variables xi, x j, and xt, respectively.

If xi appears as a positive literal in the clause Cα, then we extend the rectangle

r3k1−1 vertically upward such that it touches the rectangle rα.

If xi appears as a negative literal in the clause Cα, then we extend the rectangle

r3k1−2 vertically upward such that it touches the rectangle rα.

We make the similar constructions for x j and xt by replacing k1 with k2 and k3,

respectively. The construction for the clause Cα is depicted in Figure 6.11. The

complete construction for the formula in Figure 6.1 is shown in Figure 6.12. Clearly,

the construction can be done in polynomial time. We now prove the correctness.

Figure 6.11: Variable clause interaction.

Figure 6.12: Complete construction of for the formula in Figure 6.1.
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Lemma 6.5. φ is satisfiable if and only if there is a solution of size n(2m+2) to the
DOMINATING-SUBDIVISION problem while considering only rectangular faces.

Proof. Assume that φ is satisfiable, i.e., we have a truth assignment to the variables

of φ. For the variable xi, if xi is true we select the set D i
2, otherwise we select the

set D i
1. Clearly, the n(2m+2) selected rectangles corresponding to all the variable

gadgets dominate all the rectangular faces of the subdivision.

On the other hand, assume that the DOMINATING-SUBDIVISION problem has a

solution with n(2m+2) rectangles. Observe that at least (2m+2) rectangles are needed

to dominate all the rectangular faces of a variable gadget. Since the rectangular faces

of variable gadgets are disjoint from each other and the size of the solution is n(2m+2),

from each variable gadget exactly (2m+2) rectangles must be selected. Therefore, we

set variable xi to be true if D i
2 is selected from the gadget of xi, otherwise we set xi to

be false. Note that for each clause Cα the three rectangles corresponding to the three

literals it contains attach to the rectangle rα. Since rα is dominated, at least one of

these three rectangles is chosen in the solution. Such a rectangle is either in D i
2 or

D i
1 of the corresponding variable gadget based on whether the variable is positively

or negatively present in that clause. Hence, the above assignment is a satisfying

assignment. �

Theorem 6.7. The DOMINATING-SUBDIVISION problem is NP-Hard when we are
constrained to dominate all the rectangular faces of a subdivision.

The DOMINATING-SUBDIVISION problem for all rectilinear faces:

We prove that the DOMINATING-SUBDIVISION problem is NP-Hard. Notice that, in a

variable gadget, the rectilinear face R5 dominates all the faces of that gadget. Hence

the size of the optimal solution is 1. So we modify each variable gadget so that there

are exactly two optimal solutions D i
1 and D i

2 of size (2m+2) each while considering all

(rectilinear) faces. Now if we embed the complete construction on the plane, similar

to STABBING-SUBDIVISION problem, the subdivision creates three types of faces, (i)

variable faces: the faces that are interior to the variable gadgets, (ii) clause faces:

the faces that are associated with the clause gadgets, and (iii) outer faces: the faces

other than types (i) and (ii). See Figure 6.13 for an illustration of these three types

of faces. We keep the rest of the construction (clause gadget and the interaction)

and proofs (Lemma 6.5) unaltered except we now show that using the new variable

gadget (described later) the outer faces are also dominated by the faces chosen from

the variable gadgets (i.e., the proof of Lemma 6.5 considering all three types of faces).
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Figure 6.13: Complete construction of the DOMINATING-SUBDIVISION problem for
the formula in Figure 6.1. Only two outer faces are highlighted.

Modified variable gadget: We take 2m+2 rectangles b1,b2, . . . ,b2m+2. We place

the rectangle bi in between the rectangles r3i−2 and r3i−1, for 1 ≤ i ≤ 2m+2 of the

variable gadget shown in Figure 6.10 (see Figure 6.14). Now if we choose R5 in the

optimal solution, then we need (2m+3) rectilinear faces to dominate all the faces in a

variable gadget. So the additional rectangles {bi;1≤ i ≤ (2m+2)} enforce not to choose

R5 in an optimal solution. Also any additional rectangles dominates exactly 3 faces.

So selecting any additional rectangle actually increases the size of the dominating set.

Hence none of these additional rectangles belongs to an optimal solution. Now it is

easy to convince that Lemma 6.4 remains true for this modified gadget even when we

consider all the rectilinear faces of the subdivision.

Figure 6.14: Modified variable gadget.

We now show that Lemma 6.5 is true when considering outer faces also. Notice

that, similar to the STABBING-SUBDIVISION problem, each outer face shares two

consecutive variable faces from a single variable gadget on either h1, or h4, or both
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h1 and h4. See Figure 6.13 for an illustration of this fact. Hence, selecting D i
i or D2

i

will stab all the outer faces that shares boundary with the faces of the gadget of xi.

Hence, using the solution of size n(2m+2), all the outer faces are also dominated.

Thus Lemma 6.5 remains true even when we consider all faces. Hence we have the

following theorem.

Theorem 6.8. The DOMINATING-SUBDIVISION problem is NP-Hard.

Summary

In this chapter, we study three problems, the STABBING-SUBDIVISION, INDEPENDENT-

SUBDIVISION, and DOMINATING-SUBDIVISION on a given planar rectilinear sub-

division. We prove that all these three problems are NP-Hard. We also show that

these problem remains NP-Hard when we consider only rectangular faces of the

subdivision. Further, we show that a local search produces a PTAS for the STABBING-

SUBDIVISION problem. We also provide a constant factor approximation algorithm for

the STABBING-SUBDIVISION problem. Note that both the Independent Set and the

Dominating Set problems have PTAS es [Bak94]. Since our input is a planar subdivi-

sion, we can easily get its corresponding planar graph. As a result, we obtain PTAS es

for both the INDEPENDENT-SUBDIVISION and DOMINATING-SUBDIVISION problems.
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7.1 Introduction

Let G = (V ,E) be a graph. A set of edges M ⊆ E(G) is said to be a matching if no

two edges of M share a common vertex. The set of vertices in V that have an edge

of M incident on them are called the vertices matched by M. A matching M is said

to be uniquely restricted if there is no other matching that matches the same set of

vertices as M. This problem is known to be NP-Complete for split graphs, bipartite

graphs whereas is polynomially solvable for threshold graphs, cacti and block graphs

[GHL01].
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7.1.1 Our contributions

We propose linear-time dynamic programming algorithms for computing a maximum

cardinality uniquely restricted matching in proper interval graphs and bipartite

permutation graphs respectively. We show that the linear-time algorithm described

for the problem for proper interval graphs in [GHL01] does not appear to work in all

cases.

7.2 Preliminaries

Let M be a matching in a graph G. An even cycle in G is said to be an alternating

cycle with respect to M if every second edge of the cycle belongs to M [GHL01]. The

following theorem characterizes uniquely restricted matchings in terms of alternating

cycles.

Theorem 7.1 ([GHL01]). Let G = (V ,E) be a graph. A matching M in G is uniquely
restricted if and only if there is no alternating cycle with respect to M in G.

Proof. Let the input graph G contains an alternating cycle with respect to M, say

C = 〈(e1, e′1), (e′1, e2), (e2, e′2), . . . , (em, e′m), (e′m, e1)〉 such that (e i, e′i) ∈ M for 1 ≤ i ≤ l.
Then M′ = C \ M is a different matching on the same vertices as M, and so, M is not

uniquely restricted.

Conversely, let M is not uniquely restricted and let M′ be a different matching on

the same vertices as M. Now consider the subgraph G[M4M′]. The degree of any

vertex in this subgraph must be exactly 2; therefore by Euler’s theorem, a cycle must

be formed in M4M′ which is nothing but an alternating cycle with respect to M. �

Note that an alternating cycle with respect to a matching M may not contain all the

edges in M. But clearly, if M contains only two edges, then any alternating cycle with

respect to M has to contain both the edges in M. Furthermore, it can be easily seen

that if M is any matching and M′ ⊆ M, then any alternating cycle with respect to

M′ is also an alternating cycle with respect to M. It therefore follows from Theorem

7.1 that any subset of a uniquely restricted matching is also a uniquely restricted

matching. The following observation is easy to see.

Observation 7.1. Let G = (V ,E) be any graph and let M be a matching in it. There
is an alternating cycle of length 4 with respect to M if and only if there exist e, e′ ∈ M
such that {e, e′} is not a uniquely restricted matching.
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Proof. Any alternating cycle of length 4 with respect to M contains exactly two edges,

say e and e′, from M. Clearly, this cycle is also an alternating cycle with respect to

the matching {e, e′} and therefore by Theorem 7.1, {e, e′} is not a uniquely restricted

matching. On the other hand, if M contains two edges e and e′ such that {e, e′} is not

a uniquely restricted matching, then by Theorem 7.1, there is an alternating cycle

with respect to {e, e′} and it is clear that this is an alternating cycle of length 4 with

respect to M. �

Lemma 7.1. Let G = (V ,E) be any graph and let {uv,u′v′} be a matching in it. The
following statements are equivalent:

(i) There is an alternating cycle with respect to {uv,u′v′} in G.

(ii) Each of u,v has at least one neighbour in {u′,v′} and each of u′,v′ has at least
one neighbour in {u,v}.

Proof. If there is an alternating cycle with respect to the matching {uv,u′v′}, then it

is either uvu′v′u or uvv′u′u. In any case, it is clear that each of u,v has at least one

neighbour in {u′,v′} and each of u′,v′ has at least one neighbour in {u,v}.

Now suppose that each of u,v has at least one neighbour in {u′,v′} and each of u′,v′

has at least one neighbour in {u,v}. Then, (vu′ ∉ E(G) or v′u ∉ E(G))⇒ (uu′ ∈ E(G) and

vv′ ∈ E(G)). This means that if vu′ ∉ E(G) or v′u ∉ E(G), then uvv′u′u is an alternating

cycle with respect to {uv,u′v′} in G. If on the other hand both vu′,v′u ∈ E(G), then

uvu′v′u is an alternating cycle with respect to {uv,u′v′} in G. �

7.3 Proper Interval Graphs

By “interval” we shall mean a closed interval on the real line. An interval is denoted

as [a,b] where a,b ∈ R and a ≤ b, and is the set {x ∈ R : a ≤ x ≤ b}. Given a graph G,

a collection {Iu}u∈V (G) of intervals is said to be an interval representation of G if for

distinct u,v ∈V (G), we have uv ∈ E(G) if and only if Iu ∩ Iv 6= ;. Graphs which have

interval representations are called interval graphs. The following theorem about

uniquely restricted matchings in interval graphs is from [GHL01].

Theorem 7.2 ([GHL01]). Let G = (V ,E) be an interval graph. Let M be a matching
in G. Then the following statements are equivalent:

(i) M is a uniquely restricted matching in G
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(ii) There is no alternating cycle of length 4 with respect to M in G

(iii) For any two edges e, e′ ∈ M, {e, e′} is a uniquely restricted matching in G

Proof. We shall first show (i)⇔(ii). By Theorem 7.1, if M is uniquely restricted, then

there is no alternating cycle of any length with respect to M in G. So it suffices to

show that when M is not uniquely restricted, there is an alternating cycle of length 4

with respect to M in G. Let < be an ordering of the vertices of G according to a non-

decreasing order of the left endpoints of their intervals in an interval representation

of G. It is easy to see (and folklore) that the ordering < has the property that for any

u,v,w ∈V (G) such that u < v < w, uw ∈ E(G)⇒ uv ∈ E(G). Suppose that the matching

M is not uniquely restricted. Then, by Theorem 7.1, there exists some alternating

cycle with respect to M in G. Let C = u1u2u3 . . .uku1 be an alternating cycle with

respect to M of smallest possible length in G. Clearly, k is even and 4 ≤ k ≤ |V (G)|.
If k = 4, then this cycle is an alternating cycle of length 4 with respect to M and we

are done. So let us suppose for the sake of contradiction that k > 4. If uiu j ∈ E(G) for

some two vertices ui and u j that are not consecutive on the cycle C (i.e., uiu j is a

“chord” of C) and i and j are of different parity, then one of the two cycles into which

the chord uiu j splits C will be an alternating cycle with respect to M of length smaller

than k. As this is a contradiction to the assumption that C is the alternating cycle

with respect to M of smallest possible length, we can assume that such chords are

“forbidden”, or in other words, there are no such chords for C. We shall also assume

without loss of generality that u1 =max<{u1,u2, . . . ,uk} and that uk < u2 (otherwise

we can relabel the vertices of the cycle C to satisfy both these conditions). From the

special property of the ordering < and the fact that uku1 ∈ E(G), it can be seen that if

uk < u3, then uku3 ∈ E(G). On the other hand, if u3 < uk, we again have uku3 ∈ E(G)

as u3u2 ∈ E(G). As uku3 is a forbidden chord, we have a contradiction.

The fact that (ii)⇔(iii) has already been noted in Observation 7.1. �

A proper interval representation is an interval representation in which no interval

strictly contains another interval. Proper interval graphs are the graphs which have

proper interval representations.

Definition 7.1. For a graph G = (V ,E), an ordering < of V (G) is said to be a proper
vertex ordering if for u,v,w ∈V (G) such that u < v < w, uw ∈ E(G)⇒ uv,vw ∈ E(G).

Proper vertex orderings are called “proper orderings” in [GHL01]. Note that in

a proper interval representation of a graph G, the ordering of the vertices of G
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according to the left endpoints of the intervals corresponding to them is the same as

their ordering according to the right endpoints of their intervals, since no interval is

contained in another. It is easy to see that this ordering is a proper vertex ordering of

G. In fact, it is folklore that a graph is a proper interval graph if and only if it has a

proper vertex ordering.

We can assume that G is connected as if it is not, we can easily run the algorithm

separately in each component to find a maximum cardinality uniquely restricted

matching in each of them and then take a union of those to obtain a maximum

cardinality uniquely restricted matching in G. We can also assume that a proper

interval representation of the graph G, and therefore a proper vertex ordering of G,

is available, as there are well known linear-time algorithms that can generate the

proper interval representation of a graph, given its adjacency list [Cor04]. From here

onwards, we will see a proper interval graph G exclusively in terms of a proper vertex

ordering of it and will not be concerned with any interval representation of G at all.

v1 v2 v3 v4 v5 v6 v7

Figure 7.1: A proper interval graph with vertices arranged according to a proper
vertex ordering. The bold edges represent a maximum cardinality uniquely restricted
matching.

Algorithm by Golumbic et al. [GHL01]

Here we show that the algorithm described for the problem for proper interval graphs

in [GHL01] does not appear to work in all cases. Below, we mention their algorithm.

Let R(vi) denote the rightmost vertex v j in the proper ordering such that (v j,vi) ∈ E.

If vi is an isolated vertex, then R(vi)= vi.

Algorithm 4

1: choose the first edge (vl ,vl+1) that exists and put it in the matching M.

2: set u ← vl and w ← vl+1

3: until we reach the end of the ordering

4: (a) if R(u)= R(w)= vl then
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5: (i) set u ← vl and w ← vl+1

6: (ii) add (u,w) to the matching M.

7: (b) if R(u)= vl 6= R(w) then

8: (i) set u ← vl+1 and w ← vl+2

9: (ii) add (u,w) to the matching M.

10: return M.

In Figure 7.1, the bold edges represent a maximum cardinality uniquely restricted

matching. The algorithm 4 from [GHL01], given a proper vertex ordering as input,

always produces a uniquely restricted matching consisting of edges between consec-

utive vertices. But every such matching in this graph, given this particular vertex

ordering, has at most two edges. So the Algorithm 4 described in [GHL01] for proper

interval graph does not work in all inputs.

Now we describe our algorithm. Before that we define some notations. Let < be a

proper vertex ordering of a graph G. For an edge e = uv ∈ E(G), we define l<(e) =
min<{u,v} and r<(e) = max<{u,v}. We shorten l<(e) and r<(e) to just l(e) and r(e)

when the proper vertex ordering < is clear from the context.

Lemma 7.2 ([GHL01]). Let G be a proper interval graph with a proper vertex ordering
<. If {e, e′} is a uniquely restricted matching in G, then either r(e)< l(e′) or r(e′)< l(e).

Proof. As {e, e′} is a matching, we can be sure that l(e), r(e), l(e′), r(e′) are all distinct

vertices. Suppose that l(e′) < r(e) and l(e) < r(e′). Let us assume without loss of

generality that l(e) < l(e′). Since l(e)r(e) ∈ E(G) and l(e) < l(e′) < r(e), by Definition

7.1, we have l(e)l(e′), r(e)l(e′) ∈ E(G). Now if r(e) < r(e′), then as l(e′) < r(e) < r(e′)
and l(e′)r(e′) ∈ E(G), we have by Definition 7.1 that l(e′)r(e), r(e′)r(e) ∈ E(G). On the

other hand, if r(e′)< r(e), then as l(e)< r(e′)< r(e) and l(e)r(e) ∈ E(G), Definition 7.1

gives us l(e)r(e′), r(e)r(e′) ∈ E(G). Thus, in any case, each of l(e), r(e) has a neighbour

in {l(e′), r(e′)} and each of l(e′), r(e′) has a neighbour in {l(e), r(e)}. We can now use

Lemma 7.1 to conclude that there is an alternating cycle with respect to {e, e′} in G.

