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Introduction

“You cannot teach a man anything, you can only help him find it within himself.”

- Galileo Galilei.

1.1 Aim of the Thesis

This thesis focuses on two problems: The discrete logarithm problem and the class group compu-

tation problem. Besides the inherent mathematical appeal, both of these problems have a strong

cryptographical interest.

In particular, this thesis revolves around the study of index calculus algorithms for discrete loga-

rithms in finite fields of small and medium characteristic and for performing the relation collection

phase of class group computation. An improvement in the case when tag tracing is used in Pol-

lard’s Rho algorithm for computation of discrete logarithm for prime order fields is also noted.

1.2 The Problems

Problem 1. Discrete Logarithm Problem (DLP) : Let G be a finite cyclic group and

g be a generator of G. The discrete logarithm problem (DLP) in G is the following. Given a

non-zero element h of G, find i such that gi = h. This i is called the discrete logarithm of h to

base g which is written as i = logg h.

It may be noted that the description of the problem assumes that g is the generator of the group

G. It is also implicitly assumed that the order of the group, along with an efficient algorithm for

performing group operations is known.

Problem 2. Class Group Computation: Given a number field K with ring of integers OK,

compute the class group Cl(OK) of K or OK.

15
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1.3 Complexity Analysis of the Problems

The running time of any algorithm to tackle the problems is measured in terms of the input size.

Let Q be the cardinality of the considered group. By input size, we mean the total number of bits

used to represent the input in ordinary binary notation. The LQ(a, c) notation is used to express

the complexity of the algorithm concretely.

1.3.1 LQ(a, c) Notation

The LQ function may be viewed as a way of interpolating between polynomial ((logQ)c) and

exponential (Qc) time. The LQ function is defined as

LQ(a, c) = exp((c+ o(1))(logQ)a(log logQ)(1−a)) (1.1)

where 0 ≤ a ≤ 1 and c is a positive constant.

It may be seen that the double logarithm of the LQ function is a linear combination of the double

logarithms of the polynomial and exponential time. The value of the function at the two extreme

values of a is a polynomial (at a = 0) and exponential (at a = 1) in logQ. When 0 < a < 1, then

the algorithm is said to run in subexponential time. The aim would be to achieve lower values of

a and c to get better complexities. Sometimes, the second constant is simply ignored and LQ(a)

is used to mean LQ(a, c) for some c.

A problem is called easy in a particular context known there exists some algorithm to solve

it in polynomial time. If no polynomial time method is found for a problem, it is said to be hard.

Problems which are easy in one group can become hard in another. The degree of hardness is

quantified according to the complexity of the algorithm for solving it.

1.4 The Discrete Logarithm Problem

The computation of discrete logarithms is known to be a hard problem in general. Gauss [68]

mentioned the term index for discrete logarithms. The most naive method that may be used to

solve this problem is to keep on raising g to different powers until the desired target h is reached.

This method, although guaranteed to work, is not computationally practical when the group size

is large.

The notion of a problem being easy or hard in a particular context has already been defined in

section 1.3. Below we enlist some groups and the nature of the problem over that group.
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1.4.1 Discrete Logarithms over Well-known Groups

1.4.1.1 Hard Groups

The discrete logarithm problem is computationally hard over many well-known groups. Some

examples are: large-sized finite fields of the form F∗pn , subgroups of the multiplicative group of a

considerable-sized finite field, group of points on an elliptic curve over a finite field [64], divisor

class group of fixed genus hyperelliptic curves.

Finite fields of medium to large characteristics are an example where DLP is computationally

hard. Jacobians of algebraic curves, class groups of number fields provide other examples.

Depending on the situation over which DLP is considered, it is called discrete logarithm problem

over finite field or elliptic curve discrete logarithm problem (ECDLP) or hyperelliptic curve dis-

crete logarithm problem (HCDLP).

In HCDLP, computation of discrete log is attempted in the jacobian of the curve. Koblitz [112]

proposed utilisation of hyperelliptic curves in cryptography. Koblitz [111] and Miller [128] recom-

mended use of elliptic curves in cryptography. The complexity of implementing the group opera-

tion depends essentially on the product of the size of the base field and the genus. Implementing

genus two over a given field is roughly equivalent to implementing elliptic curve cryptography

over a field of twice the bitlength.

1.4.1.2 Easy Groups

The DLP is easy over additive groups (ZN ,+) for some integer N . The logarithm in case of

such groups is easily found in polynomial time by applying the Euclidean algorithm. Some other

examples of easy groups are elliptic curves of trace one [164, 152], hyperelliptic curves with trace

one [148] etc.

1.4.2 Applications in Cryptography

The intractability of the discrete logarithm problem in certain groups leads to schemes that rev-

olutionized cryptography. In the earlier half of twentieth-century, cryptography used was mostly

symmetric key encryption techniques. Such methods had some security, but had practical draw-

backs too. The key to encrypt would be the key to decrypt. Thus, it should be known by the

parties before exchanging the message. Exchange of such keys over an insecure channel left it

prone to the attack of any adversary observing the communications secretly.

A solution to all these problems was found by Diffie and Hellman [54] in 1976. They explained

how two parties can agree on a secret number over an insecure channel without the possibility

for a third party to recover this number. This seminal development, which led to asymmetric or
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public-key cryptography was based on the hardness of the discrete log problem.

The difficulty of the discrete logarithm problem is widely used to perform secure communi-

cation over the Internet. Most of the present public key cryptosystems are based on the hardness

of either discrete log problem or integer factorization problem. The Diffie-Hellman key agreement

protocol is based on the difficulty of DLP. ElGamal [55] discovered that this hardness can also be

used for encryption and signature. Schnorr [156] proposed an identification protocol based on a

zero-knowledge proof of knowledge of a discrete logarithm, which can be converted into Schnorr’s

signature scheme using the Fiat-Shamir transform [58]. The Paillier’s encryption scheme [139] is

a cryptosystem based on DLP in a group of unknown order.

Pairing-based cryptography made the advent of new schemes whose security is dependent on the

hardness of DLP. The primitives such as one-round tripartite key-agreement of Joux [95], identity-

based non-interactive key distribution [150], identity-based encryption schemes [27], short signa-

ture schemes [28], the traitor tracing scheme of Mitsunari, Sakai and Kasahara [129], identity-

based signature schemes [42], Boneh-Lynn-Shacham short signature scheme

[29] have their security based on the pairing assumption which again relies on DLP.

The NIST standard Digital Signature Algorithm [106] is also based on modified zero-knowledge

proof of knowledge of discrete logarithm.

1.4.3 Brief Introduction to Algorithms for Attacking DLP

The emphasis in this thesis has been mentioned before. In case of DLP, the works are under the

broad category of index calculus techniques. An improvement in the tag tracing variant of Pol-

lard’s Rho applied to prime order fields is also proposed. In this section, a short exposure to the

existing strategies is given considering the central theme into account. The previous algorithms

for ECDLP, HCDLP and DLP in other high genus curves are noted briefly without delving into

details. The central point of this section remains the application of index calculus methods to

compute discrete logarithms in finite fields of small and medium characteristic and generic algo-

rithms for solving DLP.

The known algorithms for DLP can be categorised into two major categories, namely, generic

algorithms (presented in chapter 2) which work in any group and index calculus algorithms (as

in chapter 4) which work in a special class of groups. The time complexity of the first class is

exponential while for the latter is subexponential.
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1.4.3.1 Generic Model and Best Complexity

Nechaev and Shoup [136, 162] introduced the generic model where for a group G given as a black

box, algorithms can only perform basic operations like applying group law, calculating inverses

and testing equality. The computational model of Nechaev permits the algorithm to do group

operations and equality tests, but does not allow any other operations. No encoding of group

elements was accepted by this model. The lower bound was on the number of group operations

and was valid for groups of prime order. This model was deterministic. Shoup extended the result

to a broader class of algorithms. Shoup’s model allows randomised algorithms. Both the models

propose that the lower bound on the complexity of generic algorithms is the square root of the

group order [136, 162]

1.4.3.2 Generic Algorithms

The best complexity in terms of time and memory is about the square root of the group order

with linear storage. Pollard’s Rho algorithm seems to be the best generic algorithm as it satisfies

both the conditions. Tag tracing under which group operations can be postponed and later done

together in one step, and the concept of distinguished points accelerate Pollard’s rho algorithm [43]

further. In Chapter 3, we have suggested improvements in the case of prime order fields when tag

tracing is used to perform Pollard’s Rho algorithm.

1.4.3.3 Index Calculus Strategies

The index calculus method is the best tactic to compute discrete logarithms. The three main

variants of index calculus apply to three different types of finite field with small, medium and large

characteristic. A rough estimate of the complexities are LQ(1
3) for number field sieve and function

field sieve, and log(Q)o(log(log(Q))) for quasi-polynomial algorithms where Q is the cardinality of

the considered group. Each index calculus method again consists of four main steps, namely:

precomputation of the factor basis, relation collection, linear algebra and individual logarithm

phase. The function field sieve applies to both medium and small characteristic. In the medium

prime case, Joux-Lercier variant [100] is most commonly used. Joux [99] introduced the important

idea of pinpointing. Sarkar and Singh [151] developed a sieving method relying on divisibility and

smoothness technique. This method combined with the pinpointing strategy lead to practical im-

provements. Solid accelerations happened in the relation collection and individual descent phases.

The 2-1 descent, which is the most crucial step of the descent algorithm improved due to usage

of the walk technique [151] along with the utilisation of additional degrees of freedom. All these

methods were utilised by us [Chapter 5] to perform record discrete log computation. The strategy

adopted in our work may be applied to arbitrary fields. Even for higher sized characteristic with

moderate extension degrees, such a method may be adopted for relation collection and descent.
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The presence of computational resources to perform linear algebra then suffices to perform dis-

crete logarithm computations in larger fields too.

The last step of discrete logarithm computation is composed of individual logarithm and descent.

For small characteristic fields with composite extension degrees, Waterloo algorithm [24, 25] was

used to perform the initial splitting step. Guillevic [84] had proposed another algorithm for ini-

tial splitting which is better than Waterloo. We [Chapter 6] have proposed an algorithm that

completes initial splitting with lesser cost.

There are various variants of Number field sieve (NFS), namely: the basic version of NFS, the

multiple number field sieve (MNFS), the tower number field sieve [14], extension of tower number

field sieve called exTNFS [107, 108] in case the extension degree of the finite field is composite,

special number field sieve [104] for primes having special form. MNFS itself again has two variants

namely, the asymmetric one [50] which is the one most generally used and the symmetric case [15].

Barring some weak cases, the attacks on ECDLP are always exponential. Due to this, it is

quite appropriate to use elliptic curves in various cryptographic schemes.

Adleman, DeMarrais and Huang [7] suggested the first subexponential algorithm for hyperelliptic

curves. For genus greater than the size of the base field, the time complexity was subexponential.

Later they [6] proposed another variant. Gaudry [65] suggested an alternative variant of Adleman-

Huang algorithm with the assumption that the group order is known. Nicolas Thériault [172] rec-

ommended an improvement to Gaudry’s algorithm using the idea of large primes. The runtime

was improved further by Gaudry et al. [66]. This led to DLP in some higher genus curves vulner-

able to index calculus algorithms [66]. There are similar results for non-hyperelliptic curves [57,

53].

1.5 Class Group Computation

The ideal class group of an algebraic number field K is the group of fractional ideals of K modulo

principal ideals. This ideal class group of the ring of integers (which is a maximal order of the

number field) is a finite abelian group and can be decomposed as Cl(OK) = ⊕iZ/diZ with di|di+1.

The class group computation problem is quite important and relevant as it provides information

about the structure of multiplication in the field. However, computationally it remains a difficult

problem to date. The structure of the class group is obtained from the di’s. A set of prime ideals

whose norms are bounded by some integer B, helps in computing a matrix. A linear algebra phase

on this matrix computes the di’s. The detailed procedure to compute the class group is given in

Section 7.3 of this thesis. Class group computation is one of the four major problems [143, 142] in

computational algebraic number theory postulated by Zassenhaus (the others being computation
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of unit group, ring of integers, Galois group).

1.5.1 Mathematical Perspective

Interestingly, ideal class groups were studied even before the formulation of the concept of ideal.

It was first recognised by Gauss [67] while working with class numbers of quadratic fields. The

formalisation of the idea of class group along with its connection with the non-uniqueness of fac-

torization in the ring of integers of the associated number field was studied by Kummer ([144],

Section 4.1) in the context of cyclotomic fields. Based on the work of Kummer in cyclotomic

fields, Dedekind developed the theory of the ideal class group for quadratic field extensions and

generalized it to all number fields [72].

Computation of class group provides numerical confirmation to unproven conjectures like heuris-

tics of Cohen and Lenstra [47] on the ideal class group of a quadratic number field, Littlewood’s

bounds [123], Bach bound [11] which is the minimal bound such that all prime ideals having norm

below it generates the ideal class group. Class groups play a significant role in computing the

Mordell-Weil group of elliptic curves with the descent method or the Brauer group computations

for representation theory [59].

Developments in the course of research in class groups led to further progress in other branches

of algorithmic number theory as well. The baby-step-giant-step algorithm of Shanks’ [159] was

initially discovered for computing class groups of imaginary quadratic number fields. Factoriza-

tion algorithms were also obtained from works regarding class group computation ([45], Sections

8.6 and 10.2). Also, Kummer’s work [144] played a significant role in the completion of Fermat’s

last theorem.

1.5.2 Cryptographical Viewpoint

Cryptosystems were initially described in the context of imaginary quadratic number fields due

to large class groups with size approximately about the square root of the discriminant of the

field. It has already been remarked in Section 1.4.1.1 of this thesis that DLP is a hard prob-

lem in class groups. Using this intractability, Buchmann and Williams [39] suggested a variant

of Diffie-Hellman key exchange protocol in class groups of imaginary quadratic number fields.

RDSA [86], which is a variant of the digital signature algorithm [156] is also linked with this

class group computation problem. NICE (New Ideal Coset Encryption) [141] utilises ideals in

imaginary quadratic number fields.

Class group computations for real quadratic number fields was also done [22, 153]. Later, higher

degree number fields were employed [23, 127]. Implementing this needed identification of families

of number fields having large class groups. Computing these class groups was done for various

degrees of number fields [167, 35, 118].
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McCurley [126] proposed the first subexponential algorithm for computing the class number of

a quadratic number field. The ideal class group of an imaginary quadratic number field offered

appropriate settings for the Diffie and Hellman key distribution scheme. Not much later, Hafner

and McCurley [85], suggested the first rigorous proof under the Extended Riemann Hypothesis

of the subexponentiality of the ideal class group computation in imaginary quadratic number

fields. Buchmann [34] generalized Hafner and McCurley’s algorithm to arbitrary degree number

fields. They computed the ideal class group and regulator in L∆K(1/2, O(1)) where ∆K denotes

the discriminant of the number field K. Alongside, systems of fundamental units of the maximal

order of number fields can be computed as well in subexponential time. This led to the solution of

norm equations like the Pell equation [119]. Buchman’s algorithm later led to Enge’s [56] subex-

ponential algorithm for computing discrete logarithms in Jacobians of high-genus hyperelliptic

curves. Knowledge about the structure of the class group can also be used to solve DLP ([90],

Chapter 13).

The computation of class group is also related with cryptosystems based on the hardness of find-

ing short vectors in ideal lattices, such as the homomorphic encryption scheme of Vercauteren

and Smart [165]. Isogeny computation between abelian varieties required ideal decomposition

which in turn needed the knowledge of class groups. Jao and Soukharev [91] did such compu-

tations in the case of elliptic curves. Fast techniques to derive relations in class groups of small

degree number fields can also be employed for evaluating isogenies between small genus curves

using methods of complex multiplication. Evaluating isogenies between genus g curves requires

relations in the class group of a degree 2g number field. This evaluation is done by expressing the

isogeny as a composition of lower degree isogenies derived from the relations. This has quite some

cryptographic applications in point counting and reducing DLP in Jacobian of a curve to another

group. Thus relations in the class group have wide applications in the form of computation of

class group, solving DLP in the class group of that order, computation of the generator of a

principal ideal in the chosen order, along with relation search in polarized class group.

The class group of Z[θ], for some suitable θ, can be used for factoring large numbers or solving

DLP using number field sieve algorithm [120]. In fact, relations in an arbitrary order can be

used to find a solution to the discrete log problem in the class group of that order. There is no

reduction known between discrete logarithm in the Jacobian of a curve and in the class group of

any order. This may again be used for the purpose of building cryptosystems.

1.5.3 Short Note on the Algorithms for Computing Class Group

Several attempts were undertaken to compute class groups. The earliest efforts were for quadratic

number fields while presently efficient algorithms exists for all number fields. The initial costs

were exponential which later improved to subexponential. The improvements were mostly done
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either in relation collection phase or to produce a good defining polynomial.

In 1968, Shanks’s [159, 160] proposed an exponential algorithm to compute the ideal class group

of an imaginary quadratic number field. It was based on the baby-step giant-step algorithm and

runs in time O(|∆K|
1
4

+ε) or O(|∆K|
1
5

+ε) under the extended Riemann hypothesis [122]. Attempts

to remove the restriction on degree was made by Pohst and Zassenhaus [145].

Later subexponential strategies were proposed [85, 34, 56, 57]. Cohen and Diaz y Diaz [48] sug-

gested an algorithm for reducing defining polynomials. Implementation of Hafner and McCurley’s

method was done [36, 37] along with some improvements to it. Further advancements were sug-

gested in [37, 89, 37, 168, 46].

More recently certain improvements [19, 20, 21, 71, 69, 70] produced simplified algorithms. Ex-

haustive classification of number fields was introduced by Gélin and Joux [71]. The latest works

in this arena [69, 70] provides suitable algorithms for each kind of number field under the classi-

fication in [71].
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1.6 Thesis Lay-Out

1.6.1 Chapter Organization

The thesis is subdivided into three parts. The first part is devoted to the discrete logarithm

problem. The second part deals with class group computation.

Chapter 2, 4 and 7 are background chapters which provide a gateway to the research works

presented in the thesis. Naturally, more stress is given on the concepts which are needed for the

chapters focusing on research works. A short study of the generic algorithms for discrete log is

done in Chapter 2. This is followed by an improvement of Pollard’s Rho algorithm in case of

prime order fields in Chapter 3. Next, the index calculus techniques for finding discrete logarithm

is presented in Chapter 4. Chapters 5 and 6 provide advances in index calculus strategies to

compute discrete logarithms along with the corresponding implementations. Chapter 7 provides

a note regarding class group computations. An index calculus advancement to compute class

groups is illustrated in Chapter 8.

The research papers provide an implementation of the newly introduced techniques. Altogether,

there are four new research works: Chapters 3, 5 and 6 and 8. In case of DLP, leaving aside the

improvement in the tag tracing variant of Pollard’s Rho for prime order fields in chapter 3, all

others are improvements to scenarios where index calculus algorithms are used. Chapter 8 also

provides an index calculus technique to compute class groups.

1.6.2 Research Works on Which the Thesis Is Based

1. [132] Madhurima Mukhopadhyay and Palash Sarkar. Combining Montgomery multi-

plication with tag tracing for the pollards rho algorithm in prime order fields. 2021.

https://eprint.iacr.org/2021/043.

2. [135] Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, and Emmanuel Thomé.

New discrete logarithm computation for the medium prime case using the function field

sieve. Advances in Mathematics of Communications, 2020. https://www.aimsciences.or

g/article/doi/10.3934/amc.2020119.

3. [133] Madhurima Mukhopadhyay and Palash Sarkar. Faster initial splitting for small char-

acteristic composite extension degree fields. Finite Fields and Their Applications, 62:101629,

2020. https://www.sciencedirect.com/science/article/abs/pii/S107157971930132

7.

4. [134] Madhurima Mukhopadhyay and Palash Sarkar. Pseudo-random walk on ideals: Prac-

tical speed-up in relation collection for class group computation. Cryptology ePrint Archive,

Report 2021/792, 2021. https://eprint.iacr.org/2021/792.

https://eprint.iacr.org/2021/043
https://www.aimsciences.org/article/doi/10.3934/amc.2020119
https://www.aimsciences.org/article/doi/10.3934/amc.2020119
https://www.sciencedirect.com/science/article/abs/pii/S1071579719301327
https://www.sciencedirect.com/science/article/abs/pii/S1071579719301327
https://eprint.iacr.org/2021/792
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1.6.3 Background

• The first part of this introductory chapter provides a brief overview of the importance

of both the problems. Both mathematical, as well as cryptographical aspects are covered.

The techniques that have been used previously to solve them is also described in a nutshell.

• Chapter 2 is an overview of the generic algorithms for computing discrete logarithms. A

short discussion of adding walks and tag tracing for Pollard rho algorithm is also done.

• Chapter 4 is a brief exposure to the index calculus algorithms for DLP. The L notation

for complexity is utilised to categorise the finite fields in terms of the suitability of various

index calculus algorithms. A general introduction to the various steps of index calculus

algorithms is given along with an example. Details about linear algebra and smoothness

issues are next discussed. This is followed by a description of the function field sieve when

the characteristic of the field is a medium or a small prime. Previous works in these two

cases are also mentioned. The Waterloo algorithm for initial splitting is given here. The

chapter concludes with a very brief note about number field sieve.

• Chapter 7 provides a short summary on the existing strategies to compute the class group.

The related problems along with some more cryptographic applications in addition to those

mentioned in Section 1.5.2 is also given. Presently index calculus class of algorithms are

used to tackle this problem. The detailed steps of the method are discussed in the context of

class group computations. The verification strategy to ensure correctness is also explicitly

given. It ends with the description of some previous works.

1.6.4 Brief Note on the Research Undertaken

• Speeding up Pollard’s Rho Algorithm in Prime Order Fields with Tag Tracing

and Montgomery Multiplication: This work [132] is described in Chapter 3. It leads

to a speed up of Pollard’s rho algorithm [147] in fields of prime order at no additional cost.

It is known that Pollard’s rho algorithm [147] is the best generic algorithm to compute

discrete logarithm. The complete discrete logarithm in a finite field is found by applying

Pollard’s rho in sub-problems that may arise when index calculus algorithms are applied.

The tag tracing variant [43] of Pollard’s rho is considered. This is done as practical improve-

ments are possible in certain groups using this. Concrete speed-ups were also demonstrated

for prime order subgroups of multiplicative groups of finite fields. An integral part of per-

forming this algorithm is field multiplication. In a finite field, Fp, a field multiplication

consist of an integer multiplication and a reduction modulo p. For arbitrary primes lacking

structural speciality, modular reduction is quite costly. A large chunk of the time necessary

to perform field multiplication is due to the cost of modular reduction. We have intertwined
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the technique of Montgomery multiplication [131, 30] with tag tracing. As a result, the

expensive modular reductions are completely replaced by divisions by a suitable power of

two. The implementation of these divisions is easy as it is just right shift operations. In

doing this, we do not compromise any advantage that tag tracing offered. The essential

difference is instead of doing field multiplication after a certain number of steps we just do

a Montgomery multiplication after the same number of steps. The net result of our work is

that a speed-up is obtained without any additional costs of memory.

• A Record Discrete Logarithm Computation and Analysis of Previous Strategies

for the Medium Prime Case Using the Function Field Sieve: This work [135] is

described in Chapter 5. It successfully combats the challenge to perform a larger discrete

logarithm computation for a medium prime case field than what had been reported earlier

without losing generality. It inspects the mechanisms and computes a record discrete log

for a field with 22-bit characteristic and 1051-bit size.

This work, reports progress in discrete logarithm computation for the general medium prime

case using the function field sieve algorithm. A new discrete logarithm computation over a

1051-bit field having a 22-bit characteristic was performed. This is a record computation ht

tps://dldb.loria.fr/?filter=all&sort=date. Fields of size 1175-bit and the 1425-bit

have been considered earlier [99]. But it is noteworthy that these fields, enjoyed advantage

offered by the Kummer extension property. This made the factor base size small and 2-1

descent easier. In particular, for the fields considered in [99], 20-bit factor bases suffice

whereas in our case a 23-bit factor basis is required. Some previously known techniques of

the earlier works [99, 151] are improved as well as implemented. An increase in the size of

the field makes various steps of the function field sieve more complicated. Our study delves

into these difficulties. The linear algebra step along with descent form the main stumbling

blocks. The various techniques of descent [151] like alternating walk and branching were

implemented efficiently. This scanning reveals that the same procedures are sufficient for

doing relation collection and descent for even larger fields with 32-bit characteristic and

moderate extension degrees. The linear algebra step remains the most time-consuming step.

The manner in which the various methods are used in this paper, is equally applicable for

any general medium prime field with or without special relation between various parameters.

• Faster Initial Splitting for Small Characteristic Composite Extension Degree

Fields: This work [133] is given in Chapter 6. It proposes a new algorithm for initial

splitting in small characteristic fields of composite extension degree. It is better than the

other existing algorithms like Waterloo algorithm [24, 25] and Guillevic’s [84] initial splitting

algorithm. Implementation https://github.com/Madhurima11/faster-initial-splitt

ing of the new algorithm has also been done. Our algorithm reduces the cost of generation

https://dldb.loria.fr/?filter=all&sort=date
https://dldb.loria.fr/?filter=all&sort=date
https://github.com/Madhurima11/faster-initial-splitting
https://github.com/Madhurima11/faster-initial-splitting
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of polynomials which are to be tested for smoothness. The usage of this algorithm is

appropriate when attempting record discrete logarithm computations over such fields.

We consider the problem of computing discrete logarithms with function field sieve in Fpn
for a small characteristic p and composite n. The last phase of the function field sieve,

namely the individual logarithm step itself again consist of two sub-steps of initial splitting

and descent. The focus in this work is on the initial splitting phase. The standard algorithm

for initial splitting for such fields is the Waterloo algorithm [24, 25]. Guillevic [84] proposed

another algorithm for initial splitting over these fields. It enjoyed the advantage of checking

the smoothness of a single polynomial instead of two required by the Waterloo algorithm.

Time required for generating a polynomial by our method is significantly lower than the

time for generating a polynomial using the Guillevic splitting algorithm. The smoothness

probabilities and time for testing smoothness is almost the same in both the algorithms.

Additionally, our algorithm is completely parallelizable compared to some sort of semi-

parallelism possible for Guillevic’s algorithm.

• Practical Speed-up in Relation Collection Phase of Class Group Computation

of Large Degree Fields: This work [134] is presented in Chapter 8. Our algorithm accel-

erates the relation collection phase. Theoretical prediction has been confirmed by practical

implementations.

The latest work in the series of improvements to the relation collection phase was suggested

by Gélin [69] for large degree fields (This definition of large depends on some other pa-

rameters instead of the usual sense). Broadly, the steps of Gélin’s algorithm are: random

generation of ideals, lattice reduction techniques to obtain a small element of the generated

ideal, constructing a new ideal utilising the principal ideal generated by the small element

followed by obtaining a relation if the new ideal is smooth for some parameter. The ran-

dom generation of ideals in the first step of Gélin’s algorithm is done by multiplying some

considerable number of ideals of the factor basis which are chosen randomly. Our algorithm

performs a pseudo-random walk on ideals with the help of a precomputed table of ideals.

The time to pre-compute a table in the offline phase is negligible. In the online phase, each

step of our walk requires a single multiplication instead of many in the first step of Gélin’s

algorithm. The later steps remain the same as that of Gélin’s strategy. In our algorithm,

there is some savings of time in each step due to the lower number of multiplications. Ex-

periments for degrees 10, 15, 20, 25 were done to compare Gélin’s method and our algorithm.

It has been seen in all these cases that the time required by Gélin’s technique was about

2.86 to 3.39 times more. This suggests that practically our algorithm is about three times

faster than Gélin’s method in these cases though the asymptotic costs are the same. Our

algorithm could also successfully compute a large number of relations for the bigger fields.
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1.6.5 Concluding Chapter

• Chapter 9 is the chapter that concludes this thesis. Along with that, some future research

directions have been shown.



Part I

Discrete Log Problem over Finite

Fields
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Chapter 2

Generic Algorithms for the Discrete

Logarithm Problem

It has already been mentioned before that algorithms for solving discrete logarithm problems are

classified into generic algorithms and non-generic algorithms.

Generic algorithms for the discrete logarithm problem are those algorithms that utilise only the

group operation and no other algebraic structure or special properties of the group. The generic

model has been detailed in Section 1.4.3.1 of this thesis. This is the reason they can work in

any cyclic group. The running time of all the generic algorithms is exponential. As discussed in

Section 1.4.3.1 of this thesis, the best complexity is about the square root of the group order with

constant storage.

The generic algorithms are presented in the succeeding sections. It is assumed implicitly that

the group order is known or the problem of computing it is easier than the discrete logarithm

problem. Also, it is assumed that multiplications, exponentiations, inverses in G can be computed

in time polynomially bounded by the input size. In the descriptions that follow, the order of the

group G is represented as #G.

2.1 Exhaustive Search

This is the most naive algorithm. It computes the powers of g until the element h is found. The

worst-case running time is O(#G) group operations and so it is highly inefficient for groups of

cryptographic interest.

2.2 Shanks’ Baby-Step Giant-Step Method

Shanks’ Baby-Step Giant-Step (BSGS) is a time-memory trade off method as it reduces the time

of brute force search in exchange of extra storage.

31
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Let m = d
√

#Ge, then, the required logarithm can be expressed as

logg h = qm+ r (2.1)

where 0 ≤ q, r < m where the ordering between q and m arises due to the choice of m and the

ordering of r and m is attributed to Euclid’s division lemma.

From equation (2.1), glogg h = gqmgr, which implies,

h(g−m)q = gr. (2.2)

The essential idea of the algorithm is to find q and r by searching the match of equation (2.2) by

computing powers g and g−m. The target logarithm can then be computed from equation (2.1).

The method is outlined in the following algorithm.

Input: The generator g of G and the target h.

Output: logg h.

