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Abstract

The problem of clustering aims to partition unlabeled data so as to reveal the
natural affinities between data instances. Modern learning algorithms need to be
designed to be applicable on larger datasets that can also be high dimensional.
While acquiring more features and instances can be beneficial, the addition of
noisy and irrelevant features can also obfuscate the true structure of the data;
distance metrics can also fail at high dimensions. To address these challenges,
complex mathematical structures can be used to model different aspects of a
problem, however they can also lead to algorithms with high computation costs,
making the algorithms infeasible for larger datasets.

Among existing classes of clustering methods, we focus on the class of center-
based clustering which in general consists of methods with low computation costs
that scale linearly with the size of datasets. We identify different factors that
have influence over how effective center-based clustering methods can be. Esti-
mating the number of clusters is still a challenge, for which we study existing
approaches that have a wide range of computation costs, and propose two low-
cost approaches based on two possible definitions of a cluster. Selecting a suitable
distance metric for clustering is also an important factor. We incorporate a kernel
metric in a center-based clustering method and investigate its performance in the
presence of a large number of clusters. Feature selection and feature extraction
methods exist to identify which features can help estimate the clusters. We fo-
cus on sparse clustering methods and propose a significantly lower computation
approach to simultaneously select features while clustering. Another important
factor is the nature of the clusters identified. Hard clustering methods identify
discrete clusters, whereas soft clustering methods allow soft cluster assignments
of data points to more than one cluster, thereby allowing overlapped clusters to
be identified. We propose a multi-objective evolutionary fuzzy clustering method
that can identify partitions at different degrees of overlap.

Clustering in unsupervised conditions can come with a serious limitation. Instead
of exploring a wide solution space completely unsupervised, some additional su-
pervision can bias the method to identify clustering solutions that better fit a
dataset. This motivates us to propose a transfer clustering method that learns
a multiple kernel metric in a weakly supervised setting, and then transfers the
learned metric to cluster a dataset in an unsupervised manner. A lower effort
is required to provide weak supervision in comparison to full supervision, while
drastically boosting clustering performance. We recommend weakly supervised
clustering as a promising new direction to overcome the inherent limitations of
identifying clusters in an unsupervised manner.
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Chapter 1

Introduction to Center-Based
Clustering

In the quest to understand the universe better, mathematical models are used to explain the
behaviour of physical phenomena. Deterministic models are used to explain events whose
inputs can be used to exactly determine the outcome of the event. Deterministic models are
not suited to explain events whose outcomes are perceived to be random, which can occur
due to randomness in the nature of the event, or when not all input variables that influence
the outcome can be observed. The development of statistical theory allows for the creation
of statistical models that can model the behaviour of random events or processes. The utility
of a statistical model can be twofold: to obtain a mathematical model that explains the
behaviour of a random process in terms of the relationship between the input and output
variables, or to predict the outputs of a random process given its inputs. To model a random
process, a statistical model is selected and fed data from the process so that it eventually
learns to approximately simulate the behaviour of the random process; this procedure is
called statistical learning. Popular categorization of statistical learning describes learning
procedures in terms of one of the following three categories:

• In supervised learning we provide a model with input variables and target responses,
and the model is trained to approximately generate the target responses given the
corresponding inputs. If the target response is real-valued, the learning problem is
known as regression; for categorical target responses the learning problem is called
classification.

• In unsupervised learning we have only input data at hand with no target responses, on
which we wish to perform certain learning tasks. Popular unsupervised learning tasks
include clustering, where the natural groups present in the data are to be identified,
and dimension reduction, where a low-dimension projection of the data is obtained that
approximately captures the nature of the data.

• While there are several types of learning possible in between supervised and unsu-
pervised learning, classical categorizations of learning problems referred only to semi-
supervised learning, where a small part of the data has target responses associated with
it, whereas the rest of the data is unlabeled. In present categorizations, semi-supervised
learning is now considered part of a general class of methods that offer some degree of
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supervision between fully supervised and unsupervised learning. We discuss different
approaches to provide some degree of supervision in detail in Section 1.3.

This thesis focuses on a class of clustering methods called center-based clustering to iden-
tify naturally occurring groups in the data. We examine different factors that affect the
performance of center-based clustering methods. With some additional supervision, the ef-
fectiveness of clustering methods can be enhanced significantly, and therefore we also examine
the possibilities of clustering under some degree of supervision. In the next section we present
a short introduction to data clustering, followed by a general introduction to center-based
clustering in the following section.

1.1 Data Clustering

The problem of data clustering is to group data instances into clusters so that instances in
the same cluster are similar to each other in comparison to instances in different clusters.
This leads to a natural application of clustering to problems such as document clustering,
where documents in a collection are grouped together based on which are similar to each
other; an analogous application is for the clustering of a collection of images based on the
similarity between images. Other applications include image segmentation where the pixels
in an image or certain regions in an image are clustered together to form patches that are
homogeneous from the perspective of visual semantics; an additional important task is to
cluster gene expression data to identify which of the high-dimensional gene expressions have
high affinity to each other. Clustering is also a vital initial step in exploratory data mining,
where the naturally occurring similarities between data instances are revealed to be further
utilized in other data mining tasks. Clustering can also be used as part of a complex learning
task, where it is important to identify data instances in the same cluster so that they are
treated in the same way.

Clustering methods can be categorized into different classes, where methods in each class
can be beneficial in specific situations. In center-based clustering, clusters are represented by
cluster prototypes that are estimated from the data; this estimation procedure can often be
quite efficient. The class of hierarchical clustering methods progressively group together data
instances based on a distance metric (agglomerative), or they start with all data instances in
the same cluster and progressively partition the clusters of instances till a desired number of
clusters is reached (divisive). Clustering methods that define clusters as regions with a high
density of data instances form the class of density-based clustering methods. Graph-based
clustering consists of graph-cut methods that obtain connected subgraphs from graphs con-
structed with data instances as vertices and graph edges as the pairwise similarities between
data instances. Clustering solutions can also be searched for by single objective or multi-
objective evolutionary search based methods. Training different types of neural networks to
identify clusters on data projected to lower-dimensional latent spaces form the class of net-
work based clustering methods. The class of sequence clustering models identifies clusters in
sequential data such as in text and speech streams. The definition of these categories helps
to provide a basic overview of the different types of clustering methods that exist. Specific
clustering methods can often possess the qualities that make them belong to more than one
category. Among these categories of clustering methods, the class of center-based clustering
holds the advantage of generally being more efficient in comparison to methods from other
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classes, making the methods suitable for the clustering of large data sets that are nowadays
prevalent across all domains of applications.

1.2 Center-Based Clustering

The class of center-based clustering problems usually represents each cluster by a single
point called the center of the cluster. Center-based clustering methods generally have lower
computation costs in comparison to methods from other classes of clustering, since identifying
all clusters requires the estimation of only a single center per cluster. Once the cluster
centers are estimated, the cluster memberships of data instances can be easily estimated by
identifying which cluster center is closest to each data instance, and assigning the instance
to that cluster.

k-Means clustering (MacQueen, 1967; Jain, 2010) is the most popular center-based clus-
tering method, due to its simplicity and low computation cost. As a center-based clustering
method, k-Means represents each cluster by a single center of the cluster. The k-Means clus-
tering problem aims to identify k clusters by minimizing its objective function defined as the
sum of the squared Euclidean distances of data instances to their cluster centers. Solving the
k-Means clustering problem using a brute-force algorithm would require evaluating all

(
n
k

)
possible ways of grouping n data points into k clusters, to determine which grouping leads
to the minimizing the k-Means objective function. This approach is however infeasible. An
approximate algorithm to the k-Means problem called Llyod’s algorithm (Lloyd, 1982) can
efficiently reach a local minima in time linear in the size of the data set. The steps of the
Lloyd’s algorithm are demonstrated in Figure 1.1.

In contrast to the brute-force approach, Lloyd’s algorithm can find a clustering in O(nk)
time, even though the final clustering it reaches may be sub-optimal, depending on the
location of the random initial cluster centers, shown in Figure 1.2. For complex datasets,
multiple sub-optimal local minima may exist. However the low computation cost of Lloyd’s
algorithm makes it possible to run the algorithm multiple times, from which the best local
minima reached can be selected.

Even though several other center-based clustering methods exist, k-Means is still ubiqui-
tous as the first clustering method to try out in any given application. A careful examination
of the different factors that contribute to the empirical performance of a center-based clus-
tering method may make it possible to provide a better recommendation of which method
can be used in a certain domain of application. As an example, we can consider the Lloyd’s
algorithm described in Figure 1.1 and make the following observations.

• Since the algorithm starts with a random choice of k cluster centers, the number of
clusters k needs to be known in advance. This is a strong assumption, which makes the
algorithm applicable only to problems where the number of clusters is known.

• A distance metric is required which is used to identify which cluster center is at the
closest distance to each of the data instances, shown in Figure 1.1c. The choice of the
distance metric for the data at hand can be critical to identify proper clusters in the
data.

• The data features that are measured and collected for the problem play a critical role,
since all the features together define the space in which the data instances lie, where the
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(a) Dataset (b) Initializating the cluster centers

(c) Identifying the closest data instances (d) Updating the cluster centers

Figure 1.1: k-Means clustering using Lloyd’s algorithm. Given an unlabeled dataset shown
in 1.1a on which k number of clusters are to be determined, Llyod’s algorithm first randomly
initializes k data instances as the initial cluster centers, as shown in 1.1b. Next, the data
instances that lie at the closest distance to the cluster centers are identified and assigned to
that cluster, shown in 1.1c. Finally, the cluster centers are updated to the location of the
mean of all the data instances lying in that cluster, shown in 1.1d. These steps are repeated
till the algorithm converges.

distance metric should be defined, and where the clusters are to be identified. Often
for many domains of application, several features are collected with the objective of
obtaining as much information as possible. However not all features may help iden-
tify clusters, due to which a more careful identification of which features should be
considered may be necessary.

• Finally, we observe that Lloyd’s heuristic assigns each data instance to a single cluster,
based on which cluster center lies closest to it. There are variations to this approach,
as an example, the Fuzzy c-Means algorithm (Dunn, 1973; Bezdek, 1973; Bezdek et al.,
1984) uses fuzzy set theory to make it possible for data instances to have a certain
degree of membership to all the clusters under consideration.
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(a) Initial center locations (b) Final clustering

Figure 1.2: The Lloyd’s algorithm can converge to a sub-optimal clustering. Given the same
dataset of Figure 1.1a, the choice of the initial centers shown in 1.2a can affect the quality of
the final clustering reached by the algorithm, shown in 1.2b.

As the above discussion shows, there are different factors that contribute to the perfor-
mance of center-based clustering methods. An examination of these factors may also allow us
to propose ways to improve their performances while also keeping the computation costs low.
The following four factors are identified as factors that influence unsupervised center-based
clustering methods:

• The number of clusters to be identified: The number of clusters to be identified is usu-
ally predetermined for popular center-based clusters like k-Means. Learning a suitable
number of clusters through a procedure that has low computation complexity is still
a challenge. There are higher cost methods that automatically learn it as part of the
cluster estimation process, and there are several indices that can be used to check if a
certain cluster number is appropriate. However, an estimation method with an overall
low cost is still quite desirable.

• The distance metric used: The distance metric used can be predetermined by an expert
with experience in a specific problem domain. An alternative is to design a method
that would automatically learn a distance metric that is best suited to identify clusters
in the feature space.

• The features used to identify clusters: For modern datasets a wide range of features are
often collected in order to obtain more information on the task at hand. When a high
number of features are collected, they may not necessarily help identify the underlying
cluster structure in the data, as some of the features may be noisy or misleading. This
makes those methods advantageous that automatically learn which features to select or
drop, or take a linear or non-linear projection of the data that allows for better cluster
identification.

• The nature of clusters identified: Hard clusters identify discrete clusters where each
data instance belongs to only one of the clusters. In comparison, soft clusters (rough
or fuzzy) can be fit to identify overlapping clusters, by allowing instances to belong to
more than one cluster.
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Each of these factors are examined in more detail next, with discussions on recent works
to highlight the progress that has been made to address each of the factors.

1.2.1 Estimating the number of clusters

For center-based clustering methods, the number of clusters is often predetermined. Methods
from other classes of clustering can often automatically identify an appropriate number of
clusters while incurring a higher computation cost. For example, hierarchical clustering
methods can repeatedly split clusters or merge instances into clusters until some criteria
is met, thereby deciding on the number of clusters; this procedure however requires the
computation of all pairwise distances. Evolutionary search based clustering methods can
often automatically identify the number of clusters, with the caveat that an evolutionary
search across the space of possible clustering solutions requires more computation than center-
based clustering methods which often have a more focused estimation procedure involving
the alternating optimization of the model parameters.

The general approach to estimate the number of clusters for center-based clustering meth-
ods is to obtain clusterings for a range of candidate cluster numbers, and use internal cluster
validation methods, or measures of cluster stability, or statistical tests to identify an appro-
priate number of clusters. Internal cluster validation methods involve defining a notion of an
ideal clustering, and evaluating how close the estimated clustering is to it. Cluster stability
measures identify whether the same clusters are identified when different sets of instances are
drawn from the same data distribution. Cluster number estimation methods using statistical
tests usually consider as the null hypothesis a criteria of when a set of instances do not belong
to two different clusters, and test for when the null hypothesis can be rejected. Table 1.1
shows some notable recent methods, indices, stability measures or statistical tests to estimate
the number of clusters.

Table 1.1: List of Notable Recent Approaches to Estimate the Number of Clusters

Recent Works Comments

Petrosyan and Proutiere
(2016)

Proposed a clustering algorithm that automatically identifies the number of clusters
using two components: the first groups neighboring samples together, and the
second spreads samples to different clusters.

Gorza lczany and Rudziński
(2018)

A generalization of self-organising maps with one-dimension neuron chains that can
disconnect and reconnect into subchains to estimate the number of clusters.

Rathore et al. (2019)
Six indices approximating Dunn’s Index at lower computational costs were pro-
posed, where four were based on maximin sampling and two were based on unsu-
pervised training of one class support vector machines.

Srivastava et al. (2019)
Estimtated the natural number of clusters in terms of the maximum over two-norms
of all the cluster covariance matrices at two successive number of clusters.

Efimov et al. (2019)
Measured homogeneity between two neighboring local clusters using statistical tests
of no gaps existing between them, at increasing scales, to identify a clustering and
the number of clusters.

Saha and Mukherjee (2021)
A cluster stability approach to identify the number of clusters using cluster centers
that involved repetitive sampling data of sizes that were a small fraction of the
total dataset size.
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1.2.2 Learning or selecting suitable distance metrics

The definition of clusters is based on notions of similarity between instances, therefore the
choice of the distance metric used is important. Specific distance or similarity metrics can
be well suited for particular domains of applications. They can either be selected, based on
an expert’s experience in the domain and the relevant literature on past investigations, or
a suitable distance metric can be learnt during the clustering process. Learning a distance
metric can involve estimating parameters of the distance metric from the data. For example,
the covariance matrix of the Mahalanobis distance, or parameters of a kernel similarity metric
can be learnt from the data while simultaneously identifying clusters. Learning a distance
metric can also involve selecting a combination of distance metrics. An example of this type
of distance learning is learning multiple kernel similarities, where a similarity metric is learnt
that is either equal to or is close to a linear combination of predetermined kernel similarities.
Table 1.2 provides a list of some notable recent approaches to learning a distance metric or
using a new distance metric for a specific clustering task. As can be observed from Table
1.2, recent approaches fall into one of two categories: (i) identifying a distance metric well
suited for a particular clustering task; and (ii) estimating parameters of a distance metric
while clustering.

Table 1.2: Notable Recent Approaches to Learn Distance Metrics

Recent Works Comments

Sui et al. (2018) Proposed a convex clustering objective to learn a Mahalanobis distance metric.

de A.T. de Carvalho et al.
(2018)

Learned the Gaussian kernel parameter under two settings where: (i) one parameter
is learnt per feature (ii) for each cluster one parameter is learnt per feature.

Marin et al. (2019)
Proved the existence of density biases in the kernel k-Means problems and proposed
density equalization methods to resolve them.

Zhang and Cheung (2020)
Defined the distance between data instances and clusters using the order relation-
ships between ordinal data.

Sarkar and Ghosh (2020)
Clustering based on a dissimilarity measure of the mean of absolute differences of
pairwise distances, suitable for high dimension low sample sized data.

Vankadara and Ghoshdasti-
dar (2020)

Large sample behaviour for high-dimensional kernel k-Means clustering was anal-
ysed, and a subsequent semi-definite relaxation of kernel k-means was proposed.

In Table 1.3 we observe a third category, which involves learning a metric equal to or
close to a linear combination of predetermined metrics. There has been recent success in
learning a multiple kernel metric best suited for a clustering task, which involves learning a
kernel similarity that is equal to or close to a linear combination of predetermined base kernel
similarities. This creates a wide search space of possible similarity metrics to search from, in
order to select one that best fits the data at hand. Learning multiple kernel metrics has found
success in clustering tasks where large base kernel matrices have already been precomputed,
and a combined kernel similarity must be learnt while clustering. These base kernel matrices
can be large as they contain the pairwise similarities between most if not all data instances.
Due to their large size, there can be base kernel matrices with noisy or missing entries, or
entire rows and columns can be missing due to certain instances not being present when
initially computing the kernel matrix. Recent developments have targeted such challenging
situations as well.
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Table 1.3: Recent Approaches on Learning Multiple Kernel Metrics while Clustering

Recent Works Comments

Liu et al. (2016)
Included a regularizer based on pairwise kernel matrix correlation that reduced the
contribution of mutually redundant kernels.

Li et al. (2016)
Aligned the combined kernel similarity matrix with the similarity of a sample and
its k-nearest neighbours.

Liu et al. (2017b)
Relaxed the search space for the combined kernel matrix to be able to obtain
matrices close to the space of a linear combination of base kernels.

Wang et al. (2017)
Provided a framework to optimize for the combined kernel matrix in the presence
of outliers in the base kernels.

Kang et al. (2017)
A multiple kernel similarity matrix was learnt with a rank constraint imposed on
the Laplacian of the matrix.

Zhu et al. (2018) Extended Liu et al. (2016) to be able to handle kernels with missing entries.

Nguyen et al. (2018)
Simultaneous clustering while learning a multiple kernel metric, to improve on
classification performance.

Han et al. (2018a)
Local kernel weights were combined into a matrix with constraints enforced by an
ℓp norm, with proved performance bounds.

Kang et al. (2018)
Learned a multiple kernel metric by assigning higher weights to kernel matrices
close to a consensus kernel matrix.

Liu et al. (2019) Clustered incomplete base kernels from which a consensus clustering was obtained.

Liu et al. (2019)
Imputed clustering matrices obtained on base kernels to form a consensus clustering
matrix starting from initial zero-filled multiple kernel clustering solutions.

Liu et al. (2020b)
Imputed clustering matrices obtained on base kernels to form a consensus clustering
matrix in the neighborhood of a zero-filled multiple kernel clustering solution.

Liu et al. (2020a)
Extended Liu et al. (2017b) to incorporate local density in terms of variable number
of neighbors around each instance.

Liu et al. (2020b) Performed mutual imputation of the multiple kernel matrices while clustering.

Liu et al. (2020a)
Instead of imputation, margins were defined in the space of observed channels of
each sample, and the minimum of all sample-based margins was maximized.

Zhou et al. (2020)
Clustering based on neighbor kernels, where neighbors were defined based on simi-
larities in an average kernel matrix.

Yao et al. (2020)
The dissimilarities between kernel matrices were used to identify representative
kernels used for clustering.

Ren and Sun (2020)
Preserved global and local structure of data in kernel space, using a kernel self-
expressive term and a local structure learning term.

1.2.3 Identifying features that reveal cluster structure

The two prevalent approaches to identify features suitable for clustering are feature selection
and feature extraction approaches. The purpose of feature selection is to identify only those
features that are appropriate for clustering, and to drop the rest of the features either because
they are close to constant features, or they can be considered to be noisy features, or they
do not help to identify the cluster structures in the data. When high-dimensional data
is to be clustered, feature selection can help to alleviate the failure of distance metrics in
high dimensions. Currently the most popular approach to feature selection for center-based
clustering is Sparse k-Means (Witten and Tibshirani, 2010), where an objective function
was formulated so as to allow for the sparse optimization of the feature weights, which lead
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to certain features being dropped by assigning zero weights to them, whereas the rest of
the features were considered to be selected if they were assigned non-zero weights. This
method has influenced and motivated subsequent works on simultaneous feature selection
and clustering. Some recent notable works on sparse clustering are listed in Table 1.4.

Table 1.4: List of Notable Recent Works on Sparse Clustering

Recent Works Comments

Azizyan et al. (2015)
Provided theoretical guarantees on clustering performance and feature selection
while clustering a mixture of two high dimensional non-spherical Gaussians.

Flammarion et al. (2017) Obtained sparse clustering formulations with convex relaxations.

Chang et al. (2017a) Formulated Sparse Fuzzy c-Means with ℓq-norm regularization, where (0 < q < 1).

Dey et al. (2020)
Minimized the maximum intra-cluster variance with a sparse regularizer on feature
weights.

Chakraborty and Das
(2020)

Proposed a strongly consistent lasso weighted sparse k-Means approach to clustering
high dimension data.

Chakraborty et al. (2020)
Extended k-Means using generalized power means with entropy regularization to
simultaneously learn relevant features while obtaining strongly consistent solutions.

Zhang et al. (2020b)
Proposed a feature ranking based sparse k-Means method with with strong consis-
tency of centers.

Vouros and Vasilaki (2021)
Combined unsupervised feature selection and semi-supervision to create pairwise
constraints between instances and identify clusters.

While feature selection aims to retain only those features that help to identify clusters and
drop the rest of the features, the objective of feature extraction approaches is to identify lower
dimension projections of data that help to reveal the underlying cluster structure. Among
feature extraction approaches, subspace clustering (Vidal, 2011) forms a general class of
methods that allows the identification of clusters in subspaces of the original feature space.
Sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013) is an important extension that
allowed individual clusters to be identified in different subspaces, without the explicit retrieval
of the basis of every subspace. A vast amount of recent work has been done on subspace
clustering, of which some notable works are listed in Table 1.5. Subspace clustering is also
closely related to spectral clustering approaches, and therefore shares the same limitation of
having high computational costs. This has encouraged lower-cost approximation algorithms
or sampling based approaches to subspace clustering, where the subspace clustering process
works with fewer instances at a time.

Subspace clustering and SSC approaches have high computational costs, while also gen-
erally considering only linear projections of data onto different subspaces, where clusters are
identified. The recent works on deep subspace clustering address both limitations, by de-
veloping lower cost optimization methods to train deep neural networks to learn to project
data non-linearly to lower dimension latent spaces where clusters are identified. Table 1.6
lists some important recent works on deep subspace clustering. We observe that often a
deep neural network is trained to project data non-linearly to a low-dimensional space, where
subspace clustering is performed. The alternative is to train a deep autoencoder, which is
a network comprised of an encoder network that projects data non-linearly to a lower di-
mension latent space where subspace clustering is done, followed by a decoder network that
projects the data back to its original space where it verifies that the data instances can be
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Table 1.5: Notable Recent Works on Subspace Clustering

Recent Works Comments

Li et al. (2017)
A single hidden neuron network was trained to generate ℓ0 sparse codes of data
instances on which subspace clustering was performed.

Jalali and Willett (2017)
Subspace clustering that assigned pairwise affinity based on conic geometry, where
a strong association was imposed between the tangent cone at an instance and the
original subspace containing the instance.

Rahmani and Atia (2017)
Identified subspaces that were novel with respect to other subspaces, by solving a
series of linear optimization problems which searched for directions of innovation
in the span of the data.

Yu et al. (2018)
The subspace representations of each view were clustered simultaneously while a
pairwise co-regularization constraint ensured consistency across views.

Tsakiris and Vidal (2018)
Theoretical guarantees for the sparse subspace clustering of data with missing en-
tries.

Yang (2018) Obtained ℓ0-SSC on data linearly projected onto a lower dimensional space.

Luo et al. (2018)
From multiple views obtained a shared representation consistent with all views and
per-view set of specific representations capturing the differences.

Jia and Cheung (2018)
A feature weighting approach to cluster categorical and numerical data with a rival
penalized competitive learning scheme that also learned the number of clusters.

Matsushima and Brbic
(2019)

Provided theoretical bounds on an efficient SSC method based on selecting instances
which most violated the subgradient of the objective function.

Wang et al. (2019c)
Approximation algorithm with theoretical guarantees that applied k-Means to fea-
tures constructed with rank-restricted Nyström approximation.

Lu et al. (2019)
Guaranteed block diagonal property used by a regularizer to obtain subspace clus-
tering.

Wang et al. (2019)
Identified clusters from multiple statistically independent subspaces while also es-
timating the number of clusters in each subspace.

Li et al. (2019)
Learned a latent representation close to different views while avoiding using partial
information for data reconstruction.

Wang et al. (2019b)
Combined multiple independent self-representations from latent representations of
the data.

Liang et al. (2019)
A triplet relationship was used to model the relevance and compactness among three
samples to perform subspace clustering while determining the number of clusters.

Zhao et al. (2019)
A regularized Gaussian mixture model based approach that estimated low-
dimensional representations of component covariance matrices.

Bai and Liang (2020)
SSC with entropy-norm viewed as spectral clustering with a Gaussian kernel that
lowers the computation cost.

Yang et al. (2020)
Subspace clustering by optimizing for sparsity and connectivity by finding mutually
strongly connected samples within a subspace.

Chen et al. (2020b)
SSC well suited for larger datasets by using dropouts to operate on a small subset
of a dataset.

Kang et al. (2020)
Selected few anchor data instances to construct small anchor graphs per view which
were integrated to obtain partitions.

Li et al. (2021)
Sampling-based algorithm that progressively clustered small random samples fol-
lowed by labeling out-of-sample points.

uniquely reconstructed from its latent space. In addition, in the recent literature we observe
multi-view deep subspace clustering methods, which train networks on multiple views or sets
of features. We can also observe data augmentation approaches to better learn the subspaces
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where clusters can be identified.
From the recent literature on feature selection and extraction for clustering, we also ob-

serve novel proposals on projecting data onto lower dimension spaces that have been observed
to work well in practice. Some notable works of these kinds are shown in Table 1.7.

Table 1.6: List of Notable Recent Works on Deep Subspace Clustering

Recent Works Comments

Peng et al. (2017)
Minimized the differences between two centers distributions in the latent space of
the deep network, assuming that the distributions are invariant to different distance
metrics on the manifold.

Ji et al. (2017)
A self-expressive layer between an autoencoder’s encoder and decoder was proposed
to perform subspace clustering.

Zhou et al. (2019)
A distribution consistency loss was used to train an autoencoder to learn a
distribution-preserving latent representation.

Mukherjee et al. (2019)
Latent variables sampled from a mixture of one-hot encoded variables and contin-
uous latent variables were used to train data projected to the latent space using a
clustering loss

Sun et al. (2019)
Learned latent representations for each of multiple views that were used to learn a
common latent subspace.

Abavisani et al. (2020)
Used efficient data augmentation policies to learn consistent subspaces for slightly
transformed inputs.

Peng et al. (2020)
A deep neural network was trained for sparse subspace clustering using the l1-norm
to enforce sparsity.

Zhang et al. (2020a)
Used complementary information from multiple views to train networks to identify
and explore the relationships between latent representations from each view.

Table 1.7: Recent Approaches to Identify Suitable Features

Recent Works Comments

Shen et al. (2017)
Learned to compress high-dimensional data into short binary codes while also iden-
tifying clusters.

Zhang et al. (2017)
Clustering using an ℓ2,1-norm constrained matrix factorization with manifold reg-
ularizations on low-dimensional feature representations and the cluster indicator
matrix.

Liu et al. (2017a)
A low cost approximation algorithm for k-Means clustering on sparse low dimension
projections of a dataset.

Yellamraju and Boutin
(2018)

Clustering at sequential hierarchical levels based on definitions of clusterabil-
ity, where at each level binary clusterings are identified on projections of high-
dimensional data onto a random one-dimension line.

1.2.4 The nature of clusters for center-based clustering

Among center-based clustering methods, hard clustering methods identify discrete clusters
by assigning data instances to only one of the identified clusters. Soft clustering methods
generalize the notion of cluster memberships to allow data instances to have different degrees
of cluster memberships to different clusters. Fuzzy c-Means is perhaps the most popular
approach to soft clustering, which defines the possible cluster membership of a data instance
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as a fuzzy set to assign soft cluster memberships to multiple clusters (Ruspini et al., 2019;
Ruspini, 1969; Dunn, 1973; Bezdek et al., 1984). Possibilistic c-Means Krishnapuram and
Keller (1993) is a further generalization of soft clustering that allows low memberships to
all clusters for outliers, as well as high membership of instances to more than one cluster.
The major advantage of using soft clustering methods is to allow data instances to have
different degrees of cluster memberships to all clusters in order to identify overlapped cluster
structures in datasets. In real-world datasets it is quite common for clusters to show different
degrees of overlap. Using hard clustering methods in such situations may not be suitable,
since they will force the partition of the data into discrete partitions. Soft clustering methods
can be used instead, since the identification of soft cluster memberships naturally leads to
the identification of underlying overlapped cluster structures (Zhou et al., 2020, 2021b; Hu
et al., 2021; Zhou et al., 2021a). This appeal of soft clustering methods allows their use
across several domains of applications (Zeng et al., 2020; Yang and Benjamin, 2021; Feng
et al., 2020; Wu and Zhang, 2021; Bui et al., 2021).

1.3 A general overview of learning under some degree of su-
pervision

Methods that are designed for completely unsupervised learning tasks such as data cluster-
ing can be applied to different types of data since unsupervised learning does not require the
data to be labeled. In contrast to unsupervised learning, supervised learning methods require
all data instances to be labeled, which can be expensive for today’s problems that demand
learning algorithms to be trained on datasets of large sizes. In order to reduce the label-
ing effort required by supervised learning methods, a wide variety of approaches have been
proposed that offer different degrees of supervision between the conventional requirements of
supervised and unsupervised learning (Ratner et al., 2019 (accessed July 16, 2021); (Ratner
et al., 2019, 2020). Each of these approaches offers some degree of supervision in different
ways, while requiring lower labeling cost in comparison to fully supervised learning methods.

Approaches that provide some degree of supervision can be described in terms of four
possible categories.

• In Active Learning, the learning algorithm actively constructs queries to be able to
obtain specific supervised information from an expert called the oracle. Active learning
algorithms generally construct two kinds of queries to the oracle to retrieve information
on: (i) the correct cluster label for a data instance, or (ii) whether two data instances
lie in the same cluster (known as a must-link constraint), or whether they lie in differ-
ent clusters (called a cannot-link constraint). Active learning algorithms are designed
to minimize the number of queries sent to the oracle, in order to reduce the cost of
obtaining labels from experts.

• Semi-supervised Learning algorithms usually have access to a smaller labeled dataset
and a larger set of unlabeled data. The objective of these learning algorithms is to best
utilize both the labeled and the unlabaled data to estimate model parameters so as to
best fit the data. The provided supervision can also be in terms of labaled instances,
or labeled pairwise constraints, i.e., must-link or cannot link constraints.
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• Transfer Learning can be described in terms of two tasks: a source task and a target
task. In the source task, a model is trained on a source dataset. In the target task,
the entire trained model, or only some of its estimated parameters, are transferred
in to accomplish a learning task on a target dataset. In the target task the trained
model can be used for the target learning task; the model or some of its parameters
can also be part of a larger model that accomplishes the learning task on the target
dataset. The target task is usually in a similar domain of application, however recently
deep learning models have also achieved great success when transferred to significantly
different domains of application.

• Weak Supervision focuses on acquiring easier to obtain but potentially noisier labels,
often at a higher level of abstraction than that of instance-level labeling. As an example,
for the task of image segmentation, instead of labeling every pixel of an image, labels
can be provided in terms of what objects are present in the image.

1.4 Clustering under some degree of supervision

Clustering under unsupervised conditions is vastly more popular than clustering under some
degree of supervision. There has been less number of investigations on clustering under
some degree of supervision, and even fewer works on methods from the class of center-based
clustering. We can observe some notable works from the past on general clustering methods
in this area, as well as more recent achievements that have been achieved.

In the area of active clustering, optimization methods had been developed to query for
either the label of data instances or must-link and cannot-link pairwise constraints from an
oracle, so as to minimize the overall number of queries sent to the oracle (Basu et al., 2004a;
Grira et al., 2008; Xiong et al., 2013). In the area of semi-supervision, methods had been
proposed that used labeled data instances to best estimate the partitions in the underlying
feature space, or methods that used pairwise must-link and cannot-link constraints to identify
the most appropriate clustering structure (Basu et al., 2006; Kulis et al., 2009; Bair, 2013;
Yu et al., 2015; Soares et al., 2017). Transfer clustering approaches had been proposed that
utilized some learned parameters or learned models to perform clustering on a task that was
different from the original task (Deng et al., 2016; Jiang and Chung, 2012; Han et al., 2019).
Weak supervision clustering approaches were focused on using labels that were provided at
a higher level of abstraction in comparison to the labeling of data instances directly. This
led to weak supervision approaches having an advantage of requiring even less amount of
labels in comparison to active clustering and semi-supervised clustering approaches, which
can require at most O(n) labels if they are labeling n data instances, or at most O(nC2) labels
if they are labeling pairwise constraints. Clustering under weak supervision has also been
observed to achieve success in more complex learning tasks such as image cosegmentation
(Tao et al., 2017, 2019), where pairs of images are considered at a time to determine the
similarity between them, and segment them by clustering the image pixels at the level of
superpixels.

Recent works on clustering under some degree of supervision can motivate the future
design of center-based clustering methods that operate under some degree of supervision. In
Table 1.8 we list some notable recent works on clustering under some degree of supervision.
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Table 1.8: List of Approaches for Clustering under Some Degree of Supervision

Recent Works Comments

Nie et al. (2017)
Simultaneous multi-view clustering or semi-supervised classification along with local
manifold structure learning was achieved by modifying the similarity matrix in each
iteration until an optimal one is reached.

Xiong et al. (2017)
Active clustering with minimal queries for pairwise constraints by decomposing the
expected uncertainty reduction problem into a gradient and a step-scale.

Chang et al. (2017b)
Probabilistic clustering using pairwise constraints from experts while also estimat-
ing the experts’ accuracies.

Chang et al. (2017c)
A Bayesian probabilistic model that learned multiple clusterings from multiple ex-
pert views while assigning higher weights to experts with higher confidence.

Awasthi et al. (2017) Clustering through user supervised cluster split and merge requests.

Liu et al. (2018)
Obtained partition-level constraints from multiple sources and agents with incon-
sistencies in the number of clusters to perform clustering as well as saliency-guided
co-segmentation.

Wang et al. (2019a)
Semi-supervised clustering where a relative ordering between all instances was main-
tained based on the must-link and cannot-link constraints.

Kushagra et al. (2019)
Restricted correlation clustering using a sampling procedure with the help of an or-
acle to sample same-cluster and different-cluster pairs with theoretical performance
guarantees.

Bressan et al. (2019)
Active clustering with information-theoretic bounds on the number of queries nec-
essary to guarantee a target disagreement bound.

Li et al. (2020)
Used deep networks to learn embeddings for both labeled and unlabeled instances,
while constructing queries based on measures of informativeness and representa-
tiveness of instances.

Jing et al. (2020)
Learned a Mahalanobis distance based on must-link and cannot-link constraints
provided at a higher level of abstraction.

Shi et al. (2020)
Active clustering that queried to reduce clustering uncertainty, re-labeled related
instances, and considered an instance-level weighted voting consensus scheme.

Nie et al. (2020)
Cannot-link graph regularizer with provable guarantee that cannot-link constrained
instances are in different clusters.

Tang et al. (2020)
Deep multiple instance learning to identify proposal cluster centers that are spatially
adjacent in the same cluster and associated with the same object.

Bai et al. (2020)
A uniform representation for different types of constraints and a consequent clus-
tering method was proposed to identify clusters with high consensus of constraints
from multiple sources.

Lai et al. (2021)
Unsupervised base partitions generated from random samples and random sub-
spaces were assigned weights based on internal cluster validation and pairwise con-
straints, and combined in a consensus approach.

1.5 Scope and Organisation of the Thesis

In this thesis, we study four factors that affect the performance of center-based clustering
methods, namely: the number of clusters, the distance measure used, the features selected,
and the nature of the clusters identified. We also consider the unsupervised conditions under
which clustering methods usually operate to be a limitation, and study possible gains in
clustering performance when some degree of supervision is provided. In Figure 1.3 we outline
the structure of this thesis following which we discuss each of these topics.

We identify that most center-based clustering methods require the number of clusters to
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be specified. One way to estimate the number of clusters is to consider a range of candidate
cluster numbers and use a center-based clustering method to obtain clusterings at each can-
didate cluster number, followed by using a cluster validation approach to identify the number
of clusters. There are several cluster validation methods over a wide range of computation
complexity that can be used to identify the number of clusters. We study the overall per-
formance of several popular and recent approaches to identify the number of clusters, and
we also propose two methods in Chapter 2 that have low computation costs. The proposed
approach is based on our studies of the minimum distance between cluster centers, for which
we observe that there are occasional large decreases possible in the minimum distance be-
tween cluster centers for successive candidate cluster numbers. We observe that the last time
a major decrease occurs can be considered as an appropriate estimate of the number of clus-
ters. We propose two cluster number estimation methods based on this observation, which
are proposed corresponding to two possible definitions of a cluster. We conduct extensive
studies of our proposed approaches in comparison with several popular and recent cluster
number estimation methods, on a number of real and synthetic datasets. In particular, our
studies on synthetic generated datasets consider several studies on the behaviour of cluster
number estimation methods as the generated datasets deviate away from ideal conditions of
clustering.

The second factor that affects center-based clustering methods is the distance measure
used. We identify the flexibility that kernel similarities can provide in identifying clusters,
and propose an extension of a center-based clustering method called k-Harmonic Means to
operate with kernel similarities. In chapter 3 we formulate a kernelized general Fuzzy c-Means
objective, which is a general objective from which one can easily derive objectives for Kernel
k-Means, Kernel Fuzzy c-Means, and Kernel k-Harmonic Means. We compare the empirical
performance of the kernel clustering methods, and in particular study their behaviour in
the presence of a large number of clusters, where we observe Kernel k-Harmonic Means to
perform significantly better in comparison to the other clustering methods in contention.

The next factor we consider is identifying suitable features for clustering. We focus on
center-based clustering methods with sparse regularizers to select features deemed best suited
to identify clusters. In particular, we focus on the methods of Sparse k-Means and Sparse
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Fuzzy c-Means, and note that both these methods operate by assigning weights to features
and imposing an ℓ1-norm constraint on the feature weights to induce sparsity by allowing
feature weights close to zero to be exactly equal to zero, thus performing feature selection by
selecting features with non-zero weights. However the ℓ1-norm constraint requires an upper
bound, which also allows control over the degree of sparsity allowed, thus controlling the
number of features that can be set to zero. Usually a computationally intensive procedure
is followed to automatically select the degree of sparsity. In Chapter 4 we derive expressions
of the Bayesian Information Criteria for Sparse k-Means and Sparse Fuzzy c-Means to select
the degree of sparsity instead, and propose using it instead to select the degree of sparsity.
Using the derived expressions lead to significantly lower computation costs. Over extensive
experiments we observe that our proposed approaches lead to the identification of better
sparse clusterings while incurring lower computation costs.

The fourth factor that affects center-based clustering is the nature of the clusters iden-
tified. Fuzzy clustering approaches are a general approach to identify clusters with different
degrees of overlap. Usually fuzzy clustering methods like Fuzzy c-Means have a parameter
that can be used to control the degree of overlap that is identified between clusters. In Chap-
ter 5 we propose an evolutionary multi-objective fuzzy clustering method that automatically
obtains several fuzzy clusterings at different levels of fuzziness corresponding to different
degrees of overlap identified between clusters. This is achieved by the use of contradicting
objectives in a multi-objective setup, where one of the objectives is a measure of intra-cluster
variance that tries to produce compact discrete clusters while the other objective is a measure
of the entropy of cluster memberships that tries to produce completely overlapped clusters.
Optimizing both in a multi-objective setup produces a Pareto front of a wide range of opti-
mized clusterings at different levels of fuzziness corresponding to different degrees of overlap,
from which a suitable clustering for the application at hand can be selected. We also propose
a method to identify a clustering from the Pareto front, and evaluate our proposed approach
over several real and synthetic datasets.

Along with our studies on the four factors that affect the performance of center-based
clustering methods, we look at the unsupervised conditions under which they generally op-
erate as a limitation as well, and expect significant improvements in clustering performances
to be possible if some degree of supervision can be provided. Recently, multiple kernel clus-
tering methods have achieved great success in learning a multiple kernel similarity metric
while also clustering simultaneously. Multiple kernel clustering methods search for a suitable
multiple kernel similarity metric over a wide space of possible similarity metrics. In Chapter
6 we are motivated by the idea that some degree of supervision may help bias a multiple
kernel clustering methods to learn suitable multiple kernel metrics, instead of searching for
the metric in an unsupervised manner over a wide search space. We propose a method that
can be described in terms of two tasks, a source task and a target task. The source task
involves learning a multiple kernel metric in a weakly supervised multi-instance setup, where
multiple data instances are grouped together and assigned possible labels, which leads to
lower labeling efforts. The multiple kernel metric learnt under this weakly supervised setup
is transferred to the target task which is an unsupervised single instance clustering task. Our
overall method has significantly lower computation costs, even in comparison to the state-of-
the-art unsupervised multiple kernel clustering methods. Over several large computer vision
datasets we observe that significant improvements are achieved by our proposed method while
incurring lower computation costs.
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Based on our overall studies and observations on center-based clustering methods, we
provide concluding remarks in Chapter 7 along with discussions on interesting subsequent
directions of research that are possible, especially in the promising direction of clustering
under some degree of supervision.
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Chapter 2

Fast Automatic Estimation of the
Number of Clusters from the
Minimum Inter-Center Distance for
k-Means Clustering

Summary

Center-based clustering methods like k-Means intend to identify closely packed clusters of
data points by respectively finding the centers of each cluster. However, k-Means requires the
user to guess the number of clusters, instead of estimating the same on the run. Hence, the
incorporation of an automatic estimation of the natural number of clusters present in a dataset
is important to make a clustering method truly unsupervised. For k-Means, the minimum of
the pairwise distance between cluster centers decreases as the user-defined number of clusters
increases. In this chapter, we observe that the last significant reduction occurs just as the
user-defined number surpasses the natural number of clusters. Based on this insight, we
propose two techniques: the Last Leap (LL) and the Last Major Leap (LML) to estimate
the number of clusters for k-Means. Over a number of challenging situations, we show that
LL accurately identifies the number of well-separated clusters, whereas LML identifies the
number of equal-sized clusters. Any disparity between the values of LL and LML can thus
inform a user about the underlying cluster structures present in the dataset. The proposed
techniques are independent of the size of the dataset, making them especially suitable for large
datasets. Experiments show that LL and LML perform competitively with the best cluster
number estimation techniques while imposing drastically lower computational burdens.

2.1 Introduction

Center-based clustering methods offer a low computation approach to identifying clusters
in datasets. This is achieved by representing each cluster by a (usually single) center of
the cluster. The estimation of the cluster representatives lowers the computation cost sig-
nificantly, an example of which was discussed in Figure 1.1 in Chapter 1. Center-based
clustering methods commonly require the number of clusters to be provided as input by the
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user along with the input data, which raises the question: If center-based clustering methods
cannot automatically estimate the natural number of clusters in a dataset, are they truly
unsupervised?