But as {e, e′} is a uniquely restricted matching, this contradicts Theorem 7.1. �

Lemma 7.3. Let G be a proper interval graph with a proper vertex ordering < and let
e, e′ ∈ E(G). Then {e, e′} is a uniquely restricted matching in G if and only if l(e), l(e′)
are distinct and nonadjacent or r(e), r(e′) are distinct and nonadjacent.
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Proof. Suppose that {e, e′} is a uniquely restricted matching. Then clearly l(e), r(e),

l(e′), r(e′) are all distinct vertices. If l(e)l(e′) ∈ E(G) and r(e)r(e′) ∈ E(G), then we

have the alternating cycle l(e)l(e′)r(e′)r(e) l(e) with respect to {e, e′} in G, which is a

contradiction to Theorem 7.1.

Let us now prove the other direction of the claim. Suppose that l(e) and l(e′) are

distinct and nonadjacent. We shall assume without loss of generality that l(e)< l(e′).
As l(e)l(e′) ∉ E(G) and l(e)< l(e′)< r(e′), we have from Definition 7.1 that l(e) has no

neighbour in {l(e′), r(e′)}. By Lemma 7.1 and Theorem 7.1, this implies that {e, e′} is a

uniquely restricted matching in G. Now let us suppose that r(e) and r(e′) are distinct

and nonadjacent. Again, we shall assume without loss of generality that r(e)< r(e′).
As l(e)< r(e)< r(e′) and r(e)r(e′) ∉ E(G), we have from Definition 7.1 that r(e′) has no

neighbour in {l(e), r(e)}. Lemma 7.1 and Theorem 7.1 can now be used to infer that

{e, e′} is a uniquely restricted matching in G. �

Lemma 7.4. Let G be a proper interval graph with a proper vertex ordering <. Let
e1, e2, e3 be distinct edges of G such that l(e1)≤ l(e2)≤ l(e3) and r(e1)≤ r(e2)≤ r(e3).
If {e1, e3} is not a uniquely restricted matching in G, then neither {e1, e2} nor {e2, e3} is
a uniquely restricted matching in G.

Proof. We shall show that {e2, e3} is not a uniquely restricted matching in G. The

proof for the case of {e1, e2} is similar and is left to the reader. If {e2, e3} is not even a

matching in G, then we are immediately done. So we shall assume otherwise—i.e.,

l(e2), r(e2), l(e3), r(e3) are all distinct vertices of G. This means that l(e1)≤ l(e2)< l(e3)

and r(e1)≤ r(e2)< r(e3). By Lemma 7.3, we now have l(e1)l(e3), r(e1)r(e3) ∈ E(G). This

implies by Definition 7.1 that l(e2)l(e3), r(e2)r(e3) ∈ E(G). Lemma 7.3 now implies

that {e2, e3} is not a uniquely restricted matching. �

From Lemma 7.2, it follows that the edges of any uniquely restricted matching M
in a proper interval graph G with a proper vertex ordering < can be labelled as

e1, e2, . . . , e|M| such that l(e1)< r(e1)< l(e2)< r(e2)< ·· · < l(e|M|)< r(e|M|). We say that

the uniquely restricted matching M starts with the edge e1.

We now give a stronger version of Theorem 7.2 for the case of proper interval graphs.

Theorem 7.3. Let G be a proper interval graph and < a proper vertex ordering of it.
Let M = {e1, e2, . . . , e t} be a matching in G where l(e1)< l(e2)< ·· · < l(e t). The matching
M is uniquely restricted in G if and only if {e i, e i+1} is a uniquely restricted matching
in G, for each i ∈ {1,2, . . . , t−1}.
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Proof. As every subset of a uniquely restricted matching is also a uniquely restricted

matching, to prove the theorem, it is sufficient to show that whenever M is not a

uniquely restricted matching, {e i, e i+1} is not a uniquely restricted matching in G
for some i ∈ {1,2, . . . , t−1}. Suppose that M is not a uniquely restricted matching.

By Theorem 7.2, there exists some subset {ep, eq} of M, where 1 ≤ p < q ≤ t, such

that {ep, eq} is not a uniquely restricted matching. We choose p and q such that

for any p′, q′ with 1 ≤ p′ < q′ ≤ t and q′− p′ < q− p, {ep′ , eq′} is a uniquely restricted

matching in G. Suppose that q > p+1. Observing that l(ep)< l(eq−1)< l(eq), we can

deduce that if r(eq)< r(eq−1) or r(eq−1)< r(ep), then by Lemma 7.2, either {eq−1, eq} or

{ep, eq−1} respectively is not a uniquely restricted matching, in each case contradicting

our choice of p and q. Therefore, we get r(ep) < r(eq−1) < r(eq). Now we can apply

Lemma 7.4 to conclude that {eq−1, eq} is not a uniquely restricted matching, again

contradicting our choice of p and q. Thus we infer that q = p+1. For i = p, we now

have that {e i, e i+1} is not a uniquely restricted matching, hence the proof. �

Corollary 7.1. Let G be a proper interval graph with a proper vertex ordering < and
let M be a uniquely restricted matching in G starting with an edge e′ ∈ E(G). Let
e ∈ E(G) be such that r(e) < l(e′) and {e, e′} is a uniquely restricted matching in G.
Then {e}∪M is a uniquely restricted matching in G starting with e.

Proof. The proof follows directly from Theorem 7.3. �

From here onwards, we assume that G is a connected proper interval graph with a

proper vertex ordering <. Let V (G)= {v1,v2, . . . ,vn} where v1 < v2 < ·· · < vn.

Observation 7.2. For 1≤ i < n, vivi+1 ∈ E(G).

Proof. Suppose that for some i ∈ {1,2, . . . ,n− 1}, vivi+1 ∉ E(G). If for some pair

of vertices vp,vq, where 1 ≤ p ≤ i < i +1 ≤ q ≤ n, we have vpvq ∈ E(G), then from

Definition 7.1, vpvq ∈ E(G)⇒ vpvi+1 ∈ E(G)⇒ vivi+1 ∈ E(G), which is a contradiction.

Therefore, there does not exist any edge vpvq ∈ E(G) such that p ≤ i and q ≥ i+1.

But this would mean that there is no edge in G between a vertex in {v1,v2, . . . ,vi} and

a vertex in {vi+1,vi+2, . . . ,vn}, implying that G is disconnected. This contradicts our

assumption that G is a connected graph. �

For u ∈ V (G), we define λ(u) = min<{v ∈ N(u)∪ {u}} and ρ(u) = max<{v ∈ N(u)∪ {u}}.

The following observation is an easy consequence of the property of proper vertex

orderings given in Definition 7.1.
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Observation 7.3. For any vertex u ∈V (G), N(u)= {x ∈V (G) : λ(u)≤ x ≤ ρ(u)}.

We now associate a pair of edges with each edge e ∈ E(G). The left successor of e,

denoted by σl(e), is defined to be the edge vi+1vi+2, where vi = ρ(l(e)). It is clear from

Observation 7.2 that σl(e) exists in G if and only if ρ(l(e))< vn−1. The right successor
of e, denoted by σr(e), is defined to be the edge λ(vi+1)vi+1 where vi = ρ(r(e)). Note

that for any vertex u ∈V (G) for which λ(u) 6= u, we have λ(u)u ∈ E(G). Moreover, by

Observation 7.2, it follows that for every vertex u ∈V (G)\{v1}, λ(u) 6= u. Therefore, it

can be concluded that σr(e) exists in G if and only if ρ(r(e))< vn. Please see Figure

7.2 for an example that shows the left and right successors of the edges of a proper

interval graph, given a proper vertex ordering of it.

v1 v2 v3 v4 v5 v6 v7

e σl(e) σr(e)
v1v2 v5v6 v3v5
v1v3 v5v6 v4v6
v2v4 v5v6 -
v3v5 v6v7 -
v4v5 - -

Figure 7.2: Example of an proper interval graph shown with vertices arranged
according to the proper vertex ordering v1,v2, . . . ,v7. The table shows some edges and
their left and right successors. Where a particular successor does not exist for an
edge, the corresponding entry is marked as “-”.

Observation 7.4. Let e ∈ E(G).

(a) If σl(e) exists, then r(e)< l(σl(e)) and {e,σl(e)} is a uniquely restricted matching.

(b) If σr(e) exists, then r(e)< l(σr(e)) and {e,σr(e)} is a uniquely restricted matching.

Proof. We shall first prove (a). As l(e)r(e) ∈ E(G), we know that ρ(l(e)) ≥ r(e). By

definition of σl(e), we have r(e) ≤ ρ(l(e)) < l(σl(e)). Therefore, we have l(e)l(σl(e)) ∉
E(G). This implies by Lemma 7.3 that {e,σl(e)} is a uniquely restricted matching in

G.
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Now let us prove (b). It is clear from the definition of σr(e) that ρ(r(e)) < r(σr(e)).

Therefore, we have r(e)< r(σr(e)) and r(e)r(σr(e)) ∉ E(G). From Lemma 7.3, we can

now conclude that {e,σr(e)} is a uniquely restricted matching in G. By Lemma 7.2, we

also get that r(e)< l(σr(e)). �

Lemma 7.5. Let M be a uniquely restricted matching starting with an edge e in G
such that |M| ≥ 3. Then there exists a uniquely restricted matching M′ that starts with
either σl(e) or σr(e) in G such that |M′| = |M|−1.

Proof. Let M = {e = e1, e2, e3, . . . , e t}, where t ≥ 3 and l(e1) < l(e2) < ·· · < l(e t). By

Lemma 7.2, we know that l(e1) < r(e1) < l(e2) < r(e2) < ·· · < l(e t) < r(e t). As {e, e2}

is a uniquely restricted matching, we know from Theorem 7.1 that at least one of

l(e)l(e2), r(e)r(e2) is not an edge.

Let us suppose first that l(e)l(e2) ∉ E(G). Then we know by Observation 7.3 that

ρ(l(e))< l(e2)< r(e2)≤ vn. This implies that ρ(l(e))< vn−1 and therefore, σl(e) exists.

It also implies that l(σl(e))≤ l(e2) and that r(σl(e))≤ r(e2). We can now apply Lemma

7.4 to the edges σl(e), e2 and e3 to conclude that {σl(e), e3} is a uniquely restricted

matching. Since {e3, e4, . . . , e t} is a uniquely restricted matching and r(σl(e))≤ r(e2)<
l(e3), we can use Corollary 7.1 to conclude that M′ = {σl(e), e3, e4, . . . , e t} is a uniquely

restricted matching starting with σl(e) in G. As |M′| = |M|−1, we are done.

Now let us consider the case when l(e)l(e2) ∈ E(G) but r(e)r(e2) ∉ E(G). We then

have by Observation 7.3 that ρ(r(e)) < r(e2). This implies that ρ(r(e)) < vn, which

means that σr(e) exists. It also implies that r(σr(e)) ≤ r(e2). As l(e) < r(e) < l(e2),

and because we have assumed that l(e)l(e2) ∈ E(G), we can deduce from Definition

7.1 that r(e)l(e2) ∈ E(G). Therefore, by Observation 7.3, ρ(r(e)) ≥ l(e2). This gives

us l(e2) < r(σr(e)) ≤ r(e2). As l(e2)r(e2) ∈ E(G), we now have by Definition 7.1 that

l(e2)r(σr(e)) ∈ E(G), which implies by Observation 7.3 that λ(r(σr(e)))≤ l(e2). It can

be seen from the definition of σr(e) that l(σr(e)) = λ(r(σr(e))). Thus, we now have

l(σr(e))≤ l(e2). We can now apply Lemma 7.4 to the edges σr(e), e2 and e3 to conclude

that {σr(e), e3} is a uniquely restricted matching. As before, Corollary 7.1 now gives

us that M′ = {σr(e), e3, e4, . . . , e t} is a uniquely restricted matching starting with σr(e)

in G. The proof is concluded by noting that we have |M′| = |M|−1 in this case as well.

�
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Now for each edge e ∈ E(G) we define a set U(e) of edges as follows.

U(e)=



{e} if neither σl(e) nor σr(e) exist

{e}∪U(σl(e)) if σr(e) does not exist, or if both exist

and |U(σl(e))| ≥ |U(σr(e))|
{e}∪U(σr(e)) if σl(e) does not exist, or if both exist

and |U(σl(e))| < |U(σr(e))|

From Observation 7.4, we know that r(e) < l(σl(e)) and r(e) < l(σr(e)). This means

that U(e) is well-defined. The next two lemmas will show that U(e) is always a

uniquely restricted matching starting with e of maximum possible cardinality (among

the uniquely restricted matchings starting with e in G).

Lemma 7.6. For any edge e ∈ E(G), U(e) is a uniquely restricted matching starting
with e.

Proof. We shall prove this by induction on |U(e)|. It is clear from the definition

of U(e) that |U(e)| ≥ 1. If |U(e)| = 1, then it must be the case that U(e) = {e}. The

statement of the lemma is easily seen to be true in this case. We shall now assume

that |U(e)| > 1 and that the statement of the lemma has been shown to be true for

all e′ such that |U(e′)| < |U(e)|. In this case, from the definition of U(e), one of the

following occurs: either (a) σl(e) exists and U(e)= {e}∪U(σl(e)), or (b) σr(e) exists and

U(e)= {e}∪U(σr(e)). If (a) occurs, then we have |U(σl(e))| = |U(e)|−1, and therefore

by the induction hypothesis, U(σl(e)) is a uniquely restricted matching starting with

σl(e). Now, it follows from Observation 7.4 and Corollary 7.1 that {e}∪U(σl(e))=U(e)

is a uniquely restricted matching in G starting with e. On the other hand, if (b) occurs,

then |U(σr(e))| = |U(e)|−1, and therefore by the induction hypothesis, U(σr(e)) is a

uniquely restricted matching starting with σr(e). Then it follows from Observation

7.4 and Corollary 7.1 that {e}∪U(σr(e))=U(e) is a uniquely restricted matching in G
starting with e. This completes the proof. �

Lemma 7.7. Let M be a uniquely restricted matching starting with an edge e ∈ E(G).
Then, |M| ≤ |U(e)|.

Proof. We prove this by induction on |U(e)| = k.

Assume that k = 1. In this case, U(e) = {e}. Suppose that there exists a uniquely

restricted matching M starting with e such that |M| > 1. Then there exists at least

one edge e′ in M such that e′ 6= e. Now since U(e)= {e}, we can see from the definition

of U(e) that neither σl(e) nor σr(e) exist. As we noted earlier, this means that
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ρ(l(e))≥ vn−1 and ρ(r(e))≥ vn. As M starts with e and e′ ∈ M, we know by Lemma 7.2

that l(e)< r(e)< l(e′)< r(e′). Since ρ(l(e))≥ vn−1, it must be the case that ρ(l(e))≥ l(e′),
which by Observation 7.3 implies that l(e)l(e′) ∈ E(G). Similarly, since ρ(r(e)) ≥ vn,

we have ρ(r(e))≥ r(e′), from which it follows by Observation 7.3 that r(e)r(e′) ∈ E(G).

From Lemma 7.3, we now have that {e, e′} is not a uniquely restricted matching, which

is a contradiction to the fact that {e, e′}⊆ M. Therefore, the statement of the lemma is

true when k = 1.

Now, assume that k > 1 and that the statement of the lemma is true for every edge

e′ ∈ E(G) with |U(e′)| < k. Suppose that there exists a uniquely restricted matching

M starting with e in G such that |M| > k. From Lemma 7.6, we know that U(e) is a

uniquely restricted matching in G. Note that as k > 1 and |M| > k, we have |M| ≥ 3.

By Lemma 7.5, we can now infer that there exists a uniquely restricted matching

M′ in G with |M′| = |M|−1 such that M′ starts with either σl(e) or σr(e). From the

definition of U(e), it can be seen that |U(e)| ≥ max{|U(σl(e))|, |U(σr(e))|}+1. Since

|U(e)| = k, we can therefore infer that |U(σl(e))| ≤ k−1 and |U(σr(e))| ≤ k−1. We can

now apply the induction hypothesis on the starting edge of M′ (which is either σl(e)

or σr(e)) to conclude that |M′| ≤ k−1. But as |M′| = |M|−1, we now get |M| ≤ k, which

contradicts our assumption that |M| > k. �

Lemma 7.8. U(v1v2) is a uniquely restricted matching of maximum cardinality in G.