0.1 m← d
√

#Ge
0.2 /*Baby steps*/

0.3 Initialize an easily searchable structure T .

0.4 Insert (0, 1) and (1, g) in T

0.5 Set t = g

0.6 for i← 2 to (m− 1) do

0.7 t← t · g
0.8 Insert (i, t) in T

0.9 end

0.10 Sort T with respect to the second coordinate.

0.11 /*Giant steps*/

0.12 Set t = h,w = g−m

0.13 for j ← 0 to (m− 1) do

0.14 if (i, t) ∈ T for some i then

0.15 return i+ jm

0.16 else

0.17 t← tw

0.18 end

0.19 end

Algorithm 1: Baby-step giant-step algorithm.

The BSGS algorithm is deterministic. The overall time and space complexity turn out to be

O(
√

#G). The large storage requirement of this algorithm restricts its application. A demonstra-

tion of the algorithm is given in [Section 11.5.1, [113]].



Chapter 2. Generic Algorithms for the Discrete Logarithm Problem 33

2.3 Pohlig-Hellman Algorithm

The Pohlig-Hellman (PH) method assumes that the prime factorization of the order of the group

is known. Let #G =
∏k
i=1 p

αi
i . The main idea in the PH algorithm is to compute the logarithms

modulo the smaller prime factors pi and find out the entire logarithm by Chinese Remainder

Theorem (CRT).

For any prime pi present in factorization of #G, both g and h is projected into subgroups of order

pi
αi as gi = g

#G
pi
αi ∈ G and hi = h

#G
pi
αi ∈ G. Both gi, hi are elements of G. The order of gi is pi

αi .

We next describe the strategy to obtain li such that glii = hi holds where li ≡ logg h mod pi
αi .

All such li, ∀i ∈ [1, k] are utilised to find the entire logarithm by applying CRT.

The explanation given below shows how the PH method computes the discrete log modulo a single

pi with exponent αi in the factorization of the group order. This is called the Hensel Step.

Let p = pi, α = αi, l = li. Also, let the p-ary representation of the target l be l = d0 + d1p+ . . .+

dα−1p
α−1. The note given below describes the method to compute a single dj , 0 ≤ j ≤ (α− 1).

Setting g0 = gi
pα−1

and h0 = hi
pα−1

, the discrete logarithm of h0 with base g0 in the subgroup of

order p is d0.

Using the process of induction for known values of d0, d1, . . . , di−1 we have the equality,

higi
−(d0+d1p+...+di−1p

i−1) = gi
pi(di+di+1p+...+dα−1pα−1−i). (2.3)

Both the elements on the left and right are elements of G. Multiplying both sides by pα−i−1, the

right side is a power of g having one of the factors of the exponents as di. The occurrence of

di+1, . . . , dα−1 vanish simply as the order of gi is pα. After substituting the known values di may

be obtained as the discrete logarithm in a subgroup of order p. Any generic algorithm can be

utilised to compute it.

The above process may be done for each of the primes in the factorization after which an appli-

cation of the Chinese Remainder Theorem gives the required logarithm for the group. Thus, this

method is a divide and conquer strategy which first computes the smaller discrete logarithms in the

subgroups of order pi
αi . The run-time of the algorithm turns out to be O(

∑k
i=1 αi(log #G+

√
pi))

which makes a worst-case running time of O(
√

#G). The average run-time is taken as O(
√
pl)

where pl is the largest prime present in the factorization of #G.

It may be noted that the Pohlig-Hellman algorithm is effective if the group order is known be-

forehand and is smooth with respect to some integer, i.e., each prime factor is small enough. In

situations where any of these conditions fail, the application of the algorithm is not possible.

An example describing the algorithm is available in Section 13.2 of [63].
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Next, the description of Pollard’s rho algorithm is given. This algorithm is narrated in a

detailed way stressing especially on tag tracing which is required later as a background of the

improvement that we have suggested in Chapter 3.

2.4 Pollard’s Rho Algorithm for Computing Logarithms

Pollard’s rho algorithm for computing discrete logarithms is a probabilistic algorithm based on

birthday paradox ([63], Section 14.1).

We assume that G is a cyclic group of prime order. Originally, Pollard [147] suggested this

algorithm for application in F∗p, but the iteration function used by him can be used for any cyclic

group. We assume that this group G can be partitioned into at most three equal sized subsets

based on some easily identifiable compatible property. Let G = G0 ∪G1 ∪G2 so that G1 does not

contain the identity element of the group G. The pseudo-random walk is defined as follows:

gi+1 = F (gi) =


g · gi if gi ∈ G0,

g2
i if gi ∈ G1,

h · gi if gi ∈ G2.

(2.4)

The element g0 can be fixed as any arbitrary element of the group. In general, it is fixed as the

identity element which is changed if some unsuccessful collision somehow occurs within the walk.

The sequence in 2.4 may be defined in another fashion as gi = gaihbi so that

ai+1 =


(ai + 1) mod #G if gi ∈ G0,

2ai mod #G if gi ∈ G1,

ai if gi ∈ G2,

(2.5)

bi+1 =


bi if gi ∈ G0,

2bi mod #G if gi ∈ G1,

(bi + 1) mod #G if gi ∈ G2.

(2.6)

The function F is said to be exponent traceable when the output after operating F can be

expressed as powers of g and h if the input of F is so, i.e., there exists easily computable functions

Fg and Fh so that

F (gahb) = gFg(a,b)hFh(a,b). (2.7)

It may be observed that for gi = gahb ∈ G0, F (gi) = ga+1hb. Then F turns out to be exponent

traceable for G0 with Fg(a, b) = a+ 1 and Fh(a, b) = b. The same nature of exponent traceability
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of F holds with just different functions Fg and Fh if any other subset of G is considered.

In such a pseudo-random walk, a collision is expected after roughly O(
√

#G) steps according to

the birthday paradox. The walk is composed of an initial tail and a cyclic part. This looks like

the Greek letter rho which signifies the name of the algorithm. After a collision gi = gj , j > i has

been found,

gaihbi = gajhbj . (2.8)

Taking logarithm with respect to g,

logg h = (ai − aj)(bj − bi)−1 mod (#G). (2.9)

This logarithm is computable only when the inverse exists, i.e., gcd(bj − bi,#G) = 1. If this fails

to hold, a fresh walk is started with some other starting point g0.

It is here noteworthy that the recovery of logarithm from equation (2.8) is possible because the

sequence gi is a sequence in a smaller set compared to (ai, bi). Due to this difference in size of the

domain set, collision in the former sequence in most cases is not a collision in the later. Various

collision detection techniques, which will be discussed later, are used for detecting such a collision.

The expected running time is about O(
√

#G) which is same as the baby step giant step method.

Finding collision in a naive way by using the birthday paradox would lead to storage complexity

same as the BSGS algorithm. The cycle finding algorithms utilise the rho shape of the walk to

find a collision using constant amount of storage. The memory requirement is thus O(1).

2.5 Collision Detection Methods

Collision detection methods aim to look for a collision at the cost of some additional iterations.

We discuss some collision detection methods.

Floyd’s Algorithm: Knuth [110] stated the idea that for a sequence xi, there exists i, such

that µ ≤ i ≤ (µ + λ) and xi = x2i holds. The integers µ, λ are the pre-period and the period

of the sequence xi respectively. When the sequence is created by iterating a random function,

the value of (µ + λ) is close to
√

π#G
2 so 3

√
π#G

2 iterations are sufficient to get a collision. The

storage required is negligible.

Brent’s Method: Teske [171] applied this method to store the eight most recent gk for which

k is a power of three. Collision is searched among the i-th iteration element gi and the stored

elements. For a random iteration function it requires about 1.229
√

π#G
2 iterations.
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Nivasch Stack-Based Cycle Detection: The central idea of this algorithm was suggested by

Nivasch [137]. The algorithm starts with an empty stack. As the process continues, a stack of

pairs is maintained, where each pair consist of the element at the i-th iteration gi along with the

integer i. An essential property of the sequence comsisting of pairs (gi, i) is that both gi and i are

strictly increasing sequences. One starts with an empty stack and at each step i, all entries (gj , j)

such that gj > gi are removed. If some element with value equal to that of gi is found, then the

process is stopped as a collision is found. Otherwise, gi is pushed to the top of the stack and the

process is continued. This algorithm has linear run-time with logarithmic memory. By using the

technique of partitioning, the time required to find a collision can be lessened.

Distinguished Point Method: A distinguished point is a point in G that satisfies some

easily testable property. One begins with an empty table of distinguished points. Distinguished

points encountered in the random walk are added to the table. A collision is searched only

among these points. As a drawback, some extra iterations, have to be performed after the initial

collision. The number of extra iterations is equal to the inverse of the probability of a point being

distinguished. To make extra iterations minimum, the distinguishing property is chosen so that

sufficient elements satisfy such property. The table size also has to be easily manageable. The

most common example of distinguishing property is some most or least significant bits being zero.

This method can also be parallelized.

2.6 Parallelization of Pollard’s Rho Algorithm

The Pollard’s rho algorithm can be parallelized with each process performing the pseudo-random

walk with the same algorithm. The initial points differ from one another. The entire system stops

when a collision is encountered (between two different processes or the same process). In such a

scenario where the processes do communicate with each other, the time complexity decreases by a

factor of m, where m is the number of processes. However, there must exist a central server that

stores all the computed elements leading to a storage complexity of O(
√

π#G
2 ). This storage may

be reduced at the cost of some extra iterations by using the idea of distinguished points [175].

This reduction of memory requirement can be huge as it is obtained by dividing the previous

storage by the number of iterations needed to get a distinguished point.

2.7 Adding Walks and Tag Tracing for Pollard’s Rho

We next discuss Pollard’s rho with adding walks and tag tracing applied to prime order fields.

Let the prime be p. Several variants of this algorithm have been studied. We briefly mention the

variant introduced in [158].
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Let r be a small positive integer. For i = 1, . . . , r, random integers αi, βi ∈ {0, . . . , p − 2} are

chosen such that both αi and βi are not zeros. Some integers mi are defined as mi = gαihβi ,

i = 0, . . . , r− 1. A pre-computed table T stores the entries (i,mi, (αi, βi)) for i = 0, . . . , r− 1. An

indexing function s is defined as: s : G→ {0, . . . , r − 1}. Using s, a sequence of elements of G is

defined as follows. Integers a0, b0 are randomly chosen and fixed so that, a0, b0 ∈ {0, . . . ,#G−1}
and an initial point for the walk is set as g0 = ga0hb0 . For j ≥ 0, the next point of the walk

is defined from the previous point as gj+1 = gjms(gj). The sequence g0, g1, g2, . . . is heuristically

assumed to be a pseudo-random walk on G for suitable value of r and proper choice of the function

s.

Writing gj = gajhbj for j ≥ 0, we have aj+1 = aj +αs(gj) and bj+1 = bj +βs(gj). So, it is easy

to obtain aj+1 and bj+1 from aj and bj . Since G is finite, there must exist some j and k, with

j < k such that gj = gk, i.e., the pseudo-random walk must lead to a collision. Denoting logg h

by d, the condition gj = gk leads to the relation aj + dbj = ak + dbk. Under the condition that

bj − bk is invertible modulo #G (which holds with high probability for large p and appropriate

group G), we have d = (aj − ak)(bk − bj)−1 mod #G.

It may be noted that each iteration of the r-adding walk requires a negligible amount of

information for processing. This paves the way for performing the group operations later in a

single step, thus saving some per-step costs.

Tag Tracing: The concept of tag tracing is a time-memory trade-off introduced by Cheon et.

al. [43]. In the pseudo-random walk defining Pollard’s rho algorithm, the computation of gj+1

from gj is done by multiplying gj and ms(gj). So, each step requires a multiplication of group

elements. The tag tracing method was introduced in [43]. The essential idea is to increase the

size of the pre-computed table so that a group multiplication is required after every ` steps for a

suitable choice of the parameter `. The computation done in the intermediate steps between two

group multiplications is significantly faster than a group multiplication.

The set of multipliers M = {mi : mi = gαihβi , i = 0, . . . , r − 1} is defined as in the case of

the original Pollard’s rho algorithm. A parameter ` is chosen and M` is denoted as the set of all

possible products of at most ` elements from M. The elements of M` can be indexed by vectors

of the form (i1, . . . , ik) where i1, . . . , ik ∈ {0, . . . , r − 1} and 0 ≤ k ≤ `. Given x = (i1, . . . , ik),

the element ofM indexed by x is mx = mi1 · · ·mik . Note that if x′ is obtained by permuting the

components of x, then mx′ = mx. So, we will assume that the vector x satisfies i1 ≤ i2 ≤ · · · ≤ ik.
A pre-computed table Tab is created. The rows of Tab are as follows.

(x,mx, (a.b), (m̂0, . . . , m̂d−1))

where

• x = (i1, . . . , ik), with 0 ≤ k ≤ `, i1, . . . , ik ∈ {0, . . . , r − 1}, i1 ≤ i2 ≤ · · · ≤ ik
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• mx = mi1 · · ·mik mod p,

• (a, b) is such that mx = gahb.

We explain the component (m̂0, . . . , m̂d−1) later. The table Tab is stored as a hash table (or,

some other suitable data structure), so that given an appropriate vector x, it is easy to locate the

corresponding row of Tab.

The indexing function s : G → {0, . . . , r − 1} defines the pseudo-random walk. Tag tracing

requires an auxiliary indexing function s : G×M` → {0, . . . , r − 1} ∪ {fail}, such that

if s(y,m) 6= fail, then s(y,m) = s(ym).

Suppose the element at the j-th step of the pseudo-random walk is gj . The elements in the

next ` steps are gj+1, . . . , gj+`. For 1 ≤ i < `, recall that in the Pollard’s rho algorithm gj+i =

gj+i−1ms(gj+i−1). Iterating leads to the following.

gj+i = gj+i−1ms(gj+i−1)

= gj+i−2ms(gj+i−2)ms(gj+i−1)

= · · ·

= gjms(gj)ms(gj+1) · · ·ms(gj+i−1).

The goal of the tag tracing method is to avoid computing the intermediate elements gj+1, . . . , gj+`−1

and instead jump directly from gj to gj+`. This requires obtaining the elementms(gj)ms(gj+1) · · ·ms(gj+`−1)

and so in particular, the index values s(gj), s(gj+1), . . . , s(gj+`−1). Since gj is available, s(gj) can

be directly obtained. For i > 1, the value of s(gj+i) is obtained using the auxiliary tag function

s as

s(gj+i) = s(gjms(gj)ms(gj+1) · · ·ms(gj+i−1))

= s(gj ,ms(gj)ms(gj+1) · · ·ms(gj+i−1)).

The elements ms(gj)ms(gj+1) · · ·ms(gj+i−1) for i = 0, . . . , `− 1 are elements of M` and are part of

the pre-computed table.

In the tag tracing method, a tag set T is identified. The index function s is defined as the

composition of a tag function τ : G→ T and a projection function σ : T → {0, . . . , r−1}, i.e., for

y ∈ G, s(y) = σ(τ(y)). Similarly, the auxiliary index function s is defined as the composition of

an auxiliary tag function τ : G×M` → T and a projection function σ : T → {0, . . . , r−1}∪{fail},
i.e., for y ∈ G and m ∈M`, s(y,m) = σ(τ(y,m)).

The definitions of τ, σ, τ and σ depend on a number of parameters. The two basic parameters

are the prime p and the size of the index set r. The tag set is T = {0, . . . , t−1} which also defines

the parameter t. The parameter u is taken to be a suitable word size and d is defined to be
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d = dlogu(p − 1)e. An integer t is chosen such that t > d(u − 1) and tt < p1/3. The parameter

w is defined to be w = tt. Finally, the parameter r is defined so that rr = t. As shown in [43],

it is possible to choose all the parameters (other than p) to be a power of 2. Based on these

parameters, the functions τ and σ are defined as follows.

τ(y) =

⌊
y mod p

tw

⌋
; σ(x) = bx/rc. (2.10)

where w = d pwe. To define the function τ , elements of y ∈ F?p are represented in base u as y mod

p = y0 +y1u+ · · ·+yd−1u
d−1. Given m ∈M`, for i = 0, . . . , d−1, define m̂i = b(uim mod p)/wc.

Since u is fixed, for each m ∈ M`, the values m̂0, . . . , m̂d−1 are pre-computed and stored in the

table Tab along with m (as mentioned earlier).

Given y ∈ G and m ∈M`, the value of τ(y,m) is defined to be the following.

τ(y,m) =


(∑d−1

i=0 yim̂i

)
mod w

t

 .
Given x ∈ T , the function σ is defined as follows.

σ(x) =

{
fail if x ≡ −1 mod r,

bx/rc otherwise.

The proof of correctness of the tag tracing procedure based on the above definitions of s and s is

complex. We refer to [43] for details. The use of tag tracing for Pollard’s rho requires a suitable

definition of distinguished point. Again, we refer to [43] for details.

The computation of s has a chance of failure. In case of failure, a field multiplication is

required. Otherwise, a field multiplication is required after every ` steps. The computation of s

requires the computations of τ and σ. The quantities m̂0, . . . , m̂d−1 are part of the pre-computed

table. So, for the computation of τ , the d multiplications yim̂i, i = 0, . . . , d − 1 are required.

Apart from these, all other computations are divisions by w, t and r. Since these are chosen to

be powers of 2, such computations are very fast. Overall, the computation of s is significantly

faster than a field multiplication.

Our description of tag tracing has been in the context of DLP computation in a multiplicative

subgroup of F?p as given in [43]. The method can be applied to any finite cyclic group for which

suitable tag and projection functions can be defined [43].

The net effect of tag tracing along with r adding walk and the idea of distinguished points

lead to much faster discrete log computations. It has been reported by Cheon et. al. [43] that

implementations in specific fields lead to at least 10 times faster results than the previous algo-

rithms. This improvement is attributed to the fact that computing a smaller number of bits of a
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random element and a preset element of the group is time-saving when compared to computing a

full product. Computation of each iteration quicker with the aid of precomputed tables outgrows

the disadvantage of a slight increase in the number of iterations. Tag Tracing applied to elliptic

curves also leads to a small speed-up [31].

2.8 Pollard’s Kangaroo Algorithm

This is another generic algorithm discovered by Pollard [147]. It is called the kangaroo or lambda

method. It is especially useful when it is known that the target logarithm lies in some smaller

interval [a, b] with (b− a) < #G.

In the Rho method, a single random walk is used in the shape of the Greek letter ρ while the

Lambda method uses two walks in the shape of the Greek letter λ. It is described by employing

two different random walks performed by two kangaroos. Kangaroo in this context means a

sequence of elements in the group whose logarithm increases by successive jumps.

Two kangaroos are defined, a tame one with starting point ga and a wild one with starting point

h. The logarithm of each of the elements of the tame kangaroo sequence with base g is always

known which is not the case of wild kangaroos. A jump function associates to each element of G

a positive nunber upper bounded by
√
b− a.

The classical method is to partition G into almost equal sized subsets Gi, i = 0, 1, . . . , k with

k = blog2 ( b−a2 )c and use a jump function j(x) = 2i if x ∈ Gi. The iteration function is set as

F (x) = x · gj(x).

The tame kangaroo sequence Ti and the wild kangaroo sequence Wi is defined respectively by T0 = ga,

Ti+1 = F (Ti), W0 = h,

Wi+1 = F (Wi).

The known logarithm of each Ti is a+
∑i−1

t=0 j(Tt). This is noted at each step and whenever this

value exceeds b, the algorithm is aborted with Tn = gln . Once such a point Tn has been encoun-

tered, we begin the wild sequence and keep a track of the jumps taken. This sequence is halted

when either Tn is found again or when the sum of jumps exceeds the length (b−a) of the interval.

We denote the former case by success and the later by failure. After successful completion with

a match of Tn and Wi = hgwi the logarithm can be obtained as logg h = (ln − wi). In case of

failure, a new wild kangaroo may be started with some point W0 = hgw0 for some small integer

w0.

It may be noted that, unlike BSGS, storage of every element is not required. For comparison,
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only the last element of the tame kangaroo is to be stored. More details regarding the walk are

present in the original work [147] and other works [146, 170]. This algorithm has good success

probability [130]. The expected runtime is O(
√
b− a) with constant memory requirement. It may

be also used in the entire interval but in that case, though the asymptotic complexity is the same

as the rho method, the rho method is better due to the associated constants.

Van Oorschot and Weiner [175] presented an improved version that uses distinguished points. As

this Kangaroo method uses a special type of r-adding walk as well as distinguished points, so tag

tracing can be applied.

It is seen that except for the baby-step-giant-step algorithm, all other generic algorithms presented

here have linear memory requirement. The BSGS algorithm and its variants are deterministic

while Pollard’s Rho and its variants are probabilistic. All of these processes may be distributed

to obtain gain in time by the number of processors. The baby step giant step, as well as Pollard’s

Rho algorithm have O(
√

#G) time complexity. The exhaustive search has runtime O(#G), while

Pollard Kangaroo and Pohlig-Hellman have time complexity O(
√
b− a) and O(

√
pl) respectively

where [a, b] is the interval-length for kangaroo method and pl is the largest prime in the factor-

ization of the group order for Pohlig-Hellman.

It thus follows from the discussion in the previous paragraph that Pollard’s Rho algorithm offers

the best time and space complexity in the case of generic algorithms. This paves the path to

the next chapter where we suggest improvements in the case of prime order fields having large

characteristic.





Chapter 3

Combining Montgomery

Multiplication with Tag Tracing for

Pollard’s Rho Algorithm in Prime

Order Fields

3.1 Introduction

In this chapter, we show how to apply Montgomery multiplication to the tag tracing variant of the

Pollard’s rho algorithm applied to prime order fields. This combines the advantages of tag tracing

with those of Montgomery multiplication. In particular, compared to the previous version of tag

tracing, the use of Montgomery multiplication entirely eliminates costly modular reductions and

replaces these with much more efficient divisions by a suitable power of two.

It has already been stated in chapter 2 that the best known generic algorithm for solving DLP is

Pollard’s rho algorithm [147]. The resources required by the algorithm is
√

#G time and negligible

space. For the DLP on finite fields, faster algorithms, namely the function field sieve and the

number field sieve, are known. There are situations, however, where Pollard’s rho algorithm is

used for solving some of the sub-problems that arise while solving the DLP over finite fields. We

refer to [99, 151, 135] for examples of such usage.

Since its introduction, several variants of Pollard’s rho algorithm have been proposed. In

particular, the tag tracing variant, as mentioned in Section 2.7 of this thesis showed the possibility

of obtaining practical speed-up of Pollard’s rho algorithm for certain groups. Concrete speed-ups

were demonstrated for prime order subgroups of multiplicative groups of finite fields. Two kinds of

fields were considered in [43], namely, prime order fields and small characteristic, large extension

degree fields. We focus on the application of tag tracing to prime order fields.

43
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Let p be a prime, Fp be the finite field of p elements. The group G where DLP is considered

is typically a prime order subgroup of F?p.
Pollard’s rho algorithm performs a pseudo-random walk. For solving DLP in Fp, each step

of the walk requires performing a multiplication in Fp. The improvement achieved by the tag

tracing method is to ensure that a field multiplication is required after every ` steps for a suitable

choice of the parameter `. In the intermediate steps between two field multiplication steps, a

special computation is performed by the tag tracing method. This computation is significantly

faster than a field multiplication. So, tag tracing speeds up Pollard’s rho algorithm by a factor

of about `.

A field multiplication in Fp consists of two phases. The first phase is an integer multiplication

while the second phase is a reduction modulo p operation. For primes p not having a special

structure, the reduction operation can require a substantial portion of the overall time for a field

multiplication. The technique of Montgomery multiplication [131, 30] works with Montgomery

representation of elements and replaces a field multiplication by a Montgomery multiplication.

The advantage of Montgomery multiplication is that all divisions are by certain powers of two

and so can be implemented using right shift operations. The expensive modulo p operation is no

longer required.

In this chapter, we show how the Montgomery multiplication can be combined with the tag

tracing method. The goal is to retain the advantages achieved by tag tracing and also simultane-

ously replace the field multiplications required after every ` steps by a Montgomery multiplication.

All the time consuming modulo p operations are completely eliminated. Consequently, the Mont-

gomery multiplication version of tag tracing achieves further speed-up compared to the usual tag

tracing algorithm. The combination of Montgomery multiplication and tag tracing is achieved

without any trade-offs. In particular, the storage space required remains the same in both cases.

3.2 Montgomery Multiplication

Let x and y be two elements of Fp and the requirement is to compute the product xy ∈ Fp.
Typically, this is a two-stage process, where in the first stage the integer multiplication of x and

y is carried out and then the result is reduced modulo p. The reduction operation can take a

substantial fraction of the total time to perform the field multiplication. This is especially true

if p does not have a special form. Montgomery multiplication was introduced [131] to replace

the costly reduction operation modulo p by much cheaper divisions by powers of two. Below we

provide a brief description of Montgomery multiplication based on [30].

Following the notation used in the context of tag tracing, let u be a power of two representing

a word size and d be such that the elements of F?p have a d-digit representation to base u. Choose
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R = ud such that ud−1 ≤ p < ud. Since p is odd and u is a power of two, there exists µ satisfying

µ = −p−1 mod u.

The core of Montgomery multiplication is a procedure called Montgomery reduction. Given

an integer x having a d-digit representation to base u, Montgomery reduction computes xR−1 mod

p. The Montgomery multiplication is a generalisation which given two integers x and y computes

xyR−1 mod p. Suppose x and y satisfy 0 ≤ x, y < R and x is written as x =
∑d−1

i=0 xiu
i with

0 ≤ xi < u for i = 0, . . . , d − 1. From [30], the Montgomery multiplication procedure is the

following.

z ← 0

for i = 0 to d− 1 do

z ← z + xiy

q ← µz mod u

z ← (z + pq)/u

end for

if z ≥ p then z ← z − p
output z.

It can be shown that the output z satisfies z ≡ xyR−1 mod p. For a proof of this statement, we

refer to [30]. The point to be noted here is that the only divisions in the above procedure are by

u which is a power of two. So, these divisions are simply right shift operations and are very fast.

Given two field elements x and y, one way to multiply them is to first convert them to

Montgomery representation by computing x̃ = xR mod p and ỹ = yR mod p, then performing a

Montgomery multiplication of x̃ and ỹ to obtain z̃ = x̃ỹR−1 = xyR mod p and then performing

a Montgomery reduction (or, performing Montgomery multiplication of z̃ and 1) on z̃ to obtain

z̃R−1 mod p = xy mod p. This procedure has the overhead of converting x and y to Montgomery

representation and at the end applying a Montgomery reduction to z̃. So, for performing a single

multiplication, this procedure is not very useful. Instead, Montgomery multiplication turns out

to be effective when a sequence of multiplications can be done in the Montgomery representation.

3.3 Combining Montgomery Multiplication with Tag Tracing

Pollard’s rho algorithm in G consists of a sequence of multiplications modulo p. So, it is an ideal

application case for Montgomery multiplication. Let us first consider how this can be done.

As described earlier, the pseudo-random walk of the Pollard’s rho algorithm starts with

g0 and continues by computing g1, g2, . . ., where for j ≥ 0, gj+1 = gjms(gj). Recall that for

each i ∈ {0, . . . , r − 1}, the values αi and βi are known such that mi = gαihβi . As before, a

pre-computed table T stores (i,mi, (αi, βi)) for i = 0, . . . , r − 1.
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To perform Pollard’s rho algorithm using Montgomery multiplication, the multipliers are

converted to Montgomery representation. This requires a change in the pre-computed table T.

Denote the modified table by modT. Then the rows of modT are (i, m̃i, (αi, βi)) for i = 0, . . . , r−1,

where m̃i = miR mod p.

As in the Pollard’s rho algorithm described above, randomly choose a0 and b0 and define

z0 = ga0hb0 . Let z̃0 = z0R mod p be the Montgomery representation of z0. For j ≥ 0, we define

zj+1 = zjms(z̃j) mod p. Note that in this case, the indexing function s is applied to z̃j instead of

being applied to zj . This is because the element computed at the (j + 1)-th step of the walk is

z̃j+1. The quantity z̃j+1 is computed by applying Montgomery multiplication to z̃j and m̃s(z̃j),

i.e., z̃j+1 = z̃jm̃s(z̃j)R
−1 mod p = zjms(z̃j)R mod p = zj+1R mod p.

With the above modification, all the multiplications required in the pseudo-random walk are

Montgomery multiplications. So, at no stage the reduction operation modulo p is required.

The exponent information can be obtained from the walk. For j ≥ 0, let zj = gajhbj . Note

that a0 and b0 are known. Let i = s(z̃j). Then from the pre-computed table, it is possible to

obtain (mi, αi, βi). By definition, we have zj+1 = zjmi and so, aj+1 = aj +αi and bj+1 = bj + βi.

Now, suppose there is a collision in the pseudo-random walk, i.e., there are j and k with

j < k such that z̃j = z̃k. Using the definition of z̃j and z̃k, we have zjR = zkR mod p implying

zj = zk mod p since R is co-prime to p. Using zj = zk mod p, we obtain aj + dbj = ak + dbk,

where d = logg h. From this relation, it is possible to obtain d as mentioned earlier.

The distinguished point method for detecting collisions can be applied to this modified

pseudo-random walk by defining distinguished points based on z̃j for j ≥ 0.

The above description shows that using Montgomery multiplication to define the pseudo-

random walk for the Pollard’s rho algorithm results in replacing all the relatively expensive modulo

p operations with divisions by powers of two. We next consider, how the tag tracing method can

be applied to this version of the Pollard’s rho algorithm.

Let us first consider the difficulties in applying Montgomery multiplication to the setting

of tag tracing. Suppose the pseudo-random walk is at an element z̃j for some j ≥ 0. The goal

of tag tracing is to perform a single field multiplication to move to the element z̃j+`. For the

intermediate points of the walk, the index values s(z̃j), s(z̃j+1), . . . , s(z̃j+`−1) are required.

The goal is to replace the usual field multiplication with a Montgomery multiplication. On

the other hand, recall that the function s is obtained from the auxiliary function s, such that for

y ∈ G and x ∈ M`, if s(y,m) 6= fail, then s(ym) = s(y,m). The product ym in the argument

of s is the usual field multiplication. So, there are two apparently conflicting requirements. For

the movement from z̃j to z̃j+`, a Montgomery multiplication is to be applied, while the indexing

function s is defined with respect to the usual field multiplication.