Estimating the natural number of clusters is generally not trivial since the underlying data
distribution is unknown. Consequently, there exists a large number of different approaches
to estimate the number of clusters (Hancer and Karaboga, 2017). Cluster validity indices
attempt to identify what properties an ideal clustering should have, and accordingly assign
a numeric score to a clustering of data points. Naturally, cluster validity indices have been
used previously to estimate the number of clusters (Milligan and Cooper, 1985; Dimitriadou
et al., 2002; Arbelaitz et al., 2013). Other than cluster validity indices, there exists a school
of diverse methods to estimate the number of clusters (Tibshirani et al., 2001; Tibshirani
and Walther, 2005). There are also clustering methods where the estimation of the number
of clusters is built into the method itself (Frey and Dueck, 2007; Handl and Knowles, 2007;
Louhichi et al., 2017; Du et al., 2017; Liang and Chen, 2016; Tong et al., 2017). There is also
the general class of divisive clustering methods, where starting from one or two clusters, the
clusters are repeatedly divided until all clusters satisfy a well-defined condition (Savaresi and
Boley, 2001; Hamerly and Elkan, 2003). These methods make the strong assumption that
the terminal number of clusters is close to the natural number.

Given such a large variety of approaches to estimate the number of clusters across different
categories of data clustering methods, comparing all of them in a meaningful way becomes
difficult. Therefore, in this chapter we restrict our focus to the center-based k-Means clus-
tering algorithm MacQueen (1967); Jain (2010), for which we investigate which method best
estimates the number of clusters. In the following section we discuss our motivations for
developing two new cluster number estimation methods: the Last Leap (LL) and the Last
Major Leap (LML). Both methods observe only the minimum distance between cluster cen-
ters to estimate the cluster number, consequently having computational complexity far lower
than existing methods (making them much faster on large datasets). Through a number of
experiments we compare our methods with other existing methods for k-Means clustering to
determine which accurately estimates the natural number of clusters.

2.2 Motivation

Given a dataset of n points X = {x1, ...,xn}, where xi ∈ Rd, and a user-defined number of
clusters k, k-Means divides the dataset into k clusters C1, ..., Ck, where each cluster Cj is
represented by a cluster center vj. Let k∗ denote the natural number of clusters in a dataset.

Our objective is to find an estimate k̂ for k∗.
Existing cluster number estimation methods often consider two conditions that an ideal

clustering should satisfy, to arrive at such an estimate. The two conditions are: (i) Com-
pactness, where the cluster around each center is dense, and (ii) Separation, where different
clusters are far apart.

Compactness: A notion of compactness often exists in cluster validity indices in the
form of the sum of the average intra-cluster pairwise-distances Wk, which is also equal to the
sum of the squared distances of each point to its nearest cluster center,

Wk =
∑k

j=1

∑
xi∈Cj

||xi − vj||2.
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Wk decreases with increasing values of k. A plot of Wk can show that at the natural number
of clusters, there is a large reduction in the value of Wk. This leads to a basic method to
estimate the number of clusters where the knee-point of the plot of Wk is identified, as shown
in Figure 2.1. The knee-point of this plot can be easily computed by finding the point that
lies at a maximum distance to the line joining the first and the last point. However, the
knee-point method tends to fail for higher values of k∗, as shown in Figure 2.2.

(a) Dataset 3clusters (b) Wk across different k

Figure 2.1: The data has 3 clusters, which can be identified from the knee-point in the plot
of Wk over increasing values of the number of clusters k.

(a) Dataset 25clusters (b) Wk across different k

Figure 2.2: The knee-point often fails for higher number of clusters. The dataset has 25
clusters, however the knee-point identifies only 9 clusters.

Separation: Among several approaches to consider separation of clusters, one is to use
the minimum distance between cluster centers dk (Xie and Beni, 1991),

dk = min
i ̸=j

||vi − vj||2.

The plots of dk across increasing values of k in Figure 2.3 show an interesting behaviour. While
dk generally decreases as k increases, there are occasional leaps in the reduction in dk. What
is noteworthy is that there is always one final significant leap that occurs just as k surpasses
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k∗. After this last significant leap, the reduction in dk continues to be gradual. Even when
the natural number of clusters is high (> 20), as long as the clusters are well-separated, the
final significant leap does occur immediately after the natural number of clusters. This leads
to the question of whether this last significant reduction can always be correctly identified.
Based on this question, we propose two cluster number estimation methods in the following
section.

(a) A leap in dk for 3clusters (b) Leaps in dk for 25clusters

Figure 2.3: The last significant reduction in dk occurs after k∗ = 3 for the data 3clusters
(Figure 2.1a) and after k∗ = 25 for the data 25clusters (Figure 2.2a).

2.3 Proposed Methods

The primary objective of creating a cluster number estimation method is to accurately es-
timate the natural number of clusters k∗. However, the natural number of clusters is often
difficult to define. Often in ambiguous situations it is hard to reach a consensus on what the
value of k∗ should be. As a simple example, Figure 2.4a shows the Iris dataset which has
three classes. The literature on cluster number estimation often expects clustering methods
to identify these three classes as three clusters since they are of somewhat comparable sizes
(Fujita et al., 2014; Rezaee et al., 1998; Zhao et al., 2009b). However, Figure 2.4b shows
that two of the classes are not well-separated, hence the recognition of two clusters should
perhaps also be considered as valid. In situations where such an ambiguity exists regarding
the number of clusters, the estimated k̂ considered to be the natural number of clusters may
depend on the application at hand. Also from the perspective of data exploration, it may
be beneficial to know whether multiple valid k̂ may exist for a given data. Therefore, we
propose two methods to estimate the number of clusters: the last leap which is more prone
to identifying well-separated clusters, and the last major leap which tends to identify clusters
of equal size.

1. The Last Leap (LL): We propose the following index to identify where the last
significant difference occurs in the values of dk,

LL(k) =
dk − dk+1

dk
. (2.1)
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Figure 2.4: The Iris dataset can be clustered into (a) 3 clusters of similar size, or (b) 2 well-
separated clusters.

The k at which LL is maximized is defined to be the estimated k̂ in the following way:

k̂LL = arg max
k=2,...,kmax

LL(k).

A large value of the numerator dk − dk+1 of LL helps to indicate where a large reduction has
occurred. The denominator contains dk which generally decreases with increasing k, thereby
helping to identify where the ‘last‘ large reduction in LL occurred.

2. The Last Major Leap (LML): We define the method LML to specifically check for
the last significant reduction in dk:

ILML(k) =

1 , if 1
2dk > max

l=k+1,...kmax

dl,

0 , otherwise,
(2.2)

K = {k | ILML(k) == 1}, and (2.3)

k̂LML =

{
max K , if K ̸= ϕ.

1 , otherwise.
(2.4)

Here ILML(k) is an indicator function that identifies a significant leap when half of the current
dk is greater than dl, for higher values of l (l = k+1, ..., kmax). K forms the set of the number
of clusters k at which a significant leap in dk occurs. From the set K, the largest value is
selected as the estimated k̂ and is considered to be the last significant leap.

We next justify how ILML identifies significant leaps. The k-Means clustering algorithm
identifies spherical crisp clusters of equal size that do not overlap. We assume that the
data contains clusters of this nature which is ideal for k-Means. At the natural number
of clusters k = k∗, k-Means correctly identifies the center of each cluster. The minimum
distance between centers dk can then be the diameter d of the clusters, if any two clusters
touch. Otherwise dk is some value greater than d. Therefore at k = k∗, dk ≥ d.

At k = k∗ + 1, k-Means will place two centers in the same cluster, leading to a minimum
inter-center distance that is less that d/2. Therefore when k is increased from k∗ to k∗ + 1,
the decrease in minimum inter-center distance is greater than d−d/2 = d/2. ILML is defined
to identify this decrease. Furthermore for very high values of k where dk is close to zero,
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possible noisy variations in dk+1 can be avoided by considering the maximum over all dl,
l = k + 1, ..., kmax.

While such large reductions in dk may certainly occur between k and k + 1 when k < k∗,
they do not occur when k > k∗. For any k > k∗, between k and k + 1 there are two
possibilities for k-Means to place the new center. The center can either be placed in a cluster
that previously had only one center. This does not have a substantial effect on dk, since
there already exists another cluster with more than one center in it. The other possibility is
that the center is placed in a cluster that already has more than one center. Then dk+1 may
decrease compared to dk, but the difference will not be greater than 1

2dk.

Figure 2.5: The centers of non-overlapping clusters have at least distance d between them,
where d is the diameter of the clusters. When two centers converge in the same cluster, the
distance between them is less than d

2 .

On identifying single clusters: In (2.2), ILML may not identify any significant leaps,
leading to an empty set K in (2.3). If such a situation arises, we can consider the data
contains no clear cluster structures, and therefore in (2.4) k̂LML is set to 1. A similar rule is
incorporated to LL as well:

k̂LL = 1, if
1

2
dk < max

l=k+1,...,kmax

dl. (2.5)

For more complex datasets where the natural number of clusters may be more difficult to
decide, LL and LML give different results based on two different perspectives. In eqn. (2.4),
k̂LML is the largest k for which ILML(k) = 1 from eqn. (2.3). This causes LML to prefer the
division of a dataset into equal-sized clusters. On the Iris dataset, LML identifies 3 clusters.
The numerator in eqn. (2.1) is the difference between dk and dk+1. Therefore, faced with an
ambiguous situation LL will choose a k that identifies well-separated clusters. For the Iris
dataset, LL identifies 2 clusters.

Both LL and LML work only on the minimum distance between the cluster centers, and
do not require the dataset at all. Both have a computation complexity of only O(k2). Since
usually k << n, both LL and LML are drastically more efficient than other cluster number
estimation methods, especially on large datasets.
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2.4 Framework for Cluster Number Estimation

In this section, we state the framework (Milligan and Cooper, 1985; Dimitriadou et al.,
2002) followed to compare LL and LML with the popular and state-of-the-art cluster number
estimation methods:

1. For k = 1, 2, ..., kmax, run k-Means to identify k clusters in the given dataset.

2. Run a cluster number estimation method on all output clusterings for k = 1, ..., kmax.

3. Use a suitable selection criteria to estimate the number of clusters.

Along with LL and LML, we evaluate the performance of 28 existing cluster number
estimation methods compatible with the stated framework. All methods are listed in Table
2.1. The definitions of each method can be found in Section A.1 of Appendix A.

Each cluster number estimation method compatible with the framework can be written
as a function fk : {C1, ..., Ck} → R, where fk evaluates a clustering with k clusters. Given
clusterings for k = 1, ..., kmax, each method therefore returns kmax values f1, ..., fkmax . A
selection criteria associated with each method is used to select the number of clusters from
these kmax values. The selection criteria is generally one of the following:

1. The maximum or minimum of fk.

k̂ = arg max / arg min
k

fk.

2. The knee-point method, which selects k̂ = k for the fk lying at maximum distance to
the line joining f1 and fkmax .

3. A rule specific to the method, such as the 1-standard-error rule followed by the Gap
Statistic (Tibshirani et al., 2001).

Figure 2.6: Datasets used to validate the selection criteria for the cluster number estimation
methods.

Following this categorization, the selection criteria for each method is provided in Table
2.1. In the literature, there are often inconsistencies regarding the selection criteria for
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Table 2.1: Specifications of the Cluster Number Estimation Methods.

Sl.
Name Complexity

Selection Min no. of

No. Criteria for k̂ clusters

1
Akaike Information Criterion (AIC)

O(nk) Knee 2
(Akaike, 1974)

2
Bayesian Information Criterion (BIC)

O(nk) max 2
(Schwarz, 1978)

3
Caliński Harabasz (CH) Index

O(nk) max 2
(Caliński and Harabasz, 1974)

4
Classification Entropy (CE)

O(nk) min 2
(Bezdek, 1975)

5
Compose Within-Between (CWB)

O(nk) min 2
(Rezaee et al., 1998)

6
Davies Bouldin (DB) Index

O(nk) Knee 2
(Davies and Bouldin, 1979)

7
Dunn Index

O(n2) max 2
(Dunn, 1973)

8 Knee-point Method O(k) Knee 1

9
Fukuyama Sugeno (FS) Index

O(nk) Knee 1
(Fukuyama and Sugeno, 1989)

10
Fuzzy Hypervolume (FHV)

O(nk) min 1
(Dave, 1996)

11
Gap Statistic

O(Bnk)
1-standard-error

1
(Tibshirani et al., 2001) rule

12
Halkidi Vazirgiannis (HV) Index

O(nk2) min 2
(Halkidi and Vazirgiannis, 2001)

13
Hartigan Index (Hart)

O(nk) Knee 1
(Hartigan, 1985)

14
I Index

O(nk) max 2
(Maulik and Bandyopadhyay, 2002)

15
Jump Method

O(nk) max 2
(Sugar and James, 2003)

16
Modified Partition Coefficient (MPC)

O(nk) max 2
(Dave, 1996)

17
Partition Coefficient (PC)

O(nk) max 2
(Bezdek, 1973)

18
Partition Index (PI)

O(nk) Knee 2
(Bensaid et al., 1996)

19
PBMF

O(nk) max 2
(Pakhira et al., 2004)

20
PCAES

O(nk) max 2
(Wu and Yang, 2005)

21
Prediction Strength (PS)

O(n2)
Prediction

1
(Tibshirani and Walther, 2005) Threshold

22
Ren Liu Wang Yi (RLWY) Index

O(nk) min 2
(Ren et al., 2016)

23
Silhouette Index (SIL)

O(n2) max 2
(Rousseeuw, 1987)

24
Slope Statistic

O(n2) max 2
(Fujita et al., 2014)

25
Xie Beni Index (XB)

O(nk) min 2
(Xie and Beni, 1991)

26
Xu Index

O(nk) min 2
(Xu, 1997)

27
Zhao Xu Fränti (ZXF) Index

O(nk) Knee 2
(Zhao et al., 2009b)

28
SC Index

O(nk2) min 2
(Rezaee, 2010)

29 Last leap (LL) O(k2) max & (2.5) 1
30 Last Major Leap (LML) O(k2) (2.3) & (2.4) 1
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several methods. Therefore we used a set of 12 datasets (shown in Figure 2.6) to validate
the selection criteria. The number of clusters spans from 1 to 6, with the position of the
clusters changing to check if that affects the performance of the estimation method. The
accuracy of each method in correctly identifying the number of clusters is shown in Table 2.2.
We also show the performance of LL and LML on these datasets in Figure 2.7. Both have
estimated the correct number of clusters for all but Iris, where LL estimates 2 clusters and
LML estimates 3. Section A.2 of Appendix A provides the complete results of the performance
on the validation datasets. In Table 2.1, we also report the minimum number of clusters each
method can identify as well as the computation complexity of the methods.

Table 2.2: The Accuracy for Cluster Number Estimation Methods following the Selection
Criteria in Table 2.1 on the Validation Datasets in Figure 2.6.

Method Accuracy (%) Method Accuracy (%) Method Accuracy (%)

AIC 75.00 Gap 83.33 PBMF 91.67
BIC 83.33 HV 83.33 PCAES 83.33
CH 91.67 Hart 41.67 PS 83.33
CE 83.33 I 91.67 RLWY 66.67
CWB 83.33 Jump 91.67 Rez 75
DB 75.00 LL 91.67 SIL 83.33
DUNN 75.00 LML 100 Slope 83.33
Knee 83.33 MPC 83.33 XB 83.33
FS 66.67 PC 83.33 Xu 83.33
FH 91.67 PI 75 ZXF 75

(a) (b)

Figure 2.7: The clusters identified by (a) LL and (b) LML for the validation datasets.

2.5 Experiments and Results

In this section, we first investigate the performance of all cluster number estimation methods
under conditions ideal for k-Means. k-Means fits a dataset with k spherical multivariate
Gaussian distributions, having equal variance along all dimensions. Hence k-Means works
best on datasets satisfying the following constraints:
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Constraint 1: All clusters have equal number of points.

Constraint 2: All clusters have equal variance.

Constraint 3: All clusters are well-separated.

In the first experiment we investigate the performance of all cluster number estimation
methods under ideal conditions, where all constraints are satisfied. This is followed by inves-
tigations on how the performances of the methods drop when each constraint is individually
violated. These deviations away from the ideal conditions give us an estimate of the perfor-
mance of each method on more realistic scenarios. Finally, we evaluate the performance on
real-world datasets. Before we discuss the results from each experiment, we first discuss the
experiment protocol maintained throughout the study.1

2.5.1 Experimental Setup

For each experiment, random datasets are generated from Monte Carlo simulations, main-
taining the necessary conditions discussed previously. For each dataset, 100 data points
are drawn from each cluster having variance 1 along each dimension. When the variance is
fixed at 1, data generated around the origin mostly lie in the range of [−4, 4]. Therefore, the
minimum distance between the cluster centers is set to 10 to ensure that the clusters are well-
separated. For each dataset of size n, k-Means with k-Means++ initial centers (Arthur and
Vassilvitskii, 2007) is run 30 times for each value of k from 1 to kmax =

√
n, for a maximum

of 300 iterations, with a termination threshold of 10−16. The clustering yielding the lowest
squared error from the 30 runs of k-Means is selected. For methods such as the Gap Statistic
or the Prediction Strength that require further clusterings of reference sets or subsets of the
data, the number of runs of k-Means is also set to 30. We compute the accuracy of each
method as the percentage of datasets for which it correctly identifies the number of clusters.
In addition, the results of the experiments are summarised by the average rank obtained by
each method across all datasets, in addition to which we conduct the Epps-Singleton test to
test for statistical significance of the results obtained by the proposed methods in comparison
to all other methods in contention.

2.5.2 All Constraints are satisfied

In this experiment we investigate the performance of all cluster number estimation methods
under ideal conditions. We wish to test the performances for increasing number of dimen-
sions as well as increasing number of clusters. Therefore we generate datasets of dimensions
2, 10, 20, 35 and 50. For each dimension, 2, 10, 20, 35 and 50 number of clusters are generated.
In this manner, 25 datasets can be generated. We generate 50 groups of data, each group
containing 25 random datasets, over which the average accuracy is measured.

The accuracy in estimating the number of clusters for all the methods is shown in Figure
2.9. We observe LL, LML, BIC, CH, CE, FHV, I, MPC and PBMF obtain the highest
accuracy, followed closely by Dunn, PC, Slope and Xu. Considering only the minimum
distance between centers has thus led both LML and LL to be among the top-performing

1The source codes for LL, LML, and all the experiments are available at https://github.com/Avisek20/
cluster_number_estimation.
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Figure 2.8: Well-separated clusters are generated with standard deviation σ set to 1, and the
minimum possible distance between their centers set to 10.

Figure 2.9: Accuracy of estimating the number of clusters on datasets satisfying all con-
straints.

methods when the clusters are well-separated, over increasing number of dimensions as well
as increasing number of clusters. The results are also summarized in Table 2.3, where we
observe that both LL and LML are among the methods that have obtained the lowest average
rank, with comparable performances to the top nineteen methods and statistically significant
performances in comparison to the rest of the methods. LL and LML also have the additional
advantage of having very low O(k2) computation complexity. With increase in the size of the
datasets, the running time for LL and LML is always drastically low compared to the rest of
the top performing cluster number estimation methods. Table 2.4 shows the execution times
of the top performing methods on increasing dataset sizes. We observe significantly lower
execution times for LL, followed quite closely by LML, making them the best choice when
working on large datasets.

Given the impressive results of LL and LML under ideal conditions, the next question
that occurs naturally is how the performance drops when each of the ideal constraints are
violated.

2.5.3 Violation of Constraint 1

In this experiment we first investigate the performance under soft violation of Constraint 1, by
generating datasets with clusters having either 100 or 125 points, while keeping constant all
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Table 2.3: The summary of the performances of the cluster number estimation methods when
all constraints are satisfied.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 7.67 1.00 1.00 1.00 4.44 17.76 1.45 13.68
Hyp. Test (LL) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LL) 1.92E-06 1.0000 1.0000 1.0000 0.9524 3.06E-12 0.9999 9.25E-05
Hyp. Test (LML) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LML) 1.92E-06 1.0000 1.0000 1.0000 0.9525 3.06E-12 0.9999 9.25E-05

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 22.01 1.00 14.57 22.10 18.23 1.00 1.00 1.00
Hyp. Test (LL) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LL) 7.65E-45 1.0000 7.68E-14 3.79E-09 0.5108 1.0000 1.0000 1.0000
Hyp. Test (LML) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LML) 7.65E-45 1.0000 7.68E-14 3.79E-09 0.5108 1.0000 1.0000 1.0000

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 1.00 26.11 1.00 5.18 22.32 5.40 6.56 1.67
Hyp. Test (LL) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LL) 1.0000 5.05E-47 1.0000 0.4416 1.14E-53 0.2739 2.13E-06 0.9999
Hyp. Test (LML) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LML) 1.0000 5.05E-47 1.0000 0.4416 1.14E-53 0.2739 2.13E-06 0.9999

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 3.74 1.53 13.25 20.77 1.00 1.00
Hyp. Test (LL) H0 H0 H1 H1 - H0

p-val (LL) 0.3957 0.9999 1.42E-04 2.01E-48 - 1.0000
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 0.3957 1.0000 1.42E-04 2.01E-48 1.0000 -

Table 2.4: The Execution Times for the Top Performing Methods from Section 2.5.2. The
Execution Times are Averaged over 30 runs of each Method on Datasets Generated with
Increasing Sizes, Containing 5 Equal-sized Well-separated Spherical Clusters.

Methods n = 28 n = 29 n = 210 n = 211 n = 212

BIC 0.0037 0.0079 0.0163 0.0451 0.1359
CH 0.0033 0.0045 0.0115 0.0251 0.0875
CE 0.0034 0.0077 0.0266 0.1085 0.4605
FHV 0.0014 0.0035 0.0083 0.0404 0.1958
I 0.0026 0.0073 0.0133 0.0552 0.1944
MPC 0.0011 0.0026 0.0064 0.0354 0.1319
PBMF 0.0070 0.0187 0.0593 0.2648 0.9540
LL 0.0005 0.0007 0.0009 0.0018 0.0022
LML 0.0005 0.0008 0.0010 0.0022 0.0025

other experimental conditions. 50 groups of data are generated, each containing 25 datasets.
The generated data is of 2, 10, 20, 35, and 50 dimensions, in each dimension 2, 10, 20, 35, and
50 clusters are generated. From the results in Figure 2.10 we observe similar performances
for most methods. LL and LML show resilience to slight imbalances in the number of points
in the clusters, performing as well as the other top-performing methods. Table 2.5 also
summarizes the results, from which we observe both LL and LML are among the methods
that have obtained the lowest rank, and show comparable performance with the top nineteen
scoring methods.

In the next experiment, we strongly violate Constraint 1, by generating clusters with
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Figure 2.10: Accuracy of estimating the number of clusters on datasets with clusters having
slight difference in the number of points.

Table 2.5: The summary of the performances of the cluster number estimation methods when
clusters have slight differences in the number of points.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 5.99 1.00 1.00 1.00 4.85 17.09 1.19 13.95
Hyp. Test (LL) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LL) 2.33E-04 1.0000 1.0000 1.0000 0.9432 6.76E-12 0.9999 5.54E-05
Hyp. Test (LML) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LML) 2.33E-04 1.0000 1.0000 1.0000 0.9432 6.76E-12 0.9999 5.54E-05

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 21.76 1.00 12.59 22.45 18.56 1.00 1.00 1.00
Hyp. Test (LL) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LL) 3.49E-44 1.0000 1.44E-09 3.36E-10 0.5254 1.0000 1.0000 1.0000
Hyp. Test (LML) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LML) 3.49E-44 1.0000 1.44E-09 3.36E-10 0.5254 1.0000 1.0000 1.0000

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 1.00 26.24 1.00 5.71 22.72 4.31 6.59 1.16
Hyp. Test (LL) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LL) 1.0000 1.13E-46 1.0000 0.3390 1.04E-53 0.5987 2.26E-06 0.9999
Hyp. Test (LML) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LML) 1.0000 1.13E-46 1.0000 0.3390 1.04E-53 0.5987 2.26E-06 0.9999

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 3.67 1.49 13.16 20.18 1.00 1.00
Hyp. Test (LL) H0 H0 H1 H1 - H0

p-val (LL) 0.2619 0.9999 1.41E-04 6.84E-39 - 1.0000
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 0.2619 0.9999 1.41E-04 6.84E-39 1.0000 -

100, 150, 200 or 250 points while keeping all other experiment conditions the same. Similar
to Section 2.5.2 we generate 50 groups of data, covering increasing number of dimensions
(2, 10, 20, 35, and 50) and increasing number of clusters (2, 10, 20, 35, and 50). We obtain the
results shown in Figure 2.11. We observe promising performances similar to the results of the
previous experiment, with only slight changes in the performances for some methods. This
indicates that most methods are able to identify the correct number of clusters due to the
general high accuracy of k-Means in clustering datasets with well-separated clusters. The
results are also summarized in Table 2.6, where we observe that LL and LML are among
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Figure 2.11: Accuracy of estimating the number of clusters on datasets with clusters having
high difference in the number of points.

the lowest rank achieving methods, and have comparable performance with the top nineteen
scoring methods.

Table 2.6: The summary of the performances of the cluster number estimation methods when
clusters have high differences in the number of points.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 5.96 1.00 1.00 1.00 4.65 15.88 1.15 13.26
Hyp. Test (LL) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LL) 1.18E-04 1.0000 1.0000 1.0000 0.9126 1.20E-12 0.9999 7.77E-05
Hyp. Test (LML) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LML) 1.18E-04 1.0000 1.0000 1.0000 0.9126 1.20E-12 0.9999 7.77E-05

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 21.35 1.00 12.97 23.13 18.61 1.00 1.00 1.00
Hyp. Test (LL) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LL) 4.56E-42 1.0000 1.57E-10 1.78E-13 0.3837 1.0000 1.0000 1.0000
Hyp. Test (LML) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LML) 4.56E-42 1.0000 1.57E-10 1.78E-13 0.3837 1.0000 1.0000 1.0000

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 1.00 26.29 1.00 6.17 23.13 5.67 6.53 1.64
Hyp. Test (LL) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LL) 1.0000 1.08E-49 1.0000 0.3297 2.69E-54 0.6096 3.12E-06 0.9999
Hyp. Test (LML) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LML) 1.0000 1.08E-49 1.0000 0.3297 2.69E-54 0.6096 3.12E-06 0.9999

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 3.28 1.81 12.59 20.06 1.00 1.00
Hyp. Test (LL) H0 H0 H1 H1 - H0

p-val (LL) 0.4759 0.9936 5.59E-05 2.03E-33 - 1.0000
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 0.4759 0.9936 5.59E-05 2.03E-33 1.0000 -

2.5.4 Violation of Constraint 2

In the next experiment we violate constraint 2 by randomly generating clusters with the
standard deviation set to 2, 3, or 4 times the minimum standard deviation (which is set to
1). We generate 50 groups of data in a manner similar to Section 2.5.2, covering increasing
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number of dimensions (2, 10, 20, 35, and 50) and increasing number of clusters (2, 10, 20, 35,
and 50). The results in Figure 2.12 show that LL, CE, FHV, I and MPC performed the
best. The performance of the previously top performing CH dropped slightly (-7%) in the
presence of high variation in the dispersion of the clusters. We observe a rather high drop
in performance for BIC. Here we observe an interesting contrast in the behaviour of LL and
LML. Since LML identifies equal sized clusters, it tends to choose a higher number of clusters
when neighbouring clusters have different spreads. This behaviour is beneficial in accurately
selecting the number of clusters for a dataset such as Iris, but on synthetic datasets with a
large disparity in the spread of nearby clusters, LML tends to break the larger clusters into
smaller equal-sized clusters, as shown in Figure 2.13. Thus when we do not know much about
the cluster structures present in a data, the difference in the estimated number of clusters by
LL and LML can help inform us about the nature of the clusters identified by k-Means. The
overall results are also summarized in Table 2.7, where LL obtains the lowest average rank
with performance comparable to the top eighteen methods.

Figure 2.12: Accuracy of estimating the number of clusters on datasets where clusters have
different spread of points.

(a) Clustering selected by LL (b) Clustering selected by LML

Figure 2.13: For neighbouring clusters with high disparity in spread, LL tends to identify
well-separated clusters, whereas LML identifies clusters of similar size.
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Table 2.7: The summary of the performances of the cluster number estimation methods when
clusters have differences in cluster variances.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 8.43 15.95 2.10 1.00 3.41 17.61 1.32 13.29
Hyp. Test (LL) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LL) 4.57E-08 0.2284 0.8972 1.0000 0.9606 9.99E-11 0.9977 9.61E-05
Hyp. Test (LML) H1 H0 H0 H0 H0 H1 H0 H1

p-val (LML) 3.13E-03 0.6729 0.2950 9.22E-02 5.95E-02 4.26E-14 8.82E-02 2.00E-08

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 21.65 1.00 12.62 5.97 17.45 1.00 1.00 1.00
Hyp. Test (LL) H1 H0 H1 H1 H0 H0 H0 H0

p-val (LL) 2.03E-44 1.0000 1.62E-09 4.78E-02 0.5486 1.0000 1.0000 1.0000
Hyp. Test (LML) H1 H0 H1 H1 H1 H0 H0 H0

p-val (LML) 1.37E-45 9.22E-02 1.06E-16 8.45E-03 4.69E-02 9.22E-02 9.22E-02 9.22E-02

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 1.00 26.43 1.00 4.28 21.71 5.54 6.57 1.15
Hyp. Test (LL) H0 H1 H0 H0 H1 H0 H1 H0

p-val (LL) 1.0000 4.38E-61 1.0000 0.5205 1.43E-51 0.4594 2.14E-06 0.9999
Hyp. Test (LML) H0 H1 H0 H1 H1 H0 H1 H0

p-val (LML) 9.22E-02 6.60E-48 9.22E-02 1.96E-03 4.94E-45 1.72E-01 2.98E-07 9.24E-02

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 4.76 1.30 23.59 20.68 1.00 10.26
Hyp. Test (LL) H0 H0 H1 H1 - H0

p-val (LL) 3.76E-01 0.9997 1.15E-09 8.32E-50 - 9.22E-02
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 6.54E-01 8.99E-02 3.03E-04 1.19E-50 9.22E-02 -

Figure 2.14: Accuracy of estimating the number of clusters on datasets with clusters having
slight overlap.

2.5.5 Violation of Constraint 3

We first investigate the performances under soft violation of Constraint 3, by generating data
with clusters having low overlap. This is ensured by generating clusters with a 50% probability
of its center lying within a minimum distance between 3 and 5 units to the center of another
cluster (the variance of all clusters is 1 unit). We generate 100 groups of data, where each
group contains five two-dimensional datasets. Each dataset has 5, 10, 20, 35, and 50 number
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of clusters. Generating two-dimensional data makes it easier to manually verify how many
of the clusters are overlapped, and how many are well-separated. From the results shown in
Figure 2.14, we observe that BIC, CH and ZXF achieve the highest accuracy in identifying
the number of overlapped clusters. Although ZXF and BIC perform well here, in previous
experiments we observed lower performances for ZXF when the number of dimensions was
greater than two, and for BIC when there were large disparities in cluster variances. CH is
perhaps the most reliable in identifying the clusters when they are slightly overlapped. When
looking at the number of well-separated clusters, we observe the previously top performing
LL, CE, FHV, MPC, and PC perform the best here as well. Even in the presence of overlap,
these methods can reliably identify the number of well-separated clusters. We observe that
by dividing clusters into equal sizes, LML can provide a decent estimate of the number of
overlapped clusters. The results of the experiments are also summarized in Tables 2.8 and 2.9.
In Table 2.8 when overlapped clusters are to be identified, BIC, CH and Xu have obtained
the lowest average rank, followed by LML which shows statistically significant performance
to them. In Table 2.9 when well-separated clusters are to be identified, PC followed by
MPC obtain the lowest average rank, followed by LL which has statistically comparable
performance to both the top scoring methods.

Table 2.8: Performances of the cluster number estimation methods when clusters have low
degrees of overlaps, measured in terms of identifying the number of overlapped clusters.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 5.85 1.13 1.13 12.75 17.02 15.09 16.79 21.80
Hyp. Test (LL) H1 H1 H1 H0 H1 H1 H0 H1

p-val (LL) 1.06E-06 1.54E-12 1.54E-12 0.7495 8.50E-03 6.86E-12 0.7593 1.17E-16
Hyp. Test (LML) H1 H1 H1 H1 H1 H1 H1 H1

p-val (LML) 3.09E-09 2.60E-02 2.60E-02 1.71E-14 6.66E-14 8.06E-17 1.58E-14 7.76E-38

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 23.13 10.25 10.08 11.58 21.74 7.67 4.77 11.68
Hyp. Test (LL) H1 H0 H1 H0 H1 H1 H1 H0

p-val (LL) 2.20E-16 5.61E-01 2.02E-02 3.84E-01 7.28E-06 9.66E-03 2.97E-07 7.38E-01
Hyp. Test (LML) H1 H1 H1 H1 H1 H1 H0 H1

p-val (LML) 8.37E-49 1.44E-11 4.58E-07 6.88E-12 1.09E-23 1.21E-03 1.96E-01 4.87E-13

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 12.38 19.72 3.45 25.66 16.68 13.08 13.24 12.38
Hyp. Test (LL) H0 H1 H1 H1 H1 H1 H1 H0

p-val (LL) 7.49E-01 2.01E-17 1.26E-10 1.94E-36 2.17E-21 9.48E-04 9.03E-04 7.54E-01
Hyp. Test (LML) H0 H1 H0 H1 H1 H0 H1 H0

p-val (LML) 5.73E-14 2.38E-28 9.97E-01 4.30E-138 1.44E-27 1.04E-04 5.28E-05 6.63E-13

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 11.13 15.31 1.13 15.38 12.55 2.06
Hyp. Test (LL) H0 H0 H1 H1 - H1

p-val (LL) 7.56E-01 7.81E-01 1.54E-12 4.71E-17 - 7.45E-12
Hyp. Test (LML) H1 H1 H1 H1 H1 -
p-val (LML) 8.31E-11 1.58E-14 2.60E-02 3.85E-21 7.45E-12 -

Next, we investigate the performance under strong violation of Constraint 3. Clusters are
generated with 50% probability of their centers having a minimum distance between 2 and
3 units to the center of another cluster (the variance of all clusters is fixed at 1). Similar
to the previous experiment, we generate 100 groups of two-dimensional datasets containing
5, 10, 20, 35, and 50 clusters. The results in Figure 2.15 suggest that only CH (with a 75%
accuracy) and ZXF (with an accuracy of 86%) can occasionally provide correct estimates for
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Table 2.9: Performances of the cluster number estimation methods when clusters have low
degrees of overlaps, measured in terms of identifying the number of well-separated clusters.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 15.73 22.00 22.00 5.41 8.54 9.98 7.42 14.55
Hyp. Test (LL) H1 H1 H1 H0 H1 H1 H1 H1

p-val (LL) 3.37E-50 5.13E-65 5.13E-65 1.73E-01 7.48E-09 2.82E-12 4.14E-05 2.51E-19
Hyp. Test (LML) H1 H0 H0 H1 H1 H1 H1 H1

p-val (LML) 5.71E-22 1.97E-01 1.97E-01 1.68E-63 3.35E-17 5.21E-10 4.72E-24 2.47E-02

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 15.98 4.32 21.48 4.42 17.22 11.51 14.84 1.89
Hyp. Test (LL) H1 H1 H1 H0 H1 H1 H1 H0

p-val (LL) 1.54E-20 1.80E-02 1.08E-64 2.35E-01 1.49E-23 3.56E-12 2.55E-13 1.38E-01
Hyp. Test (LML) H0 H1 H0 H1 H1 H1 H1 H1

p-val (LML) 1.24E-01 7.09E-52 1.17E-01 1.81E-64 1.57E-02 9.51E-10 1.42E-02 3.00E-68

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 1.73 13.24 20.30 20.71 19.32 14.48 8.45 4.62
Hyp. Test (LL) H0 H1 H1 H1 H1 H1 H0 H0

p-val (LL) 3.64E-01 6.35E-17 3.75E-59 1.18E-32 5.39E-67 4.22E-06 2.36E-01 5.79E-01
Hyp. Test (LML) H1 H1 H0 H0 H1 H1 H1 H1

p-val (LML) 5.52E-70 1.27E-02 4.78E-01 6.24E-01 6.96E-03 2.03E-11 2.52E-33 1.28E-55

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 4.62 5.75 22.00 12.11 3.25 19.44
Hyp. Test (LL) H0 H1 H1 H1 - H1

p-val (LL) 1.41E-01 2.02E-03 5.13E-65 3.30E-16 - 2.34E-41
Hyp. Test (LML) H1 H1 H0 H1 H1 -
p-val (LML) 8.17E-43 4.16E-35 1.97E-01 1.42E-06 2.34E-41 -

Figure 2.15: Accuracy of estimating the number of clusters on datasets with clusters having
high overlap.

the number of overlapped clusters. We observe that LL, FHV, and HV perform the best
at identifying the number of well-separated clusters, closely followed by LML, Jump, MPC,
and PC. Since highly overlapped clusters form dense well-separated clusters, both LL and
LML provide more accurate estimates. These results are also summarized in Tables 2.10 and
2.11. In Table 2.10 where overlapped clusters were to be identified, we observe that ZXF
obtain the lowest average rank, followed by CH and BIC, which were also previously the top
performing methods in identifying overlapped clusters when constraint 3 was weakly violated.
In Table 2.11 where well-seaprated clusters were to be identified, our proposed LL is observed
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to have obtained the lowest average rank, and LML is among the top seven methods that
have statistically comparable performances.

Table 2.10: Performances of the cluster number estimation methods when clusters have high
degrees of overlaps, measured in terms of identifying the number of overlapped clusters.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 5.10 2.71 1.89 9.27 15.42 15.43 14.07 20.99
Hyp. Test (LL) H1 H1 H1 H0 H1 H1 H0 H1

p-val (LL) 2.44E-04 5.54E-07 5.70E-09 9.99E-01 1.71E-02 1.53E-08 6.46E-01 6.60E-23
Hyp. Test (LML) H1 H1 H1 H0 H1 H1 H0 H1

p-val (LML) 3.15E-03 2.76E-06 1.62E-08 9.35E-01 1.90E-02 1.50E-07 3.64E-01 3.91E-23

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 22.73 8.49 7.43 9.03 22.54 7.01 8.47 9.10
Hyp. Test (LL) H1 H0 H1 H0 H1 H0 H0 H0

p-val (LL) 2.41E-25 9.97E-01 6.55E-04 9.57E-01 1.61E-05 3.81E-01 8.76E-01 9.88E-01
Hyp. Test (LML) H1 H0 H1 H0 H1 H0 H0 H0

p-val (LML) 7.19E-27 9.45E-01 2.38E-05 9.83E-01 1.76E-06 4.00E-01 9.85E-01 9.62E-01

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 9.31 19.33 8.23 26.08 16.68 9.65 9.77 10.91
Hyp. Test (LL) H0 H1 H1 H1 H1 H1 H0 H0

p-val (LL) 9.98E-01 2.28E-23 2.73E-02 1.90E-51 3.09E-25 2.34E-03 4.64E-01 9.86E-01
Hyp. Test (LML) H0 H1 H0 H1 H1 H1 H0 H0

p-val (LML) 9.43E-01 2.27E-22 5.64E-02 8.79E-66 1.55E-23 1.15E-03 7.31E-01 9.49E-01

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 8.58 12.66 16.00 1.09 9.17 7.40
Hyp. Test (LL) H0 H0 H1 H1 - H0

p-val (LL) 9.13E-01 8.69E-01 4.83E-11 1.08E-12 - 9.48E-01
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 8.75E-01 7.97E-01 5.02E-10 2.39E-11 9.48E-01 -

Table 2.11: Performances of the cluster number estimation methods when clusters have high
degrees of overlaps, measured in terms of identifying the number of well-separated clusters.

Method AIC BIC CH CE CWB DB Dunn Knee
Avg. Ranks 18.04 20.96 21.98 4.58 9.63 11.60 7.49 17.30
Hyp. Test (LL) H1 H1 H1 H0 H1 H1 H1 H1

p-val (LL) 6.73E-154 8.56E-91 2.15E-84 1.34E-01 2.11E-19 4.70E-16 4.13E-10 8.94E-43
Hyp. Test (LML) H1 H1 H1 H0 H1 H1 H1 H1

p-val (LML) 1.18E-54 1.62E-61 1.65E-58 2.78E-01 3.54E-10 2.05E-12 2.55E-04 2.49E-30

Method FS FHV GAP HVZ Hart I Jump MPC
Avg. Ranks 19.15 2.11 21.84 1.61 20.20 8.85 3.17 2.72
Hyp. Test (LL) H1 H0 H1 H0 H1 H1 H0 H0

p-val (LL) 9.44E-53 2.91E-01 2.47E-62 8.43E-02 1.70E-56 2.57E-21 4.04E-01 1.07E-01
Hyp. Test (LML) H1 H0 H1 H0 H1 H1 H0 H0

p-val (LML) 9.60E-36 4.76E-01 1.32E-47 1.16E-01 1.10E-24 3.80E-06 4.73E-01 2.49E-01

Method PC PI PBMF PCAES PS RLWY Rez SIL
Avg. Ranks 3.64 15.72 14.52 24.09 23.52 14.35 5.03 3.63
Hyp. Test (LL) H0 H1 H1 H1 H1 H1 H0 H0

p-val (LL) 8.19E-02 1.96E-33 2.11E-54 1.75E-87 2.78E-176 2.57E-21 6.32E-01 8.91E-01
Hyp. Test (LML) H0 H1 H1 H1 H1 H1 H0 H0

p-val (LML) 1.08E-01 2.84E-25 5.06E-25 1.27E-59 3.04E-103 1.62E-09 6.20E-01 8.33E-01

Methods Slope XB Xu ZXF LL LML
Avg. Ranks 3.75 5.55 25.07 12.44 1.33 2.86
Hyp. Test (LL) H0 H1 H1 H1 - H0

p-val (LL) 9.33E-02 3.15E-74 3.00E-98 5.29E-18 - 5.45E-01
Hyp. Test (LML) H0 H0 H1 H1 H0 -
p-val (LML) 2.20E-01 1.14E-01 1.39E-85 3.22E-16 7.32E-02 -
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Table 2.12: Specifications of the Real Datasets.

Name Size of dataset

Data Banknote Authentication (1372,4)
Echocardiogram (106,9)
Iris (150,4)
Seeds (210,7)
Sonar Mines vs. Rocks (208,60)
Wine (178,13)
Colon Cancer (62,2000)
Prostate Cancer (102,6033)

2.5.6 Real-world data

The identification of the number of clusters from real-world datasets is indeed a challenge.
Clustering methods should identify groups that are sufficiently dissimilar. Identifying clus-
ters that are well-separated ensures that the identified clusters are sufficiently dissimilar.
Therefore in this section we investigate the performance of LL and LML on identifying the
number of clusters in real-world datasets. The real datasets considered are shown in Ta-
ble 2.12. The first six datasets are from the UCI Machine Learning Repository (Dheeru
and Karra Taniskidou, 2017). The last two are high-dimension cancer datasets present
at www.stat.cmu.edu/~jiashun/Research/software/GenomicsData (last accessed July 12,
2021). Since we consider the k-Means algorithm which identifies clusters of the same size, the
data is preprocessed to remove classes that contain very low number of points in comparison
to the other classes. Every real dataset is normalized, by mean-centering each feature which
is then divided by the difference in the maximum and minimum value of the feature.

Table 2.13: The Average Rank of Estimating k̂ from Real Datasets.

Name
Average

Name
Average

Rank Rank

AIC 18.000 MPC 2.750
BIC 18.000 PC 1.000
CH 2.875 PI 13.625
CE 1.000 PBMF 6.125
CWB 8.375 PCAES 8.375
DB 18.000 PS 4.125
Dunn 15.500 RLWY 2.875
Knee 4.250 SIL 18.000
FS 4.125 Slope 4.375
FHV 5.375 XB 2.625
Gap 5.500 Xu 8.375
HV 18.000 ZXF 18.000
Hart 6.625 SC 12.875
I 2.875 LL 1.000
Jump 4.375 LML 1.000

Due to the higher difficulty in estimating the number of clusters on real datasets, per-
forming within [k∗ − 1, k∗ + 1] is considered a success. Each method is assigned a rank based
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on their performance, where the most successful methods are assigned rank 1, and then the
next best methods are assigned rank 2, and so on. The average rank for each method is
reported in Table 2.13. From the results we observe LL, LML, CE, and PC perform the
best, closely followed by XB, MPC, CH, I and RLWY. Thus, we observe that LL and LML
achieved competent performance on real datasets as well. The full results for each method
on all the real datasets are present in Section A.3 of Appendix A.