Proof. From Lemma 7.6, it is clear that U(v1v2) is a uniquely restricted matching

starting with v1v2 in G. Let {e1, e2, . . . , ek} be any uniquely restricted matching in

G where l(e1) < l(e2) < ·· · < l(ek). Clearly, v1 ≤ l(e1) and v2 ≤ r(e1). From Lemma

7.2, we have l(e1) < r(e1) < l(e2) < r(e2) < ·· · < l(ek) < r(ek). Therefore, we have

v1 ≤ l(e1) < l(e2) and v2 ≤ r(e1) < r(e2). We can now apply Lemma 7.4 to the edges

v1v2, e1 and e2 to conclude that {v1v2, e2} is a uniquely restricted matching in G. By

Corollary 7.1, we now have that {v1v2, e2, e3, . . . , ek} is a uniquely restricted matching

in G starting with v1v2. As the cardinality of this matching is k, we have by Lemma

7.7 that |U(v1v2)| ≥ k. �

Theorem 7.4. There is a linear-time algorithm that computes a maximum cardinality
uniquely restricted matching in a given proper interval graph.

Proof. Let the input graph G have n vertices and m edges. We can assume that

G is connected, as if it is not, we can just run the algorithm separately in each

component of G, and then return the union of the maximum cardinality uniquely

restricted matchings found in each component. From the input adjacency list, we can
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use the well known O(n+m) time algorithms to generate a proper vertex ordering of

G (for example, [Cor04] or [HH04]). Assuming that the position of each vertex in the

ordering is known as a unique integer in [1,n] associated with each vertex, we can

easily generate l(e) and r(e) for every edge e ∈ E(G) in O(n+m) time by making one

pass through the adjacency list. During the same pass, we can compute λ(u) and ρ(u)

for every vertex u ∈ V (G). Once we are done with this, we can easily find σl(e) and

σr(e) for any edge e ∈ E(G) in O(1) time. For every edge e ∈ E(G), U(e) can be stored

as a list, which is empty to start with. The following subroutine computes U(e) for a

given edge e.

Algorithm 5 ComputeU(e)

1: if σl(e) exists and U(σl(e))=; then ComputeU(σl(e))

2: if σr(e) exists and U(σr(e))=; then ComputeU(σr(e))

3: if both σl(e) and σr(e) exist then

4: if |U(σl(e))| ≥ |U(σr(e))| then set U(e)= {e}∪U(σl(e))

5: else set U(e)= {e}∪U(σr(e))

6: else if σl(e) exists then set U(e)= {e}∪U(σl(e))

7: else if σr(e) exists then set U(e)= {e}∪U(σr(e))

8: else set U(e)= {e}

The main algorithm just calls the procedure ComputeU(v1v2), where v1 and v2 are

the vertices at the first and second positions, respectively in the ordering (recall that

by Observation 7.2, v1v2 ∈ E(G)). The algorithm then finishes by returning the set

of edges U(v1v2). The correctness of the algorithm is guaranteed by Lemma 7.8. As

every other part of the algorithm except the call to the procedure ComputeU(v1v2)

takes O(n+m) time, we shall restrict our attention to the time taken to complete

this call. Notice that for any edge e ∈ E(G), the time spent inside the procedure

ComputeU(e) outside of the recursive calls to ComputeU is O(1). Also observe that for

any edge e ∈ E(G), the call to ComputeU(e) happens at most once, which means that

there are at most m calls to the procedure ComputeU. Therefore, the time taken to

complete the procedure ComputeU(v1v2) is O(m). Thus, the algorithm runs in time

O(n+m). �
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7.4 Bipartite Permutation Graphs

A bijection π of {1,2, . . . ,n} to itself is called a permutation of order n. We write

π = (π(1),π(2), . . . ,π(n)) to define a permutation of order n. The simple undirected

graph Gπ associated with a permutation π is a graph with V (Gπ) = {1,2, . . . ,n} and

E(Gπ)= {i j : (i− j)(π(i)−π( j))< 0}. A graph G on n vertices is said to be a permutation
graph if it is isomorphic to Gπ for some permutation π of order n. In other words, a

graph G on n vertices is a permutation graph if there exists a bijection f : V (G) →
{1,2, . . . ,n} and a permutation π of order n such that for u,v ∈ V (G), uv ∈ E(G) ⇔
( f (u)− f (v))(π( f (u))−π( f (v)))< 0.

Definition 7.2. For a graph G = (V ,E), an ordering < of V (G) is said to be a doubly-
transitive vertex ordering if for u,v,w ∈V (G) such that u < v < w,

(a) uv,vw ∈ E(G)⇒ uw ∈ E(G), and

(b) uw ∈ E(G)⇒ uv ∈ E(G) or vw ∈ E(G).

Let G be a permutation graph on n vertices and let f be the bijection from V (G)

to {1,2, . . . ,n} as described above. Let V (G) = {v1,v2, . . . ,vn}, where vi = f −1(i) for

1 ≤ i ≤ n. It is easy to see that v1,v2, . . . ,vn is a doubly-transitive vertex ordering

of G. (It is well known and easy to see that the digraph with vertex set V (G) and

edge set {(u,v) : uv ∈ E(G) and f (u) < f (v)} corresponds to a transitive orientation

of G. Similarly, the digraph with vertex set V (G) and edge set {(u,v) : uv ∉ E(G)

and f (u) < f (v)} corresponds to a transitive orientation of G. Hence our choice

of the name “doubly-transitive” for this kind of vertex ordering.) Using the fact

that permutation graphs are exactly the graphs that are both comparability and co-

comparability [DM41], it is easy to see (and folklore) that a graph G is a permutation

graph if and only if it has a doubly-transitive vertex ordering.

A permutation graph that is also bipartite is called a bipartite permutation graph.

The class of bipartite permutation graphs is known to be the same as the classes

of proper interval bigraphs, bipartite co-comparability graphs, bipartite asteroidal

triple-free graphs and bipartite trapezoid graphs [HH04]. As permutation graphs

do not contain odd induced cycles of length more than three, it is straightforward to

verify that bipartite permutation graphs are exactly triangle-free permutation graphs.

For such a graph, the following observation can easily be seen to be true.

Observation 7.5. Let < be a doubly-transitive vertex ordering of a bipartite permuta-
tion graph G.
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Figure 7.3: The figure at the top shows a bipartite permutation graph where f (u)
is written near each vertex u and π= (3,4,1,6,7,2,8,9,5). The figure at the bottom
shows a doubly-transitive vertex ordering of this graph.

(a) If u < v and uv ∈ E(G), then there exists no w > v such that vw ∈ E(G).

(b) If u < v < w and uw ∈ E(G), then uv ∈ E(G) or vw ∈ E(G) but not both.

Please refer [SBS87] for some other vertex ordering characterizations for bipartite

permutation graphs that turn out to be useful in developing linear-time algorithms

for problems that are NP-hard for larger classes of graphs.

Let G be a bipartite permutation graph with no isolated vertices, having a doubly-

transitive vertex ordering <. For an edge e = uv ∈ E(G), we define l<(e)=min<{u,v}

and r<(e) = max<{u,v}. When the ordering < is clear from the context, we shorten

l<(e) and r<(e) to l(e) and r(e) respectively.

A vertex u ∈ V (G) is said to be a left-vertex if there is some edge e ∈ E(G) such that

u = l(e). Similarly, a vertex u ∈V (G) is said to be a right-vertex if there exists some

edge e ∈ E(G) such that u = r(e). As G has no isolated vertices, it is clear that

every vertex in G is either a left-vertex or a right-vertex. We claim that no vertex

can be both a left-vertex and a right-vertex. This is because if a vertex u ∈ V (G)

is such that u = l(e) = r(e′), for some e, e′ ∈ E(G), then we have l(e′) < u < r(e) and

l(e′)u,ur(e) ∈ E(G), which contradicts Observation 7.5(a). Thus each vertex of G is

either a left-vertex or a right-vertex but not both.

If u is a left-vertex, then it can have no neighbour v such that v < u, because if it does,

then u becomes the right-vertex of the edge vu, which is a contradiction to the fact

that no vertex can be both a left-vertex and a right-vertex. For the same reason, if u
is a right-vertex, it can have no neighbour v such that u < v.
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Since for every edge e ∈ E(G), l(e) is a left-vertex and r(e) is a right-vertex, it can be

concluded that every edge of G is between a left-vertex and a right-vertex. This tells

us that the set of left-vertices and the set of right-vertices are both independent sets

of G. Since G has no isolated vertices, these sets form a bipartition of the bipartite

graph G.

We say that a vertex u ∈V (G) is underneath an edge e ∈ E(G) if l(e)≤ u ≤ r(e). Suppose

that a left-vertex u ∈V (G) is underneath an edge e ∈ E(G). Clearly, u 6= r(e), as it is

a left-vertex and no vertex can be both a left-vertex and a right-vertex. If u 6= l(e),

it follows from Observation 7.5(b) that u is adjacent to r(e) (note that u cannot be

adjacent to l(e) as both are left-vertices). If u = l(e), then clearly it is adjacent to

r(e). Therefore, we can conclude that if a left-vertex is underneath an edge e ∈ E(G),

then it is adjacent to r(e). Using very similar arguments, we can also see that if a

right-vertex is underneath an edge e ∈ E(G), then it is adjacent to l(e).

Lemma 7.9. Let G be a bipartite permutation graph with a doubly-transitive vertex
ordering < and let e, e′ ∈ E(G) such that l(e)< l(e′).

(a) If r(e)< l(e′), then {e, e′} is a uniquely restricted matching in G.

(b) If l(e′)< r(e)< r(e′), then {e, e′} is a uniquely restricted matching in G if and only
if l(e)r(e′) ∉ E(G).

(c) If r(e′)< r(e), then {e, e′} is not a uniquely restricted matching in G.

Proof. Suppose that r(e) < l(e′). Then as we have l(e) < r(e) < l(e′) < r(e′) and that

r(e) is a right-vertex, neither l(e′) nor r(e′) is a neighbour of r(e). Then it can be seen

from Lemma 7.1 that there is no alternating cycle with respect to {e, e′} in G, which

further implies by Theorem 7.1 that {e, e′} is a uniquely restricted matching in G. This

proves (a).

Now let us consider the case when l(e′)< r(e)< r(e′). Then, as r(e) is a right-vertex

underneath the edge e′, we know that l(e′)r(e) ∈ E(G). If l(e)r(e′) ∈ E(G), then we have

the alternating cycle l(e)r(e′)l(e′)r(e)l(e) with respect to {e, e′} in G. If l(e)r(e′) ∉ E(G),

then we have that there is no neighbour of r(e′) in {l(e), r(e)} (note that r(e) and r(e′)
cannot be adjacent as they are both right-vertices), implying by Lemma 7.1 that

there is no alternating cycle with respect to {e, e′} in G. This shows that there is

an alternating cycle with respect to {e, e′} in G if an only if l(e)r(e′) ∈ E(G). This

implies, by Theorem 7.1, that {e, e′} is a uniquely restricted matching in G if and only

if l(e)r(e′) ∉ E(G). This proves (b).
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Finally, let us consider the case when r(e′)< r(e). Then we have l(e)< l(e′)< r(e′)<
r(e). Now, l(e′) is a left-vertex underneath e and r(e′) is a right-vertex underneath

e, implying that we have the edges l(e)r(e′), l(e′)r(e) ∈ E(G). Now we have the cycle

l(e)r(e′)l(e′)r(e)l(e) in G, which is an alternating cycle with respect to {e, e′} in G. By

Theorem 7.1, {e, e′} is not a uniquely restricted matching in G. This completes the

proof of (c). �

Lemma 7.10. Let G be a bipartite permutation graph with a doubly-transitive vertex
ordering <. Let e1, e2, e3 ∈ E(G) such that l(e1)≤ l(e2)≤ l(e3) and r(e1)≤ r(e2)≤ r(e3).
If {e1, e3} is not a uniquely restricted matching in G then neither {e1, e2} nor {e2, e3} is
a uniquely restricted matching in G.

Proof. We shall show only that {e2, e3} is not a uniquely restricted matching, but

the same kind of reasoning can be used to show that {e1, e2} is also not a uniquely

restricted matching. If {e2, e3} is not even a matching, then we are immediately

done. So let us suppose that {e2, e3} is a matching. Thus, we have l(e2) < l(e3)

and r(e2) < r(e3), which implies that l(e1) < l(e3) and r(e1) < r(e3). As {e1, e3} is

not a uniquely restricted matching, Lemma 7.9(a) tells us that we cannot have

r(e1)< l(e3). Therefore, it must be the case that l(e1)< l(e3)< r(e1)< r(e3) (recall that

l(e3) 6= r(e1) as one is a left-vertex and the other a right-vertex), which by Lemma

7.9(b) means that l(e1)r(e3) ∈ E(G). Note that the previous inequality means that

l(e1)≤ l(e2)< l(e3)< r(e1)≤ r(e2)< r(e3). Thus, the left-vertex l(e2) is underneath the

edge l(e1)r(e3), which tells us that l(e2)r(e3) ∈ E(G). We can now apply Lemma 7.9(b)

to the edges e2 and e3 to conclude that {e2, e3} is not a uniquely restricted matching

in G. �

We now show that the statement of Theorem 7.2 also holds for bipartite permutation

graphs.

Theorem 7.5. Let G = (V ,E) be a bipartite permutation graph and let M be a match-
ing in it. Then, the following statements are equivalent:

(i) M is uniquely restricted

(ii) There is no alternating cycle of length 4 with respect to M in G

(iii) For any two edges e, e′ ∈ M, {e, e′} is a uniquely restricted matching in G

Proof. As (ii)⇔(iii) has already been noted in Observation 7.1, we shall only prove

(i)⇔(ii).
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By Theorem 7.1, if M is a uniquely restricted matching, then there is no alternating

cycle of any length with respect to M in G. So we only need to show that if M is not

uniquely restricted, then there is an alternating cycle of length 4 with respect to M in

G.

Let < be a doubly-transitive vertex ordering of G. Suppose that the matching M is

not uniquely restricted. Then, by Theorem 7.1, there exists some alternating cycle

with respect to M in G. Let u1u2u3 . . .uku1 be an alternating cycle with respect to

M of smallest possible length in G. Clearly, k is even and 4 ≤ k ≤ |V (G)|. If k = 4,

then this cycle is an alternating cycle of length 4 with respect to M and we are done.

So let us assume that k > 4. We shall also assume without loss of generality that

u1 =min<{u1,u2, . . . ,uk} and that u2 < uk (otherwise we can relabel the vertices of the

cycle to satisfy both these conditions). Note that this means that u1 is a left-vertex

and that both u2 and uk are right-vertices. Since set of left-vertices and set of right-

vertices are both independent sets, we can see that ui is a left-vertex if and only if i is

odd. Now, let us examine the position of u3 in the ordering <. As u3 is a left-vertex

and u2 a neighbour of it, we must have u3 < u2. As u2 < uk, this means that u3 is

underneath the edge u1uk, which implies that u3uk ∈ E(G). Then, at least one of the

cycles u1u2u3uku1 or u3u4u5 . . .uku3 is an alternating cycle with respect to M in G
having length smaller than k. This contradicts our assumption that u1u2 . . .uk is an

alternating cycle with respect to M of smallest possible length in G. �

Let M be a matching in a bipartite permutation graph with a doubly-transitive vertex

ordering <. The edges of M can be labelled as e1, e2, . . . , e|M| such that l(e1)< l(e2)<
·· · < l(e|M|). The matching M is then said to start with the edge e1.

Theorem 7.6. Let G be a bipartite permutation graph with a doubly-transitive vertex
ordering <. Let M = {e1, e2, . . . , e t} be a matching in G where l(e1)< l(e2)< ·· · < l(e t).
The matching M is uniquely restricted if and only if {e i, e i+1} is a uniquely restricted
matching in G, for each i ∈ {1,2, . . . , t−1}.