We show a simple resolution of this problem. The first thing to note is that the product

in the argument of s is not actually performed. Instead, s(ym) is computed as s(y,m). For
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1 ≤ i ≤ `, we have

s (z̃j+i) = s
(
z̃j+i−1m̃s(z̃j+i−1)R

−1 mod p
)

= s
(
z̃j+i−1ms(z̃j+i−1)RR

−1 mod p
)

= s
(
z̃j+i−1ms(z̃j+i−1) mod p

)
= s

(
z̃j+i−2m̃s(z̃j+i−2)R

−1ms(z̃j+i−1) mod p
)

= s
(
z̃j+i−2ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= · · ·

= s
(
z̃jms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
= s

(
z̃j ,ms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p

)
.

Let m = ms(z̃j) · · ·ms(z̃j+i−2)ms(z̃j+i−1) mod p. The element m is in the set M`. For computing

τ , the quantities m̂0, . . . , m̂d−1 derived from m are required, but, the actual value of m is not

required. The fourth component of the pre-computed table Tab corresponding to the entry for m

has the values m̂0, . . . , m̂d−1. So, using the entries in Tab, it is possible to compute τ(z̃j ,m) and

hence s(z̃j ,m) which provides the value for s (z̃j+i).

Now let us consider the computation of z̃j+` from z̃j .

z̃j+` = z̃j+`−1m̃s(z̃j+`−1)R
−1 mod p

= · · ·

= z̃jms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1) mod p

= z̃jms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1)RR
−1 mod p

= z̃jmRR
−1 mod p

= z̃jm̃R
−1 mod p

where m = ms(z̃j) · · ·ms(z̃j+`−2)ms(z̃j+`−1). So, z̃j+` is obtained by applying Montgomery multipli-

cation to z̃j and m̃. The element m is in the set M` and so is in the pre-computed table Tab.

Note however, the value of m̃ is required which is not present in Tab. One may, of course, obtain

m̃ from m by performing the product mR mod p. This would be costly and would defeat the

whole purpose of utilising Montgomery multiplication. So, a better option would be to include

the element m̃ in the table Tab as part of the entry corresponding to the row for m. This would

increase the size of the table Tab. Instead, we propose that in the table Tab, the entry m̃ is to be

stored in place of m.
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Let us denote the modified table by modTab. Based on the above discussion, the rows of the

table modTab are as follows.

(x, m̃x, (a.b), (m̂0, . . . , m̂d−1))

where

• x = (i1, . . . , ik), with 0 ≤ k ≤ `, i1, . . . , ik ∈ {0, . . . , r − 1},

• mx = mi1 · · ·mik mod p and m̃x = mxR mod p,

• (a, b) is such that m = gahb,

• m̂i = b(uim mod p)/wc for i = 0, . . . , d− 1.

where w is defined in equation 2.10 of Section 2.7 of this thesis. So, modTab stores m̃ instead of m

while the quantities m̂0, . . . , m̂d−1 in modTab are derived from m and not from m̃. In particular,

the only difference between Tab and modTab is that Tab stores m whereas modTab stores m̃. All

other entries of Tab and modTab are identical. So, the storage requirements of both Tab and

modTab are also the same.

Using modTab, tag tracing can proceed as follows. For the jump from z̃j to z̃j+`, the entry m̃ is

to be used, whereas for the computations of the outputs of the function s, the entries m̂0, . . . , m̂d−1

are to be used. Consequently, the advantage of tag tracing is retained, i.e., all computations

required for computing the output of s are divisions by powers of two. Additionally, there is an

efficiency gain where the field multiplication required in tag tracing for the jump from the j-th

step of the walk to the (j+ `)-th step of the walk is replaced by a Montgomery multiplication. As

explained earlier, this replaces the costly reduction operations modulo p by inexpensive divisions

by powers of two.

3.4 Conclusion

In this chapter, we have shown how to incorporate Montgomery multiplication to the tag tracing

variant of Pollard’s rho algorithm for solving DLP in Fp. This results in replacing costly modulo

p operations with divisions by a power of two. It leads to practical speed-ups in actual implemen-

tations. A very rough estimate of the speed-up is the acceleration that happens when schoolbook

multiplication is replaced by Montgomery multiplication in the prime field.



Chapter 4

Index Calculus Algorithms for Finite

Field Discrete Log Problem

The index calculus technique is presently the best method to compute discrete logarithms on

finite fields. A suitable representation of the group elements which are smooth in certain sense

is exploited in such class of algorithms. The focus in this chapter will be on the application of

index calculus strategies in the context of DLP in finite fields. The best index calculus strategy to

compute discrete logarithm in a given finite field is chosen depending upon the size of the charac-

teristic and extension degree. This method uses linear algebra to compute the discrete logarithms

of some small elements. The details of the steps explicitly are discussed later. We shall shortly

discuss the complexity of the algorithms proposed. Complexity means the heuristic running time

in the case when runtime complexity is discussed. It means storage complexity when the theme

of discussion is memory issues.

The core idea of the algorithm appeared in 1922 in the work of Maurice Kraitchik [114]. Andrew

Odlyzko [138] first assigned the name index calculus algorithm. Adleman [4] discussed the runtime

in the case of prime fields. Hellman and Reyneri [88] explored the idea in case of small charac-

teristic and large extension degree fields. The runtime is expressed in terms of the L-notation. In

both the algorithms of Adleman [4] as well as Hellman and Reyneri [88] the core idea has same

intuition as the Morrison-Brillhart factorization method. The intuition comes from the proba-

bility of a natural number to be factored in terms of small primes. In the same way when the

elements of the finite field are conceived as polynomials of some fixed degree, the probability of

a random polynomial to be smooth with respect to some fixed degree bound may be considered.

Adleman and Western-Miller [4, 176] first proposed algorithms for discrete log computations in

prime fields. The complexity in these algorithms was L(1
2). Coppersmith [49] improved the com-

plexity to L(1
3) in binary fields of the same size. Sometime later, the number field sieve (NFS)

which was originally devised for the integer factoring problem [120] was adapted to DLP for prime

fields [154, 76]. The complexity in this case was again L(1
3). The function field sieve [5, 8, 101,

49
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100] (FFS) on the other hand, later came into the scenario and targeted small characteristic fields.

NFS was generalised in [105] where the complexity of L(1
3) held for all classes of finite fields.

There has been some noteworthy improvements in both NFS and FFS and other algorithms in

small characteristic cases.

The extra information of the group structure is harnessed in case of index calculus algorithms

to obtain faster subexponential algorithms compared to exponential generic ones. The best com-

plexity is obtained by balancing the parameters. The details of the algorithm will depend on the

concrete representation of the elements of the group.

4.1 Classification of Finite Fields and Broad Overview of Suitable

Algorithms

The present algorithms for discrete logarithm can be classified on the basis of the characteristic

and extension degree of the target field. Given a finite field Fpn , the characteristic p is written

as p = LQ(ap, cp) for some suitable constants ap, cp and cardinality Q of the group. Based on

the value of the first parameter corresponding to the characteristic, the finite fields are classified

into three groups [18] as given below. Henceforth, by small, medium and large characteristic the

following meanings will be used.

• Finite fields with small characteristic when ap <
1
3 .

• Finite fields with medium characteristic when 1
3 < ap <

2
3 .

• Finite fields with large characteristic when 2
3 < ap.

• The boundary cases are at ap = 1
3 ,

2
3 in which crossover between algorithms happen.

Till 2013, the following results were obtained. Function field sieve applied to small characteristic

finite fields resulted in a complexity of LQ(1
3 , (

32
9 )

1
3 ) [8]. In case of medium characteristic finite

fields, applying number field sieve-high degree variant a complexity of LQ(1
3 , (

128
9 )

1
3 ) [105] was

obtained. The complexity was LQ(1
3 , (

64
9 )

1
3 ) [105, 154, 125] for large characteristic finite fields

when number field sieve algorithm was used. Joux [94] lowered the complexity to LQ(1
4) for

small characteristic fields. Later in 2014, Barbulescu, Gaudry, Joux, and Thomé [16] suggested

algorithms for fields of lower characteristic. For small characteristic fields with characteristic

p = LQ(ap, cp), their complexity LQ(ap) which is slower than quasipolynomial unless ap = o(1).

Granger, Kleinjung, and Zumbrägel [78] proposed quasi-polynomial algorithms (QPA) to attack

DLP in binary fields. Thus given the present state-of-the-art algorithms, function field sieve and

quasi-polynomial algorithms are preferred for small characteristic fields while number field sieve

offers better complexity when the field has large characteristic, which includes prime fields as well.
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It may be applied in case of medium characteristic too. The boundary cases are a bit more complex

in the sense that many algorithms are available in those and pinpointing to a particular one does

not seem easy. The quasi-polynomial algorithm has been obtained for small characteristic while

the function field sieve is still the best for a corner case of medium characteristic. A rough estimate

of the complexities are LQ(1
3) for number field sieve and function field sieve, and log(Q)o(log(log(Q)))

for quasi-polynomial algorithms.

4.2 General Description of Index Calculus Algorithms

The index calculus algorithms consists of three main steps along with two other auxiliary phases,

namely the preparatory phase and the final phase. In the preparatory step, a convenient repre-

sentation of the field is chosen. In the final phase, after the target element is obtained completely

in terms of factor base elements, the substitution of the logarithms of the factor base elements

provides the logarithm of the target element. The steps are detailed as follows:

4.2.1 Precomputation of the Factor Basis

A set of elements which are small in certain sense is chosen as the factor basis. To define this, a

pre-defined integral bound B is fixed beforehand. For example, when G is represented as a set of

elements modulo some prime, p, the factor basis may consist of all prime numbers smaller than the

bound B. In those cases, where the group G is represented as a set of polynomials modulo some

irreducible polynomial, the factor basis may be selected as the set of all irreducible polynomials

having degree smaller than B. At present, let the factor basis F be taken as F = {p1, p2, . . . , pk}
where each of element pi, 1 ≤ i ≤ t is smaller than B in some sense depending on the scenario.

The cardinality of the factor base, i.e., #F = B
logB . This follows from the Prime number theorem

when G is represented as the set of elements modulo some integer and from Landau’s Prime Ideal

Theorem [116] in the case of a number field. It is stated in Theorem 7.16 of this thesis.

4.2.2 Relation Collection Phase

This phase aims to find multiplicative relations among elements of F . Logarithm with base g

taken on both sides of such a multiplicative relation results in a linear equation between the

logarithms logg pi, 1 ≤ i ≤ k. This linear system is formed modulo (p− 1). This phase uses trial

division, sieving or pinpointing. The target should be to collect slightly more than k equations

so that k independent equations are obtained.

4.2.3 Linear Algebra

The linear system of equations is solved modulo (p− 1) to get the discrete logarithm of the factor

base elements. It may be observed that the system of equations that are produced is quite sparse.
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Hence, special algorithms to be discussed later on, are used to solve these set of equations which

are much faster than the general algorithms. This is detailed in Section 4.3.1.

4.2.4 Individual Logarithm Phase

This phase computes the logarithm of a random element of the group. This may be done as a two-

step process. Let us call the target arbitrarily chosen element as z. Initially, z is decomposed as a

product of other elements which are smaller than z in some sense depending upon the situation.

This process is continued until z is obtained as a product of elements belonging to the factor

basis. The logarithm of z is obtained by plugging the values of the discrete logarithms obtained

in the earlier linear algebra phase.

4.3 Some Details Regarding the Phases of Index Calculus Algo-

rithms

4.3.1 Linear Algebra over Finite Fields

After completion of the relation collection step a k
′ × k matrix M is obtained where k

′
denotes

the total number of equations collected which is slightly bigger than k. The linear algebra step

aims to find a vector in the kernel of M . It is solved modulo (p− 1). Until 1980, this step was a

major bottleneck.

Initially, the only algorithm to tackle this phase was the Gaussian elimination method which has

cubic complexity in the number of rows (or columns) of the matrix.

When the Gaussian elimination method is applied to a sparse system of linear equations, each

pivoting increases the number of non-zero elements per row. So, after a few iterations, the matrix

loses its property of sparseness. For large dimensional matrix, Gaussian elimination quickly

overflows the available memory. For small matrices, it may be sufficient enough for linear algebra.

But entries of matrices in DL computation can belong to some large characteristic finite field

compared to boolean matrices of integer factorization.

Some special families of algorithms are available which are much better than Gaussian elimi-

nation when dealing with sparse matrices. The first family, structured Gaussian elimination [138,

115], is composed of variants of Gaussian elimination so that fill-in is minimized during pivoting.

The aim is to reduce the dimension of the matrix and at the same time, ensure that the matrix

remains sparse. The general term for this minimization of fill-in is filtering and it was optimized

recently [33].

To solve the reduced system the iterative methods like Lanczos and Wiedemann [177] and its

generalization for parallel processing, Block Wiedemann [173] can be used. The core idea of both

these methods is to compute Krylov subspaces, vectors V ect〈M i · b〉 for the given matrix M and
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some fixed vector b. The algorithms in this family find a solution of a linear system by computing

the minimal polynomial of the considered matrix. For a square matrix of order N , with λ entries

per row, the complexity is O(λN2).

It has already been said that using sparse linear algebra techniques like Lanczos and Block Wiede-

mann instead of Gaussian elimination optimizes memory requirement. Furthermore, these tech-

niques for the sparse case are also better in terms of time complexity. Roughly speaking, for a

matrix of order N , Gaussian elimination takes O(N3) field operations while these methods take

O(N2) field operations. The linear algebra for solving discrete log, may be needed for some finite

field Fl for some large integer l. In such a case, this savings in time complexity would be huge

practically.

It is noteworthy that Lanczos’s method needs O(k) divisions in the base field. The CADO-NFS

package [169, 173] can be employed to compute the kernel of the matrix obtained after relation

collection step when attempting record DL computations with several million rows and columns.

4.3.2 Smoothness

In index calculus algorithms it is heuristically assumed that the associated entities, which may

be integers, ideals or polynomials depending on the context, behave like random entities of the

same size. Smooth elements are those that split into elements of a much smaller set. Any relation

generation technique that produces more of such smooth elements lead to an improvement of the

index calculus technique in general. As the complexity of the relation collection phase plays a

significant role in the overall complexity of the index calculus algorithm, it is important to keep

note of the smoothness of the associated quantities.

The definitions and the theorems listed below try to provide an estimate of the probabilities of

smoothness that are essential to analyse index calculus techniques.

Definition 4.1. A positive number is said to be B-smooth for some positive B if all its prime

factors are at most B.

Definition 4.2. A polynomial over a finite field is said to be b -smooth for some positive integer

b if all its irreducible factors have degree at most b.

Canfield, Erdös and Pomerance [41] expressed the asymptotic density of smooth numbers

amongst the integers as follows.

Theorem 4.3. Let ψ(A,B) be the number of natural numbers smaller or equal to A that are

B-smooth. If A ≥ 10 and B ≥ logA, then

ψ(A,B) = Au(−u+o(1))

where, u = logA
logB and the limit implicit in the o(1) is for A→∞.
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An analogous result in case of polynomials is presented by Odlyzko [138] and Lovorn [124].

Theorem 4.4. A uniformly random polynomial f ∈ Fq[x] of degree m is b-smooth with probability

u(−u+o(1))

where u = m
b provided that m

1
100 ≤ b ≤ m

99
100 .

The complexity of index calculus algorithms depends on the relation collection phase. In

this step, there is a trade-off between the size of the factor base and the number of relations.

This trade-off may be optimised by choosing proper bounds for the smoothness parameter for the

elements under consideration. Corollary 4.5 of Theorem 4.3 is used in suitably choosing values of

the associated quantities as follows.

Corollary 4.5. Given an integer A which is at most LQ(αA, σ) and a smoothness bound B =

LQ(αB, β) with αB < αA, the probability that A is B-smooth is

Pr[A is B-smooth]=LQ(αA − αB,−(αA − αB)σβ ).

The run-time of any index calculus algorithm is dependent on the smoothness of the associ-

ated elements. The complexity is expressed in terms of the subexponential notation. This is done

after fixing optimal values of the elements.

To balance the parameters and ensure optimal cost, in case of F?p, the bound of the factor base

is set in terms of subexponential notation as B = Lp(αB, β). We already have p = Lp(1, 1). In

order to calculate the probability of smoothness of integers less than p, the values of αA, σ are

then taken as αA = 1, σ = 1. From corollary 4.5, the probablity of B-smoothness of any integer

less than p is,

Pr[(A ≤ p) is B-smooth]=Lp(1− αB,−(1− αB) 1
β ).

As we need about #F = B
logB ≤ B relations so

Number of tests≈ B
Pr[(A≤p) is B−smooth]

= Lp(αB, β)Lp(1− αB, (1−αB)
β )

It may be seen that max(αB, 1− αB) is minimal for αB = 1
2 . The relation collection cost is then

Lp(
1
2 , β + 1

2β ).

The linear algebra phase takes time B2 = L(1
2 , 2β). From the cost of these first two steps of

relation collection and linear algebra, min(β + 1
2β ) is at β = 1√

2
. The total cost of the first two

steps is thus Lp(
1
2 ,
√

2) from the optimality analysis. The individual logarithm step requires a

single relation and so is of low complexity.

For finite fields in general, the running time of relation collection is also L(1
2 ,
√

2), which is based

on the smoothness probabilities for the polynomials.
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4.3.3 Example to Demonstrate Index Calculus Strategy

This example describes the steps of index calculus algorithm on a small field.

Let p = 101 and g = 3. The aim is to compute the discrete logarithm of z = 53 with respect to

g. The factor base is taken as F = {2, 3, 5, 7}.
Some random powers of g are taken to compute the relations among the logarithms of the factor

basis elements. The following six relations modulo the prime p may be considered for use.

g19 ≡ 22 × 7 (mod p)

g30 ≡ 2× 3 (mod p)

g45 ≡ 25 (mod p)

g54 ≡ 22 × 5 (mod p)

g61 ≡ 7 (mod p)

g86 ≡ 2× 5× 7 (mod p).

This can be written in matrix notation as follows:

2 0 0 1

1 1 0 0

5 0 0 0

2 0 1 0

0 0 0 1

1 0 1 1


︸ ︷︷ ︸

×


logg 2

logg 3

logg 5

logg 7

 =



19

30

45

54

61

86


mod (p− 1).

Using linear algebraic methods to solve this system leads to the following logarithm of the factor

base elements. 
logg 2

logg 3

logg 5

logg 7

 =


29

1

96

61

 mod (p− 1).

To find the individual logarithm, it is observed that

zg53 ≡ 2× 5 (mod p).

This leads to

logg z ≡ logg 2 + logg 5− 53 (mod (p− 1)).
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Then the logarithm turns out to be

logg z = 72

in the chosen subgroup.

4.4 Function Field Sieve

It has already been discussed in Section 4.1 that the function field sieve (FFS) is suitable for

solving the discrete logarithm problem in finite fields of medium and small characteristic. The

name comes from the fact that the initial versions of the algorithm used multiplicative relations

between ideals in two function fields.

4.4.1 Previous Works

The function field sieve was initially suggested by Adleman [5] in 1994 and later by Adleman

and Huang [8]. This can also be viewed as a generalisation of Coppersmith’s [49] algorithm.

Later, Joux and Lercier [101], provided practical improvements to this algorithm. The asymptotic

complexity is the same as that of Adleman-Huang FFS, but it is more practical than that. Further

improvement in the case of medium-sized fields was suggested by Joux and Lercier [100]. This

variant is quite simple in which use of function fields were removed. These are the algorithms

which serve as a benchmark for comparing recent developments.

The FFS in cases of medium and small characteristic fields is described next.

4.4.2 The Function Field Sieve for Medium Characteristic Prime

Joux and Lercier [100] proposed the following variant of the function field sieve in 2006. It is

simple in the sense that the variant no longer uses ideals. The intricacies of the function field

sieve subtly remain embedded in the background. The variant is designed for the fields Fpn having

medium-small characteristic i.e., where p = Lpn(α) with α ≤ 1
3 . It may also be applied to fields

Fqm for some prime power q. This description of the algorithm is based on [100, 99, 151].

The main phases of the algorithm are relation collection, linear algebra and the individual discrete

log phase. Two other auxiliary phases are the preparatory phase and the final phase.

Representation of Fpn: The first task is to choose a convenient representation for Fpn .

Choose n1, n2 and k to be positive integers less than n. This needs to be done after a

careful inspection as these values play a role in deciding the complexity of the algorithm. Let

g1(X) = X−n1 and g2(X) be such that Xk − g2(g1(X)) = f1(X)/Xn1n2 , where f1(X) is a
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polynomial of degree n1n2 + k. The idea is to choose g2(X) to be a polynomial over Fp of degree

n2 such that f1(X) has an irreducible factor f(X) of degree n. Since the degree of f1(X) is

n1n2 + k, n ≤ n1n2 + k. If n = n1n2 + k, then experiments show that it is possible to choose

g2(X) such that f1(X) itself is irreducible. In this case, we take f(X) to be equal to f1(X).

The field Fpn is represented as Fp[x]/(f(x)). Let y = g1(x) = x−n1 . Then xk − g2(y) =

f1(x)/xn1n2 . Since f(x) | f1(x), the relation xk = g2(y) holds in Fpn . For k = 1, this method was

described by Joux [99]. In the following, we will assume k = 1, y = g1(x) = x−n1 and x = g2(y)

since these are the choices we use in our discrete logarithm computation. These two relations play

a central role in framing the algorithm. For other variants of choosing the field representation,

we refer to [99, 151].

Note that representation of the finite field does not involve objects from function fields or

number fields. Elements are polynomials of degree at most (n − 1) over the finite field Fp. This

makes it possible to implement the algorithm entirely using finite field concepts.

Choice of Generator: The non-zero elements of Fpn form a cyclic group under multiplication.

Discrete logarithms are computed with respect to some generator. The actual choice of a generator

is not important. It usually turns out that one of the polynomials x + a is a generator for some

a ∈ Fp. This is something practically convenient as then this element can be included in the

factor base where the logarithm is known beforehand to be equal to one.

Factor Basis: The factor basis is B = {(x + ai), (y + bj) : ai, bj ∈ Fp}. There are 2p elements

in B.

The more general option is to consider the factor base to be consisting of all irreducible polynomials

in x, y of degree at most D. But for medium-sized prime, if D > 1, the size of the factor base

which is 2pD becomes too large. This increases the complexity of the bottleneck linear algebra

phase.

For certain extension fields, by using the action of Frobenius it is possible to reduce the size of the

factor basis by a factor of n. Joux [99] showed this for Kummer extension, i.e., for fields Fpn such

that n | (p − 1). An advantage of Kummer extension is that the size of the factor basis reduces

by a factor of n, making it possible to perform discrete logarithm computations on larger fields.

The condition n | (p− 1), however, is very special and is unlikely to hold for general p and n.

Modulus of Discrete Logarithms: The requirement is to compute the discrete logarithm

modulo pn− 1. For some generator α of Fpn , an element αi is in Fp is equivalent to the condition

that αip = αi. This is again equivalent to (pn − 1)|i(p− 1).
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Let M = pn−1
p−1 . Then the necessary and sufficient condition for αi to be in Fp is M divides i.

In practice, pn − 1 is factored and the FFS algorithm is used to compute the discrete logarithm

modulo the large prime factors. The discrete logarithms of elements of Fp are equal to 0 modulo

M and so in the computation of discrete logarithm modulo a large prime factor of M , one may

ignore the discrete logarithms of the elements of Fp.

4.4.2.1 Relation Collection

In this phase, relations among factor basis elements are to be gathered which will lead to a system

of equations. For arbitrary elements a, b, c ∈ Fp, consider the expression (x + a)y + (bx + c) =

xy + ay + bx + c. Using y = g1(x) = x−n1 and x = g2(y), this expression can be written in two

different ways as follows.

xg1(x) + ag1(x) + bx+ c = (x+ a+ bxn1+1 + cxn1)/xn1 = h1(x)/xn1 ; (4.1)

yg2(y) + ay + bg2(y) + c = h2(y). (4.2)

Note that h1(x) is a polynomial of degree n1 + 1 and h2(y) is a polynomial of degree n2 + 1. Over

Fpn , we have h1(x)/xn1 = h2(y). Suppose that both h1(x) and h2(y) are smooth polynomials,

i.e., h1(x) = bΠαi(x+ αi) and h2(y) = d1Πβj (y + βj) for some d1 ∈ Fp. Then, over Fpn , we have

the relation

h1(x)/xn1 = bΠαi(x+ αi)/x
n1 = d1Πβj (y + βj) = h2(y). (4.3)

This gives the following linear equation among the discrete logarithms of the elements of the

factor basis.

−n1 log x+
∑
αi

log(x+ αi) =
∑
βj

log(y + βj) mod M.

Each such linear equation involves n1 + n2 + 1 terms.

The factor basis contains 2p elements. To be able to solve the system of linear equations

arising from linear equations of the above type, a little more than 2p relations are required.

The free parameters are a, b and c giving rise to p3 expressions of the type xy + ay + bx + c.

Heuristically, we may assume that the p3 expressions give rise to p3/((n1 + 1)!(n2 + 1)!) linear

equations. This quantity come from the fact that heuristically for a degree m polynomial, the

probability of it factoring into linear factors is 1
m! and the degrees of the polynomial h1, h2 are

(n1 + 1) and (n2 + 1) respectively. This quantity reaches a maximum for almost equal n1, n2. So,
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for the relation collection phase to succeed, the following condition has to hold.

p3

(n1 + 1)!(n2 + 1)!
> 2p. (4.4)

Pinpointing: The idea of pinpointing was introduced by Joux [99] to speed up relation collec-

tion. Suppose that for some choice of a, b and c, the polynomial h1(x) turns out to be smooth,

i.e.,

x+ a+ bxn1+1 + cxn1 = b ·Παi(x+ αi). (4.5)

Using the transformation x 7→ tx, for t ∈ Fp \ {0, 1}, the right side of (4.5) remains smooth, while

the left hand side corresponds to the expression obtained from a′ = a, b′ = btn1+1 and c′ = ctn1 .

So, once a smooth h1(x) is obtained, by varying t over all elements of Fp, it is possible to obtain

p− 2 smooth h1(x)’s without any further smoothness checking.

In [99], it was shown that the number of trials required for obtaining a single relation which

has both sides smooth is

(n1 + 1)!(n2 + 1)!

p− 1
+ min ((n1 + 1)!, (n2 + 1)!) . (4.6)

It was shown in [151] that the idea of smoothness checking can be implemented with a sieving

procedure which entirely avoids smoothness checking.

4.4.2.2 Linear Algebra

The relation collection phase produces a little more than 2p linear equations involving the discrete

logarithms of the elements of the factor basis. Each equation has n1 +n2 + 1 terms. Additionally,

we include the linear equation log y = −n1 log x to account for the relation y = x−n1 between x

and y.

The obtained system of linear equations is sparse. From the discussions in Section 4.3.1,

Block Wiedemann algorithm is used for solving it.

The system of inhomogeneous linear equations is given by a matrix M and a coefficient vector b.

Before attempting to solve the system, a filtering step is applied. The goal of the filtering step

is to reduce the size of the matrix and/or make it more sparse. Basic filtering can be applied to

remove duplicate rows and empty columns of the matrix M. Sophisticated filtering methods are

available in the CADO-NFS software [169]. The completion of the linear algebra step provides

discrete logarithms of some elements.
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4.4.2.3 Individual Descent

Let Π(x) be the target element whose discrete logarithm is to be computed. Typically, Π(x) will

be a polynomial of degree n − 1. After the linear algebra step, assume that we have computed

the discrete logarithms of all linear polynomials of the form x + αi and y + βj . So, the goal is

to be able to express Π(x) as a rational function where both the numerator and the denominator

are products of linear polynomials. This procedure is called descent.

The entire descent is not done in a single step. The target polynomial is successively de-

scended to lower degree polynomials until finally descent to linear polynomials become possible.

For the initial descent, a simple randomisation strategy usually works. Suppose we wish to de-

scend from an irreducible polynomial φ(x). Choose a random polynomial D(x) whose factors are

of lower degree than that of φ(x). Let N(x) = φ(x)D(x) mod f(x). If the factors of N(x) are

also of degrees lower than that of φ(x), then since φ(x) = N(x)/D(x), we have a descent from

φ(x) to lower degree factors of N(x) and D(x). If these factors are not linear, then they would

require to be further descended. More systematic techniques for descent are known. A method

based on computing the kernel of a matrix has been described in [100, 96]. Another method has

been used in [151].

The descent becomes more difficult as the degrees of the polynomials become close to one.

The 2-1 descent from quadratic to linear polynomials is the most difficult one. A heuristic ar-

gument has been used to show that the probability of a successful 2-1 descent in a single trial is

1/((n1 − 1)!(n2 + 1)!) [99, 151]. The work [151] provides the probability of a successful d-(d− 1)

descent (i.e., descent from a degree d polynomial to polynomials of degrees at most d − 1) for

d ≥ 2. In an asymptotic setting, the effect of d-(d − 1) descent on the overall time for solving

discrete logarithm has been analysed in [151]. It has been shown that for d > 2, the asymptotic

cost of d-(d − 1) descent is always lower than the asymptotic cost of relation collection. On the

other hand, for d = 2, there are situations where the asymptotic cost of 2-1 descent is more than

the asymptotic costs of the other two phases.

Following the methods of [100, 99, 151], using a single degree of freedom, the heuristic

probability of success for a 2-1 descent is 1/((n1− 1)!(n2 + 1)!). So, the number of trials required

for a single 2-1 descent is about

(n1 − 1)!(n2 + 1)!. (4.7)

With a single degree of freedom, the number of trials that can be made is p. Let

Λ =
p

(n1 − 1)!(n2 + 1)!
. (4.8)

It has been suggested in [100, 99, 151] that for a 2-1 descent to be possible, Λ ≥ 1 has to hold.

Experiments show that while Λ ≥ 1 makes the descent easy, it may be possible to perform a 2-1
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descent even when Λ < 1. The parameter Λ does, however, play a role in determining the ease of

descent. The higher the value of Λ, the easier is a 2-1 descent, while for lower values of Λ, a direct

2-1 descent may not be possible and one would have to use walk and/or branching techniques.