2.6 Discussion

In this chapter, we propose two methods: LL and LML to estimate the number of clusters
from a dataset. Both methods use only the minimum distance between cluster centers to
estimate the number of clusters. We compared different cluster number estimation methods
that are applicable for the k-Means clustering algorithm to investigate which method per-
forms the best. Among intra-cluster variance based cluster estimation methods, we note that
the popular knee-point method does not perform well in general, which is justifiable since
there exists very little theoretical reasons for it to work. Some intra-cluster variance based
methods such as BIC and CH are observed to work well, especially to identify clusters that
are overlapped. One of the major advantages of the proposed inter-cluster based LL and
LML methods is that can estimate the number of clusters at a significantly lower cost of
computation, and we have also provided a detailed explanation in Section 2.3 on how they
operate. From extensive experiments, we observe that LL and LML can estimate the number
of clusters from different perspectives, giving a more informed view of the cluster structures
present in a given data. LL performs at par with the best cluster number estimation meth-
ods in accurately identifying the number of well-separated clusters. LML performs equally
well in ideal situations, and in more ambiguous situations it can identify equal-sized clusters.
The difference in results between LL and LML can inform a user of the underlying cluster
structures present in a dataset. The performances of LL and LML are consistent over a
number of challenging situations (such as slight or high differences in the number of points in
different clusters, different spreads of clusters, and slight or high overlap between clusters).
We also observe that LL and LML are robust to the increase in the number of clusters (up to
50 clusters) as well as the number of dimensions (up to 50), while drastically outperforming
all other methods in terms of computation time required due to its O(k2) time complexity,
where generally k << n. We conclude that to identify clusters that are well-separated, the
minimum distance between clusters provides enough information to estimate the number of
clusters. This lets us make the general recommendation of using LL or LML in applications to
identify clusters from large datasets. In such situations LL and LML can efficiently estimate
the number of clusters by considering only the minimum distance between centers, while not
needing to consult the dataset.
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Chapter 3

On the Unification of k-Harmonic
Means and Fuzzy c-Means
Clustering Problems under
Kernelization

Summary

We present a common algorithm for the kernel k-harmonic means (KKHM) and the kernel
fuzzy c-means (KFCM) clustering problems. We incorporate kernel functions in a generalized
fuzzy c-means cost function, forming the cost function of a kernelized general fuzzy c-means
(KGFCM) problem, and design an algorithm to locally minimize this cost function. The
KGFCM cost function has two parameters: the exponent p of the Euclidean distance, and the
fuzzy weighting exponent m. By setting proper values for p and m in our algorithm, one can
execute the KKHM or the KFCM algorithm. Using the algorithm for KKHM, we compare its
clustering performance with the popular kernel k-means and KFCM algorithms. Experiments
performed on real-world and synthetic datasets show the superior clustering capabilities of
KKHM. We also show that KKHM retains the advantages of the original KHM algorithm,
resulting in better clustering performance when a high number of clusters are present.

3.1 Introduction

One of the factors that affects center-based clustering is the distance metric used, as was
discussed in Section 1.2 of Chapter 1. k-Means clustering (MacQueen, 1967; Jain, 2010) uses
the squared Euclidean distance to determine which data instances are close to the cluster
centers that are being estimated. The squared Euclidean distance is a well-defined metric,
however there exists other distance or similarity metrics that are parameterized, which allows
them to be be tuned for the specific requirements of a dataset under consideration. In this
chapter we study the possibility of using a more flexible distance metric for a center-based
clustering problem called k-Harmonic Means (KHM), which was introduced by Zhang et al.
(1999). In KHM the cost function is defined as the harmonic means of the squared Euclidean
distance between data instances and cluster centers. The resulting algorithm was empirically
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more robust towards the position of initial centers compared to Lloyd’s algorithm for k-means
(Lloyd, 1982). They also showed that KHM led to superior clustering when the number of
clusters was large. Zhang (Zhang, 2000, 2001) constructed a general KHM cost function
using the harmonic means of the p-th power of the Euclidean distance. For p > 2, higher
weights are assigned to data instances farther away from a center, leading to lower chances of a
single high density cluster trapping multiple centers. Zhi and Fan (2010) provided theoretical
justifications for this behaviour, showing that the derivative of an M-estimate of the KHM
cost function became unbounded for values of p > 1, indicating higher influence on centers
by instances lying farther away.

(a) Synthetic Dataset : ConcentricCir-
cles

(b) Synthetic Dataset : RingAndBar

Figure 3.1: Synthetic Non-linearly Separable Datasets.

One disadvantage of k-means is that it fails to find clusters that are not linearly separable,
such as the ones shown in Figure 3.1, since it divides the space of data instances into Voronoi
regions around each cluster center. A variant of k-means is fuzzy c-means (FCM) (Dunn, 1973;
Bezdek, 1981) where clusters are defined as fuzzy sets. Data instances can have memberships
to multiple clusters, leading to the detection of overlapping clusters. However, FCM also
fails to find non-linearly separable clusters. One way of overcoming this limitation is to use
kernel functions (Müller et al., 2001; Vapnik, 1998). The idea behind kernel functions is
that non-linearly separable clusters can become linearly separable when mapped to a higher
dimensional space. By computing the similarities between data instances mapped to a higher
dimensional Hilbert space, and using an inverse mapping to the original space, one can obtain
measures of similarity between data instances. This process is computationally intensive, but
can be computed feasibly by the use of kernel functions. There are numerous kernel functions
available; Table 3.1 shows three widely used ones. Improved cluster detection was reported
when kernel functions were used in k-means and FCM (Zhang and Rudnicky, 2002; Dhillon
et al., 2004; Graves and Pedrycz, 2010; Zhang and Chen, 2004; Yang and Tsai, 2008; Ferreira
and de A.T. de Carvalho, 2014). Applying kernel functions in other clustering methods
(MacDonald and Fyfe, 2000; Kim et al., 2005; Cleuziou and Moreno, 2015; Ferreira et al.,
2016) led to successful detection of non-linearly separable clusters as well.

Li et al. (2007) investigated the performance of a modified kernel KHM targeted towards
the specific objective of image segmentation. However, their work was based on a KHM cost
function with p = 2. Hamerly and Elkan (2002) showed that the general KHM cost function
using the p-th power of the Euclidean distance results in superior clustering compared to
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Table 3.1: Popular Kernel Functions.

Name Kernel Function

Gaussian kernel K(a, b) = exp((−||a− b||2)/2σ2)
Polynomial kernel K(a, b) = (a.b + c)d

Sigmoid kernel K(a, b) = tanh(c(a.b) + d)

Note: a, b are data instances. σ, c, d are kernel function parameters.

k-means and FCM. Given the empirical evidence and the supporting theory on the benefits
of using the p-th power of the Euclidean distance, we believe that a study on the performance
of a kernelized KHM can be worthwhile.

In this chapter, we introduce a new cost function for the kernel k-harmonic means
(KKHM) problem, by incorporating kernel functions in a generalized FCM (GFCM) cost
function (Zhi and Fan, 2010), based on a general c-Means model (Yu and Yang, 2005). We
show the kernelized cost function is equivalent to the KKHM cost function, and propose a
common algorithm for kernel fuzzy c-means (KFCM) and KKHM. The rest of the chapter is
organized as follows: Section 3.2 provides a brief overview of KHM and two popular kernel
center-based clustering methods, kernel k-means and KFCM. Next, we discuss the GFCM
cost function. In Section 3.3 we extend the GFCM cost function to form the cost function
of the kernelized GFCM, from which we form the cost function for KKHM. We then propose
a common algorithm for KKHM and KFCM. In Section 3.4, we report the experimental re-
sults comparing the performances of KKHM, kernel k-means and KFCM with appropriate
discussions.

3.2 Background

In this section we discuss KHM along with two popular kernel clustering algorithms, k-means
and FCM. Next, we discuss the generalized FCM cost function.

3.2.1 The k-harmonic means problem

Let X = (x1,x2, ...,xn)T be the dataset of vectors of numerical features , where xi ∈ Rd. We
want to find k clusters represented by k centers V = (v1,v2, ...,vk)T , vi ∈ Rd. The KHM
problem is to minimize the cost function

JKHMp(V ) =
n∑

i=1

k
k∑

l=1

1

||xi − vl||p

. (3.1)

Generally p ≥ 2. For larger values of p, the cost function is more sensitive to outliers
and noise. An algorithm for KHM can be designed from an update rule for the centers that
can be formed from the derivative of the cost function. The algorithm starts from an initial
set of centers and applies the update rule iteratively till the change in centers is less than a
predetermined threshold.
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3.2.2 The kernel k-means problem

Kernel functions are integrated into the cost function of the k-means problem, by kernelization
in the feature space (Schölkopf et al., 1998). Cluster centers are considered to exist in a higher
dimensional Hilbert space referred to as the feature space. A non-linear function ϕ maps the
data instances to the feature space, where the Euclidean distances from the centers are
computed. The sum of such distances for all centers gives the cost function,

JKKM (V ) =

k∑
j=1

∑
xi∈Cj

||ϕ(xi) − vj||2 . (3.2)

Here the k clusters are denoted by C1, C2, ..., Ck. Derivatives of the cost function lead to
the eqn. for the centers,

vj =

∑
xi∈Cj

ϕ(xi)

|Cj |
. (3.3)

The Euclidean distance dϕi,j from ϕ(xi) to vj can be computed by substituting the expres-
sion for vj from eqn. (3.3) to eqn. (3.2).

dϕi,j = ||ϕ(xi) −
∑

xs∈Cj
ϕ(xs)

|Cj |
||2 (3.4)

= K(xi,xi) − 2

∑
xs∈Cj

K(xi,xs)

|Cj |
+

∑
xs,xt∈Cj

K(xs,xt)

|Cj |2
. (3.5)

Using the kernel trick, every dot product ϕ(xi)
T .ϕ(xi′) in the expansion of eqn. (3.4)

is replaced by a kernel function in eqn. (3.5). Kernel functions such as the ones in Table
3.1 can be used here. An algorithm for kernel k-means is formed by starting with an initial
cluster assignment of all data instances, then iterate over applying eqn. (3.5) with a specific
predetermined kernel function to assign data instances to the closest cluster.

3.2.3 The kernel fuzzy c-means problem

There are two ways of incorporating kernel functions in FCM. One is by kernelization in the
feature space, which is similar to how k-means was kernelized in eqn. (3.2), leading to the
following cost function,

J
(1)
KFCMm

(V ) =
N∑
i=1

c∑
j=1

µm
ij ||ϕ(xi) − vj||2 . (3.6)

Here the number of clusters is c, and the matrix U = (µij)n×c is the matrix of fuzzy mem-

bership values, denoting the fuzzy membership of data point xi in cluster Cj , and
c∑

j=1
µij = 1,

∀i.
The second method is kernelization of the metric, where the center is in the input space.

ϕ maps both the centers and the data instances to the feature space, where the distances are
computed. This method of kernelization is relevant to our work, as it makes it possible to
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design the algorithm for KKHM. The cost function to be minimized is given by,

J
(2)
KFCMm

(V ) =

N∑
i=1

c∑
j=1

µm
ij ||ϕ(xi) − ϕ(vj)||2 . (3.7)

If Gaussian kernel functions are considered, the derivative of the kernel function is ∇bK(a, b) =
(a−b)
σ2 K(a, b). Also note that K(a, a) = 1. The squared expression in eqn. (3.7) can be ex-

panded and after using the kernel trick, from its derivative the update expressions for µij

and vj can be derived.

µij =
(1 −K(xi,vj))

− 1
m−1

c∑
l=1

(1 −K(xi,vl))
− 1

m−1

, (3.8a)

vj =

n∑
i=1

µm
ijK(xi,vj)xi

n∑
i=1

µm
ijK(xi,vj)

. (3.8b)

From an initial set of centers, the above two update expressions can be executed in every
iteration until the algorithm converges.

3.2.4 The generalized fuzzy c-means problem

The cost function for a generalized fuzzy c-means (GFCM) problem (Zhi and Fan, 2010) is,

JGFCMm,p(U, V ) =
n∑

i=1

c∑
j=1

µm
ij ||xi − vj||p ,

c∑
j=1

µij = 1 . (3.9)

Setting p = 2 forms the cost function for FCM. Zhi and Fan (2010) showed that reformu-
lating the cost function and setting m = 2 gives the cost function for KHM. They equated
the derivatives of the Lagrangian of the cost function with respect to µij to zero, and derived
an expressions for µij .

µij =
1

c∑
l=1

(
||xi−vj||p
||xi−vl||p

) 1
m−1

. (3.10)

By substituting the expression of µij from eqn. (3.10) into eqn. (3.9), they reformulate
the cost function as JRGFCM .

JRGFCMm,p =

n∑
i=1

 c∑
j=1

(||xi − vj||p)
1

1−m

 1
1−m

. (3.11)
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Setting m = 2, they derive the cost function of KHM.

JRGFCM2,p =

n∑
i=1

1
c∑

j=1

1
||xi−vj||p

= JKHMp . (3.12)

In the next section, this cost function JGFCM is extended to form the cost function for
KKHM.

3.3 Kernel k-harmonic means (KKHM)

In this section we discuss our original contributions: a cost function for KKHM, and a
common algorithm for KKHM and KFCM.

3.3.1 A cost function for KKHM

Directly incorporating a kernel function in eqn. (3.1) makes it difficult to find an update
expression for the centers. To overcome this difficulty, we incorporate kernel functions to
JGFCM to get the cost function of a kernelized general FCM (KGFCM) problem,

JKGFCMm,p =
n∑

i=1

c∑
j=1

µm
ij ||ϕ(xi) − ϕ(vj)||p ,

c∑
j=1

µij = 1 . (3.13)

Note that with p = 2 we get J
(2)
KFCMm

. We reformulate (Zhi and Fan, 2010) this cost function
to form the cost function of the KKHM clustering problem. Equating the derivatives of the
Lagrangian of the cost function with respect to µij to zero, we get an update expression for
µij ,

µij =

(
c∑

l=1

(
||ϕ(xi) − ϕ(vj)||p

||ϕ(xi) − ϕ(vl)||p

) 1
m−1

)−1

. (3.14)
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Substituting this expression for µij in eqn. (3.13), we get,

JKGFCMm,p =

n∑
i=1

c∑
j=1

||ϕ(xi) − ϕ(vj)||p[
c∑

l=1

(
||ϕ(xi)−ϕ(vj)||p
||ϕ(xi)−ϕ(vl)||p

) 1
m−1

]m
=

n∑
i=1

c∑
j=1

||ϕ(xi) − ϕ(vj)||p−
pm
m−1[

c∑
l=1

1

||ϕ(xi)−ϕ(vl)||
p

m−1

]m
=

n∑
i=1

∑c
j=1 ||ϕ(xi) − ϕ(vj)||

p
1−m[∑c

l=1 ||ϕ(xi) − ϕ(vl)||
p

1−m

]m
=

n∑
i=1


 c∑

j=1

||ϕ(xi) − ϕ(vj)||p
 1

1−m


1−m

= JRKGFCMm,p .

(3.15)

Setting m = 2, we get the cost function for KKHM,

JRKGFCM2,p =

n∑
i=1

1
c∑

j=1

1

||ϕ(xi) − ϕ(vj)||p
= JKKHMp . (3.16)

3.3.2 A common algorithm for KKHM and KFCM

From JKGFCMm,p in eqn. (3.13), we form the Lagrangian,

L =
n∑

i=1

c∑
j=1

µm
ij ||ϕ(xi) − ϕ(vj)||p −

n∑
i=1

λi

 c∑
j=1

µij − 1

 . (3.17)

Using the kernel trick, ||ϕ(xi)−ϕ(vj)||p = [K(xi,xi)− 2K(xi,vj) +K(vj,vj)]
p/2. Setting

the derivatives of the Lagrangian to zero, and using Gaussian kernels, we can find the update
expressions for the membership values µij and centers vj.

µij =

[
[1 −K(xi,vj)]

p
2

]− 1
m−1

c∑
l=1

[
[1 −K(xi,vl)]

p
2

]− 1
m−1

, (3.18a)

vj =

n∑
i=1

µm
ij [1 −K(xi,vj)]

p−2
2 K(xi,vj)xi

n∑
i=1

µm
ij [1 −K(xi,vj)]

p−2
2 K(xi,vj)

. (3.18b)

By setting m = 2 in eqns. (3.18), for p ≥ 2, the algorithm executes update conditions for
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KKHM,

µij =
[1 −K(xi,vj)]

− p
2

c∑
l=1

[1 −K(xi,vl)]
− p

2

, (3.19a)

vj =

n∑
i=1

µ2
ij [1 −K(xi,vj)]

p−2
2 K(xi,vj)xi

n∑
i=1

µ2
ij [1 −K(xi,vj)]

p−2
2 K(xi,vj)

. (3.19b)

Also note that setting p = 2 in eqns. (3.18), we get eqns. (3.8) which are the update
conditions for KFCM.

The following algorithm1 serves as a common algorithm for both KFCM and KKHM.
With m = 2, the algorithm executes KKHM, and with p = 2, the algorithm executes KFCM.
The algorithm randomly initializes centers, then iteratively computes the kernel function
for all instances and centers, and updates the centers and membership values using eqns.
(3.18). Computing the kernel function for n instances and c centers takes O(ncd) time.
Updating all µij takes O(nc2d) time, and updating all vj takes O(ncd) time, leading to an
overall O(nc2d) time for the KGFCM algorithm. This is at par with the FCM algorithm,
with computation of kernel functions taking some additional time, but requiring the same
O(nc) space. By contrast, the kernel k-means algorithm requires initial computation of kernel
functions between every two instances, requiring O(n2cd) time, and additional O(n2) space.
The proof of convergence follows directly from the proof for FCM (Gröll and Jäkel, 2005).
The key differences are the introduction of ϕ(.) and the use of the pth power of the Euclidean
distance, which do not affect the proof of convergence.

Algorithm 1 The KGFCM clustering algorithm

Note: Set m = 2 for KKHM; set p = 2 for KFCM.
Input: n instances x1,x2, ...,xn; number of clusters c; parameters m, p; tolerance ϵ.
Output: c centers v1,v2, ...,vc.

1: Randomly initialize c centers v1,v2, ...,vc.
2: repeat
3: Compute K(xi,vj), ∀xi,vj.
4: Update µij , ∀i, j using eqn. (3.18a).
5: Update vj, ∀j using eqn. (3.18b).
6: until

∑
j
||vnew

j − vprev
j ||2 < ϵ.

3.4 Experiment and Results

In this section, the clustering performance of KKHM is compared with kernel k-means (KKM)
and KFCM. We use Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) to quantify

1Source codes are available at: https://github.com/Avisek20/kernelized_general_fuzzy_c_means
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clustering performances. Section 3.4.1 outlines the datasets used for the comparison. Section
3.4.2 describes the experimental procedure on real and clustering datasets, and Section 3.4.3
describes the experiments performed on synthetic datasets with large number of clusters.

3.4.1 Datasets

21 datasets from the UCI Machine Learning repository (Dheeru and Karra Taniskidou, 2017),
and the Joensuu datasets repository (at https://cs.joensuu.fi/sipu/datasets/, last ac-
cessed November 12, 2021) are used to compare the methods, shown in Table 3.2. 4 synthetic
datasets are used: ConcentricCircles, RingAndBar, BIRCHlike, and BIRCHlike:diffDensities.
The datasets ConcentricCircles and RingAndBar contain non-linearly separable clusters,
shown in Figure 3.1. BIRCHlike contains 49 clusters, each containing 200 data instances.
BIRCHlike:diffDensities also contains 49 clusters, where clusters are either sparse with around
50 data instances, or dense with around 200 data instances. Datasets like BIRCHlike are
generally difficult to cluster accurately with center-based clustering methods, and BIRCH-
like:diffDensities presents an even more difficult scenario where cluster centers will tend to
be drawn towards denser clusters.

Table 3.2: Summary of Datasets.

Dataset
Dataset Number
Size of clusters

Aggregation (788,2) 7
Banknote Authentication (1372,4) 2
Breast Cancer Wisconsin (683,9) 2
Compound (399,2) 6
D31 (3100,2) 31
Ecoli (336,7) 8
Flame (240,2) 2
Iris (150,4) 3
Jain Shape Sets (373,2) 2
Leaf (340,14) 30
Occupancy (8143,5) 2
Optical Handwritten Recognition (1797,64) 10
Parkinsons (195,22) 2
Pathbased (300,2) 3
R15 (600,2) 15
Seeds (210,7) 3
Statlog Image Segmentation (2310,19) 7
Statlog Landsat Satellite (4435,36) 7
Image Segmentation (210,19) 7
Vertebral Column (310,6) 3
Wine (178,13) 3
ConcentricCircles (2000,3) 2
RingAndBar (1000,3) 2
BIRCHlike (10282,2) 49
BIRCHlike:diffDensities (6543,2) 49
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3.4.2 Comparison of kernel clustering algorithms

To compare the clustering algorithms, we executed 20 runs of KKHM, KKM, and KFCM.
Each run had a maximum of 200 iterations, with 0.01 ≤ σ ≤ 50 in increments of 0.01.
For KKHM we considered 2 < p ≤ 10 with increments of 1, and for KFCM we considered
2 ≤ m ≤ 10 with increments of 1. We recorded the maximum ARI for each method. Table
3.3 shows the results of our study. Gaussian kernels were used for the experiment.

From the results, we observe that KKHM generally performs better than KFCM or KKM,
performing equally well or slightly worse on only a few. We observe that KKHM often
requires higher values of p to achieve the best clustering results. On non-linearly sepa-
rated clusters such as ConcentricCircles and RingAndBar, using kernel functions resulted in
proper separation by all three clustering methods. On the synthetic datasets BIRCHlike and
BIRCHlike:diffDensities, KKHM performed much better than KFCM and KKM, which can
be observed in Figs. 3.2 and 3.3.

Table 3.3: Comparison of Performances using ARI.

Dataset KKHM p KFCM m KKM

Aggregation 0.950 2 0.790 7 0.754
Banknote Authentication 0.702 2 0.309 2 0.859
Breast Cancer Wisconsin 0.908 4 0.885 2 0.858
Compound 0.845 6 0.742 2 0.854
D31 0.954 2 0.783 2 0.907
Ecoli 0.745 2 0.745 2 0.500
Flame 0.950 3 0.950 2 0.900
Iris 0.960 2 0.960 2 0.960
Jain Shape Sets 0.790 4 0.726 2 0.758
Leaf 0.405 8 0.345 4 0.365
Occupancy 0.785 2 0.785 2 0.672
Optical Handwritten Recognition 0.706 8 0.291 2 0.803
Parkinsons 0.499 7 0.420 5 0.424
Pathbased 0.930 4 0.699 7 0.726
R15 0.992 2 0.885 2 0.883
Seeds 0.811 8 0.406 7 0.439
Statlog Image Segmentation 0.549 8 0.428 2 0.517
Statlog Landsat Satellite 0.562 2 0.562 3 0.579
Image Segmentation 0.676 5 0.484 2 0.642
Vertebral Column 0.429 6 0.410 8 0.380
Wine 0.917 8 0.881 2 0.659
ConcentricCircles 1.0 2 1.0 2 1.0
RingAndBar 1.0 2 1.0 2 1.0
BIRCHlike 0.813 4 0.683 2 0.784
BIRCHlike:diffDensities 0.904 4 0.665 2 0.869

The method of KKHM has two parameters, the parameter p on the distance metric, and
the parameter σ for the Gaussian kernel metric. The performance of KKHM depends on the
setting of suitable values to these two parameters, however this is not trivial. As shown in
Figure 3.4, for the dataset D31 the ARI obtained by KKHM across a range of values for σ for
different values of p does not show any discernible relationship between p and σ which can
be utilized to suggest suitable values for p and σ. The variations in ARI changes across the
datasets in consideration as well, for which as an example we consider a different dataset of
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(a) KKHM (b) KFCM (c) KKM

Figure 3.2: Comparison on synthetic dataset BIRCHlike.

(a) KKHM (b) KFCM (c) KKM

Figure 3.3: Comparison on synthetic dataset BIRCHlike:diffDensities.

Statlog Landsat Satellite in Figure 3.5. As can be seen from the figure, for different values of
p, the ARI changes across the range of values of σ in different ways. Therefore we conclude
that a grid search is recommended to obtain suitable values for p and σ, which for the same
reasons is also common practice to set the parameters for the state-of-the-art multiple kernel
clustering methods Liu et al. (2017b); Yao et al. (2020).

Figure 3.4: For the dataset D31, the variations in ARI achieved by KKHM for σ ranging
from 2−5 to 25 is shown for different values of p ranging from p = 2 to p = 8. A relationship
established between p and σ could potentially lead to more informed approaches to select
suitable values for p and σ. However as can be seen from the plots, there is no discernible
relationship between p and σ, thus leading to a recommendation of using a grid search to
obtain suitable values for p and σ.
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Figure 3.5: For the dataset Statlog Landsat Satellite, the variations in ARI achieved by
KKHM are shown for σ ranging from 2−5 to 25 and for values of p between p = 2 and p = 8.
Similar to our observations for the dataset D31, there is no discernible relationship between
p and σ. For each p the maximum ARI is observed for values of σ between 2−2 and 21,
whereas the maximum ARI was often outside this interval for the dataset D31. This leads us
to conclude that different datasets can have dissimilar optimal values of p and σ. Therefore
a grid search is recommended to obtain suitable values for p and σ.

3.4.3 Performance on large number of clusters

We designed an experiment to test the performance of KKHM when a large number of clusters
are present. 49 two-dimensional clusters were randomly generated, where each cluster could
be either dense or sparse with equal probability. Dense clusters contained between 200 to 250
instances, decided randomly. Similarly sparse clusters contained between 40 and 50 instances,
decided randomly (e.g., Figure 3.6.).

We randomly generated 1000 such datasets, and on all datasets we ran KKHM, KFCM,
KKM and BIRCH (Zhang et al., 1996). Birch generally performs well when a large number
of clusters are present. For KKHM, p was varied from 3 to 8 and the best ARI was noted.
σ for Gaussian kernels was set to the variance of the data. All algorithms were run 5 times,
for a maximum of 500 iterations, with a tolerance threshold of 10−6. BIRCH was run with
branching factor set to 50, and threshold set to 0.5.

From the results of the experiment we observed that KKHM gave the best ARI for 999
of the 1000 datasets. KKM gave the best ARI for 1 dataset, and KFCM and BIRCH failed
to give the maximum ARI for any. Figure 3.7 shows a box plot of the ARI achieved over
the 1000 generated datasets. KKHM gives the best average ARI with the lowest standard
deviation (0.8676 (±0.0108)). In comparison, KKM shows a slight edge in performance
(0.8133 (±0.0241)) compared to BIRCH (0.7926 (±0.0265)), and KFCM resulted in the
lowest ARI values (0.6708 (±0.0402)).
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Figure 3.6: A randomly generated dataset containing sparse and dense clusters.

Figure 3.7: Difference in ARI when running KKHM, KFCM, KKM and BIRCH. Plot depicts
ARI for 200 randomly chosen datasets for clarity.

3.5 Discussion

In this chapter, we introduced a common algorithm for the KKHM and KFCM problems.
Our experiments involving real-world and synthetic datasets show that the KKHM algo-
rithm outperforms the popular KFCM and kernel k-means algorithms over several datasets.
KKHM performs significantly better for datasets with a high number of clusters, outper-
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forming BIRCH as well. This property is thus retained from KHM. The common algorithm
for KKHM and KFCM has lower space and time complexity and higher cluster detection
capabilities than kernel k-means, making it a better alternative.

KHM has generally been investigated less often in areas of applications of data clustering
such as image segmentation, graph clustering, gene sequence analysis, etc. Given the success
of kernel functions for other clustering algorithms, further investigations on the KKHM al-
gorithm in such areas will be worthwhile, along with research in the selection of parameter
values for the kernel functions (Sarkar and Pal, 2011; Pal and Sarkar, 2014).
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Chapter 4

Improved Efficient Model Selection
for Sparse Hard and Fuzzy
Center-Based Clustering

Summary

The class of center-based clustering offers methods to efficiently identify clusters in datasets,
making them applicable on larger datasets. While a dataset may contain several features,
not all of them may be equally informative or helpful towards cluster detection. Therefore,
sparse center-based clustering methods offer a way to select only those features that may be
useful in identifying the clusters present in a dataset. However to automatically determine
the degree to which features should be selected, these methods use the Permutation Method
which involves generating and clustering multiple randomly permuted datasets, leading to
much higher computation costs. In this chapter, we propose an improved approach towards
model selection for sparse clustering by using expressions of Bayesian Information Criterion
(BIC) derived for the center-based clustering methods of k-Means and Fuzzy c-Means. The
derived expressions of BIC require significantly lower computation costs, yet allow us to com-
pare and select a suitable clustering from sparse clusterings that have selected varying number
of features. Experiments on several synthetic and real-world datasets show that using BIC
for sparse clustering model selection leads to remarkable improvements in the identification
of sparse clusterings for both Sparse k-Means and Sparse Fuzzy c-Means.

4.1 Introduction

In Section 1.2 of Chapter 1 we discussed one of the factors that affect center-based clustering
to be the data features that are considered. For a specific problem it is common to measure
and collect different features, motivated by the notion that more features can provide more
information about the problem at hand. However, not all features may be important or
equally helpful in the identification of clusters. Therefore different approaches have been
proposed in order to handle the initial features provided to a clustering algorithm to help
in accurately identifying the clusters present in the data. Among these approaches, feature
weighting (Huang et al., 2005) in clustering methods assign higher weights to features deemed
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more important (Wang et al., 2004; de Amorim, 2016; Wang et al., 2019). This idea was
extended to the general notion of subspace clustering (Domeniconi et al., 2004; Vidal, 2011;
Elhamifar and Vidal, 2013), where different clusters are identified in different subspaces of
the original data space (Deng et al., 2016; Jia and Cheung, 2018; Abdolali and Rahmati,
2020; Deng et al., 2020). A particular subclass of feature weighted clustering problems is
the class of sparse clustering, where some features can be set to zero if deemed irrelevant
to the identification of clusters (Arias-Castro and Pu, 2017; Gaynor and Bair, 2017). A
trivial example of such a feature is a feature whose value remains constant across all data
instances. An important work in sparse clustering is the Sparse k-Means problem (Witten
and Tibshirani, 2010), where the ℓ1 penalty (Tibshirani, 1996) of the feature weight vector
is constrained to a sparsity parameter s, which decides the degree of sparsity of the feature
weight vector, i.e., how many features are set to zero. Important advantages of the Sparse
k-Means problem formulation are the derivation of algorithms that simultaneously select
appropriate feature weights and perform clustering, as well as the convergence guarantees
that can be obtained for them. The advantages of this clustering framework further inspired
the recent formulation of the Sparse Fuzzy c-Means algorithm (Qiu et al., 2015; Chang et al.,
2017a).

The simultaneous feature selection and clustering of Sparse k-Means and Sparse Fuzzy c-
Means requires specification of the upper bound to the ℓ1-norm of the feature weights, as it is
non-trivial to automatically determine the optimal degree of sparsity during the optimization
procedure. To consider a wide range of possible degrees of sparsity, Sparse k-Means and
Sparse Fuzzy c-Means optimize clusterings at different candidate upper bounds to the ℓ1-
norm and obtain a set of optimized candidate clusterings at each degree of sparsity. The
clustering methods then use the Permutation Method to select from this set a final clustering
at an appropriate degree of sparsity. The Permutation Method involves computing the GAP
statistic (Tibshirani et al., 2001) for the optimal clusterings obtained at each candidate degree
of sparsity, and the clustering which measures the largest GAP statistic is deemed the most
appropriate. The primary drawback of the Permutation Method is its high computational
cost, due to its necessity of generating and clustering multiple random permutations of the
dataset at each candidate upper bound to the ℓ1-norm, in order to compute the GAP statistic
for each candidate degree of sparsity.

Therefore we are motivated by the following challenges. First, we wish to obtain a model
selection approach for sparse clustering that is more efficient than the Permutation Method,
and is therefore more applicable to larger datasets. Second, during the model selection
approach, we wish to investigate whether the sparse clusterings can all be compared in the
original data space, instead of being compared in the individual feature spaces corresponding
to the features selected by each of the sparse clusterings. Thus, in this chapter we make the
following original contributions:

1. We derive expressions of the Bayesian Information Criteria (BIC) Schwarz (1978) for k-
Means and Fuzzy c-Means to select an optimal sparse clustering from a set of clusterings
optimized at different degrees of sparsity.

2. Whereas the existing approach of sparse model selection compares the models locally
at each degree of sparsity, we propose a global comparison of clustering models in the
original data space. Specifically, we investigate the capabilities of the derived expres-
sions of BIC for k-Means and Fuzzy c-Means to compare clusterings at different levels
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of sparsity in the original data space.

3. The computational costs of the derived expressions of BIC are drastically lower in
comparison to the Permutation Method, making the proposed methods of Sparse k-
Means using BIC (SKM+BIC) and Sparse Fuzzy c-Means using BIC (SFCM+BIC)
better suited for the sparse clustering of larger datasets.

The rest of the chapter is organized in the following way. In Section 4.2 we discuss the
Sparse k-Means and Sparse Fuzzy c-Means problems, and in detail discuss the Permuta-
tion Method. In Section 4.3 we discuss our proposed approach of efficient sparse clustering
model selection using BIC and derive expressions of BIC to be used for Sparse k-Means and
Sparse Fuzzy c-Means. In Section 4.4 we test for the effectiveness of global comparisons
of optimal sparse clusterings in the original data space, as well as the overall sparse clus-
tering performance of SKM+BIC in comparison to state-of-the-art hard sparse clustering
methods, and likewise, we test the sparse clustering performance of SFCM+BIC in compar-
ison to state-of-the-art fuzzy sparse clustering methods, on several real-world and synthetic
benchmark datasets. The source codes for our proposed methods and data are available at
https://github.com/Avisek20/sparse_clustering_BIC.

4.2 Related Work

In this section, we discuss the general sparse clustering framework, from which the problem
objectives and methods of Sparse k-Means and Sparse Fuzzy c-Means are derived. This
is followed by a discussion on how the Permutation Method is used to select a clustering
corresponding to an appropriate degree of sparsity.

4.2.1 Sparse Clustering Framework and Methods

In Witten and Tibshirani (2010) a sparse clustering framework was proposed, which follows
the general form for the optimization criteria:

max
Θ

p∑
l=1

wlfl(X∗,l,Θ),

subject to||w||22 ≤ 1, ||w||1 ≤ s, ∀j wj ≥ 0.

(4.1)

Here X = {x1, ...,xn} is a collection of data instances, where xi ∈ Rp, wl is the weight
assigned to feature l, fl(X∗,l,Θ) is a function involving only feature l of the data X∗,l, and Θ
is the set of cluster estimators. From this framework, the problems of Sparse k-Means was
formulated as,

max
C,V,w

p∑
l=1

wl


n∑

i=1

(xil − x̄l)
2 −

k∑
j=1

∑
xi∈Cj

(xil − vjl)
2

 ,

subject to ||w||22 ≤ 1, ||w||1 ≤ s, ∀l wl ≥ 0.

(4.2)
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Here V = {v1, ...,vk} is the set of cluster centers to be estimated for the k clusters C =
{C1, ..., Ck}. An Alternative Optimization (AO) algorithm can be derived to optimize the
Sparse k-Means criterion, which alternately updates the cluster memberships C, the centers
V , and the feature weights w. The derived update expressions for C and V are,

Cj = {xi | ||wxi−wvj ||2 ≤ ||wxi −wvt||2 ∀t}, (4.3)

vj =
∑

xi∈Cj

xi

|Cj |
. (4.4)

To derive an update rule for w, the variables C and V are held constant, which reduces
the objective (4.2) to,

max
w

p∑
l=1

wl(al + 2ζ),

subject to ||w||22 ≤ 1, ||w||1 ≤ s.

Here al =
∑n

i=1(xil − x̄l)
2 −

∑k
j=1

∑
xi∈Cj

(xil − vjl)
2. It can be shown that this objective

is optimized when ||w||22 = 1 and ||w||1 = s. The optimal feature weights are computed by
searching for a scalar ∆:

w =
||S(a,∆)||1
||S(a,∆)||2

. (4.5)

S here is a soft-thresholding operator S(a,∆) = sign(a)(|a| − ∆)+. The ℓ1-norm of w lies

between a maximum of ||w||max
1 = ||a||1

||a||2 and a minimum of ||w||min
1 = 1. When ∆ = 0,

||w||1 is set to ||w||max
1 . When ∆ is set to the second-largest component of a, ||w||1 is set

to ||w||min
1 . Therefore to set ||w||1 to s ∈ [||w||min

1 , ||w||max
1 ], we simply need to perform a

dichotomy search for the corresponding value for ∆.
A similar formulation for the recent method of Sparse Fuzzy c-means (Qiu et al., 2015;

Chang et al., 2017a) was derived from the sparse framework (4.1) as follows:

max
U,V,w

p∑
l=1

wl


n∑

i=1

(xil − x̄l)
2 −

k∑
j=1

n∑
i=1

µm
ij (xil − vjl)

2

 ,

subject to

k∑
j=1

µij = 1, 0 ≤ µij ≤ 1,

||w||22 ≤ 1, ||w||1 ≤ s, ∀l wl ≥ 0.

(4.6)

Here m is the degree of fuzzification, and U = [µij ](n×k) is the matrix of fuzzy cluster
memberships µij ∈ [0, 1] for every data point i to each cluster j. The Sparse Fuzzy c-Means
objective can also be optimized using an AO algorithm that alternately updates U , V , and
w. Update rules for U and V are derived from the Lagrangian of the cost, while holding w
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constant:

µij =

{ ∑p
l=1 wl(xil − vjl)

2∑k
t=1

∑p
l=1 wl(xil − vtl)2

}− 1
m−1

, (4.7)

vj =

∑n
i=1 µijxi∑n
i=1 µij

. (4.8)

Update rules for w are derived by holding U and V constant to reduce the objective (4.6)
to,

max
w

p∑
l=1

wlbl,

subject to ||w||22 ≤ 1, ||w||1 ≤ s.

Here bl = {
∑n

i=1(xil − x̄l)
2 −

∑k
j=1

∑n
i=1 µ

m
ij (xil − vjl)

2}. Similar to Sparse k-Means, it can

be shown that this objective is optimized when ||w||22 = 1 and ||w||1 = s. The ℓ1 norm of w

lies in [||w||min
1 , ||w||max

1 ], where ||w||min
1 = 1 and ||w||max

1 = ||b||1
||b||2 . A dichotomy search for ∆

can help set the required value of ||w||1 to s ∈ [||w||min
1 , ||w||max

1 ] using the equation:

w =
||S(b,∆)||1
||S(b,∆)||2

. (4.9)

4.2.2 Permutation Method to select the degree of sparsity

The sparse clustering methods require the specification of the upper bound s to the ℓ1-norm of
feature weights w. The selection of this upper bound is, however, non-trivial. In Witten and
Tibshirani (2010) the Permutation Method was proposed to select a suitable upper bound,
the steps of which are:

1. Select ns candidate upper bounds {s1, s2, ..., sns}.

2. Create B permuted datasets from the original dataset, by selecting a random permu-
tation of each feature.

3. For each candidate upper bound si, cluster the B permuted datasets along with the
original dataset.

4. Select the clustering for the si that maximizes the Gap Statistic:

arg max
i∈{1,...,ns}

GAP(i).

where, GAP(si) =
1

B

B∑
b=1

log
(
Jb
)
− log(J∗)

(4.10)

Here J∗ is the cost of clustering the original data, and Jb is the cost of clustering the
b-th permuted dataset.
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The Permutation Method thus involves generating data with random permutations of
every feature, preserving the feature-wise variance while losing the original cluster structures.
The Gap Statistic selects the clustering of the original data which differs the most from the
clustering of the permuted datasets. The Gap Statistic uses the logarithm of the clustering
cost to measure this difference. The major drawback of this approach is its high computation
complexity. While the original data is clustered by center-based clustering methods in O(knp)
time, the permutation technique yields an O((B + 1)nsknp) running time. If B = 10 and
ns = 10 is used to achieve reasonable estimates, this leads to a 110 times increase in the
computation time compared to the underlying non-sparse center-based clustering method.
This makes the application of the permutation technique to large datasets impractical.

4.3 Proposed Model Selection for Sparse Clustering Models

In this section, we discuss in detail our proposed approach to select a clustering from the
set of clusterings optimized at different degrees of sparsity. While the Permutation Method
involves computing the GAP statistic for the clusterings at different candidate upper bound
{s1, ..., sns}, our proposed sparse clustering model selection approach involves comparing
clustering models globally in the original data space using expressions of BIC that have
drastically lower computational costs. To discuss our proposed approach, we first formalize
the notion of comparing different clustering models under an information criterion involving
the likelihood of observing the sample data at hand, given the model parameters. We then
derive expressions for Bayesian Information Criteria (BIC) to be used in Sparse k-Means and
Sparse Fuzzy c-Means to select an appropriate clustering from the set of clusterings optimized
at each candidate upper bound {s1, ..., sns}.

4.3.1 Bayesian Information Criterion for clustering model selection

We assume the dataset of n instances X = {x1, ...,xn} , xi ∈ Rp, is sampled from a mixture
of k possible component distributions C1, ..., Ck. The probability of sampling each data point
is,

P (xi) =
k∑

j=1

P (xi|xi ∈ Cj)P (xi ∈ Cj),

such that the mixture proportions sum to one:
∑k

j=1 P (xi ∈ Cj) = 1. From the law of total
probability, the probability of observing all n samples is,

L(X; Θ) =
n∏

i=1

k∑
j=1

P (xi|xi ∈ Cj)P (xi ∈ Cj),

where Θ contains all parameters of the mixture distribution. The function L(.) is called
the likelihood function. Given different sets of possible mixture model parameters, the best
fit model can be identified as the one that maximizes the likelihood function. For ease of
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estimation, usually the log of the likelihood function is considered.

l(X; Θ) =
n∑

i=1

log
k∑

j=1

P (xi|xi ∈ Cj)P (xi ∈ Cj).

The Bayesian Information criterion is defined as,

BIC(Θ) = l(X; Θ) − |Θ|
2

log |X|, (4.11)

where |Θ| is the number of parameters of the mixture distribution, and |X| is the sample
size. When comparing mixture models with the same set of parameters that differ only in
parameter values, the second term remains constant, and only the log likelihood function
l(X; Θ) changes.

From eqn. (4.11), we observe that model selection using BIC will involve global com-
parisons of models on the same data X. We can compare this possible usage of BIC with
the Permutation Method, where clusterings are evaluated using GAP locally, i.e., at every
degree of sparsity. To illustrate this notion, let us consider Sparse k-Means running at ns

possible upper bounds, then the Permutation method performs the following evaluations of
GAP locally at every degree of sparsity si, as described in eqn. (4.10):

GAP(si)({C
∗, V ∗,w∗}, {C1, V 1,w1}, ..., {CB, V B,wB}).

In contrast to evaluating clusterings locally, we can also consider evaluating clusterings
globally across different degrees of sparsity, and investigate any possible improvements in
identifying clusterings. The challenge of directly using an expression of BIC is that for
different degrees of sparsity the model as well as the data space changes as the feature weights
w change. As an illustration, let the optimal parameters returned by Sparse k-Means across
a range of candidate upper bounds 1, ..., ns be Θ(1), ...,Θ(ns). The set of parameters include
the optimal feature weights w(1), ...,w(ns). Then the calculation of BIC involves calculations
of the following log-likelihoods, where both the model parameters as well as the data space
changes:

l(wT
(1)X; Θ(1)), ..., l(w

T
(ns)X; Θ(ns)).

These log-likelihoods cannot be directly compared since both the models and the data
space changes across different candidate upper bounds to the l1-norm. An alternate ap-
proach is therefore to globally compare BIC across different degrees of sparsity in the original
data space and comparing the clustering results. These comparisons can be done using BIC
expressions derived for k-Means and Fuzzy c-Means respectively. This is easy to do since
the feature weights do not influence the update expressions of the cluster centers of sparse
k-Means as shown in eqn. (4.4) and those of sparse Fuzzy c-Means as shown in eqn. (4.8).
Therefore these cluster centers also exist in the original data space, and together with the
cluster memberships, they can be used to evaluate BIC in the original data space.