Proof. The proof this theorem closely follows the proof of Theorem 7.3. As every

subset of a uniquely restricted matching is also a uniquely restricted matching, to

prove the theorem, we only need to show that whenever M is not a uniquely restricted

matching, there exists some i ∈ {1,2, . . . , t−1} such that {e i, e i+1} is not a uniquely

restricted matching. Suppose that M is not a uniquely restricted matching. Then,

by Theorem 7.5, we know that there exists ep, eq ∈ M with 1 ≤ p < q ≤ t such that

{ep, eq} is not a uniquely restricted matching. We choose p and q such that for any

p′, q′ with 1≤ p′ < q′ ≤ t and q′− p′ < q− p, {ep′ , eq′} is a uniquely restricted matching
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in G. Suppose that q > p+1. By our choice of p and q, we know that both {ep, eq−1}

and {eq−1, eq} are uniquely restricted matchings. As we have l(ep) < l(eq−1) < l(eq),

we know by Lemma 7.9(a) that l(eq) < r(ep) and by Lemma 7.9(c), we have that

r(ep) < r(eq−1) and r(eq−1) < r(eq). We now have l(ep) < l(eq−1) < l(eq) < r(ep) <
r(eq−1) < r(eq). By Lemma 7.9(b), we can now say that l(ep)r(eq) ∈ E(G) and that

l(eq−1)r(eq) ∉ E(G). But this is impossible as l(eq−1) is now a left-vertex underneath

the edge l(ep)r(eq). Therefore, we can conclude that q = p+1. For i = p, we now have

that {e i, e i+1} is not a uniquely restricted matching, thereby completing the proof. �

Corollary 7.2. Let G be a bipartite permutation graph with a doubly-transitive vertex
ordering < and let M be a uniquely restricted matching in G starting with the edge
e′ ∈ E(G). Let e ∈ E(G) such that l(e)< l(e′) and {e, e′} is a uniquely restricted matching
in G. Then {e}∪M is a uniquely restricted matching in G starting with e.

Proof. We shall first show that {e}∪M is a matching. As {e, e′} is a uniquely restricted

matching, it follows from Lemma 7.9(c) that r(e) < r(e′). For any edge e′′ ∈ M \ {e′},
we have l(e′) < l(e′′) as M starts with e′ and therefore, from Lemma 7.9(c) and the

fact that {e′, e′′} is a uniquely restricted matching, we have r(e′)< r(e′′). This tells us

that for every edge e′′ ∈ M, r(e) < r(e′′). Note that we also have l(e) < l(e′′) for every

edge e′′ ∈ M. Then, l(e) and r(e) are distinct from l(e′′) and r(e′′) for any edge e′′ ∈ M
(recall that no vertex can be both a left-vertex and a right-vertex). This leads us to the

conclusion that {e}∪M is a matching. The proof of the corollary now follows directly

from Theorem 7.6. �

From here onwards, we assume that G is a bipartite permutation graph with no

isolated vertices and having a doubly-transitive vertex ordering <. Let V (G) =
{v1,v2, . . . ,vn} where v1 < v2 < ·· · < vn. For a vertex u ∈ V (G), as in Section 7.3,

we define λ(u)=min<{v ∈ N(u)∪ {u}} and ρ(u)=max<{v ∈ N(u)∪ {u}}. Note that in a

doubly-transitive vertex ordering, unlike in a proper vertex ordering, a vertex u may

not be adjacent to all the vertices that come between λ(u) and ρ(u) in the ordering.

For each left-vertex u, we further define γ(u)=min<{v ∈ N(u) : u < v}.

For every edge e ∈ E(G), we now define a pair of edges x(e) and y(e) as follows. Let

ρ(l(e))= vi. Then, we define x(e)=λ(u)u, where

u =
{

vi+1 if vi+1 is a right-vertex

γ(vi+1) otherwise

It is easy to see that x(e) does not exist if and only if ρ(l(e)) = vn (recall that G has

no isolated vertices). We define y(e)= uγ(u) where u =min<{v ∈V (G) : v > r(e) and v
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is a left-vertex}. Clearly, y(e) does not exist if and only if either r(e)= vn or if every

v > r(e) is a right-vertex (again, recall that G has no isolated vertices).

v1 v2 v3 v4 v5 v6 v7 v8 v9

e x(e) y(e)
v1v3 v2v6 v5v6
v2v3 v5v8 v5v6
v1v4 v2v6 v5v6
v2v6 v5v8 -
v5v6 - -

Figure 7.4: The bipartite permutation graph and its doubly-transitive ordering from
Figure 7.3 is shown at the top and a table showing the values of x(e) and y(e) for some
edges e (for this particular doubly-transitive ordering) are shown below it.

Observation 7.6. Let e ∈ E(G).

(a) If x(e) exists, then l(e)< l(x(e)) and {e, x(e)} is a uniquely restricted matching.

(b) If y(e) exists, then l(e)< l(y(e)) and {e, y(e)} is a uniquely restricted matching.

Proof. We shall first prove (a). By definition of x(e), we know that ρ(l(e)) < r(x(e)).

As r(e) ≤ ρ(l(e)), this implies that l(e) < r(e) < r(x(e)) and that l(e)r(x(e)) ∉ E(G). As

l(x(e))r(x(e)) ∈ E(G), this means that l(x(e)) 6= l(e). If l(x(e)) < l(e), then as we have

l(x(e))< l(e)< r(x(e)), the left-vertex l(e) underneath the edge l(x(e))r(x(e)) has to be

adjacent to r(x(e)), contradicting our previous observation. Therefore, we can conclude

that l(e) < l(x(e)). If r(e) < l(x(e)), then by Lemma 7.9(a), we have that {e, x(e)} is

a uniquely restricted matching in G, and thus we are done. So let us assume that

l(x(e)) < r(e) (note that they cannot be equal as one is left-vertex and the other a

right-vertex). We now have the inequality l(e) < l(x(e)) < r(e) < r(x(e)). Now since

l(e)r(x(e)) ∉ E(G), Lemma 7.9(b) can be used to conclude that {e, x(e)} is a uniquely

restricted matching in G. This completes the proof of (a).

Next, we shall prove (b). From the definition of y(e), it is clear that r(e)< l(y(e)) and

therefore l(e) < l(y(e)). Furthermore, from Lemma 7.9(a), we get that {e, y(e)} is a

uniquely restricted matching in G, thus proving (b). �
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Lemma 7.11. Let M be a uniquely restricted matching starting with an edge e in G
such that |M| ≥ 3. Then there exists a uniquely restricted matching M′ that starts with
either x(e) or y(e) in G such that |M′| = |M|−1.

Proof. Let M = {e = e1, e2, e3, . . . , e t}, where t ≥ 3 and l(e1) < l(e2) < ·· · < l(e t). From

Lemma 7.9(c), we know that r(e1)< r(e2)< ·· · < r(e t).

Suppose that l(e2)< r(e). Since {e, e2} is a uniquely restricted matching, we have from

Lemma 7.9(c) that r(e) < r(e2) and then further from Lemma 7.9(b) that l(e)r(e2) ∉
E(G). This means that r(e2) cannot be underneath the edge l(e)ρ(l(e)), which implies

that ρ(l(e)) < r(e2). Let ρ(l(e)) = vi. Then, vi+1 ≤ r(e2). Now suppose that r(x(e)) >
r(e2). Then clearly, r(x(e)) 6= vi+1. This can only mean that vi+1 is a left-vertex, which

implies that vi+1 < r(e2), and that r(x(e))= γ(vi+1), which implies that γ(vi+1)> r(e2)

(as we have assumed that r(x(e)) > r(e2)). Since we now have vi+1 < r(e2) < γ(vi+1),

the vertex r(e2) is a right-vertex underneath the edge vi+1γ(vi+1), implying that

vi+1r(e2) ∈ E(G). But this contradicts our choice of γ(vi+1). Therefore, we can conclude

that r(x(e)) ≤ r(e2). It is easy to see that by the definition of x(e), we always have

r(e)≤ ρ(l(e))< r(x(e)). As l(e2)< r(e), we now have l(e2)< r(x(e))≤ r(e2). Then, r(x(e))

is a right-vertex underneath the edge e2, which means that l(e2)r(x(e)) ∈ E(G). Since

by definition of x(e), we have l(x(e))=λ(r(x(e))), this implies that l(x(e))≤ l(e2). Since

we also have r(x(e))≤ r(e′2), we can now apply Lemma 7.4 to the edges x(e), e2 and e3

to conclude that {x(e), e3} is a uniquely restricted matching. Since {e3, e4, . . . , e t} is a

uniquely restricted matching and l(x(e)) ≤ l(e2) < l(e3), we can use Corollary 7.2 to

conclude that M′ = {x(e), e3, e4, . . . , e t} is a uniquely restricted matching starting with

x(e) in G. As |M′| = |M|−1, we are done.

Now let us suppose that r(e) < l(e2). As l(e2) is a left-vertex that comes after

r(e) in the ordering <, we know that y(e) exists and that l(y(e)) ≤ l(e2). It can

be seen from the definition of y(e) that r(y(e)) = γ(l(y(e))). If r(y(e)) > r(e′2), then

we have l(y(e)) ≤ l(e2) < r(e2) < r(y(e)), and therefore r(e2) is a right-vertex under-

neath the edge y(e), which implies that l(y(e))r(e2) ∈ E(G). But this contradicts

the earlier observation that r(y(e)) = γ(l(y(e))). We can therefore conclude that

r(y(e))≤ r(e2). We can now apply Lemma 7.4 to the edges y(e), e2 and e3 to conclude

that {y(e), e3} is a uniquely restricted matching. Since {e3, e4, . . . , e t} is a uniquely

restricted matching and l(y(e)) ≤ l(e2) < l(e3), we can use Corollary 7.2 to conclude

that M′ = {y(e), e3, e4, . . . , e t} is a uniquely restricted matching starting with y(e) in G.

The proof is concluded by noting that |M′| = |M|−1. �
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We shall now define a set U(e) of edges for every edge e ∈ E(G) as follows.

U(e)=



{e} if neither x(e) nor y(e) exists

{e}∪U(x(e)) if y(e) does not exist, or if both exist

and |U(x(e))| ≥ |U(y(e))|
{e}∪U(y(e)) if x(e) does not exist, or if both exist

and |U(x(e))| < |U(y(e))|

From Observation 7.6, we know that l(e)< l(x(e)) and l(e)< l(y(e)), which implies that

U(e) is well-defined. The next two lemmas will show that U(e) is always a uniquely

restricted matching starting with e and that it has the maximum possible cardinality

among all the uniquely restricted matchings starting with e in G.

Lemma 7.12. For any edge e ∈ E(G), U(e) is a uniquely restricted matching starting
with e in G.

Proof. We shall prove this by induction on |U(e)|. If |U(e)| = 1, then it must be the

case that U(e)= {e}. In this case, the statement of the lemma is clearly true. Now let

us assume that |U(e)| > 1 and that the statement of the lemma is true for all e′ ∈ E(G)

such that |U(e′)| < |U(e)|. As |U(e)| > 1, we know that at least one of x(e), y(e) exists.

From the definition of U(e), it can be seen there are only two possibilities: x(e) exists

and U(e) = {e}∪U(x(e)), or y(e) exists and U(e) = {e}∪U(y(e)). From the induction

hypothesis, U(x(e)) is a uniquely restricted matching starting with x(e) and U(y(e)) is

a uniquely restricted matching starting with y(e). It now follows from Observation

7.6 and Corollary 7.2 that U(e) is a uniquely restricted matching starting with e. �

Lemma 7.13. Let M be a uniquely restricted matching starting with e in G. Then
|M| ≤ |U(e)|.

Proof. We will use induction on |U(e)| = k to prove this. Suppose first that k = 1.

Then U(e) = {e}, which can be the case only if neither x(e) nor y(e) exist. As x(e)

does not exist, we have ρ(l(e)) = vn. In this case, for an edge e′ 6= e in M, we must

have r(e′) underneath the edge l(e)ρ(l(e)), implying that l(e)r(e′) ∈ E(G). As {e, e′}
is a uniquely restricted matching, from Lemma 7.9(b) and Lemma 7.9(c), we have

r(e)< l(e′). This tells us that r(e) 6= vn and that there exists a left-vertex l(e′)> r(e).

But this contradicts the fact that y(e) does not exist. We can therefore conclude that e′

does not exist, or in other words, M = {e}, thereby proving the statement of the lemma.

We shall now assume that k > 1 and that for any edge e′ ∈ E(G) such that |U(e′)| < k,

the statement of the lemma is true.
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Let us assume for the sake of contradiction that |M| > k. From Lemma 7.12, we know

that U(e) is a uniquely restricted matching starting with e in G. Note that as k > 1, we

have |M| ≥ 3. By Lemma 7.11, we can now infer that there exists a uniquely restricted

matching M′ in G with |M′| = |M|−1 such that M′ starts with either x(e) or y(e). From

the definition of U(e), it can be seen that |U(e)| ≥ max{|U(x(e))|, |U(y(e))|}+1. Since

|U(e)| = k, we can therefore infer that |U(x(e))| ≤ k−1 and |U(y(e))| ≤ k−1. We can

now apply the induction hypothesis on the starting edge of M′ (which is either x(e)

or y(e)) to conclude that |M′| ≤ k−1. But as |M′| = |M|−1, we now get |M| ≤ k, which

contradicts our assumption that |M| > k. �

Lemma 7.14. U(v1γ(v1)) is a uniquely restricted matching of maximum cardinality
in G.

Proof. By Lemma 7.12, it is clear that U(v1γ(v1)) is a uniquely restricted matching

starting with v1γ(v1) in G. Let {e1, e2, . . . , ek} be any uniquely restricted matching in G
where l(e1)< ·· · < l(ek). Clearly, v1 ≤ l(e1)< l(e2). As {e1, e2} is a uniquely restricted

matching, we know from Lemma 7.9(c) that r(e1)< r(e2). If r(e1)< γ(v1), then r(e1) is a

right-vertex underneath the edge v1γ(v1), implying that v1r(e1) ∈ E(G). But this would

be a contradiction to the choice of γ(v1). It must therefore be the case that γ(v1)≤ r(e1).

We now have v1 ≤ l(e1)< l(e2) and γ(v1)≤ r(e1)< r(e2). We can now apply Lemma 7.10

to the edges v1γ(v1), e1 and e2 to conclude that {v1γ(v1), e2} is a uniquely restricted

matching in G. By Corollary 7.2, we now have that {v1γ(v1), e2, e3, . . . , ek} is a uniquely

restricted matching in G starting with v1γ(v1). As the cardinality of this matching is

k, we have by Lemma 7.13 that |U(v1γ(v1))| ≥ k. �

Theorem 7.7. There is a linear-time algorithm that given a bipartite permutation
graph as input, computes a maximum cardinality uniquely restricted matching in it.

Proof. We can construct a linear-time algorithm along the lines of the proof of

Theorem 7.4. We first remove isolated vertices from G and then use one of the known

linear-time algorithms to generate a doubly-transitive vertex ordering < of V (G) (for

example, [HH04]). In a single pass through the adjacency list that takes time O(n+m),

every vertex in G can be marked as a left-vertex or right-vertex and the values λ(u),

ρ(u) for each vertex u ∈V (G) and the value γ(u) for each left-vertex u can be computed.

The algorithm further computes for all u ∈V (G), a value ν(u)=min<{v ∈V (G) : v > u
and v is a left-vertex} using a single pass in the backward direction through the vertex

ordering <, taking O(n) time. It is not hard to see that once this is done, the values

x(e) and y(e) for an edge e ∈ E(G) can be computed in O(1) time. Then, a dynamic

121



CHAPTER 7. UNIQUELY RESTRICTED MATCHING

programming algorithm very similar to the one from the proof of Theorem 7.4 can be

used to compute U(e) for every edge e ∈ E(G), in O(n+m) time. Finally, the algorithm

returns U(v1γ(v1)). The correctness of the algorithm follows from Lemma 7.12 Lemma

7.13 and Lemma 7.14 and the algorithm clearly runs in O(n+m) time. �

Summary

In this chapter, we give linear-time algorithms for finding maximum cardinality

uniquely restricted matchings in proper interval graphs and bipartite permutation

graphs.
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8.1 Introduction

Given a graph G = (V ,E), and a subset of vertices U ⊂V , the induced subgraph G[U]

is the graph whose vertex set is U and whose edge set consists of all of the edges

in E that have both endpoints in U. A plethora of problems in graph theory and

combinatorial optimization involve determining if a given graph G has an induced

subgraph with certain properties. Some of the related optimization problems include

finding cliques, independent sets, connected dominating sets, connected vertex cover,

induced paths, cycles, matchings, etc.

In this chapter, we study the problem in which we are given a simple connected graph

G = (V ,E) where each vertex in V is colored with either “red” or “blue” (note, the color

assignment might not be a proper 2-coloring of the vertices, i.e., we allow vertices of

the same color to be adjacent in G). Sometime, we call it as red-blue graph.