4.4.2.4 Final Discrete Logarithm Computation

The linear algebra step provides the discrete logarithm of the elements of the factor basis elements

modulo the large prime divisors of pn− 1. So, once the descent step is completed, it is possible to

compute the discrete logarithm of the target element modulo the large prime divisors of pn − 1.

The discrete logarithm of the target element modulo the smaller factors of pn − 1 are computed

using the Pollard rho and the Pohlig-Hellman algorithms. Finally, all the discrete logarithms are

combined using the Chinese remainder theorem to obtain the discrete logarithm of the target

element modulo pn − 1.

4.5 Algorithms for Small Characteristic Fields

The function field sieve along with Joux’s algorithm [94] and the quasi polynomial algorithms

provide optimized methods to solve discrete log problem in case of small characteristic finite

fields.

The three major steps of function field sieve have been already discussed as relation collection,

linear algebra and the individual logarithm step. The aim of the last individual log step is to

express the logarithm of the target element as a linear combination of logs of elements which are

present in the factor base or the logarithms are known. It can be further subdivided as initial

splitting and descent step. The goal of the initial splitting step is to obtain the target logarithm

as linear combination of logarithms of elements which are smooth for some suitable smoothness

parameter B already chosen before. The descent step then obtains the expression of each of the

irreducible factors of the B-smooth elements in terms of elements of the factor basis.

The relation collection and the linear algebra steps are the dominant steps when seen in the light

of complexity. Attempts to make them less costlier result in a smaller factor base. This does not

reduce the difficulty of the last individual logarithm step. In fact, reduction of the factor base

increases the cost of individual logarithm step even more.

Speeding up the individual logarithm step may be done by reducing the cost of initial splitting.

Subfields of the finite field can be utilised to split the target into smaller degree or smaller

coefficient elements.

The standard algorithm for initial splitting in fields of composite extension degree is Waterloo

algorithm [24, 25].
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4.5.1 The Waterloo Algorithm

The basic idea behind the Waterloo algorithm is that the probability of smoothness increases as

the degree decreases. A formal description is as follows.

Let Fpn be the finite field of pn elements where p is a small prime and n = n1n2 > 1 is a com-

posite integer. For practical scenarios, n1 � n2. The Waterloo algorithm iteratively generates

a pair of polynomials of degrees at most n2/2 and tests both of them for B-smoothness for an

appropriate choice of B. The cost of generating the pair of polynomials is O(n2
2) multiplications

over Fpn1 . Considering a multiplication in Fpn1 to require O(n2
1) multiplications over Fp, the cost

of generating the pair of polynomials is O(n2) multiplications over Fp.
This initial splitting idea was used in the individual logarithm step. Guillevic [84] proposed a

different algorithm for initial splitting over such fields. It will be discussed in detail in Chapter 6.

4.5.2 Works in Small Characteristic

In small characteristic fields, several attempts have been made after Coppersmith [49]. It was

followed by the works [77, 174, 101, 98, 87, 73, 97, 74, 52, 94, 75, 2, 93, 161, 16, 78, 81, 17, 1,

78, 79, 102, 109, 103, 79, 80, 82]. These include discrete log computations both in characteristic

two as well as characteristic three fields. Most of these have been taken from the number theory

mailing list (https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY).

There has been quite some improvements in small characteristic fields, specially from 2012.

Due to these, fields of characteristic two, three, composite extension degree which were target

groups of pairing-friendly hyper-elliptic curves are prone to attacks.

Göloğlu, Granger, McGuire, and Zumbrägel [74] showed that relation collection was achievable

in polynomial time. Joux[94] reported a low complexity L(1
4 + o(1)). Granger, Kleinjung, and

Zumbrägel [81] suggested an alternative descent method. More recently, in July 2019, a new

record discrete logarithm computation in the field F230750 was published.

These works mostly differ in the individual logarithm phase.

Some works in characteristic three fields which include record discrete log computations as well

as concrete analysis for certain fields are [102, 2, 1, 3]. An improved descent was proposed in

2013 [62] which was a QPA. Two variants [16, 78] of this algorithm were further published.

4.6 Number Field Sieve

Number Field Sieve (NFS) is an index calculus algorithm with three main phases relation collec-

tion, linear algebra and descent. Prior to these, is the set-up phase. There is a common structure

at the core of FFS, NFS and its various variants. Figure 4.1 describes the structure. The ring

https://listserv.nodak.edu/cgi-bin/wa.exe?A0=NMBRTHRY
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R[x]

R[x]/(f2(x)) R[x]/(f(V−1)(x))

Fpn

R[x]/(f1(x)) R[x]/(fV (x))R[x]/(fi(x)).... ....

Figure 4.1: A work-flow of NFS.

R is the integer ring Z in case of the basic version of NFS, Fp[y] in case of FFS, a number ring

Z[y]/(h(y)) in case of Tower NFS, where a tower of number fields are considered. In the general

case, V irreducible polynomials fi(x) are selected from R[x] such that the maps from R[x]/(fi(x))

to the field Fpn is commutative.

It has already been discussed in Section 4.1 that NFS is well-suited for large characteristic

fields with heuristic complexity around LQ(1
3). It may be applied to medium characteristic fields

too. There are various variants of NFS, namely, the basic version of NFS, the multiple number

field sieve (MNFS), the tower number field sieve [14], extension of tower number field sieve called

exTNFS [107, 108] in case the degree of extension of the finite field is composite, the special num-

ber field sieve [104] for primes having special form. MNFS itself again has two variants namely,

the asymmetric one [50] which is the one most generally used and the symmetric case [15].

In the most basic version of NFS, polynomial selection phase outputs two polynomials which act

as the defining polynomials for the number fields Z[x]/(fi(x)), i = 1, 2 respectively. The defining

polynomial of the finite field is given by the gcd of these polynomials modulo the prime p. In

the next phase for sieving, polynomials with bounded coefficients and fixed degree are considered.

A relation is found when the norms of the image of the considered polynomial in R[x]/(fi(x))

is B-smooth for B fixed beforehand. In order to compute the logarithm of the target element

a two step procedure is followed. The target element is subjected to smoothing until all the

constituent elements in one of the number field have some smoothness generally larger than B.

An iterative smoothing, is applied to each constituent factor which allows to recursively write

the target in terms of factors having smoothness smaller than B. A descent tree is obtained

where the root is the ideal with a slightly greater smoothness bound and the nodes are the ideals

with reduced smoothness bound at each step. The logarithm of the target can be expressed as

the logarithm of smaller ideals which are known beforehand. The papers [105, 61] provide fur-

ther details. Guillevic [84] proposed faster initial splitting algorithms for NFS and Tower variants.

The papers included in this thesis do not contain any new improvement regarding NFS. Due

to this, details concerning NFS are not considered over here. One may refer to the theses [13,
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163].



Chapter 5

New Discrete Logarithm

Computation for the Medium Prime

Case Using the Function Field Sieve

5.1 Introduction

Let p be a prime and n be a positive integer. Let Fpn be the finite field consisting of pn elements.

Let g be a generator of the cyclic group of all non-zero elements of Fpn .

In this chapter, we have considered discrete logarithm computation for a medium characteristic

prime using FFS. This progress, in this arena, has not been as remarkable as in the small charac-

teristic case. Important simplification of the FFS was made by Joux and Lercier [100]. The next

work was by Joux [99] who introduced the important idea of pinpointing. Later work by Sarkar

and Singh [151] performed a detailed asymptotic analysis. [151, 51] presents a corrected version

of the analysis.

All three of the works [100, 99, 151] reported discrete logarithm computations. These are

summarised in Tables 5.1 and 5.2. Table 5.1 compares the various discrete logarithm computations

in the medium prime case using the FFS algorithm. Comparison of previously performed discrete

logarithm computations for Kummer extensions are shown in Table 5.2. For Kummer extensions,

the condition n | (p− 1) holds. This does not arise in most cryptographic applications. So, they

do not have real cryptographic significance.

In Tables 5.1 and 5.2, #B is the size of the factor basis. The parameter Λ is a measure of

the feasibility of 2-1 descent. The lower the value of Λ, the more difficult it is to carry out a 2-1

descent. We provide the definition of Λ and explain its connection to the difficulty of 2-1 descent

later.

The present chapter represents progress in the discrete logarithm computation for the medium

prime case using the FFS algorithm. The challenge was to perform a larger discrete logarithm

65
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Ref dlog2 pe n dlog2 p
ne dlog2 #Be Λ

JL [100] 17 25 401 18 3.79

SS [151] 16 37 592 17 0.11

SS [151] 19 40 728 20 0.08

This work 22 50 1051 23 0.07

Table 5.1: A comparison of the difficulty of computing discrete logarithms for the medium prime
case using the function field sieve algorithm.

Ref dlog2 pe n dlog2 p
ne dlog2 #Be Λ

JL [100] 19 30 556 18 4.29

Joux [99] 25 47 1175 20 0.77

Joux [99] 25 57 1425 20 0.13

Table 5.2: A comparison of the difficulty of computing discrete logarithms for the medium prime
case using the function field sieve algorithm for Kummer extensions, i.e., for fields Fpn satisfying

n | (p− 1).

computation for a medium prime case field than what has been reported earlier. To keep the prob-

lem general, we decided not to work with Kummer extensions. We chose a 1051-bit field having a

22-bit characteristic and extension degree 50 as our target. While the size of this field is smaller

than the 1175-bit and the 1425-bit fields considered by Joux [99], the Kummer extension property

of the latter two fields make the discrete logarithm computation much easier than the field con-

sidered in this chapter. In particular, for the fields considered in [99], 20-bit factor bases suffice

whereas in our case a 23-bit factor basis is required. Also, the 2-1 descent for the field considered

in this chapter is more difficult than those considered in [99]. This is indicated by the value of Λ

in Tables 5.1 and 5.2. More details on the 2-1 descent are provided later. Our record computation

is chronologically present in the website https://dldb.loria.fr/?filter=all&sort=date.

For our computation, the main techniques that were used are from [99, 151]. Applying these

techniques to a larger field created complications, especially in the descent step. This required

building on and implementing the alternating walk and branching technique. We considered the

feasibility of using the FFS algorithm to solve a discrete logarithm challenge for a field having a

32-bit characteristic and extension degree 17. For this challenge, the relation collection and the

descent phases were well within reach. The linear algebra step, on the other hand, required much

more time. The ability to solve the discrete logarithm challenge depended on the feasibility of

the linear algebra step.

https://dldb.loria.fr/?filter=all&sort=date
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5.2 Sieving Using Partial Smoothness-Divisibility

The technique of smoothness-divisibility and a sieving method based on it was introduced in [151].

Here we provide a brief account of this method based on the relations y = g1(x) = x−n1 and

x = g2(y). (This description is somewhat different from the one in [151] which was based on

y = g1(x) = xn1 and x = g2(y).)

Let φ(x) be a polynomial of degree d ≥ 0. Let T (x, y) be a bivariate polynomial and let

F (x) and C(y) be such that T (x, g1(x)) = F (x)/xn1 and C(y) = T (g2(y), y). The polynomial

T (x, y) is said to be good for φ(x) if φ(x) divides F (x) and both G(x) = F (x)/φ(x) and C(y) are

smooth, i.e., can be factored into linear polynomials. Note that F (x) = Resy(T (x, y), xn1y − 1),

and C(y) = Resx(T (x, y), x− g2(y)).

Suppose T (x, y) is a monic polynomial which has a total of ρ + 1 monomials. We assume

d < ρ. Let the degrees of F (x) and C(y) be ρ1 and ρ2 respectively. The degree of G(x) is ρ1 − d.

Let e = ρ− d which represents the degree of freedom. Let us write

F (x) = φ(x)(x− a1) · · · (x− ae)H(x) (5.1)

for some polynomial H(x) of degree h = ρ1 − d− e. So, G(x) = (x− a1) · · · (x− ae)H(x). If we

can find a1, . . . , ae ∈ Fp such that F (x) can be written as in (5.1), then we are able to ensure that

F (x) is divisible by φ(x) and partial smoothness of G(x). By trying various values of a1, . . . , ae,

the smoothness of H(x) and the corresponding C(y) has to be ensured. A sieving based method

for implementing this idea has been described in [151].

The partial smoothness-divisibility technique is useful for both relation collection and the

descent step. In the context of relation collection, we set T (x, y) = xy+ ay+ bx+ c and φ(x) = 1

so that ρ = 3 and d = 0 leading to e = ρ−d = 3. The resulting sieving technique can be combined

with pinpointing. We refer to [151] for further details.

For application to the descent step, the 2-1 descent is described in detail in [151] since it is

for such descent that the partial smoothness-divisibility technique was applied. Here we describe

how the technique can be used for d-(d − 1) descent for d ≥ 2. Let φ(x) be a polynomial of

degree d and the goal is to descend to polynomials of degrees less than d. Let ρ = d + 1 so that

e = ρ− d = 1, providing a single degree of freedom. With e = 1, we have

F (x) = φ(x)(x− α)H(x) (5.2)

where degree of H(x) is h. The ρ undetermined coefficients of T (x, y) appears in F (x). As before,

let G(x) = (x− α)H(x).

Consider α to be a symbolic variable. From (5.2) and using a method described in [151], it

is possible to symbolically solve for the coefficients of H(x) and F (x) in terms of α. The symbolic
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computation is a one-time task.

We provide an example of the symbolic computation. Suppose n = 49 = n1n2 with n1 =

n2 = 7, T (x, y) = xy + ax + by + c where a, b and c are undetermined elements of Fp. Then

F (x) = T (x, xn1) is a polynomial of degree ρ1 = 8. Let φ(x) = q0+q1x+q2x
2, where q0, q1, q2 ∈ Fp.

So, d = 2, e = 1 and from (5.2), the degree h ofH(x) is 5. Symbolic computation using SAGE [149]

provides H(x) = h0 + h1x+ · · ·+ h4x
4 + x5 where h0, . . . , h4 are as follows.

h0 = −(α5q5
1 − α4q0q

4
1 + α3q2

0q
3
1 − α2q3

0q
2
1 + αq4

0q1 − q5
0 + (3α5q2

0q1 − α4q3
0)q2

2

−(4α5q0q
3
1 − 3α4q2

0q
2
1 + 2α3q3

0q1 − α2q4
0)q2)/∆(α);

h1 = q2
0q

3
2 − α4q5

1 + α3q0q
4
1 − α2q2

0q
3
1 + αq3

0q
2
1 − q4

0q1

−(3α5q0q
2
1 + α4q2

0q1)q2
2 + (α5q4

1 + 3α4q0q
3
1 − 2α3q2

0q
2
1 + α2q3

0q1)q2)/∆(α);

h2 = (2α5q0q1q
3
2 − α3q5

1 + α2q0q
4
1 − αq2

0q
3
1 + q3

0q
2
1 − (α5q3

1 + 2α4q0q
2
1 + 2α3q2

0q1 − α2q3
0)q2

2

+(α4q4
1 + 3α3q0q

3
1 − 2α2q2

0q
2
1 + αq3

0q1 − q4
0)q2)/∆(α);

h3 = −(α5q0q
4
2 + α2q5

1 − αq0q4
1 + q2

0q
3
1 − (α5q2

1 + α4q0q1 + α3q2
0)q3

2

+(α4q3
1 + 2α3q0q

2
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0q1)q2
2 − (α3q4

1 + 3α2q0q
3
1 − 2αq2

0q
2
1 + 2q3

0q1)q2)/∆(α);

h4 = −(α5q1q
4
2 + αq5

1 − q0q4
1 − (α4q2

1 + α3q0q1)q3
2 + (α3q3

1 + 2α2q0q
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where

∆(α) = α5q5
2 − q5

1 − (α4q1 + α3q0)q4
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0)q3

2
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3
1)q2.

Once the polynomial φ(x) in (5.2) is fixed, the coefficients of H(x) and G(x) are functions

of α. For each possible value of α, denote the corresponding H(x) and G(x) as Hα(x) and Gα(x)

respectively. Next, for each possible value of α ∈ Fp, compute the coefficients of Hα(x) and hence

obtain Gα(x) = (x − α)Hα(x). Store all the Gα(x)’s in a list L. After Gα(x) has been added

to L for all α ∈ Fp, sort L. If a G(x) occurs h − d + 2 or more times in the list, then at least

h − d + 2 roots of G(x) have been encountered in the sieving process. The remaining factor of

G(x) has degree at most d − 1 and so G(x) is (d − 1)-smooth. For such a G(x), construct the

corresponding F (x) as φ(x)G(x). Using Proposition 1 of [151], obtain C(y) and check whether

C(y) is also (d− 1) smooth. If it turns out that C(y) is indeed (d− 1) smooth, then we have

φ(x) =
xn1C(y)

G(x)

where both C(y) and G(x) are (d − 1)-smooth. So, it has been possible to descend from the

polynomial φ(x) of degree d to the polynomials C(y) and G(x) which are (d − 1)-smooth. Note

that for d > 2, while aiming for d-(d− 1) descent, it might be possible to reach smaller degrees if

in the sieving process, a G(x) appears more than h + d − 2 times. The above description is for

descending from a polynomial φ(x). A similar method works for descending from a polynomial
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ψ(y).

Suppose the above method is not successful, i.e., the sieving procedure does not result in a

suitable G(x) and C(y). At this point, there are several ways to proceed.

The x-x Walk: Suppose the sieving procedure results in a G(x) which has h − d + 1 linear

factors. Then the other factor of G(x) is of degree d. Let this factor be φ1(x). Further, suppose

that C(y) turns out to be (d−1)-smooth. Then, in effect, we have moved from a φ(x) of degree d

to the polynomial φ1(x) also of degree d. Descent may now be attempted from φ1(x). Similarly,

one may need to move from a polynomial ψ(y) of degree d to a polynomial ψ1(y) also of degree

d and try to descend from ψ1(y). Such a method is called the walk technique.

The x-y Walk: Suppose the sieving procedure results in a desirable G(x), i.e., one that has at

least h− d+ 2 linear factors. On the other hand, suppose that the corresponding C(y) turns out

to be d-smooth, instead of being (d − 1)-smooth. For each factor ψ(y) of C(y) of degree d, one

may try to descend to lower degree polynomials.

Similarly, one may define the y-y and the y-x walks. It is possible that neither x-x nor x-y

walks succeed for a polynomial φ(x) of degree d. Then the following strategies can be tried.

1. Move from a single degree d polynomial in x to two degree d polynomials in x.

2. Move from a single degree d polynomial in x to one degree d polynomial in x and one degree

d polynomial in y.

Analogous strategies hold for moving from a degree d polynomial ψ(y) in y. Since this strategy

moves from a single degree d polynomial to two degree d polynomials, it is called a branching

strategy.

The walk and branching strategies were briefly mentioned in [99]. Detailed discussion of

these strategies in the context of 2-1 descent is given in [151]. The computations in [151] used

these techniques only for 2-1 descent. For the present computation, we needed the walk technique

for both 3-2 and 2-1 descent.

For the x-y walk, an important implementation issue is to avoid cycling. Suppose the x-y

walk starts from φ(x). It is possible that after a number of steps, the walk again enters φ(x). This

is called cycling. In the presence of cycling, the descent fails. By suitably using randomisation,

it is usually possible to avoid such cycling. Alternatively, cycle detection algorithms may be used

to detect the presence of cycling and abort.

5.3 A Concrete Discrete Logarithm Computation

In this section, we present the details of an actual discrete logarithm computation. The prepara-

tory phase, relation collection and the descent steps were done using Magma V2.21-10 on four
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servers. Out of the four servers, three have the same configuration with each of these three servers

consisting of Intel(R) Xeon(R) E7-4890 @ 2.80 GHz (60 physical cores and 120 logical cores) and

the fourth server consists of Intel Xeon E7-8890 @ 2.50 GHz (72 physical cores and 144 logical

cores). These servers are shared resources and were simultaneously utilised by other users to

run heavy simulation programs. We were never able to obtain exclusive access to the servers.

The linear algebra phase was run on a cluster of 16 dual-socket Intel(R) Xeon(R) Gold 6130

CPU @ 2.10GHz connected with Intel 100 Gbps Omni-Path.

In our computation, we chose p = 2111023 and n = 50. Note that dlog2(p)e = 22 and

dlog2(pn)e = 1051. So, the discrete logarithm computation is over a 1051-bit field having a 22-bit

characteristic.

Preparatory Phase: We chose n1 = n2 = 7. Experimentally we obtained g1(x) = x−7 and

g2(x) = x7 +1224488 such that x−g2(g1(x)) = f(x)/x49 where f(x) = x50 +886535x49 +2111022.

The polynomial f(x) is irreducible over Fp and we represented Fpn as Fp[x]/(f(x)). Under this

representation, x + 11 turned out to be a primitive element and was taken as the base of our

discrete logarithm computation.

The factorization of (pn − 1)/(p− 1) is the following.

pn − 1

p− 1
= 25 · 34 · 11 · 31 · 83 · 101 · 131 · 157 · 251 · 6361 ·

12241 · 131939 · 839532251 · 896407381 ·

3943088101 · 164534375651 · 3062950366849991 · 36244934276573651 ·

752902385776306150901 · p1 · p2 · p3

where

p1 = 2046921610339307301085688032782963272322001;

p2 = 55305981001475132391318117416798532278784706751;

p3 = 92398317305984139450141233089934164938195188756\

28184706647588814170320419857377117657456062927786722348951.

Note dlog2(p1)e = 141, dlog2(p1)e = 156 and dlog2(p1)e = 353.

Based on the choices of g1(x) and g2(x), we have y = g1(x) = x−7 and x = g2(y) =

y7 + 1224488. The factor basis was set to be B = {(x+ ai), (y + bj) : ai, bj ∈ Fp}.

Relation Collection: The relation collection was done using sieving based on partial smoothness-

divisibility technique combined with pinpointing. The computation is highly parallelisable. It was

distributed on four servers with 90 processes per server. The total time required for the relation

collection phase was about 25 hours. Assuming that our jobs were allocated about 75% of the

server time, a rough estimate of the number of core-years required for relation collection is 0.53

core-years.
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A total of 2p + 100 = 4222146 relations were generated among the elements of the factor

basis which includes the relation y = x−7. Except for (y + 1849709), all elements of the factor

basis were involved in at least one relation.

The fact that none of the 2p+100 relations involved (y+1849709) seemed peculiar to us. So,

we decided to investigate this further. For this we considered applying the partial smoothness-

divisibility technique for relation collection from the y-side. The starting point of this technique

is to write

C(y) = (y − α1)(y − α2)(y − α3)H1(y).

We set (y − α1) = (y + 1849709). This is to ensure that any relation obtained from C(y) and

the corresponding F (x) will necessarily involve (y + 1849709). There are two degrees of freedom

given by α1 and α2. This allows trying p2 options. We were surprised to find that no relation

could be obtained. It was possible to ensure that C(y) is smooth. However, in each such case, it

turned out that the corresponding F (x) is not smooth. This suggests that it may indeed be the

case that there is no relation among the factor basis elements which involves (y + 1849709).

Since we were unable to obtain any relation involving (y + 1849709), we decided to proceed

without this element. The resulting matrix for the linear algebra stage consisted of 2p + 100

relations involving 2p− 1 unknowns.

Linear Algebra: The linear algebra step was performed for the three primes p1, p2 and p3.

The block Wiedemann algorithm implemented in the CADO-NFS software was used to complete

the linear algebra step.

Let M denote the matrix obtained as input for the linear algebra step. Also, let N be the number

of rows of M which is the number of relations collected. Given a prime l, block Wiedemann

algorithm consists of three steps namely: Krylov, Lingen, Mksol. Let m,n be integers decided

beforehand. These are called blocking parameters and may be chosen freely. For efficency purpose

of lingen, m may be chosen as 2n. After choosing m,n a block of m vectors denoted by x and

another block of n vectors denoted by y is chosen. The aim of block Wiedemann algorithm is to

compute a sequence of m× n matrices (xTM iy)i≥0.

Looking into the above matrices column wise, the Krylov step computes n sequences. It can be

distributed into n parallel tasks, each computing (xTM iy(j))i≥0. Tasks can be synchronized at

the end when results are combined. The Lingen computes a linear generator for the previous

sequence. It outputs n generators F (0), F (1), . . . , F (n−1) which are polynomials in Z/lZ of degree

less than d(Nn )e. The Mksol step computes w =
∑n

j=1 F
(j)(M)y(j) which belongs to the kernel of

M . It can be distributed into n independent computations.



Chapter 5. New Discrete Logarithm Computation for the Medium Prime Case Using
the Function Field Sieve 72

For the largest prime p3, the Krylov step took about 1.6 core years, Lingen required negligible

time and Mksol required about 0.25 core years. The time requirements for the two smaller sized

primes were smaller. In terms of space, for p1 and p2 about 29GB each was required and for p3

about 53GB was required. We used n = 4 distinct sequences for the block Wiedemann algorithm,

so that we were able to simultaneously use 16 nodes as 4 groups of 4 nodes, each group working

on one sequence.

After the linear algebra step, the discrete logarithms of all the elements in the factor basis

other than (y + 1849709) were obtained modulo p1, p2 and p3.

Individual Logarithm - Descent to Factor Basis Elements: As the target for the indi-

vidual discrete logarithm computation we chose the following element derived from the digits of

the real number π. The function ‘Normalize’ mentioned below makes the input polynomial monic

by multiplying with the inverse of the leading coefficient.

Π(x) = Normalize

(n−1)∑
0

⌊
π · pi+1 mod p

⌋
xi

 .

Explicitly Π(x) is given by the following degree 49 polynomial.

Π(x) = x
49

+ 308380x
48

+ 467398x
47

+ 934029x
46

+ 37835x
45

+ 2003442x
44

+ 174801x
43

+1414683x
42

+ 733114x
41

+ 1077558x
40

+ 1049867x
39

+ 1848765x
38

+ 1653554x
37

+949244x
36

+ 1627181x
35

+ 1592837x
34

+ 652981x
33

+ 1601022x
32

+ 635134x
31

+900855x
30

+ 413911x
29

+ 74385x
28

+ 2057944x
27

+ 930210x
26

+ 310181x
25

+

+118528x
24

+ 1515849x
23

+ 93830x
22

+ 393848x
21

+ 644073x
20

+ 1018627x
19

+1654544x
18

+ 611872x
17

+ 1491385x
16

+ 1797395x
15

+ 1833421x
14

+1711611x
13

+ 406154x
12

+ 1588768x
11

+ 530413x
10

+ 1458736x
9

+696502x
8

+ 496320x
7

+ 196737x
6

+ 535254x
5

+ 194167x
4

+977109x
3

+ 1911333x
2

+ 1037166x + 1347394.

For the initial descent a simple randomisation strategy was utilised which led to

Π(x) =
N(x)

D(x)
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where N(x) and D(x) are as follows.

N(x) = (x + 1424244)(x
3

+ 237998x
2

+ 42029x + 734901)(x
3

+ 299760x
2

+ 1210894x + 1086517)

(x
4

+ 1182727x
3

+ 563430x
2

+ 1055902x + 1247639)

(x
4

+ 1251838x
3

+ 723661x
2

+ 1707546x + 110202)

(x
5

+ 221654x
4

+ 445454x
3

+ 650438x
2

+ 1275751x + 124811)

(x
5

+ 665157x
4

+ 337641x
3

+ 1409401x
2

+ 1379166x + 322114)

(x
5

+ 927040x
4

+ 199439x
3

+ 342445x
2

+ 1316050x + 1494757)

(x
6

+ 61134x
5

+ 1695168x
4

+ 2017581x
3

+ 293438x
2

+ 766784x + 1054073)

(x
6

+ 1565656x
5

+ 129255x
4

+ 419731x
3

+ 1556013x
2

+ 2087232x + 207329)

(x
7

+ 1746884x
6

+ 469847x
5

+ 382378x
4

+ 425150x
3

+ 944772x
2

+ 530084x + 1756060),

D(x) = (x + 3541)(x + 87748)(x + 110850)(x + 119667)(x + 241035)(x + 305058)

(x + 395128)(x + 399638)(x + 422176)(x + 578119)(x + 582549)(x + 586316)

(x + 662109)(x + 770637)(x + 772129)(x + 775849)(x + 800910)(x + 865556)

(x + 902073)(x + 971438)(x + 1011431)(x + 1052833)(x + 1060253)(x + 1062580)

(x + 1103078)(x + 1132166)(x + 1147933)(x + 1174406)(x + 1176644)(x + 1189750)

(x + 1231997)(x + 1248106)(x + 1289845)(x + 1297742)(x + 1347100)(x + 1418494)

(x + 1433230)(x + 1528574)(x + 1579870)(x + 1596791)(x + 1660898)(x + 1741103)

(x + 1805530)(x + 1849061)(x + 1912058)(x + 2041324).

Note that N(x) is 7-smooth while D(x) is smooth. This decomposition required about 30 minutes

using 50 processes.

In the next step, the goal was to reduce to quadratic polynomials using successive d-(d− 1)

descent for polynomials of degree d > 2. This strategy mostly succeeded, except for three cubic

polynomials. For these three polynomials, we had to resort to alternating walk, i.e., move from

degree 3 polynomials in x to degree 3 polynomials in y, as explained earlier. Using such a walk,

we were able to descend to quadratic and linear polynomials. The total number of quadratic

polynomials that were generated was 1212, of which 673 were quadratic polynomials in x and 539

were quadratic polynomials in y. The total time required for descending to quadratic polynomials

was about 1481 minutes using 50 processes.

Finally we performed the 2-1 descent on all the quadratic polynomials. This was the most

time consuming of all the descent steps. We used 50 processes on each of the four servers to

perform either direct 2-1 descent or to apply alternating walk and/or branching. The entire 2-1

descent step was automated. The total time for all the 2-1 descents required about 10 days.

Assuming that our jobs were allocated about 75% of the server time, a rough estimate of the

number of core-years required for all the 2-1 descents is about 4.1 core-years.

Remark: The descent to quadratic polynomials resulted in a total of 1212 quadratic polynomials.

For comparison, we mention the number of quadratic polynomials obtained in previous compu-

tations. In [151], the numbers of quadratic polynomials were 92 and 59 for the 592-bit and the

728-bit cases respectively. In [99], the number of quadratic polynomials for the 1125-bit case was

278; the number of quadratic polynomials for the 1425-bit case was not reported.