Therefore we propose to compute BIC for k-Means across different degrees of sparsity in
the original data space, using the optimal cluster centers and memberships obtained from
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Sparse k-Means clustering:

BICKM
(1) ({C(1), V(1)}), ..., BICKM

ns
({C(ns), V(ns)}). (4.12)

We select the appropriate degree of sparsity as that for which we obtain maximum BIC.

s := arg max
s

BICKM
(s) . (4.13)

The same argument holds for using BIC for Sparse Fuzzy c-Means as well. Algorithms
2 and 3 outline our proposed approaches to use BIC to perform sparse k-Means and sparse
Fuzzy c-Means.

Algorithm 2 Sparse k-Means using BIC (SKM+BIC)

Input: n data instances x1, ...,xn; number of clusters k; ns upper bounds to the ℓ1-norm of
feature weights s1, ..., sns .
Output: cluster centers V = {v1, ...,vk}, cluster memberships C = {C1, ..., Ck}, feature
weights w = (w1, ..., wp).

1: for s = 1, ..., sns do
2: 1. Perform Sparse k-Means AO to obtain optimal C, V and w from eqns. (4.3), (4.4)

and (4.5).
3: 2. Compute BICKM

(s) ({C(s), V(s)}) using Remark 4.1.
4: end for
5: Select s := arg max

s
BICKM

(s) , and return the corresponding V(s), C(s),w(s).

Algorithm 3 Sparse Fuzzy c-Means using BIC (SFCM+BIC)

Input: n data instances x1, ...,xn; number of clusters k; ns upper bounds to the ℓ1-norm of
feature weights s1, ..., sns .
Output: cluster centers V = {v1, ...,vk}, fuzzy cluster memberships U = [µij ](n×k), feature
weights w = (w1, ..., wp).

1: for s = 1, ..., sns do
2: 1. Perform Sparse Fuzzy c-Means AO to obtain optimal U , V and w from eqns. (4.7),

(4.8) and (4.9)
3: 2. Compute BICFCM

(s) ({U(s), V(s)}) using Theorem 4.1.
4: end for
5: Select s := arg max

s
BICFCM

(s) , and return the corresponding V(s), U(s),w(s).

4.3.2 Bayesian Information Criterion for k-Means and Fuzzy c-Means

For k-Means, we can derive the following corrected expression for the Bayesian Information
Criterion (Pelleg and Moore, 2000).

60



4. Improved Efficient Model Selection for Sparse Clustering

Remark 4.1. The Bayesian Information Criterion for k-Means is

BICKM (Θ) =
k∑

j=1

|Cj | log |Cj | − |X| log |X| − p|X|
2

log
(

2πσ̂2
)

− p

2
(|X| − k) − k(p + 1)

2
log |X|,

where, σ̂2 =
1

p(|X| − k)

k∑
j=1

∑
xi∈Cj

||xi − vj ||2.

The proof of Remark 4.1 is provided in Appendix B. The expression of BICKM (Θ) is
used to form a Sparse k-Means using BIC (SKM+BIC) method, outlined in Algorithm 2,
where BICKM (Θ) is used to select a suitable clustering among ns candidate clusterings.

For Fuzzy c-Means, we derive an expression for the Bayesian Information Criterion.

Theorem 4.1. The Bayesian Information Criterion for Fuzzy c-Means is

BICFCM (Θ) =

n∑
i=1

k∑
j=1

logµij −
kp|X|

2
log
(

2πσ̂2
)

− kp(|X| − k)

2
− k(|X| + p)

2
log |X|,

where, σ̂2 =
1

kp(|X| − k)

n∑
i=1

k∑
j=1

||xi − vj ||2.

Proof. From the definition of BIC in (4.11), we can write the BIC for Fuzzy c-Means as,

BICFCM (Θ) = l(D; Θ) − k(|X| + p)

2
log |X|. (4.14)

The number of parameters |Θ| = k(|X| + p) due to the kp cluster centers and k|X| fuzzy
cluster memberships. The log likelihood function is defined as,

l(D; Θ) = log

n∏
i=1

P (xi)

=

n∑
i=1

log

k∑
j=1

P (xi|xi ∈ Cj)P (xi ∈ Cj)

=

n∑
i=1

log

k∑
j=1

µijP (xi|xi ∈ Cj)

≥
n∑

i=1

k∑
j=1

[logµij + logP (xi|xi ∈ Cj)].

The inequality follows Jensens’s inequality. Since all optimal µij are obtained from Fuzzy
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c-Means clustering, the equality holds, and therefore,

l(D; Θ) =
n∑

i=1

k∑
j=1

[logµij + logP (xi|xi ∈ Cj)].

The sampling probability of xi from each Cj follows the normal distribution,

P (xi|xi ∈ Cj) =
1

(2πσ2)p/2
exp

(
− 1

2σ2
||xi − vj ||2

)
.

where all σj = σ since in Fuzzy c-Means we assume all spherical clusters with equal variances.
Then,

l(D; Θ) =

n∑
i=1

k∑
j=1

logµij −
kp|X|

2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

k∑
j=1

||xi − vj ||2.

To estimate σ to maximize the log likelihood function, we equate the derivative to zero and
solve for σ2,

∂

∂σ
l(D; Θ) = 0

=⇒ −kp|X|
σ

+
1

σ3

n∑
i=1

k∑
j=1

||xi − vj ||2 = 0

=⇒ σ2 =
1

kp|X|

n∑
i=1

k∑
j=1

||xi − vj ||2.

The unbiased estimator of the variance of each cluster σ2
j can then be written as,

σ̂j
2
UBE =

1

kp(|Cj | − 1)

n∑
i=1

||xi − vj ||2

Assuming all σ̂j = σ̂, and summing over all clusters,

k∑
j=1

n∑
i=1

||xi − vj ||2 = kp

k∑
j=1

(|Cj | − 1)σ̂j
2

=⇒
k∑

j=1

n∑
i=1

||xi − vj ||2 = kpσ̂2(|X| − k)

=⇒ σ̂2 =
1

kp(|X| − k)

k∑
j=1

n∑
i=1

||xi − vj ||2. (4.15)
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Substituting this estimator of σ2 in the log likelihood function and simplifying, yields

l(D; Θ) =
k∑

j=1

n∑
i=1

logµij −
kp|X|

2
log
(
2πσ̂2

)
− kp

2
(|X| − k).

Substituting in (4.14), we obtain,

BICFCM (Θ) =
k∑

j=1

n∑
i=1

logµij −
kp|X|

2
log
(
2πσ̂2

)
− kp

2
(|X| − k) − k(|X| + p)

2
log |X|.

(4.16)

Eqns. (4.16) and (4.15) prove Remark 4.1.

We use the expression of BICFCM in Theorem 4.1 to form a Sparse Fuzzy c-Means using
BIC (SFCM+BIC), outlined in Algorithm 3, to select an appropriate clustering from ns

candidate clusterings.

4.3.3 On Computation Complexity

Both SKM+BIC and SFCM+BIC involve AO steps that have the complexity of O(knp) per
iteration. Both BICKM and BICFCM involve a single O(knp) computation step. Thus,
clustering at all ns candidate upper bounds leads to an overall complexity of O(nsknp) for
both SKM+BIC and SFCM+BIC. This is a large reduction in complexity from the O((B +
1)nsknp) computational requirements of Sparse k-Means and Sparse Fuzzy c-Means using
the Permutation Method (SKM+PM and SFCM+PM, respectively). As the size of the
dataset increases, the execution times of SKM+PM and SFCM+PM increase drastically in
comparison to SKM+BIC and SFCM+PM, as shown in Figure 4.1. This further motivates
us to study the clustering performance of SKM+BIC and SFCM+BIC, since they are more
applicable for the sparse clustering of larger datasets.

4.4 Experiments and Results

In this section, we investigate the performance of using BIC to select the appropriate clus-
tering from Sparse k-Means (SKM+BIC) and Sparse Fuzzy c-Means (SFCM+BIC). We first
pose the question of whether a global comparison of clusterings can yield an advantage in
the selection of sparse clustering models, for which we compare different approaches involving
BIC as well as several cluster validity indices against the performance of local sparse clustering
model selections using the Permutation Method. Next, we compare the overall performance
of SKM+BIC for sparse hard clustering with Sparse k-Means using the Permutation Method
(SKM+PM) and recent sparse hard clustering methods on several synthetic and real datasets.
Similarly, we also compare the performance of SFCM+BIC for sparse fuzzy clustering with
Sparse Fuzzy c-Means using the Permutation Method (SFCM+PM) and recent sparse fuzzy
clustering methods on several synthetic and real datasets.
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(a) Dataset with 3 clusters (b) Execution Times for SKM+PM
vs SKM+BIC

(c) Execution Times for
SFCM+PM vs SFCM+BIC

Figure 4.1: Comparison of the execution times between the proposed SKM+BIC and
SKM+PM, and between the proposed SFCM+BIC and SFCM+PM. Datasets containing
three clusters are generated with increasing sizes (from 210 to 215) and the increase in execu-
tion times are noted. By using BIC as an alternative to the Permutation Method, SKM+BIC
and SFCM+BIC have drastically lower growths in execution times. The details of the em-
pirical comparison of timings are provided in Section B.2 of Appendix B

.

4.4.1 Effectiveness of global sparse clustering model selection

To test the effectiveness of approaches that perform sparse clustering model selection globally
on the original data space, we compare the performance of a total of 21 approaches to sparse
clustering model selection. The performance of local sparse clustering model selection by
the GAP statistic used by the Permutation Method is compared with the global method of
BIC, in addition to nineteen other cluster validity indices shown in Table 4.1. The cluster
validity indices considered include several recent, as well as classical indices that have over
time shown excelling performance in several applications (Arbelaitz et al., 2013; Luna-Romera
et al., 2019). The selection criteria used for each approach and their computation complexity
are listed in the table as well.

We test all approaches on a set of 44 synthetic datasets. 40 of these datasets are high
dimension from the MOCK collection of datasets to benchmark clustering methods (Handl
and Knowles, 2007). The datasets are ten-dimensional consisting of 40, 20, 10, or 4 clusters.
Other than the MOCK datasets, there are four two-dimensional datasets containing 15, 8, 6,
and 4 clusters. They are used to easily visualize that even in low dimensions the approaches
perform clustering effectively.

We follow a common protocol for all our experiments. We follow the default parameter
settings of the Sparcl implementation of Sparse k-Means, and consider 10 candidate upper
bounds to the ℓ1-norm, (i.e., ns is set to 10). On each dataset and for each candidate
upper bound, a sparse clustering method is run for a maximum of 20 iterations with an
error tolerance of 10−6. The clustering is re-run 20 times and the clustering result with the
lowest cost is selected. For the Permutation Method, 25 permuted datasets are generated
and clustered along with the original dataset. For Sparse Fuzzy c-Means, m is set to 1.2.
The returned clustering results are evaluated using each of the approaches in Table 4.1 and
using their selection criteria, the final clustering is selected. For hard clustering methods,
cluster validity indices using fuzzy cluster memberships µij are computed from the resulting
cluster centers. The final clustering is evaluated using the Adjusted Rand Index (ARI). For
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Table 4.1: Specification of the Compared Cluster Validity Indices.

Sl. No. Name Selection Criteria Complexity

1 Akaike Information Criteria (AIC) (Akaike, 1974) max O(knp)
2 Caliński Harabasz (CH) Index (Caliński and Harabasz, 1974) max O(knp)
3 Classification Entropy (CE) (Bezdek, 1975) min O(knp)
4 Davies Bouldin (DB) Index (Davies and Bouldin, 1979) min O(k2np)
5 Fukuyama Sugeno (FS) Index (Fukuyama and Sugeno, 1989) min O(knp)
6 Fuzzy Hypervolume (FHV) (Dave, 1996) min O(knp)
7 I Index (Maulik and Bandyopadhyay, 2002) max O(knp)
8 Modified Partition Coefficient (MPC) (Dave, 1996) max O(knp)
9 Modified Partition Coefficient (PC) (Dave, 1996) max O(knp)
10 Partition Index (PI) (Bensaid et al., 1996) min O(knp)
11 PBMF Index (Pakhira et al., 2004) max O(knp)
12 PCAES (Wu and Yang, 2005) max O(knp)
13 RLWY Index (Ren et al., 2016) min O(knp)
14 Rezaee Index (Rez) (Rezaee, 2010) min O(k2np)
15 Sillhouette Index (SIL) (Rousseeuw, 1987) max O(n2)
16 Xie-Beni (XB) Index (Xie and Beni, 1991) min O(knp)
17 Xu Index (Xu, 1997) min O(knp)
18 ZXF Index (Zhao et al., 2009b) min O(knp)
19 ZWZL Index (Zhang et al., 2008) min O(k2np)
20 GAP Statistic (Tibshirani et al., 2001) max O(Bknp)
21 Bayesian Information Criteria (BIC) max O(knp)

(a) Data 10d-40c-no0 (b) Data 10d-20c-no0 (c) Data 10d-10c-no0 (d) Data 10d-4c-no0

(e) 15clusters5x3 (f) 8clusters4x3 (g) 6clusters3x2 (h) 4clusters2x2

Figure 4.2: Synthetic datasets - Figures (a) to (d) are TSNE plots of ten-dimensional data
from the MOCK collection of clustering datasets, consisting of (a) 40, (b) 20, (c) 10, and
(d) 4 clusters. Figures (e) to (h) are two-dimensional generated data to ensure the sparse
methods work in low dimensions as well.

fuzzy sparse clustering methods, the fuzzy cluster membership matrix U is used to obtain
discrete cluster memberships for ARI evaluation. The entire process is repeated five times,
and the average ARI obtained by the approach on that dataset is recorded. On each dataset,
all approaches are ranked on decreasing ARI scores, and the average rank obtained by each
method across all datasets is noted. We perform the Wilcoxon signed-rank test between
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our proposed approach of using BIC and all other approaches. The null hypothesis H0 is
on whether the average ARI obtained by a pair of approaches are statistically comparable,
and the alternate hypothesis H1 is on whether the difference in obtained average ARI is
statistically significant. H0 is rejected if the p-value of the test is less than 0.5.

Table 4.2 summarises the results of the identification of the sparse hard clustering model
selection across different degrees of sparsity, where Sparse k-Means is performed to obtain all
hard sparse clusterings. We observe that our proposed approach of using BIC for hard clus-
tering model selection obtains the lowest average rank among all 21 approaches considered. In
combination with the results of the Wilcoxon signed-rank test, we observe that the proposed
BIC approach significantly outperforms all the 20 approaches considered. We also note that
the GAP statistic has obtained quite a high average rank, even though it computes the GAP
statistic locally at every degree of sparsity. In comparison, we observe several cluster validity
indices have obtained much lower average ranks, even though the computation of the index is
global, and therefore the clusterings are evaluated and compared in the original data space.
Other than BIC (1.07), we observe low average ranks in CH (2.61), CE (3.05), MPC (2.27),
PC (2.27), Rez (2.91), SIL (2.39), Xu (2.39), ZXF (2.77), which have all obtained average
ranks lower than that of GAP (11.32). This shows that global sparse hard clustering model
selection can be effective in the original data space, with BIC being the best choice for the
task. The full results are provided in Section B.4 of Appendix B.

Table 4.2: Average Rank and Wilcoxon Signed-Rank Test Results on the Average ARI
achieved by the 21 Approaches for Sparse k-Means Clustering Model Selection across Differ-
ent Degrees of Sparsity.

Method AIC CH CE DB FS FHV I
Avg. Ranks 17.75 2.61 3.05 17.20 10.80 5.34 10.25
Hypothesis Test H1 H1 H1 H1 H1 H1 H1

p-value 1.65E-08 5.61E-06 2.56E-06 2.42E-08 3.57E-08 5.39E-07 1.68E-07

Method MPC PC PI PBMF PCAES RLWY Rez
Avg. Ranks 2.27 2.27 4.59 12.07 17.41 4.59 2.91
Hypothesis Test H1 H1 H1 H1 H1 H1 H1

p-value 3.79E-06 3.79E-06 1.17E-06 5.25E-08 2.42E-08 1.17E-06 2.56E-06

Method SIL XB Xu ZXF ZWZL GAP BIC
Avg. Ranks 2.39 7.41 2.39 2.77 10.43 11.32 1.07
Hypothesis Test H1 H1 H1 H1 H1 H1 -
p-value 5.61E-06 2.48E-07 5.61E-06 2.56E-06 2.48E-07 4.38E-07 -

Table 4.3 summarises the results of sparse fuzzy clustering model selection across different
levels of sparsity. Here Sparse Fuzzy c-Means performs all fuzzy sparse clusterings. Our
proposed approach of using BIC to identify the best fuzzy sparse clustering is observed to
obtain the lowest average rank and has statistically significant performance as shown by
the Wilcoxon signed-rank test, thereby significantly outperforming the other 20 approaches
considered. As in the case of hard clustering, we also observe that the exact same set of
cluster validity indices that compare the sparse clusterings in the original data space have
also obtained lower average ranks than GAP (5.73). This can be observed with BIC(1.41),
CH (3.00), CE (3.43), MPC (2.43), PC (2.43), Rez (2.94), SIL (2.02), Xu (2.75), ZXF (2.77),
which have all obtained average ranks lower than that of GAP (5.73). Thus even for sparse
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fuzzy clustering, the clusterings can be compared effectively in the original data space, with
BIC performing the best for this task. The full results observed for all approaches are provided
in Section B.4 of Appendix B.

Table 4.3: Average Rank and Wilcoxon Signed-Rank Test Results on the Average ARI
achieved by the 21 approaches to Sparse Fuzzy c-Means Clustering Model Selection across
Different Degrees of Sparsity.

Method AIC CH CE DB FS FHV I
Avg. Ranks 18.02 3.00 3.43 17.64 13.18 11.50 9.64
Hypothesis Test H1 H1 H1 H1 H1 H1 H1

p-value 1.77E-08 5.90E-06 3.79E-06 2.61E-08 5.26E-08 1.14E-07 1.94E-07

Method MPC PC PI PBMF PCAES RLWY Rez
Avg. Ranks 2.43 2.43 5.52 11.86 17.73 5.52 2.93
Hypothesis Test H1 H1 H1 H1 H1 H1 H1

p-value 7.26E-06 7.26E-06 1.73E-06 8.71E-08 2.42E-08 1.73E-06 6.52E-06

Method SIL XB Xu ZXF ZWZL GAP BIC
Avg. Ranks 2.02 7.30 2.75 2.75 6.66 5.73 1.41
Hypothesis Test H1 H1 H1 H1 H1 H1 -
p-value 8.07E-06 1.17E-06 8.07E-06 6.52E-06 1.34E-06 1.32E-03 -

4.4.2 Comparing sparse clustering methods on synthetic datasets

In this section, we compare the proposed approach of SKM+BIC with recent sparse hard
clustering methods on synthetic datasets, followed by comparing SFCM+BIC with recent
sparse fuzzy clustering methods on the same set of synthetic datasets. We consider the
method of Robust Sparse k-Means (RSKM) (Kondo et al., 2012) and the recent Structured
Sparse k-Means (SSKM) (Gong et al., 2018) for comparison, along with the original Sparse
k-Means which uses the permutation methods (SKM+PM). All methods are run on the
44 synthetic datasets following the experiment protocol discussed in Section 4.4.1. RSKM
has a parameter α, which is set to 0.1. SSKM has a parameter λ which is set to 104.
Additionally, SSKM involves the construction of a Laplacian matrix, which we set as the
adjacency matrix A constructed as the inverse of the Euclidean distance between two features,
i.e., Aij = 1√

n∑
l=1

(xli−xlj)2
.

Table 4.4 summarizes the clustering performance of the sparse hard clustering methods
on the synthetic datasets. Our proposed SKM+BIC is observed to attain the lowest average
rank, in addition to obtaining a statistically significant average ARI as shown by the Wilcoxon
signed-rank test. This shows the efficacy of the proposed approach of SKM+BIC to perform
sparse hard clustering even in comparison to recent sparse hard clustering methods. The full
results containing the average ARI achieved by each method are provided in Section B.5 of
Appendix B.

Next, we compare the proposed SFCM+BIC to the method of Robust Sparse Fuzzy c-
Means (RSFCM) (Xu et al., 2016) using two norms: the ℓ2,1-norm (RSFCM(ℓ2,1)) and the
ℓ1-capped norm (RSFCM(ℓ1-c). RSFCM (Xu et al., 2016) has a regularization parameter λ
which is set to 0.1, and RSFCM using the capped l1-norm has a threshold ϵ of the capped
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Table 4.4: Average Rank and Wilcoxon Signed-Rank Test on the Average ARI achieved by
the Sparse Hard Clustering Methods on the Synthetic Datasets.

Methods SKM+PM RSKM SSKM SKM+BIC

Avg. Ranks 2.25 2.48 3.93 1.18
Hypothesis Test H1 H1 H1 -
p-value 4.38E-07 1.50E-07 7.62E-09 -

l1-norm, which is set to 1.5. Also, we compare the performance with the baseline Sparse
Fuzzy c-Means using the permutation method (SFCM+PM). The methods are compared on
the 44 synthetic datasets following the experimental protocol discussed in Section 4.4.1. In
Table 4.5 we observe the summary of the clustering performance of the sparse fuzzy clus-
tering methods on the synthetic datasets, with the full results containing the average ARI
achieved by each method provided in Section B.5 of Appendix B. The proposed SFCM+BIC
is observed to attain the lowest average rank on average ARI obtained, in addition to achiev-
ing statistically significant average ARI as shown by the Wilcoxon signed-rank test. Thus
on synthetic datasets, we observe the efficacy of our proposed approach of SFCM+BIC to
perform sparse fuzzy clustering in comparison to recent sparse fuzzy clustering methods.

Table 4.5: Average rank and Wilcoxon Signed-Rank Test on the Average ARI achieved by
the Sparse Fuzzy Clustering Methods on the Synthetic Datasets.

Methods SFCM+PI RSFCM-(l2,1) RSFCM-(l1c) SFCM+BIC

Avg. Ranks 1.70 3.07 3.75 1.09
Hypothesis Test H1 H1 H1 -
p-value 1.32E-03 1.12E-08 7.61E-09 -

4.4.3 Comparing sparse clustering methods on real datasets

From the results of the previous experiments, we observed how the proposed approaches
of SKM+BIC and SFCM+BIC led to improved identification of spare clusterings on syn-
thetic datasets. In this section, we investigate the performance of the proposed approaches
on real-world datasets in comparison to recent hard and fuzzy sparse clustering methods.
The methods in contention are the same as were considered for the experiments on synthetic
datasets in Section 4.4.2. The sparse clustering methods are evaluated on six high dimen-
sional gene expression cancer datasets available at http://www.stat.cmu.edu/~jiashun/

Research/software/GenomicsData/. Each of these datasets contains the patient infor-
mation and a label representing the presence and absence of the types of cancer consid-
ered. The datasets have a high range in the number of features, from 2000 features for
the colon cancer dataset to 12533 features in the lung cancer dataset. Besides, the clus-
tering methods are compared on eleven real-world datasets from the UCI Machine Learn-
ing Repository (Dheeru and Karra Taniskidou, 2017), shown in Table 4.6. Therefore the
performance on these datasets reflects how the clustering methods perform feature selec-
tion as well as clustering in a real-world setting. The UCI dataset ecoli is preprocessed to
remove three classes with less than six data instances. The football dataset (available at
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http://www-personal.umich.edu/~mejn/netdata/) is a network dataset on 115 American
football games played across 12 regions. The same experiment protocol is followed as outlined
in Section 4.4.1, and the parameters for the contending methods were set as stated in Section
4.4.2.

Table 4.6: Specifications of the Real Datasets.

Dataset Size (n, p) k

brain cancer (42, 5597) 5
colon cancer (62, 2000) 2
lung cancer (181, 12533) 2
lymphoma cancer (62, 4026) 3
prostate cancer (102, 6033) 2
srbct cancer (63, 2308) 4
ecoli (327, 7) 5
football (115, 115) 12
gesture (1743, 51) 5
libras (360, 90) 15
seeds (210, 7) 3
segment (2310, 19) 7
spambase (4601, 57) 2
ukm (403, 5) 4
wdbc (683,9) 2
wine (178, 13) 3
banknote (1372, 4) 2
yeast (1484, 8) 10

Table 4.7 shows the results of the sparse hard clustering methods on the real datasets. The
bottom three rows of the table summarize the results, from which we note that our proposed
SKM+BIC attained the lowest average rank while achieving statistically significant perfor-
mance in comparison to the contending methods. Therefore we conclude that SKM+BIC
has attained significantly better performance in comparison to the contending methods. We
observe that SKM+BIC has attained the best results in five of the six high-dimensional gene
expression cancer datasets, with very competent performance in the sixth dataset. On the
UCI datasets, we observe that SKM+BIC achieves the best ARI on most datasets while
attaining highly competent results on the rest. Thus the results show that SKM+BIC is
a better method for the sparse hard clustering of real-world datasets, in comparison to the
baseline SKM+PM as well as recent sparse clustering methods.

In Table 4.8 we observe the results of the sparse fuzzy clustering methods on the real
datasets. We observe from the bottom three rows of the table that our proposed SFCM+BIC
achieves the lowest average rank while attaining statistically significant performance in com-
parison to the contending methods, which lets us conclude that SFCM+BIC has achieved
significant improvement in sparse clustering performance in comparison to the contending
methods. We observe that SFCM+BIC has achieved the highest average ARI on six of the
high-dimension gene expression cancer datasets. Among the UCI datasets as well we observe
that SFCM+BIC either achieves the highest average ARI or has a very competing perfor-
mance. Thus using BIC for sparse clustering model selection has led to SFCM+BIC being
a better alternative to sparse fuzzy clustering, in comparison to the baseline SFCM+PM or
the contending sparse fuzzy clustering methods.
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Table 4.7: Average ARI achieved by the Sparse Hard Clustering Methods on the Real
Datasets.

Methods SKM+PM RSKM SSKM SKM+BIC

brain cancer 0.5471 0.3762 0.4144 0.5975
colon cancer 0.1346 -0.0009 0.0826 0.5420
lung cancer 0.3584 0.0519 0.0087 0.3584
lymphoma cancer 0.8964 0.3666 0.6313 0.9471
prostate cancer 0.0386 0.0295 0.016 0.0386
srbct cancer 0.4080 0.1842 0.2216 0.3979
ecoli 0.4539 0.4224 -0.0251 0.5118
football 0.7341 0.4565 0.4182 0.8565
gesture 0.1714 0.153 0.02 0.1985
libras 0.2875 0.2794 0.0293 0.3056
seeds 0.6115 0.6500 0.0416 0.6115
segment 0.1241 0.1204 0.0292 0.2143
spambase 0.0381 0.1229 0.0012 0.0381
ukm 0.3601 0.3555 0.1014 0.3555
wdbc 0.8409 0.7039 0.5297 0.8409
wine 0.3711 0.3032 0.0015 0.3711
yeast 0.0706 0.0648 0.0393 0.0782

Avg. Ranks 1.65 2.94 3.76 1.24
Hypothesis Test H1 H1 H1 -
p-value 0.0099 0.0032 0.0003 -

Table 4.8: Average ARI achieved by the Sparse Fuzzy Clustering Methods on the Real
Datasets.

Methods SFCM+PM RSFCM-(l2,1) RSFCM-(l1c) SFCM+BIC

brain cancer 0.5212 0.198 0.0061 0.5842
colon cancer 0.4474 0.0111 0.0861 0.5420
lung cancer 0.3250 -0.0039 -0.022 0.3250
lymphoma cancer 0.3902 0.4818 0.3552 0.5048
prostate cancer 0.0321 0.0154 -0.0090 0.0578
srbct cancer 0.3125 0.1106 0.0181 0.3240
ecoli 0.4399 0.4670 0.0019 0.4399
football 0.0480 0.7756 0.0582 0.8547
gesture 0.1951 0.2788 0.2142 0.2113
libras 0.1360 0.1025 0.0067 0.3109
seeds 0.6206 0.7166 0.5689 0.6206
segment 0.1203 0.4134 0.4138 0.2073
spambase 0.0411 0.0898 0.0860 0.0411
ukm 0.3555 0.1953 0.1482 0.3555
wdbc 0.8355 0.7930 0.7040 0.8355
wine 0.3711 0.3407 0.2939 0.3711
yeast 0.0808 0.0982 0.1042 0.0686

Avg. Ranks 2.24 2.47 3.29 1.59
Hypothesis Test H1 H1 H1 -
p-value 0.0093 0.0217 0.0036 -
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4.5 Discussion

In this paper, we proposed an improved sparse clustering model selection by the use of
expressions of Bayesian Information Criterion (BIC) derived for k-Means and Fuzzy c-Means.
Traditional sparse clustering methods have a O(knp) complexity to obtain a clustering at
a specific degree of sparsity, however using the Permutation Method for sparse clustering
model selection from several clusterings at different degrees of sparsity increases the overall
computational cost to a significantly higher O((B+1)nsknp). This is due to the Permutation
Method which generates and clusters additional B permuted datasets locally at each of the
ns degrees of sparsity. We instead proposed a global sparse clustering model selection, where
a suitable sparse clustering can be selected from several sparse clusterings at different degrees
of sparsity. The proposed global sparse clustering model selection occurs in the original data
space using our derived expressions of BIC, which requires significantly lower computational
costs of O(nsknp). From experiments involving several cluster validity indices, we observed
that global clustering model selection approaches showed improvements in comparison to
local model selection by the Permutation Method, with BIC performing the best at the
model selection. Experiments on several synthetic and real datasets showed that using BIC
for sparse clustering model selection led to state-of-the-art clustering performances for both
Sparse k-Means (SKM+BIC) and Sparse Fuzzy c-Means (SFCM+BIC). The low cost of
computation of BIC and its improved performance in sparse clustering model selection makes
the proposed SKM+BIC and SFCM+BIC the recommended approach for the sparse selection
of larger datasets.
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Chapter 5

Fuzzy Clustering to Identify
Clusters at Different Levels of
Fuzziness: An Evolutionary
Multi-Objective Optimization
Approach

Summary

Fuzzy clustering methods identify naturally occurring clusters in a dataset, where the extent
to which different clusters are overlapped can differ. Most methods have a parameter to fix
the level of fuzziness. However, the appropriate level of fuzziness depends on the application
at hand. This chapter presents Entropy c-Means (ECM), a method of fuzzy clustering that
simultaneously optimizes two contradictory objective functions, resulting in the creation of
fuzzy clusters with different levels of fuzziness. This allows ECM to identify clusters with
different degrees of overlap. ECM optimizes the two objective functions using two multi-
objective optimization methods, Non-dominated Sorting Genetic Algorithm II (NSGA-II),
and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D). We also
propose a method to select a suitable trade-off clustering from the Pareto front. Experiments
on challenging synthetic datasets as well as real-world datasets show that ECM leads to better
cluster detection compared to the conventional fuzzy clustering methods as well as previously
used multi-objective methods for fuzzy clustering.

5.1 Introduction

In the popular center-based clustering problem of k-Means, data instances are assigned to
distinct clusters. However, the notion of clusters can be generalized in different ways, for
example the Fuzzy c-Means problem (Dunn, 1973; Bezdek, 1973; Bezdek et al., 1984) uses
fuzzy set theory to generalize the concept of cluster membership, so that data instances
can have some degree of membership to all clusters. This motivated us to identify one of
the factors affecting center-based clustering to be the nature of the clusters to be identified,
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as was discussed in Section 1.2. The nature of the cluster being identified by center-based
clustering problems can be of two types: hard or fuzzy. In hard center-based clustering, each
data point is assigned a membership in the set {0, 1} to all clusters, whereas in fuzzy center-
based clustering (Döring et al., 2006; Peters et al., 2013), where every data point is assigned a
membership in the range [0, 1] to all clusters. A high membership value indicates that a data
point is closer to the center of the corresponding cluster. Fuzzy center-based clustering thus
generalizes the membership values from the set {0, 1} to the interval [0, 1]. This generalization
can be done in several ways, collectively called fuzzification. The degree of fuzzification has an
important effect on the identification of overlap between clusters. The true overlap between
clusters is unknown, since in the problem of data clustering we have no information on the
underlying cluster structure. Low degrees of fuzzification assign high memberships for a data
point to its closest cluster, and assign low memberships for it to the other clusters. This
leads to the formation of clusters that are less overlapped. On the other hand, increasing the
degree of fuzziness decreases the memberships of data instances to their closest cluster and
increases their memberships to all other clusters, forming more overlapped clusters. With
the appropriate degree of fuzzification, a fuzzy center-based clustering method can form
fuzzy clusters that correspond to the underlying overlapped cluster structure (Klawonn and
Höppner, 2003).

The proper extent of fuzzification can thus help to identify clusters with varying degrees
of overlap. Moreover, the positions of the identified cluster centers are less sensitive to
the presence of noise in the dataset compared to hard center-based clustering. With this
aim, Dunn first introduced fuzzy center-based clustering with a specific level of fuzziness of
the membership values (Dunn, 1973). This was later generalized by Bezdek (1981), who
introduced a parameter m with which one can choose an appropriate level of fuzziness. This
gave rise to the well-known Fuzzy c-Means (FCM) problem

minimize Jm =
N∑
i=1

c∑
j=1

µm
ij ||xi − vj||2, (5.1)

subject to the constraints
∑c

j=1 µij = 1, where xi ∈ Rd, i = 1, ..., N are the data instances

to be grouped into c clusters having centers vj ∈ Rd, for j = 1, ..., c. Each xi belongs to the
j-th cluster with a membership degree µij ∈ [0, 1]. Here m is the degree of fuzzification that
is to be set by the user.

The popular algorithm for FCM is a two-step Alternating Optimization (AO) method that
alternately updates all µij and then all vj, so as to minimize Jm. Bezdek et al. (1984) observed
that the AO method works well for values of m in the interval [1, 30], with 1.5 ≤ m ≤ 3.0
yielding good results for the datasets they considered. Pal and Bezdek (1995) further refined
this interval to [1.5, 2.5]. Some approaches exist that attempt to estimate an exact value
for m. Dembélé and Kastner (2003) attempted to empirically estimate m from the pairwise
distances between the data instances. Futschik and Carlisle (2005) compared the clustering
results over different values of m with that of random data to select one appropriate value
of m from a discrete set of possible values. Schwämmle and Jensen (2010) provided an
empirical formula to estimate m by considering that the probability of a cluster being well-
defined decreases exponentially as the dimension of the dataset increases, while decreasing at
a slightly slower rate as the number of data instances increases. Ozkan and Turksen (2007)
recommended the interval [1.4, 2.6] as an effective range to be used in practice.
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A number of theoretical approaches to estimate suitable intervals for m exist as well.
Yu et al. (2004) derived theoretical rules that are dataset dependent to estimate a range of
values for m. Huang et al. (2012b) provided an alternative theoretical approach to provide
a different interval for the values of m. Wu (2012) further extended the work by Yu et al.
(2004) to recommend an interval of [1.5, 4.0] for m based on a robust analysis of FCM. Some
approaches that obtain fuzzy clusterings by eliminating the m include a semi-nonnegative
matrix factorization based approach (Suleman, 2015) where cluster centers are obtained as
a convex combination of the data instances. Yang and Nataliani (2017) bypasses the use of
m by extending the FCM objective function to include the entropy of cluster memberships
along with additional cluster prior variables. However, these approaches do not explore the
full range of possible levels of fuzziness to identify an appropriate level of fuzziness suitable
for the data at hand.

An interesting study by Li and Mukaidono (1995) formulated a Maximum Entropy Infer-
ence (MEI) approach to fuzzy center-based clustering,

maximize E = −
N∑
i=1

c∑
j=1

µijlog(µij) , (5.2)

subject to the constraint
c∑

j=1
µij = 1 and the soft constraint

N∑
i=1

c∑
j=1

µij ||xi − vj||2 = 0. This

formulation allowed them to design an AO algorithm for MEI which uses an admissible error
radius σ instead of m. This is advantageous as σ is easier to interpret compared to m.
Increasing σ leads to a physical increase in the spread of the clusters, thereby increasing the
fuzziness of the membership values by allowing more overlap between the clusters. Klawonn
and Höppner (2003) also showed that a function of the fuzzy memberships could be used in
place of umij in the FCM objective to control the level of fuzzification. A recent work by Saha
and Das (2017) proposed an axiomatic definition of a general class of weighting functions that
can be used to control the level of fuzzification. Hence based on the literature, the level of
fuzzification can be set using one of the following ways (i) using an empirical formula (ii) using
a parameter m whose values are to be tested from intervals derived theoretically (iii) using a
function whose possible values must be controlled, (iv) using an entirely different approach
as in Suleman (2015); Yang and Nataliani (2017). However, an unsupervised method that
automatically decides an appropriate level of fuzzification while fitting fuzzy clusters to a
dataset does not exist.

In this chapter, we show that clusterings at different levels of fuzziness can be obtained
by simultaneously optimizing two contradicting objectives in a Multi-Objective Optimization
(MOO) framework. In the proposed Entropy c-Means (ECM) method, one objective favors
the formation of compact fuzzy clusters while the other objective favours largely overlapping
clusters. In an MOO framework, multiple objective functions are optimized simultaneously,
leading to a set of trade-off solutions called Pareto-optimal solutions, where no solution is
better than the other when considering all objective function values at once (see Section
5.2.1). MOO methods have long been used for data clustering (Mukhopadhyay et al., 2014;
Xia et al., 2013; Wang et al., 2013). If the objectives are contradictory, then a wide variety
of Pareto-optimal solutions can be found. We show that the two objectives of ECM are
indeed in conflict and hold a strong Pareto relation. This leads to a wide variety of Pareto-
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optimal clusterings corresponding to different levels of fuzziness. In Section 5.3, we conduct
experiments to compare the proposed ECM method against state-of-the-art fuzzy center-
based clustering methods. We also propose a method to select a trade-off clustering from the
Pareto-front identified by ECM in section 5.3.4.

5.2 Fuzzy Clustering using Multi-Objective Optimization

In this section we first define the framework of MOO problems, after which we elucidate the
two objective functions which are optimized in ECM within an MOO framework to generate
clusterings with different levels of fuzziness. Finally, we describe how the ECM problem
can be solved by using two popular MOO methods, namely Non-dominated Sorting Genetic
Algorithm II (NSGA-II) (Deb et al., 2002), and Multiobjective Evolutionary Algorithm based
on Decomposition (MOEA/D) (Zhang and Li, 2007; Zhang et al., 2009; Chen and Zhou, 2019).

5.2.1 Multi-Objective Optimization

Let there be n objective functions to be optimized, subject to p constraint functions. Problems
of this form can be written as,

maximize/minimize fi(x) , i = 1, 2, . . . , n

subject to gj(x) ≤ 0 , j = 1, 2, . . . , p, (5.3)

where x is a feasible solution satisfying all gj . x is said to dominate y, if for all i, fi(x)
is at least as optimal as fi(y), and there exists at least one fi(x) more optimal than the
corresponding fi(y). A feasible solution x∗ is said to be optimal, if for all feasible y, x∗

dominates y. In MOO problems, we usually cannot find single optimal solutions as the
objectives are contradictory in nature. Instead we find a set of mutually non-dominating
solutions called Pareto-optimal solutions. The set of images of the Pareto-optimal solutions
in the objective space is called the Pareto front. For a survey on evolutionary computing
approaches used to solve MOO problems, see Zhou et al. (2011).

5.2.2 Objective Functions for Fuzzy Clusters

In ECM, we propose the following two objective functions to be optimized in an MOO
framework,

minimize f1 =

N∑
i=1

c∑
j=1

µij ||xi − vj||2 , (5.4a)

maximize f2 = −
N∑
i=1

c∑
j=1

µijlog(µij) . (5.4b)

One aim of center-based clustering methods is to place the cluster centers in areas having
a high density of data instances. Minimizing the sum of cluster-wise variances ensures the
formation of compact clusters. The objective function f1 given in (5.4a) generalizes the
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idea of variance by weighting the distance between data instances and cluster centers with
the membership degrees of data instances in each cluster. Thus the objective of cluster
compactness is to minimize the function f1 to form compact clusters.

We propose the use of the objective function f2 in (5.4b) to avoid a fixed level of fuzzifi-
cation (specified by m in FCM). f2 is the entropy of membership values (Li and Mukaidono,
1995), which is maximized when all membership values are equal to 1/c, where c is the num-
ber of clusters. If a data point is close to a cluster center, the corresponding membership
value will be greater than 1/c. On the other hand, if a data point is far from a specific cluster
center, its membership to that cluster will be less than 1/c. Increasing the entropy brings all
the membership values for a data point close to 1/c. This essentially increases the level of
fuzzification of the membership values.

Remark. The two objectives to minimize f1 and to maximize f2 in (5.4) are contradict-
ing.

This can be observed easily. To minimize f1, for all i we set µij = 1 if dij = ||xi − vj|| is
minimum, and 0 for all other j. However, for such values of µij we get f2 = 0, which is the
minimum value of f2. Thus minimizing f1 does not maximize f2.

To maximize f2, we first form the Lagrangian for the maximization of f2, subject to the
constraint

∑c
j=1 µij = 1:

L = −
N∑
i=1

c∑
j=1

µijlog(µij) +

N∑
i=1

λi(

c∑
j=1

µij − 1) . (5.5)

From the derivative of the Lagrangian, with respect to µij and λi, we get µij = 1/c. This
value of µij maximizes f2. However, as already observed, f1 is minimized when µij = 1 if dij
is minimum, and 0 for all other j. Hence, the values of µij that maximize f2 do not minimize
f1.

Thus the above remark shows that the two objectives of minimizing f1 and maximizing
f2 are contradicting. Optimizing both in an MOO framework leads to a Pareto-optimal set of
solutions representing the best compromises between the objectives. A wide Pareto front is
formed due to the contradictory nature of the objectives, identifying clusterings with different
levels of fuzziness. Figure 5.1 (a) shows a synthetic dataset containing three clusters A, B,
and C, where A and B are close compared to C. The Pareto front obtained by solving ECM
using the NSGA-II algorithm (to be discussed in Section 5.2.3.1) is shown in Figure 5.1 (b).
The clustering at end cI of the front has a minimum value of f1, with the estimated clusters
being compact having little overlap as shown in Figure 5.1 (c). As we move towards the end
cIV along the front, the clusterings become increasingly fuzzy due to the increase in f2 (and a
consequent increase in f1), characterized by increasing overlap between the estimated clusters.
As fuzziness increases from cI to cIV, the estimated clusters corresponding to closer clusters
A and B first become overlapped before getting overlapped with that of C, as expected (see
Figs. 5.1 (d) - 5.1 (f)).

A simple alternative might be to run FCM for different values of m. However, the AO
algorithm results in erroneous solutions for higher values of m. As shown in Figure 5.2, for
higher values of m, there are data instances that are assigned equal probability to all clusters.
They do not contribute to the location of cluster centers, leading to convergence close to the
initial center locations. The multi-objective method of ECM avoids this error. In Figure 5.1
(f) we observe that in the end of high fuzzification shown in clustering cIV, all the centers
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5. Fuzzy Clustering at Different Levels of Fuzziness

Figure 5.1: Clustering a synthetic dataset (a) using ECM-NSGA-II. The dataset contains
two overlapped clusters A and B, and a third well-separated cluster C. At the top left corner
of the Pareto front in (b), f1 is minimized creating compact clusters with low overlap (c).
At the bottom right corner, f2 is maximized by minimizing −f2, leading to more overlapped
clusters as shown in (f). Across the Pareto front, clusters formed have different levels of
fuzziness, see (d) and (e).

converge to the center of the dataset, as should occur at high levels of fuzzification due to
the equal contribution of every point to all clusters. Another close attempt by Maximum
Entropy Clustering Algorithm (MECA) (Karayiannis, 1994) identifies crisp clusters using a
linear combination of the cluster compactness and the entropy of memberships, weighted by
a fuzzification parameter α. MECA starts with α close to 1 where it considers maximum
entropy, and over the iterations α goes close to 0 to identify crisp clusters at convergence.
However, MECA does not have a stopping criteria to identify fuzzy clusters. MECA also
requires specifying initial and final values to the fuzzification parameter, as well as how to
decrease its value over the number of iterations. In general, one can note a renewed interest
in the possible uses of the entropy of cluster memberships (bin Zhi et al., 2013; Choy et al.,
2017; Yang and Nataliani, 2017). The merit of our method of ECM is that by optimizing
both objectives in a multi-objective setting, ECM identifies Pareto-optimal fuzzy clusters at
different levels of fuzziness, from which an optimal fuzzy clustering can be selected for the
application at hand. Further demonstrations on datasets containing clusters with different
degrees of overlap are discussed in Section C.2 of Appendix C. We also discuss the benefits
of using multiple contradictory objectives in comparison to a combined single objective in
Section C.3 of Appendix C.
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(a) Clustering for m = 2 (b) Clustering for m = 30

(c) Clustering for m = 50 (d) Clustering for m = 100

Figure 5.2: Clustering a dataset with 3 clusters for different levels of fuzziness m = 2, 30,
50, and 100. The instances in different clusters are drawn in red, blue and green and the
instances in the regions of overlap between the clusters are drawn in yellow. For higher values
of m, a large number of instances in the regions of overlap do not contribute to the location
of cluster centers.