We seek a maximum-cardinality subset V ′ ⊆ V of the vertices such that V ′ is color-

balanced, i.e. having same number of red and blue vertices in V ′, and such that the

induced subgraph H by V ′ in G is connected. We formally define the problem as

follows.
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Balanced Connected Subgraph (BCS) Problem: Given graph G = (V ,E),

with vertex set V = VR ∪VB partitioned into red vertices (VR) and blue vertices

(VB),

í find a maximum-cardinality V ′ ⊆ V such that G[V ′] is connected and V ′

conatins equal number of red and blue vertices.

We can assume that G is connected as if it is not, we consider the problem separately

in each component to find a maximum cardinality balanced connected subgraph in

each of them and then take the one which has the largest cardinality.

8.1.1 Our contributions

We have considered the BCS problem on various graph classes including some geo-

metric intersection graphs. We show that,

Hardness on for planar graphs, bipartite graphs, chordal graphs, unit disk

graphs, outerstring graphs, complete grid graphs, and unit square graphs.

The existence of a balanced connected subgraph containing a specific vertex is

NP-Complete.

Finding the maximum balanced path in a graph is NP-Hard.

Polynomial-time algorithms for trees, split graphs, bipartite graphs with a

proper 2-coloring, graphs with diameter 2 , interval graphs, circular-arc graphs

and permutation graphs.

The BCS problem is fixed-parameter tractable for general graphs (2O(k)n2 logn)

while parameterized by number of vertices in a balanced connected subgraph.

8.2 Hardness Results

8.2.1 Bipartite graphs

In this section we prove that the BCS problem is NP-Hard for bipartite graphs with

a general red/blue color assignment, not necessarily a proper 2-coloring. We give a

reduction from the Exact-Cover-by-3-Sets (EC3Set) problem [GJ79a]. In this EC3Set

problem, we are given a set U with 3k elements and a collection S of m subsets of U
such that each si ∈ S contains exactly 3 elements. The objective is to find an exact
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cover for U (if one exists), i.e., a sub-collection S′ ⊆ S such that every element of U
occurs in exactly one member of S′. During the reduction, we generate an instance

G = (R∪B,E) of the BCS problem from an instance X (S,U) of the EC3Set problem as

follows:

Reduction. For each set si ∈ S, we take a blue vertex si ∈ B. For each element

u j ∈ U, we take a red vertex u j ∈ R. Now consider a set si ∈ S containing three

elements, uα,uβ, and uγ, and add the three edges (si,uα), (si,uβ), and (si,uγ) to the

edge set E. Additionally, we consider a path of 5k blue vertices starting and ending

with vertices b1 and b5k, respectively. Similarly, we consider a path of 3k red vertices

starting and ending with vertices r1 and r3k, respectively. We connect these two paths

by joining the vertices r3k and b1 by an edge. Finally, we add edges connecting each

vertex si with b5k. This completes the construction. See Figure 8.1 for the complete

construction. Clearly, the numbers of vertices and edges in G are polynomial in terms

of the numbers of elements and sets in X ; hence, the construction can be done in

polynomial time. We now prove the following lemma.

Figure 8.1: Construction of the instance G of the BCS problem.

Lemma 8.1. The instance X of the EC3Set problem has a solution if and only if the
instance G of the BCS problem has a balanced connected subgraph T with 12k vertices
(6k red and 6k blue).

Proof. Assume that the EC3Set problem has a solution. Let S∗ be an optimal solution

in it. We choose the corresponding vertices of S∗ in T. Since this solution covers all

126



8.2. HARDNESS RESULTS

u j ’s. So we select all u j ’s in T. Finally we select all the 5k blue and 3k red vertices in

T, resulting in a total of 6k red and 6k blue vertices.

On the other hand, assume that there is a balanced tree T in G with 6k vertices

of each color. The solution must pick the 5k blue vertices b1, . . . ,b5k. Otherwise, it

exclude the 3k red vertices r1, . . . , r3k, and reducing the size of the solution. Since the

graph G has at most 6k red vertices, at most k vertices can be picked from the set

s1, . . . , sm and need to cover all the 3k red vertices corresponding to u j for 1≤ j ≤ 3k.

Hence, this k sets give an exact cover. �

It is easy to see that the graph we constructed from the (EC3Set) problem in Figure

8.1 is indeed a bipartite graph. Hence we conclude the following theorem.

Theorem 8.1. The BCS problem is NP-Hard for bipartite graphs.

8.2.2 Planar graphs

In this section we prove that BCS problem is NP-Hard for planar graphs. We give a

reduction from the Steiner Tree problem in planar graphs (STPG) [GJ79a]. In this

problem, we are given a planar graph G = (V ,E), a subset X ⊆ V , and a positive

integer k ∈N. The objective is to find a tree T = (V ′,E′) with at most k edges such that

X ⊆ V ′. Without loss of generality we assume that k ≥ |X |−1, otherwise the STPG

problem has no solution.

Reduction. We generate an instance H = (R∪B,E(H)) for the BCS problem

from an instance G = (V ,E) of the STPG problem. We color all the vertices, V , in

G as blue. We create a set of |X | red vertices as follows: for each vertex ui ∈ X , we

create a red vertex u′
i in H, and we connect u′

i to ui via an edge. Additionally, we

take a set Z of (k+1− |X |) red vertices in H and the edges (z j,u′
1) into E(H), for

each z j ∈ Z. Hence we have, B = V , and R = Z∪ {u′
i; 1 ≤ i ≤ |X |}. Note that |R| < |B|

and |R| = (k+1). This completes the construction. For an illustration see Figure 8.2.

Clearly the number of vertices and edges in H are polynomial in terms of vertices

in G. Hence the construction can be done in polynomial time. We now prove the

following lemma.

Lemma 8.2. The STPG problem has a solution if and only if the instance H of the
BCS problem has a balanced connected subgraph with (k+1) vertices each of the two
colors.
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Figure 8.2: Schematic construction for planar graphs.

Proof. Assume that STPG has a solution. Let T = (V ′,E′) be the resulting Steiner

tree, which contains at most k edges and X ⊆V ′. If |V ′| = (k+1) then the subgraph

of H induced by (V ′∪R) is connected and balanced with (k+1) vertices of each color.

If |V ′| < (k+1) then we take a set Y of ((k+1)−|V ′|) many vertices from V such that

the subgraph of G induced by (V ′∪Y ) is connected. Clearly |V ′∪Y | = (k+1). Now the

subgraph of H induced by (V ′∪Y ∪R) is connected and balanced with (k+1) vertices

of each red and blue color.

On the other hand, assume that there is a balanced connected subgraph H′ of H with

(k+1) vertices of each color. Note that, except vertex u′
1, in H all the red vertices are

of degree 1 and connected to blue vertices. Let G′ be the subgraph of G induced by all

blue vertices in H′. Since H is connected and there is no edge between any two red

vertices, G′ is connected. Since G′ contains (k+1) vertices, any spanning tree T of H′

contains k edges. So T is a solution of the STPG problem. �

Theorem 8.2. The BCS problem is NP-Hard for planar graphs.

8.2.3 Chordal graphs

In this section we prove that the BCS problem is NP-Hard when the input graph

is a chordal graph. The hardness construction is similar to the construction in

Section 8.2.1; we modify the construction so that the graph is chordal. In particular,

we add edges between si and s j for each i 6= j,1≤ i, j ≤ m. For this modified graph, it

is easy to see that a lemma identical to Lemma 8.1 holds. Hence, we conclude that

the BCS problem is NP-Hard for chordal graphs.
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8.2.4 Grid graphs

We prove that the BCS problem is NP-Hard for grid graphs. To prove the NP-Hardness,

we give a reduction from the Rectilinear Steiner Tree (RST) problem that is known to

be NP-Hard [GJ77]. A Rectilinear Steiner Tree for a finite point-set P in the plane is a

tree that connects the points in P using only horizontal and vertical segments. In the

RST problem, we are given a set P of integer-coordinated points in the plane and an

integer L. The objective is to find a rectilinear Steiner tree T (if one exists) of length

at most L that connects the points in P, here the length of the tree is defined as the

sum of all edge-lengths.

In [BCJ+19], the NP-Hardness of the BCS problem for planar graphs is shown by

giving a reduction from the Steiner tree problem on planar graphs. The theme of that

reduction is basically carefully adding additional vertices to the given instance of the

Steiner tree problem maintaining the planarity (actually, in that reduction, we added

a star graph to a vertex, however, adding a path does not make any difference in the

proof). Here also we use the same theme i.e., adding a path to a vertex in the given

instance of the RST problem, however, here we are careful about maintaining the grid

structure.

Reduction During the reduction, we first generate a bicolored grid graph (an

instance of the BCS problem in grid graph) from an instance X (P,L) of the RST

problem. The construction is done in three steps. In Step 1, we first generate a

rectangular grid graph D. Next, in Step 2, we add a path δ to D. In Step 3, we make

the graph D∪δ a rectangular grid graph by adding additional vertices.

Step 1: Generating a rectangular grid graph D

Suppose we have an instance X (P,L) of the RST problem. For any point p ∈ P,

let x(p) and y(p) denote the x- and y-coordinates of p, respectively. Let pt, pb, pl ,

and pr be the topmost (largest y-coordinate), bottommost (smallest y-coordinate),

leftmost (smallest x-coordinate), and rightmost (largest x-coordinate) points in P,

respectively (tie is broken by choosing any point arbitrarily). We now take a unit

integer rectangular grid graph D on the plane such that the coordinates of the lower-

left grid vertex is (x(pl), y(pb)) and upper-right grid vertex is (x(pr), y(pt)). Then

we associate each point p in P with a grid vertex dp in D having the same x- and

y-coordinates of p. After that we assign colors to the points in D. The vertices of D
that correspond to points in P are colored red and the remaining grid vertices in D
are colored blue.

Step 2: Adding a path δ to D
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Observe that if there exists a Steiner tree T of length (say L) |P|−1, then T does not

include any blue vertex in D. Further, if there exists a Steiner tree T of length (say L)

2|P|−1 then T contains equal number of red and blue vertices in D. Based on this

observation, we consider two cases to add some additional vertices (not necessarily

forming a grid structure) to D.

Case 1. [L ≥ 2|P|−1]: In this case the number of blue vertices in a Steiner tree T (if

exists) is more than or equals to the number of red vertices in D. We consider

a path δ of (L−2|P|+1) red vertices starting and ending with vertices r1 and

rL−2|P|+1, respectively. The position of r i is (x(pl)− i, y(pl)), for 1≤ i ≤ L−2|P|+1.

We connect this path with D using an edge between the vertices r1 and pl . See

Figure 8.2.4 for an illustration of this construction. Let the resulting graph be

H1 = D∪δ.

Case 2. [L < 2|P|−1]: In this case the number of red vertices in a Steiner tree T (if

exists) is more than the number of blue vertices in D. We consider a path δ of

(2|P|−L) blue vertices b1,b2,b2|P|−L and a red vertex r′. The position of bi is

(x(pl)− i, y(pl)), for 1≤ i ≤ 2|P|−L and the position of r′ is (x(p2|P|−L)−1, y(pl)).

bi is connected to bi +1, for 1≤ i ≤ 2|P|−L−1 and b2|P|−L is connected to r′. We

connect this path δ with D using an edge between the vertices b1 and pl .

See Figure 8.2.4 for an illustration of this construction. Let the resulting graph

be H2 = D∪δ∪ {r′}

In Step 3, we make the graph D ∪δ a rectangular grid graph by adding additional

vertices.

Step 3: making the graph D∪δ (i.e., either H1 or H2) a rectangular grid graph

We add some vertices and edges in H1(or H2) to form a grid graph as follows. Consider

the graph H1. Notice that H1 has two components D and δ. D is a grid graph. We

add δ to it to the left of D. We now add blue vertices at each integer coordinates (r, s),

where (r, s) ∉ δ, (x(pl)−L+2|P|−1)≤ r < x(pl) and y(pb)≤ s ≤ y(pt). Let the resulting

graph be G1 and clearly, G1 becomes a grid graph. Similarly, we can make H2 a grid

graph G2 by adding only blue vertices.

This completes the construction. Clearly, the construction (either G1 or G2) can be

done in polynomial time. Now we prove the following lemma. For a graph G, V (G)

denotes all the vertices in G. Let Y =G1 \ D (resp, G2 \ D). Also let PG1 (resp, PG2) is

the set of red vertices corresponding to P in G1 (resp, G2).
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(a) (b)

Figure 8.3: (a) Construction of the instance G1. (b) Construction of the instance G2.

Lemma 8.3. Let H be a connected subgraph of G1 (resp, G2) containing PG1 (resp, PG2).
We can find a subgraph H′ in G1 (resp, G2) such that G1[V (H′)\Y ] (resp, G2[V (H′)\Y ])
has a connected component containing PG1 (resp, PG2) and |V (H′)| ≤ |V (H)|.

Proof. We prove the lemma for G1, a similar proof holds for G2. If G1[V (H) \ Y ]

has a connected component containing PG1 then we are done. Else there is a pair of

vertices, say u and v in PG1 such that each path connecting u with v passes through

some vertices in Y . Let P be a path between u and v. And let for a pair of vertices

a and b, < a,b > and (a,b) denotes a path and the edge between a and b. Now

there exists four vertices say v1,v2,v3,v4 in P such that P is a concatenation of

five subpaths: < u,v1 >, (v1,v2),< v2,v3 >, (v3,v4),< v4,v >, where v1,v4 ∈ D, v2,v3 ∈Y .

Clearly, x(v1)= x(v4), x(v2)= x(v3). Now there is exactly one shortest path from v1 to

v4 in D. Let this shortest path consists of the set Z of vertices. Let W =P ∩Y . Let

H1 =G1[(V (H)\W)∪Z]. If G1[V (H1)\Y ] has a connected component containing PG1

then we are done with H′ = H1 as |V (H1)| ≤ |V (H)|. Else there is a pair of vertices,

such that each path connecting them passes through some vertices in Y . Then we

repeat the procedure until there is no such pair. �

Lemma 8.4. The instance X of the RST problem has a rectilinear Steiner tree T of
length at most L if and only if

For Case 1: the instance G1 has a balanced connected subgraph H with at least
2(L−|P|+1) vertices.

For Case 2: the instance G2 has a balanced connected subgraph H with at least
2(|P|+1) vertices.

Proof. We prove this lemma for Case 1. The proof of Case 2 is similar.
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For Case 1: Assume that X has a Steiner tree T of length at most L, where L ≥
2|P| −1. Let U be the set of those vertices in G1 corresponds to the vertices in T.

Clearly, U contains |P| red vertices and L−|P|+1 blue vertices. Since L ≥ 2|P|−1, to

make U balanced it needs L−|P|+1−|P| additional red vertices. So we can add the

L−2|P|+1 red vertices on the path δ to U. Therefore, U ∪δ becomes connected and

balanced (contains L−|P|+1 vertices in each color).

On the other hand, assume that there is a balanced connected subgraph H in G
with at least (L−|P|+1) vertices of each color. The number of red vertices in G1 is

exactly (L−|P|+1). So H must pick (L−|P|+1) blue vertices that connect the vertices

in G1 corresponding to P. Now H is a connected subgraph containing all vertices

corresponding to P. Applying Lemma 8.3, we can a find a subgraph H′ in G such

that G[V (H′)\Y ] has a connected component containing P and |V (H′)| ≤ |V (H)|. As

|V (H)| = 2(L−|P|+1) so |V (H′)| ≤ 2(L−|P|+1). Also |Y | ≥ (L−2|P|+1). Therefore the

number of vertices in G[V (H′)\Y ] is at most L+1. As G[V (H′)\Y ] has a connected

component containing all vertices corresponding to P, so X has a Steiner tree of

length at most L. �

8.2.5 Unit disk graphs

In this section we focus on the BCS problem on unit-disk graphs. In [BCJ+19], it is

shown that this problem is NP-Hard on planar graphs. It is noted that every planar

graph can be represented as a disk graph (due to Koebe’s kissing disk embedding

theorem, see [? ]). Therefore, the NP-Hardness of the BCS problem on disk graphs

directly follows. Here, we show that the BCS problem remains NP-Hard even on the

unit-disk graphs.

In Section 8.2.4, we show that the BCS problem is NP-Hard for grid graphs. During

the construction in Section 8.2.4, we generate an instance, either the graph G1 or G2

for the BCS problem in grid graphs. We now show that either G1 or G2 is a unit-disk

graph. Let us consider the graph G1. For each vertex v in G1, we take a unit disk

whose radius is 1
2 and center is on the vertex v. Therefore from the Lemma 8.4, we

conclude that,

Theorem 8.3. The BCS problem is NP-Hard for the unit-disk graphs.

8.2.6 Unit square graphs

We show that the BCS problem is NP-Hard for the unit-square graphs. We have the

result that the BCS problem is NP-Hard for the grid graphs. In the reduction in
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Section 8.2.4, either the graph G1 or G2 is generated from an instance of the RST

problem. Now the only thing we need to show that both the graphs G1 and G2 are

intersection graphs of unit squares.