We note that the descent is a random procedure. So, different runs of the descent procedure
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may lead to different numbers of quadratic polynomials. Since the 2-1 descent is the most time

consuming of all the descent steps, it would be worthwhile to try and minimise the number of

quadratic polynomials that arise from the upper levels of the descent. There is, however, no

known method for such minimisation.

Individual Logarithm - Final Discrete Logarithm Computation: After the completion

of the 2-1 descent, the target polynomial Π(x) was expressed as a ratio N1(x)/D1(x), where N1(x)

is a product of 147126 linear polynomials in x and 127149 linear polynomials in y, and D1(x) is

a product of 147164 linear polynomials in x and 126001 linear polynomials in y.

Recall that the relation collection and linear algebra steps were not able to compute the

discrete logarithm of (y + 1849709). Fortunately, this element does not appear among the linear

factors of N1(x) and D1(x). In case it occurred as one of the factors of N1(x) or D1(x), alternating

walk and/or branching had to be done.

The discrete logarithms modulo p1, p2 and p3 of the linear factors of N1(x) and D1(x) had

already been obtained after the completion of the linear algebra step. Consequently, after the

descent step we were able to obtain the discrete logarithm of Π(x) modulo p1, p2 and p3.
We used Pollard rho and Pohlig-Hellman to compute the discrete logarithm of Π(x) modulo

the smaller factors of pn− 1. The final discrete logarithm of Π(x) to base (x+ 11) was computed
using the Chinese Remainder Theorem. This value is given below.

logx+11(Π(x))

= 1323496538911863968895271989039865754003499138979788669347646690861304065811174\

1258084796458565453948561234741578427747721119813849133097458001127822232655615\

0735099096613330104434651232074005278625612674879570628049934937631130006839219\

54525064854782630445613771179972581942557486835030641101292487787334655642096501.

A short Magma program to verify the discrete logarithm is given in the Section 5.4.

5.3.1 Experiments with Filtering

The filtering step can reduce the size of the matrix to which the linear algebra step is to be

applied. The basic filtering step that we applied ensured that there are no duplicates and no

empty column.

Following a suggestion from a reviewer, we carried out experiments to determine the effec-

tiveness of the filtering step. To this end, we utilised the filtering algorithm implemented in the

CADO-NFS software which has been used in the recent 240-bit DLP computation [32]. For the

filtering algorithm, an important parameter is the distribution of the weights of the columns. In

the relations that we collected, the variable x is present in all the relations and the correspond-

ing column has weight equal to the number of rows. While mentioning the maximum weight of

columns, we will ignore this particular column. For our experiments, we converted the relation

matrix obtained using Magma to a format suitable to CADO-filtering and used the subroutines
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purge, merge-dl and replay-dl of CADO-NFS in the given order. Two sets of experiments were

performed.

The first experiment was on the relation matrix used for the DLP computation over GF (p50)

with p = 2111023. This matrix has 4222146 (i.e., 2p+100) rows and 4222045 (i.e., 2p−1) columns;

each row has at most 23 non-zero entries; the maximum weight of a column is 40 and the minimum

weight is 1 and if we ignore a few thousand columns, the minimum weight is 6; the overall weight

of the matrix is approximately (2p + 100)23 = 97109358. On applying filtering, we obtained a

matrix with dimension 3234915× 3234905 and weight 248322355. We note that the reduction in

the dimension of the matrix is not much, but the overall weight of the matrix increases 2.5 fold.

The second experiment was for a smaller prime where the number of relations that we

collected was about 50 times more than what is needed. The following parameters were considered:

n = 37, p = 64373, n1 = n2 = 6, g1(X) = X−6, g2(X) = X6 + 14833X5 + 50952X4 + 62125X3 +

6269X2 + 35223X + 53172, and f(X) = X37 + 11201X36 + 29150X30 + 58104X24 + 2248X18 +

13421X12 + 49540X6 + 64372. With these parameters, we collected 56(2p) relations leading to a

matrix of dimension 112p × (2p − 1). Each row has at most 20 non-zero entries; the maximum

weight of a column is 923 and the minimum weight is 669; the overall weight of the matrix is

about 20(112p). On applying filtering, we obtained a matrix with dimension 94731× 93731 with

weight 6679667. If we had instead collected only 2p + 100 relations, then the dimension of the

matrix would have been (2p + 100) × 2p, with 2p = 128746 and the total weight of the matrix

would have been 20(2p) = 2574920. So, the filtering did not reduce the dimension of the matrix

substantially, but increased the overall weight of the matrix by a factor of 4.

Both the above experiments indicate that the CADO-filtering step is not very effective for

this variant of the FFS algorithm. On the other hand, the filtering step leads to a substantial

reduction in the dimension of the matrix for the NFS algorithm as can be noted from the recent

240-bit DLP computation in [32]. A possible explanation for this difference in behaviour is the

following. In the context of NFS, filtering works well because it exploits the fact that typical NFS

matrices are extremely far from having uniform density. There are dense “small-prime” columns

as well as extremely sparse “large-prime” columns. Most of the story in NFS filtering is connected

to the idea of getting rid of that immense near-vacuum formed by the sparsest columns, without

making the resulting matrix too dense. In the present context, all columns (apart from the single

column corresponding to the variable x) have more or less uniform weights. So, it is perhaps not

completely surprising that the heuristics that work with typical NFS matrices do not play out

well in the present context.

5.4 Magma Script to Verify the Computation

n := 50;

p := 2111023;
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assert(IsPrime(p));

Fp := GF(p);

FpX<X> := PolynomialRing(Fp);

fX := X^50 + 886535*X^49 + 2111022;

assert IsIrreducible(fX);

Fpnx<x> := ext<Fp|fX>;

RR:=RealField();

pi := Normalize(&+[(Floor(Pi(RR)*p^(i+1)) mod p)*X^i : i in [0..n-1]]);

log := 1323496538911863968895271989039865754003499138979788669347646690\

8613040658111741258084796458565453948561234741578427747721119813\

8491330974580011278222326556150735099096613330104434651232074005\

2786256126748795706280499349376311300068392195452506485478263044\

5613771179972581942557486835030641101292487787334655642096501;

base := x+11;

target := Fpnx!Eltseq(pi);

printf "base := %o\n",base;

printf "target := %o\n",target;

printf "log := %o\n", log;

printf "base^log eq target = %o\n",base^log eq target;

5.5 Unsolved DLP Challenge for the Medium Prime Case

In [117], the following has been stated.

“For powers of very small primes and for large prime fields the function-field sieve

and the number-field sieve are highly optimized; for intermediate fields algorithms

with the same asymptotic behaviour exist but the actual running times are slower.”

To encourage research for intermediate size fields, the following challenge has been proposed

in [117]. Solve DLP in Fp17 = Fp[x]/(x17 − 2) where p = 232 − 27897.

This problem can be tackled using the FFS for the medium prime case. For this, we set

n1 = n2 = 4 so that n = n1n2 + 1 = 17. We estimate the costs of the relation collection, linear

algebra and the descent steps.

• Cost of linear algebra: For this problem, n | (p− 1) which will allow the factor basis to be

reduced by a factor of 17. So, the size of the factor basis will be about 229 and hence, linear

algebra step will require about 258 operations in Fp.
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• Cost of relation collection: Using n1 = n2 = 4, from (4.6), the number of trials required to

obtain a single relation is about 26.9. So, the total number of trials required to obtain about

229 relations is about 235.9. Further, the feasibility condition given by (4.4) holds.

• Cost of 2-1 descent: Using n1 = n2 = 4, from (4.7), the number of trials required to obtain

a single 2-1 descent is about 29.5. We would expect a few thousand quadratic polynomials

would be required to be descended. The feasibility condition given by (4.8) holds.

So, based on the above analysis, we see that while the relation collection and the descent steps are

well within reach, the major cost of performing the computation required for solving the challenge

lies in the linear algebra computation. In case, a fraction of all degree-one polynomials are included

in the factor base, it will decrease the cost of linear algebra phase but will increase the cost of

relation collection. The effectiveness of this cannot be determined without actual implementation.

Remark: The above estimates are rough. For one thing, we have estimated that the time required

for the linear algebra step on a factor basis of size N is about N2. Secondly, the time for individual

operations for the linear algebra step and the times for individual trials of the relation collection

step and the 2-1 descent step have been assumed to be equal. To obtain more precise estimates,

these issues would be required to be taken into consideration. Nevertheless, even with the rough

estimates, the main conclusion that for this particular DLP computation it is the linear algebra

step which will be the main bottleneck, remains valid.

Larger Extension Degree: The extension degree suggested in the above problem is 17 which

is quite low. Let us consider a higher value of n. Suppose n1 = n2 = 8 and n = n1n2 + 1 = 65.

As in the above problem, assume that p is a 32-bit prime. Also, let us not make the assumption

that n | (p−1) holds. So, the factor basis will have about 2p elements. From (4.6), the number of

trials required to obtain a single relation is about 218 and to obtain about 233 relations, about 251

trials would be required. From (4.7), the number of trials required to obtain a single 2-1 descent

is about 231. The feasibility condition (4.4) and (4.8) both hold. Since the size of the factor basis

is about 233, the linear algebra will require about 266 Fp-operations. So, it is the linear algebra

step which will be the major bottleneck in any such discrete logarithm computation.

5.6 Conclusion

In this chapter, we have reported the computation of discrete logarithm in a 1051-bit field having

a 22-bit characteristic. For the general medium prime case (i.e., fields for which the condition

n | (p− 1) does not hold), the computation reported here is the current discrete logarithm record

computation. The techniques used in this chapter can be extended to solve relation collection and

descent phases for 32-bit primes and moderate extension degrees. It is the linear algebra phase
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that will require the maximum time for performing any record discrete logarithm computation

for such fields.



Chapter 6

Faster Initial Splitting for Small

Characteristic Composite Extension

Degree Fields

6.1 Introduction

In this chapter, our focus will be on the task of initial splitting of the individual logarithm step

of FFS when applied to small characteristic, composite extension degree fields.

Let Fpn be the finite field of pn elements where p is a small prime and n = n1n2 > 1 is a

composite integer. For practical scenarios, n1 � n2. The standard algorithm for initial splitting

for such fields is the Waterloo algorithm [24, 25] which has already been described in Section 4.5.2.

Guillevic [84] proposed a different algorithm for initial splitting over such fields. This al-

gorithm iteratively generates a polynomial of degree n2 − d/n1 and tests it for B-smoothness,

where d is the largest non-trivial divisor of n. The key insight utilised in [84] is that multiplying

the target by an element of a proper subfield does not change the discrete logarithm modulo

Φn(p), where Φn(x) is the n-th cyclotomic polynomial. This insight was earlier stated in [83].

The amortised cost of generating a polynomial in the Guillevic splitting algorithm is the same as

that of the Waterloo algorithm which as mentioned earlier is O(n2) multiplications over Fp. The

advantage of Guillevic splitting is that only a single polynomial is required to be B-smooth while

for the Waterloo algorithm two polynomials are required to be B-smooth.

In this chapter, we present a new algorithm for initial splitting for FFS applied to small

characteristic, composite extension degree fields. We also utilise the insight that multiplying

the target by elements of a proper subfield does not change the logarithm modulo Φn(p). Our

utilisation of this insight, however, is different from that in [84]. The main improvement that

we obtain over Guillevic splitting is that the cost of generating a polynomial to be tested for

B-smoothness is O(n logp(1/π2)) operations over Fp where π2 is the probability that a polynomial

79
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of degree n2 − s − 1 over Fpn1 is B-smooth. The parameter s is new in our idea and can be

chosen such that the degrees of the polynomials generated by the new method is only slightly

larger than those generated by the Guillevic splitting algorithm. Consequently, the smoothness

probabilities and the times for smoothness testing of both the Guillevic splitting and the new

algorithm are almost the same. Since logp(1/π2) � n, the time for generating a polynomial

by the new method is significantly lower than the time for generating a polynomial using the

Guillevic splitting algorithm.

6.2 Preliminaries

Let p be a prime and n > 1 be a composite integer. Let Fpn be the finite field of pn elements.

Write n = n1n2. Let h(y) be an irreducible polynomial of degree n1 over Fp. The finite field Fpn1

is represented as Fp[y]/〈h(y)〉. Let I(x) be an irreducible polynomial of degree n2 over Fpn1 . The

field Fpn is represented as Fpn1 [x]/〈I(x)〉. We will denote this as the (I(x), h(y))-representation

of the field Fpn . We will further assume that a generator α of F∗pn is available.

Using the (I(x), h(y))-representation, any element T ∈ Fpn can be written as follows.

T (x) = t0(y) + t1(y)x+ · · ·+ tn2−1(y)xn2−1

where t0(y), t1(y), . . . , tn2−1(y) are polynomials of degree at most n1 − 1 over Fp.
Let Φn(x) be the n-th cyclotomic polynomial and ` be a non-trivial prime divisor of Φn(p).

Given a target T0 ∈ F∗pn , the goal is to find its discrete logarithm modulo `.

The function field sieve algorithm has three broad computational steps. In the first step, a

suitable factor basis is identified and linear relations among the discrete logarithms of the factor

basis elements are obtained. The second step applies sparse linear algebra computation to obtain

the discrete logarithms of the factor basis elements. The logarithm of the target element T0(x) is

obtained in the third step which is called the individual logarithm step.

The goal of the individual logarithm step is to express the logarithm of T0 as an F`-linear

combination of logarithms of elements which are either in the factor basis or whose logarithms are

known. For FFS over small characteristic and composite extension degree fields, the individual

logarithm step is carried out in two parts. An initial splitting step followed by descent to factor

basis elements.

Let B be a positive integer. A polynomial is said to be B-smooth, if all its irreducible factors

have degrees less than or equal to B. The initial splitting step expresses the logarithm of T0 in

terms of logarithms of one or more polynomials each of which is B-smooth for a suitable value of

B. The descent step attempts to descend the irreducible factors of the B-smooth polynomial(s)

to the factor basis. In this chapter, we will only be concerned with the initial splitting step.
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A simple and important result proved by Guillevic [83] and extensively used in [84] is the

following.

Lemma 6.1. Let p be a prime and n > 1 be an integer. Let T ∈ Fpn and u be an element in a

proper subfield of Fpn. Then log T ≡ log uT mod Φn(p) and hence log T ≡ log uT mod ` for any

divisor ` of Φn(p).

The importance of Lemma 6.1 stems from the fact that one may try to multiply the target

element T0 with a proper subfield element u to obtain W = uT0 such that the degree of W is

substantially less than that of T0. Then for any integer B, the chance of W being B-smooth is

significantly higher than the chance of T0 being B-smooth.

Let g be the generator of the order ` subgroup of Fpn which is of interest. Given the target

T0 and an integer t ∈ {0, . . . , ` − 1}, let Tt = gtT0 so that log Tt = t + log T0 mod `. Since t is

known, it is sufficient to find the logarithm of Tt. A well known method for initial splitting is the

Waterloo algorithm [24, 25]. This algorithm expresses Tt as Tt(x) = N(x)/D(x) mod I(x) using

the extended Euclidean algorithm such that the degrees of N(x) and D(x) are much smaller than

that of Tt(x). The procedure is repeated for random choices of t until both N(x) and D(x) are

obtained to be B-smooth for a pre-defined choice of B. Once this is obtained, initial splitting is

said to have been achieved.

Improvement to the Waterloo algorithm based on Lemma 6.1 has been described by Guille-

vic [84]. We call this the Guillevic splitting (GS) algorithm and the complete description is shown

in Algorithm-2.

Input: An (I(x), h(y))-representation of Fpn ; generator g of the order ` (where `|Φn(p))
subgroup over which logarithms are to be computed; a target element T0(x); and a
smoothness bound B.

Output: A B-smooth polynomial P (x) such that logP (x) ≡ log T0(x) mod `.
1.1 Let d be the largest non-trivial divisor of n
1.2 Set d = gcd(d, n1) and d′ = d/d

1.3 Obtain U(x) ∈ Fpn such that {1, U, . . . , Ud′−1} is a basis for Fpd′
1.4 repeat
1.5 Choose t randomly from {1, 2, . . . , `− 1}
1.6 T ← gtT0

1.7 Define L =


T
UT

...

Ud
′−1T

 a d′ × n2 matrix over Fpn1

1.8 M ← RowEchelonForm(L) (with Fpd-linear combinations)
1.9 Set P (x) as the polynomial obtained from the first row of M

1.10 until P is B-smooth;
1.11 return (t, P (x)).

Algorithm 2: Guillevic splitting for small characteristic composite order fields.
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Guillevic [84] proved the following properties of Algorithm 2.

1. P (x) is a polynomial of degree at most n2 − d/n1 over Fpn1 . So, the degree of P (x) is

substantially less than that of T0(x) which has degree n2 − 1.

2. P (x) = uT (x) = ugtT0(x) for some u ∈ Fpd′ and so logP (x) = t + log T0(x) mod ` (using

Lemma 6.1).

It was shown in [84] that the efficiency of Algorithm 2 can be further improved using the following

two ideas.

Improvement-1: In Algorithm 2, M is obtained as the row echelon form of L. This requires

running a Gaussian elimination on L. Another round of Gaussian elimination (again with Fpd-

linear combinations) is run on M from the reverse side to obtain a matrix M ′ of the following

form. 
∗ . . . ∗ ∗ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 ∗ . . . ∗ ∗

 (6.1)

The i-th row of M ′ is of the form xeiPi(x), with degree of Pi(x) ≤ n2−d/n1 and ei ≈ (i−1)d/n1.

The element x is a member of the factor basis, and so it is sufficient to obtain the logarithm of

Pi. Incorporating this into Algorithm 2 requires two rounds of Fpd-linear Gaussian elimination.

The advantage is that after the two rounds, it provides a set of d′ polynomials which are to

be tested for B-smoothness. This is to be contrasted with the basic description of Algorithm 2

where one round of Fpd-linear Gaussian elimination results in only one polynomial to be tested

for B-smoothness.

Improvement-2: In each iteration, it is possible to further increase the number of polynomials

to be tested for smoothness by taking Fpd-linear combinations of a small number of consecutive

rows. This will increase the degrees of the resulting polynomials by one or two which does not

significantly affect the probability of the polynomials being B-smooth.

Cost of Algorithm 2: A one-time computation is required by Algorithm 2 to obtain U(x).

Given α, U(x) is computed as U(x) = α(pn−1)/(pd
′−1). So, obtaining U(x) requires an exponen-

tiation which in turn requires O(n log p) multiplications over Fpn . Each multiplication in Fpn
requires O(n2) operations over Fp. Using Karatsuba this cost would be O(n1.59) operations over

Fpn and using the Fast Fourier Transform will provide even lower asymptotic costs. We take the

cost of a multiplication in Fpn to be O(n2) so that the cost of obtaining U(x) is O(n3 log p). In

practice, the actual time for obtaining U(x) is negligible in comparison to the cost of generating
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and testing polynomials for smoothness. So, the best asymptotic cost for computing U(x) is not

very relevant in practice. Note that it is not required to compute the basis {1, U, . . . , Ud′−1}.
Apart from smoothness testing, the cost per iteration of Guillevic splitting algorithm consists

of the following.

1. An exponentiation over Fpn to compute gt.

2. A total of d′ multiplications over Fpn to compute gtT0 and the products UT, . . . , Ud
′−1T .

3. Two rounds of Fpd-linear Gaussian eliminations (considering Algorithm 2 along with Improvement-

1).

Let π1 be the probability that a polynomial of degree n2 − d/n1 over Fpn1 is B-smooth. The

generated polynomials are not statistically independent. Heuristically however, trying out about

1/π1 polynomials of degrees n2 − d/n1, it is likely to obtain one that is B-smooth. It has been

shown in [84] that the amortised cost of obtaining one polynomial to be tested for smoothness by

Algorithm 2 plus Improvement-1 is O(n2
2) multiplications over Fpn1 which is the same as that of

the Waterloo algorithm.

A single multiplication over Fpn1 consists of a polynomial multiplication followed by a reduc-

tion. Asymptotically, the cost of the reduction step is negligible in comparison to the polynomial

multiplication step though in practice, reduction consumes a significant fraction of the time for

the entire field multiplication. Using the schoolbook method to perform polynomial multiplica-

tion requires (n2
1) multiplications over Fp and so the O(n2

2) multiplications over Fpn1 has a cost

of O(n2) multiplications over Fp. Using Karatsuba’s algorithm or an asymptotically faster algo-

rithm will yield lower asymptotic costs. However, for small values of n1, as is typically the case,

the schoolbook method will be faster and it may be assumed that for Algorithm 2, the cost of

generating a polynomial to be tested for smoothness is O(n2) multiplications over Fp.
The total cost of Algorithm 2 is the one-time cost plus the cost of generating and testing

about 1/π1 polynomials for smoothness. This cost is O(n3 log p + (n2 + t1)/π1) operations over

Fp, where O(t1) is the number of Fp operations required to test a polynomial of degree n2− d/n1

over Fpn1 for B-smoothness.

6.3 A New Algorithm for Initial Splitting

The setting is as in Section 6.2. Given a prime p and a composite integer n, the finite field Fpn is

represented by (I(x), h(y)) where h(y) is an irreducible polynomial of degree n1 over Fp and I(x)

is an irreducible polynomial of degree n2 over Fpn1 = Fp[y]/〈h(y)〉 so that Fpn = Fpn1 [x]/〈I(x)〉.
Also, a generator α of F∗pn is available. Given a target element T0(x) ∈ Fpn , the goal is to compute

the logarithm of T0 modulo ` where ` is a prime divisor of Φn(p).
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Let d be the largest non-trivial divisor of n and U(x) ∈ Fpn be such that {1, U(x), . . . , Ud−1(x)}
is a polynomial basis for Fpd . Note the difference to Guillevic splitting, where {1, U(x), . . . , Ud

′−1(x)}
is a polynomial basis for Fpd′ for d′ = d/d and d = gcd(d, n1). In our method, we will not require

either d or d′.

We also make use of Lemma 6.1. Let

a = (a0, . . . , ad−1)T ∈ Fdp. (6.2)

Then

V = a0 + a1U + · · ·+ ad−1U
d−1 (6.3)

is an element of Fpd . Define

W = V T0. (6.4)

By Lemma 6.1, the logarithms of W and T0 are equal modulo `, i.e.,

logW ≡ log T0 mod `. (6.5)

We introduce a new parameter s which is a positive integer less than n2. The first step is to

obtain a such that W is a monic polynomial of degree n2− s− 1 over Fpn1 . Next, the polynomial

W is tested for B-smoothness.

There is always a possibility that it may not be smooth for the chosen B. Let π2 be the

probability that a monic polynomial of degree n2−s−1 over Fpn1 is B-smooth. By generating and

testing about 1/π2 random polynomials W it is likely to obtain a polynomial which is B-smooth.

We use linear algebra to generate 1/π2 polynomials over Fpn1 each of degree n2 − s− 1.

Given T0, define

Ui = U iT0, for i = 0, . . . , d− 1. (6.6)

Each Ui is a polynomial of degree at most n2 − 1 over Fpn1 .

Let T (x) = T0 +T1x+ · · ·+Tn2−1x
n2−1 be a polynomial of degree n2−1, where Ti ∈ Fpn1 for

i = 0, . . . , n2−1. Let Ti(y) = ti,0 +ti,1y+ · · ·+ti,n1−1y
n1−1 where ti,j ∈ Fp for i = 0, . . . , n2−1 and

j = 0, . . . , n1−1. Then the polynomial T (x) can be encoded by the following vector of dimension

n over Fp.

[t0,0, . . . , t0,n1−1, . . . , tn2−1,0, . . . , tn2−1,n1−1]T . (6.7)
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Using the above encoding of polynomials to vectors, the polynomial Ui can be represented

by a (column) vector ui in Fnp .

We define an n× d matrix M with entries from Fp as follows.

M = [u0 u1 · · · ud−1] =

[
M0

M1

]
(6.8)

where M0 is an (n1(n2− s− 1))×d matrix and M1 is an (n1(s+ 1))×d matrix. Note that, given

T0 and U , the matrix M is fixed and needs to be computed only once.

The polynomial W (x) can be represented as a vector w ∈ Fnp . We write w as

w =

[
w0

w1

]

where w0 is in Fn1(n2−s−1)
p and w1 is in Fn1(s+1)

p .

The relation

W = V T0 = (a0 + a1U + · · ·+ ad−1U
d−1)T0 = a0U0 + a1U1 + · · ·+ ad−1Ud−1

can be written in matrix notation as follows.[
w0

w1

]
= Ma =

[
M0

M1

]
a (6.9)

From (6.9), we obtain the following two equations.

w0 = M0a; (6.10)

w1 = M1a. (6.11)

Recall that our goal is to obtain W (x) as a monic polynomial of degree n2− s− 1 over Fpn1 .

This puts constraints on the coefficients of W (x), namely, the coefficient of xn2−s−1 has to be one

and the coefficients of xi for i = n2 − s, . . . , n2 − 1 have to be zeros. These conditions define the

vector w1 to be the following:

w1 = [1, 0, . . . , 0, 0︸ ︷︷ ︸
n1

, 0, 0, . . . , 0︸ ︷︷ ︸
n1s

]T . (6.12)

Given w1 and the matrix M1, the inhomogeneous system of equation given by (6.11) is to be

solved for a and the resulting solution is to be substituted in (6.10) to obtain w0. This w0 provides
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the polynomial

W (x) = xn2−s−1 +W0(x) (6.13)

where W0(x) ∈ Fpn1 [x] is the polynomial represented by w0 and is of degree less than n2 − s− 1.

The polynomial W (x) is to be tested for smoothness.

M1 is an n1(s+ 1)× d matrix and so a necessary condition for a solution to (6.11) to exist

is d ≥ n1(s+ 1). Define

r = d− n1(s+ 1). (6.14)

Then a general solution a to (6.11) can be written as

a = Bb + c (6.15)

where B is an d× r matrix over Fp which is a basis for the null space of M1, b is in Frp and c ∈ Fdp
is a particular solution to (6.11). Substituting the general solution given by (6.15) into (6.10) we

obtain

w0 = M0a = M0 (Bb + c) = Lb + d (6.16)

where

L = M0B and d = M0c. (6.17)

L is a matrix of order n1(n2 − s− 1)× r and d ∈ Fn1(n2−s−1)
p . Once the system (6.11) is solved,

B and c are obtained and from these it is possible to obtain L and d.

Suppose r is chosen such that

r = d− n1(s+ 1) ≥ dlogp 1/π2e. (6.18)

Then varying b over all possible vectors in Frp, it is possible to generate more than 1/π2 distinct

polynomials W (x) = xn2−s−1+W0(x) of degrees n2−s−1. These polynomials are not statistically

independent and so theoretically the smoothness estimate does not apply to these polynomials.

Heuristically however, it is likely that one of these polynomials is B-smooth. Our experiments

confirm this heuristic assumption.

A necessary condition for the method to work is given by (6.18). Using Theorem 1 of [140]

and using the estimate ρ(u) ≈ u−u of the Dickman function, an estimate of the probability that
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a polynomial of degree n2 − s− 1 is B-smooth is as follows.

π2 ≈
(
n2 − s− 1

B

)−(n2−s−1
B

)
(6.19)

Combining with (6.18), we obtain the condition

d− n1(s+ 1) ≥
⌈(

n2 − s− 1

B

)
logp

(
n2 − s− 1

B

)⌉
. (6.20)

Increasing the value of s decreases the degree of W (x) to be tested for smoothness and hence

increases the smoothness probability π2. On the other hand, increasing the value of s reduces

the left hand side of (6.20) and (6.20) may fail to hold. So, the goal is to choose the maximum

possible value of s such that (6.20) holds.

An algorithmic description of the above theory is given in Algorithm 3.

Input: An (I(x), h(y))-representation of Fpn ; a target element T0(x); a smoothness bound B;

and an s satisfying (6.20);

Output: A B-smooth polynomial W (x) such that logW (x) ≡ log T0(x) mod ` where ` is a

divisor of Φn(p)

2.1 Choose the maximum value of s such that (6.20) holds

2.2 Let r = d− n1(s+ 1)

2.3 Let U(x) be such that {1, U(x), . . . , Ud−1(x)} is a polynomial basis for Fpd
2.4 Compute the matrices M0 and M1 as given in (6.8)

2.5 Set w1 as given in (6.12)

2.6 Solve (6.11) to obtain B and c as given in (6.15)

2.7 Compute L = M0B and d = M0c

2.8 for each b ∈ Frp do

2.9 Compute w0 = Lb + d and let W0(x) ∈ Fpn1 [x] be the polynomial represented by w0

2.10 Set W (x) = xn2−s−1 +W0(x)

2.11 if W (x) is B-smooth then

2.12 break

2.13 end

2.14 end

2.15 return W (x).

Algorithm 3: The new algorithm for initial splitting.

Remarks:
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1. A difference between Algorithm 2 and Algorithm 3 pertains to the target. In Algorithm 3,

the original target T0 remains unchanged, whereas in Algorithm 2, for every d′ candidate

polynomials a fresh target Tt = gtT0 is computed.

2. In her paper [84], Guillevic had also proposed an initial splitting algorithm for the number

field sieve (NFS) algorithm in the large characteristic case. Our method of generating

polynomials does not help in improving the efficiency of Guillevic splitting for the NFS

algorithm.

6.3.1 Implementation Issues

Since p is small, it is possible to speed up the computation of Lb + c at the cost of extra storage.

For k = 1, . . . , p − 1, let L(k) = kL and denote by L
(k)
∗,j the j-th column of L(k). Suppose the

matrices L(1), . . . ,L(p−1) have been computed and stored. Suppose b = (b1, . . . , br). Then Lb + c

can be computed as follows.

sum← c;

for j = 1, . . . , r do

if bj > 0, then sum← sum + L
(bj)
∗,j

end for;

return sum.

This method of computation avoids all the multiplications over Fp during the generation of the

polynomial W (x).

Parallelism: In Algorithm 3, after the matrix L and the vector c have been generated, the

generation of the polynomials and testing them for smoothness can be completely parallelised. It

is possible to allocate non-intersecting subsets of Frp to different processes. Each process indepen-

dently uses the vectors in its alloted subset to generate polynomials and test them for smoothness.