5.2.3 Multi-Objective Optimization Methods for ECM

There exists a wide literature on methods that can be used for the simultaneous optimization
of multiple objective functions (Zhan et al., 2021; Zhou et al., 2011). Given the variety in
the approaches towards multi-objective optimization, the methods may have an influence on
different aspects of multi-objective clustering in different ways. We consider two methods:
NSGA-II (Deb et al., 2002) and MOEA/D (Zhang and Li, 2007; Zhang et al., 2009), which
have very different approaches towards multi-objective optimization. The study of both
methods may reveal the benefits one may obtain when using these methods as well as other
multi-objective optimization methods that are similar in their behaviour (Saini and Saha,
2021). Therefore here we discuss the use of NSGA-II and MOEAD/D in the context of ECM
and subsequently study their performance in detail.

5.2.3.1 ECM-NSGA-II

In each iteration of ECM-NSGA-II, a set of chromosomes is maintained called a population,
so that multiple possible clusterings can be considered simultaneously. For each chromosome,
the membership values can be computed using the centers according to the update expression
derived from the Lagrangian of the cost function (5.2) of MEI:

µij = e
−
d2
ij

2σ2
/ c∑

j=1

e
−
d2
ij

2σ2 . (5.6)
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The operations of crossover or mutation are performed to search for chromosomes yielding
better objective function values. In crossover, two chromosomes can be combined to form two
new chromosomes. In mutation, a single value in a chromosome can be altered. Chromosomes
in a population are assigned ranks using the non-dominated sorting, where all chromosomes
in a Pareto front are assigned the same rank. Each chromosome on a Pareto front is assigned
a crowding distance, which is high for chromosomes with fewer chromosomes around it. Elitist
selection of the chromosomes is undertaken for the next iteration using a binary tournament
selection, where (i) higher ranked chromosomes have a higher probability of selection, and (ii)
between chromosomes with the same rank, those with higher crowding distance have a higher
probability of getting selected. A pseudo-code for ECM-NSGA-II is given in Algorithm 4.

Algorithm 4 The algorithm for ECM-NSGA-II

Input: Number of clusters c; Population size pop; number of function evaluations (FE ).
Output: A set of pop non-dominated clusterings.

1: Randomly initialize all pop chromosomes as vectors of c candidate cluster centers.
2: repeat
3: for each chromosome do
4: Evaluate the two objective functions in (5.4).
5: Perform non-dominated sorting to compute the rank.
6: Compute the crowding distance.
7: end for
8: Perform crossover and mutation to generate a new population.
9: Use binary tournament selection to select pop chromosomes from the previous and new

population, for the next iteration.
10: until FE function evaluations are performed.

5.2.3.2 ECM-MOEA/D

ECM-MOEA/D decomposes an MOO problem with n objective functions into pop number
of single objective optimization problems by using the Tchebycheff approach (Zhang and Li,
2007). In each iteration, the population contains the pop best solutions that have been found.
Each subproblem is then optimized using information from its neighbouring subproblems.
Elitism is maintained by periodically adding newly generated non-dominated solutions to an
External Population (EP) and discarding solutions from it that are no longer non-dominated.
A pseudo-code for ECM-MOEA/D is provided in Algorithm 5.

5.2.4 Computation Complexity of ECM

The time complexity of NSGA-II is O(n(pop)2) (Deb et al., 2002), whereas that of MOEA/D
is O(n(pop)T ) (Zhang and Li, 2007). The evaluation of both objective functions requires the
computation of the memberships of N data instances to c clusters. This takes O(Nc) time.
As n = 2 for ECM, every iteration of ECM-NSGA-II takes overall O(max{2(pop)2, Nc})
time, and that of ECM-MOEA/D takes O(max{2(pop)T,Nc}) time. In real-world scenarios,
usually N >> c as well as N >> (pop)2, leading to an O(Nc) time complexity per iteration
for both variants of ECM.
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Algorithm 5 The algorithm for ECM-MOEA/D

Input: Number of clusters c; number of subproblems pop; coefficient vectors with uniform
spread γ1, . . . , γpop where γi = ( i−1

pop−1 ,
pop−i
pop−1); number of neighbours T ; number of function

evaluations FE.
Output: The external population (EP) containing non-dominated clusterings.

1: Initialization :
2: Find the T nearest neighbours for each coefficient vector.
3: Initialize and evaluate x1, . . . ,xpop solution vectors, each formed of c cluster centers.
4: Evaluate the two objective functions in (5.4) on all xi; store the best values as z1 and z2.

5: Iteration :
6: repeat
7: for Each coefficient vector γi do
8: Randomly select two of its T neighbours γj, γl; retrieve the corresponding xj, xl.
9: Apply Differential Evolution mutation and crossover (Zhang et al., 2009) on xi,xj

and xl to form a new solution y.
10: If f1(y) < z1 (and/or f2(y) > z2), then update z1 (and/or z2).
11: If y improves upon the current best solution of γi or any of its T neighbours, then

replace the corresponding solution with y.
12: Remove all vectors from the EP that are dominated by y, and add y to the EP if

none of the existing members dominate it.
13: end for
14: until FE function evaluations are performed.

5.3 Experiments and Results

We conduct various experiments to evaluate the clustering performance of ECM-NSGA-II
and ECM-MOEA/D 1. For convenience of implementation, we minimize −f2 instead of max-
imizing f2 as per (5.4b). The clustering performances of ECM-NSGA-II and ECM-MOEA/D
are compared with the conventional AO algorithms for FCM and MEI. Further compari-
son is undertaken with the Multi-Objective Genetic Algorithm (MOGA) (Mukhopadhyay
et al., 2006) and MOGA based Support Vector Machines (MOGA-SVM) (Mukhopadhyay
and Maulik, 2009), which are two existing MOO methods used to find clusterings when the
number of clusters is known. Both MOGA and MOGA-SVM use J2 (Jm as in eqn. (5.1)
with m = 2) and the Xie-Beni index (Xie and Beni, 1991) to find a fixed number of clusters.
However, since the Xie-Beni index simply scales Jm by the distance between the closest pair
of cluster centers, these two functions are not generally contradicting. Hence, the use of these
two objectives is not likely to give rise to a large variety of trade-off solutions (see Figure
5.5).

In Section 5.3.1 and 5.3.2, we compare the performance of all methods on synthetic and
real datasets. We also propose a method to select a clustering from the Pareto Front of ECM
in Section 5.3.4. In section 5.3.3 we compare the Pareto fronts obtained by the contending
MOO methods.

1MATLAB implementations available at https://github.com/Avisek20/ecm.
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5.3.1 Synthetic Datasets

We created 10 synthetic datasets to compare the performances of all fuzzy clustering methods.
The proximity1-5 datasets test the clustering performance when clusters are drawn closer
together, as shown in Figure 5.3. Datasets spread1-5, on the other hand, test the performance
when the spread of one cluster is progressively increased, as illustrated in Figure 5.4. Table 5.1
contains all information necessary to generate the synthetic proximity and spread datasets.
We also use 20 challenging datasets from the MOCK collection2 (Handl and Knowles, 2007),
having either 2 or 10 dimensions. The full specifications of the synthetic datasets are present
in Table 5.2.

(a) proximity1 (b) proximity2 (c) proximity3 (d) proximity4 (e) proximity5

Figure 5.3: The synthetic proximity datasets.

(a) spread1 (b) spread2 (c) spread3 (d) spread4 (e) spread5

Figure 5.4: The synthetic spread datasets.

Table 5.1: Information to generate the Synthetic Datasets: The Number of Clusters c, Di-
mension of the Data dim, Number of Data Instances in each Cluster Ni, the Multidimensional
Normal Distribution N(µ, σ), where µ is the Vector of Cluster Centers and σ is the Vector
of the Standard Deviations in each Dimension.

Dataset c dim Ni Clusters

proximity1 4 2 100 N([4, 4], [1, 1]), N([4, 10], [1, 1]), N([10, 4], [1, 1]), N([10, 10], [1, 1])
proximity2 4 2 100 N([4.5, 4.5], [1, 1]), N([4.5, 9.5], [1, 1]), N([9.5, 4.5], [1, 1]), N([9.5, 9.5], [1, 1])
proximity3 4 2 100 N([5, 5], [1, 1]), N([5, 9], [1, 1]), N([9, 5], [1, 1]), N([9, 9], [1, 1])
proximity3 4 2 100 N([5.5, 5.5], [1, 1]), N([5.5, 8.5], [1, 1]), N([8.5, 5.5], [1, 1]), N([8.5, 8.5], [1, 1])
proximity5 4 2 100 N([6, 6], [1, 1]), N([6, 8], [1, 1]), N([8, 6], [1, 1]), N([8, 8], [1, 1])
spread1 4 2 100 N([0, 0], [1, 1]), N([0, 10], [1, 1]), N([10, 0], [1, 1]), N([10, 10], [1, 1])
spread2 4 2 100 N([0, 0], [1.5, 1.5]), N([0, 10], [1, 1]), N([10, 0], [1, 1]), N([10, 10], [1, 1])
spread3 4 2 100 N([0, 0], [2, 2]), N([0, 10], [1, 1]), N([10, 0], [1, 1]), N([10, 10], [1, 1])
spread4 4 2 100 N([0, 0], [2.5, 2.5]), N([0, 10], [1, 1]), N([10, 0], [1, 1]), N([10, 10], [1, 1])
spread5 4 2 100 N([0, 0], [3, 3]), N([0, 10], [1, 1]), N([10, 0], [1, 1]), N([10, 10], [1, 1])

2Available at http://personalpages.manchester.ac.uk/mbs/julia.handl/generators.html (last ac-
cessed November 12, 2021).
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Table 5.2: Specifications of the Synthetic Datasets.

Dataset c Dataset Size

proximity1 4 (400,2)
proximity2 4 (400,2)
proximity3 4 (400,2)
proximity4 4 (400,2)
proximity5 4 (400,2)
spread1 4 (400,2)
spread2 4 (400,2)
spread3 4 (400,2)
spread4 4 (400,2)
spread5 4 (400,2)
2d-4c-no0 4 (1572,2)
2d-4c-no1 4 (1623,2)
2d-4c-no2 4 (1064,2)
2d-4c-no3 4 (1123,2)
2d-4c-no4 4 (863,2)
2d-4c-no5 4 (1638,2)
2d-4c-no6 4 (1670,2)
2d-4c-no7 4 (1028,2)
2d-4c-no8 4 (1078,2)
2d-4c-no9 4 (876,2)
10d-4c-no0 10 (1289,10)
10d-4c-no1 10 (958,10)
10d-4c-no2 10 (838,10)
10d-4c-no3 10 (1318,10)
10d-4c-no4 10 (933,10)
10d-4c-no5 10 (1139,10)
10d-4c-no6 10 (977,10)
10d-4c-no7 10 (1482,10)
10d-4c-no8 10 (966,10)
10d-4c-no9 10 (1183,10)

For each dataset, we normalize the data so that each feature is scaled within the range
[−1, 1]. We run both FCM and MEI 50 times for a maximum of 5000 iterations, with an
error tolerance of 10−16. We run ECM-NSGA-II, ECM-MOEA/D, MOGA, and MOGA-SVM
with a population size of 50 for 5000 fitness evaluations. For ECM-NSGA-II, the percentage
of the population undergoing genetic operations was set to 50%, the distribution indices for
crossover and mutation were both set to 20, and during tournament selection one solution is
selected from 2 solutions. For ECM-MOEA/D, the size of the neighborhood is set to 50, and
the crossover probability and differential weight parameters are both set to 0.5 respectively.
The tuning of the parameters of the evolutionary methods to obtain these values are present
in Section C.1 of Appendix C.

For FCM, we set m = 2, as per convention. MEI, ECM-NSGA-II and ECM-MOEA/D
use the admissible error radius parameter σ. In Li and Mukaidono (1995), σ was set to
0.7. However, we have not found any general recommendations regarding the choice σ.
Moreover, we have observed that the centers tend to converge if σ is large when compared
to the spread of the data. We therefore decided against using a constant value of σ across
all datasets. Instead for each dataset, we set σ as the standard deviation of the squared
Euclidean distances between the data instances and the mean of the dataset.

In the presence of the original cluster labels, we can use the Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985) (calculated by assigning each data point to the cluster to which
it has the maximum membership) to compare the performance of the contending methods.
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For each MOO method, the clustering having maximum ARI is selected in each run and the
mean of the maximum ARI over 50 runs is used for comparison. For FCM and MEI, we
report the mean ARI over the 50 runs. The results are detailed in Table 5.3. The outcomes
of the Wilcoxon signed-rank test3 conducted with ECM-NSGA-II and ECM-MOEA/D as the
control are also listed, alongside the average ranks.

We observe that overall ECM-NSGA-II achieves the best ARI, which is also supported by
the average rank as well as the signed-rank test. From Table 5.3 we can observe that on the
five proximity datasets illustrated in Figure 5.3 and on the five spread datasets illustrated
in Figure 5.4, ECM-NSGA-II generally achieves higher ARI values as can be observed from
Table 5.3. We also observe that for the ten-dimensional data, ECM-MOEA/D generally
produces higher ARI compared to the other methods. However both ECM-NSGA-II and
ECM-MOEA/D generally closely follow each other in performance, as can be observed by
their results which are statistically comparable. The performance of ECM-NSGA-II and
ECM-MOEA/D are however significantly better compared to the performance of FCM, MEI,
MOGA and MOGA-SVM.

5.3.2 Real Datasets

We compare the performance of the six methods on fifteen real datasets shown in Table
5.4. Twelve of the datasets are from the UCI Machine Learning Repository (Dheeru and
Karra Taniskidou, 2017). Three of the datasets are high-dimensional gene expression datasets,
available at http://www.stat.cmu.edu/~jiashun/Research/software/GenomicsData/. We
undertake the preprocessing of the datasets as per the discussion in Section 5.3.1 and also
retain the same parameter settings for the contending methods. We report the average of the
maximum ARI achieved by each method over the 50 runs in Table 5.5, along with average
ranks and the results of the Wilcoxon signed-rank test. We observe that ECM-NSGA-II and
ECM-MOEA/D respectively achieve the best ARI for six and nine out of the fifteen datasets.
The rest of the methods do not achieve the best ARI for any of the datasets. ECM-NSGA-
II and ECM-MOEA/D achieve the lowest ranks with results that are significantly different
compared to the results obtained by FCM, MEI, MOGA, and MOGA-SVM. This suggests
the efficacy of the ECM formulation in general and ECM-NSGA-II in particular.

5.3.3 Comparison of Pareto Fronts

Schott’s Spacing Metric (SSM) (Lizárraga et al., 2008) is a measure of the diversity of the
generated Pareto-optimal solutions. We use SSM to compare between the Pareto fronts
of ECM-NSGA-II and ECM-MOEA/D and the set of solutions of MOGA and MOGA-SVM
mapped to the same objective space. ECM-NSGA-II and ECM-MOEA/D obtain much higher
values of SSM when compared with MOGA and MOGA-SVM, as detailed in Table 5.6 which
shows the average SSM observed over 50 runs. This attests to the fact that the objectives of
MOGA and MOGA-SVM with a weak Pareto relation do not lend much diversity in terms
of fuzziness. The entire set of solutions of MOGA and MOGA-SVM maps around the same
point for the proximity1 dataset, as seen in Figure 5.5. The higher values for ECM-MOEA/D

3H1 : Significantly different from the control.
H0: Statistically comparable to the control.
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Table 5.3: Comparison of ARI over Synthetic Datasets.

Dataset FCM MEI MOGA
MOGA- ECM- ECM-

SVM NSGA-II MOEA/D

proximity1 1.0000 0.8138 1.0000 1.0000 1.0000 1.0000
proximity2 1.0000 0.8884 1.0000 1.0000 1.0000 1.0000
proximity3 1.0000 0.9255 1.0000 1.0000 1.0000 1.0000
proximity4 1.0000 0.8868 1.0000 1.0000 1.0000 1.0000
proximity5 0.8775 0.8775 0.8812 0.8831 0.8894 0.8856
spread1 1.0000 0.9256 1.0000 1.0000 1.0000 1.0000
spread2 1.0000 0.9257 1.0000 1.0000 1.0000 1.0000
spread3 0.9867 0.9199 0.9867 0.9867 0.9893 0.9880
spread4 0.9543 0.8551 0.9543 0.9543 0.9730 0.9678
spread5 0.9479 0.8952 0.9486 0.9479 0.9632 0.9613
2d-4c-no0 0.8834 0.8691 0.8837 0.8834 0.9374 0.9050
2d-4c-no1 0.7997 0.7623 0.7730 0.7748 0.8720 0.8865
2d-4c-no2 0.7766 0.7823 0.8916 0.8909 0.9032 0.8927
2d-4c-no3 0.8333 0.8457 0.9378 0.9378 0.9405 0.9394
2d-4c-no4 0.7297 0.3147 0.7882 0.7880 0.7900 0.7785
2d-4c-no5 0.8557 0.8438 0.9020 0.9046 0.9383 0.9188
2d-4c-no6 0.9547 0.9217 0.9550 0.9552 0.9744 0.9586
2d-4c-no7 0.6424 0.6661 0.6857 0.6839 0.8429 0.8942
2d-4c-no8 0.9000 0.8792 0.9235 0.9234 0.9559 0.9242
2d-4c-no9 0.7814 0.7472 0.8888 0.8890 0.9157 0.8874
10d-4c-no0 0.7967 0.8588 0.7799 0.7891 0.8631 0.9243
10d-4c-no1 0.9797 0.9272 0.9702 0.9795 0.9781 0.9872
10d-4c-no2 0.8844 0.9168 0.8846 0.8934 0.9005 0.9119
10d-4c-no3 0.8875 0.8797 0.8881 0.8878 0.8382 0.8940
10d-4c-no4 0.8121 0.8080 0.8319 0.8142 0.8299 0.8346
10d-4c-no5 0.7178 0.7498 0.7453 0.7399 0.7554 0.8156
10d-4c-no6 0.8727 0.8670 0.8653 0.8590 0.8763 0.8746
10d-4c-no7 0.9940 0.9940 0.9940 0.9940 0.9951 0.9945
10d-4c-no8 0.9603 0.9334 0.9640 0.9639 0.9720 0.9695
10d-4c-no9 0.9577 0.8474 0.9571 0.9526 0.9176 0.9607

Avg. Rank 3.70 5.30 3.00 3.13 1.67 1.67
ECM-NSGA-II (H0/H1) H1 H1 H1 H1 - H0

ECM-NSGA-II (p-val) 5.45E-04 7.69E-06 2.03E-03 1.84E-03 - 0.9090
ECM-MOEA/D (H0/H1) H1 H1 H1 H1 H0 -
ECM-MOEA/D (p-val) 1.82E-05 2.12E-06 1.81E-04 1.53E-04 0.9090 -

84



5. Fuzzy Clustering at Different Levels of Fuzziness

Table 5.4: Specifications of the Real Datasets.

Dataset
Dataset Number
Size of clusters

Balance Scale (B. Scale) (625,4) 3
Breast Tissue (B. Tissue) (106,9) 6
Breast Cancer Wisconsin (wdbc) (683,9) 2
banknote authentication (banknote) (1372,4) 2
Echocardiogram (echo) (106,9) 2
Ecoli (336,7) 8
Iris (150,4) 3
magic (19020,10) 2
seeds (210,7) 3
sonar (208,60) 2
User Knowledge Modeling (ukm) (258,5) 4
wine (178,13) 4
colon cancer (62,2000) 2
lung cancer (181,12533) 2
prostate cancer (102,6033) 2

Table 5.5: Comparison of ARI over Real Datasets.

Dataset FCM MEI MOGA
MOGA- ECM- ECM-

SVM NSGA-II MOEA/D

B. scale 0.1448 0.1440 0.2886 0.2454 0.3156 0.2931
B. Tissue 0.2885 0.2268 0.2764 0.2763 0.2914 0.2980
wdbc 0.8300 0.8010 0.8300 0.8300 0.8831 0.8141
banknote 0.0452 0.0565 0.0925 0.0976 0.3083 0.2828
echo 0.0854 0.1371 0.0854 0.0854 0.1378 0.1342
Ecoli 0.3684 0.4225 0.4837 0.4621 0.6050 0.4591
Iris 0.7287 0.7652 0.7484 0.7409 0.8094 0.8123
magic 0.0577 0.0275 0.0758 0.0741 0.1367 0.0879
seeds 0.7266 0.4565 0.7266 0.7266 0.6798 0.7308
sonar 0.0064 0.0057 0.0100 0.0147 0.0221 0.0318
ukm 0.1777 0.3227 0.2058 0.2188 0.2476 0.3428
wine 0.8498 0.3786 0.8666 0.8649 0.8511 0.8743
colon cancer -0.0064 0.0310 0.0122 0.0332 0.0510 0.3089
lung cancer -0.0003 -0.0093 0.0384 0.0416 0.0413 0.3090
prostate cancer 0.0044 0.0085 0.0087 0.0087 0.0399 0.1032

Avg. Rank 4.8 4.93 3.40 3.33 2.07 1.80
ECM-NSGA-II (H0/H1) H1 H1 H1 H1 - H0

ECM-NSGA-II (p-val) 8.54E-04 1.53E-03 5.37E-03 4.27E-03 - 0.4543
ECM-MOEA/D (H0/H1) H1 H1 H1 H1 H0 -
ECM-MOEA/D (p-val) 3.05E-04 1.22E-04 5.37E-03 8.54E-04 0.4543 -

compared to ECM-NSGA-II indicate that the former obtains a greater diversity of solutions.
This can also be observed from Figure 5.5.

We undertake further comparisons of the Pareto fronts using the Epsilon Indicator (EI)
(Lizárraga et al., 2008) which is the minimum factor by which all elements of the control
Pareto front must be multiplied to have all its solutions dominated by a candidate Pareto
front. Thus, values of EI lower than unity indicate dominance over the control front (for a
minimization problem). Table 5.7 lists the EI values with the Pareto fronts of ECM-NSGA-II
and ECM-MOEA/D as control. The high values for MOGA and MOGA-SVM show that the
Pareto fronts obtained by ECM-NSGA-II as well as ECM-MOEA/D dominate the solutions of
MOGA and MOGA-SVM. The low values for ECM-NSGA-II with respect to ECM-MOEA/D
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Table 5.6: Comparison of Schott’s Spacing Metric over Synthetic and Real Datasets.

Dataset MOGA MOGA-SVM ECM-NSGA-II ECM-MOEA/D

Synthetic Datasets

proximity1 0.0006 0.0057 6.3634 7.3967
proximity2 0.0019 0.0003 6.4726 7.8623
proximity3 0.0302 0.0278 8.0874 10.9807
proximity4 0.0095 0.0094 8.8365 14.2167
proximity5 0.0211 0.0323 6.8797 17.2721
spread1 0.0049 0.0068 10.1438 7.4451
spread2 0.0150 0.0113 8.0367 10.5313
spread3 0.0012 0.0005 7.6440 11.5325
spread4 0.0045 0.0036 8.2167 13.7062
spread5 0.0099 0.0075 8.3366 14.4581
2d-4c-no0 0.0631 0.0357 30.2049 71.8041
2d-4c-no1 0.1985 0.1139 25.8570 68.0962
2d-4c-no2 0.3686 0.4559 20.0541 64.4836
2d-4c-no3 0.0399 0.0383 16.2249 30.4269
2d-4c-no4 0.4166 0.3300 11.1599 25.4085
2d-4c-no5 0.0304 0.0590 24.4067 64.0425
2d-4c-no6 0.1109 0.0605 28.2815 82.7078
2d-4c-no7 0.2497 0.2106 17.7314 37.1530
2d-4c-no8 0.0068 0.0176 20.9853 42.6268
2d-4c-no9 0.1765 0.4639 16.5878 47.5745
10d-4c-no0 0.6852 0.6774 17.6102 18.8409
10d-4c-no1 0.3491 1.3350 11.6804 8.8525
10d-4c-no2 0.2860 0.4526 11.2093 13.4645
10d-4c-no3 0.1105 0.5670 20.8087 17.2844
10d-4c-no4 0.4578 0.7954 18.8652 9.8760
10d-4c-no5 0.3732 0.4289 14.9302 12.1260
10d-4c-no6 0.8254 0.9264 15.3337 16.6048
10d-4c-no7 0.1713 0.2292 23.9735 26.9339
10d-4c-no8 0.2541 0.3944 14.6141 16.7499
10d-4c-no9 0.5031 0.2878 17.1380 23.4287

Real Datasets

B. scale 3.0929 5.9610 12.4141 10.3693
B. Tissue 0.0005 0.0491 0.0934 1.6077
wdbc 0.0003 0.2422 1.1463 2.1064
banknote 3.9010 5.5631 9.0193 12.8551
echo 0.0283 0.0456 0.8030 1.4726
Ecoli 0.2386 0.3014 9.9088 10.4312
Iris 0.4077 0.2300 1.4639 0.6820
magic 1.8897 9.2838 98.5569 65.4145
seeds 0.4267 0.5103 1.4072 1.1392
sonar 0.5935 0.4166 12.8226 16.0611
ukm 0.5427 0.6283 1.7411 2.9051
wine 0.0515 0.1027 1.9310 2.4930
colon cancer 0.1437 0.2222 46.3518 50.5907
lung cancer 0.3318 0.1213 449.5072 434.2873
prostate cancer 0.2542 0.9114 158.6974 475.1791

Avg. Rank 3.60 3.40 1.78 1.22
ECM-NSGA-II (H0/H1) H1 - H1

ECM-NSGA-II (p-val) 5.18E-09 5.18E-09 - 3.54E-04
ECM-MOEA/D (H0/H1) H1 H1 H1 -
ECM-MOEA/D (p-val) 5.18E-09 5.18E-09 3.54E-04 -

suggest that the Pareto front of the former generally dominates that of the latter, as can be
seen from Figure 5.5 for the proximity1 dataset.
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Figure 5.5: Comparison of Pareto fronts on the proximity1 synthetic dataset

5.3.4 Selection of a Suitable Clustering from the Pareto Set

For unsupervised applications, due to the absence of cluster labels, the best solution may be
chosen from the Pareto set found by ECM based on some internal (Wu et al., 2015; Bezdek
et al., 2016) or multi-criterion decision making indices (Qu et al., 2016). Alternatively, one
can select a suitable trade-off clustering by inspecting the Pareto front.

We present a method to select a suitable clustering from the Pareto fronts identified by
ECM-NSGA-II and ECM-MOEA/D. One can observe that starting with the extreme Pareto
optimal solution having the lowest value of cluster compactness f1, if the points along the
Pareto front fall below the line joining the two ends of the front, then there has been a greater
increase in entropy f2 compared to the increase in the value of cluster compactness f1. This
means that some of the cluster centers have moved slightly closer to each other (evident from
a slight increase in cluster compactness f1) but resulting in a large increase in the entropy
f2. This is only possible if the clusters in question are truly overlapped because the instances
in the region of overlap facilitate a large increase in entropy f2. The knee-point from this
region of the Pareto front provides an optimal trade-off solution identifying clusters with the
appropriate level of overlap.

On the other hand, if the clusterings along the Pareto front were to move above the said
line, there would be a larger increase in cluster compactness compared to the increase in
entropy. This is only possible if the true clusters are well-separated, and the identified cluster
centers have moved closer to each other and away from the true cluster centers. Hence,
a deviation above and away from the line joining the end-points indicates that the true
clusters are well-separated. In this scenario, the clustering with the minimum value of cluster
compactness is the best choice.

Based on these insights, we propose the following method for selecting a clustering from
the Pareto front.
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Table 5.7: Comparison of Pareto Fronts on Real and Synthetic Datasets using Epsilon Indi-
cator

Dataset
ECM-NSGA-II ECM-MOEA/D

MOGA MOGA-SVM ECM-MOEA/D MOGA MOGA-SVM ECM-NSGA-II

Synthetic Datasets

proximity1 26.6168 26.6180 1.0202 26.6130 26.6142 0.9999
proximity2 11.2888 11.2888 1.0019 11.2883 11.2883 0.9999
proximity3 5.4729 5.4729 1.0288 5.4706 5.4706 0.9996
proximity4 3.2577 3.2577 1.0286 3.2575 3.2575 0.9999
proximity5 2.5073 2.5045 1.0308 2.5072 2.5044 0.9999
spread1 423.3354 439.0631 1.0396 423.0901 438.8086 0.9994
spread2 107.0529 106.6815 1.0304 107.0333 106.6619 0.9998
spread3 37.4213 37.6199 1.0445 37.4083 37.6069 0.9997
spread4 24.1407 24.1058 1.0072 24.1347 24.0998 0.9998
spread5 8.7974 8.8067 1.0049 8.7966 8.8058 0.9999
2d-4c-no0 6.5977 6.5937 1.0464 6.3051 6.3012 0.9999
2d-4c-no1 5.0339 5.0705 1.0154 4.9577 4.9938 0.9999
2d-4c-no2 3.8840 3.4271 1.0212 3.8837 3.3560 0.9999
2d-4c-no3 3.5216 3.5216 1.0020 3.5146 3.5146 0.9999
2d-4c-no4 1.8235 1.8302 1.0348 1.8234 1.8303 0.9999
2d-4c-no5 4.0648 4.0603 1.0001 4.0646 4.0601 0.9999
2d-4c-no6 5.0136 5.0136 1.0026 5.0007 5.0007 0.9999
2d-4c-no7 4.8158 5.3224 1.0027 4.8028 5.3080 0.9999
2d-4c-no8 10.9662 10.8218 1.0070 10.8903 10.8212 0.9999
2d-4c-no9 7.2298 7.1701 1.0149 7.1231 7.0643 0.9999
10d-4c-no0 1.9592 1.9571 1.1234 1.9575 1.9554 0.9991
10d-4c-no1 1.52825 1.5285 1.0540 1.5280 1.5280 0.9997
10d-4c-no2 1.6823 1.6899 1.0068 1.6809 1.6886 0.9992
10d-4c-no3 1.7986 1.7985 1.1495 1.7334 1.7332 0.9993
10d-4c-no4 1.8202 1.8202 1.0941 1.8190 1.8190 0.9993
10d-4c-no5 1.6006 1.6005 1.0466 1.5999 1.5999 0.9996
10d-4c-no6 2.2364 2.2364 1.0561 2.2349 2.2349 0.9993
10d-4c-no7 4.4895 4.4913 1.0346 4.4846 4.4864 0.9989
10d-4c-no8 2.8754 2.8754 1.0443 2.8732 2.8732 0.9992
10d-4c-no9 2.8778 2.8778 1.0614 2.8746 2.8746 0.9989

Real Datasets

B. scale 1.0130 1.0129 1.0090 1.0080 1.0070 0.9973
B. Tissue 9.9587 9.1640 6.6150 12.0560 11.1250 3.5615
wdbc 144.6750 144.6750 1.0753 134.5460 134.5460 0.9810
banknote 8.7460 8.6840 1.0190 8.7450 8.6820 0.9990
echo 22.6990 22.7130 1.0530 105.7230 105.7820 4.6570
Ecoli 2.6260 3.6970 1.8710 2.5980 3.4520 1.0350
Iris 8.4800 8.2780 1.0080 10.5600 10.3000 1.2440
magic 1.1052 1.1052 1.0000 1.1052 1.1052 1.0047
seeds 25.2700 25.5100 2.3730 17.4700 17.6360 0.6910
sonar 4.1955 4.4084 1.0000 1.0508 1.0079 4.4088
ukm 2.7490 2.7490 0.9596 2.8640 2.8640 1.0590
wine 1.3861 1.3862 1.0145 1.3856 1.3857 0.9997
colon cancer 3.0893 3.0893 0.9999 1.0051 1.0051 3.0737
lung cancer 7.6850 7.6850 1.0000 7.7053 7.7053 1.0026
prostate cancer 2.9077 2.9081 0.9999 2.8927 2.8934 1.0051

• If the first three points4 do not lie above the line joining the endpoints, traverse the
Pareto front till it touches/ crosses the line joining the endpoints. Choose the clustering
corresponding to the point lying at maximum distance from the line within the traversed

4Three points are considered to observe the general trend of the front.
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region.

• Otherwise, choose the clustering corresponding to the minimum value of cluster com-
pactness f1.

For example, let us consider the dataset in Figure 5.1. We observe from the Pareto front
in Figure 5.1 that starting from the clustering cI, the Pareto front dips below the line joining
point cI and cIV. Therefore, we traverse the Pareto front until it crosses the red line joining
the endpoints. Within this region, the clustering cII lies at maximum distance from the red
line. Hence using the above method, cII is chosen as the appropriate trade-off clustering.
Let us also consider a dataset with three well-separated, equally spaced clusters, which is
shown in the first row of Table 5.8 along with the obtained Pareto front. As the Pareto
front is observed to rise above the red line joining the extremities, the clustering having the
minimum value of cluster compactness f1 is selected (marked with a red circle). The final
cell of the first row of Table 5.8 shows the corresponding clustering. Further demonstrations
of the effectiveness of this method over a number of synthetic datasets are shown in the rest
of Table 5.8 and Table 5.9.
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Table 5.8: The Selection of a Suitable Trade-off Clustering across Different Datasets.

Description Original Data Pareto Front Selected Clustering
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Table 5.9: (Contd. from Table VI) The Selection of a Suitable Trade-off Clustering across
Different Datasets.

Description Original Data Pareto Front Selected Clustering
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Table 5.10 contains the performance of the proposed method of selecting a clustering from
the Pareto front of ECM-NSGA-II and ECM-MOEA/D on the synthetic and real datasets.
Here the performance is measured in terms of ARI. For FCM and MEI the mean and standard
deviation of the ARI over 50 runs is reported. For MOGA and MOGA-SVM we select the
maximum ARI from the Pareto front in each run, and report the mean and standard deviation
over 50 runs. For ECM-NSGA-II and ECM-MOEA/D we use the proposed method to select a
trade-off clustering in each run. The mean and standard deviation of the ARI of the selected
clustering over 50 runs is reported. We observe in Table 5.10 that the top performing methods
in order of the average ranks are MOGA, MOGA-SVM, ECM-MOEA/D and ECM-NSGA-II,
however the performance of these four methods are statistically comparable. We note that
when using the proposed method to select a clustering from the Pareto front, the performance
of both ECM-NSGA-II and ECM-MOEA/D is significantly better in comparison to FCM and
MEI, and is statistically comparable to MOGA and MOGA-SVM.
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Table 5.10: Comparison of ARI over the Artificial and Real Datasets

Dataset FCM MEI MOGA MOGA-SVM ECM-NSGA-II ECM-MOEA/D

proximity1 1.0000 0.8138 1.0000 1.0000 1.0000 1.0000
proximity2 1.0000 0.8884 1.0000 1.0000 1.0000 1.0000
proximity3 1.0000 0.9255 1.0000 1.0000 1.0000 1.0000
proximity4 1.0000 0.8868 1.0000 1.0000 1.0000 1.0000
proximity5 0.8775 0.8775 0.8812 0.8831 0.8864 0.8626
spread1 1.0000 0.9256 1.0000 1.0000 1.0000 1.0000
spread2 1.0000 0.9257 1.0000 1.0000 1.0000 1.0000
spread3 0.9867 0.9199 0.9867 0.9867 0.9867 0.9887
spread4 0.9543 0.8551 0.9543 0.9543 0.9562 0.9640
spread5 0.9479 0.8952 0.9486 0.9479 0.9568 0.9594
2d-4c-no0 0.8834 0.8691 0.8837 0.8834 0.8833 0.8866
2d-4c-no1 0.7997 0.7623 0.7730 0.7748 0.7833 0.8571
2d-4c-no2 0.7766 0.7823 0.8916 0.8909 0.8637 0.7278
2d-4c-no3 0.8333 0.8457 0.9378 0.9378 0.8990 0.9225
2d-4c-no4 0.7297 0.3147 0.7882 0.7880 0.7752 0.7422
2d-4c-no5 0.8557 0.8438 0.9020 0.9046 0.9028 0.8767
2d-4c-no6 0.9547 0.9217 0.9550 0.9552 0.9587 0.9481
2d-4c-no7 0.6424 0.6661 0.6857 0.6839 0.8371 0.8608
2d-4c-no8 0.9000) 0.8792 0.9235 0.9234 0.9492 0.9229
2d-4c-no9 0.7814 0.7472 0.8888 0.8890 0.8899 0.8626
10d-4c-no0 0.7967 0.8588 0.7799 0.7891 0.8513 0.8674
10d-4c-no1 0.9797 0.9272 0.9702 0.9795 0.9458 0.9863
10d-4c-no2 0.8844 0.9168 0.8846 0.8934 0.8939 0.9009
10d-4c-no3 0.8875 0.8797 0.8881 0.8878 0.7929 0.8130
10d-4c-no4 0.8121 0.8080 0.8319 0.8142 0.7811 0.8339
10d-4c-no5 0.7178 0.7498 0.7453 0.7399 0.6977 0.7155
10d-4c-no6 0.8727 0.8670 0.8653 0.8590 0.8418 0.8708
10d-4c-no7 0.9940 0.9940 0.9940 0.9940 0.9849 0.9889
10d-4c-no8 0.9603 0.9334 0.9640 0.9639 0.9577 0.9507
10d-4c-no9 0.9577 0.8474 0.9571 0.9526 0.9071 0.9515

B. scale 0.1448 0.1440 0.2886 0.2454 0.1990 0.1447
B. Tissue 0.2885 0.2268 0.2764 0.2763 0.2587 0.2968
wdbc 0.8300 0.8010 0.8300 0.8300 0.8117 0.8104
banknote 0.0452 0.0565 0.0925 0.0976 0.0994 0.1046
echo 0.0854 0.1371 0.0854 0.0854 0.1370 0.1160
Ecoli 0.3684 0.4225 0.4837 0.4621 0.5125 0.4511
Iris 0.7287 0.7652 0.7484 0.7409 0.7548 0.7536
magic 0.0577 0.0275 0.0758 0.0741 0.0764 0.0769
seeds 0.7266 0.4565 0.7266 0.7266 0.6579 0.6799
sonar 0.0064 0.0057 0.0100 0.0147 0.0157 0.0296
ukm 0.1777 0.3227 0.2058 0.2188 0.2320 0.2339
wine 0.8498 0.3786 0.8666 0.8649 0.8421 0.8315
colon -0.0064 0.0310 0.0122 0.0332 0.0416 0.2995
lung -0.0003 -0.0093 0.0384 0.0416 0.0388 0.0086
prostate 0.0044 0.0085 0.0087 0.0087 0.0053 0.1032

Avg. Rank 3.56 4.84 2.49 2.53 2.93 2.67
MOGA (H0/H1) H1 H1 - H0 H0 H0

MOGA (p-val) 2.49E-04 2.39E-05 - 0.9064 0.5377 0.7695
MOGA-SVM (H0/H1) H1 H1 H0 - H0 H0

MOGA-SVM (p-val) 2.78E-04 1.49E-05 0.9064 - 0.3135 0.8342
ECM-NSGA-II (H0/H1) H1 H1 H0 H0 - H0

ECM-NSGA-II (p-val) 3.88E-02 4.08E-05 0.5377 0.3135 - 0.3534
ECM-MOEA/D (H0/H1) H1 H1 H0 H0 H0 -
ECM-MOEA/D (p-val) 3.78E-03 1.42E-05 0.7695 0.8342 0.3534 -
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5.4 Discussions

We propose a fuzzy center-based clustering method by ECM using the MOO methods NSGA-
II and MOEA/D, to produce fuzzy clusterings at different levels of fuzziness. The proposed
methods are able to identify clusters with different levels of overlap, with ECM-NSGA-II
producing slightly better results on lower dimensional datasets. On the other hand the
MOEA/D variant shows better results on higher dimension datasets, and is generally observed
to produce more uniformly spaced clusterings along Pareto fronts. While the results of
ECM-NSGA-II and ECM-MOEA/D are statistically comparable, we recommend the use
of ECM-NSGA-II for lower dimensional datasets and the use of ECM-MOEA/D on higher
dimensional datasets since the methods were observed to generally have a slight edge in
performance in these cases. Additionally, we present a method to select a suitable trade-
off clustering from the Pareto front. Future investigations can be towards identifying an
appropriate number of clusters, incorporating different distance metrics such as in multiple
kernel clustering (Chen et al., 2011; Liu et al., 2017b), or towards different methods such as
fuzzy possibilistic clustering (Tsai et al., 2012; Saha and Das, 2018).
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Chapter 6

Transfer Clustering using Multiple
Kernel Metrics Learned under
Multi-Instance Weak Supervision

Summary

Multiple kernel clustering methods have been quite successful recently especially concerning
the multi-view clustering of complex datasets. These methods simultaneously learn a multi-
ple kernel metric while clustering in an unsupervised setting. With the motivation that some
minimal supervision can potentially increase their effectiveness, we propose a Multiple Kernel
Transfer Clustering (MKTC) method that can be described in terms of two tasks: a source
task, where the multiple kernel metric is learned, and a target task where the multiple kernel
metric is transferred to partition a dataset. In the source task, we create a weakly super-
vised multi-instance subset of the dataset, where a set of data instances are together provided
some labels. We put forth a Multiple Kernel Multi-Instance k-Means (MKMIKM) method
to simultaneously cluster the multi-instance subset while also learning a multiple kernel met-
ric under weak supervision. In the target task, MKTC transfers the multiple kernel metric
learned by MKMIKM to perform unsupervised single-instance clustering of the entire dataset
in a single step. The advantage of using a multi-instance setup for the source task is that it
requires reduced labeling effort to guide the learning of the multiple kernel metric. Our formu-
lations lead to a significantly lower computational cost in comparison to the state-of-the-art
multiple kernel clustering algorithms, making them more applicable to larger datasets. Exper-
iments over benchmark computer vision datasets suggest that MKTC can achieve significant
improvements in clustering performance in comparison to the state-of-the-art unsupervised
multiple-kernel clustering methods and other transfer clustering methods.

6.1 Introduction

Among the various factors affecting center-based clustering, two of the factors that were
discussed in Section 1.2 of Chapter 1 were the features of the data instances considered
and the distance metric used. As clustering methods typically work in an unsupervised
setting, the features and the distance metric are generally predetermined. Some flexibility
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in the choice of features can be provided through feature weighting (Huang et al., 2005)
and subspace clustering approaches (Elhamifar and Vidal, 2013; Soltanolkotabi et al., 2014).
Metric learning approaches allow learning a distance metric that benefits cluster recognition
(Xing et al., 2003; Bilenko et al., 2004; Basu et al., 2010). Among metric learning approaches,
multiple kernel clustering methods (Zhao et al., 2009a; Lu et al., 2014; Du et al., 2015; Liu
et al., 2016; Li et al., 2016; Wang et al., 2017; Liu et al., 2017b) have the advantage of learning
from a wide range of possible metrics. This is achieved by learning a combination of several
predetermined kernel metrics that best fits a dataset. This advantage has been instrumental
in improving the performance of recent unsupervised multiple kernel clustering algorithms
(Zhu et al., 2018; Liu et al., 2019; Liu et al., 2019; Liu et al., 2020b; Zhou et al., 2020; Liu
et al., 2020a,c; Han et al., 2018a,b; Ren and Sun, 2020). Some additional supervision may
potentially improve clustering performances, by increasing the bias of the clustering model
to learn the relevant features or a suitable distance metric that better fits the data at hand
(Law et al., 2017; Ji et al., 2019).