Let us consider the graph G1. For each grid vertex v in G1, take an axis-parallel

square and rotate it 45◦ with the x-axis. The side length of this square is 1p
2

and

whose center is on v. Finally, we rotate the complete construction by an angle of

−45◦ and scale it by a factor of
p

2 . This makes the squares axis-parallel and unit

side length. It is not hard to verify that G1 is an intersection graph of this set of

axis-parallel unit squares. Hence we conclude:

Theorem 8.4. The BCS problem is NP-Hard for axis-parallel unit-square graphs.

8.2.7 Outerstring graphs

A graph is said to be an outerstring graph if it has an intersection model consisting

of curves that lie in a common half-plane and have one endpoint on the boundary of

that half-plane. We study the BCS problem on string graphs. We know that finding

a balanced subgraph on planar graphs is NP-Hard. Now, every planar graph can be

represented as a string graph( by drawing a string for each vertex that loops around

the vertex and around the midpoint of each adjacent edge). So NP-Hardness of BCS

problem holds for string graphs. Below we show that this problem remains NP-Hard

even for outerstring graphs. We give a reduction from the dominating set problem

which is known to be NP-Complete on general graphs [KYK80], the problem is defined

as follows. Given a graph G = (V ,E) and a positive integer k, the dominating set
problem asks whether there exists a set U ⊆V such that |U | ≤ k and N[U]=V , where

N[U] denotes neighbours of U in G including U itself.

During the reduction, we first generate a bicolored geometric intersection graph

H = (R ∪B,E′) from an instance X (G,k) of the dominating set problem on general

graph, where R and B denotes the set of red and blue vertices, respectively in H.

Next, we show that H is an outerstring graph.

Reduction. Let G = (V ,E) be graph with vertex set V = {v1,v2, . . . ,vn}. R consists

of a copy of V (G), denoted by {vi,1≤ i ≤ n} and k new vertices {r i,1≤ i ≤ k}. Similarly,

B contains a second copy of V (G), denoted by {v′i,1 ≤ i ≤ n} and n new vertices

{bi,1≤ i ≤ n}. The edges in E′ are defined in following way. For each edge (vi,v j) ∈ E,

we add two edges (vi,v′j), (v
′
i,v j) in E′. Next, we add two paths, one is of length k

starting at r1 and ending at rk, other is of length n starting at b1 and ending at
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bn. We join the edges (bn, rk), (b1,v1) into E′. Then we add edges between all pair of

vertices in {v′1,v′2, . . .v′n}. Our construction ends with adding n edges (vi,v′i) into E′ for

1≤ i ≤ n. This completes the construction. See Figure 8.4 for an illustration of this

construction that can be made in polynomial time.

(a) (b)

v1 v2 v3 v7 v8b1b2b8 v4 v6v5r4r1 v′1 v′2 v′8

v′8
v′2v′1

(c)

Figure 8.4: (a) A graph G. (b) Construction of H from G with k = 4. For the clarity
of the figure we omit the edges between each pair of vertices v′i and v′j, for i 6= j. (c)
Intersection model of H.

Lemma 8.5. The instance X has a dominating set of size k if and only if H has a
balanced connected subgraph T with 2(n+k) vertices.

Proof. Assume that G has a dominating set U of size k. Now we take the subgraph

T of H induced by {v′i : vi ∈ U} along with the vertices {r i : 1 ≤ i ≤ k}∪ {b j : 1 ≤ j ≤
n}∪ {vi : 1 ≤ j ≤ n} in H. Now clearly H is connected and balanced with 2(n+ k)

vertices.

On the other hand, assume that there is a balanced connected tree T in H with (n+k)

vertices of each color. The number of red vertices in H is exactly (n+k). So the solution

must pick the blue vertices {bi : 1≤ i ≤ n} that connect v1 with rk. As T has exactly

(n+k) blue vertices then it T should pick exactly k vertices from the set {v′i : 1≤ i ≤ n}.
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Since v1, . . . ,vn is an independent set contained in the balanced connected tree T, so

the set of vertices in V corresponding to these k vertices gives us a dominating set of

size k in G. �

We now verify that H is an outerstring graph. For this, we provide an intersection

model of it consisting of curves that lie in a common half-plane. For an illustration

see Figure 8.4(c). We draw a horizontal line y= 0. For each vertex vi ∈ H, draw the

line segment L i = (i,0)(i,1). For each vertex v′j ∈ H, we draw a curve C j, having one

endpoint on the line y= 0, in such a way that for each edge (v′j,vi) ∈ H, C j bend above

L i (the line segment corresponding to vi) and intersects the lines L i from top. Also

all the curves C j ’s intersect each other. Now we add the curves corresponding to

{r i : 1 ≤ i ≤ k}∪ {b j : 1 ≤ j ≤ n} having one endpoint on the line y = 0 with satisfying

the adjacency. Finally, using Lemma 8.5, we conclude the following theorem.

Theorem 8.5. The BCS problem is NP-Hard for the outerstring graphs.

8.3 Hardness: BCS Problem with a Specific Vertex

In this section we prove that the existence of a balanced subgraph containing a

specific vertex is NP-Complete. We call this problem the BCS-existence problem. The

reduction is similar to the reduction used in showing the NP-Hardness of the BCS

problem; we also use here a reduction from the EC3Set problem (see Section 8.2.1 for

the definition).

Reduction. Assume that we are given a EC3Set problem instance X = (U ,S), where

set U contains 3k elements and a collection S of m subsets of U such that each si ∈ S
contains exactly 3 elements. We generate an instance G(R,B,E) of the BCS-existence

problem from X as follows. The red vertices R are the elements u j ∈U; i.e., R =U.

The blue vertices B are the 3-element sets si ∈ S; i.e., B = S. For each blue vertex

si = {uα,uβ,uγ} ∈ S = B, we add the 3 edges (si,uα), (si,uβ), and (si,uγ) to the set E of

edges of G.

We instantiate an additional set of 2k blue vertices, {b1, . . . ,b2k}, and add edges to E
to link them into a path (b1,b2, . . . ,b2k). Finally, we add an edge from b2k to each of

the blue vertices si. Refer to Figure 8.5.

Clearly, the number of vertices and edges in G are polynomial in terms of number of

elements and sets in the EC3Set problem instance X , and hence the construction can

be done in polynomial time. We now prove the following lemma.
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Figure 8.5: Construction of the instance G of the BCS problem containing b1.

Lemma 8.6. The instance X of the EC3Set problem has a solution iff the instance G
of the corresponding BCS existence problem has a balanced subgraph T containing the
vertex b1.

Proof. Assume that the EC3Set problem has a solution, and let S∗ be the collection

of k = |S∗| sets of S in the solution.

Then, we obtain a balanced subgraph T that contains b1 as follows: T is the induced

subgraph of the 3k red vertices U, together with the k blue vertices S∗ and the 2k
blue vertices b1, . . . ,b2k. Note that T is balanced and connected and contains b1.

Conversely, assume there is a balanced connected subgraph T containing b1. Let t be

the number of (blue) vertices of S within T. First, note that t ≤ k. (Since T is balanced

and contains at most 3k red vertices, it must contain at most 3k blue vertices, 2k of

which must be {b1, . . . ,b2k}, in order that T is connected.)

Next, we claim that, in fact, t ≥ k. To see this, note that each of the t blue vertices of

T that corresponds to a set in S is connected by edges to 3 red vertices; thus, T has at

most 3t red vertices. Now, T has 2k+ t blue vertices (since it has t vertices other than

the path (b1, . . . ,b2k)), and T is balanced; thus, T has exactly 2k+ t red vertices, and

we conclude that 2k+ t ≤ 3t, implying k ≤ t, as claimed.

Therefore, we need to select exactly k blue vertices corresponding to the sets S, and

these vertices connect to all 3k of the red vertices. The k sets corresponding to these

k blue vertices is a solution for the EC3Set problem. �

Clearly, the BCS existence problem is in NP. Hence, we conclude the following

theorem.
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Theorem 8.6. It is NP-Complete to decide if there exists a balanced connected sub-
graph that contains a specific vertex.

8.4 Hardness: Balanced Connected Path Problem

In this section we consider the Balanced Connected Path (BCP) Problem and prove

that it is NP-Hard. In this problem instead of finding a balanced connected subgraph,

our goal is to find a balanced path with a maximum cardinality of vertices. To prove the

BCP problem is NP-Hard we give a polynomial time reduction from the Hamiltonian

Path (Ham-Path) problem which is known to be NP-Complete [GJ79a]. In this problem,

we are given an undirected graph Q, and the goal is to find a Hamiltonian path in Q
i.e., a path which visits every vertex in Q exactly once. In the reduction we generate

an instance G of the BCP problem from an instance Q of the Ham-Path problem as

follows:

Reduction. We make a new graph Q′ from Q. Let us assume that the graph Q
contains m vertices. If m is even then Q′ = Q. If m is odd, then we add a dummy

vertex u in Q, connect to every other vertices in Q by edges with u and attach a path

of length 2 to u. The resulting graph is our desired Q′. It is easy to observe that, Q
has a Hamiltonian path if and only if Q′ has a Hamiltonian path.

Now we have a Ham-Path instance Q′ with even number of vertices, say n. We

arbitrarily choose any n/2 vertices in Q′ and color them red and color the remaining

n/2 vertices blue. Let G be the colored graph. This completes the construction. Clearly,

this can be done in polynomial time.

Lemma 8.7. Q′ has a Hamiltonian path T if and only if G has a balanced path P
with exactly n vertices.

Proof. Assume that Q′ has a Hamiltonian path T. This implies that, T visits every

vertex in Q′. Since by the construction there are exactly half of the vertices in G is

red and remaining are blue, the same path T is balanced with n/2 vertices of each

color. On the other hand, assume that there is a balanced path P in G with exactly

n/2 vertices of each color. Since, G has a total of n vertices, the path P visits every

vertex in G. Hence, P is a Hamiltonian path. �

Therefore, we have the following observation.

Observation 8.1. The BCP problem is NP-Hard for general graphs.
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8.5 Algorithmic Results

In this section, we consider several graph families and devise polynomial time algo-

rithms for the BCS problem. Notice that, if the graph is a path or cycle, the optimal

solution is just a path. Hence, one can do brute-force search to obtain the maximum

balanced path. In case of a complete graph Kn, we output a sub-graph H of Kn

induced by V , where |V | = 2|B|, B ⊂ V , and B is the set of all blue vertices in Kn

(assuming that, the number of blue vertices is at most the number of red vertices in

Kn). Clearly, H is the maximum-cardinality balanced connected subgraph in Kn. We

consider trees, split graphs, bipartite graphs (properly colored), graphs of diameter 2,

and present polynomial algorithms for each of them.

8.5.1 Trees

In this section we give a polynomial-time algorithm for the BCS problem in the case

that the input graph is a tree T = (V ,E), with vertices V =VR ∪VB colored red (VR) or

blue (VB). Our goal is to find a maximum-cardinality balanced subtree of T.

Fix an embedding of the tree T = (V ,E) in the plane [AGH+99]. For a non-leaf vertex

v ∈V in the tree T, let m be the number of children of v. (If v is a leaf, m = 0.) In the

embedding of T, assume that the children of each vertex v are drawn in a horizontal

row below v, so that we can speak of the left-to-right (i.e., counter-clockwise about

v) order of the children, denoted u1,u2, . . . ,um. For a non-leaf vertex v and 1≤ i ≤ m,

let Tv,i denote the subtree of T, rooted at v, consisting of the subtrees rooted at the

children u1, . . . ,ui, together with v and the edges linking v to these i children.

For any vertex v ∈V and integer ∆ ∈ [−|VB|, |VR |], let fv(∆) be the maximum number

of vertices in a subtree of T rooted at v for which the red excess is ∆, where the red

excess of a subtree is defined to be the number of red vertices in the subtree minus

the number of blue vertices in the subtree. (Thus, a color-balanced subtree has red

excess ∆= 0, and a subtree with more blue vertices than red vertices has red excess

∆< 0.) If there is no subtree rooted at v with red excess ∆, then we define fv(∆)=−∞.

We solve the BCS problem by tabulating fv(∆) for all choices of v ∈V and ∆; there are

O(n2) values to tabulate. The size of a largest color-balanced subtree rooted at v is

fv(0), and the size of an overall optimal solution to the BCS problem is then given by

maxv fv(0).

Note that if v is a leaf of T, then fv(1) = 1 if v is red, fv(−1) = 1 if v is blue, and

fv(∆)=−∞ otherwise.

If v ∈ V is not a leaf of T, let Fv(i,∆) be the maximum cardinality of a subtree
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of Tv,i that is rooted at v, and has red excess of ∆. Then, for each (non-leaf) v,

fv(∆)= Fv(mv,∆), where mv is the number of children of vertex v.

We tabulate the values Fv(i,∆) from the leaves of T upwards, and for increasing

values of i.

The main recursion that allows us to tabulate Fv(i+1,∆) is obtained by considering

all possible red excess values δ for the subtree rooted at child ui+1 that might be

included in the subtree of Tv,i+1 rooted at v: We have the option to attach a tree

(rooted at v) of size Fv(i,∆−δ) to a tree (rooted at ui+1) of size fui+1(δ), via the edge

(v,ui+1), resulting in a subtree of Tv,i+1, rooted at v, with red excess ∆−δ+δ=∆. We

compare this option with that of not using ui+1 at all (yielding a tree of size Fv(i,∆)).

Thus, we have

Fv(i+1,∆)=max
{

Fv(i,∆),max
δ

{Fv(i,∆−δ)+ fui+1(δ)}
}

.

At the base of this recursion, we compute, for each non-leaf v,

Fv(1,∆)=
 fu1(∆−1)+1 if v is red,

fu1(∆+1)+1 if v is blue.

The overall evaluation proceeds by first tabulating the values of fv(∆) for all leaves v
and all values of ∆. Then, for non-leaf vertices v, we tabulate values of Fv(i,∆), for

each choice of ∆, for values of i = 1,2, . . . ,mv.

Now, there are O(n) choices of the pair v, i (more precisely, there are at most n−1 such

choices, since these choices correspond to edges of T, linking v to one of its children),

and O(n) choices of ∆ (since −|VB| ≤∆≤ |VR |). The optimization in the recursion is

over O(n) choices of δ, so the overall tabulation takes time O(n3), using O(n2) space.

The actual tree realizing Fv(i,∆) or fv(∆) is found by keeping track, during the

recursive evaluation of Fv(i+1,∆), of whether or not the maximization was achieved

using the subtree rooted at ui+1 (of size fui+1(δ), for an optimal choice of δ), which

means using the edge (v,ui+1). This data tells us exactly which children of each

vertex v are connected to v in an optimizing tree. We can now conclude the following

theorem.

Theorem 8.7. Let T be a tree whose n vertices are colored either red or blue. Then,
in O(n3) time and O(n2) space, one can compute a maximum-cardinality balanced
subtree of T.

Remark: The algorithm resulting in Theorem 8.7 generalizes to the case in which

vertices of T may take on colors other than just red and blue, and we desire a
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maximum-cardinality subtree having any specified target ratio of cardinalities among

the vertices of the subtree; the running time is polynomial, for a fixed number c of

colors, with time bounded by nO(c).

8.5.2 Split graphs

A graph G = (V ,E) is defined to be a split graph if there is a partition of V into two

sets S and K such that S is an independent set and K is a complete graph. There

is no restriction on edges between vertices of S and K . Here we give a polynomial

time algorithm for the BCS problem where the input graph G = (V ,E) is a split graph.

Let V be partitioned into S and K where S and K induce an independent set and a

clique respectively in G. Also, let SB and SR be the sets of blue and red vertices in

S, respectively. Similarly, let KB and KR be the sets of blue and red vertices in K ,

respectively. We argue that there exists a balanced connected subgraph in G, having

min{|SB ∪KB|, |SR ∪KR |} vertices of each color.

Note that if |SB ∪KB| = |SR ∪KR | then G itself is balanced. Now, w.l.o.g., we can

assume that |SB ∪KB| < |SR ∪KR |. We will find a balanced connected subgraph H of

G, where the number of vertices in H is exactly 2|SB ∪KB|. To do so, we first modify

the graph G = (V ,E) to a graph G′ = (V ,E′). Then, from G′, we will find the desired

balanced subgraph with |SB ∪KB| many vertices of each color. Moreover, this process

is done in two steps.