There is no need for any coordination between the processes.

Guillevic splitting in Algorithm 2 also supports parallelism though of a somewhat restricted

kind. The completion of the doubly reduced row echelon form provides a total of d′ polynomials to

be tested for smoothness by independent processes. The testing of these polynomials can be done

in parallel. However, once these polynomials have been checked, the processes have to halt until

the next batch of d′ polynomials have been generated. Alternatively, there can be a process which

successively generates batches of d′ polynomials and feeds them to other processes to be tested

for smoothness. Neither of these options is as simple as the parallelism that can be obtained from

Algorithm 3.
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6.3.2 Degrees of Polynomials Generated by Algorithm 3

Each iteration generates a polynomial W (x) of degree n2 − s − 1. As mentioned above, s is a

positive integer less than n2 which is to be chosen as the maximum value satisfying (6.20). We

determine the value of s and hence the degrees of W (x) for the two examples considered in [84].

Example-1: For this example, p = 3, n1 = 6, n2 = 509 and so d = 3 · 509. For 26 ≤ B ≤ 32,

the maximum value of s satisfying (6.20) is s = 250. So, the degrees of the corresponding

W (x)’s are 258.

Example-2: For this example, p = 3, n1 = 5 and n2 = 479 and so d = n2 = 479. For 42 ≤ B ≤ 50,

the maximum value of s satisfying (6.20) is s = 91. So, the degrees of the corresponding

W (x)’s are 387.

Using Algorithm 2, the degrees of the generated polynomials for Example-1 and Example-2 are

254 and 383 respectively. So, compared to Algorithm 2, the polynomials generated by Algorithm 3

have slightly larger degrees. This has two consequences.

1. The smoothness probability π2 for Algorithm 3 is slightly smaller than the smoothness

probability π1 for Algorithm 2. For Example-1, π1/π2 is in the range [1.33, 1.46] for 32 ≥
B ≥ 26 while for Example-2, π1/π2 is in the range [1.20, 1.26] for 50 ≥ B ≥ 42.

2. The cost of smoothness checking t2 in Algorithm 3 is slightly greater than the cost of

smoothness checking t1 in Algorithm 2. For the degrees considered, it is reasonable to

assume t1 ≈ t2.

We note that Algorithm 2 combined with both Improvement-1 and Improvement-2 result in poly-

nomials whose degrees are one or two more than those obtained from Algorithm 2 combined only

with Improvement-1. So, the degrees of polynomials generated by Algorithm 2 plus Improvement-

1 and Improvement-2 are even closer to the degrees of polynomials generated by Algorithm 3.

6.3.3 Cost of Algorithm 3

The one-time cost of Algorithm 3 consists of the following components.

1. Computation of U(x) = α(pn−1)/(pd−1). As in the case of Algorithm 2, this cost is O(n3 log p).

Also, as in the case of Algorithm 2, it is not required to compute the basis {1, U(x), . . . , Ud−1(x)}.

2. Computation of M0 and M1 requires the elements {T0, UT0, . . . , U
d−1T0}. This requires a

total of d− 1 multiplications in Fpn which we estimate as O((d− 1)n2) operations over Fp.

3. Solving (6.11) to obtain B and c. Since M1 is an n1(s+ 1)× d matrix over Fp, the cost for

this step is O(n1(s+ 1)d2) operations over Fp.
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4. Computing L = M0B and d = M0c where M0 is an n1(n2 − s − 1) × d matrix over Fp,
B is a d × r matrix over Fp and c is in Fdp. The cost for the matrix multiplication M0B

is O(n1(n2 − s− 1)dr) operations over Fp and the cost for the matrix-vector multiplication

M0c is O(n1(n2 − s− 1)d) operations over Fp.

The total one-time cost is O(n3 log p + (d − 1)n2 + n1(s + 1)d2 + n1(n2 − s − 1)dr) = O(n3)

operations over Fp. In practice, the one-time computation is negligible in comparison to the time

for generating and testing polynomials for smoothness.

The cost of generating a polynomial to be tested for smoothness is the cost of computing

the matrix-vector multiplication Lb. Since L is an n1(n2− s− 1)× r matrix over Fp and b ∈ Frp,
this cost is O(n1(n2 − s − 1)r) operations over Fp. Noting that n1n2 = n and r ≈ logp(1/π2),

the cost of generating each polynomial is O((n − n1(s + 1))r) = O((n − n1(s + 1)) logp(1/π2))

Fp operations. The value of s is less than n2, and so, the cost of generating a polynomial is

O(n logp(1/π2)) Fp-operations.

The total cost of Algorithm 3 is the cost of one-time computation plus the cost for gener-

ating and testing the polynomials for B-smoothness. This cost is O(n3 log p+ (t2 − n log π2)/π2)

operations over Fp, where O(t2) is the number of Fp operations required to test a polynomial of

degree n2 − s− 1 over Fpn1 for B-smoothness.

In contrast, the total cost of Algorithm 2 is O(n3 log p + (t1 + n2)/π2) operations over Fp.
Based on the discussion in Section 6.3.2, we may take π1 and π2 to be approximately equal

and denote by π this common smoothness probability. Similarly, we may take t1 and t2 to

be approximately equal and denote by t to be the time for smoothness checking in both the

algorithms. Then the total time for Algorithms 2 and 3 are respectively O(n3 log p+ (t + n2)/π)

and O(n3 log p+(t−n log π)/π) operations over Fp. The main cost for Algorithm 2 is O((t+n2)/π)

while for Algorithm 3 it is O((t− n log π)/π).

From [60], for a degree δ polynomial over Fpn1 , the costs of square-free factorisation, dis-

tinct degree factorisation and equal degree factorisation are respectively O(δ2), O(δ3 log pn1) and

O(δ2 log pn1). So, the cost t of smoothness checking is substantial. In comparison to Algorithm 2,

the main advantage of Algorithm 3 is that it makes the cost of generating a polynomial negligible

in comparison to the cost of testing the polynomial for smoothness.

6.4 Computational Results

To demonstrate that Algorithm 3 works, we made a basic Magma implementation for Example-1

mentioned in Section 6.3.2, i.e., p = 3, n1 = 6 and n2 = 509. The field Fpn is represented using

(I(x), h(y)). The polynomials h(y) and I(x) and the generator x+ y2 are given in [84]. Further,

we also used the target T0 that was used in [84]. The largest prime divisor of n is d = 3 · 509.
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We ran Algorithm 3 for two values of B, namely B = 28 and B = 30. In both cases, the value

of s satisfying (6.20) is 250 and so the degrees of the generated polynomials are n2− s− 1 = 258.

Since d = 3 · 509, n1 = 6 and s = 250, the value of r from (6.14) is 21.

Given α, U(x) is uniquely defined. Given T0(x) and U(x), the matrices M0 and M1 are

completely defined. Since w1 is fixed by (6.12), given M1, the matrix B and the particular

solution c to (6.11) are completely defined. Further, given B and c, the matrix L and the vector

d are also completely defined. So, given α and T0(x), the matrix L and the vector d are defined.

Different values of b generates different values of w0 (equivalently, different values of W0(x)) and

so different values of W (x). From (6.5), we have logW ≡ log T0 mod `.

Below we provide the obtained values of b such that the corresponding W (x)’s are B-smooth

for B = 28 and B = 30. Along with the b’s we also provide the smoothness probabilities.

B = 28: π2 ≈ 2−29.5, b = (0, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 2, 0).

B = 30: π2 ≈ 2−26.7, b = (0, 0, 1, 2, 2, 1, 1, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, 0, 0).

In both the cases, the degrees of the generated polynomials are 258. So, the time for one-time

computation and the average times for generating a polynomial and smoothness checking are also

the same. The one-time computation took less than 2 hours.

To obtain an estimate of the times required per iteration, we averaged over 1000 iterations.

The average time to generate a polynomial is about 10−5 seconds while the average time to check

the polynomial for smoothness is about 0.4 seconds. As mentioned earlier, the advantage of the

new method is that the time for generating a polynomial is negligible in comparison to the time

for smoothness checking.

For the actual computations of b for B = 28 and B = 30, the iterative part of Algorithm 3

was parallelised as mentioned in Section 6.3.1. The subspace Fr3 was divided into disjoint sub-

spaces to be searched by 320 parallel processes running on four servers having 100 cores each.

The computation for B = 30 took less than a day while the computation for B = 28 took about

10 days. We did not have exclusive access to the servers during the execution of the programs.

The server was loaded with long running R and Matlab programs by other users. Due to this,

the exact times for the completion of our programs are not informative and so we do not report

these times.

Theoretical improvement of initial splitting when our algorithm is used has been shown. In addi-

tion, it is completely parallelizable. The overall speed-up over Guillevic’s splitting has not been

determined as Guillevic’s algorithm though supports parallelism, but cannot be made completely

parallel.



Chapter 6. Faster Initial Splitting for Small Characteristic Composite Extension
Degree Fields 92

6.5 Notes on Computation

We have implemented Algorithm 3 in Magma. The description of the algorithm and the theoretical

explanation provided in Section 6.3 are mostly in terms of vectors and matrices. Magma, on the

other hand, provides good support for polynomial arithmetic. So, we performed some of the

computations using polynomials. While this makes the computation more convenient for Magma,

it does not change the cost analysis provided in Section 6.3.3. Below we mention the portion of

the computation that has been done using polynomials.

6.5.1 Working with Polynomials

The target T0, the basis {1, U, . . . , Ud−1} of Fpd and Ui = U iT0, for i = 0, . . . , d−1 are polynomials

of degrees at most n2 − 1 over Fpn1 . It has been mentioned that each of the polynomials Ui is

encoded by a vector ui of dimension n over Fp. This leads to the matrix M which is written as

the stacking of two matrices M0 and M1 as shown in (6.8).

For the computation, we indeed formed the matrix M1. On the other hand, we did not

actually construct the matrix M0. Instead the matrix M0 was represented using the set of

polynomials {P0(x), . . . , Pd−1(x)}, where Pi(x) = Ui(x) mod xn2−s−1 for i = 0, . . . , d− 1.

The matrix M1 and the vector w1 as given in (6.12) was used as inputs to the linear algebra

solver, providing the matrix B and the vector c as outputs.

At this point, it is required to obtain the matrix L = M0B and the vector d = M0c. Since the

matrix M0 was represented as a set of polynomials, we in fact obtain L as a set of polynomials and

the vector d as a single polynomial. In more details, let B = [[βi,j ]], 0 ≤ i ≤ d−1 and 0 ≤ j ≤ r−1

and c = [c0, . . . , cd−1]T , where βi,j , c0, . . . , cd−1 ∈ Fp. The matrix L was represented using a set

of polynomials {R0(x), . . . , Rr(x)}, where Rj(x) = β0,jP0(x) +β1,jP1(x) + · · ·+βd−1,jPd−1(x) for

j = 0, . . . , r− 1. The vector d was represented using the polynomial D(x) = c0P0(x) + c1P1(x) +

· · ·+ cd−1Pd−1(x).

Given the vector b, the vector w0 is obtained as Lb + d. This w0 represents the polynomial

W0. Since L and d are represented as polynomials, the polynomial W0 is directly computed as

W0(x) = b0R0(x) + b1R1(x) + · · · + br−1Rr−1(x) + D(x), where b = [b0, . . . , br−1]T . Finally, the

polynomial W (x) = xn2−s−1 +W0(x) is tested for smoothness.

6.5.2 Verifying Solutions

Suppose b is a vector which leads to W0(x) such that W (x) is B-smooth. Two examples of b are

given in Section 6.4. We briefly mention how the correctness of these solutions can be verified.

Recall that the matrix B and the vector c have been obtained as the output of the linear

algebra solver. So, given b, the vector a = Bb + c can be obtained. From (6.3), given a =
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[a0, . . . , ad−1]T , we obtain V = a0 + a1U + · · ·+ ad−1U
d−1. Once V is obtained, we can multiply

it to T0 to obtain W = V T0. This W can then be verified to be B-smooth as required.

So, given the basis {1, U, . . . , Ud−1}, the matrix B and the vector c, it is possible to verify

that a solution b is indeed correct.

We provide the Magma code for verifying the correctness of the vectors b given in Section 6.4

at the following link.

https://github.com/Madhurima11/faster-initial-splitting.git.

6.6 Conclusion

For small characteristic, composite extension degree fields, we have shown that in the initial

splitting step, the cost of generating polynomials to be tested for smoothness can be brought down

to O(n log(1/π)) operations in Fp from the cost O(n2
2) multiplications in Fpn1 that is required by

the Guillevic splitting algorithm [84]. This improvement should help in the computation of future

record discrete logarithm computations over such fields. An estimate of the expected speed-up

will depend upon the target field.

https://github.com/Madhurima11/faster-initial-splitting.git
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Chapter 7

Class Group Computation

Computation of the class group of an order of the ring of integers of a number field is a basic

problem in computational algebraic number theory. It is also of cryptographic interest. Despite

its importance, it remains a very difficult problem. The complexity is expressed in terms of the

discriminant of the number field. The initial efforts were dedicated to quadratic number fields.

Presently, several subexponential algorithms are available for various degrees of number fields.

To describe the attempts made to tackle this problem, at first we need to introduce certain

mathematical terms associated with the problem.

7.1 Preliminaries

Let Q, R and C respectively denote the fields of rational, real and complex numbers. The ring of

integers will be denoted by Z. In the following, a brief overview of some relevant facts regarding

the problem of computing the class group is given. Further details can be found in [44, 166, 9].

7.1.1 Basic Definitions

Definition 7.1. Number Field: An algebraic number field or simply a number field K is a subfield

of the field of all complex numbers such that it contains Q as a subset and the dimension of K as

a vector space over Q is finite.

An algebraic number field is thus a finite extension of Q. It can be expressed in a variety

of ways [45, 121, 144]. Mostly, these modes of expression can be transformed into another in

polynomial time.

Let n be the extension degree of the number field K, i.e., n = [K : Q]. Then K is expressed as

K ∼= Q[x]/〈T 〉 (7.1)

97
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for some monic irreducible polynomial T over Z of degree n.

Given any number field K of extension degree n, by primitive element theorem, it is expressible

as K = Q(θ) for some θ ∈ K. Such an element θ is called a primitive element of the number field

K.

Definition 7.2. Defining Polynomial: Let K be a number field with extension degree n. Any

polynomial T which is the minimal polynomial of some primitive element θ of K is called a defining

polynomial of the number field.

All defining polynomials are monic, irreducible polynomials over Q of degree equal to the

degree of extension of the number field. For each of the polynomials T , an expression of the

form 7.1 holds.

As C is algebraically closed and T is irreducible of degree n, there are exactly n roots of T .

Since complex roots occur in conjugate pairs, the number of complex roots is even. Let r1, 2r2 be

the number of real and complex roots respectively. Then the condition r1 + 2r2 = n holds. The

tuple (r1, r2) is called the signature of the number field. Every root ξi, i = 1, 2, . . . , n, induces

a homomorphism from Q[X] → C, given by X 7→ ξi. Each such map defines an embedding σi,

i = 1, 2, . . . , n. For a0, a1, . . . , an−1 ∈ Q,

σi(a0 + a1X + . . .+ an−1X
n−1) 7→ a0 + a1ξi + . . .+ an−1ξi

n−1.

An embedding is called a real embedding if it maps entirely into R, otherwise it is called a

complex embedding. The embeddings σi can be renumbered such that the real embeddings are

σ1, . . . , σr1 while the complex embeddings are σr1+1, . . . , σn with σr1+j paired with its complex

conjugate σr1+r2+j , j = 1, 2, . . . , r2.

The canonical embedding is defined as:

σ : K → Rr1 × Cr2

σ(a) = (σ1(a), . . . , σn(a)).

Definition 7.3. Norm and Trace: Let K be a number field of degree n with n distinct embeddings

σi defined from it to C. The norm and the trace functions denoted by NK/Q and TK/Q are defined

respectively by:

NK/Q(α) =
n∏
i=1

σi(α)

TK/Q(α) =

n∑
i=1

σi(α).
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Due to the homomorphic nature of σi, the norm and trace functions are multiplicative and

additive functions respectively on K.

The norm can be computed conveniently ([44], Proposition 4.3.4) as

NK/Q(α) =
Res(T (X), A(X))

dn
(7.2)

where α = 1
d

(∑n
i=0 aiθ

i
)
, A(X) =

∑n
i=0 aiX

i and Res denotes the resultant of the two polynomi-

als.

An element α ∈ K is said to be an integral element of K if it is a root of a monic polynomial

with coefficients in Z.

Definition 7.4. Ring of Integers: The ring of integers of a number field K is the set of all integral

elements of K. It is generally denoted by OK.

As sum and product of two integral elements is also integral so OK is a ring. It is a lattice in

K ([166], Proposition 2.4.5). The dimension of this Z-module OK is equal to the extension degree

n of K. A Z-basis of OK is called an integral basis of K. The field of fractions of OK is K itself

([166], Lemma 2.3.19). For any α ∈ K, there is an integer a, such that aα ∈ OK.

Definition 7.5. Discriminant: Let b1, b2, . . . , bn be an integral basis of K. The discriminant ∆K

of the number field K is defined as

∆K =
(
det(σi(bj))

)2
= det(TK/Q(bibj)) (7.3)

where each of the symbols used have their conventional meanings as defined before.

It can be shown ([166], Section 6.2) that this value is independent of the choice of the integral

basis. It is the same as the determinant of the canonical embedding of K and the discriminant of

the order OK.

7.1.2 Ideals

Definition 7.6. Ideal: An ideal a of OK is a sub-Z-module of OK such that for all x ∈ OK and

a ∈ a, xa ∈ a. It also called an integral ideal.

Definition 7.7. Fractional Ideal: A fractional ideal a of OK is an OK-submodule of K with some

element d ∈ OK such that da ⊆ OK.

The element d is called the denominator of OK. It is easy to show that da is an ideal of OK.

Any ordinary ideal of OK is also a fractional ideal (considering d = 1) and is referred to as an
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integral ideal.

The intersection, sum of two fractional ideals is also fractional [Lemma 3.2.5, [9]].

The product of two ideals a1,a2 is defined as the set of finite sums of products of elements

taken from these ideals, i.e., a1a2 = {
∑

i<m(a1i)(a2i) | aki ∈ ak; k = 1, 2; m ∈ N}. The product

of a finite number of ideals whether integral or fractional is also defined in the same way. It is

easy to see that the product defined in this fashion is commutative.

The inverse of a fractional ideal a is another fractional ideal by Proposition 3.2.7 of [9] and is

given by {α ∈ K : αa ⊆ OK}. Any fractional ideal a can be written as the ratio b
dOK , where b

is an integral ideal and d is the denominator of the ideal a. This means any fractional ideal is

expressible as the ratio of two integral ideals.

Let IOK be the set of all fractional ideals of OK. Then from the previous paragraph, IOK forms

a commutative group multiplicatively with the identity element equal to the ideal OK.

Definition 7.8. Principal Ideal: An ideal a of OK is said to be a principal ideal if a = αOK = 〈α〉
for some element α in OK.

Suppose POK is the set of all principal fractional ideals of OK. Then POK is a subgroup of

IOK . These groups being commutative, the idea of quotient group can be perceived.

Definition 7.9. Ideal Class Group: The ideal class group of OK is defined as the quotient group

IOK/POK and is denoted by ClOK .

The ideal class group ClOK is commutative due to the abelian property ofOK. The cardinality

of this group is finite (Corollary 5.3.6, [9]) and is said to be the class number of K.

Let a be an integral ideal of OK. It can be shown that the quotient group OK/a is finite.

Definition 7.10. Norm: The norm of an integral ideal is given by the cardinality of the quotient

group OK/a. The norm is denoted by N (a).

In case of a principal ideal, a = 〈α〉 = αOK, the norm is same as the absolute value of

the norm of the generating element, i.e., N (a) = |N (α)| (Proposition 4.2.6, [9]). This notion

of norm can be extended in case of fractional ideals as well. For a fractional ideal a = b/c,

N (a) = N (b)/N (c) ([166], Proposition 6.3.4). This definition is not dependent on the way in

which any fractional ideal is defined.

Any nonzero fractional ideal of OK is uniquely expressible as a product of prime ideals ([166],

Theorem 3.3.1). If a is a fractional ideal, then there are unique prime ideals p1,p2, . . . ,pk and

non-zero integers e1, e2, . . . , ek such that a =
∏k
i=1 pi

ei .

The class group computation is also associated with the computation of units and regulator

of the number field. They are explained in the following definitions.
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Definition 7.11. Unit: Units in a number field are all those algebraic integers whose inverse is

also an algebraic integer.

It is easy to see that, for a unit, the absolute value of the norm is one. The converse also

holds true ([166], Proposition 8.1.4).

Due to the multiplicativity of the norm, the set of all units form a group. This multiplicative

group of all units in K is denoted by UK. The roots of unity also form a multiplicative group.

This subgroup of UK is called the subgroup of the roots of unity in K and is denoted by µK. The

groups UK and µK can be connected by Dirichlet’s Unit Theorem.

Theorem 7.12. Dirichlet’s Unit Theorem: Let (r1, r2) be the signature of the number field K.

The group UK of all units of K is a finitely generated abelian group of rank r = r1 + r2 − 1.

Further, µK is a finite cyclic group and we have the following isomorphism.

UK w µK × Zr. (7.4)

By Theorem 7.12, there exists units u1, u2, . . . , ur such that every element u ∈ UK can be

written as u = ζu1
n1u2

n2 . . . ur
nr where n1, n2, . . . nr ∈ Z and ζ is a root of unity. Any such

r-tuple (u1, u2, . . . , ur) is called a system of fundamental units of K.

The notion of embedding has already been dealt with in this chapter. Let us now define the

logarithmic embedding which utilises embeddings. It leads to the concept of regulator which is a

measure of density of the unit group in the logarithmic space.

Definition 7.13. Logarithmic embedding: The logarithmic embedding is defined by the map Log.

Log : K∗ → Rr1+r2 (7.5)

x 7→
(
log|σ1(x)|, log|σ2(x)|, . . . , log|σr1(x)|, 2log|σr1+1(x)|, . . . , 2log|σr1+r2(x)|

)
. (7.6)

This idea of logarithmic embedding gives rise to a lattice. The following theorem which is

Theorem 4.9.7 of [44] is a restatement of Dirichlet’s Unit Theorem, but conveys some important

ideas.

Theorem 7.14. The image of the group UK under the logarithmic embedding is a lattice. It lies

in the hyperplane
∑r1+r2

i=1 xi = 0 in Rr1+r2 and is of rank r = r1 + r2− 1. It is called the Log-unit

lattice. Also, the kernel of this embedding is equal to the group µK.

Definition 7.15. Regulator: The determinant of the log-unit lattice is called the regulator of K
and is denoted by RegK.

RegK being equal to the volume of the lattice, is an invariant for any number field.

RegK is also defined as the absolute value of the determinant of an arbitrary minor of size r of
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the r × (r + 1) matrix with (i, j)th entry as
(
log‖σj(ui)‖

)
, 1 ≤ i ≤ r and 1 ≤ j ≤ (r + 1). The

norm ‖‖ is:

‖σ(x)‖ = |σ(x)| if σ is real,

‖σ(x)‖ = |σ(x)|2 if σ is complex.

Calculation of a close approximation of the regulator is associated with class group computation.

It is described in Section 7.3.5 of this Chapter. Algorithms for computation of the torsion subgroup

of UK can be found in ([44], Section 4.9.2).

7.2 Related Problems and Cryptographic Applications

Several mathematical perspectives as well as cryptographic aspects have already been listed in

Sections 1.5.1 and 1.5.2 of this thesis. We provide some more in this section.

7.2.1 Related Problems

The set of relations obtained for computing the class group are also used for computing the

regulator and a set of generators of the unit group. In fact, the regulator and the class number

are required to be computed together. The techniques for decomposing an ideal over a factor

basis are also used to obtain algorithms for the principal ideal problem.

7.2.2 Cryptographic Applications

As discussed before, there is no polynomial-time algorithm to compute the class group and the

best-known algorithms have sub-exponential complexity. So, for a number field with a sufficiently

large discriminant, the order of the class group can be considered to be unknown. Such a hidden

order group forms the basis for several cryptographic primitives [26, 40]. Concrete suggestions for

instantiating these primitives have been made using class groups of imaginary quadratic fields.

In principle, though, the class group of a general number field can also be used. The security

versus efficiency question of using class groups of general number fields versus those of imaginary

quadratic fields remains to be studied. Progress in algorithms for computing class groups influ-

ences the choice of number fields over which the relevant cryptographic primitives can be securely

implemented.
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7.3 General Method for Class Group Computation

The best asymptotic algorithms to compute class groups follow the general framework of the

index calculus method. The steps are broadly classified as:

1. Choice of Factor Base: Fixing a factor base consisting of elements small in certain sense,

but enough to generate the class group.

2. Relation Collection Phase: Collecting relations among the factor basis elements.

3. Linear Algebra Step: Solving the set of equations obtained as relations. Thereby the loga-

rithms of the factor base elements are obtained.

After the completion of the steps of the index calculus method, the class group is computed from

the results obtained in the linear algebra step. A verification step is also kept to ensure that the

computed class group is valid.

These steps may be further detailed as below.

7.3.1 Selection of Factor Base

The factor base is defined as the set of all prime ideals in OK having norm below some fixed

bound B. This integer B is called the smoothness bound. Let B denote the factor base and N

denote the number of such prime ideals. Then,

B = {p1, p2, . . . , pN : N (pi) ≤ B ∀ i ∈ [1, N ]}. (7.7)

B must be carefully chosen keeping into account two considerations. Firstly, the factor base must

be sufficient to generate the class group. Secondly, the size of the factor base should not be too

large as otherwise, it will make the linear algebra phase costly.

In general, the value is assumed to be of the form B = L|∆K|(β, cb) for some 0 < β < 1 and cb > 0.

The values of β, cb are determined so that the complexity of the entire method is optimal.

Bach Bound: Assuming Extended Riemann Hypothesis (ERH), Bach ([11], Theorem 4.4)

showed that taking classes of ideals with a representative norm at most B = 12(log |∆K |)2,

is sufficient to generate the class group. This quantity 12(log |∆K |)2 is known as the Bach Bound.

In the case of quadratic number fields, it can be reduced to 6(log |∆K |)2. In practice, B may be

taken somewhat higher to facilitate the collection of relations.

An asymptotic estimate of the number of prime ideals having norm below B is obtained from

Landau’s prime ideal theorem [116]. This is a generalization of the prime number theorem for
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number fields. It is stated in Theorem 7.16 below. This makes the cardinality of the factor base

to be about B.

Theorem 7.16. Given a number field K and a bound B ∈ N, the number of prime ideals of K
having norm below B denoted by πK(B) satisfies:

πK(B) ∼ B

logB
. (7.8)

7.3.2 Relation Collection

It is assumed that the factor base B has been chosen such that it generates the class group. Thus,

there is a surjective morphism (as in equation 7.9) which maps N tuples of integers to the class

group representative.

ZN φ−→ I π−→ ClOK

(e1, e2, . . . , eN ) 7→
N∏
i=1

pi
ei 7→

N∏
i=1

[pi]
ei . (7.9)

The class group can be computed as

ClOK w ZN/Ker(π ◦ φ). (7.10)

From equation (7.10), it is sufficient to compute the kernel Ker(π ◦ φ) in order to compute the

class group. From the maps in the mapping (7.9), the kernel

Ker(π ◦ φ) = {(e1, e2, . . . , eN ) :
N∏
i=1

pi
ei = 〈x〉} (7.11)

consists of all N tuples which are mapped to some principal ideal 〈x〉 of OK. Thus the kernel can

be deduced from the lattice of (e1, e2, . . . , eN ) ∈ ZN such that
∏N
i=1 pi

ei = 〈x〉. The purpose of

relation collection is to collect relations of the form given in equation (7.12). These relations are

utilised to construct the lattice:
N∏
i=1

pi
ei,j = 〈xj〉. (7.12)

On finding such a relation a row of exponents is appended to the relation matrix M :=
(
(ei,j)1≤i≤N

)
where (e1,j , e2,j , . . . , eN,j) denotes the N -tuple of exponents for the j-th relation. The search for

relations can be halted when the lattice generated by the rows of M has rank N . It is assumed

heuristically that this search for relations can end when some more than N relations is collected.
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7.3.3 Linear Algebra

Once a sufficient number of relations are collected a linear algebra step is performed on the

matrix M ∈ Zm×N where m denotes the number of relations collected. The aim is to compute

the Smith-Normal-Form (SNF) of M , i.e., integers d1, d2, . . . , dN are found with

dN |dN−1| . . . |d1

such that there exists two unimodular matrices U ∈ Zm×m and V ∈ ZN×N , with the condition

M = U



d1 (0)
. . . (0)

(0) dN

(0)


V.

The matrix

S =



d1 (0)
. . . (0)

(0) dN

(0)


(7.13)

is the SNF of M .

If m = N the class group structure can be computed from the SNF.

The Hermite Normal Form (HNF) of the relation matrix is also useful in general.

For every matrix M ∈ Zm×N , there is a unimodular matrix W ∈ Zm×m and a matrix H such

that H = WM . The matrix H is of the form,

H =



h1,1 0 . . . 0
... h2,2

. . .
...

...
...

. . . 0

∗ ∗ . . . hN,N

(0)


(7.14)
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along with the conditions 0 ≤ hij < hii ∀j < i and hij = 0 ∀j > i. This matrix H is called the

HNF of M . Computing HNF consists only of row operations, so the rows of H also represent

relations.

7.3.4 Computation of the Class Group

The class group is computed after the linear algebra step is performed.

Case 1: If m = N : In this case, the lattice L spanned by the rows of M gives the class number.

From the SNF with diagonal entries as d1, . . . , dN as in equation (7.13) we get

ZN/L w Z/d1Z× Z/d2Z× . . .Z/dNZ. (7.15)

Furthermore as the exponents of relations (i.e., as in relation equation (7.12)) are elements of the

kernel (given in equation (7.11)), the lattice L is same as the kernel of the surjective morphism.