Ideally, under full supervision, all the data points are provided with accurate labels.
Hence, the most informed selection of features and distance metrics is feasible. However
in several domains of applications, obtaining labels for all data points from experts can be
too expensive, making it infeasible for large datasets. Broadly there are four categories of
approaches to deal with the lack of full supervision (Ratner et al., 2019 (accessed July 16,
2021); (Ratner et al., 2019, 2020). Active Learning (Xiong et al., 2017; Basu et al., 2004a;
Grira et al., 2008; Xiong et al., 2013) aims to estimate the best subset of data instances that
experts can assign new labels to. Semi-supervised Learning (Basu et al., 2006; Bair, 2013;
Kulis et al., 2009; Yu et al., 2015; Soares et al., 2017) finds the most appropriate way to
utilize a usually larger set of unlabeled data along with a smaller labeled dataset to improve
prediction. Transfer Learning (Pan and Yang, 2010; Deng et al., 2016; Jiang and Chung,
2012; Han et al., 2019) involves the use of models that have already been trained on different
tasks in usually a similar domain of application. Weak Supervision (Zhou, 2017; Ratner
et al., 2020; Xu et al., 2015; Durand et al., 2017; Zhou et al., 2018) focuses on acquiring
easier to obtain but potentially noisier labels, often at a higher level of abstraction than
that of instance-level labeling. In the field of clustering, Law et al. (2017) was motivated by
the weak supervision approach of Multi-Instance Learning (Jin et al., 2009; Dietterich et al.,
1997) that forms sets of data instances called bags, and assigns a vector of class labels to
each bag, indicating whether a class has an instance in that bag. This assignment of labels
to a higher level of abstraction (i.e., to the bags) instead of to the individual data instances
requires less labeling effort from experts. Based on this approach, Law et. al proposed a
weakly supervised multi-instance clustering model that learns a Mahalanobis distance while
clustering the dataset (Law et al., 2017).

We are motivated by the notion of including some degree of supervision to improve the
identification of clusters in a dataset, while also requiring the associated labeling effort to
be low, as was discussed in Section 1.4 of Chapter 1. Therefore we propose a method called
Multiple Kernel Transfer Clustering (MKTC) which aims to cluster a dataset using a multiple
kernel metric learned under weak supervision. The clustering method is divided into a source
task and a target task, which is visually summarised in Figure 6.1. The source task learns a
multiple kernel metric under weak supervision. This is accomplished by constructing a multi-
instance subset of the dataset, where multiple data instances together form a bag. To each
bag, weakly supervised labels are assigned by an expert in the form of a vector of possible

95



6. Transfer Clustering using Multiple Kernel Metrics Learned under Weak Supervision

classes that may have instances in the bag. We propose a new Multiple Kernel Multi-Instance
k-Means (MKMIKM) objective to learn a multiple kernel metric while simultaneously clus-
tering the weakly supervised multi-instance subset. The MKMIKM objective is optimized
using an alternating-optimization (AO) algorithm that has computation cost linear in the
size of the dataset, in comparison to the state-of-the-art multiple kernel methods that have
a higher cost that is quadratic in the size of the dataset. In the target task of MKTC, we
transfer in the multiple kernel metric learnt in the source task, and perform unsupervised
single-instance clustering of the original dataset in a single step.

Figure 6.1: The proposed Multiple Kernel Transfer Clustering (MKTC) method, described
in terms of a source task and a target task. In the source task, a multi-instance subset of the
dataset is constructed, where multiple data instances together form a bag to which weakly
supervised labels are assigned in the form of a (possibly noisy) vector of classes that may
have instances in the bag. The source task subset is clustered by our proposed Multiple
Kernel Multi-Instance k-Means (MKMIKM), which simultaneously learns a multiple kernel
metric parameterized by w. In the target task of MKTC, w is transferred in from the source
task along with the cluster membership matrix H to perform unsupervised single-instance
clustering of the entire dataset in a single step.

To the best of our knowledge, transfer learning has not been previously used in the context
of center-based clustering, where model parameters are transferred between vastly different
source and target tasks, such as between a weakly supervised multi-instance source task and
an unsupervised single-instance target task for the proposed MKTC. Hence we also define a
formal notion of transfer learning for center-based clustering approaches, which serves as a
framework that we follow to define our proposed method of MKTC. Thus the contributions
of our work presented in this chapter are as follows:

• We formalize the notion of transfer learning for center-based clustering in Section 6.2.

• We propose a novel method called MKTC based on this framework, which is divided
into a source task where a multiple kernel metric is learned, and a target task where
the metric is transferred to cluster the dataset.

• In the source task, the multiple kernel metric is learned in a multi-instance weakly
supervised setup, which allows for reduced labeling effort from experts in comparison
to a fully supervised setup.

• The multiple kernel metric is learned by our proposed MKMIKM AO algorithm in
O(mkn(s)) time, in comparison to the O(mkn(s)2) time required by the state-of-the-art
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multiple kernel methods, where m is the number of kernels, k is the number of clusters,
n(s) is the size of the source task dataset.

• The target task of our proposed MKTC transfers in the multiple kernel metric learned in
the source task to bias the method and perform single-instance unsupervised clustering
of the entire dataset in a single step.

• The overall computation cost of MKTC is O(mkn(s)n(t)), where n(t) is the size of
the target task dataset and n(s) < n(t). This is an important reduction in cost from
the O(mkn(t)2) cost required by state-of-the-art multiple kernel clustering methods to
cluster the target task dataset, making the proposed method better suited for clustering
large datasets.

The rest of the chapter is thus organized in the following way. In Section 6.2, the formal
notion of transfer learning for center-based clustering is defined. We discuss the related
literature on multi-instance clustering under weak supervision and multiple kernel clustering
in Section 6.3. In Section 6.4 we discuss the proposed approach of MKTC, in terms of
the multi-instance weakly supervised approach to learn the multiple kernel distance metric
in Section 6.4.1, and following which the proposed single-instance unsupervised clustering
approach is discussed in Section 6.4.2. The experiments studied the efficacy of the proposed
methods are discussed in Section 6.5, and finally our concluding remarks on this chapter are
provided in Section 6.6.

6.2 Transfer Learning for Center-Based Clustering

Transfer Learning aims to bias a statistical model by learning model parameters in a source
task and using some or all of the learned parameters to improve learning in a different target
task (Pan and Yang, 2010; Zhuang et al., 2021). Transfer Learning has been observed to be
effective when the source and target tasks are in similar domains of application, with addi-
tional experience or expertise often being required to perform well in very different domains
(Rosenstein et al., 2005; Ying et al., 2018). For a general center-based clustering model, a
framework for transfer learning can be defined in terms of first learning model parameters
from a source task (superscripted by (s)):

min
n∑

i=1

k∑
j=1

H
(s)
ij d

(s)

f (s)(f
(s)(x

(s)
i ), f (s)(v

(s)
j )).

Here the source task dataset X(s) = {x(s)
1 , ...,x

(s)
n }, x

(s)
i ∈ Rd, is clustered by estimating

the cluster centers V (s) = {v(s)
1 , ...,v

(s)
k }, v

(s)
j ∈ Rd, and the cluster membership matrix

H(s) ∈ [0, 1]n×k. In addition, transformations of the data space f (s)(.) can be learned if
feature selection or extraction is considered (e.g. sparse clustering, subspace clustering, etc.),

and the distance metric d
(s)

f (s) defined in the transformed space can also be learned. From this

framework, f (s) or d
(s)

f (s) can be learned from a source task under some degree of supervision

(Bengio, 2012; Pan et al., 2008), and transferred to the target task (superscripted by (t))
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involving dataset X(t) where the now biased learner can estimate V (t) and H(t):

min
n∑

i=1

k∑
j=1

H
(t)
ij d

(s)

f (s)(f
(s)(x

(t)
i ), f (s)(v

(t)
j )).

In this chapter, we propose a Multiple Kernel Transfer Clustering method which, following
this framework, has a source task and a target task. The source task involves estimating a
multiple kernel metric on a multi-instance weakly supervised subset of a dataset. The multiple
kernel metric learned from this source task is then transferred to the target task of single-
instance unsupervised clustering of the entire dataset. The proposed source and target tasks
are defined in Sections 6.4.1 and 6.4.2. Although the clustering tasks are different, both tasks
lie in the same domain, thereby leading us to expect improved clustering performance.

In the related area of semi-supervised clustering, improvements in clustering were achieved
by introducing some degree of supervision when estimating model parameters or clustering
constraints on a fully supervised subset of a dataset (Basu et al., 2004b; Bai et al., 2020).
We differentiate semi-supervised approaches from the defined transfer clustering framework
in the following way: In semi-supervised learning, the source and target clustering tasks are
similar in nature and generally operate on the same dataset, whereas in transfer learning we
can consider vastly different source and target tasks. This allows us to propose our method
involving a multi-instance weakly supervised clustering source task, and a single-instance
unsupervised clustering target task.

6.3 Related Works

In this section, we discuss the areas of multi-instance weakly supervised clustering, followed
by a discussion on multiple kernel clustering. These two areas motivate our proposed method
of MKTC, described in Section 6.4.

6.3.1 Multi-Instance Clustering under Weak Supervision

In Multi-Instance learning, a dataset X ∈ Rn×d is formed from sets of data instances X =
[XT

1 , ..., XT
b ]T , where each set is called a bag and can contain variable number of data instances

Xi ∈ Rni×d,
∑b

i=1 ni = n. Additionally a bag label matrix Y ∈ {0, 1}b×k is formed, where
each row yi ∈ {0, 1}k informs which of the k categories have instances in bag i. The labeling
effort can be greatly reduced by asking an expert to provide labels under the following relaxed
conditions: (i) at least one class needs to be labeled that has an instance in that bag, and
(ii) it is not necessary for the class of each data instance to be labeled by an expert, nor is it
necessary for all classes that have instances in a bag to be labeled.

Law et al. (2017) proposed an objective of a Multi-Instance k-Means clustering model that
estimates cluster centers V = [v1

T , ...,vk
T ]T ∈ Rk×d representing each of the k categories,

and a cluster assignment matrix H = [HT
1 , ...,HT

b ]T ∈ {0, 1}n×k, Hi ∈ {0, 1}ni×k with the aim
of predicting the correct category of each data instance. The following two constraints were
imposed on H to take into account the relaxed conditions of assigning labels to each bag.
The first constraint restricted the assignment of an instance to at most one category, stated
formally as Hi1 ⪯ 1. The second constraint imposed that for the i-th bag, at most one data
instance can be assigned to each of the candidate categories for bag i. This was equivalent
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to making min{ni,yi
T1} cluster assignments for each bag, while maintaining HT

i 1 ⪯ yi.
Formally, the second constraint was stated as: {HT

i 1 ⪯ yi, 1THi1 = min{ni,yi
T1}}. Thus

H was constrained to the following consistency set Q℧:

Q℧ = {H = [HT
1 , ...,HT

b ]T : ∀i,Hi ∈ ℧i},
where, ℧i = {Hi ∈ {0, 1}ni×k : Hi1 ⪯ 1,

HT
i 1 ⪯ yi,1

THi1 = min{ni,yi
T1}}.

Based on these definitions, the objective of the Multi-Instance k-Means was defined as,

min
H∈Q℧,V ∈Rk×d

n∑
i=1

k∑
j=1

Hij ||xi − vj||2. (6.1)

Law et al. (2017) showed that a local minima for this objective could be obtained by alternate
optimization over H and V . This multi-instance clustering setup where low effort supervision
can be provided motivates us to form the source task of MKTC where a multiple kernel metric
is learnt under weak supervision, which is described in Section 6.4.1.

6.3.2 Multiple Kernel Clustering

To cluster a dataset X = [x1, ...,xn], xi ∈ Rd, early works on multiple kernel clustering
(Zhao et al., 2009a; Chen et al., 2011; Huang et al., 2012a) were based on the formulation of
a multiple kernel k-Means with centers in the kernel space (Schölkopf et al., 1998; Girolami,
2002; Dhillon et al., 2004; Jha et al., 2020),

min
H,w,V

m∑
l=1

k∑
j=1

n∑
i=1

Hijw
β
l ||ϕl(xi) − vj||2, (6.2)

subject to (s.t.) the constraint
∑m

l=1 wl = 1, and a suitable choice of β. Here ϕl(.) are non-
linear functions that map the data instances to a higher dimension Hilbert space. Expansion
of the squared norm allows the substitution of dot products ϕT

l (xi)ϕl(xj) with kernel functions
Kl(xi, xj). The multiple kernel metric between two instances xi and xj is specified by the

weighted combination of kernels
∑m

l=1 w
β
l Kl(xi, xj). In Liu et al. (2016); Li et al. (2016),

a new way of performing multiple kernel clustering was introduced that yielded significant
improvements in clustering performance, where the objective function was reformulated as a
trace maximization problem involving n2-sized kernel matrices containing the multiple kernel
metric computed between all pairs of data instances. Subsequent developments based on the
trace maximization objective introduced ways to relax the search space of the combined kernel
matrix (Liu et al., 2017b; Liu et al., 2020a). Different ways to improve on the base kernel
matrices were investigated, through outlier correction (Wang et al., 2017) or by considering
neighbourhoods of kernel similarities (Zhou et al., 2020). Due to the large size of the kernel
matrices, it may be possible for several entries to be absent or corrupted, prompting a line
of research on working with incomplete kernels (Zhu et al., 2018; Liu et al., 2019; Liu et al.,
2019; Liu et al., 2020b). However all methods following this line of research either directly
optimize the objective (6.2), or its reformulated trace maximization objective, leading to high
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computational costs of O(mkn2) or higher, due to having to deal with m number of n2-sized
kernel matrices. This limits the applicability of these methods to datasets with lower number
of data instances.

6.4 Methodology

In this section, our proposed method of Multiple Kernel Transfer Clustering (MKTC) is
described in terms of two tasks: a source task and a target task. For the source task, we
propose an alternating optimization (AO) algorithm of Multiple Kernel Multi-Instance k-
Means (MKMIKM) to learn a multiple kernel metric while clustering a multi-instance subset
of a dataset under weak supervision, described in 6.4.1. The target task uses this learned
multiple kernel metric to perform clustering of the entire dataset in a single step, described
in 6.4.2.

6.4.1 Multiple Kernel Multi-Instance k-Means clustering

For a dataset X, in our source task we wish to learn a multiple kernel metric in a weakly
supervised multi-instance setup, as shown in Figure 6.1. Following our defined framework
of transfer learning for center-based clustering as described in Section 6.2 and motivated by
the setup of Law et al. (2017), we construct a multi-instance subset of X for our source task

X(s) ⊂ X, where X(s) consists of b bags X(s) = [X
(s)T

1 , ..., X
(s)T

b ]T ∈ Rn(s)×d and each bag can

contain variable number of data instances X
(s)
i ∈ Rni×d,

∑b
i=1 ni = n(s). A bag label matrix

Y (s) ∈ {0, 1}b×k is also provided, where each row y
(s)
i indicates which of the k categories have

instances in bag i. In our source task, we aim to cluster this dataset X(s), which involves

estimating cluster centers V (s) = [v
(s)
1

T
, ...,v

(s)
k

T
]T ∈ Rk×d, and cluster assignment matrix

H(s) = [H
(s)T

1 , ...,H
(s)T

b ]T ∈ {0, 1}n(s)×k, Hi ∈ {0, 1}ni×k. The same constraints are imposed
on H(s) restricting the assignment of an instance to at most one category, and for each bag
restricting assignments to at most one data instance for each candidate cluster. Thus H(s) is
constrained to the following consistency set Q℧(s)

:

Q℧(s)
= {H(s) = [H

(s)T
1 , ...,H

(s)T
b ]T : ∀i,H(s)

i ∈ ℧(s)
i},

where, ℧(s)
i = {H(s)

i ∈ {0, 1}ni×k : H
(s)
i 1 ⪯ 1,

H
(s)T
i 1 ⪯ y

(s)
i ,1TH

(s)
i 1 = min{ni,y

(s)T
i 1}}

We wish to learn a multiple kernel metric in this multi-instance weak supervision setup.
The literature on multiple kernel clustering has focused on objective functions based on
multiple kernel k-Means with centers in the kernel space (6.2), however this clustering setup
is not ideal for larger datasets. For datasets of size n(s), the computation cost incurred is
O(mkn(s)2), which is too expensive for larger computer vision datasets: e.g., the MNIST
dataset with N = 70, 000 data instances, construction of m = 7 32-bit kernels would require
≈ 1022 gigabits of memory.

To develop a lower computation method, one alternative is to adapt kernel clustering with
centers in the feature space (Ferreira and de A.T. de Carvalho, 2014; Gupta and Das, 2017)
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to a multiple kernel setup,

min
H(s),w,V (s)

m∑
l=1

k∑
j=1

n(s)∑
i=1

H
(s)
ij wβ

t {||ϕt(x
(s)
i ) − ϕt(v

(s)
j )||2}.

s.t.
∑m

l=1 w
(s)
l = 1. Single kernel clustering methods with centers in the feature space can have

O(kn(s)) computation cost instead of O(n(s)2). However they have been largely abandoned
in the research on multiple kernel clustering. Our motivation is to form a multiple kernel
multi-instance clustering method with O(mkn(s)) computation cost, making them applicable
to larger datasets. We thus propose the following Multiple Kernel Multi-Instance k-Means
(MKMIKM) problem with centers in the feature space,

min
H(s)∈Q℧(s)

,w(s),V (s)

m∑
l=1

k∑
j=1

n(s)∑
i=1

H
(s)
ij w

(s)2

l {α

+ ||ϕl(x
(s)
i ) − ϕl(v

(s)
j )||2}, s.t. w(s)T1 = 1.

(6.3)

The additive α ensures larger gradients of the objective. Expanding the squared norm in

(6.3) and replacing all inner products ϕl(x
(s)
i )T .ϕl(v

(s)
j ) with corresponding kernel functions

Kl(x
(s)
i ,v

(s)
j ) leads to the following MKMIKM objective using Gaussian kernels,

min
H∈Q℧(s)

,w(s),V (s)

m∑
l=1

k∑
j=1

n(s)∑
i=1

H
(s)
ij w

(s)2

l {α + Kl(x
(s)
i ,x

(s)
i )

+ Kl(v
(s)
j ,v

(s)
j ) − 2Kl(x

(s)
i ,v

(s)
j )}, s.t. w(s)T1 = 1.

(6.4)

When working with multiple kernel methods, several kernel functions are available for the
choice of each Kl (Genton, 2002; Hofmann et al., 2008). The optimization of w(s) and H(s)

can be carried out efficiently regardless of the choice of kernel functions, however the cost of
optimizing V (s) depends on which kernel functions are used. If kernel functions are selected
so that the derivative of the Lagrangian of (6.4) with respect to V (s) yields a closed-form
solution, then an overall O(mkn(s)) algorithm can be derived. In the absence of closed-form
solutions, gradient descent based approaches can be used to optimize V (s), which increases
the computation cost to O(mkn(s)Tmax), where Tmax is the maximum number of iterations
allowed for the descent algorithm. To keep the computation cost as low as possible, Gaussian
kernels can be used in objective (6.4), which yield closed form solutions when optimizing
V (s). Gaussian kernels have the form K(xi,xj) = exp

(
−||xi − xj||2/2σ2

)
. When xi = xj,

K(xi,xi) = 1. Using Gaussian kernels and setting α to 2 reduces the objective (6.4) to the
following,

min
H(s)∈Q℧(s)

,w(s),V (s)

m∑
l=1

k∑
j=1

n(s)∑
i=1

H
(s)
ij w

(s)2

l {2 −Kl(x
(s)
i ,v

(s)
j )}, (6.5)

s.t. w(s)T1 = 1. The derivative of the Lagrangian of (6.5) with respect to v
(s)
j yields the
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following update expression,

v
(s)
j =

∑n(s)

i=1 H
(s)
ij ζijx

(s)
i∑n(s)

i=1 H
(s)
ij ζij

, (6.6)

where ζij =
∑m

l=1 w
(s)2

l σ−2
l Kl(x

(s)
i ,v

(s)
j ). Similarly, the derivative of the Lagrangian of (6.5)

with respect to w
(s)
l yields the following update expression,

w
(s)
l =

[
∑n(s)

i=1

∑k
j=1 H

(s)
ij {2 −Kl(x

(s)
i ,v

(s)
j )}]−1∑m

l′=1[
∑n(s)

i=1

∑k
j=1 H

(s)
ij {2 −Kl′(x

(s)
i ,v

(s)
j )}]−1

. (6.7)

To obtain an optimal H(s), we hold V (s) and w(s) constant and decompose (6.5) into b
objectives for each bag,

min
H

(s)
i ∈℧(s)

m∑
l=1

k∑
j=1

H
(s)
ij w

(s)2

l {2−Kl(X
(s)
i ,v

(s)
j )}. (6.8)

The optimal solution of objective (6.8) is obtained by the Hungarian algorithm (Kuhn,
1955). Let pi = min{ni,yi

T1}, and qi = max{ni,yi
T1}. The Hungarian algorithm constructs

a table of size pi × qi of scores, where each data instance is assigned a score corresponding
to each cluster, based on the objective (6.8). For each cluster, a data instance is assigned to
it based on the lowest score from the table, such that no two clusters are assigned the same
data instance. This can be done in O(p2

i qi) time (Bourgeois and Lassalle, 1971). As bag
sizes are never considered to be too large (∀i ni < 15) (Law et al., 2017), this is efficient to
compute.

Based on the above discussions, Algorithm 6 outlines the AO algorithm to optimize ob-
jective function (6.5). Algorithm 6 returns the kernel weights w(s) which along with the base
kernel functions, forms the multiple kernel metric.

Algorithm 6 Multiple Kernel Multi-Instance k-Means (MKMIKM)

Input: Data bags X(s), bag labels Y (s).
Output: Kernel weights w(s), cluster assignments H(s).

1: Initialize random V (s) and H(s), set each w
(s)
l := 1

m .

2: Compute initial Kl(x
(s)
i ,v

(s)
j ) ∀l,x(s)

i ,v
(s)
j .

3: repeat
4: Update H(s) by solving eqn. (6.8).
5: Update V (s) using eqn. (6.6).

6: Recompute Kl(x
(s)
i ,v

(s)
j ) ∀t,x(s)

i ,v
(s)
j .

7: Update w(s) using eqn. (6.7).
8: until convergence

On Complexity and Convergence: In Algorithm 6, computing H(s) requires running the
O(p2

i qi) Hungarian algorithm (Bourgeois and Lassalle, 1971) for all b bags, resulting in a
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total of O(bp2
i qi) time. Updating V from (6.6), computing all Kt(x

(s)
i ,v

(s)
j ), and updating

w(s) from (6.7), each require O(mkn(s)) time. This leads to a total computation cost of
O(mkn(s) + bp2

i qi). A reasonable constraint can be imposed on the bag sizes so that pi <
√
k

and qi ≈ n(s)/b, leading to an overall computational cost of O(mkn(s)).
Empirical convergences across different datasets are shown in Section 6.5.6. Numerical

convergence is monitored by setting a maximum number of iterations, while also checking for
changes in H(s) across successive iterations.

6.4.2 Multiple Kernel Transfer Clustering

As discussed in the previous section, for the source task of MKTC we proposed MKMIKM to
learn a multiple kernel metric from a weakly supervised multi-instance subset X(s) ⊂ X of a
dataset X. In the target task of MKTC, we intend to perform unsupervised single-instance
clustering of our original dataset X(t) = X of size n(t), by transferring in the multiple kernel
metric learned by MKMIKM to bias MKTC to better fit the dataset, as shown in Figure
6.1. Whereas the source task is resolved by iterating over an AO algorithm, the target task
is designed to require a single step of the computation.

Before we define the objective function for our target task, let us first consider a multi-
instance weakly supervised multiple kernel clustering objective based on (6.2),

min
H∈Q℧,w,V

m∑
l=1

k∑
j=1

n∑
i=1

Hijwl||ϕl(xi) − vj||, s.t. wT1 = 1.

Expanding the norm yields the following objective,

min
H∈Q℧,w,V

m∑
l=1

k∑
j=1

n∑
i=1

Hijwl{ϕl(xi).ϕl(xi)

− 2ϕl(xi).vj + vj.vj}, s.t., wT1 = 1, H1 = 1.

The derivative of this objective with respect to vj yields,

vj =

∑m
l=1

∑n
i=1 Hijwlϕl(xi)∑m

l=1

∑n
i=1 Hijwl

. (6.9)

Now we propose the objective function for the target task of multiple kernel single-instance
unsupervised clustering,

min
U(t),ω(t),V (t)

m∑
l=1

k∑
j=1

n(t)∑
i=1

µ
(t)
ij ω

(t)
l ||ϕl(x

(t)
i ) − vj||2,

s.t., ω(t)T1 = 1, U (t) ∈ {0, 1}n(t)×k, U (t)1 = 1. Here ω(t) ∈ [0, 1]m is the parameter of the

multiple kernel metric, and U (t) is the matrix of cluster memberships µ
(t)
ij between data

points x
(t)
i and the j-th cluster. Using eqn. (6.9) we transfer in variables from our source
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task, forming the following objective,

min
U(t),ω(t)

m∑
l=1

k∑
j=1

n(t)∑
i=1

µ
(t)
ij ω

(t)
l {

||ϕl(x
(t)
i ) −

∑m
l′=1

∑n(s)

i′=1 H
(s)
i′j w

(s)
l′ ϕl′(x

(s)
i′ )∑m

l′=1

∑n(s)

i′=1 H
(s)
i′j w

(s)
l′

||2},

s.t., ω(t)T1 = 1, U (t)1 = 1. Expanding the squared norm and dropping the first term, we
obtain the following objective,

min
U(t),ω(t)

m∑
l=1

k∑
j=1

n(t)∑
i=1

µ
(t)
ij ω

(l)
t {

−
2
∑m

l′=1

∑n(s)

i′=1 H
(s)
i′j w

(s)
l′ ϕl(x

(t)
i ).ϕl′(x

(s)
i′ )∑m

l′=1

∑n(s)

i′=1 H
(s)
i′j w

(s)
l′

+

∑m
l′=1

∑n(s)

i′=1

∑n(s)

i′′=1 H
(s)
i′j H

(s)
i′′jw

(s)2
l′ ϕl′(x

(s)
i′ ).ϕl′(x

(s)
i′′ )

(
∑m

l′=1

∑n(s)

i′=1 H
(s)
i′j w

(s)
l′ )2

},

(6.10)

s.t., ω(t)T1 = 1, U (t)1 = 1. To facilitate transfer learning of the multiple kernel metric
(parameterized by w(s)) from the weak supervised task to the clustering task at hand, we
define:

ω
(t)
i w

(s)
j ϕi(a).ϕj(b) =

{
w

(s)2
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Objective (6.10) then reduces to the following (ω(t)T1 = 1 for the second term),
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(6.11)

Therefore, the cluster membership assignment involves the calculation of kernel functions

Kl(x
(t)
i ,x

(s)
i′ ) and Kl(x

(s)
i′ ,x

(s)
i′′ ), along with the use of H(s) and w(s) estimated under weak

supervision, to yield the following update rule,

µ
(t)
ij =

{
1 , if γij < γij′ ∀j′

0 , otherwise.
(6.12)
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Thus the target task of MKTC to perform unsupervised single-instance clustering of X(t)

can be done in a single step using (6.12). The cost of computing the cluster memberships
from (6.12) depends on the cost of calculating all γij . From eqn. (6.11), we observe that

computing all γij involves computing all Kl(x
(t)
i ,x

(s)
i′ ) which takes O(mkn(s)n(t)) time, and

computing all Kl(x
(s)
i′ ,x

(s)
i′′ ) which takes O(mkn(s)2) times. Thus the computation cost of the

target task is O(mkn(s)n(t) + mkn(s)2). This is a one-time cost only (i.e., not an iterative
step), and is efficient when the size of the weak supervised dataset is smaller than the entire
dataset (n(s) < n(t)), leading to an O(mkn(s)n(t)) cost. The complete method of MKTC
is outlined in Algorithm 7. Combining the O(mkn(s)) computation cost of MKMIKM and
the O(mkn(s)n(t)) cost of the target task, the overall computation complexity of MKTC is
O(mkn(s)n(t)).

Algorithm 7 Multiple Kernel Transfer Clustering (MKTC)

Input: Dataset X(t), data bags X(s), bag labels Y (s).
Output: Cluster membership matrix U (t).

1: Run Algorithm 1 with inputs X(s) and Y (s); Obtain cluster assignments H(s) and kernel
weights w(s).

2: Compute all cluster memberships µ
(t)
ij using eq. (6.12).

6.5 Experiments and Results

In this section, we investigate the clustering performance of the proposed MKTC in compari-
son with other transfer clustering methods and the state-of-the-art multiple kernel clustering
methods. We construct a transfer clustering method following our defined framework for
the recently proposed weakly supervised Multi-Instance k-Means (MIKM) (Law et al., 2017)
where the cluster centers are transferred from the multi-instance clustering source task of
objective (6.1) to cluster the entire dataset in the target task in a single step. Among the
state-of-the-art unsupervised multiple kernel clustering methods, we perform empirical com-
parisons with Optimal Neighborhood Kernel Clustering with Multiple Kernels (ONKCMK)
(Liu et al., 2017b), Co-regularized Spectral Clustering with Improved Kernels (CRSC-IK)
(Wang et al., 2017), Incomplete MKKM with Mutual Kernel Completion (MKKM-IK-MKC)
(Liu et al., 2020b), Optimal Neighborhood Multiple Kernel Clustering with Adaptive Lo-
cal Kernels (ONMKC-ALK) (Liu et al., 2020a), and Multiple Kernel k-Means clustering by
Selecting Representative Kernels (MKKM-SRK) (Yao et al., 2020). In addition, the perfor-
mance of unsupervised k-Means clustering is also compared.

6.5.1 Datasets

The datasets on which the empirical studies are conducted are listed in Table 6.1. For
each dataset, multi-instance subsets for the source task clustering under weak supervision
are prepared in the following manner. Datasets with three-channel images are averaged to
grayscale. For the datasets coil-20, coil-100, yaleb, stl10, cifar10, and cifar100, the images
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resized to the size (32,32) with nearest-neighbor interpolation. All images are flattened to
vectors, which are scaled by dividing each feature by its maximum value.

Table 6.1: Dataset Specifications. For each dataset the number of images N , the size of each
image, and the number of clusters k is stated.

Dataset N Image Size k

digits 1797 (8,8) 10
olivetti 400 (64,64) 40
umist 575 (112,92) 20
usps 11000 (16,16) 10
coil-20 1440 (128,128) 20
coil-100 7200 (128,128,3) 100
yaleb 2414 (192,168) 38
stl10 13000 (96,96,3) 10
mnist 70000 (28,28) 10
fashion 70000 (28,28) 10
cifar10 60000 (32,32,3) 10
cifar100 50000 (32,32,3) 20

Table 6.2: Specifications of the Multi-Instance Subsets Formed for each Dataset. For each
Dataset the Number of Bags is b, the Number of Data Instances is n, and the Number of
Dimensions is d.

Dataset b Range of n d

digits 898 3110-3187 64
olivetti 200 686-744 4096
umist 287 991-1063 10304
usps 5000 17357-17588 256
coil-20 720 2474-2585 1024
coil-100 3600 12507-12756 1024
yaleb 1207 4145-4255 1024
stl10 5000 17405-17650 1024
mnist 5000 17377-17708 784
fashion 5000 17345-17581 784
cifar10 5000 17356-17700 1024
cifar100 5000 17420-17648 1024

For each dataset, the number of bags is set to min{5000, n/2} to ensure reduced cost of
labeling for larger datasets, while minimizing oversampling for smaller datasets. The size of
each bag is randomly set between a minimum of 2 and a maximum of 5, following which
data instances are sampled from random classes into the multi-instance dataset X(s). This
ensures that no bag has more than one data instance from the same class. Which classes have
instances in the bag, are noted in the bag label matrix Y (s). In this manner, 10 sets of weakly
supervised multi-instance data are prepared for each dataset, to provide robust estimations
of the performance of each method in consideration. The weakly supervised multi-instance
data generated for our experiments are provided at https://github.com/Avisek20/MKTC
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along with URLs to the original datasets. The specifications of the generated multi-instance
data are provided in Table 6.2.

6.5.2 Experiment Protocol

For MKTC and MIKM, the learned multiple kernel metric and cluster centers respectively on
each of the 10 datasets is transferred to cluster the entire dataset. The average Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985) achieved over these 10 runs is reported. On every
multi-instance dataset, each method is run 10 times for a maximum of 100 iterations. For
MKTC, the parameter σl for each Gaussian kernel is set to the D×δl, where D = maxi,j ||xi−
vj||2 and δl ∈ {0.01, 0.05, 0.1, 1, 10, 50, 100} (Du et al., 2015). Each kernel matrix is scaled by
it’s maximum value, i.e., ∀l Kl(xi,vj) := Kl(xi,vj)/maxi,j Kl(xi,vj). k-Means is run on each
dataset 10 times, with a maximum of 100 iterations per run, with an error tolerance of 10−5,
and the average ARI is reported. For the multiple kernel clustering methods, the standard 12
kernels are constructed following Du et al. (2015). The following parameter settings are used
for the multiple kernel clustering methods based on recommendations from their original
papers so that they can be evaluated in an unsupervised manner without supervised grid
search over possible parameter values. For ONKCMK parameters ρ is set to 2−4 and λ is set
to 2−7. For CRSC-IK λ is set to 0.5. For MKKM-IK-MKC λ is set to 1. For ONMKC-ALK ρ
is set to 2−1 and γ is set to 0. For MKKM-SRK λ is set to 0.01. All multiple kernel clustering
methods are run 10 times with random restarts for a maximum of 100 iterations and an error
tolerance of 10−5, and the average ARI is reported. The source codes of all experiments
including the methods in contention are provided at https://github.com/Avisek20/MKTC

to reproduce the results.

6.5.3 Comparison of Clustering Performances

The results of clustering the datasets are shown in Table 6.3. We observe that following
the defined transfer clustering framework, the proposed MKTC achieves significantly higher
average ARI in most datasets in comparison to the state-of-the-art multiple kernel clustering
methods, k-Means as well as the transfer clustering method constructed from the recently
proposed MIKM. MKTC obtained significantly higher average ARI in comparison to the
unsupervised clustering methods: On umist, MKTC obtained 0.9327 average ARI in com-
parison to the highest by MKKM-IK-MKC of 0.3695; on coil-100, MKTC obtained 0.8719
average ARI in comparison to the highest average ARI of 0.4212 by k-Means; on usps, MKTC
obtained 0.7327 in comparison to the highest of 0.3066 by MKKM-SRK. Only on the dataset
yaleb have we observed three of the multiple kernel clustering methods to have performed
well; the smaller size of the yaleb dataset may be a constraint for how effective the transfer
clustering methods can be. Across all datasets, MKTC always outperforms k-Means signifi-
cantly, even on the larger datasets for which the multiple kernel clustering methods could not
be run due to the computation of the extremely large kernel matrices being infeasible. Thus
we can conclude that MKTC, in general, is extremely competent in accurately clustering
data when some supervision can be provided on a smaller multi-instance dataset. MKTC
achieves its high performance at a O(mkn(s)n(t)) computational cost (n(s) < n(t)), which is
significantly lower than the O(mkn(t)2) cost of the unsupervised multiple kernel clustering
methods.
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Table 6.3: The Average ARI achieved by the Clustering Methods in contention. The First
Six Methods are Unsupervised Clustering Methods, and the last two are Transfer Clustering
Methods. Entries marked with - were Infeasible to run on the Large-sized Datasets due to
the High Computation Cost of the Corresponding Method.

Methods digits olivetti umist usps coil-20 coil-100

k-Means 0.6653 0.4314 0.3358 0.2858 0.6146 0.4212
ONKCMK (AAAI 2017) 0.6081 0.5353 0.3643 0.3056 0.5545 0.3925
CRSC-IK (IJCAI 2017) 0.6095 0.5235 0.3484 0.3059 0.5935 0.3693
MKKM-IK-MKC (IEEE TPAMI 2020) 0.6624 0.5663 0.3695 0.3037 0.5401 0.4128
ONMKC-ALK (IEEE TKDE 2020) 0.6081 0.0616 0.1551 0.3059 0.5695 0.2033
MKKM-SRK (IEEE TNNLS 2020) 0.6601 0.2084 0.1607 0.3066 0.1230 0.1091
MIKM (CVPR 2017) 0.8011 0.8136 0.7660 0.6331 0.7959 0.6710
MKTC 0.9072 0.8967 0.9327 0.7327 0.9007 0.8719

Methods yaleb stl10 mnist fashion cifar10 cifar100

k-Means 0.0137 0.0532 0.3653 0.3562 0.0334 0.0193
ONKCMK (AAAI 2017) 0.1087 0.0552 - - - -
CRSC-IK (IJCAI 2017) 0.0976 0.0555 - - - -
MKKM-IK-MKC (IEEE TPAMI 2020) 0.0981 0.0542 - - - -
ONMKC-ALK (IEEE TKDE 2020) 0.0307 0.0550 - - - -
MKKM-SRK (IEEE TNNLS 2020) 0.0113 0.0348 - - - -
MIKM (CVPR 2017) 0.0120 0.0647 0.6162 0.4623 0.0384 0.0247
MKTC 0.0456 0.0720 0.6786 0.4964 0.0443 0.0276

Table 6.4: The Average ARI obtained by MIKM and MKMIKM for Weakly Supervised
Multi-Instance Clustering.

Methods digits olivetti umist usps coil-20 coil-100

MIKM (CVPR 2017) 0.9807 0.9896 0.9777 0.9202 0.9531 0.9653
MKMIKM 0.9297 0.9802 0.9760 0.9354 0.9652 0.9795

Methods yaleb stl10 mnist fashion cifar10 cifar100

MIKM (CVPR 2017) 0.1482 0.2292 0.9311 0.8059 0.1639 0.1663
MKMIKM 0.1696 0.2181 0.9208 0.7837 0.1640 0.2251

We also observe that MIKM performs better in comparison to the unsupervised clustering
methods on most datasets while performing worse only in comparison to MKTC. This shows
the efficacy of methods derived from the proposed transfer clustering framework, allowing
them to feasibly cluster large datasets while leading to better clustering performances in
comparison to the state-of-the-art unsupervised multiple kernel clustering methods.

One part of MKTC involves the MKMIKM method to perform clustering of the weakly
supervised multi-instance subsets of the datasets. We can compare the clustering perfor-
mances of MKMIKM with MIKM on these multi-instance subsets alone, as shown in Table
6.4. We observe that MIKM using the Euclidean distance is observed to achieve comparable
ARI on the weakly supervised multi-instance datasets in comparison to MKMIKM which
learns a multiple kernel metric. However on the original single-instance datasets in Table 6.3
MIKM is observed to achieve consistently lower ARI in comparison to MKTC. This indicates
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that MIKM overfits the smaller multi-instance datasets, due to which its performance does
not generalize to the larger single-instance datasets. In comparison MKTC is observed to
obtain higher average ARIs on the single-instance datasets, while on the source tasks MK-
MIKM achieves comparable performances. This indicates better generalization capabilities
of MKTC when learning a multiple kernel metric on a smaller subset and transferring it to
the target task where a larger dataset is to be clustered.

We can also observe how learning the multiple kernel metric under multi-instance weak
supervision by MKMIKM has affected the clustering performance of MKTC, by directly
comparing the performance of MKTC with an Unsupervised Multiple-Kernel k-Means (us-
MKKM), which also learns a multiple kernel metric while clustering, but does not have access
to the weakly supervised multi-instance subset that MTKC has. For us-MKKM we optimize
a modified objective (6.4) where H(s) is not constrained to Q℧(s)

, but instead the objective
function is optimized over H ∈ {0, 1}n×k, H1 = 1. This modified objective is optimized
over the entire target dataset, under the same experimental protocol and the average ARI is
compared with that of MKTC. The results are shown in Table 6.5, where we observe that
MKTC obtains significantly higher average ARIs compared to us-MKKM, demonstrating how
for MKTC learning the multiple kernel metric under weak supervision has led to significant
improvements in clustering across all datasets.

Table 6.5: The Average ARI obtained by Unsupervised Multiple Kernel k-Means (us-MKKM)
in comparison with MKTC.

Methods digits olivetti umist usps coil-20 coil-100

us-MKKM 0.5148 0.3645 0.3284 0.2848 0.5703 0.4427
MKTC 0.9072 0.8967 0.9327 0.7327 0.9007 0.8719

Methods yaleb stl10 mnist fashion cifar10 cifar100

us-MKKM 0.0169 0.0569 0.3728 0.3489 0.0333 0.0193
MKTC 0.0456 0.0720 0.6786 0.4964 0.0443 0.0276

6.5.4 Execution Times of Multiple Kernel Clustering Methods

In the previous section we observed the significantly better performance of MKTC achieved
at a lower O(mkn(s)n(t)) computational cost, compared to the state-of-the-art unsupervised
multiple kernel clustering methods which have higher O(mkn(t)2) costs. The effect of the
computational complexity on the actual execution times can be observed in Table 6.6. We
measure the average execution time for one run of each method, over 10 runs on every dataset.
For all the methods, we compute all kernel and distances parallelly over 48 processor threads
of an otherwise idle AMD Ryzen Threadripper 3960X with 128GB RAM. On the smaller
datasets of olivetti and umist, the multiple kernel clustering methods can have lower execution
times when they converge in 1 iteration while MKTC iterates over more iterations. However in
general we can observe MKTC outperform the multiple kernel clustering methods, especially
when the size of the datasets increase, as is observed for usps, coil-100, and stl10. For the
largest datasets of mnist, fashion, cifar10, and cifar100, the unsupervised multiple kernel
clustering methods cannot be run due to the high memory size required to compute the
kernel matrices.

109



6. Transfer Clustering using Multiple Kernel Metrics Learned under Weak Supervision

Table 6.6: The Average Execution Time (in seconds) observed for the Multiple Kernel Clus-
tering Methods. All Kernel and Distance Computations are done Parallelly over 48 Processor
Threads that are otherwise Idle. Entries marked with - were Infeasible to run on the Large-
sized Datasets due to the High Computation Cost of the Corresponding Method.

Methods digits olivetti umist usps coil-20 coil-100

ONKCMK (AAAI 2017) 8.31E+00 3.62E-01 8.03E-01 1.08E+03 5.22E+00 3.79E+02
CRSC-IK (IJCAI 2017) 2.54E+01 1.94E+00 3.46E+00 3.75E+03 1.49E+01 1.18E+03
MKKM-IK-MKC (IEEE TPAMI 2020) 1.98E+02 6.84E+00 1.36E+01 3.38E+04 9.80E+01 1.01E+04
ONMKC-ALK (IEEE TKDE 2020) 1.14E+01 8.11E+00 1.74E+00 1.58E+03 6.36E+00 4.80E+02
MKKM-SRK (IEEE TNNLS 2020) 1.03E+01 6.41E-01 1.62E+00 9.89E+02 5.78E+00 4.94E+02
MKTC 1.41E+00 2.59E+00 5.12E+00 3.64E+01 1.40E+00 6.96E+01

Methods yaleb stl10 mnist fashion cifar10 cifar100

ONKCMK (AAAI 2017) 1.70E+01 1.78E+03 - - - -
CRSC-IK (IJCAI 2017) 4.83E+01 6.17E+03 - - - -
MKKM-IK-MKC (IEEE TPAMI 2020) 3.10E+02 7.31E+04 - - - -
ONMKC-ALK (IEEE TKDE 2020) 2.58E+01 2.42E+03 - - - -
MKKM-SRK (IEEE TNNLS 2020) 1.88E+01 2.00E+03 - - - -
MKTC 3.30E+00 6.99E+01 7.01E+01 7.74E+01 1.02E+02 1.55E+02

6.5.5 Effect of Number of Bags and Bag Size

For the source task of MKMIKM, part of the multi-instance setup involves deciding on the
maximum number of bags n(s), and the maximum bag size permitted maxi ni. As discussed
in Section 6.5.1, in the experiments we allowed the maximum number of bags n(s) to be 5000,
and the maximum permitted bag size maxi ni to be 5. We can investigate the effect these two
constraints have on the overall clustering performance. We conduct experiments on the six
largest datasets we considered: usps, mnist, fashion, stl10, cifar10, and cifar100, to minimize
multiple sampling of the same data instance. First we investigate the effect of the maximum
bag size, for which we vary n(s) from 3000 to 8000 in increments of 1000, and generate 10
subsets of each dataset for each of the maximum bag sizes. We note the average ARI achieved
by MKTC over 10 runs across the 10 subsets, shown in Table 6.7. We observe that across
increasing values of n(s), there is very little variability in the average ARI achieved.