Step 1. Construct G′ = (V ,E′) from G = (V ,E). For each u ∈ SB, if u is adjacent to at

least a vertex u′ in KR , then remove all incident edges with u except the edge (u,u′).
Similarly, for each v ∈ SR , if v is adjacent to at least a vertex v′ in KB, then remove all

incident edges with v except the edge (v,v′).

Step 2. Let k = |SR ∪KR |− |SB ∪KB|. Now we we have following cases.

Case 1. |SR | ≥ k. We remove k vertices from SR in G′. Clearly, after this

modification, G′ is connected, and we get a balanced subgraph having |SB ∪KB|
vertices of each color.

Case 2. |SR | < k. Then we know, |KR | > |KB ∪SB|. Let S′
B ⊆ SB be the set

of vertices in G′ such that each vertex of S′
B has exactly one neighbor in KR .

Then, we take a set X ⊂ KR with cardinality |KB ∪SB| such that X contains

all adjacent vertices of S′
B. Now we take the subgraph H of G′ induced by

(SB ∪KB ∪ X ). Now H is optimal and balanced.
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Running time. Step 1 takes O(|E|) time to construct G′ from G = (V ,E). Now in

step 2, both Case 1 and Case 2 take O(|V |) time to delete |SR∪KR |−|SB∪KB| vertices

from G′. Hence, the total time taken is O(|V |+ |E|).
We can now conclude the following theorem.

Theorem 8.8. Given a split graph G = (V ,E), with r red and b blue (|V | = r + b)
vertices, then, in O(|V |+ |E|) time we can find a balanced connected subgraph of G
having min{b, r} vertices of each color.

8.5.3 Bipartite graphs with proper coloring

In this section, we describe a polynomial-time algorithm for the BCS problem where

the input graph is a bipartite graph whose vertices are colored red/blue according to

proper 2-coloring of vertices in a graph. We show that there is a balanced connected

subgraph of G having min{b, r} vertices of each color where G contains r red vertices

and b blue vertices. Note that we earlier showed that the BCS problem is NP-Hard in

bipartite graphs whose vertices are colored red/blue arbitrarily; here, we insist on the

coloring being a proper coloring (the construction in the hardness proof had adjacent

pairs of vertices of the same color). We begin with the following lemma.

Lemma 8.8. Consider a tree T (which is necessarily bipartite) and a proper 2-coloring
of its vertices, with r red vertices and b blue vertices. If r < b, then T has at least one
blue leaf.

Proof. We prove it by contradiction. Let there is no blue leaf. Now assign any blue

vertex, say br, as a root. Note that it always exists. Now br is at level 0 and br has

degree at least 2. Otherwise, br is a leaf with blue color. We put all the adjacent

vertices of br in level 1. This level consists of only red vertices. In level 2 we put all

the adjacent vertices of level 1. So level 2 consists of only blue vertices. This way we

traverse all the vertices in T and let that we stop at kth-level. k cannot be even as all

the vertices in even level are blue. So k must be odd. Now for each 06 i6 k−1
2 , in the

vertices of (level 2i ∪ level (2i+1)), number of blue vertices is at most the number of

red vertices. Which leads to the contradiction that r < b. Hence there exists at least

one leaf with blue color. �

Now we describe the algorithm. We first find a spanning tree T in G. If r = b then T
itself is a maximum balanced subtree (subgraph also) of G. Without loss of generality

assume that r < b. So by Lemma 8.8, T has at least 1 blue leaf. Now we remove that
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blue leaf from T. Using similar reason, we repetitively remove (b− r) blue vertices

from T. Finally, T becomes balanced subgraph of G, with r vertices of each color.

Running time. Finding a spanning tree in G = (V ,E) requires O(|E|) time. To find

all the leaves in the tree T requires O(|V |) time (breadth first search). Hence the total

time is needed is O(|V |+ |E|).
We can now conclude the following theorem.

Theorem 8.9. Given a bipartite graph G = (V ,E) with a proper 2 coloring (r red or b
blue vertices), then in O(|V |+ |E|) time we can find a balanced connected subgraph in
G having min{b, r} vertices of each color.

8.5.4 Graphs of diameter 2

In this section, we give a polynomial time algorithm for the BCS-problem where the

input graph has diameter 2. Let G(V ,E) be such a graph which contains b blue vertex

set B and r red vertex set R. We find a balanced connected subgraph H of G having

min{b, r} vertices of each color. Assume that b < r. This can be done in two phases. In

phase 1, we generate an induced connected subgraph G′ of G such that (i) G′ contains

all the vertices in B, and (ii) the number of vertices in G′ is at most (2b−1). In phase

2, we find H from G′.

Phase 1. To generate G′, we use the following observation regarding graphs of

diameter 2.

Observation 8.2. Let G = (V ,E) be a graph of diameter 2. Then for any pair of
non adjacent vertices u and v from G, there always exists a vertex w such that both
(u,w) ∈ E and (v,w) ∈ E.

We first include B in G′. Now we have the following two cases.

Case 1. The induced subgraph G[B] of B is connected. In this case, G′ is G[B].

Case 2. The induced subgraph G[B] of B is not connected. Assume that G[B] has

k(> 1) components. Let B1,B2, ...,Bk be k disjoints sets of vertices such that each

induced subgraph G[Bi] of Bi in G is connected. Now using Lemma 8.2, any two

vertices vi ∈ Bi and v j ∈ B j are adjacent to a vertex say u` ∈ R. We repetitively apply

Lemma 8.2 to merge all the k subgraphs into a larger graph. We need at most (k−1)

red vertices to merge k subgraph. We take this larger graph as the graph G′.
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Phase 2. In this phase, we find the balanced connected subgraph H with b vertices

of each color. Note that the graph G′ generated in phase 1 contains b blue and at

most (b−1) red vertices. Assume that G′ contains b′ red vertices. We add (b−b′) red

vertices from G \G′ to G′. This is possible since G in connected.

Running time. In phase 1, first finding all the blue vertices and it’s induced sub-

graph takes O(|V | + |E|) time. Now to merge all the k components into a single

component which is G′ needs O(|E|) time. In phase 2, adding (b−b′) red vertices to

G′ takes O(|E|) time as well. Hence, total time requirement is O(|V |+ |E|).
We can now come up to the following theorem.

Theorem 8.10. Given a graph G = (V ,E) of diameter 2, where the vertices in G are
colored either red or blue. If G has b blue and r red vertices then, in O(|V |+ |E|) time
we can find a balanced connected subgraph in G having min{b, r} vertices of each color.

8.5.5 Interval graphs

A graph G = (V ,E) is said to be an interval graph if each vertex u ∈ V is associated

with an interval Iu = [lu, ru] (where lu and ru denote the left and right endpoints of Iu,

respectively), and for any pair of vertices u,v ∈V , (u,v) ∈ E if and only if Iu ∩ Iv 6= ;.

Here we study the BCS problem on connected interval graphs. Given an n vertex

interval graph G = (V ,E), we order the vertices of G based on the left endpoints

{lv : ∀v ∈V } of their corresponding intervals. For a pair of vertices u,v ∈V with lu ≤ lv,

we define a set Su,v = {w : w ∈ V , lu ≤ lw < rw ≤ rv}∪ {u,v}. We also consider the case

when u = v, and define Su,u in a similar fashion i.e., Su,u = {w : w ∈V , lu ≤ lw < rw ≤
ru}∪ {u,v}. Let H be a subgraph of G induced by Su,v ( or Su,u) in G. Let r and b be

the number of red and blue vertices in Su,v, respectively. Without loss of generality,

we may assume that b ≤ r. The goal is to find a balanced connected subgraph (if

exists) of cardinality 2b in H, containing u and v. Let B be the set of all blue vertices

in Su,v and T = B∪ {u,v}.

Now we compute a connected subgraph that contains T and may use some extra red

intervals. For that, we need to solve the Steiner tree problem on interval graphs. In

1985, White et al. [WFP85] gave a polynomial time solvable algorithm for Steiner

tree problem on strongly chordal graphs which is superclass of interval graphs. Here

we proposed a different algorithm to solve the same problem on the interval graphs.

Steiner tree on interval graphs. Given a simple connected interval graph G =
(V ,E) and a set T ⊆ V of terminals, the minimum Steiner tree problem seeks a
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Algorithm 6 Select_Steiners(G = (V ,E),T)
1: S ←V \ T;
2: D ←;;
3: C ← set of components induced by T ∪D;
4: Let IC1 , . . . , ICm be the left to right ordered set based on the right endpoints of the

components induced by intervals associated with the vertices in T ∪D. Where
C = {C1,C2, . . .Cm} be a set of m components (for some m ≥ 1);

5: if |C| = 1 then
6: return D;
7: else
8: D ← D∪ I j, where I j ∈ S and the rightmost interval in N(IC1);
9: go to step 3;

10: end if

smallest tree that spans over T. The vertices in the tree other than T are denoted

as D and called as Steiner vertices. First we describe a greedy algorithm called

Select_Steiners(G = (V ,E),T) that computes a minimum cardinality Steiner vertices

D in G.

Let the vertices in T induces m (m ∈ [n]) components {C1, . . . ,Cm} sorted from left to

right based on the right endpoints of the components (note that, each component can

be interpreted as an interval, union of all the intervals of that component, on the real

line). Let ICi be the rightmost interval of the i-th component Ci. We consider the

first component C1 and the neighborhood set N(IC1) of IC1 . Let I j be the rightmost

interval in N(IC1). By rightmost, we mean that the interval having the rightmost

endpoint. We add I j in D. Now, we recompute the components based on T ∪D. Note

that, C1∪ I j is now forming a single component. We repeat this procedure until T∪D
becomes a single component. Finally we return D as a solution. The pseudocode of

the above mentioned procedure is given in Algorithm 6.

Correctness. It is easy to verify that the graph induced by T ∪D is connected.

Now we prove that the optimality of the algorithm Select_Steiners(G = (V ,E),T)

by induction. The base case is that we have to connect the first two components C1

and C2. We choose the rightmost interval from the neighborhood of IC1 . Note that,

we have to connect C1 with C2 and therefore it is inevitable that we have to pick an

interval from N(IC1). We choose the rightmost interval (say, (I`)). Now, if this choice

already connects C2, we are done. Otherwise, C1 = C1∪ I`. Now, let us assume that

we have obtained an optimal solution until step i. At step i+1, we have to connect

the first two components. By applying the same argument as the base case, we choose

the rightmost interval from the first component and proceed. As step 8 takes O(n)
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Algorithm 7 BCS_Interval(H)
1: T ← B∪ {u,v}
2: D = Select_Steiners(H,T)
3: b′ ← number of blue vertices in T
4: r′ ← number of red vertices in D∪ {u,v}
5: if r′ > b′ then
6: return ; ;
7: else if r′ = b′ then
8: return G[D∪T];
9: else

10: return G[D ∪T ∪ X ], where X ⊂ V (H) is the set of (b′− r′) red vertices with
X ∩ (D∪T)=;;

11: end if

time, this algorithm runs in O(n2) time.

Now, we return to the BCS problem. Recall that, for any pair of vertices u,v ∈ V ,

our objective is to compute a balanced connected component containing u and v of

cardinality 2b (if exists), where b and r is the number of blue and red intervals in

Su,v, respectively, and b ≤ r. Let H be the subgraph of G induced by Su,v. Let R and B
denote the set of red and blue intervals in Su,v, respectively. We apply Algorithm 6 on

the input pair (H,T), where T = B∪ {u,v}. Let D = Select_Steiners(H,T). Also let

b′ and r′ be the number of blue vertices in T and number of red vertices in D∪ {u,v},

respectively. If r′ > b′, then we conclude that there does not exist a BCS in H with

cardinality 2b. In other case, if r′ ≤ b′, we can add required number of red vertices

to get a BCS in H with cardinality 2b. We describe this process in Algorithm 7. We

repeat this procedure for every pair of intervals and report the solution set with the

maximum number of intervals.

Correctness. We prove that our algorithm yields an optimum solution. Let G′ be

such a solution. Let u and v be the intervals with leftmost endpoint and rightmost

endpoint of G′, respectively. Now we show that |V (G′)| =min{2r,2b}, where r and b be

the number of red and blue color vertices is Su,v, respectively. Let us assume |V (G′)| 6=
min{2r,2b}. Then there exists at least one blue interval z and one red interval z′ that

belong to Su,v \ V (G′). However, we know that Su,v induces an intersection graph

of intervals corresponding to the vertices {w : w ∈V , lu ≤ lw < rw ≤ rv}∪ {u,v}, and G′

contain both u and v. So, N[z]∩G′ 6= ;, N[z′]∩G′ 6= ;. Therefore V (G′)∪{z, z′} induces

a balanced connected subgraph in G. It contradicts that G′ is optimal and hence the

proof.
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Time Complexity. Here we use the algorithm Select_Steiners(G = (V ,E),T) as

a subroutine. Using the range tree data structure, the set Su,v can be obtained in

O(logn+k) time, where where k is the number of points in the query interval. As the

output can be linear, hence the total running time is O(n5). Therefore, we have the

following theorem.

Theorem 8.11. Let G be an interval graph with n vertices that are colored either red
or blue. Then the BCS problem on G can be solved in O(n5) time.

8.5.6 Circular-arc graphs

In this section we study the BCS problem on the circular-arc graphs. A circular-arc

graph is an intersection graph of a set of arcs on the circle. It has one vertex for

each arc in the set, and an edge between a pair of vertices in the graph if their

corresponding arcs intersect.

Let us assume that H be a resulting maximum balanced connected subgraph of G,

and let S denote the set of vertices in H. Since H is a connected subgraph of G, H
covers the circle either partially or entirely. We propose an algorithm that computes

a maximum size balanced connected subgraph H of G in polynomial time. Let VB

and VR denotes the set of blue and red vertices in G. Without loss of generality we

assume that VB ≤VR . For any arc u ∈V , let l(u) and r(u) denote the two endpoints of

u in the clockwise order of the endpoints of the arc. To design the algorithm, we shall

concentrate on the following two cases – Case A and Case B. In Case A, we check all

possible instances while the the output set does not cover the circle fully. Then, in

Case B, we handle all those instances while the output covers the entire circle. Later,

we prove that the optimum solution lies in one of these instances. The objective is to

reach the optimum solution by exploiting these instances exhaustively.

Case A. [H covers the circle partially] In this case, there must be a clique of K
(|K | ≥ 1) arcs that is not present in the optimal solution. We consider any pair of

arcs u,v ∈V such that r(u)≺ l(v) in the clockwise order of the endpoints of the arcs

(x ≺ y means x occurs before than y in the ordering), and consider the vertex set

Su,v = {w : w ∈ V , l(v) ≤ l(w) < r(w) ≤ r(u)}∪ {u,v}. Then, we use the Algorithm 7 to

compute maximum BCS on G[Su,v]. This process is repeated for each such pair of

arcs, and report the BCS with maximum number of arcs.

Case B. [H covers the circle entirely] In this case, S must contains 2|VB| number

of arcs and in fact that is the maximum number of arcs S can opt. In order to compute

such a set S, first we add the vertices in VB to S, then considering the vertices in VB
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as a set T of terminal arcs, we need to find a minimum number of red arcs D ⊆ VR

that connects T. We further assume two sub-cases depending upon T ∪D .

B.1. [T∪D covers the circle partially] This case is similar to Case A without some

extra red arcs that would be added afterwards to ensure that S contains 2|VB| arcs.

Similar to Case A, we again try all possible subsets obtained by pair of vertices u,v
with r(u)≺ l(v) and Su,v contains all blue vertices and we find optimal Steiner tree by

using Algorithm Select_Steiners(G = (V ,E),T). Then, we add (|VR |− |D|) (where D
is the set of Steiner arcs) red arcs from VR to S.

B.2. [T ∪D covers the circle entirely] First, we obtain a set C of m (for some

m ∈ [n]) components from T. We may see each component C ∈C as an arc and the

neighborhood set N(C) as the union of the neighborhoods of the arcs contained in C.

Observe that, for any component C ∈ C , D contains either one arc from N(C) that

covers C, or two arcs from N(C) where none of them individually covers C. Let us

consider one component C ∈C . Let l(C) and r(C) be the left and right endpoints of C,

respectively. If |N(C)∩D| = 1, we consider each arc from N(C) separately that covers

C. For each such arc I(C) ∈ N(C), we do the following three step operations –1) include

I(C) in D, 2) remove N(C) from the graph, 3) include two blue arcs (l(I(C)), r(C)) and

(r(C), r(I(C))) in the vertex set of the graph. Now, T = T∪{[l(I(C)), r(C)), (r(C), r(I(C))]}.