From equations (7.15) and (7.10) the class group can be computed directly as

ClOK w Z/d1Z× Z/d2Z× . . .Z/dNZ. (7.16)

Case 2: Next, the case of rectangular relation matrix is described. In practice relation matrices

obtained in the process are mostly full-rank when the number of relations collected exceeds the

cardinality of the factor base, i.e., M ∈ Zm×N with m > N . In this case, HNF (equation (7.14))

is utilised to obtain the class group.

For the HNF matrix H, there exists an integer l, 1 ≤ l ≤ N such that hi,i = 1 ∀i ≥ l. The upper

left l × l minor of H is called the essential part. This essential part being a square matrix, its

SNF similarly gives the class group structure as in case 1. Additionally, this essential matrix has

a smaller dimension compared to the original matrix.

Both the regulator and the fundamental units of K can be obtained from the kernel vectors

of the relation matrix. The actual regulator and the fundamental units are procured from the

relation matrix when the assumption of the completeness of its lattice holds. The procedure is

described briefly below. Further details are available in [44].

7.3.5 Computation of the Regulator and the Fundamental Units

Matrix Construction for Regulator Computation: The matrix construction in Section

7.3.2 is aimed solely for class group computation. The matrix required for computing the regulator

differs from that. Let us denote the matrix as MReg when the target is to compute the regulator
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along with the class group. The matrix MReg has the following structure.

MReg =
(

M Ml

)
where M is the relation matrix that has been used during class group computation and Ml is the

matrix of rows of logarithms constituted for regulator computation. They can be written as

M = (eij) ∈ Zm×N

Ml = (log |σi|j) ∈ Rm×(r+1).

After finding a relation of the form (7.12), (e1,j , e2,j , . . . , eN,j , log |σ1(xj)|, log |σ2(xj)|, . . . , log |σr+1(xj)|)
forms a row of MReg. Let Ll be the lattice generated by the rows of Ml.

Any vector V = (v1, v2, . . . , vm) in the kernel of the relation matrix M , satisfies VM = 0. Then,

(
∏
j

xj
vj )OK = OK = 〈1〉.

Let γ := (
∏
j xj

vj ). From above, γ is a unit. Thus, the units of K can be computed from the

kernel of the relation matrix. Once the units are computed, the generators of the group spanned

by these units can be obtained. The determinant of the generators confirm whether they form a

system of fundamental units. If these generators form a set of fundamental units, the regulator is

obtained. Otherwise, the group spanned is a subgroup of the unit group UK and hence a multiple

of the regulator is obtained. Let us now give a detailed procedure to compute the regulator.

If dim(ker(M)) = d, then d units γ1, γ2, . . . , γd can be obtained. This allows to compute the

matrix

AR =
(
Log(γi)

)
i≤d ∈ Rd×(r+1)

where the Log map is defined in mapping (7.5). A basis of the lattice Ll generated by the

rows of AR is next computed. LLL algorithm may be used to do so. If T = (t1, t2, . . . , td)

is a vector of the transformation matrix then the unit u := γ1
t1γ2

t2 . . . γd
td corresponds to the

row vector TAR =
(
Log(u)

)
. The transformation vectors T1, T2, . . . , Tr obtained from the LLL

algorithm facilitate the computation of the system of fundamental units (u1, . . . , ur) and a matrix

BR =
(
Log(ui)

)
i≤r. The determinant of any r-sized minor of the r × (r + 1) matrix BR supplies

the hypothetical regulator for the relations collected.

7.3.6 Verification

The number of relations collected in the relation collection phase may not be sufficient to assure

that the lattice generates the kernel of the surjective morphism in mapping (7.9). Thus the



Chapter 7. Class Group Computation 108

assumption made on the completeness of the lattice of relations has to be verified.

Let us use the following notations for the number field K.

hK : class number;

wK : number of roots of unity;

ζK : Dedekind zeta function ;

∆ : Log-unit lattice;


(7.17)

The Dedekind zeta function is defined as follows.

Definition 7.17. Dedekind Zeta Function: Given a number field K, the Dedekind zeta function

is defined by the formula

ζK =
∑
a

1

N (a)s
=
∏
p

1

1− 1
N (p)s

(7.18)

where the sum is taken over all non-zero integral ideals and the product over all non-zero prime

ideals of OK.

The residue can be approximated by equation (7.19) ([44], Theorem 4.9.12)

lim
s→1

(s− 1)ζK(s) =
2r12πr2hKRegK

wK
√
|∆K|

(7.19)

where (r1, r2) is the signature of K.

It may be noticed that all quantities in equation (7.19) except hKRegK can be computed easily.

The unknown product can be estimated once the left-hand side of the equation is known. The

residue in equation (7.19) can also be expressed as the Euler Product
∏
p

1− 1
p∏

p|p (1− 1
N (p)

)
where the

product runs over all primes p. This approximation can be obtained after selection of the factor

base. Bach [12] showed a good approximation is obtained in polynomial time considering primes

of norm below O(log |∆K|2). Then an easy approximation of hKRegK is obtained from equation

(7.20).

2r12πr2hKRegK

wK
√
|∆K|

=
∏
p

1− 1
p∏

p|p (1− 1
N (p))

. (7.20)

Section 7.3.5 of this chapter describes how to obtain an approximation of the regulator of

K. After deriving the hypothetical regulator, the hypothetical class number can be obtained from

the product of the diagonal entries of the SNF at the linear algebra step itself. For the sake of

verification, the product of these two is compared with the approximation calculated from the

Euler product. These approximations allows to derive a bound h̄ in polynomial time under ERH

such that the inequality (7.21) [12] holds.

h̄ ≤ hKRegK ≤ 2h̄. (7.21)
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If the values of the determinant of ∆ and L do not satisfy the inequality (7.21), then more

relations have to be collected. More specifically, if the ratio after the approximations are obtained

in equation (7.20) is about 1, then the target class number and regulator have been obtained.

If not, then more relations have to be added to the relation matrix. Adding a relation when

sufficient number of prime ideals and units are present decreases the candidate class number and

the regulator respectively by an integer factor.

7.4 Previous Works

In this section, several attempts to compute class group has been listed. The initial attempts

were of exponential complexity which were later improved to sub-exponential timing estimates.

The earlier attempts were in the restrictive class of imaginary quadratic orders. In 1968,

Shanks’ [159, 160] proposed an exponential algorithm to compute the ideal class group of an

imaginary quadratic number field. It is based on the baby-step giant-step algorithm and runs in

time O(|∆K|
1
4

+ε) or O(|∆K|
1
5

+ε) under the extended Riemann hypothesis [122]. This algorithm

can be utilised to compute class groups of discriminants having up to 20 or 25 decimal digits.

Pohst and Zassenhaus [145] developed an algorithm to determine the class group of arbitrary

number fields.

The best algorithms for class group computation are of subexponential complexity and is done

using the index calculus methods.

In 1989, the first subexponential algorithm for computing class group of an imaginary quadratic

field was proposed by Hafner and McCurley [85] assuming generalised Riemann hypothesis (GRH).

The expected running time of this method is L|∆K|(
1
2 ,
√

2 + o(1)). Buchmann [34] extended the

method to all number fields. The heuristic complexity was L|∆K|(
1
2 , 1.7 + o(1)) for fixed degree n

and ∆K tending to infinity. This method was used by Adleman, Huang and DeMarrais to compute

discrete logarithms in the Jacobian of hyperelliptic curves. Later, Enge et al. [56, 57] developed

methods to compute the group structure of the Jacobian and solving the discrete logarithm

problem for certain classes of curves in time L(1
3). The height of the defining polynomial appears

when bounding the norm of algebraic integers. A smaller height also allows ease of computations.

Keeping the degree fixed, the best choice amongst the infinite ways of constructing a polynomial

for a number field is the one that has the smallest height. Cohen and Diaz y Diaz [48] proposed

an algorithm for reducing defining polynomials.

Buchmann and Düllmann implemented the random walk method of Hafner and McCurley [85] in

[38]. They also suggested improvements and implemented a practical version of Hafner McCurley’s

algorithm in [36], [37]. The largest discriminant for which this algorithm could compute the Class

Group was 55. Trial division combined with a single large prime variant was used by Buchmann
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and Düllmann [37] to compute the class group in about 10 days on a distributed system of

workstations. An advancement to this method was suggested by Jacobson [89]. Considerable

speed-up was obtained by using quadratic sieving strategies to the relation collection phase.

Class groups up to 90 decimal digits were computed with this algorithm. This made way for

the application of existing methods to improve the quadratic sieving method. The single large

prime variant first suggested by Buchmann and Düllmann [37] was adapted by Jacobson for the

quadratic sieve. Sutherland [168] computed class groups using generic methods for discriminants

up to 100 decimal digits. A major point of difference of this algorithm with others till then was

the fact that it was dependent on the structure of the class group. The improvement relied on

the values of the discriminant for that particular class group and could be further sped up for

suitable values of the discriminant. Cohen, Diaz Y Diaz and Olivier [46] made some practical

improvements to Buchmann’s [34] algorithm.

Recently, for extension degree n tending to infinity under certain restrictions, Biasse [19] de-

scribed an algorithm for computing ideal class group and unit group of O = Z[θ] in heuristic time

complexity L∆K(1
3 , c) for some c > 0 valid for certain infinite classes of number fields. Biasse and

Fieker [20], [21] showed that for all classes of number fields there is a heuristic subexponential

algorithm. The methods of [21] results in better asymptotic complexity when applied to cyclo-

tomic fields. It has a complexity of L∆K(2
3 +ε) in the general case and L∆K(1

2) when the extension

degree n satisfies n ≤ (log(|∆K|))
3
4
−ε. For some restrictive classes the complexity can be L∆K(a)

where a is possibly as low as 1
3 . To be specific, this decrease in complexity occurs when a defining

polynomial is known with small coefficients compared to the discriminant of the field. The Block

Korkin Zolotarev (BKZ) lattice reduction algorithm [10, 155, 157] has been used to finally obtain

an ideal decomposition. This leads to a trade-off between the time spent for reduction and the

approximation factor of short vectors. This trade-off is achieved with block size. For a lattice

with dimension n, the block size denoted by β is an integer such that 2 ≤ β ≤ n and the BKZ

algorithm works with blocks of the lattice each having size β. The shortest vector v obtained as

output after running BKZ, has norm ||v|| which is bounded as ||v|| ≤ β
n−1

2(β−1) (detL)
1
n where L is

the lattice with dimension n. Eventually it results in a complexity that permits both the degree

and the discriminant to be large. The complexity of the relation collection phase is reduced due to

the use of efficient smoothness tests like ECM. The q-descent strategy [21] reduces the complexity

to L|∆K|(a) with 1
3 ≤ a ≤

1
2 when the defining polynomial of the number field has small height.

Gélin and Joux [71] extended the improvement of [21] to larger classes of fields by describing an

algorithm for obtaining polynomials with small coefficients for certain fields. The target fields are

those for which it is possible to find a reduced polynomial whose coefficients are small compared

to the field discriminant. This algorithm when used as a preliminary step with Biasse-Fieker’s [21]
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algorithm reduces the complexity. Classification of fields based on certain parameters were in-

troduced which has been crucially utilised in all later works to date. Gélin [70] later proposed

sieving based relation collection algorithm on this line.

Quite recently, Gélin [69] further improved the results of [21]. The improvement in relation

collection then reduces the complexity for large degree number fields to L|∆K|(a) with a ∈ [1
2 ,

2
3 ]

from the previous complexity of L|∆K|(
2
3 + ε) as in [21]. This algorithm is specially designed for

fields that do not have small defining polynomial. The complexity of L|∆K|(
1
2) mentioned in [21]

is also made explicit as L|∆K|(
1
2 ,

(ω−1)
2
√
ω

). Using some special techniques of lattice reduction the

complexity is shown to vary between L|∆K|(
1
2) and L|∆K|(

3
5). Besides this, it is also shown that

the classification of number fields introduced in [71] accommodates all number fields. The values

of the parameters have been suggested keeping the various cases of classification into account. In

his later work, Gélin [70] had further improved his previous results for certain number fields. The

paper introduces sieving strategy which outperforms the previous ideal reduction algorithm in [69]

for some number fields. A neat categorisation based on associated parameters depicts the exact

region for which each algorithm in the two papers of Gelin [69, 70] may be suitable. Conditional

improvement is achieved based on the smallness of the defining polynomial. This reduces the

complexity estimates from the previous paper of Gélin. It extends the sieving strategy of [19] to

all number fields and obtains a low complexity of L|∆K|(
1
3). In some category of fields, it improves

the second constant of [19]. It is to be noted that the complexity analysis of all the algorithms are

heuristic; one of the main heuristic assumptions being that smoothness results for general ideals

are assumed to apply to the restricted set of ideals considered by the algorithms.





Chapter 8

Pseudo-Random Walk on Ideals:

Practical Speed-Up in Relation

Collection for Class Group

Computation

In the present chapter, we provide a new heuristic algorithm to improve the practical runtime of

the relation collection step in Gélin’s algorithm [69]. The core idea of previous ideal reduction

algorithms is to randomly generate ideals on which lattice techniques are used to obtain principal

ideals of bounded norms which can then be tested for smoothness over a predefined factor basis.

Presently, the most simplified form of this algorithm is due to Gélin [69]. The random generation

of the ideals in Gélin’s algorithm requires exponentiating some randomly chosen prime ideals in

the factor basis and then multiplying the resulting ideals together. This requires performing a

number of ideal multiplications.

We propose to perform a pseudo-random walk on ideals. Once the initial ideal has been

computed, each step of the walk requires a single ideal multiplication. The ideals generated in

each step can be processed using lattice techniques as in Gélin’s algorithm. The parameters which

determine the asymptotic complexity of Gélin’s algorithm [69] are not changed. So, under the

heuristic assumption that the ideals in the pseudo-random walk behave like random ideals, the

asymptotic complexity of the new algorithm remains unchanged from that of Gélin’s algorithm.

The improvement is a practical gain in the time to generate a relation. Table 8.5 of this chapter

provides the actual estimates for the fields chosen.

We have made a Magma implementation of both the new algorithm and Gélin’s algo-

rithm [69]. Since our goal is to compare the new algorithm with Gélin’s algorithm [69], we

did not try to compute the class group for one particular field. Instead, we chose four number

113
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fields and conducted experiments with both the algorithms to collect a number of relations. The

timing results obtained from these experiments indeed confirm the speed improvement of the new

algorithm over Gélin’s algorithm [69].

8.1 Generating Relations

Suppose that B = {p1, . . . , pN} is the set of all prime ideals having norms less than B where

B itself is at least as large as 12(log |∆K|)2. For the asymptotic analysis, B is chosen to be

B = L|∆K|(δ, cb) for suitable values of δ and cb; this point is discussed later. For appropriate

choices of δ and cb the overall runtime of the algorithm is sub-exponential. We refer to [69] for

details.

The set B is said to be the factor basis. For x ∈ OK and integers e1, . . . , eN , a relation is

given by

pe11 · · · p
eN
N = 〈x〉. (8.1)

The main task of the class group computation algorithm is to generate relations of the form (8.1).

The basic idea for obtaining relations is to generate random principal ideals and then check

whether it is smooth over B. In practice, given a principal ideal 〈x〉, one checks whether the

positive integer N (〈x〉) = |N (x)| is B-smooth. If this holds, then 〈x〉 is factored.

Given a random element of x of OK, the probability of |N (x)| being B-smooth is very small.

So, simply trying out random elements of OK will not lead to an efficient algorithm. To ensure

that the probability of |N (x)| being B-smooth is reasonable, it is required to choose x in a manner

which ensures that |N (x)| satisfies some pre-determined upper bound. The literature contains

various methods of choosing x such that |N (x)| is below a desired bound.

Given an element α ∈ OK, its canonical embedding σ(α) into Cn is σ(α) = (σ1(α), . . . , σn(α)).

Since the complex embeddings occur in pairs, the vector (σ1(α), . . . , σn(α)) can be considered to

be represented by a vector from Rn. So, henceforth, we will consider σ(α) be a vector in Rn.

Consider the lattice σ(a) obtained by the embedding of an ideal a of OK. Suppose v is a short

vector in σ(a) and let xv be the corresponding element in a such that σ(xv) = v. Then |N (xv)|
is small and so the principal ideal 〈xv〉 also has small norm.

Algorithm 4 describes Gélin’s method of generating relations using ideal reduction. The

parameters of the algorithm are k, A, β and B. The parameter k determines the number of ideals

to be considered in each iteration, A determines the maximum value of the exponent to which

the ideals are raised, the parameter β determines the block size of the BKZ-reduction, and the

parameter B is the bound on the norms of the ideals in the factor basis. Gélin specifies k and A

to be poly(log |∆K|). Further, the value of β is to be chosen such that the overall complexity is

subexponential in |∆K|.
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In Step 3.5 of Algorithm 4, a single vector from the BKZ reduction is returned. It is, however,

possible that several vectors from the BKZ reduction have sufficiently small norms and a linear

combination of these vectors can be tried. This saves the number of BKZ reductions and leads

to practical speed-ups. Such improvement does not change the asymptotic complexity. We refer

to [69] for details of this improvement and other implementation notes.

Input: The factor base B = {p1, . . . , pN}.
Output: The set of generated relations.

3.1 while sufficient relations have not been obtained do
3.2 Choose k random prime ideals pj1 , pj2 , . . . , pjk from B
3.3 Choose k random exponents ej1 , ej2 , . . . , ejk from {1, 2, . . . , A}
3.4 Set a =

∏N
i=1 pi

ei with ei = 0 if i /∈ {j1, . . . , jk}
3.5 Compute the smallest element v of the BKZβ reduced basis of the lattice σ(a)
3.6 Obtain the algebraic integer xv corresponding to v
3.7 Set b as the unique ideal such that 〈xv〉 = ab
3.8 if |N (b)| is B-smooth then

3.9 Obtain the factorization of b such that b =
∏N
i=1 pi

e′i

3.10 Store the relation 〈xv〉 =
∏

pi
ei+e

′
i

3.11 end

3.12 end

Algorithm 4: Gélin’s method for generating relation using ideal reduction [69].

Step 3.8 of Algorithm 4 checks whether N (b) is B-smooth. The actual requirement is that

the ideal b is B-smooth. IfN (b) is B-smooth, then it follows that b is B-smooth and a factorisation

of b can be obtained from a factorisation of N (b). We refer to [69] for details.

A crucial issue in the relation collection has been pointed out by Gélin [69]. The relation collection

phase is completed when the number of relations is larger than #B and when all ideals of norms

below Bach’s bound are involved in at least one relation.

Notation: Before proceeding further, we fix some notation.

B upper bound on the size of the ideals in the factor basis;

B the factor basis;

N number of prime ideals in the factor basis, i.e., N = #B;

C Bach’s bound, i.e., C = 12(log |∆K|)2;

C the set of prime ideals whose norms are at most C;

Nb number of prime ideals whose norms are at most C, i.e., Nb = #C;
β block size of BKZ reduction.
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8.2 Generating Relations from a Pseudo-Random Walk on Ideals

Consider Algorithm 4. The asymptotic complexity of the algorithm is determined by B and β.

The parameter β determines the upper bound on the norm of the element xv; B and β determine

the smoothness probability of the ideal 〈xv〉.
We do not propose to change these parameters. Instead, we focus on the concrete complexity

of an individual iteration. This consists of computing the ideal a, computing the BKZ-reduction,

and the smoothness check of the norm of 〈xv〉. The portions on BKZ-reduction and the smoothness

check are also not modified. Our focus is on reducing the cost of computing the ideal a.

In Step 3.4 of Algorithm 4, the ideal 〈a〉 is computed as

a =
k∏
i=1

p
eji
ji
. (8.2)

Since each eji is chosen randomly from {1, 2, . . . , A}, computing p
eji
ji

requires about log2A ideal

multiplications. So, the total cost of computing a in (8.2) is about (k − 1) log2A ideal multi-

plications. Below we describe a new algorithm for generating 〈a〉 which requires a single ideal

multiplication.

Our idea is to perform a pseudo-random walk on a sufficiently large set of ideals. Each step

of the walk will generate an ideal a to which the BKZ-reduction and the rest of Algorithm 4 can

be applied. The cost of each step will consist of a single ideal multiplication. The pseudo-random

walk that we construct is inspired by Pollard’s rho algorithm.

Suppose [t1, . . . , tm] is a list of m pre-computed ideals. Let H be a hash function which maps

an ideal to the set {0, . . . ,m − 1}. For i ≥ 0, the pseudo-random walk proceeds as follows. An

ideal a0 is chosen and for i ≥ 1, ai is obtained as follows: let mi = H(ai−1) and set ai = ai−1 · tmi .
The list [t1, . . . , tm] and some additional information are stored in a table T. We explain how

the ideals t1, . . . , tm are constructed and the entries of the table T.

Let C = {q1, . . . , qNb} be the prime ideals whose norms are below Bach’s bound. Let κ be a

parameter and set q = bNb/κc and r = Nb− qκ so that we have Nb = qκ+ r = r(κ+1)+(q− r)κ.

The set C is randomly partitioned into q groups where the first r groups each have κ+1 ideals and

the last q−r groups each have κ ideals. The ideals in each of the groups are multiplied together and

the products are stored in T. Along with the product ideal, the information identifying the ideals

that have been multiplied to obtain the product is also stored in T. The random partitioning of

the ideals in C into groups, multiplying together the ideals in each group and storing them in table

T is carried out a total of R times. So, the number of entries in T is qR, i.e., m = qR. Further,

each ideal in C is represented a total of R times in the table T. The method for constructing T is

shown in Algorithm 5.
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Input: The set of prime ideals C = {q1, . . . , qNb} whose norms are below Bach’s bound.
Output: The table T.

4.1 q ← bNb/κc, r ← Nb − qκ
4.2 T← ∅
4.3 J ← {1, 2, . . . , Nb}
4.4 for i1 ← 1 to R do
4.5 I ← J
4.6 for i2 ← 1 to q do
4.7 if i2 ≤ r then
4.8 s← (κ+ 1)
4.9 end

4.10 else
4.11 s← κ
4.12 end
4.13 {j1, j2, . . . , js} ← random set of s distinct integers chosen from I
4.14 I ← I \ {j1, j2, . . . , js}
4.15 b← qj1 · · · qjs
4.16 Append (b, (j1, . . . , js)) to T

4.17 end

4.18 end

Algorithm 5: Construction of the pre-computed table T.

There are a total ofRq entries in T, i.e., m = Rq. The entries of T are pairs. For 0 ≤ i ≤ m−1,

T[i] is an entry of the form (b, (j1, . . . , js)). By T[i].ideal we will denote the ideal b and by T[i].index

we will denote the tuple (j1, . . . , js).

The table T is constructed in a pre-computation phase. This pre-computation consists of

about Rqκ ≈ RNb ideal multiplications. When R is a constant, the number of ideal multiplications

required to construct T is negligible with respect to the number of ideal multiplications required

in all the iterations for relation collection.

How long should the pseudo-random walk proceed? There are several aspects to this question.

1. As the walk progresses, both the number and the exponents of the prime ideals occurring

as factors in the ideals visited by the walk increases. So, a long walk can result in ideals

with large norms.

2. From a practical point of view, in our Magma implementation we have observed that as the

norms of the ideals increase, it becomes difficult to construct the lattices corresponding to

the ideals.

In view of the above two points, long walks are not feasible, at least for Magma implementation.

One way is to continue the walk as long as it is feasible to construct the associated lattice.

Alternatively, one may put an a priori bound on the length of an individual walk. Determining

the bound requires performing some initial experiments to obtain an idea of the number of steps

that the walk can proceed without encountering the failure of lattice construction.
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The algorithm for relation collection based on the pseudo-random walk is shown in Algo-

rithm 6. The parameters β and B are the same as those in Algorithm 4. It is assumed that the

table T has been constructed prior to the execution of Algorithm 6. Recall that the ideals stored

in T are products of either κ or κ+1 prime ideals whose norms are below Nb. Algorithm 6 uses an

additional parameter κ0 which determines the number of prime ideals to be multiplied together

to obtain the starting ideal of a walk. The variable wlen records the current length of the walk,

while the parameter λ represents the maximum length of each walk.

As above, let C = {q1, . . . , qNb} be the set of all prime ideals whose norms are below Bach’s

bound. The actual factor basis B = {p1, . . . , pN} consists of all prime ideals whose norms are

below the bound B. We assume that for i = 1, . . . , Nb, pi = qi, i.e., the first Nb prime ideals in B
have norms below Bach’s bound.

Input: The factor base B = {p1, . . . , pN}.
Output: The set of generated relations.

5.1 while Sufficient relations have not been found do
5.2 exp[i] = 0 for i = 1, . . . , N
5.3 Choose s randomly from {1, . . . , κ0}
5.4 Choose i1, . . . , is randomly from {1, . . . , Nb}
5.5 Set a = pi1 · · · pis
5.6 exp[i]← 1 for i = i1, . . . , is;
5.7 wlen← 1;
5.8 while wlen ≤ λ do
5.9 Compute the smallest element v of the BKZβ reduced basis of the lattice σ(a)

5.10 Obtain the algebraic integer xv corresponding to v
5.11 if |N (xv)/N (a)| is B-smooth then
5.12 Set b as the unique ideal such that 〈xv〉 = ab

5.13 Obtain the factorization of b such that b =
∏N
i=1 pi

e′i

5.14 for i← 1 to N do
5.15 exp[i]← exp[i] + e′i
5.16 end

5.17 Store the relation 〈xv〉 =
∏N
i=1 pi

exp[i]

5.18 end
5.19 `← H(a)
5.20 a← a · T[`].ideal
5.21 exp← exp +T[`].index
5.22 wlen← wlen + 1;

5.23 end

5.24 end

Algorithm 6: Relation collection using pseudo-random walk.

In Algorithm 6, the ideals a which are visited by the pseudo-random walk are products of

prime ideals whose norms are below C. This is because a walk starts with such an ideal and for

each step, the present ideal is multiplied with an ideal from the precomputed table. Since the
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ideals in the precomputed table are also of the same type, the property of being products of prime

ideals whose norms are below C holds for all the ideals a visited by the walk. On the other hand,

the smoothness check of N (b) is with respect to B. As a result, the algorithm tries to ensure that

b is smooth over the factor basis B rather than C. Trying to ensure the smoothness of b over C
will result in the theoretical smoothness probability being too low. In practice, however, it may

be possible to work with C as the factor basis as we discuss later. Recall that one of the stopping

criterion for relation collection is that each element of C is involved in at least one relation. Since

the ideals a are products of ideals from C, this criterion becomes somewhat easier to ensure.

Remarks:

1. The list exp in Algorithm 6 is an array of N integers. This list is likely to be very sparse.

So, it would be more efficient to represent exp as a list of pairs [(i1, e1), . . . , (is, es)], such

that exp[i] = ej if i = ij , j = 1, . . . , s and exp[i] = 0, otherwise. Another possibility is to

represent exp as a list of integers where i1 is repeated e1 times, i2 is repeated e2 times, and

so on. Since the integers e1, e2, . . . are quite likely to be equal to 1, this representation would

be even more compact than storing the pairs (i1, e1), (i2, e2), . . .. The operations on exp are

to be suitably modified to be used with a compact representation.

2. The computation of the ideal b in Step 3.7 of Algorithm 4 requires computing a−1. Since

N (b) may not turn out to be B-smooth in Step 3.8, the computation of the ideal b may

actually not be required. Slightly altering the sequence of instructions, it is possible to

avoid the computation of a−1 in the cases where N (b) is not B-smooth. Since N (b) =

N (xv)/N (a), Algorithm 6 checks for the B-smoothness of |N (xv)/N (a)| and computes b

only if the check is successful.

3. Note that the norms of the ideals in T are known. The table T can be expanded to store the

norms of the ideals. This speeds up the computation of the norm of a required in Step 5.11

of Algorithm 6. Along with the current ideal a of the walk, its norm is also stored. The

norm of the next ideal in the walk is obtained by multiplying the norm of the current ideal

a and the norm of the ideal in the location T[H(a)].

4. The pseudo-random walk is a sequential procedure. Parallelism can be incorporated by

starting independent pseudo-random walks. The table T remains the same for all the walks.

The starting ideals are chosen independently. This allows the separate walks to proceed

independently.

5. Algorithm 6 has been described keeping in mind that the precision is fixed. Ideals in the

initial steps of the walk have smaller norms compared to ideals in the later stages of the

walk. So, an alternative approach would be to start with a smaller precision and increase
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the precision as the walk progresses. Since precision determines the efficiency of the various

computational steps, working with a lower precision in the initial stages would lead to

improved efficiency. The idea of increasing precision as the walk progresses can work up

to a certain point, since as the precision becomes too large, the computation slows down

considerably. At that point, it is better to switch to a new initial point and start a new

walk.

We compare the number of ideal multiplications required by Algorithms 4 and 6. For the

comparison, we ignore the number of ideal multiplications required to prepare the table T. This is

a one-time activity whose cost has been mentioned above; amortised over the iterations required

for generating all the relations, this cost is negligible. We revisit this issue with respect to the

experiments that have been conducted. A pseudo-random walk in Algorithm 6 proceeds for λ

steps. These λ steps require at most κ0 +λ− 2 ideal multiplications. In comparison, Algorithm 4

requires about λ(k − 1) log2A ideal multiplications for generating λ ideals a in λ iterations. The

other costs of both Algorithms 4 and 6, namely BKZ-reduction, smoothness checking and ideal

factorisation, remain the same, though there is the issue of the norms of the ideals a to be

considered. We discuss this point below.

Though in principle, the reduction in the number of ideal multiplications should lead to

improvement in time, there is a practical aspect that needs to be kept in mind. In practice,

the time to multiply two ideals depends on the norms of the ideals. Even if one of the ideals

has a relatively large norm, there is a noticeable increase in the time to compute the product.

While determining the walk length, this aspect needs to be kept in the mind. As the walk length

increases, so does the norms of the ideals visited by the walk. This means that even though each

step of the walk requires a single multiplication, the time for this multiplication increases with the

length of the walk. So, if a walk is too long, then it may turn out that computing the next ideal of

the walk takes very long time. In effect, this means that for Algorithm 6 to be competitive with

Algorithm 4, the walk length should not be too long. In our experiments, we have fixed the walk

length so that the norms of the ideals visited by the walk in Algorithm 6 are less than the norms

of the ideals generated by Algorithm 4. In later sections, we provide experimental results from our

Magma implementation to show that such a strategy indeed provides a substantial improvement

in the relation collection time.