Table 6.7: The Average ARI observed for MKTC as the Total Number of Bags (n(s)) is
Increased.

n(s) usps stl10 mnist fashion cifar10 cifar100

3000 0.7271 0.0720 0.6797 0.4964 0.0439 0.0274
4000 0.7301 0.0717 0.6817 0.4963 0.0435 0.0271
5000 0.7327 0.0720 0.6786 0.4964 0.0443 0.0276
6000 0.7322 0.0718 0.6812 0.4960 0.0439 0.0274
7000 0.7333 0.0713 0.6820 0.4966 0.0440 0.0271
8000 0.7324 0.0718 0.6801 0.4964 0.0442 0.0272

Similarly, we also study the effect that the maximum permitted size of a bag maxi ni has
on the overall clustering performance. We generate 5000 bags, where each bag is generated
with a minimum of size 2 and the maximum that ranges from 4 to 9. Similar to the previous
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study, we conduct the study on the same six datasets and generate 10 subsets of each dataset
for each of the maximum permitted sizes of the bag. The average ARI achieved by MKTC
over 10 runs across the 10 subsets is shown in Table 6.8. We observe that as the maximum
permitted size is increased, the average ARI achieved by MKTC generally decreases. This
is because, for larger bag sizes, MKMIKM has the more difficult task of assigning a single
data instance among a larger set of data instances to a possible candidate cluster. This is
easier to do when the maximum permitted size is smaller, therefore encouraging the setup of
smaller bag sizes for MKMIKM, which will also keep the overall computation complexity to
a minimum and lead to smaller execution times.

Table 6.8: The Average ARI observed for MKTC as the Maximum Possible Size of a Single
Bag (maxi ni) is Increased.

max ni usps stl10 mnist fashion cifar10 cifar100

4 0.7358 0.0747 0.6855 0.5007 0.0457 0.0279
5 0.7327 0.0720 0.6786 0.4964 0.0443 0.0276
6 0.7251 0.0702 0.6734 0.4931 0.0426 0.0265
7 0.7212 0.0686 0.6698 0.4881 0.0410 0.0261
8 0.7119 0.0659 0.6628 0.4527 0.0388 0.0255
9 0.6839 0.0634 0.6291 0.4158 0.0383 0.0248

The above two observations show that (i) the number of bags in the source task can be
kept to a minimum, and (ii) the size of each bag can be kept small. Therefore MKTC can
effectively cluster a dataset when small multi-instance subsets are constructed in the source
task, leading to low computational costs and faster execution times.

Figure 6.2: Empirical convergence of MKMIKM observed over randomly selected multi-
instance subsets for each of the benchmark computer vision datasets. Each plot shows the
change in MKMIKM’s objective function value with increase in number of iterations.

6.5.6 Empirical Convergence of MKMIKM

While the target task of MKTC is done in a single step, the source task involves the MKMIKM
method which is an alternating optimization algorithm. We show empirical convergence of
MKMIKM in Figure 6.2, where plots for the change in objective function value over iterations
are shown for a randomly selected multi-instance subset of the datasets considered. We
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observe that the objective function value always shows eventual numerical convergence, with
occasional increases towards the start of the run only on the larger and more complex datasets.
This justifies the check on changes in H between successive iterations to declare numerical
convergence.

6.6 Discussions

In this chapter, we proposed the Multiple Kernel Transfer Clustering (MKTC) method that
can be described in terms of two tasks, a source task where a multiple kernel metric is
learned, and a target task where the multiple kernel metric is transferred to cluster a dataset.
The source task creates a weakly supervised multi-instance subset of the dataset. For this,
we devised a new Multiple Kernel Multi-Instance k-Means (MKMIKM) clustering objective
along with an alternating optimization method to cluster the multi-instance subset while
learning a multiple kernel metric under weak supervision. In the target task, MKTC transfers
the multiple kernel metric learned by MKMIKM to perform unsupervised single-instance
clustering of the entire dataset in a single step. The advantage of using a multi-instance
setup for the source task is that it requires reduced labeling effort to guide the learning
of the multiple kernel metric. Our formulations of MKMIKM lead to a low O(mkn(s))
computation cost per iteration, and the single clustering step of the target task requires
O(mkn(s)n(t) + mkn(s)2) time, leading to an overall O(mkn(s)n(t)) cost for MKTC where
n(s) < n(t), which is a significant reduction in comparison to the state-of-the-art multiple
kernel clustering algorithms which require O(mkn(t)2) time. Experiments over benchmark
computer vision datasets indicate that MKTC achieves significant performance improvement
when compared to the state-of-the-art unsupervised multiple-kernel clustering methods and
other transfer clustering methods. The commendable level of performance as well as the
low computational costs make the proposed MKTC well suited for the clustering of larger
datasets.
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Chapter 7

Conclusion

In this thesis, we identified four factors that affect the performance of center-based clustering
methods: the number of clusters to be identified, the distance metric used, the features uti-
lized, and the nature of the clusters identified. We studied each of these factors and proposed
methods for each that would lead to low-cost center-based clustering. In addition, we con-
sidered clustering in an unsupervised setting to be a limitation, and studied clustering under
low effort supervision to improve clustering performances. In this chapter, we summarize the
contributions of our studies, followed by a discussion on interesting future directions that our
studies indicate towards.

7.1 Contributions of the Thesis

For unsupervised center-based clustering, we studied four factors that affect its performance,
namely the number of clusters to be identified, the distance metric used, the features utilized,
and the nature of the clusters identified. Our first study in Chapter 2 focused on efficiently
estimating the number of clusters. We proposed two cluster number estimation methods
based on two possible definitions of a cluster, one where clusters are of equal size, and
one where clusters are well-separated. When clustering at successive number of clusters,
we observed that there can be a large reduction in the minimum distance between cluster
centers when proper cluster structures are identified. This formed the basis of our proposed
cluster number estimation methods. We studied the cluster number estimation capabilities
of several popular and recent cluster number estimation methods, and observed that our
proposed methods performed among the best, while being among the methods that had the
lowest computation costs.

Our next study was on the distance metric used, for which in Chapter 3 we proposed
using a kernel metric in a center-based clustering method called k-Harmonic Means. We for-
mulated an objective function for a kernelized general Fuzzy c-Means, and showed that from
the objective function one could derive the objective functions for Kernel k-Harmonic Means,
Kernel Fuzzy c-Means, and Kernel k-Means. We tested our proposed Kernel k-Harmonic
Means algorithm against other kernel clustering methods, and observed its competent per-
formance. In the situation where a large number of clusters were present, we observed Kernel
k-Harmonic Means to obtain significantly improved clustering performance in comparison to
other kernel clustering methods.
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7. Conclusion

We followed this study by our study on model selection for sparse clustering methods in
Chapter 4. Sparse clustering methods like Sparse k-Means and Sparse Fuzzy c-Means achieve
feature selection by imposing an ℓ1-norm constraint on the feature weights, and require a
further parameter for the upper bound to the ℓ1-norm, which controls the sparsity of the
features. The upper bound has traditionally been controlled through a computationally
intensive process requiring further clustering of randomly generated datasets of the same
size as the original dataset. We proposed deriving expressions for the Bayesian Information
Criteria for Sparse k-Means and Sparse Fuzzy c-Means that can be used to select the degree of
sparsity. Thus Sparse k-Means and Sparse Fuzzy c-Means can be run for different candidate
degrees of sparsity, and our derived expressions for the Bayesian Information Criterion can
be used to select an appropriate degree of sparsity while requiring low computation costs.
Extensive experiments for both Sparse k-Means and Sparse Fuzzy c-Means in comparison
to several other possible choices cluster validation as well showed that using our derived
expressions of Bayesian Information Criterion led to significantly improved performance in
sparse clustering.

For the final factor of the nature of clusters one can identify, we studied fuzzy clustering
methods to identify overlapped clusters. We proposed an evolutionary multi-objective fuzzy
clustering method in Chapter 5 that identified fuzzy clusterings at different levels of fuzziness
in order to identify clusters with different levels of overlap. Our proposed method achieves
this by optimizing two contradictory objectives in an evolutionary multi-objective setting.
The first objective minimizes the sum of intra-cluster variances, and prefers the identification
of discrete clusters. The second objective maximizes the entropy of cluster memberships,
and thus tries to identify completely overlapped clusters. Optimizing both these objectives
in a multi-objective setting leads to a Pareto front of fuzzy clusterings at different levels
of fuzziness. Our experiments show the quality of the Pareto front, which contains wide
and diverse solutions of fuzzy clusterings at different levels of fuzziness. We also propose a
method to identify an appropriate fuzzy clustering for comparison under a discrete cluster
evaluation measure, and investigate its performance for real and synthetic datasets, and
observe competent performances of our proposed method.

Finally, we considered clustering under completely unsupervised conditions to be a limita-
tion, and proposed a method of clustering under some degree of supervision. We proposed a
multiple kernel transfer clustering method in Chapter 6 which learns a multiple kernel metric
under a weak supervision setup, and transfers the learned metric to cluster a dataset in an
unsupervised setup. In greater detail, our method can be described in terms of two tasks. In
the source task, we constructed a weakly supervised multi-instance setup where a set of data
instances are assigned a vector of possible cluster labels. This setup requires less labeling
effort in comparison to a fully supervised setup, where labels need to be assigned to every
data instance. In this weakly supervised multi-instance setup we performed clustering while
simultaneously learning a multiple kernel metric. This multiple kernel metric is transferred
to a target task involving the unsupervised single-instance clustering of a dataset. Experi-
ments on large computer vision datasets show that our proposed method leads to significant
improvements in clustering performance, in comparison to other weak supervision methods
as well as state-of-the-art unsupervised multiple kernel clustering methods.

In this thesis we therefore examined the field of center-based clustering from different
perspectives, examining different factors that can lead to improved clustering performance
while keeping the computational cost as low as possible, so that it can be applied to large
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datasets which is commonplace nowadays across all application domains. Our consideration of
the unsupervised setting and our investigations in clustering under some degree of supervision
leads us to recommend further empirical as well as theoretical studies in the area of clustering
under some degree of supervision. Our investigations lead to interesting new directions of
research that are possible, which are discussed in the following section.

7.2 Future Directions of Research

In this section we consider possible directions of research that the investigations in this thesis
lead to.

• Statistical tests for cluster number estimation: In our studies on cluster number
estimation in Chapter 2, we studied several cluster validity indices as well as proposed
two approaches to estimate the number of clusters. In this setup, estimating the cluster
number depends on specific rules, such as considering the maximum or minimum value
of an estimation method. A more suitable approach could be by using a statistical
test, which provides a p-value accompanying the test results, which can be significantly
more informative when deciding on the number of clusters. Such a test can be used
on its own, or can be a part of a clustering method that progressively divides or joins
clusters, or even in an evolutionary clustering method. The test needs to be of low
computation cost so that it can be used frequently during a clustering process. Efimov
et al. (2019) is an interesting example of a recently proposed statistical test, however
it also has a high cost of computation. A statistical test with low computation cost
will definitely be of great use across different clustering methodologies and will have
significant applicability.

• On more informed applications of multiple kernel metrics: In chapter 3 we
incorporated a kernel metric in a center-based clustering method to improve clustering
performance. One limitation that we faced was the requirement of providing values
to the kernel parameter. Subsequent works on multiple kernel clustering circumvent
the necessity of providing exact values to the kernel parameter, by considering the
linear combination of a set of possible kernels with fixed parameter values (Du et al.,
2015). A number of interesting questions arise when considering this convention. Can
the parameter values of base kernels of different types (Gaussian, Polynomial, etc) be
learnt reliably in a multiple kernel setup? One can then consider only one type of such
kernels and learn their parameters, instead of relying on a number of fixed variants
of each kernel. If this question is difficult to answer, then one can also investigate
whether there is a set of kernels that perform best in a multiple kernel setup. A related
investigation can also involve considering a really large number of base kernels, and
considering their sparse combination as the final multiple kernel metric.

• Co-clustering with sparse feature selection: We observed efficient feature selection
while clustering was possible in Chapter 4. The ideas discussed can be extended to
perform co-clustering of data (Salah et al., 2016), where both data instances and features
are clustered simultaneously, and sparse feature selection can be performed in a co-
clustering setup. An explainable co-clustering method (Moshkovitz et al., 2020) would
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also be of significant applicability, since feature selection easily lends to interpretable
models.

• The effect of dimensionality on evolutionary multi-objective clustering: A
notable observation from the results of our experiments in Chapter 5 was that ECM-
NSGA-II performed better for lower dimensional datasets whereas ECM-MOEA/D per-
formed better for higher dimensional datasets. A theoretical analysis of this behaviour
would be a challenging yet interesting study, which requires an analysis of how the way
each method operates is affected by the dimensionality of the data. Such an analysis
should be done in the general context of the wide range of evolutionary multi-objective
methods that exist to analyze how the dimensionality of the data in the clustering
context affects their performance.

• Weakly supervised balanced clustering: In Chapter 5 we observed a variant of
center-based clustering based on definitions of fuzzy clusters to identify overlapped
clusters. Another variant that has been receiving attention recently is balanced clusters,
where the cluster sizes are controlled by the clustering algorithm (Jitta and Klami, 2018;
Lin et al., 2019).

• Deep multi-view clustering under some degree of supervision: Recently there
has been great success in deep clustering, which involves non-linear projections of data
to spaces where it can be clustered effectively (Chang et al., 2020; Lv et al., 2021). This
can also be viewed as a non-linear feature extraction procedure that is done simultane-
ously while clustering. The non-linear projection can be guided using information from
multiple views (Chen et al., 2020a; Wei et al., 2020; Wang et al., 2021). In such a setup,
adding some degree of supervision as discussed in Chapter 6 may help to improve the
non-linear feature extraction procedure as well as perform clustering.

• Convex Clustering under weak supervision: An interesting area of clustering is
convex clustering, on which theoretical guarantees on the performance can be provided
(Sun et al., 2021). Convex clustering under weak supervision may lead to methods
with theoretical guarantees as well as good empirical performances, and effective ap-
proximations for application to large datasets can be investigated as well (Yuan et al.,
2018).
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Appendix A

Supplementary for Chapter 2

A.1 Cluster Number Identification Methods

In this section, we provide the full mathematical formulation for all cluster number identifica-
tion methods that we have used in the experiments in Section 2.5. Throughout this section,
we use the following notations: x1, ...,xn are n data points, where xi ∈ Rd. Clusters are rep-
resented as C1, ..., Ck , and the centers of each of k clusters are v1, ...,vk. Fuzzy memberships
of xi to cluster Cj are represented by ij , with m as the parameter for degree of fuzziness. nj

is the sum of fuzzy memberships to cluster j, i.e., nj =
∑n

i=1 ij .

1. Akaike Information Criterion (AIC) (Akaike, 1974):

AIC(k) =
k∑

j=1
{(−2(nj log(nj) − (nj − n) − njd

2 log(2π∆j) − d(nj−1)
2 ))} + 2k ,

where, ∆j =
∑

xi∈Cj

||xi−vj||2
d/(n−k) .

k̂: The Elbow Method.

Minimum number of clusters identifiable: 2.

2. Bayesian Information Criterion (BIC) (Schwarz, 1978):

BIC(k) =
∑k

j=1{((nj log(nj) − (nj − n) − njd
2 log(2π∆j) − d(nj−1)

2 ))} − k log(n)(d+1)
2 ,

where, ∆j =
∑

xi∈Cj

||xi−vj||2
d/(n−k) .

k̂: Maximum of BIC.

Minimum number of clusters identifiable: 2.

3. Caliński and Harabasz (CH) Index (Caliński and Harabasz, 1974):
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CH(k) = n−k
k−1

k∑
j=1

|Cj |.||vj−x̄||2

k∑
j=1

∑
xi∈Cj

||xi−vj||2
,

k̂: Maximum of CH.

Minimum number of clusters identifiable: 2.

4. Classification Entropy (CE) (Bezdek, 1975):

CE(k) = − 1
n

n∑
i=1

c∑
j=1

µijlogµij .

k̂: Minimum of CE.

Minimum number of clusters identifiable: 2.

5. Compose-Within-Between (Rezaee et al., 1998):

CWB(k) = αScat(k) + Dis(k).

Here, Scat(k) = 1
k||σX ||

∑k
j=1 ||σj ||,

where, σj = 1
n

∑n
i=1 µij(xi − vj)

2,

and, σX = 1
n

∑n
i=1(xi − x̄)2.

And, Dis(c) =
maxj ̸=t ||vj−vt||
minj ̸=t ||vj−vt||

∑k
j=1

(∑k
l=1 ||vj − vl||

)−1
.

Also, α = Dis(kmax).

k̂: Minimum of CWB.

Minimum number of clusters identifiable: 2.

6. Davies-Bouldin (DB) Index (Davies and Bouldin, 1979):

DB(k) = 1
k

∑k
j=1 maxj ̸=l{DBjl},

where, DBjl =

√√√√ ∑
xi∈Cj

||xi−vj||2

|Cj |
+

√ ∑
xi∈Cl

||xi−vl||2

|Cl|

||vj−vl|| .

k̂: The Elbow Method.

Minimum number of clusters identifiable: 1.
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7. Dunn Index (Dunn, 1973):

Dunn(k) = minxi∈Cl
minxi′∈Cj ,j ̸=l

(
||xi−xi′ ||

maxj maxxi,xi′′∈Cj
||xi−xi′′ ||

)
.

k̂: Maximum of Dunn.

Minimum number of clusters identifiable: 2.

8. Knee Point Method: Discussed in Section 2.2 of Chapter 2.

9. Fukuyama Sugeno (FS) Index (Fukuyama and Sugeno, 1989)

FS(k) =
n∑

i=1

k∑
j=1

µm
ij ||xj − vi||2 −

k∑
j=1

||vi − v̄||2,

where, v̄ = 1
k

k∑
j=1

vj.

k̂: The Elbow Method.

Minimum number of clusters identifiable: 1.

10. Fuzzy Hypervolume (FHV) (Dave, 1996):

FHV (V ) =
k∑

j=1

 n∑
i=1

µm
ij ||xi−vj||2

n∑
i=1

µm
ij

1/2

.

k̂: Minimum of FH.

Minimum number of clusters identifiable: 1.

11. Gap Statistic (Tibshirani et al., 2001):

The estimation of cluster number follows a 1-standard-error rule:

k̂ = the smallest k such that Gap(k) ≥ Gap(k + 1) − sk+1,

where Gap(k) = 1
B

∑B
b=1{log(W ∗

kb) − log(Wk)},

and, sk =
√

1 + 1
B{ 1

B

∑B
b=1{log(W ∗

kb) − l̄}2}1/2.

Here W ∗
kb is the average of the sum of intra-cluster pariwise distances for the b-th

reference distribution, and Wk is the sum of the intra-cluster pairwise distances for the
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data set, and,

l̄ = 1
B

∑B
b=1 log(W ∗

kb).

Minimum number of clusters identifiable: 1.

12. Halkidi Vazirgannis (HV) Index (Halkidi and Vazirgiannis, 2001):

S Dbw(k) = Scatter(k) + Dens Bw(k),

where, Scatter(k) = 1
k

∑k
j=1

∑
xi∈Cj

||xi−vj||2
Cj∑n

i=1
||xi−x̄||2

n

,

and Dens Bw(k) = 1
k(k−1)

∑k
j=1

(∑k
l=1,l ̸=j

Dens(
vj+vl

2
)

max{Dens(vj),Dens(vl)}

)
,

and, Dens(vj) =
∑n

i=1 f(xi,vj),

and f(xi,vj) =

{
0 , if ||xi − vj|| > stdev ,

1 , otherwise.
,

where stdev is the average standard deviation of the clusters.

hatk: Minimum of S Dbw.

Minimum number of clusters identifiable: 2.

13. Hartigran (Hartigan, 1985):

Hart(k) = (n− k − 1)( Wk
wk+1

− 1),

where, Wk =
∑k

j=1

∑
xi∈Cj

||xi − vj||2.

k̂: The Elbow Method.

Minimum number of clusters identifiable: 1.

14. I Index (Maulik and Bandyopadhyay, 2002):

I(V ) =
(

1
k × E1

Ek
×Dk

)p
,

where, Ek =
k∑

j=1

n∑
i=1

µij ||xi − vj||,

and, Dk = maxk
i,j=1||vi − vj||.
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k̂: Maximum of I.

Minimum number of clusters identifiable: 2.

15. Jump Method (Sugar and James, 2003):

Jump(k) = W−Y
k −W−Y

k−1,

where, Wk =
∑k

j=1

∑
xi∈Cj

||xi − vj||2.

Here Y is set to 1 (Sugar and James, 2003).

k̂: Maximum of Jump.

Minimum number of clusters identifiable: 1.

16. Modified Partition Coefficient (MPC) (Dave, 1996):

MPC(k) = 1 − k
k−1(1 −

n∑
i=1

k∑
j=1

µ2
ij

n ).

k̂: Maximum of MPC.

Minimum number of clusters identifiable: 2.

17. Partition Coefficient (PC) (Dave, 1996):

PC(k) =
∑n

i=1

∑k
j=1

µ2
ij

n .

k̂: Maximum of PC.

Minimum number of clusters identifiable: 2.

18. Partition Index (PI) (Bensaid et al., 1996):

PI(k) =
k∑

j=1

n∑
i=1

µm
ij ||xi−vj||2

n∑
i=1

µij
∑k

l=1 ||vj−vl||2
.

k̂: The Elbow Method.

Minimum number of clusters identifiable: 2.

19. PBMF (Pakhira et al., 2004):
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PBMF (k) =
(

1
k × E1

Jm
×Dk

)2
,

where, Jm(U,Z) =
n∑

i=1

k∑
j=1

µm
ij ||xi − vj||,

and, E1 =
n∑

i=1
||xi − x̄||,

and, Dk = maxk
i,j=1 ||vi − vj||.

k̂: Maximum of PBMF .

Minimum number of clusters identifiable: 2.

20. PCAES (Wu and Yang, 2005):

PCAES(k) =
k∑

j=1

n∑
i=1

µ2
ij/µM −

k∑
j=1

exp
(
−minl ̸=j{||vj − vl||2}/βT

)
,

where, µM = min1≤j≤k

(
n∑

i=1
µ2
ij

)
,

and, βT =
∑k

j=1 ||vj−v̄||2

k .

k̂: Maximum of PCAES.

Minimum number of clusters identifiable: 2.

21. Prediction Strength (Tibshirani and Walther, 2005):

Prediction Strength divides the data set into c folds, and in a manner similar to cross-
validation, it forms a training set from c − 1 folds and a test set from the remaining
fold. It then clusters the training set Xtrain and test set Xtest. The cluster centers
from the clustering of Xtrain are used to assign labels to Xtest. A co-occurence matrix
D[C(Xtrain, k), Xtest]n×n compares the clustering labels of the test set from the test
centers with those from the training centers, and notes which points are assigned to the
same cluster. Then,

PS(k) = cv-avg minj
1

nj(nj−1)

∑
i ̸=i′∈Cj

1(D[C(Xtrain, k), Xtest]ii′ = 1).

22. RLWY Index (Ren et al., 2016):

RLWY (k) =
k∑

j=1

1
nj

∑n
i=1 µ

m
ij ||xi − vj||2 + 1

k ||vk − v̄||2

1
k−1

∑k
l=1 ||vl − vj||2
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k̂: Minimum of RLWY .

Minimum number of clusters identifiable: 2.

23. Silhouette Index (Rousseeuw, 1987):

sil(k) = 1
n

∑n
i=1 si,

where for all xi ∈ Cj ,

ai = d(xi, Cj), and bi = min
l ̸=j

d(xi, Cl),

and, si =

{
bi−ai

max{bi,ai} , if |Cj | > 1,

1 , if |Cj | = 1
.

k̂: Maximum of sil.

Minimum number of clusters identifiable: 2.

24. Slope Statistic (Fujita et al., 2014):

slope(k) = −[s(k + 1) − s(k)]s(k)p,

where, s(k) = 1
n

∑n
i=1 si,

and for all xi ∈ Cj ,

ai = d(xi, Cj), and bi = min
l ̸=j

d(xi, Cl),

and, si =

{
bi−ai

max{bi,ai} , if |Cj | > 1,

1 , if |Cj | = 1
.

k̂: Maximum of slope.

Minimum number of clusters identifiable: 2.

25. Xie-Beni (XB) Index (Xie and Beni, 1991):

XB(k) =

c∑
j=1

n∑
i=1

µm
ij ||xi−vj||2

nminj,l ||vj−vl||2
.

k̂: Minimum of XB.

Minimum number of clusters identifiable: 2.
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26. Xu Index (Xu, 1997):

Xu(k) = d log

(√
1

n2d

c∑
j=1

∑
xi∈Cj

||xi − vj||2
)

+ log(k).

k̂: Minimum of Xu.

Minimum number of clusters identifiable: 2.

27. ZXF Index (Zhao et al., 2009b):

ZXF (k) =
k∗

∑c
j=1

∑
xi∈Cj

||xi−vj||
c∑

j=1
|Cj |×||vj−x̄||

.

k̂: Minimum of ZXF .

Minimum number of clusters identifiable: 2.

28. SC Index (Rezaee, 2010):

SC(k) = Sep(k)
maxkSep(k) + Comp(k)

maxkComp(k) ,

and, Sep(k) = 2
k(k−1)

k∑
j ̸=l

Srel(Cj , Cl),

and, S(Cj , Cl) =
n∑

i=1
min(µij , µil) × h(xi),

and, h(xi) = −
k∑

j=1
µijlog(µij).

k̂: Minimum of SC.

Minimum number of clusters identifiable: 2.

A.2 Validation of cluster number estimation methods

We perform validation of each cluster number estimation method on 12 data sets, shown in
Figure 2.6. The results of each cluster number estimation method are listed in Table A.1.
The cluster number estimation methods are indexed according to the Table 2.1. The last two
columns are the proposed methods Last Leap (LL) and Last Major Leap (LML).
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Table A.1: The Estimated Number of Clusters for each of the Cluster Number Estimation
Methods, on the 12 Validation Data Sets.

Sl.
No.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 LL LML

1 1 8 4 4 2 4 7 17 4 4 1 2 15 4 2 4 4 2 4 8 9 5 4 4 4 9 17 4 20 1 1
2 2 6 2 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 5 10 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 3 3 3 3 3 3 3 2 3 3 3 3 3 4 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3
5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7 4 4 4 4 4 4 4 4 3 3 4 4 4 3 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4
8 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
10 6 6 6 6 6 6 6 6 6 5 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
11 6 6 6 6 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 4 6 6 6 6 6 6 6 6 6
12 3 6 8 3 2 2 5 12 3 3 2 6 13 3 3 3 2 2 6 3 2 3 2 2 2 2 13 6 13 2 3

A.3 Results on Real Datasets

Table A.2 shows the estimated number of clusters for each cluster number estimation method.
Each column is indexed by a number according to the number of the index as described in
the previous section. The last two columns are the results of the proposed methods LL and
LML.

Table A.2: The Estimated Number of Clusters on Real-world Data Sets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 LL LML

banknote 13 37 2 2 8 11 35 6 5 1 1 38 6 3 35 2 2 9 9 4 7 3 38 2 2 36 38 9 2 2
echo 5 11 2 2 8 5 2 3 3 1 3 10 4 3 2 2 2 3 3 5 2 2 11 2 2 8 11 3 1 1
iris 6 8 3 2 2 5 13 3 3 2 4 13 3 3 3 2 2 6 3 2 3 2 12 2 2 2 13 6 2 3
seeds 6 15 3 2 3 5 12 3 3 1 3 12 3 3 3 2 2 6 3 3 4 2 15 2 2 2 15 6 2 2
sonar 5 15 2 2 5 6 4 3 4 1 3 15 6 2 2 3 2 5 3 4 4 2 15 15 13 15 15 5 1 1
wine 7 14 14 2 4 6 12 3 3 1 1 13 4 7 14 2 2 4 12 3 3 14 14 2 2 2 14 6 2 2
colon 5 7 2 2 5 7 6 5 3 1 1 8 2 2 2 8 2 4 8 8 2 2 8 7 2 8 8 4 1 1
prostate 4 11 2 2 2 4 10 3 3 1 6 10 2 2 2 2 2 4 3 2 3 2 11 2 2 2 11 3 3 3
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Supplementary for Chapter 4

B.1 Proof of Remark 4.1

Proof. From the definition of BIC in (4.11), we can write the BIC for k-Means as,

BICKM (Θ) = l(D; Θ) − k(p + 1)

2
log |X|. (B.1)

The number of parameters |Θ| = k(p + 1) due to the kp cluster centers and k mixture
proportions. The log likelihood function is defined as,

l(D; Θ) = log
n∏

i=1

P (xi)

=
n∑

i=1

log
k∑

j=1

P (xi|xi ∈ Cj)P (xi ∈ Cj)

Since all optimal Cj is obtained from k-Means clustering,

l(D; Θ) =
n∑

i=1

[logP (xi|xi ∈ Cj) + logP (xi ∈ Cj)]

The maximum likelihood of the mixture proportions is

P (xi ∈ Cj)MLE =
|Cj |
|X|

,

and the sampling probability of xi from each Cj follows the normal distribution,

P (xi|xi ∈ Cj) =
1

(2πσ2)p/2
exp

(
− 1

2σ2
||xi − vj ||2

)
.
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where all σj = σ since in k-Means we assume all spherical clusters with equal variances.
Then,

l(D; Θ) =
n∑

i=1

[
log

(
|Cj |
|X|

)
− p

2
log
(
2πσ2

)
− 1

2σ2
||xi − vj ||2

]

=
k∑

j=1

∑
xi∈Cj

[
log

(
|Cj |
|X|

)
− p

2
log
(
2πσ2

)
− 1

2σ2
||xi − vj ||2

]

=
k∑

j=1

|Cj | log

(
|Cj |
|X|

)
− p|Cj |

2
log
(
2πσ2

)
− 1

2σ2

∑
xi∈Cj

||xi − vj ||2
 .

To estimate σ to maximize the log likelihood function, we equate the derivative to zero and
solve for σ2,

∂

∂σ
l(D; Θ) = 0

=⇒
k∑

j=1

−p|Cj |
σ

+
1

σ3

∑
xi∈Cj

||xi − vj ||2
 = 0

=⇒ σ3

−p|X|σ2 +

k∑
j=1

∑
xi∈Cj

||xi − vj ||2
 = 0

=⇒ σ2 =
1

p|X|

k∑
j=1

∑
xi∈Cj

||xi − vj ||2.

The unbiased estimator of the variance of each cluster σ2
j can then be written as,

σ̂j
2
UBE =

1

p(|Cj | − 1)

∑
xi∈Cj

||xi − vj ||2

Assuming all σ̂j = σ̂, and summing over all clusters,

k∑
j=1

∑
xi∈Cj

||xi − vj ||2 = p
k∑

j=1

(|Cj | − 1)σ̂j
2

=⇒
k∑

j=1

∑
xi∈Cj

||xi − vj ||2 = pσ̂2(|X| − k)

=⇒ σ̂2 =
1

p(|X| − k)

k∑
j=1

∑
xi∈Cj

||xi − vj ||2. (B.2)
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Substituting this estimator of σ2 in the log likelihood function and simplifying, yields

l(D; Θ) =
k∑

j=1

|Cj | log |Cj | − |X| log |X| − p|X|
2

log
(
2πσ̂2

)
− p

2
(|X| − k).

Substituting in (B.1), we obtain,

BICKM (Θ) =
k∑

j=1

|Cj | log |Cj | − |X| log |X| − p|X|
2

log
(
2πσ̂2

)
− p

2
(|X| − k) − k(p + 1)

2
log |X|.

(B.3)

Equations (B.3) and (B.2) prove Remark 4.1.

B.2 Comparison of the execution times when using BIC in
comparison to the Permutation Method

We randomly generated two-dimensional data sets containing 3 clusters at positions (0, 0),
(10, 0) and (0, 10) respectively. We generated 6 data sets of the following sizes: 210, 211, 212,
213, 214, and 215. Sparse k-Means using the Permutation Method (SKM+PM), and Sparse
k-Means using the Bayesian Information Criterion (SKM+BIC) were run on each data set
five times, and the average execution times were measured, which are shown in Table B.1.
Similarly, Sparse Fuzzy c-Means using the Permutation Method (SFCM+PM), and Sparse
Fuzzy c-Means using the Bayesian Information Criterion (SFCM+BIC) were run on each data
set, and the execution times were measured, which are shown in Table B.2. The programs
were executed on an Intel Core i7-4790 processor with base frequency of 3.60GHz, and with
32GB of 1600MHz DDR3 RAM.

Table B.1: Execution Times of SKM+PM and SKM+BIC.

Data Set Size (n, p) Average Execution
Time (in secs) of
SKM+PM

Average Execution
Time (in secs) of
SKM+BIC

(210, 2) 252.8320 7.0758
(211, 2) 295.1284 7.8671
(212, 2) 369.8738 9.3612
(213, 2) 506.0423 12.1402
(214, 2) 771.5288 18.3846
(215, 2) 1293.2834 29.6807

Table B.2: Execution Times of SFCM+PM and SFCM+BIC.

Data Set Size (n, p) Average Execution
Time (in secs) of
SFCM+PM

Average Execution
Time (in secs) of
SFCM+BIC

(210, 2) 251.9511 7.0849
(211, 2) 294.9346 7.8125
(212, 2) 368.8202 9.3230
(213, 2) 499.8744 12.0724
(214, 2) 764.4555 17.4731
(215, 2) 1276.1256 27.7616

128



B. Supplementary Materials for Chapter 4

B.3 Cluster Validity Indices for global sparse clustering model
selection

In this section, we provide the definitions for the Cluster Validity Indices (CVIs) whose
capability to perform sparse clustering model selection have been studied. The following
notations are used throughout this section: x1, ...,xn are n data points, where xi ∈ Rd.
Clusters are represented as C1, ..., Ck, and the centers of each of the k clusters are V =
{v1, ...,vk}. Fuzzy memberships of xi to cluster Cj are represented by µij , with m as the
parameter for the degree of fuzziness. The following are the CVIs used in the comparative
study.

1. Akaike Information Criterion (AIC) (Akaike, 1974):

AIC(V ) =
k∑

j=1
{(−2(nj log(nj) − (nj − n) − njd

2 log(2π∆j) − d(nj−1)
2 ))} + 2k ,

where, ∆j =
∑

xi∈Cj

||xi−vj||2
d/(n−k) .

2. Caliński and Harabasz (CH) Index (Caliński and Harabasz, 1974):

CH(V ) = trace B
trace W .n−k

k−1 ,

where, B and W are between and within cluster scatter matrices:

trace B =
k∑

j=1
|Cj | × ||vj − x̄||2, and,

trace W =
k∑

j=1

∑
xi∈Cj

||xi − vj||2.

3. Classification Entropy (CE) (Bezdek, 1975):

CE(V ) = − 1
n

n∑
i=1

c∑
j=1

µijlogµij .

4. Davies-Bouldin (DB) Index (Davies and Bouldin, 1979):

DB(V ) = 1
k

∑k
j=1 maxj ̸=l{DBjl},

where, DBjl =

√√√√ ∑
xi∈Cj

||xi−vj||2

|Cj |
+

√ ∑
xi∈Cl

||xi−vl||2

|Cl|

||vj−vl|| .

5. Fukuyama Sugeno (FS) Index (Fukuyama and Sugeno, 1989)
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FS(V ) =
n∑

i=1

k∑
j=1

µm
ij ||xj − vi||2 −

k∑
j=1

||vi − v̄||2,

where, v̄ = 1
k

k∑
j=1

vj

6. Fuzzy Hypervolume (FHV) (Dave, 1996):

FHV (V ) =
k∑

j=1

 n∑
i=1

µm
ij ||xi−vj||2

n∑
i=1

µm
ij

1/2

.

7. I Index (Maulik and Bandyopadhyay, 2002):

I(V ) =
(

1
k × E1

Ek
×Dk

)p
,

where, Ek =
k∑

j=1

n∑
i=1

µij ||xi − vj||,

and, Dk = maxk
i,j=1 ||vi − vj||.

8. Modified Partition Coefficient (MPC) (Dave, 1996):

MPC(V ) = 1 − k
k−1(1 −

n∑
i=1

k∑
j=1

µ2
ij

n ).

9. Partition Coefficient (PC) (Dave, 1996):

PC(V ) =
∑n

i=1

∑k
j=1

µ2
ij

n .

10. Partition Index (PI) (Bensaid et al., 1996):

PI(V ) =
k∑

j=1

n∑
i=1

µm
ij ||xi−vj||2

n∑
i=1

µij
∑k

l=1 ||vj−vl||2
.

11. PBMF (Pakhira et al., 2004):

PBMF (V ) =
(

1
k × E1

Jm
×Dk

)
,

where, Jm(U,Z) =
n∑

i=1

k∑
j=1

µm
ij ||xi − vj||,
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and, E1 =
n∑

i=1
||xi − x̄||,

and, Dk = maxk
i,j=1||vi − vj||.

12. PCAES (Wu and Yang, 2005):

PCAES(V ) =
k∑

j=1

n∑
i=1

µ2
ij/µM −

k∑
j=1

exp
(
−minl ̸=j{||vj − vl||2}/βT

)
,

where, µM = min1≤j≤k

(
n∑

i=1
µ2
ij

)
,

and, βT =
∑k

j=1 ||vj−v̄||2

k .

13. RLWY Index (Ren et al., 2016):

RLWY (V ) =
k∑

j=1

1
nj

∑n
i=1 µ

m
ij ||xi − vj||2 + 1

k ||vj − v̄||2

1
k−1

∑k
l=1 ||vl − vj||2

14. Rezaee Index (Rezaee, 2010):

Rezaee(V ) = Sep(k)
maxkSep(k) + Comp(k)

maxkComp(k) ,

and, Sep(k) = 2
k(k−1)

k∑
j ̸=l

Srel(Cj , Cl),

and, S(Cj , Cl) =
n∑

i=1
min(µij , µil) × h(xi),

and, h(xi) = −
k∑

j=1
µijlog(µij).

15. Silhouette Index (Rousseeuw, 1987)

sil(k) = 1
n

∑n
i=1 si,

where for all xi ∈ Cj ,

ai = d(xi, Cj), and bi = min
l ̸=j

d(xi, Cl),

and, si =

{
bi−ai

max{bi,ai} , if |Cj | > 1,

1 , if |Cj | = 1
.
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16. Xie-Beni (XB) Index (Xie and Beni, 1991):

XB(V ) =

c∑
j=1

n∑
i=1

µm
ij ||xi−vj||2

nminj,l ||vj−vl||2
.

17. Xu Index (Xu, 1997):

Xu(V ) = d log

(√
1

n2d

c∑
j=1

∑
xi∈Cj

||xi − vj||2
)

+ log(k).

18. ZXF Index (Zhao et al., 2009b):

ZXF (V ) =
k∗

∑c
j=1

∑
xi∈Cj

||xi−vj||
c∑

j=1
|Cj |×||vj−x̄||

.

19. ZWZL Index (Zhang et al., 2008):

ZWZL(V ) = V ar(V )
Sep(U)

where, V ar(V ) = ( c+1
c−1)

n∑
i=1

k∑
j=1

1
nj
µijd

2(xi,vj),

d(x,y) = (1 − exp(−β||x− y||2))1/2, and

β = (
∑n

i=1 ||xi−x̄||2
n )−1,

and Sep(U) = 1 − maxi ̸=j [maxxk∈X min(µki, µkj)].

B.4 Experiment Results on comparison of approaches for sparse
clustering models selection

In this section, we provide the average ARI achieved on synthetic data sets by the 21 ap-
proaches to sparse hard clustering model selection as well as sparse fuzzy clustering model
selection. Tables B.3 to B.6 show the average ARI obtained by the approaches over the 44
synthetic data sets for Sparse k-Means. Tables B.7 to B.10 show the average ARI obtained
by the approaches over the synthetic data sets for Sparse Fuzzy c-Means.
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Table B.3: (Part I): Average ARI achieved by the Sparse Model Selection approaches on
Sparse k-Means Clusterings.

10d-
40c-
no0

10d-
40c-
no1

10d-
40c-
no2

10d-
40c-
no3

10d-
40c-
no4

10d-
40c-
no5

10d-
40c-
no6

10d-
40c-
no7

10d-
40c-
no8

10d-
40c-
no9

AIC 0.2519 0.2425 0.2201 0.2088 0.2109 0.2222 0.2210 0.2231 0.2210 0.2428
CH 0.9627 0.9626 0.9629 0.9559 0.9600 0.9786 0.9795 0.9853 0.9591 0.9557
CE 0.9633 0.9626 0.9629 0.9559 0.9600 0.9651 0.9375 0.9853 0.9591 0.9613
DB 0.2519 0.2441 0.2250 0.2129 0.2253 0.2222 0.2210 0.2231 0.2210 0.2428
FS 0.9633 0.9626 0.9629 0.9559 0.9600 0.9651 0.9375 0.9853 0.9411 0.9613
FHV 0.9633 0.9626 0.9629 0.9253 0.9600 0.9651 0.9375 0.9853 0.9591 0.9613
I 0.9633 0.8896 0.9629 0.9559 0.8704 0.9651 0.9174 0.8659 0.9591 0.8972
MPC 0.9633 0.9626 0.9629 0.9559 0.9600 0.9786 0.9795 0.9853 0.9591 0.9613
PC 0.9633 0.9626 0.9629 0.9559 0.9600 0.9786 0.9795 0.9853 0.9591 0.9613
PI 0.9633 0.9626 0.9629 0.9253 0.9600 0.9651 0.9375 0.9853 0.9591 0.9613
PBMF 0.9633 0.8896 0.9629 0.9196 0.8704 0.9651 0.9174 0.8659 0.9591 0.8972
PCAES 0.2519 0.4254 0.2913 0.2129 0.2253 0.2222 0.2209 0.2231 0.3255 0.2428
RLWY 0.9633 0.9626 0.9629 0.9253 0.9600 0.9651 0.9375 0.9853 0.9591 0.9613
Rez 0.9633 0.9626 0.9629 0.9559 0.9600 0.9786 0.9375 0.9853 0.9411 0.9613
SIL 0.9627 0.9626 0.9629 0.9196 0.9600 0.9786 0.9795 0.9853 0.9591 0.9686
XB 0.9627 0.9291 0.6503 0.9559 0.8421 0.8944 0.6178 0.9236 0.5124 0.9613
Xu 0.9627 0.9626 0.9629 0.9559 0.9600 0.9786 0.9795 0.9853 0.9591 0.9557
ZXF 0.9633 0.9626 0.9629 0.9559 0.9600 0.9786 0.9795 0.9853 0.9591 0.9557
ZWZL 0.9504 0.2441 0.2201 0.2088 0.2253 0.9786 0.6178 0.9236 0.3255 0.3210
GAP 0.9295 0.8928 0.9308 0.8579 0.8947 0.9317 0.8873 0.9174 0.8959 0.8825
BIC 1.0000 0.9947 0.9784 0.9937 0.9952 0.9806 0.9817 0.9893 0.9688 0.9900

Table B.4: (Part II): Average ARI achieved by the Sparse Model Selection approaches on
Sparse k-Means Clusterings.