We give this processed graph that is an interval graph, as an input of the Steiner tree

(Algorithm Select_Steiners(G = (V ,E),T)) and look for a tree with at most (|D|−1)

Steiner red arcs. Else, when |N(C)∩D| = 2, we take the arcs C` and Cr from N(C)

with leftmost and rightmost endpoints, respectively, in D. We do the same three step

operations –1) include C` and Cr in D, 2) remove N(C) from the graph, 3) include

two blue arcs (l(C`), l(C))), (r(C), r(Cr))). Now, T = T∪ {[l(C`), l(C))), (r(C), r(Cr))]}. We

give this processed graph that is an interval graph, as an input of the Steiner tree

(Algorithm Select_Steiners(G = (V ,E),T)) and look for a tree with at most (|D|−2)

Steiner red arcs. This completes the procedure.

Correctness. We prove that our algorithm produces an optimum solution. The

proof of correctness follows from the way we have designed the algorithm. The

algorithm is divided into two cases. For case A, the primary objective is to construct

the instances from a circular-arc graph to some interval graph. Thereafter, we can

solve it optimally. Now, Case B is further divided into two sub-cases. Here we know

that all blue vertices present in optimum solution. Therefore, our goal is to employ

the Steiner tree algorithm with terminal set T =VB. Note, for B.1, we again try all

possible subsets obtained by pair of vertices u,v where r(u)≺ l(v) and Su,v contains
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all blue vertices. Note, G[Su,v] is an interval graph and VB is the set of terminals

(since we assumed, w.l.o.g, VB ≤ VR). Therefore we directly apply the Steiner tree

procedure and obtain the optimum subset for each such pair. Indeed, this process

reports the maximum balanced connected subgraph. In the case B.2, we modify

the input graph in three step operations. Moreover, we update the expected output

size to make it coherent to the modified input instance. This process is done for

one arbitrary component of T (of size ≥ 1), which gives an interval graph. Clearly,

the choice of this component makes no impact on the size of the balanced connected

subgraph. Thereafter, we follow the Steiner tree algorithm on this graph. Moreover,

the algorithm exploits all possible cases and reduce the graph into interval graph

without affecting the size of the balanced connected subgraph. Thereby, putting

everything together, we conclude the proof.

Time complexity. For case A, we try all pairs of arcs that holds certain condition

and consider the subset (such subset can be computed in O(logn) time given the

clockwise order of the vertex set and a range tree where the arcs are stored). For each

such subset we use the algorithm for interval graph to compute the maximum balanced

connected subgraph. This whole process takes O(n6 logn) time. The complexity of

Case A dominates complexity of Case B and we get the total running time.

We can now state the following theorem.

Theorem 8.12. Given an n vertex circular-arc graph G whose vertices are colored
either red or blue, the BCS problem on G can be solved in O(n6 logn) time.

8.5.7 Permutation graphs

In this section, we study the BCS problem on permutation graphs. A graph G = (V ,E)

with |V | = n is called a permutation graph if there exists a bijection f : V → {1,2, . . . ,n}

and a permutation π of order n such that for every pair of vertices u,v ∈ V , (u,v) ∈
E ⇔ ( f (u)− f (v))(π( f (u))−π( f (v))) < 0. This can be represented as an intersection

graph of line segments whose endpoints lie on parallel lines y = 0 and y = 1. We

order the vertices of G based on the endpoints of their corresponding lines on y= 1.

Let v1 < v2 < . . . < vn be the ordering, where vi < v j ⇔ pi < p j (Assuming (pi,1) and

(p j,1) are the endpoints of the line segments corresponding to vertices vi and v j,

respectively). For each pair of vertices vi,v j ∈ V (where 1 ≤ i < j ≤ n), we define the

subgraph G i, j induced by {vi,vi+1, . . . ,v j−1,v j} in G. Let Ri, j and Bi, j denote the set of

red and blue vertices, respectively in G i, j.
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Now we propose an algorithm to find a BCS, of G i, j, with size min{2|Ri, j|,2|Bi, j|} (if

exists), containing both vi and v j. We do this process for all pair of numbers i and j for

which G i, j is connected. Finaly we report the BCS with maximum cardinality. In G i, j,

to get a BCS (if exists) with size min{2|Ri, j|,2|Bi, j|}, we apply the algorithm for the

Steiner tree problem on permutation graphs with terminal set Bi, j (if |Bi, j| ≤ |Ri, j|) or

Ri, j (if |Ri, j| < |Bi, j|). We use the following theorem to solve Steiner tree problem in

G i, j.

Theorem 8.13. [AR92] A minimum cardinality Steiner tree in an n vertex permutation
graph can be found in O(m+n logn) time. Here m denotes the number of edges in the
graph.

Now, let Ti, j be the solution of Steiner tree problem in G i, j with terminal vertices Bi, j,

where |Bi, j| ≤ |Ri, j|. Recall that, we only consider the cases where G i, j is connected.

If the number of red vertices in Ti, j is strictly greater than |Bi, j|, then we can say

that there does not exist a BCS, of G i, j, with size min{2|Ri, j|,2|Bi, j|}. In other case,

if the number of red vertices in Ti, j is less than or equal to |Bi, j|, then we obtain

a BCS of size 2|Bi, j| by simply adding the required number of red vertices. Note,

this does not affect the connectivity. By using this method we find a BCS with size

min{2|Ri, j|,2|Bi, j|} in G i, j for all pair of integers i and j, where1≤ i < j ≤ n.

Correctness. We prove that our algorithm produces an optimum solution. Let H
be an optimal solution of size t and suppose H consists of the vertices vk1 ,vk2 , . . . ,vkt ,

where k1 < k2 . . .< kt. The graph Gk1,kt must be connected (otherwise, H becomes dis-

connected). Consider the Steiner tree problem on the instance G i, j, where i = k1 and

j = kt. Now, we show that |V (H)| =min{2|Ri, j|,2|Bi, j|}. Let |V (H)| 6=min{2|Ri, j|,2|Bi, j|}
then there exists at least one blue vertex u and one red vertex v, such that u,v ∈
G i, j \ H. As Gk1,kt is an intersection graph of line segments corresponding to the

vertices vk1 ,vk2 , . . . ,vkt , where k1 < k2 < . . . < kt, and H contains both vk1 and vkt .

So, N[u]∩H 6= ; and N[v]∩H 6= ;. Therefore V (H)∪ {u,v} induces a balanced con-

nected subgraph in G. It contradicts the fact that H is a maximum induced balanced

connected subgraph in G. Therefore, we conclude the proof.

Time Complexity. We use the algorithm in [CS90] to find minimum cardinality

Steiner tree as a subroutine that we call for every pair of integers i, j where 1≤ i ≤
j ≤ n and G i, j is connected. In case of permutation graphs, we require linear time to

obtain an induced subgraph G i, j for any pair of vertices u,v ∈V . Now, computing a
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minimum cardinality Steiner tree on permutation graphs takes O(m+n logn) time,

and thus our algorithm solves the BCS problem in O (mn3 +n4 logn) time.

We can now conclude the following theorem.

Theorem 8.14. Given an n vertex, m edge permutation graph G, where the vertices in
G are colored either red or blue, the BCS problem on G can be solved in O (mn3+n4 logn)

time.

8.6 FPT Algorithm

In this section, we show that the BCS problem is fixed-parameter tractable for general

graphs while parameterized by the solution size. Let G = (V ,E) be a simple connected

graph, and let k be a given parameter. A family F of functions from V to {1,2, . . . ,k}

is called a perfect hash family for V if the following condition holds. For any subset

U ⊆ V with |U | = k, there is a function f ∈ F which is injective on U, i.e., f |U is

one-to-one. For any graph of n vertices and a positive integer k, it is possible to obtain

a perfect hash family of size 2O(k) logn in 2O(k)n logn time; see [AYZ95]. Now, the

k-BCS problem can be defined as follows.

k-Balanced Connected Subgraph (k-BCS) Problem: Given graph G = (V ,E),

with vertex set V = VR ∪VB partitioned into red vertices (VR) and blue vertices

(VB), and a positive integer k.

í Output “Yes" if there is a subset V ′ ⊆V such that G[V ′] is connected and V ′

conatins k/2 red and k/2 blue vertices. Else “No".

We employ two methods to solve the k-BCS problem: (i) color coding technique,

and (ii) batch procedure. Our approach is motivated by the approach of Fellows et

al. [FFHV11], where they have used these techniques to provide a FPT-algorithm for

the graph motif problem. Suppose H is a solution to the k-BCS problem and F is a

perfect hash family for V . This ensures us that at least one function of F assigns

vertices of H with k distinct labels. Therefore, if we iterate through all functions of F

and find the subsets of V of size k that are distinctly labeled by our hashing, we are

guaranteed to find H. Now, we try to solve the following problem:

Given a hash function f : V → {1,2, . . . ,k} from perfect hash family F , decide if there

is a subset U ⊆V with |U | = k such that G[U] is a balanced connected subgraph of G
and f |U is one-to-one.
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First, we create a table, denoted by M. For a label L ⊆ {1,2, . . . ,k} and a color-pair

(b, r) of non-negative integers where b+ r = |L|, we put M[v ; L, (b, r)]= 1 if and only

if there exists a subset U ⊆V of vertices such that the conditions holds: (i) v ∈U, (ii)

f |U = L, (iii) G[U] is connected, and (iv) U consisting exactly b blue vertices and r red

vertices.

Notice that, the total number of entries of this table is O(2kkn). If we can fill all the

entries of the table M, then we can just look at the entries M[v ; {1,2, . . . ,k}, ( k
2 , k

2 )],

∀v ∈ V , and if any of them is one then we can claim that the k-BCS problem has a

solution. Now we use the batch procedure to compute M[v ; L, (b, r)] for each subset

L ⊆ {1,2, . . .k}, and for each pair (b, r) of non-negative integers such that (b+ r)= |L|.
Now, we explain the batch procedure. Without loss of generality, we assume that

L = {1,2, . . . , t}, f (v)= t, and the color of v is red.

Batch Procedure (v,L,(b,r)):

Initialize: Construct the set S of pairs (L′, (b′, r′)), where b′+r′ = |L′| such that

L′ ⊆ {1,2, . . . , t−1}, b′ ≤ b, r′ ≤ r−1 and M[u ; L′, (b′, r′)]= 1 for some neighbour

u of v.

Update: If there exists two pairs {(L1, (b1, r1)), (L2, (b2, r2))} ∈ S such that

L1 ∩L2 =; and (b1, r1)+ (b2, r2)≤ (b, r−1), then add (L1 ∪L2, (b1 +b2, r1 + r2))

into S . Repeat this step until unable to add any more.

Decide: Set M[v ; L, (b, r)]= 1 if ({1,2, . . . , t−1}, (b, r−1)) ∈S , otherwise 0.

Correctness of the Batch Procedure.

Lemma 8.9. The batch procedure correctly computes M[v ; L, (b, r)] for all v, L ⊆
{1,2, . . . ,k} with b+ r = |L|.

Proof. Without loss of generality we assume that L = {1,2, . . . , t}, f (v)= t and color of

v is red. We have to show that M[v ; L, (b, r)]= 1⇔ there exists a connected subgraph,

containing v, and having exactly b blue vertices and r red vertices. Firstly, we assume

that M[v ; L, (b, r)]= 1. So, ({1,2, . . . , t−1}, (b, r−1)) ∈S . So, there must exist some

neighbours {v′1,v′2, . . . ,v′l} of v such that M[v′1; L1, (b1, r1)]= M[v′2; L2, (b2, r2)]= ·· · =
M[v′l ; L l , (bl , r l)]= 1 with

l⋃
i=1

L i = L\{t},
∑l

i=1 bi = b,
∑l

i=1 r i = r−1 where L1,L2, . . . ,L l

are pairwise disjoint. Thus, there exists a connected subgraph containing {v,v′1, . . . ,v′l}
having exactly b blue vertices and r red vertices. Other direction of the proof follows

from the same idea. �
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Lemma 8.10. Given a hash function f : V → {1,2, . . . ,k}, the batch procedure deter-
mines all of the entries in the table M in O(24kk3n2) time.

Proof. The initialization depends on the number of the search process in the entries

correspond to the neighbour of v. Now, this number is bounded by the size of M. The

first step takes O(2kkn) time. Now the size of S can be at most 2kk. Each update

takes O(22kk2) time. So step 2 takes O(23kk3) time. Now the value of M[v ; L, (b, r)]

can be decided in O(2kk) time. As the number of entries in M is O(2kkn), so the total

running time is O(24kk3n2). �

The algorithm for the k-BCS problem is following:

1. Construct a perfect hash family F of 2O(k) logn functions in 2O(k)n logn time.

2. For each function, f ∈F build the table M using batch procedure. For each function

f ∈F it takes O(24kk3n2) time.

3. As each f ∈ F is perfect, by an exhaustive search through all function in F our

algorithm correctly decide whether there exists a balanced connected subgraph of

k vertices. We output yes, if and only if there is a vertex v and f ∈F for which the

corresponding table M contains the entry one in M[v ; {1,2, . . . ,k},
( k

2 , k
2

)
].

Hence the following theorem.

Theorem 8.15. The k-BCS problem can be solved in time 2O(k)n2 logn time.

Summary

In this chapter, we have studied the tractability landscape of the maximum balanced

connected subgraph problem on bipartite graphs, chordal graphs, planar graphs,

trees, split graphs, etc along with some well known geometric intersection graphs

like interval, circular-arc, permutation, unit disk, outerstring graphs, etc. We have

obtained several algorithmic and NP-Hardness results. We show that BCS problem

remains NP-Hard on restricted geometric intersection graph classes such as unit disk

graphs, outerstring graphs, complete grid graphs, and unit square graphs. Moreover,

we presented a FPT algorithm for the BCS problem on general graphs.
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CONCLUSION

Contents
9.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

In this thesis, we have studied some well-structured subgraph finding problems on

several graph classes mainly on geometric intersection graphs. In this chapter, we

list some open problems that occurred in this thesis. Some of the considered problems

are shown to be NP-Hard, and several approximation results are presented. We also

obtain exact polynomial-time solvable algorithms for some of the studied problems.

9.1 Future directions

Here we list some open problems, occurred in this thesis, that can be considered as

future works.

Chapter 4

In this chapter, we studied the construction of the Manhattan network for a given

point set. Here, we are able to construct a planar Manhattan network G for a given

convex point set S of size n, where both the running time of the construction and

size of G is O(n). It remains an open question if it is possible to construct a planar

Manhattan network for general point sets using a subquadratic number of Steiner

points.
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Chapter 5

In this chapter, we studied the problem of computing a maximum-size bipartite

subgraph on geometric intersection graphs. We mainly obtain several approximation

algorithms for the problem on unit squares, unit-height rectangles, and variants of

unit disks. Here we propose several unsolved problems.

Does MBS admit a PTAS on unit-height rectangles, or is it APX-hard?

finding complexity status of maximum bipartite subgraph problem and balance

connected subgraph problem in the graph classes that we do not consider.

For example, outerstring graphs, outerplanar graphs, graphs with bounded

treewidth, etc.

Is there a polynomial-time algorithm for MBS on a set of n unit disks intersecting

a common horizontal line or more generally, unit disks contained in a slab of

fixed height?

Find geometric intersection graph classes for which MBS is NP-Hard but MIS is

solvable in polynomial time.

Chapter 6

In this chapter, we study variations of the Set Cover, Independent Set, and Dominating

Set problems on a planar subdivision induced by a finite set of axis-parallel line

segments. Here we leave with some interesting open problems.

Producing efficient constant-factor approximation algorithms for all the three

problems: the STABBING-SUBDIVISION problem, INDEPENDENT-SUBDIVISION

problem, and DOMINATING-SUBDIVISION problem?

Finding FPT algorithms in all three problems individually parameterized by

the size of an optimal solution of the corresponding problem.

Chapter 7

In this chapter, we obtain exact linear-time algorithms for computing a maximum

cardinality uniquely restricted matching in proper interval graphs and bipartite

permutation graphs respectively. It would be interesting to explore this problem

on the graph classes that are still not considered,e.g., unit disk graphs, outerstring

graphs, graphs with bounded treewidth.
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9.1. FUTURE DIRECTIONS

Chapter 8

In this chapter, we studied the BCS problem on bipartite graphs, chordal graphs,

planar graphs, trees, split graphs, etc along with some well-known geometric inter-

section graphs like interval, circular-arc, permutation, unit-disk, outer-string graphs,

etc. We have obtained several algorithmic and NP-Hardness results. In future, the

BCS problem can be explored in the approximation algorithm paradigm. Specifically,

let G be a vertex-colored graph and let OPT be the total number of vertices in an

optimal solution for the BCS problem. The objective is to design a polynomial-time

approximation algorithm that yields a solution H such that contains at least α×OPT

vertices and the difference of red and blue vertices in H is at most β.
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