We further consider the issue of increase in the norms of the ideals visited by the walk. The

first ideal in the walk has norm at most κ0C. At each step, the ideal in the walk is multiplied by

κ or κ+ 1 prime ideals having norms at most C. So, the ideal obtained after i steps of the walk

has norm at most (κ0 + i(κ+ 1))C which is at most (κ0 + λ(κ+ 1))C since i ≤ λ. In comparison,

the ideals a generated in each iteration of Algorithm 4 have norms to be at most about kAB/2.

So, the norms of the ideals in the walk in Algorithm 6 are at most the norms of ideals the ideals a

in Algorithm 4 if the condition (κ0 +λ(κ+ 1))C ≤ kAB/2 holds. The parameters may be chosen
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to satisfy this condition. Note that in Algorithm 4, the norms of all the ideals are about kAB/2,

while for Algorithm 6, the norms of the ideals in the initial steps of the walk are lower.

A pseudo-random walk chooses the first ideal randomly while the subsequent ideals are cho-

sen deterministically. A crucial requirement in the asymptotic analysis of the algorithm is the

smoothness probability of random ideals. Since the ideals appearing in a walk do not have inde-

pendent randomness, one has to heuristically assume that the result on the smoothness probability

of random ideals applies to the ideals occurring in the walk. Our experiments show that there is

no substantial effect on the smoothness probability.

Let Π denote the probability that an ideal a in the walk leads to an ideal b computed in

Step 5.12 of Algorithm 6 which is smooth over B and hence leads to a relation. About 1/Π ideals

need to be considered to obtain a single relation. A total of about N relations are required.

Consequently, about N/Π ideals need to be considered to obtain all the relations. Each walk

visits λ ideals. The total number of walks required to consider N/Π ideals is N/(Πλ). The total

number of starting points is
∑κ0

s=1

(
Nb
s

)
. So, to ensure that N/(Πλ) walks are possible, we must

have

κ0∑
s=1

(
Nb

κ0

)
≥ N

Πλ
. (8.3)

The parameter κ0 has to be chosen to satisfy (8.3).

As proved in [69], the norm of b considered in Step 5.12 of Algorithm 6 satisfies the bound

N (b) ≤ βn(n−1)/(2(β−1))
√
|∆K|. Further, the B-smoothness of N (b) depends on the value of B.

We do not suggest any change to either the value of β or to the value of B. The difference

between Algorithms 4 and 6 is in the generation of the ideal a. As discussed above, the norm of a

considered by Algorithm 6 is never more than the norm of a considered by Algorithm 4. The net

effect of all these considerations is that the asymptotic result obtained in [69] for Algorithm 4 also

holds for Algorithm 6. The advantage of Algorithm 6 over Algorithm 4 is in improved practical

efficiency.

8.3 Implementation

We have implemented Algorithms 4 and 6 using Magma, version V2.22-3. We did not perform

the entire class group computation. Rather, we performed two kinds of experiments. The set of

experiments compares the times required for relation collection by Algorithms 4 and 6. These

experiments show that in general Algorithm 6 performs better than Algorithm 4. The second set

of experiments performs the entire relation collection step for two fields having discriminants of

sizes about 157 and 256 bits. This demonstrates that Algorithm 6 can actually work in practice.
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Various issues arise while implementing Algorithm 4. For guidance in determining parame-

ters, we considered the asymptotic analysis. This, however, fails to provide sufficient information

and in some cases lead to substantially less efficient parameter choices. Below, we mention these

issues as they arise in the description of our implementation effort.

8.3.1 Choice of Number Fields

Gélin and Joux [71] provide the following classification of number fields. Let n0 > 1 be a real

parameter arbitrarily close to 1, d0 > 0, α ∈ [0, 1] and γ ≥ (1−α). The class Dn0,d0,α,γ is defined

to be the set of all number fields K with discriminant ∆K having a monic defining polynomial

T ∈ Z[X] of degree n such the following inequalities hold true.

1

n0

(
log(|∆K|)

log(log(|∆K|))

)α
≤ n ≤ n0

(
log(|∆K|)

log(log(|∆K|))

)α
(8.4)

and

log(‖T‖∞) ≤ d0(log(|∆K|)γ log(log(|∆K|))(1−γ). (8.5)

Here, ‖T‖∞ denotes the maximum of the absolute values of the coefficients of T . This param-

eter has also been called the height of the polynomial T . It has been shown in Gélin [69] that

asymptotically the classification covers all number fields.
The actual number fields that we have used have been chosen from the online database of

number fields [92]. We considered four number fields defined by the following four polynomials.

T1(X) = X10 − 20X8 − 170X6 − 1704X5 − 2100X4 − 1680X3 − 23865X2 − 36360X + 15984,

T2(X) = X15 − 15X13 + 105X11 − 78X10 − 425X9 + 780X8 + 1050X7 − 3510X6 − 2832X5

+7800X4 + 7660X3 − 7800X2 − 13320X − 8856,

T3(X) = X20 − 5X19 + 76X18 − 247X17 + 1197X16 − 8474X15 + 15561X14 − 112347X13 + 325793X12

−787322X11 + 3851661X10 − 5756183X9 + 20865344X8 − 48001353X7 + 45895165X6

−245996344X5 + 8889264X4 − 588303992X3 − 54940704X2 − 538817408X + 31141888,

T4(X) = X25 − 344X23 − 316X22 + 45906X21 + 78964X20 − 3003991X19 − 7163070X18 + 101409224X17

+293673294X16 − 1740399699X15 − 5640650024X14 + 15351660849X13 + 53959254132X12

−67237888386X11 − 259371867838X10 + 117450950109X9 + 587040491084X8 + 30969137155X7 − 547923508138X6

−206267098153X5 + 109439981776X4 + 40995170780X3 − 9046378504X2 − 1197994128X + 80434784.

Given a number field, the values of n0, d0, α and γ required in the Gélin-Joux classification

are not unique. The definition mentions that n0 > 1 and also that n0 is arbitrarily close to 1.

For a concrete number field, interpreting the latter condition is difficult. In fact, the values of

n0 and α need to be simultaneously determined so that (8.4) holds. Another important issue

is that for α ∈ (3/4, 1], the value of α determines the complexity of the algorithm as can be
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field poly n0 α log2 |∆|
K1 T1(X) 1.10 0.935 63.5

K2 T2(X) 1.11 0.990 81.5

K3 T2(X) 1.01 0.952 157.2

K4 T2(X) 1.01 0.911 256.2

Table 8.1: The number fields used in this chapter along with the values of n0 and α used in the
classification from [69]. Also, the size of the discriminant is shown for each field.

seen from the second row of Table 8.2. The lower the value of α, the lower the complexity. So,

there is a motivation to choose n0 and α such that α is as small as possible. It may be noted

from (8.4) that if we assume that n0 equals 1, then the value of α is equal to log n/ν, with

ν = log |∆K|/ log(log |∆K|). The definition, however, requires n0 > 1; further, the value of logn/ν

can turn out to be greater than 1 as is the case for the field K3 shown in Table 8.1. So, to

determine the values of α and n0, one may use the value log n/ν as a starting guideline and then

try to reduce the value of α as much as possible. We have followed this strategy. Additionally,

we tried to determine n0 and α such that the only integer in the range determined by the bounds

in (8.4) is n, since this implies that the pair (α, n0) uniquely determines n. It was possible to

achieve this condition for the values of n = 10, 20 and 25; for n = 15, however, the range includes

the integers 13, 14 and 15 and we found it difficult to tune the values of n0 and α such that only

15 is in the desired range. The values of n0, α and the size of the discriminant for the four number

fields are shown in Table 8.2.

For the classification of the number fields, the values of d0 and γ are also required to be

determined. The conditions on these two parameters are that d0 > 0 and γ ≥ 1 − α. From

Table 8.2, the complexity of the algorithm does not depend on the values of d0 and γ. So, one

simple method of determining d0 and γ is to fix the value of γ to be equal to 1−α and choose d0

to be the least integer satisfying from (8.5). There are other strategies such as setting d0 = 1 and

then determining γ from (8.5). This strategy, however, does not necessarily ensure that γ ≥ 1−α,

though for the chosen fields, this condition holds. Since the values of d0 and γ do not affect the

complexity of the algorithm, we do not provide the values of these parameters.

8.3.2 Determining B and β

For a number field K, based on the value of α, Gélin [69] provides the appropriate choices of β

and B and the corresponding complexities. These are shown in Table 8.2. Note that α ≥ 1/2 in

Table 8.2. In [69], number fields for which α ≥ 1/2 have been termed large degree number fields.

To implement Algorithm 4 (and also Algorithm 6), it is necessary to fix the values of β and

B. For a given number field K, the value of |∆K| is known. Using this value of |∆K| in the
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α β cb B complexity of reln coll overall complexity

[1/2, 3/4] (log |∆K|)1/2 1
2
√
ω

L|∆K|
(

1
2 , cb

)
L|∆K|

(
1
2 ,

1
4cb

+ cb

)
L|∆K|

(
1
2 ,

ω+1
2
√
ω

)
(3/4, 1] (log |∆K|)2α/3

√
2αc
3 L|∆K|

(
2α
3 , cb

)
L|∆K|

(
2α
3 , 2cb

)
L|∆K|

(
2α
3 , o(1)

)
Table 8.2: Choices of β and B and the corresponding asymptotic complexities provided in [69].
In the table, ω is the exponent of linear algebra and determination of c is explained in Section 5.2

of [69].

expressions for β and B given in Table 8.2, it is possible to find concrete values of β and B. For

the number fields that we have used, the value of α lies in the range (3/4, 1].

We would like to highlight that asymptotically speaking B is much larger than C. The

value of C is 12(log |∆K|)2 which is L|∆K|(0, ·), whereas B is L|∆K|
(

2α
3 , cb

)
. Below we discuss the

several issues related to using the asymptotic expression in deriving an appropriate value of B

for concrete number fields. To do this, we need to evaluate the L-notation for concrete values of

|∆K| and the arguments. From (1.3), we note that there is an o(1) term in the definition of the

sub-exponential notation. We take this term to be 0.

Determining the value of B for α ∈ (3/4, 1] requires determining the value of c. The asymp-

totic analysis in [69] mentions that c can be taken to be any positive value which is very close to

0. In the concrete setting, however, a low value of c (such as 10−3) leads to the size of the factor

basis being about one or two for all the fields in Table 8.1, which is useless. Since the asymptotic

analysis does not help in determining the value of c for a concrete setting, somewhat arbitrarily,

one may set the value of c to be 1 for determining the value of B. The corresponding values of

B are shown in Table 8.3. In this context, we note that the value of c can be chosen so that the

value of B becomes close to the value of C.

• For K1, choosing c = 0.53 leads to B being 22921, while C is 23222.

• For K2, choosing c = 0.32 leads to B being 39459, while C is 38262.

• For K3, choosing c = 0.18 leads to B being 117218, while C is 142426.

• For K4, choosing c = 0.138 leads to B being 373691, while C is 378313.

The value of β obtained from Table 8.2 is denoted by βth. It turns out that the value of βth

is equal to n for n = 15 and 20; is equal to n− 1 for n = 25; and equal to n+ 1 for n = 10. Since

βth is the block size, its value is at most n, so for n = 10, the value of βth should be 10. The values

of βth indicate that for the fields under consideration, the BKZβth reduction returns a smallest

vector in the lattice. The values of βth, B as well as the values of C are shown in Table 8.3 for

the various number fields in Table 8.1.

The values of B and βth shown in Table 8.3 are obtained from the asymptotic analysis. There

are significant difficulties in implementing Algorithm 4 using these values of B and βth.
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field βth B C

K1 10 970357 ≈ 219.9 23222 ≈ 214.5

K2 15 132526880 ≈ 227.0 38262 ≈ 215.2

K3 20 883661511529 ≈ 239.7 142426 ≈ 217.1

K4 24 997850477380847 ≈ 249.8 378313 ≈ 218.5

Table 8.3: Values of βth, B and Bach’s bound C for the number fields in Table 8.1. For the
computation of B, the value of c in Table 8.2 has been assumed to be 1.

1. For running BKZβ, Magma has a limitation. Our experiments show that while Magma is

able to execute BKZβ for β = 2, for higher values of β this is not ensured. In several runs,

we have seen that the Magma is sometimes able to perform the computation and sometimes

the process terminates abnormally. Further, in the cases that Magma did complete the

execution, the norms of the smallest elements returned by BKZβ for various values of β > 2

turned out to be similar in size of the norms of the smallest elements returned by BKZ2. In

view of this, we decided to fix β = 2 for the actual relation collection.

2. The construction of the ideal a in Algorithm 4 requires randomly choosing k prime ideals

from the factor basis. To be able to make such choices, it is required to generate and store

the entire factor basis before Algorithm 4 can be run. For K2, K3 and K4, the size of the

factor basis is quite large (for the value of B obtained by setting c = 1). Magma is unable

to construct such a large factor basis. In particular, the factor bases for K3 and K4 are too

large to be stored on our systems. We next discuss how we have handled this difficulty.

As mentioned earlier, it has been proved in [69] that the norm of the ideal b in Algo-

rithm 4 satisfies the bound N (b) ≤ Bβ = βn(n−1)/(2(β−1))
√
|∆K|. A standard heuristic is that

the probability P(x, y) that an ideal of norm bounded by x is y-smooth satisfies P(x, y) ≥
exp(−u(log u)(1 + o(1))), where u = log x/ log y. In [69], this heuristic is used in the asymp-

totic analysis of Algorithm 4 where x is taken to be equal to Bβ and y is taken to be equal to B.

The expression Bβ is an upper bound on the norm of b. We ran some experiments to check the

tightness of this bound. The experiments consisted of running the algorithm for 1000 iterations

and noting the norms of b. For all the fields that we considered, it turned out that the actual

ideals b that are generated have norms which are much less than the upper bound. Since the

norms are significantly lower, we decided to check the smoothness probabilities P(x, y) where x

is the maximum norm that was experimentally observed and y is equal to C. It turned out that

these smoothness probabilities are sufficiently high for relation collection to proceed.

In Table 8.4, for the various fields considered in this chapter, we provide the values of

the upper bound Bβ on the norm of b for β = 2 and β = βth, the corresponding smoothness

probabilities P(Bβ, B), the experimentally observed maximum norms (denoted as M) of the

ideal b and the corresponding smoothness probabilities P(M, C). The values of B used in the
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field (M, P(M, C)) (β, Bβ, P(Bβ, B)) Nb

K1 (216, 0.897)
(2, 276.75, 2−7.51)
(10, 248.36, 0.116)

2630

K2 (215,≈ 1)
(2, 2145.75, 2−13.13)
(15, 270.05, 0.084)

4150

K3 (242, 0.110)
(2, 2268.60, 2−18.66)
(20, 2121.82, 0.032)

13097

K4 (274, 0.004)
(2, 2428.10, 2−26.68)
(24, 2187.90, 0.007)

32385

Table 8.4: Various smoothness probabilities and the number of ideals with norms at most C for
the fields considered in this chapter.

computation of P(Bβ, B) are from Table 8.3, which corresponds to c = 1. As discussed earlier,

by suitably choosing the value of c, the value of B can be made close to the value of C. The

corresponding smoothness probabilities P(Bβ, C) are very low. If the norms of the ideals b are

indeed close to the upper bound Bβ, then using C as the smoothness bound will make relation

collection very inefficient.

From Table 8.4, it may be noted that the value of M is substantially lower than the value

of Bβ for both β = 2 and β = βth. For n = 10 and n = 15, the value of M is close to the

value of C so that P(M, C) is very close to one. For n = 20 and n = 25, the value of P(M, C)

is close to the value of P(Bβth , B). Based on the values in Table 8.4, we may conclude that if

relation collection is done with the factor basis as the prime ideals whose norms are below Bach’s

bound, then in practice, the smoothness probability is sufficiently high for relation collection to

be possible. Due to this, we decided to proceed with C as the smoothness bound in Algorithm 4

instead of B which is obtained from Table 8.3. Note that this conclusion is for the number fields

that have been considered in this chapter. Whether such an observation would hold in general

for larger number fields is not clear. Nonetheless, our experiments indicate that even for larger

number fields, it would be worthwhile to experimentally obtain M and then decide whether B

can be taken to equal to C, or, whether it needs to be chosen to be greater than C, and if so, how

much larger. Using the upper bound on the norm of b as the guideline for choosing B (as has been

done in the asymptotic analysis [69]), may lead to much larger factor basis and a significantly less

efficient algorithm.

For the number fields that we have chosen, it has turned out that using C as the smoothness

bound is sufficient in practice. As noted earlier, in asymptotic terms B is much larger than C. So,

for larger fields, choosing B to be equal to C will perhaps not be appropriate. Further experiments

with larger fields are required to determine how much larger should B be compared to C.
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8.3.3 Fixation of Parameters for Algorithms 4 and 6

The parameters k and A need to be fixed for Algorithm 4. Gélin [69] specifies these two parameters

to be poly log |∆K|. In practice, we need concrete values of these parameters. As the values of

A and k increase, the norms of the ideals a in Algorithm 4 also increase. This causes certain

difficulties in the Magma implementation. The lattice σ(a) needs to be constructed and then the

BKZ reduction needs to be performed on this lattice. Both of these steps crucially depend on the

value of the precision used by Magma for the computations. From the experiments, we have the

following observations regarding the issue of precision.

1. For a particular value of the precision, lattice construction is possible for ideals having

norms below a certain bound. We could not, however, determine the relationship between

the precision and the bound on norm. The general observation we have is that by increasing

precision, it becomes possible to perform lattice construction for ideals with larger norms.

2. For the BKZ reduction to be possible, Magma requires the Gram matrix to be positive

definite. The check for positive definiteness requires a higher precision than the precision

required for the lattice construction.

3. Increasing precision slows down the computations.

In view of the above issues, choosing high values of A and k lead to abnormal termination of the

Magma programs. So, we set A to be equal to 2 and did some experiments with varying precision

to determine a suitable value of k. Finally, we set k = 15. The corresponding precision for lattice

construction was fixed to be 2000 and the precision for the positive definiteness check on the gram

matrix was set to be 6000.

For Algorithm 6, the values of the parameters κ0 and λ need to be determined. Additionally,

the values of κ and R which determine the size of the table T also need to be fixed. Note that

the number of rows in T is about R/κ times Nb. We have chosen R = 2 and κ = 4 so that the

number of pre-computed ideals stored in T is about half of Nb. The value κ0 has been set to 2

and we have considered the start points of the walks to be products of two ideals in C. Recall that

based on our experiments, we have fixed the factor basis itself to be C and so using products of

a pair of ideals in C provides sufficiently many walks. As mentioned earlier, the value of λ needs

to be fixed so as to ensure that the maximum norm of the ideals visited by a walk is around the

same value as the norms of the ideals a generated in Algorithm 4. Since, we fixed k to be equal

to 15, we fixed λ = 8. We conducted several experiments to confirm that with λ = 8, there was

no failure in either the lattice construction, or the BKZ-reduction. The precision used for the

lattice construction was 2000, which is the same as that used for Algorithm 4. Since the initial

experiments indicated that there is no failure when λ = 8, we did not perform an explicit check

for the positive definiteness of the gram matrix.
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The hash function H used to access entries of the pre-computed table T should ensure a

more or less uniform distribution over the entries of the table. In our implementations, we have

used the in-built hash function of Magma reduced modulo m (the size of the pre-computed table)

to instantiate H. We have also experimented with other hash functions defined using simple

arithmetic. There was no significant change in the results.

8.3.4 Experimental Set-Up and Timing Results

All our computations were done on a server which has the configuration of Intel Xeon E7-8890 @

2.50 GHz with 72 physical cores and 144 logical cores. As mentioned earlier, the computations

were done using Magma version V2.22-3. We conducted two sets of experiments.

The goal of the first set of experiments is to compare the performances of Algorithms 4 and 6.

Since we have set the smoothness bound B to be equal to C, the number of ideals in the factor

basis is Nb. For the four fields, we generated the factor basis and determined Nb. The values

of Nb corresponding to the fields are shown in Table 8.4. The number of relations required is a

little more than the size of the factor basis. Since Nb is quite small for K1 and K2, we decided to

generate a complete set of relations for these two fields using both Algorithms 4 and 6; for K1,

we generated 3000 relations while for K2, we generated 5000 relations. In comparison, for K3 and

K4, Nb is a little higher, so, for these two fields we decided to compare the performances of the

two algorithms for collecting 5000 relations. For each of the experiments, 25 processes were run in

parallel. For K1, each of the processes was tasked with collecting 120 relations, while for the other

three fields, each of the processes was tasked with collecting 200 relations. For all of the fields,

all the relations obtained by both Algorithms 4 and 6 were distinct. In Table 8.7, we provide the

total number of iterations and the total times (in seconds) required by all the processes for both

the algorithms.

From Table 8.5, it is to be noted that the total number of iterations required by Algorithm 6

is slightly more than that required by Algorithm 4. Recall that in both Algorithms 4 and 6, a

relation is obtained whenever the ideal b is smooth over the factor basis. An important param-

eter in the assessment of the complexity is the probability of smoothness. Empirically, the total

number of relations collected divided by the total number of iterations required is an estimate

of the smoothness probability of b. These estimates are shown in Table 8.6. The probabilities

corresponding to Algorithm 4 are slightly higher. It is perhaps useful to compare these proba-

bilities with the probability estimates given in Table 8.4. While for K1 and K2, the empirical

estimates in Table 8.6 are close to P(M, C), for K3 and K4, the empirical estimates in Table 8.6

are substantially larger. The reason for this is the fact that in the computation P(M, C), M has

been taken to be the maximum of the norms of the ideals b generated in about 1000 trials. The

average of the norms is substantially lower than the maximum, so that P(M, C) is a substantial

underestimate of the probability of smoothness of b.
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field Algorithm 4 Algorithm 6
# iter time (t1) # iter time (t3) t1/t3

K1 3004 876 3385 266 3.29

K2 5007 4024 5642 1405 2.86

K3 8370 17702 9285 5903 3.00

K4 165840 717386 183631 211381 3.39

Table 8.5: Comparison of Algorithms 4 and 6.

Algorithm K1 K2 K3 K4

Algorithm 4 ≈ 1.00 ≈ 1.00 ≈ 0.60 ≈ 0.03

Algorithm 6 ≈ 0.89 ≈ 0.89 ≈ 0.54 ≈ 0.03

Table 8.6: Empirical estimates of the smoothness probabilities for Algorithms 4 and 6 obtained
from Table 8.5.

The main point to observe from Table 8.5 is the ratio t1/t3. This figure varies from 2.86 to

3.39 indicating that in practice, Algorithm 6 is about three times faster than Algorithm 4. The

speed-up factor of three is determined by the choice of the parameters for Algorithms 4 and 6

mentioned earlier. A different choice of parameters may lead to a different speed-up factor. As

explained earlier, the main advantage of Algorithm 6 over Algorithm 4 is the reduction in the

number of ideal multiplications in the generation of the ideal a. The main point of the experiments

is to show that this advantage can indeed be realised in practice.

The first set of experiments provide evidence that in practice Algorithm 6 performs better

than Algorithm 4. A second set of experiments was conducted to demonstrate that Algorithm 6

can indeed generate the full set of relations for reasonable size number fields. To this end, we

used Algorithm 6 to collect 15000 relations for K3 and 35000 relations for K4. For K3, we ran 75

processes each tasked with collecting 200 relations while for K4, we ran 70 processes each tasked

with collecting 500 relations. In the case of K3 all the obtained relations were distinct, while for

K4, 34994 relations were distinct. The total number of iterations and the total times required by

all the processes for these experiments are shown in Table 8.7.

From Table 8.5, we note that the estimated probabilities of smoothness of the ideal b (i.e.,

the number of relations divided by the number of iterations) are 0.53 and 0.03 for K3 and K4

respectively. These are close to the probability estimates given in Table 8.6 for Algorithm 6. The

main point of the second set of experiments is to show that Algorithm 6 can indeed be used to

generate a complete set of relations.

The time to generate the pre-computed table T has not been considered in either Table 8.5

or 8.7. We would like to highlight that for a reasonable size number field, the time to generate

the full set of relations is substantially higher than the time to generate T. Instead of comparing

the times, we compare the number of ideal multiplications required for the two tasks in the case
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field # iter time

K3 28162 22937

K4 1268434 1865071

Table 8.7: Number of iterations and times (in seconds) to collect 15000 relations for K3 and
35000 relations for K4 using Algorithm 6.

of K4. From Table 8.7, the number of iterations required to collect 35000 relations is 1268434.

So, Algorithm 6 considers this number of ideals a. The generation of the start ideal of each

walk requires a single ideal multiplication and each step of the walk also requires a single ideal

multiplication. So, the number of ideal multiplications to generate 1268434 ideals is also 1268434.

Now, consider the generation of T. The number of entries in T is 16192 = q ×R, where q = 8096

and R = 2. Of the 16192 ideals in T, 16190 ideals are products of 4 primes ideals from C, while 2

ideals are products of 5 prime ideals from C. So, the total number of ideal multiplications required

to generate the ideals in T 16190 × 3 + 2 × 4 = 48578, which is about 3.8% of the number of

ideal multiplications required to generate all the ideals. Consequently, even if the time for the

generation of T is taken into consideration, Algorithm 6 will perform better than Algorithm 4 for

collecting a complete set of relations for a large enough number field.

Simple Setting of Parameters. For the previously mentioned experiments, the walk length

in Algorithm 6 was set to 8 and the start points were products of two ideals in C. Given that

the concrete number fields are not too large, we decided to experiment with relation collection

using Algorithm 6 with walk length 1. This means that each walk visits only one ideal which is

the start point, where each start point is a product of two ideals. With this setting, Algorithm 6

essentially becomes the same as Algorithm 4 with k = 2 and A = 1. Since the setting was simple,

we also reduced the precision to the default precision for Magma which is 167. We wished to find

out whether such a basic setting is adequate for collecting relations.

We ran the relation collection processes for K3 and K4 as before with the goal of collecting

15000 and 35000 relations respectively. The number of iterations required were 24901 and 970114;

and the number of distinct relations obtained were 14999 and 34904 respectively. The number of

distinct relations obtained for K3 was adequate, but for K4 there was a sharp drop from the target

of 35000 relations. The required times for K3 and K4 were 5419 and 295533 seconds respectively.

Note that compared to the times in Table 8.7, there is a marked improvement in the times.

So, for the number fields that have been considered, the above mentioned simple setting leads

to improved times, though for K4 the number of distinct relations obtained are not sufficient and

more relations would need to be obtained to make up the deficit. For larger number fields,

however, it is unlikely that such a simple setting would be sufficient for generating the required
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relations. A non-trivial walk length would be required in Algorithm 6 to be able to explore a

larger portion of the ideal space.

8.4 Conclusion

In this chapter, we have introduced a technique to perform a pseudo-random walk over ideals.

After the first step, each step of the walk requires a single ideal multiplication. The ideals

visited by the walk are used for relation collection in exactly the same manner as used in Gélin’s

algorithm [69]. The practical advantage over Gélin’s algorithm is the reduction in the number of

ideal multiplications required to generate the next ideal to be tested. Our Magma implementations

of both the new algorithm and Gélin’s algorithm confirm that there is indeed a practical speed-up.





Chapter 9

Conclusion and Future Works

In this chapter we encapsulate the contributions of the thesis. Along with that, we try to indicate

some works that may be undertaken in the future.

In this thesis, we have focussed mainly on application of index calculus strategies for the discrete

logarithm problem and the class group computation problem. In case of DLP, we have performed

a new record discrete logarithm computation in general medium characteristic fields, proposed

a new algorithm for small characteristic composite extension degree fields to efficiently perform

initial splitting which is a sub-step of the individual logarithm step and suggested ways to apply

Montgomery multiplication to the tag tracing variant of Pollard’s Rho algorithm applied to prime

order fields. We have proposed an improved method for collecting relations when applying index

calculus method to compute class groups of large degree number fields.

We try to identify some works that may be undertaken in this arena in near future. They are

listed below along with the chapters.

9.1 Future Works

9.1.1 Performing New Record Discrete Log Computations in the General

Medium Characteristic Fields Extending Methods Used in Chapter 5

Record discrete log computations can be tried using the same techniques as in the present record

computation done by us [135]. As an example, we have already shown that for any 32-bit prime

and moderate extension degree, the relation collection and descent phases can be done adopting

the same methodology as in this paper. With proper resources to solve the bottleneck linear

algebra phase, discrete log can be attempted for fields with 32-bit characteristic.

133
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9.1.2 Discrete Log Computations over Small Characteristic Composite Exten-

sion Degree Fields Using Algorithm of Chapter 6

To attempt record discrete log computations over small characteristic (where small characteris-

tic is defined in Section 4.1 of this thesis) composite extension degree fields in future, the new

initial splitting algorithm [133] can be used in the individual logarithm step. Apart from this,

further theoretical improvement of reduction of cost of initial splitting step for small characteristic

composite extension degree fields may be tried. Possibility of an analogous algorithm with some

tweaking for larger characteristic can be analysed.

9.1.3 Implementing Discrete Logarithm Computations Using Substitutions

Suggested in Chapter 3

Given any target group, the tag tracing version of Pollard’s Rho algorithm with Montgomery

multiplications [132] wherever necessary, may be used to compute discrete logarithms modulo the

smaller prime factors of the cardinality of the group. This would lead to a gain in time in those

cases where a number of small prime factors are present.

9.1.4 Computing Class Groups of Number Fields with Large Discriminants

Using the Walk in Chapter 8

Our algorithm can be used in the relation collection phase to compute class groups of large degree

number fields. It would be particularly helpful for large fields where multiplications are costly.

Due to the limitations of computational resources, experimental results for number fields with

512-bit and higher size discriminants using the new algorithm could not be reported. This would

be an immediate target.

“Somewhere, something incredible is waiting to be known.”

-Carl Sagan.
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