10d-
20c-
no0

10d-
20c-
no1

10d-
20c-
no2

10d-
20c-
no3

10d-
20c-
no4

10d-
20c-
no5

10d-
20c-
no6

10d-
20c-
no7

10d-
20c-
no8

10d-
20c-
no9

AIC 0.3537 0.4140 0.2784 0.3180 0.3892 0.3171 0.3466 0.3309 0.3231 0.4325
CH 0.9963 0.9544 0.9886 0.9965 0.9987 0.9840 0.9564 0.9989 1.0000 1.0000
CE 0.9963 0.9544 0.9886 0.9965 0.9987 0.9840 0.9088 0.9989 1.0000 0.9373
DB 0.3537 0.4140 0.2784 0.3267 0.3300 0.3171 0.3466 0.3309 0.3231 0.4325
FS 0.9647 0.9544 0.8807 0.9965 0.9499 0.9257 0.9088 0.9508 1.0000 0.9373
FHV 0.9963 0.9544 0.9886 0.9965 0.9499 0.9257 0.9088 0.9989 1.0000 0.9373
I 0.9963 0.9544 0.8807 0.9965 0.9499 0.9257 0.9088 0.9989 1.0000 0.9373
MPC 0.9963 0.9733 0.9886 0.9965 0.9987 0.9840 0.9564 0.9989 1.0000 1.0000
PC 0.9963 0.9733 0.9886 0.9965 0.9987 0.9840 0.9564 0.9989 1.0000 1.0000
PI 0.9963 0.9733 0.9886 0.9965 0.9499 0.9257 0.9088 0.9989 1.0000 0.9373
PBMF 0.9945 0.8988 0.8807 0.9965 0.9499 0.9257 0.9088 0.9989 1.0000 0.9373
PCAES 0.4244 0.4140 0.3048 0.3180 0.3300 0.3171 0.5050 0.3133 0.3231 0.4256
RLWY 0.9963 0.9733 0.9886 0.9965 0.9499 0.9257 0.9088 0.9989 1.0000 0.9373
Rez 0.9963 0.9733 0.9886 0.9965 0.9987 0.9840 0.9088 0.9989 1.0000 0.9373
SIL 0.9963 0.9733 0.9886 0.9965 0.9987 0.9840 0.9564 0.9989 1.0000 1.0000
XB 0.9945 0.5642 0.9886 0.9949 0.9987 0.9840 0.7325 0.9989 0.9961 0.9932
Xu 0.9963 0.9544 0.9886 0.9965 0.9987 0.9840 0.9564 0.9989 1.0000 1.0000
ZXF 0.9963 0.9733 0.9886 0.9965 0.9987 0.9840 0.9088 0.9989 1.0000 0.9373
ZWZL 0.9945 0.9544 0.9886 0.9895 0.9987 0.9821 0.7325 0.9989 1.0000 1.0000
GAP 0.9963 0.9257 0.9592 0.9965 0.9667 0.9794 0.9639 0.9289 0.9237 0.9338
BIC 0.9963 1.0000 0.9980 0.9965 0.9987 1.0000 0.9952 1.0000 1.0000 1.0000
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Table B.5: (Part III): Average ARI achieved by the Sparse Model Selection approaches on
Sparse k-Means Clusterings.

10d-
10c-
no0

10d-
10c-
no1

10d-
10c-
no2

10d-
10c-
no3

10d-
10c-
no4

10d-
10c-
no5

10d-
10c-
no6

10d-
10c-
no7

10d-
10c-
no8

10d-
10c-
no9

AIC 0.3615 0.3034 0.3136 0.3226 0.3849 0.3566 0.3880 0.3036 0.2579 0.3241
CH 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
CE 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
DB 0.3615 0.3034 0.3269 0.3226 0.3849 0.3566 0.3880 0.3159 0.2459 0.3241
FS 0.4225 0.3173 0.5431 0.3226 0.3849 0.3566 0.3880 0.3036 0.2459 0.3241
FHV 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.6889 0.7552 0.7952 0.6477
I 0.8962 0.6485 0.6668 0.6500 0.6618 0.3516 0.4468 0.8418 0.5727 0.6307
MPC 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
PC 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
PI 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.6889 0.7552 0.7952 0.7507
PBMF 0.4875 0.6485 0.3881 0.6500 0.6618 0.3516 0.4468 0.8418 0.4656 0.3192
PCAES 0.3615 0.3255 0.3269 0.3226 0.3552 0.3566 0.3880 0.5888 0.2459 0.3241
RLWY 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.6889 0.7552 0.7952 0.7507
Rez 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
SIL 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
XB 0.7116 0.6485 0.8785 0.8031 0.9172 0.8467 0.7345 0.8418 0.7952 0.7507
Xu 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
ZXF 0.8962 0.8507 0.8785 0.8031 0.9172 0.9175 0.7345 0.8418 0.7952 0.7507
ZWZL 0.4225 0.6485 0.8785 0.4642 0.8670 0.8467 0.6889 0.8418 0.7952 0.3241
GAP 0.8451 0.8137 0.8792 0.8035 0.9164 0.9142 0.7129 0.7972 0.7977 0.8064
BIC 0.8962 0.8507 0.8785 0.8037 0.9172 0.9175 0.7346 0.8418 0.7952 0.7507

Table B.6: (Part IV): Average ARI achieved by the Sparse Model Selection approaches on
Sparse k-Means Clusterings.

10d-
4c-
no0

10d-
4c-
no1

10d-
4c-
no2

10d-
4c-
no3

10d-
4c-
no4

10d-
4c-
no5

10d-
4c-
no6

10d-
4c-
no7

10d-
4c-
no8

10d-
4c-
no9

2d-
4c-
2x2

2d-
6c-
3x2

2d-
8c-
4x2

2d-
15c-
5x3

AIC 0.7574 0.5483 0.3608 0.3582 0.4323 0.5474 0.2991 0.5307 0.5073 0.7427 1.0000 0.9761 0.9744 0.9548
CH 1.0000 0.9764 0.7879 0.5512 0.8085 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9772 0.9576
CE 1.0000 0.9764 0.7879 0.9277 0.8060 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
DB 0.7574 0.5483 0.3608 0.3562 0.4323 0.5666 0.2991 0.5307 0.5205 0.6904 1.0000 0.9761 0.9772 0.9576
FS 0.7631 0.8680 0.7879 0.5840 0.8085 0.9109 0.8043 0.8770 0.7895 0.7438 1.0000 0.9761 0.9744 0.9548
FHV 0.7631 0.9764 0.7879 0.5512 0.6743 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
I 1.0000 0.9537 0.3608 0.3604 0.8085 0.5671 0.9208 0.7310 0.7002 0.6904 1.0000 0.9761 0.9744 0.9548
MPC 1.0000 0.9764 0.7879 0.9277 0.8060 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
PC 1.0000 0.9764 0.7879 0.9277 0.8060 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
PI 1.0000 0.9764 0.7879 0.5258 0.6743 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
PBMF 0.8298 0.8680 0.3608 0.3604 0.8085 0.5671 0.2991 0.7310 0.7002 0.6904 1.0000 0.9761 0.9744 0.9548
PCAES 0.7574 0.5483 0.3608 0.3562 0.4323 0.5474 0.2991 0.5307 0.5073 0.6533 1.0000 0.9761 0.9772 0.9562
RLWY 1.0000 0.9764 0.7879 0.5258 0.6743 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
Rez 1.0000 0.9764 0.7879 0.9277 0.8060 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9562
SIL 1.0000 0.9764 0.7879 0.9277 0.8085 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9772 0.9562
XB 1.0000 0.9764 0.7879 0.9277 0.8085 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
Xu 1.0000 0.9764 0.7879 0.9277 0.8085 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9772 0.9576
ZXF 1.0000 0.9764 0.7879 0.9277 0.8060 0.9191 0.9468 0.9344 0.9547 0.9312 1.0000 0.9761 0.9744 0.9548
ZWZL 0.9894 0.9764 0.7879 0.9277 0.8085 0.9109 0.8577 0.9152 0.7895 0.9045 1.0000 0.9761 0.9772 0.9548
GAP 1.0000 0.9537 0.6958 0.4579 0.8042 0.8820 0.9208 0.6710 0.9377 0.9547 1.0000 0.9761 0.9744 0.9576
BIC 1.0000 1.0000 0.9761 0.9772 0.9627 0.9626 0.9629 0.9559 0.9600 0.9651 1.0000 0.9761 0.9772 0.9795
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Table B.7: (Part I): Average ARI achieved by the Sparse Model Selection Approaches on
Sparse Fuzzy c-Means Clusterings.

10d-
40c-
no0

10d-
40c-
no1

10d-
40c-
no2

10d-
40c-
no3

10d-
40c-
no4

10d-
40c-
no5

10d-
40c-
no6

10d-
40c-
no7

10d-
40c-
no8

10d-
40c-
no9

AIC 0.2591 0.2338 0.2349 0.2145 0.2241 0.2328 0.2210 0.2188 0.2138 0.2453
CH 0.9390 0.9709 0.9544 0.9643 0.9464 0.9685 0.9282 0.9714 0.9701 0.9765
CE 0.9390 0.9185 0.9544 0.9278 0.9635 0.9399 0.9360 0.9714 0.9701 0.9665
DB 0.2591 0.2338 0.2349 0.2145 0.2241 0.2328 0.2210 0.2188 0.2138 0.2307
FS 0.8681 0.7723 0.9180 0.7425 0.9069 0.8636 0.9360 0.9592 0.9045 0.8423
FHV 0.8681 0.9185 0.9544 0.7425 0.9464 0.8636 0.9360 0.9592 0.9045 0.8423
I 0.9390 0.7723 0.9544 0.9559 0.9635 0.9685 0.9360 0.9592 0.9701 0.8423
MPC 0.9390 0.9709 0.9544 0.9278 0.9635 0.9685 0.9620 0.9714 0.9701 0.9665
PC 0.9390 0.9709 0.9544 0.9278 0.9635 0.9685 0.9620 0.9714 0.9701 0.9665
PI 0.9390 0.9185 0.9544 0.9278 0.9635 0.9399 0.9360 0.9592 0.9701 0.9665
PBMF 0.9390 0.7723 0.9544 0.9559 0.9635 0.9685 0.9360 0.9592 0.9701 0.8423
PCAES 0.2591 0.4565 0.4116 0.2115 0.2161 0.2328 0.2210 0.2188 0.3132 0.2307
RLWY 0.9390 0.9185 0.9544 0.9278 0.9635 0.9399 0.9360 0.9592 0.9701 0.9665
Rez 0.9390 0.9185 0.9544 0.9278 0.9635 0.9685 0.9360 0.9714 0.9701 0.9665
SIL 0.9410 0.9709 0.9544 0.9643 0.9635 0.9685 0.9620 0.9714 0.9701 0.9765
XB 0.9390 0.9709 0.4116 0.9278 0.9464 0.4934 0.7028 0.8724 0.8295 0.8423
Xu 0.9410 0.9709 0.9544 0.9643 0.9464 0.9685 0.9282 0.9714 0.9701 0.9765
ZXF 0.9390 0.9185 0.9544 0.9278 0.9635 0.9685 0.9360 0.9714 0.9701 0.9665
ZWZL 0.9065 0.9709 0.9459 0.9278 0.9464 0.9685 0.9282 0.9714 0.9701 0.9765
GAP 0.9929 0.9571 0.9377 0.9500 0.9510 0.9777 0.9634 0.9587 0.9678 0.9624
BIC 1.0000 0.9744 0.9949 0.9932 0.9937 0.9606 0.9797 0.9946 0.9702 0.9842

Table B.8: (Part II): Average ARI achieved by the Sparse Model Selection approaches on
Sparse Fuzzy c-Means Clusterings.

10d-
20c-
no0

10d-
20c-
no1

10d-
20c-
no2

10d-
20c-
no3

10d-
20c-
no4

10d-
20c-
no5

10d-
20c-
no6

10d-
20c-
no7

10d-
20c-
no8

10d-
20c-
no9

AIC 0.4094 0.4171 0.2920 0.3311 0.3774 0.3187 0.3383 0.3266 0.3335 0.4425
CH 0.9963 0.9544 0.9847 0.9965 0.9980 0.9783 0.9910 1.0000 1.0000 0.9920
CE 0.9963 0.9544 0.9707 0.9965 0.9980 0.9756 0.9910 1.0000 1.0000 0.9311
DB 0.4146 0.4171 0.2794 0.3311 0.3774 0.3187 0.3383 0.3266 0.3335 0.4425
FS 0.9163 0.8740 0.9249 0.9392 0.9511 0.9075 0.8991 0.9224 0.9952 0.9632
FHV 0.9163 0.8740 0.9249 0.9392 0.9511 0.9075 0.8745 0.9224 0.9952 0.9632
I 0.9163 0.9544 0.9249 0.9965 0.9511 0.9536 0.9367 1.0000 1.0000 0.9311
MPC 0.9963 0.9851 0.9847 0.9965 0.9980 0.9756 0.9910 1.0000 1.0000 0.9920
PC 0.9963 0.9851 0.9847 0.9965 0.9980 0.9756 0.9910 1.0000 1.0000 0.9920
PI 0.9163 0.8740 0.9249 0.9965 0.9511 0.9756 0.9367 1.0000 1.0000 0.9311
PBMF 0.9163 0.9231 0.9249 0.9965 0.8155 0.9536 0.8075 0.9224 1.0000 0.9091
PCAES 0.4094 0.4171 0.2794 0.3466 0.3774 0.3124 0.4335 0.3372 0.3469 0.4425
RLWY 0.9163 0.8740 0.9249 0.9965 0.9511 0.9756 0.9367 1.0000 1.0000 0.9311
Rez 0.9963 0.9544 0.9707 0.9965 0.9980 0.9756 0.9910 1.0000 1.0000 0.9920
SIL 0.9963 0.9851 0.9847 0.9965 0.9980 0.9783 0.9910 1.0000 1.0000 0.9920
XB 0.9963 0.8920 0.9847 0.9965 0.9980 0.9783 0.9910 1.0000 1.0000 0.9920
Xu 0.9963 0.9528 0.9847 0.9965 0.9980 0.9783 0.9910 1.0000 1.0000 0.9920
ZXF 0.9963 0.9544 0.9847 0.9965 0.9980 0.9756 0.9910 1.0000 1.0000 0.9920
ZWZL 0.9577 0.9528 0.9847 0.9965 0.9980 0.9783 0.9910 1.0000 0.9952 0.9920
GAP 0.9715 0.9481 0.9980 0.9965 0.9987 1.0000 0.9910 1.0000 1.0000 1.0000
BIC 0.9963 1.0000 0.9980 0.9965 0.9987 1.0000 0.9910 1.0000 1.0000 1.0000
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Table B.9: (Part III): Average ARI achieved by the Sparse Model Selection approaches on
Sparse Fuzzy c-Means Clusterings.

10d-
10c-
no0

10d-
10c-
no1

10d-
10c-
no2

10d-
10c-
no3

10d-
10c-
no4

10d-
10c-
no5

10d-
10c-
no6

10d-
10c-
no7

10d-
10c-
no8

10d-
10c-
no9

AIC 0.4074 0.3016 0.3419 0.2947 0.3925 0.2796 0.4056 0.2711 0.2181 0.3129
CH 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
CE 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
DB 0.3579 0.3016 0.3419 0.3222 0.3610 0.2720 0.4056 0.2711 0.2181 0.3962
FS 0.4074 0.3138 0.5212 0.7719 0.3925 0.2796 0.6828 0.6674 0.6568 0.3962
FHV 0.5977 0.8052 0.5212 0.7719 0.3925 0.9023 0.6828 0.7223 0.6568 0.3962
I 0.8064 0.7647 0.6544 0.4962 0.6483 0.9023 0.4813 0.7870 0.7587 0.5956
MPC 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
PC 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
PI 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
PBMF 0.5145 0.6523 0.3887 0.4962 0.4665 0.9023 0.4813 0.7870 0.5707 0.3077
PCAES 0.3579 0.3138 0.3419 0.2947 0.3610 0.3246 0.4813 0.5265 0.5707 0.3962
RLWY 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
Rez 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
SIL 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
XB 0.6961 0.7647 0.8623 0.7719 0.9082 0.8347 0.7046 0.6251 0.7031 0.3678
Xu 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
ZXF 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7870 0.7587 0.6691
ZWZL 0.8064 0.8052 0.8623 0.7719 0.9082 0.9023 0.6828 0.7870 0.7587 0.6691
GAP 0.8420 0.8366 0.8623 0.7646 0.9082 0.9023 0.7010 0.8243 0.7670 0.7384
BIC 0.8490 0.8052 0.8623 0.7719 0.9082 0.9023 0.7740 0.7876 0.7670 0.6731

Table B.10: (Part IV): Average ARI achieved by the Sparse Model Selection approaches on
Sparse Fuzzy c-Means Clusterings.

10d-
4c-
no0

10d-
4c-
no1

10d-
4c-
no2

10d-
4c-
no3

10d-
4c-
no4

10d-
4c-
no5

10d-
4c-
no6

10d-
4c-
no7

10d-
4c-
no8

10d-
4c-
no9

2d-
4c-
2x2

2d-
6c-
3x2

2d-
8c-
4x2

2d-
15c-
5x3

AIC 0.7577 0.5609 0.3646 0.3498 0.4357 0.5472 0.5058 0.5464 0.5007 0.7398 1.0000 0.9762 0.9744 0.9548
CH 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9562
CE 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
DB 0.7577 0.5609 0.3646 0.3587 0.4470 0.5656 0.5058 0.5464 0.4910 0.6586 1.0000 0.9762 0.9744 0.9576
FS 0.7577 0.8517 0.6945 0.5270 0.7656 0.8777 0.8657 0.9080 0.8613 0.7507 1.0000 0.9761 0.9744 0.9576
FHV 0.7577 0.8517 0.6945 0.5270 0.7656 0.8777 0.8291 0.9080 0.7614 0.9547 1.0000 0.9761 0.9744 0.9576
I 1.0000 0.9192 0.4239 0.3569 0.7656 0.5655 0.9317 0.7276 0.6731 0.6859 1.0000 0.9762 0.9744 0.9548
MPC 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
PC 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
PI 1.0000 0.9703 0.5608 0.5018 0.6732 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
PBMF 0.8957 0.7024 0.4239 0.3569 0.7656 0.5655 0.9317 0.7276 0.6731 0.6859 1.0000 0.9762 0.9744 0.9548
PCAES 0.7577 0.5609 0.5171 0.3498 0.4470 0.5472 0.5304 0.5464 0.9251 0.6586 1.0000 0.9761 0.9744 0.9548
RLWY 1.0000 0.9703 0.5608 0.5018 0.6732 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
Rez 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
SIL 1.0000 0.9703 0.6945 0.5270 0.8036 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
XB 1.0000 0.9703 0.6945 0.4336 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
Xu 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
ZXF 1.0000 0.9703 0.6945 0.5270 0.8013 0.9191 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9576
ZWZL 0.9994 0.8517 0.6871 0.5018 0.6633 0.9198 0.9358 0.9080 0.9455 0.9535 1.0000 0.9761 0.9744 0.9548
GAP 0.9994 0.9703 0.6871 0.5222 0.6864 0.9198 0.9358 0.9239 0.9455 0.9547 1.0000 0.9761 0.9744 0.9548
BIC 1.0000 1.0000 0.9761 0.9744 0.9390 0.9709 0.9544 0.9559 0.9635 0.9685 1.0000 0.9761 0.9744 0.9576
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B.5 Experiment Results of sparse clustering methods on syn-
thetic data sets

Table B.11 shows the average ARI achieved on the synthetic data sets by the proposed Sparse
k-Means using BIC (SKM+BIC) method, in contention with the methods of Sparse k-Means
using the Permutation Method (SKM+PM), Robust Sparse k-Means (RSKM) (Kondo et al.,
2012) and Structured Sparse k-Means (SSKM) (Gong et al., 2018).

Table B.11: Average ARI achieved on Synthetic Datasets by Sparse Hard Clustering Methods.

Dataset SKM+GAP RSKM SSKM SKM+BIC
10d-40c-no0 0.9295 0.9190 0.8286 1.0000
10d-40c-no1 0.8928 0.9386 0.9093 0.9947
10d-40c-no2 0.9308 0.9297 0.8980 0.9784
10d-40c-no3 0.8579 0.8503 0.2966 0.9937
10d-40c-no4 0.8947 0.9102 0.8007 0.9952
10d-40c-no5 0.9317 0.8611 0.7012 0.9806
10d-40c-no6 0.8873 0.8906 0.4964 0.9817
10d-40c-no7 0.9174 0.9010 0.8005 0.9893
10d-40c-no8 0.8959 0.9551 0.8969 0.9688
10d-40c-no9 0.8825 0.9266 0.8055 0.9900
10d-20c-no0 0.9963 0.9371 0.8865 0.9963
10d-20c-no1 0.9257 0.9299 0.8087 1.0000
10d-20c-no2 0.9592 0.8749 0.5793 0.9980
10d-20c-no3 0.9965 0.9340 0.361 0.9965
10d-20c-no4 0.9667 0.8810 0.8684 0.9987
10d-20c-no5 0.9794 0.9323 0.8482 1.0000
10d-20c-no6 0.9639 0.9288 0.4730 0.9952
10d-20c-no7 0.9289 0.8932 0.8634 1.0000
10d-20c-no8 0.9237 0.8894 0.8384 1.0000
10d-20c-no9 0.9338 0.9385 0.8882 1.0000
10d-10c-no0 0.8451 0.7333 0.1190 0.8962
10d-10c-no1 0.8137 0.8349 0.1503 0.8507
10d-10c-no2 0.8792 0.7723 0.0816 0.8785
10d-10c-no3 0.8035 0.7991 0.0941 0.8037
10d-10c-no4 0.9164 0.7552 0.372 0.9172
10d-10c-no5 0.9142 0.9289 0.2481 0.9175
10d-10c-no6 0.7129 0.7768 0.2262 0.7346
10d-10c-no7 0.7972 0.6884 0.3764 0.8418
10d-10c-no8 0.7977 0.7668 0.1826 0.7952
10d-10c-no9 0.8064 0.7642 0.1944 0.7507
10d-4c-no0 1.0000 0.9994 0.7326 1.0000
10d-4c-no1 0.9537 0.9616 0.4584 1.0000
10d-4c-no2 0.6958 0.8573 0.3485 0.9761
10d-4c-no3 0.4579 0.9614 0.4095 0.9772
10d-4c-no4 0.8042 0.8336 0.3580 0.9627
10d-4c-no5 0.8820 0.3666 0.2834 0.9626
10d-4c-no6 0.9208 0.9541 0.1825 0.9629
10d-4c-no7 0.6710 0.9671 0.2941 0.9559
10d-4c-no8 0.9377 0.9850 0.0324 0.9600
10d-4c-no9 0.9547 0.6628 0.3334 0.9651
2d-4c-2x2 1.0000 0.3508 0.4969 1.0000
2d-6c-3x2 0.9761 0.9761 0.4412 0.9761
2d-8c-4x2 0.9744 0.4589 0.4528 0.9772
2d-15c-5x3 0.9576 0.8649 0.3453 0.9795
Avg. Ranks 2.25 2.48 3.93 1.18
Hyp Test H1 H1 H1 -
pval 4.38E-07 1.50E-07 7.62E-09 -

Table B.12 shows the average ARI achieved on the synthetic data sets by the proposed
Sparse Fuzzy c-Means using BIC (SFCM+BIC) method, in contention with the methods
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of Sparse Fuzzy c-Means using the Permutation Method (SFCM+PM), and Robust Sparse
Fuzzy c-Means using the ℓ2,1 norm (RSFCM(ℓ2,1)) and the ℓ1-capped norm (RSFCM(ℓ1-c)
(Xu et al., 2016).

Table B.12: Average ARI achieved on Synthetic Datasets by Sparse Fuzzy Clustering Meth-
ods.

Dataset SFCM+GAP RSFCM-l21 RSFCM-l1c SFCM+BIC
10d-10c-no0 0.8420 0.6349 0.6894 0.8490
10d-10c-no1 0.8366 0.4929 0.4913 0.8052
10d-10c-no2 0.8623 0.3501 0.3456 0.8623
10d-10c-no3 0.7646 0.4959 0.4799 0.7719
10d-10c-no4 0.9082 0.5307 0.5162 0.9082
10d-10c-no5 0.9023 0.3718 0.3969 0.9023
10d-10c-no6 0.7010 0.4214 0.4986 0.7740
10d-10c-no7 0.8243 0.3635 0.3524 0.7876
10d-10c-no8 0.7670 0.3791 0.3348 0.7670
10d-10c-no9 0.7384 0.4582 0.4136 0.6731
10d-20c-no0 0.9715 0.7310 0.7420 0.9963
10d-20c-no1 0.9481 0.7571 0.7290 1.0000
10d-20c-no2 0.9980 0.7201 0.6435 0.9980
10d-20c-no3 0.9965 0.7778 0.6247 0.9965
10d-20c-no4 0.9987 0.7928 0.6803 0.9987
10d-20c-no5 1.0000 0.8149 0.7053 1.0000
10d-20c-no6 0.9910 0.8335 0.6744 0.9910
10d-20c-no7 1.0000 0.7305 0.7234 1.0000
10d-20c-no8 1.0000 0.7748 0.7507 1.0000
10d-20c-no9 1.0000 0.8175 0.6584 1.0000
10d-40c-no0 0.9929 0.6961 0.6333 1.0000
10d-40c-no1 0.9571 0.6990 0.5855 0.9744
10d-40c-no2 0.9377 0.6975 0.6735 0.9949
10d-40c-no3 0.9500 0.4371 0.4207 0.9932
10d-40c-no4 0.9510 0.5974 0.5272 0.9937
10d-40c-no5 0.9777 0.5777 0.5233 0.9606
10d-40c-no6 0.9634 0.6773 0.6553 0.9797
10d-40c-no7 0.9587 0.5826 0.5237 0.9946
10d-40c-no8 0.9678 0.5064 0.5614 0.9702
10d-40c-no9 0.9624 0.6825 0.6920 0.9842
10d-4c-no0 0.9994 0.7638 0.7307 1.0000
10d-4c-no1 0.9703 0.7768 0.7485 1.0000
10d-4c-no2 0.6871 0.7560 0.7227 0.9761
10d-4c-no3 0.5222 0.7297 0.7057 0.9744
10d-4c-no4 0.6864 0.7732 0.7363 0.9390
10d-4c-no5 0.9198 0.3872 0.3010 0.9709
10d-4c-no6 0.9358 0.3573 0.3640 0.9544
10d-4c-no7 0.9239 0.8859 0.8338 0.9559
10d-4c-no8 0.9455 0.6244 0.8407 0.9635
10d-4c-no9 0.9547 0.8858 0.8446 0.9685
2d-4c-2x2 1.0000 0.9137 0.8368 1.0000
2d-6c-3x2 0.9761 0.9601 0.6122 0.9761
2d-8c-4x2 0.9744 0.9744 0.7057 0.9744
2d-15-5x3 0.9548 0.7766 0.6599 0.9576
Avg. Ranks 1.70 3.07 3.75 1.09
Hyp Test H1 H1 H1 -
pval 1.32E-03 1.12E-08 7.61E-09 -
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B.6 Influence of the sparsity of the dataset

An interesting study can be the influence of the sparsity of the dataset on the sparse center-
based clustering methods, when the proposed BIC based approach is used in comparison
to the permutation method based approach using the GAP statistic. We consider two
datasets from the collection of ten-dimensional datasets from the MOCK collection (Handl
and Knowles, 2007). One of the datasets contains ten clusters, whereas the other contains
forty clusters. The TSNE plots of the datasets allows us to visualize the dataset under
consideration. To this dataset we add an increasing number of noisy features, from two to
twenty in increments of two. The noisy features that are added each are based on a random
one-dimensional Gaussian with zero mean and variance equal to average feature variance
of the dataset. On these two datasets, we first study the performance of SKM+GAP and
SKM+BIC as the number of noisy features is increased, following which we similarly study
the clustering performance of SFCM+GAP in comparison to SFCM+BIC. The performance
of the sparse clustering methods are measured in terms of the average ARI achieved on the
dataset over 20 runs of each method. The experiment protocol of Section 4.4.1 is followed.

(a) TSNE plot of Dataset 10d-10c-no0 (b) TSNE plot of Dataset 10d-40c-no0

Figure B.1: TSNE plots of two 10-dimensional datasets from the MOCK collection of datasets
(Handl and Knowles, 2007). To these datasets, noise features are added with variance com-
parable to the average feature variance of the datasets.

Table B.13 shows the average ARI achieved by SKM+GAP in comparison to SKM+BIC.
We observe that for both the datasets, SKM+BIC generally outperforms SKM+GAP across
different number of noisy features. For the cases where SKM+GAP attains the highest av-
erage ARI, SKM+BIC also performs competitively. Thus we observe a significantly more
robust clustering performance by the proposed SKM+BIC compared to that of SKM+GAP.
Similarly, in Table B.14 we observe the clustering performances of SFCM+GAP in compari-
son to the proposed SFCM+BIC. From the results we observe that across different number
of noisy features, SFCM+BIC performs competitively compared to SFCM+GAP, outper-
forming the latter in more cases for the dataset with ten clusters. Therefore we can con-
clude that SFCM+BIC provides a low-cost alternative that performs as well as SFCM+GAP,
while SKM+BIC is a better choice for the sparse clustering of a dataset in comparison to
SKM+GAP while also incurring significantly lower computation costs.
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Table B.13: Average ARI achieved by SKM+GAP and SKM+BIC in the presence of increas-
ing number of noise features.

Dataset #noise features SKM+GAP SKM+BIC

10d-10c-no0

2 0.8262 0.8635
4 0.8657 0.8640
6 0.8629 0.8640
8 0.8413 0.9018
10 0.9036 0.9038
12 0.8629 0.8629
14 0.8150 0.9030
16 0.9018 0.9022
18 0.8598 0.9027
20 0.8118 0.8635

10d-40c-no0

2 0.9161 0.9440
4 0.8725 0.9227
6 0.9057 0.9103
8 0.8915 0.9384
10 0.9190 0.9447
12 0.8775 0.9281
14 0.9430 0.9232
16 0.8863 0.9436
18 0.9085 0.9390
20 0.9397 0.9417

Table B.14: Average ARI achieved by SFCM+GAP and SFCM+BIC in the presence of
increasing number of noise features.

Dataset #noise features SFCM+GAP SFCM+BIC

10d-10c-no0

2 0.8523 0.8387
4 0.6696 0.8199
6 0.7833 0.7416
8 0.6702 0.7762
10 0.6799 0.7540
12 0.6296 0.7733
14 0.6186 0.6339
16 0.6663 0.7354
18 0.6623 0.6267
20 0.6278 0.6143

10d-40c-no0

2 0.8839 0.9054
4 0.8645 0.8827
6 0.8864 0.8962
8 0.8874 0.8421
10 0.8808 0.8455
12 0.8848 0.8719
14 0.8823 0.8864
16 0.8868 0.8882
18 0.8420 0.8616
20 0.8980 0.8397
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Supplementary for Chapter 5

C.1 Tuning of parameters for ECM

In this section we study the changes in the maximum Adjusted Rand Index (ARI) for different
values of the parameters of the multi-objective optimization methods used. NSGA-II has the
following paramters:

1. pop: Size of the population.

2. FE : Number of fitness evaluations.

3. pool : Fraction of the population undergoing genetic operations.

4. tour : During tournament selection, the number of solutions from which one is selected.

5. mu: Distribution index for crossover.

6. mum: Distribution index for mutation.

MOEA/D has the following parameters:

1. pop: Size of the population.

2. T : Size of the neighbourhood.

3. FE : Number of fitness evaluations.

4. F : Parameter for mutation in Differential Evolution.

5. Cr : Parameter for crossover in Differential Evolution.

The effects of tuning the parameter values are observed over three datasets containing
three clusters that are well-separated, slightly overlapped, or highly overlapped. The datasets
are shown in Fig. C.1.

In our experiments, we ran ECM-NSGA-II with the following parameter values: pop = 50,
FE = 5000, pool = 0.5, tour = 2, mu = 20, and mum = 20. In Figs. C.2 to C.7, we observe
the variations in the best ARI achieved for different values of each parameter. When varying
a single parameter, the other parameters are set to the values we used in our experiments.
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(a) 3 well-separated clusters (b) 3 clusters with slight over-
lap

(c) 3 clusters with high overlap

Figure C.1: Data set containing 3 clusters with different levels of overlap

In each figure, one can observe that the variation in best ARI is very small, suggesting that
the methods are quite resilient to the choice of parameters. For the parameters pop, FE,
pool, mu and mum, the best ARI achieved increases with an increase in the parameter values
considered in the experiments. For tour, the maximum ARI decreases with the increase in
parameter values.

Similarly, in our experiments, ECM-MOEA/D was executed with the following parameters
values: pop = 50, FE = 5000, T = 50, F = 0.5, Cr = 0.5. Figs. C.8 to C.12 show small
variations in the best ARI achieved with variations in each parameter, while keeping all
other parameters fixed. This indicates that the methods are quite resilient to the choice of
parameter values. For pop, FE and T , the best ARI achieved increases with an increase in the
parameter values considered in the experiments. For F and Cr, the best ARI is respectively
achieved when F = 0.5 and Cr = 0.5.

Figure C.2: The variation in maximum ARI with variation in the population size (pop) for
ECM-NSGA-II
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Figure C.3: The variation in maximum ARI with variation in the number of fitness evaluations
(FE) for ECM-NSGA-II

Figure C.4: The variation in maximum ARI with variation in the fraction of population
undergoing genetic operation (pool) for ECM-NSGA-II

Figure C.5: The variation in maximum ARI with variation in the number of solutions (tour)
from which one solution is selected during tournament selection for ECM-NSGA-II
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Figure C.6: The variation in maximum ARI with variation in the distribution index for
crossover (mu) for ECM-NSGA-II

Figure C.7: The variation in maximum ARI with variation in the distribution index for
mutation (mum) for ECM-NSGA-II

Figure C.8: The variation in maximum ARI with variation in the population size (pop) for
ECM-MOEA/D
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Figure C.9: The variation in maximum ARI with variation in the number of fitness evaluations
(FE) for ECM-MOEA/D

Figure C.10: The variation in maximum ARI with variation in the neighbourhood size (T )
for ECM-MOEA/D

Figure C.11: The variation in maximum ARI with variation in the mutation parameter F in
Differential Evolution for ECM-MOEA/D
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Figure C.12: The variation in maximum ARI with variation in crossover parameter Cr in
Differential Evolution for ECM-MOEA/D
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C.2 ECM on datasets with different levels of overlap

In this section, we demonstrate the workings of ECM on three datasets, each of which has
three clusters with different levels of overlap between them. The three datasets we consider
are shown in Figure C.13. The leftmost dataset data1-well-separated contains three well-
separated clusters which should be identified by a fuzzy clustering method with low levels of
fuzziness. The dataset shown in the middle data2-slight-overlaps contains three clusters with
slight overlap between the clusters. A corresponding fuzzy clustering model should identify
clusters with a level of fuzziness that is best suited to the underlying degree of overlap. The
rightmost dataset data3-high-overlaps contains three clusters that are highly overlapped. A
fuzzy clustering method should identify the clusters with a higher level of fuzziness to closely
match the underlying degree of overlap between the clusters.

(a) data1-well-separated (b) data2-slight-overlaps (c) data3-high-overlaps

Figure C.13: We consider three datasets to demonstrate the working of the proposed ECM,
shown from left to right named respectively as data1-well-separated, data2-slight-overlaps,
and data3-high-overlaps.

When ECM-NSGA-II and ECM-MOEA/D are run on data1-well-separated, we obtain
a wide Pareto front of clustering solutions as shown in Figures C.14 and C.15. The best
clustering solution for these datasets can be identified as the leftmost solution on the Pareto
front, where the most discrete solutions have been identified by ECM corresponding to the
lowest degree of fuzziness among all the solutions on the Pareto front. This behaviour can
be observed for both ECM-NSGA-II and ECM-MOEA/D. One can traverse the rest of the
solutions on the Pareto front to observe the rest of the clustering solutions that have been
identified, which correspond to clusterings with increasing levels of fuzziness until all clusters
are overlapped in the rightmost solution of the Pareto front.

On the dataset data2-slight-overlaps we observe that ECM-NSGA-II and ECM-MOEA/D
successfully return a wide Pareto front of clustering solutions in Figures C.16 and C.17. One
can observe that the leftmost solution on the Pareto front corresponds to a clustering with
the lowest levels of fuzziness; the rightmost solution results in a clustering with the highest
levels of fuzziness where all clusters are overlapped, and between these two extreme cases we
obtain a wide range of clustering solutions. Among these solutions we can obtain a clustering
with a level of fuzziness that is best suited to the low levels of overlap between the clusters.

On the dataset data3-high-overlaps, the Pareto fronts identified by ECM-NSGA-II and
ECM-MOEA/D are shown in Figures C.18 and C.19. From the Pareto front we can obtain a
clustering solution with high levels of fuzziness to match the high degree of overlap present
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Figure C.14: For the dataset data1-well-separated with three well-separated clusters, the
Pareto front obtained from ECM-NSGA-II shows a wide range of resulting clusterings. The
most suitable clustering for this dataset is obtained from the leftmost solution on the Pareto
front, and we see clusterings at different levels of fuzziness across the Pareto front.

between the clusters in the dataset. As can be seen from the range of clustering solutions
identified ranging from the most discrete clusterings on the leftmost side of the Pareto front
to the most overlapped clusters on the righthand side, ECM returns a wide range of clustering
solutions which can enable us to select the clustering solution with the best suited level of
fuzziness for the dataset at hand.
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Figure C.15: For the dataset data1-well-separated with three well-separated clusters, the
ECM-MOEA/D Pareto front shows a wide range of resulting clusterings at different levels
of fuzziness. For this dataset, the most appropriate clustering is obtained from the leftmost
solution on the Pareto front.

Figure C.16: For the dataset data2-slight-overlaps with three slightly overlapped clusters,
ECM-NSGA-II results in a wide range of clustering solutions for different levels of fuzziness,
three of which are shown above, going from the most discrete clustering obtained in the left-
most solution to the most overlapped clustering solution observed in the rightmost solution.
The most suitable clustering can be identified within this range of solutions.
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Figure C.17: For ECM-MOEA/D we observe a behaviour similar to the case of ECM-NSGA-
II, where for the dataset data2-slight-overlaps we obtain a wide range of clustering solutions
from the most discrete clusters to the left of the Pareto front, to the most overlapped clus-
terings obtained in the rightmost solution on the Pareto front.

Figure C.18: For the dataset data3-high-overlaps with highly overlapped clusters, ECM-
NSGA-II results in a Pareto front from which one can obtain a clustering solution with a
level of fuzziness that closely matches the underlying degree of overlap of the data.

150



C. Supplementary Materials for Chapter 5

Figure C.19: For the dataset data3-high-overlaps with highly overlapped clusters, ECM-
MOEA/D results in a wide Pareto front of solutions covering a wide range of levels of fuzzi-
ness, from which we can identify the most suitable clustering solution whose level of fuzziness
closely matches the underlying degree of overlap of the data.
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C.3 Multiple Contradictory Objectives of ECM versus a Com-
bined Single Objective

In this section we compare the proposed multiple contradictory objective clustering setup
of ECM with that of a combined single objective clustering problem. For the ease of the
discussions, we reproduce here the two objective functions of ECM that were proposed in
Chapter 5.

minimize f1 =
N∑
i=1

c∑
j=1

µij ||xi − vj||2 , (C.1a)

maximize f2 = −
N∑
i=1

c∑
j=1

µijlog(µij) . (C.1b)

The objective function f1 aims to identify compact clusters by minimizing the sum of
the distances of the data instances to each of the clusters, which are weighted by the fuzzy
cluster memberships. Minimizing f1 leads to the identification of discrete clusters. The
objective function f2 on the other hand, is a measure of the entropy of cluster memberships,
maximizing which will lead to completely overlapped clusters. Since f1 aims to identify
discrete clusters whereas f2 aims to identify overlapped clusters, these two objectives are
contradictory, which we prove in Chapter 5. The simultaneous optimization of these two
objectives by the evolutionary multi-objective optimization algorithms of ECM-NSGA-II and
ECM-MOEA/D result in a wide Pareto front of clustering solutions with different levels
of fuzzines across the Pareto front. The leftmost solution of the Pareto front yields the
clustering with the lowest levels of fuzziness, using which one can identify discrete clusters.
The rightmost solution of the Pareto front is a clustering with the highest levels of fuzziness,
thus identifying completely overlapped clusters. In between these two solutions, the Pareto
front provides a wide range of clustering solutions corresponding to different levels of fuzziness.
For a dataset at hand, the most suitable clustering with a level of fuzziness that closely
matches the underlying degree of overlap between the clusters in the dataset can thus be
identified from this Pareto front.

However, when these two objectives are combined into a single objective, we lose this
capability of identifying a wide range of clustering solutions corresponding to different levels of
fuzziness. If the two objectives are combined to form a single objective f = f1−f2, then both
the objectives aim to identify the most discrete clusters. When an evolutionary algorithm
is used to optimize this objective, we obtain a population of the same clustering solutions,
that identify discrete clusters on the dataset. This is shown in Figure C.20, where compared
to the wide Pareto front of ECM containing clusterings at different levels of fuzziness, the
combined single objective yields a population of the same solutions identifying only discrete
clusters. Similarly, if we consider a combined single objective f ′ = f2 − f1, we will obtain
only clustering solutions where all the clusters are completely overlapped.

Thus the advantage of using multiple contradictory objectives in ECM is to yield a wide
Pareto front of clustering solutions at different levels of fuzziness, from which a clustering
can be selected with a suitable level of fuzziness corresponding to the underlying degree of
overlap among the clusters in the data at hand.
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Figure C.20: For the dataset data1-well-separated shown in Figure C.13(a), the use of the
two contradictory objectives of f1 and f2 described in eqns. (C.1a) and (C.1b) enables ECM-
NSGA-II to identify a wide Pareto front of clustering solutions at different levels of fuzziness,
from which one can identify a clustering that closely matches the underlying degree of overlap
of the dataset at hand. In contrast, if the two objectives are combined to form a single
objective of f = f1 − f2 which are not contradicting, an evolutionary optimization algorithm
will converge to give all equivalent solutions of a clustering with discrete clusters, as observed
on the leftmost side of the Pareto front where ECM also obtains its most discrete clustering
solutions.
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ternal clustering validity index based on chi-squared statistical test. Information Sciences,
487:1 – 17, 2019. 64

S. Luo, C. Zhang, W. Zhang, and X. Cao. Consistent and Specific Multi-View Subspace
Clustering. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018. 10

J. Lv, Z. Kang, X. Lu, and Z. Xu. Pseudo-Supervised Deep Subspace Clustering. IEEE
Transactions on Image Processing, 30:5252–5263, 2021. 116

D. MacDonald and C. Fyfe. The Kernel Self Organising Map. In Proceedings of the Fourth
International Conference on Knowledge-Based Intelligent Engineering Systems and Allied
Technologies, volume 1, pages 317–320, 2000. 40

J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, pages 281–297. University of California Press, 1967. 3, 19, 39

D. Marin, M. Tang, I. B. Ayed, and Y. Boykov. Kernel Clustering: Density Biases and
Solutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1):136–
147, 2019. 7

S. Matsushima and M. Brbic. Selective Sampling-based Scalable Sparse Subspace Clustering.
In Advances in Neural Information Processing Systems, volume 32, 2019. 10

U. Maulik and S. Bandyopadhyay. Performance Evaluation of Some Clustering Algorithms
and Validity Indices. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(12):1650–1654, 2002. 25, 65, 120, 130

G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number
of clusters in a data set. Psychometrika, 50(2):159–179, Jun 1985. 19, 24

M. Moshkovitz, S. Dasgupta, C. Rashtchian, and N. Frost. Explainable k-Means and k-
Medians Clustering. In Proceedings of the 37th International Conference on Machine
Learning, ICML, volume 119, pages 7055–7065, 2020. 115

S. Mukherjee, H. Asnani, E. Lin, and S. Kannan. ClusterGAN: Latent Space Clustering
in Generative Adversarial Networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(1):4610–4617, 2019. 11

165



References

A. Mukhopadhyay and U. Maulik. Unsupervised Pixel Classification in Satellite Imagery
Using Multiobjective Fuzzy Clustering Combined With SVM Classifier. IEEE Transactions
on Geoscience and Remote Sensing, 47(4):1132–1138, 2009. 80

A. Mukhopadhyay, S. Bandyopadhyay, and U. Maulik. Clustering using Multi-objective
Genetic Algorithm and its Application to Image Segmentation. In 2006 IEEE International
Conference on Systems, Man and Cybernetics, volume 3, pages 2678–2683, 2006. 80

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. Survey of Mul-
tiobjective Evolutionary Algorithms for Data Mining: Part II. IEEE Transactions on
Evolutionary Computation, 18(1):20–35, 2014. 74
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